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1. Introduction

It is known from Vaughan and Wooley’s work on Waring’s problem that every

sufficiently large natural number is the sum of at most 17 fifth powers [13]. It

is also known that at least six fifth powers are required to be able to express every

sufficiently large natural number as a sum of fifth powers (see, for instance, [5,

Theorem 394]). The techniques of [13] allow one to show that almost all natural

numbers are the sum of nine fifth powers. A problem of related interest is to obtain

an upper bound for the number of representations of a number as a sum of a fixed

number of powers. Let R(n) denote the number of representations of the natural

number n as a sum of four fifth powers. In this paper, we establish a non-trivial upper

bound for R(n), which is expressed in the following theorem.

T 1.1. If R(n) denotes the number of representations of n as a sum of four

fifth powers, then
R(n)' n(""/$!)+

ε.

To consider the strength of this result, one can obtain R(n)' n(#/&)+
ε by using

standard estimates for the divisor function. In fact, if we let r(n) denote the number

of representations of n as the sum of two non-negative fifth powers, then we have

R(n)¯ 3
!
%m%n

r(m) r(n®m)% 3
!
%m%n

r#(m)' n#/&,

where the last inequality follows from an asymptotic formula of Hooley given in [6].

For later developments concerning sums of two powers, see also Hooley [9, 10].

Therefore, Theorem 1.1 yields a saving of 1}30 over the first trivial estimate.

It is often easy to obtain close to square root cancellation, as we see above, but

it is very difficult to achieve results which do better than square root cancellation

when there are four or more variables. The only other such result we are aware of is

due to Hooley, who showed in [8] that the number of representations of an integer n

as the sum of four cubes is O(n(""/"))+
ε), which saves 1}18 from the trivial estimate. Our

work carries Hooley’s methods over to cover the case of fifth powers by using his

work in [8] as a framework. Hooley’s argument depended on transforming his

original equation into
2r(h'r#­3s#)¯m®Z $®W $, (1.1)

where h accounts for common factors of the original variables. Selberg’s upper bound

sieve is employed by creating a larger sequence of integers containing the terms 3s#,
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and then bounding the number of solutions to congruential equations which must

hold. If one makes the same transformations for the equation involving the sum of

four kth powers, where k is odd, then the equation corresponding to (1.1) is of the

form
2rΨ(h#kr#, s#)¯m®Zk®Wk, (1.2)

where Ψ(x, y) is a homogeneous polynomial of degree (k®1)}2. When k¯ 5, we are

able to complete the square in (1.2) to obtain an equation of the form

2r(5U #®4h#!r%)¯m®Z &®W &,

which allows one to proceed in a similar manner to that of Hooley. However, when

k is larger than 5, we cannot simply separate out all of the cross terms involving both

r# and s#, so that we cannot consider the congruential equations in the same manner.

For this reason, we were only able to establish a result for fifth powers with the

present techniques. Another important part of the argument is using exponential

sums to represent the number of solutions to the resulting equations, and bounding

the terms expected to be of lower order by estimates for these exponential sums.

For convenient reference, we make a few comments about the notation used in

this paper. It should be noted that d always denotes an integer satisfying the

description which follows (4.5), and that variables with a subscript of d are of the

nature described in Section 4. Also, 0(a
"
, a

#
, a

$
, a

%
) represents a condition on a

"
, a

#
,

a
$
, a

%
described at the beginning of Section 4. We use ' and ( to denote

Vinogradov’s familiar notation, where the constants depend at most on ε. As usual,

the greatest common divisor of u
"
,… , u

j
is denoted by (u

"
,… , u

j
), the divisor function

of n is denoted by τ(n), ω(u) denotes the number of prime factors of u, σ
j
(u) denotes

the sum of the jth powers of the divisors of u, and s|s denotes the distance of | from

the nearest integer; we denote e(x)¯ e#πix. The Legendre symbol is written as (a r p)

or (a}p).

2. Related results

Before beginning the proof of Theorem 1.1, we discuss what one might expect to

be true about this problem. Basic counting arguments might lead one to conjecture

that R(n)' nε. This would follow as a consequence of hypothesis K of Hardy and

Littlewood [4], which would state that the corresponding statement is true for sums

of five fifth powers. The failure of hypothesis K for cubes casts doubt on its validity

for higher powers, but even if hypothesis K fails for fifth powers, the corresponding

conjecture may hold in the case of sums of four fifth powers since there is one less

summand. Lower bounds for the number of representations of an integer as the sum

of five fifth powers are considered by Erdo% s and Szemere!di in [2, 3], where [2] obtains

a lower bound of the form exp(c log n}log log n), but there is little work on lower

bounds in our case.

If we let N(x) denote the number of integers n%x for which R(n) is non-zero, then

we see that N(x)'x%/&. To examine how many representations can usually arise, we

can use Vaughan’s work concerning exponential sums over smooth numbers [12] to

easily obtain the following result.

T 2.1. For almost all natural numbers n with n%x, and such that n has at

least one representation as a sum of four fifth powers, one has

R(n)' nθ,

where θ¯ 0±08773126.
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Proof. Let n be a sufficiently large natural number. We consider representations

of n as a sum of fifth powers of smooth numbers by defining

R*(n)¯ card²u&

"
­u&

#
­u&

$
­u&

%
¯ n :u

i
`!(n"/&, nη)´,

where

!(X,Y )¯²m%X :p rm3 p%Y ´,

and η is a sufficiently small positive number. By noting that card!(n"/&, nη)( n"/&, we

see by the Cauchy–Schwarz inequality that

(x%/&)#' 03
n%x

R*(n)1#%$(x) 0 3
n%x

R*(n)"!

11 , (2.1)

where

$(x)¯ 03
n%x

R*(n)#1 .
If we note that $(n) is the number of solutions to

u&

"
­u&

#
­u&

$
­u&

%
¯ �&

"
­�&

#
­�&

$
­�&

%

with u
i
, �

i
`!(n"/&, nη), then by [12],

$(n)! (n"/&)κ
", (2.2)

where κ
"
¯ 4±4386563, provided that η is sufficiently small. Noting that R*(n)%R(n),

we now have from (2.1) and (2.2) that

N(x)(xκ
#, (2.3)

where κ
#
¯ 0±71226874. Suppose that some positive proportion of the numbers n

represented as a sum of four fifth powers satisfy

R(n)&Cnθ, (2.4)

where C is some constant and θ¯ 4}5®κ
#
¯ 0±08773126. However, we know that

3
"
%n%x

R(n)'x%/&,

so that if C is too large, then (2.3) and (2.4) would lead to a contradiction. This gives

the desired result. *

3. Initial transformations

We now begin to prove Theorem 1.1, which will be completed in Section 14. Let

R(n) denote the number of solutions of the Diophantine equation

X &­Y &­Z &­W &¯ n, (3.1)

in non-negative integers. We begin by transforming this equation into a form where

we can obtain an upper bound for R(n) by using a sieve method.

If we let R«(n) denote the number of solutions in R(n) when at least two of the

variables are non-zero, then we obtain

R(n)¯R«(n)­O(1). (3.2)
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For any representation arising in R«(n), one of the non-zero variables must have the

same parity as one of the other (not necessarily non-zero) variables, so that

R«(n)' 3
X

&
+Y

&
+Z

&
+W

&
=n

X"
!,X

&Y ;X3Y (mod#)

1.

By substituting

X¯ r
"
­s, Y¯ r

"
®s, (3.3)

where r
"

is a positive integer and s is a non-negative integer, we see that

R«(n)'R§(n), (3.4)

where

R§(n)¯ 3
#r"(r

%

"
+"!r

#

"
s
#
+&s

%
)=n−Z

&

"
−W

&

"

1, (3.5)

where s also satisfies 0% s! n"/&.

To examine R§(n), consider solutions of the equation

2r
"
(r%

"
­10r#

"
s#­5s%)¯ n®Z&

"
®W&

"

for which

(n, r
"
,Z&

"
,W&

"
)¯ h

"
.

By writing

h
"
¯ h

#
h&,

where h
#

is fifth power free, we have for these solutions

n¯mh&, r
"
¯ rh&, Z

"
¯Zh, W

"
¯Wh,

(m, r,Z &,W &)¯ h
#
, 2h#&% n,

so that

R§(n)¯ 3
h
& rn

h%(n/#)
"/#&

ν(n}h&, h), (3.6)

where for given values of m and h, we define ν(m, h) to be the number of solutions in

r, s,Z,W of the equation

2r(h#!r%­10h"!r#s#­5s%)¯m®Z &®W & (3.7)

for which (m, r,Z &,W &) is fifth power free, and also 0% s! hm"/&.

4. Introduction of the Selberg sie�e

Most of our work involves estimating ν(m, h) for values of m and h which we can

consider to be fixed until the completion of the proof in Section 14. For brevity of

exposition, let the notation 0(u) stand for the condition that (u
"
, u

#
, u

$
, u

%
) is fifth

power free. Since the values of h which appear in (3.6) satisfy h% (n}2)"/#&, we only

need to consider values of m and h where m is sufficiently large and h% (m}2)"/#!. We

then have

ν(m, h)¯ 3
r%M

Ξ(m, r, h), (4.1)

where

M¯M(m, h)¯ (m}2h#!)"/&!m"/& (4.2)

and where Ξ(m, r, h) is the number of solutions in s,Z, and W of (3.7) for fixed values

of m, r, and h, where the solutions must satisfy the condition 0(m, r,Z &,W &). Note
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that any solutions must have Z,W%m"/&, since r is positive. To obtain an upper

bound for Ξ(m, r, h), we first complete the square in (3.7) by letting U¯ s#­h"!r#, so

that (3.7) becomes

2r(5U #®4h#!r%)¯m®Z &®W &. (4.3)

Now we can replace the term 5U # by a member of some larger set which includes all

numbers of the form 5U #. To do this, let 3¯3(m, r) be the set of all integers

(positive or negative) that are not quadratic non-residues, modulo p, for all primes p

such that

p + r, (4.4)

p +m, 05p1¯ 1, 0®1

p 1¯®1, p"D
"
, (4.5)

where D
"

is a suitable absolute constant greater than 5.

We are now in a position to use Selberg’s upper bound sieve method as described

in [7, Chapter 1] to obtain an upper bound for the characteristic function of 3. Let

d denote a square-free number (possibly 1) consisting entirely of prime factors p

satisfying (4.4) and (4.5), and let B(d ) denote the set of all integers that are quadratic

non-residues modulo each prime divisor of d (where B(1) is the set of all integers). We

now introduce real numbers λ
d
¯ λ

d,m,r,h
which satisfy the conditions that λ

"
¯ 1 and

λ
d
¯ 0 for d" ξ¯mβ, where β will be determined later to satisfy 0! β! 2}5. Then

considering

0 3
u`B(d)

λ
d1#¯ 3

u`B(d)

ρ
d

as a function of u, we see that this function is non-negative and is equal to 1 when u

is five times a square, and that this is an upper bound for the characteristic function

of 3. It is convenient to note that we can express ρ
d

as

ρ
d
¯ 3

[d
"
,d

#
]=d

λ
d
"

λ
d
#

, (4.6)

so that ρ
d
¯ 0 for d" ξ #¯m#

β.

Combining this upper bound with the definition of Ξ(m, r, h) and (4.3), and noting

that solutions to (4.3) satisfy Z,W%m"/&, we obtain

Ξ(m, r, h)% 3
Z,W,L

3
d

L`B(d)

ρ
d
,

where the first summation is over Z and W with 0%Z,W%m"/& and where

0(m, r,Z &,W &) holds, and over L satisfying 2r(L®4h#!r%)¯m®Z &®W &. This yields

Ξ(m, r, h)% 3
d%ξ#

ρ
d
Φ(m, r, h, d )¯Θ(m, r, h), (4.7)

say, where Φ(m, r, h, d ) denotes the number of solutions in Lh
d
,Z,W of the conditions

2r(Lh
d
®4h#!r%)¯m®Z &®W & ; Z,W%m"/& ; 0(m, r,Z &,W &), (4.8)

in which Lh
d

means that Lh
d

lies in B(d ). By looking back at (4.1), we see that

ν(m, h)% 3
r%M

Θ(m, r, h). (4.9)



404  . 

In order to estimate Θ(m, r, h), we need to transform Φ(m, r, h, d ). Let l
d

throughout refer to an integer belonging to any given complete set of incongruent

representatives of B(d ), modulo d. Then the number of solutions to (4.8) is the same

as the number of solutions in l
d
,Z,W of

2r(l
d
®4h#!r%)3m®Z &®W & (mod2rd ), 0(m, r,Z &,W &), (4.10)

where Z,W%m"/&. Let Υ(m, r, h, d ) denote the number of solutions in l
d
,Z,W of

(4.10) with Z,W! 2rd. Therefore, we can rewrite Φ(m, r, h, d ) as

Φ(m, r, h, d )¯
([m"/&]­1)#

4r#d #

Υ(m, r, h, d )­Φ
#
(m, r, h, d ), (4.11)

where Φ
#
(m, r, h, d ) is defined by this relation. Since (r, d )¯ 1, then Υ(m, r, h, d ) is the

number of simultaneous solutions of the conditions

m®Z &®W &3 0 (mod2r), (4.12)

0(m, r,Z &,W &), (4.13)

m®Z &®W &3 2r(l
d
®4h#!r%) (mod d ), (4.14)

for which Z,W! 2rd. Therefore we can write

Υ(m, r, h, d )¯ψ(m, r) γ(m, r, h, d ),

where ψ(m, r) is the number of incongruent solutions in Z and W, modulo 2r, of (4.12)

and (4.13), and where γ(m, r, h, d ) is the number of incongruent solutions in Z,W, l
d
,

modulo d, of (4.14). If we define

Φ
"
(m, r, h, d )¯

γ(m, r, h, d )

d #

, (4.15)

then (4.11) can be written as

Φ(m, r, h, d )¯
([m"/&]­1)#ψ(m, r)

4r#
Φ

"
(m, r, h, d )­Φ

#
(m, r, h, d ). (4.16)

Thus, if we let

Θ
i
(m, r, h)¯ 3

d%ξ#

ρ
d
Φ

i
(m, r, h, d ) (4.17)

for i¯ 1, 2, then (4.7) yields

Θ(m, r, h)¯
([m"/&]­1)#ψ(m, r)

4r#
Θ

"
(m, r, h)­Θ

#
(m, r, h). (4.18)

To conclude our preliminary work, let

ν
"
(m, h)¯

([m"/&]­1)#

4
3
r%M

ψ(m, r)Θ
"
(m, r, h)

r#
(4.19)

and let

ν
#
(m, h)¯ 3

r%M

Θ
#
(m, r, h), (4.20)

so that by (4.9) and (4.18), we obtain

ν(m, h)% ν
"
(m, h)­ν

#
(m, h). (4.21)
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5. Lemmas on congruences

We next develop some lemmas which are useful in estimating ν
"
(m, h) and

ν
#
(m, h), and which are the analogues of [8, Lemmas 1 and 2].

L 5.1. Let g(u ; �) be the multiplicati�e function of u defined on prime powers

by

g(pα ; �)¯
1

2
3

4

pα−# if α¯ 3 or 4, and pα r �

1 otherwise.
(5.1)

Then we ha�e

ψ(m, r)' 11ω(r)r g(r ;m).

Proof. If pα is any prime power, let ψ
"
(m, pα) denote the number of solutions in

Z and W, modulo pα, of

m®Z &®W &3 0 (mod pα), (5.2)

such that 0(m, pα,Z &,W &) also holds, and let ψ
#
(m, 2b) for b" 0 denote the number

of solutions, modulo 2b+", of

m®Z &®W &3 0 (mod2b+") and 0(m, 2b,Z &,W &).

Then if we write

r¯ 2b 0
p"

#

pα
p,

it follows that ψ(m, r) satisfies the inequality

ψ(m, r)%ψ
#
(m, 2b) 0

p"
#

ψ
"
(m, pα

p). (5.3)

Also,

ψ
#
(m, 2b)% 4ψ

"
(m, 2b). (5.4)

In the light of (5.3) and (5.4), we want to bound ψ
"
(m, pα), where pα is any prime

power, so we examine the possible values of α. If α¯ 1, then for each given value of

Z, there are at most five values of W, modulo p, satisfying (5.2), so that

ψ
"
(m, pα)% 5p. (5.5)

When α& 2, we first examine solutions of (5.2) which do not satisfy the condition

Z3W3 0 (mod p). (5.6)

These solutions satisfy either m®Z &J 0, mod p, or m®W &J 0, mod p. In the first

case, for each such Z, there are at most five values of W satisfying (5.2), and in the

second case, for each appropriate W, there are at most five values of Z satisfying (5.2).

Consequently there are at most 10pα solutions of (5.2) which do not satisfy (5.6).

It remains to consider the solutions of (5.2) satisfying (5.6) when α& 2. Note that

if α& 5, then there are no solutions of this type contributing to ψ
"
(m, pα), because any

solutions satisfying (5.2) and (5.6) would have p& r (m, pα,Z &,W &), which is supposed

to be fifth power free since 0(m, pα,Z &,W &) holds. Thus when 2%α% 4, there will

be solutions satisfying (5.2) and (5.6) if and only if pα rm, and there will be p#
α−# such

solutions.
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Combining the conclusions of the previous two paragraphs, we see that if α¯ 2

or α& 5, we have

ψ
"
(m, pα)% 11pα, (5.7)

and if α¯ 3 or 4, then

ψ
"
(m, pα)%

1

2
3

4

10pα if pα +m

11p#
α−# if pα rm.

(5.8)

Upon combining (5.3), (5.4), (5.5), (5.7), and (5.8), we have

ψ
"
(m, pα)% 11pαg(pα ;m), (5.9)

which leads to the desired result. *

The next result which we need is given by the following lemma.

L 5.2. Let T(m, r, h, p) denote the number of solutions in a,Z,W, modulo p,

of the congruence

2r(a#®4h#!r%)3m®Z &®W & (mod p). (5.10)

If p + 2r, then we ha�e

T(m, r, h, p)¯ p#­O(p$/#).

Proof. Let

b(u)¯ 3
p

x="

e(ux&}p), c(u)¯ 3
p

x="

e(uq(x)}p),

where q(x)¯ 2r(x#®4h#!r%). It is known that if (u, p)¯ 1, then rb(u)r% 4p"/# ; see, for

instance, [11, Lemma 4.3]. Then we have

T(m, r, h, p)¯
1

p
3
p

u="

c(u) b(u)# e(®um}p).

By applying the Cauchy–Schwarz inequality,

rT(m, r, h, p)®p#r% 0 max

"
%v%p−"

rb(�)r1 1

p
3
p−"

u="

rb(u) c(u)r

% 4p"/# 01p 3
p

u="

rb(u)r#1"/# 01p 3
p

u="

rc(u)r#1"/#. (5.11)

By considering the number of solutions to the underlying congruences u&3 �& (mod

p) and q(u)3 q(�) (mod p) of the sums in (5.11), it follows from orthogonality that

rT(m, r, h, p)®p#r% (4p"/#) (5p)"/# (2p)"/#% 13p$/#,

which gives the desired result. *

6. Estimation of ν
"
(m, h) by the Selberg sie�e

In order to achieve a bound for ν
"
(m, h), we employ Selberg’s sieve method to

bound Θ
"
(m, r, h), where the condition for each prime p which we are sieving out is

the property of being a quadratic non-residue, modulo p.
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Let p denote a prime satisfying (4.4) and (4.5). Recalling (4.14) and that if d¯ p,

then l
p

must lie in B(p), we see that

γ(m, r, h, p)¯ p#®
1

2
T(m, r, h, p)®

1

2
ψ

"
(m­8h#!r&, p),

because each of the p# choices of Z and W allows only one possible value, modulo p,

for l
p
, so that the latter two terms subtract off those values for which l

p
is not in B(p).

(Here, T(m, r, h, p) is defined as in Lemma 5.2, and ψ
"
(m­8h#!r&, p) as defined in

Lemma 5.1 compensates for the solutions of (5.10) for which p r a.) Combining this

result with (5.5) and Lemma 5.2 gives

γ(m, r, h, p)¯
1

2
p#­O(p$/#),

and from (4.15), this gives

Φ
"
(m, r, h, p)¯

1

2
­O(p−"/#). (6.1)

Provided that D
"

is chosen sufficiently large, then since p"D
"

by (4.5), we have

0!Φ
"
(m, r, h, p)! 1. (6.2)

In order to utilize Selberg’s sieve method, let

f(d )¯ f(m, r, h, d )¯
1

Φ
"
(m, r, h, d )

, (6.3)

and following Hooley’s treatment in [7], let

f
"
(d )¯3

k rd

µ(k) f(d}k)¯ 0
p rd

( f(p)®1),

where we recall that d is square-free, and observe that f(d ) is multiplicative by (4.15),

and that since f(p)" 1, then f
"
(d )" 0. From (4.6), (4.17), and (6.3), we see that

Θ
"
(m, r, h)¯ 3

d
"
,d

#
%ξ

λ
d
"

λ
d
#

f([d
"
, d

#
])

. (6.4)

Since this sum is the sum which appears in the main term of Selberg’s method, then

from [7], we see that Θ
"
(m, r, h) has a minimum value of 1}V(ξ ) subject to the

constraints on λ
d
, where

V (ξ )¯V
m,h,r

(ξ )¯ 3
d%ξ

µ#(d )

f
"
(d )

, (6.5)

and where the λ
d

which give this minimum are given by

λ
d
¯

µ(d )

V(ξ )
3
d
$
rd

µ#(d
$
)

f
"
(d

$
)

3
d
%
%ξ/d

(d
%
,d)="

µ#(d
%
)

f
"
(d

%
)
. (6.6)
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From (6.1), we can deduce that for p"D
"
, where D

"
is suitably large,

f
"
(p)¯ 1­O(p−"/#)! 2 and f

"
(p)" 1}2. (6.7)

Then by (6.5) and recalling that primes dividing d must satisfy (4.4) and (4.5), we

obtain

V(ξ )& 1­
1

2
3

D
"
!p%ξ

1,

where the primes p in the sum must also satisfy p + rm, (5 r p)¯ 1, and (®1 r p)¯®1.

Therefore,

V(ξ )"
D

#
ξ

log ξ
(6.8)

for some constant D
#
, since r%M!m by (4.2), and since ξ¯mβ, where 0! β! 1.

This gives

Θ
"
(m, r, h)'m−β+ε.

With (4.19), this gives

ν
"
(m, h)'m(#/&)−

β+ε 3
r%M

ψ(m, r)

r#
. (6.9)

To estimate the sum in (6.9), we see from Lemma 5.1 that

3
r%M

ψ(m, r)

r#
' 3

r%M

r−"+εg(r ;m).

By noticing that when p rm,

3
¢

j=!

g( p j ;m)

p j
% 23

¢

j=!

p−j,

and by recalling that g(u ;m) is multiplicative in u, we obtain

3
r%M

ψ(m, r)

r#
'M ε2ω(m) 0

p%M

01®
1

p1
−"

'mε logM'mε. (6.10)

Finally, by using the estimate of (6.10) for the sum in (6.9), we see that

ν
"
(m, h)'m(#/&)−

β+ε. (6.11)

7. Expression for ν
#
(m, h) in terms of exponential sums

We now need to estimate ν
#
(m, h). To achieve this bound we first express

Φ(m, r, h, d ) using exponential sums, and then appeal to (4.11). Let

.(m, r, d, b, c)¯ 3
!
%Z,W%m

"/&

Z3b (mod#rd)
W3c (mod#rd)

1.



     409

Then from (4.8) and (4.10), we have

Φ(m, r, h, d )¯3
ld

3
!
%b,c!#rd

.(m, r, d, b, c), (7.1)

where the inner sum is over b and c such that

2r(l
d
®4h#!r%)3m®b&®c& (mod2rd ) (7.2)

and 0(m, r, b&, c&) both hold. By orthogonality, one has

4r#d #.(m, r, d, b, c)¯ 3
!
%Z,W%m

"/&

3
!
%u,v!

#rd

e((u(b®Z )­�(c®W ))}2rd )

¯mh #­mh 3
!
!u!

#rd

θ
u
e(ub}2rd )­mh 3

!
!v!

#rd

θ
v
e(�c}2rd )

­ 3
!
!u,v!

#rd

θ
u
θ
v
e((ub­�c)}2rd ), (7.3)

where mh ¯ [m"/&]­1, and

θ
w
¯ θ

w,#rd,m
¯ 3

!
%V%m

"/&

e(®wV}2rd )%
1

sw}2rds
. (7.4)

Therefore, by substituting (7.3) back into (7.1), and comparing this with (4.11), we see

that

Φ
#
(m, r, h, d )¯

[m"/&]­1

2r#d #

3
!
!u!

#rd

θ
u
S(m, r, h, d ; u, 0)

­
1

4r#d #

3
!
!u,v!

#rd

θ
u
θ
v
S(m, r, h, d ; u, �), (7.5)

where

S(m, r, h, d ; u, �)¯3
ld

3
!
%b,c!#rd

e((ub­�c)}2rd ), (7.6)

with the inner sum of (7.6) being over b and c such that (7.2) and 0(m, r, b&, c&) both

hold.

Let S*(m, r, h, d ; u, � ; l
d
) be the inner sum of (7.6), so that

S(m, r, h, d ; u, �)¯3
ld

S*(m, r, h, d ; u, � ; l
d
). (7.7)

From (7.4) and (7.5), we obtain

Φ
#
(m, r, h, d )'

m"/&

rd
3

!
!rur!m

rS(m, r, h, d ; u, 0)r
rur

­ 3
!
!rur, rvr!m

rS(m, r, h, d ; u, �)r
rur r�r

, (7.8)

where the limits of summation are obtained from (4.2), (4.17), and (4.20), which give

rd%Mξ #!m("/&)+#
β %m.
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Next, from (4.17), (4.20), and (7.8), we obtain

ν
#
(m, h)'m"/& 3

!
!rur!m

1

rur
3
r%M

1

r
3

d%ξ#

rρ
d,r

r rS(m, r, h, d ; u, 0)r
d

­ 3
!
!rur, rvr!m

1

rur r�r
3
r%M

3
d%ξ#

rρ
d,r

r rS(m, r, h, d ; u, �)r. (7.9)

We now need to estimate the size of ρ
d

which occurs in our expression for

ν
#
(m, h). To do this, we need to consider (6.6), which gives the optimal values for the

λ
d
. In examining the sums given in (6.6), if we recall (6.7) and that d

$
and d

%
are

square-free, we see that

3
d
$
rd

µ#(d
$
)

f
"
(d

$
)
% τ(d ) 2ω(d) ' d ε ' (ξ #)ε 'mε,

and that

3
d
%
%ξ/d

(d
%
,d)="

µ#(d
%
)

f
"
(d

%
)
% 3

d
%
%ξ/d

µ#(d
%
)

f
"
(d

%
)
' 3

d
%
%ξ/d

2ω(d
%
) '

mεξ

d
.

By using (6.8) and these results in (6.6), we get

λ
d
'

mε

d
,

so that by (4.6), we have

ρ
d
'mε 3

[d
"
,d

#
]=d

1

d
"
d
#

'
mε

d
3

[d
"
,d

#
]=d

1'
mετ(d )#

d
'

mε

d
. (7.10)

Our definition of d depends on r, since the prime factors of d must satisfy (4.4) and

(4.5). If we want to remove this dependence of d on r, then we can equivalently require

that d be a square-free integer whose prime factors satisfy (4.5), and then require that

(r, d )¯ 1. This allows us to change the order of summation of r and d by adding the

condition that (r, d )¯ 1. Therefore, if we use (7.10) in (7.9), we can change the order

of summation in the second term of (7.9) to obtain

ν
#
(m, h)'m("/&)+

εν
$
(m, h)­mεν

%
(m, h), (7.11)

where

ν
$
(m, h)¯ 3

!
!rur!m

1

rur
3
r%M

1

r
3

d%ξ#

rS(m, r, h, d ; u, 0)r
d #

, (7.12)

and

ν
%
(m, h)¯ 3

!
!rur, rvr!m

1

rur r�r
3

d%ξ#

1

d
3
r%M

(r,d)="

rS(m, r, h, d ; u, �)r. (7.13)

In order to estimate ν
$
(m, h) and ν

%
(m, h), we first examine some results about

exponential sums.

8. Some results on exponential sums

We now develop some results about exponential sums which we will use to

estimate S(m, h, r, d ; u, �). The first lemma allows us to exhibit a multiplicative

property of an exponential sum under suitable conditions.
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L 8.1. Let Ψ(k ;x, y) indicate a condition on a positi�e integer k and integers

x and y satisfying the following two properties:

(1) If x«3x (mod k) and y«3 y (mod k), then Ψ(k ;x, y) is equi�alent to

Ψ(k ;x«, y«).
(2) If k

"
and k

#
are coprime, then Ψ(k

"
k
#
;x, y) holds if and only if Ψ(k

"
;x, y) and

Ψ(k
#
;x, y) both hold.

Let the exponential sum P(k ; u, �) be gi�en by

P(k ; u, �)¯ 3
Ψ(k ;x,y)
!
%x,y!k

e((ux­�y)}k).

Then if (k
"
,k

#
)¯ 1, we ha�e

P(k
"
,k

#
; u, �)¯P(k

"
;ka

#
u,ka

#
�)P(k

#
;ka

"
u,ka

"
�),

where ka
"

and ka
#

are defined to the appropriate modulus so that

k
"
ka
"
3 1 (mod k

#
), k

#
ka
#
3 1 (mod k

"
).

Proof. The proof relies on the Chinese remainder theorem, and Hooley gives a

sketch of the proof following [8, Lemma 3]. *

This leads to the following useful lemma.

L 8.2. Let P(k ; u, �) be defined as in Lemma 8.1. If u and � are gi�en and

(k
"
,k

#
)¯ 1, then there exist integers u

"
, �

"
, u

#
, �

#
such that

P(k
"
k
#
; u, �)¯P(k

"
; u

"
, �

"
)P(k

#
; u

#
, �

#
),

and

(k
"
k
#
, u, �)¯ (k

"
, u

"
, �

"
) (k

#
, u

#
, �

#
).

We also need a bound on exponential sums which comes from a result of Chalk

and Smith [1], which they proved using algebraic geometry.

L 8.3. For gi�en �alues of p, u, �,µ such that p + (u, �)µ, we ha�e

) 3
x
&
+y

&3µ (modp)

!
%x,y!p

e((ux­�y)}p))% 20p"/#­25.

Proof. The result is trivial for p¯ 5. For all other primes p, the result follows

from [1, Theorem 2], because x&­y&®µ is absolutely irreducible when considered

over the finite field with p elements. (One may verify that the curve defined by the

equation x&­y&¯µ has no singular points in the projective plane, from which the

absolute irreducibility of x&­y&®µ follows as an immediate consequence of Bezout’s

theorem.) *

The estimate given in the preceding lemma allows us to bound an exponential sum

arising from S*(m, r, h, d ; u, � ; l
d
).
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L 8.4. Let Q(k ; u, � ;µ) be defined by

Q(k ; u, � ;µ)¯ 3
!
%x,y!

#k

e((ux­�y)}2k), (8.1)

where the sum is o�er x and y for which x&­y&3µ (mod k) and 0(µ,k,x&, y&) both

hold. Next, let ~(k,ω) be the multiplicati�e function of k defined on prime powers by

~(pα,ω)¯
1

2
3

4

1 if α¯ 1 and p +ω

pα/# otherwise.
(8.2)

Also, let ((t ;w
"
,w

#
; b) be the multiplicati�e function of t defined on prime powers by

((pα ;w
"
,w

#
; b)¯

1

2
3

4

g(pα ; b) if pα−" r (w
"
,w

#
)

1 otherwise.
(8.3)

Then
Q(k ; u, � ;µ)' 21ω(k)k"/#~(k,µ(u, �))((k ; u, � ;µ).

Proof. Let k¯ 2α
! 0t

j="
pα

j
j
, where the primes p

j
are distinct and exceed 2. Let

Q
"
(k ; u, � ;µ) be defined by

Q
"
(k ; u, � ;µ)¯ 3

!
%x,y!k

e((ux­�y)}k),

where the sum is over x and y for which x&­y&3µ (mod k) and 0(µ,k,x&, y&) both

hold. Then by repeated application of Lemma 8.2, for some integers u
j
and �

j
,

Q(k ; u, � ;µ)¯Q(2α
! ; u

!
, �

!
;µ)0

t

j="

Q
"
(pα

j
j
; u

j
, �

j
;µ), (8.4)

where

(k, u, �)¯0
t

j="

(pα
j

j
, u

j
, �

j
).

By (5.4) and (5.9), we see that

Q(2α
! ; u

!
, �

!
;µ)% 11[2α

!
+%,

which is sufficient for use in (8.4) when the prime dividing k is 2.

When j& 1, we consider the various possible values for α
j
, and show that in each

case we have

Q
"
(pα

j
j
; u

j
, �

j
;µ)% 21pα

j/#
j

~(pα
j

j
,µ(u, �))((pα

j
j
; u, � ;µ), (8.5)

which will suffice to prove the lemma. When α
j
¯ 1 and p

j
+µ(u

j
, �

j
), then since

p
j
+µ(u, �), we see from Lemma 8.3 that (8.5) will hold when p is sufficiently large. In

the cases where α
j
¯ 2, α

j
& 5, or the case where α

j
¯ 1 and p

j
rµ(u

j
, �

j
), we obtain

(8.5) by applying the triangle inequality and (5.9).

It remains to consider the cases where α
j
¯ 3 or 4. We observe that the condition

0(µ, pα
j

j
,x&, y&) will hold automatically since α

j
! 5. From the argument in the proof

of Lemma 5.1, there are at most 10pα
j

j
values of x and y appearing in the summation

for Q
"
(pα

j
j
; u

j
, �

j
;µ) which do not satisfy x3 y3 0 (mod p

j
). On substituting x¯ px«

and y¯ py« in the remaining terms, we observe that

Q
"
(pα

j
j
; u

j
, �

j
;µ)% 10pα

j
j
­) 3

!
%x«,y«!p

α−"

e((u
j
x«­�

j
y«)}pα−"))

% 10pα
j

j
­) 3

!
%x«!p

α−"

e(u
j
x«}pα−") 3

!
%y«!p

α−"

e(�
j
y«}pα−")) . (8.6)
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Since the final term in (8.6) only occurs when pα
j

j
rµ, and is zero unless pα−" r (u

j
, �

j
), we

see that (8.5) holds in these cases as well, since (pα
j

j
, u, �)¯ (pα

j
j
, u

j
, �

j
). The lemma now

follows from (8.4) and (8.5). *

We have now laid the framework to obtain an expression for S(m, r, h, d ; u, �) that

will be used to estimate ν
$
(m, h) and ν

%
(m, h). If S*(m, r, h, d ; u, � ; l

d
) is as defined in

(7.6) and (7.7), then by Lemma 8.1,

S*(m, r, h, d ; u, � ; l
d
)¯Q(r ; dau, da � ;m)U*(m, r, h, d ; 2ru, 2r� ; l

d
), (8.7)

where dda 3 1 (mod 2r), and 2r2r3 1 (mod d ), and where

U*(m, r, h, d ;x, y ; l
d
)¯ 3

!
%b,c!d

e((xb­yc)}d ),

in which the sum is over b, c such that

2r(l
d
®4h#!r%)3m®b&®c& (mod d ). (8.8)

(Recall that d is square-free, so that 0(m, d, b&, c&) will always hold for solutions

satisfying (8.8), and which also means we are justified in applying Lemma 8.2.) By

(8.7) and (7.7),

S(m, r, h, d ; u, �)¯Q(r ; dau, da � ;m)3
ld

U*(m, r, h, d ; 2ru, 2r� ; l
d
)

¯Q(r ; dau, da � ;m)U(m, r, h, d ; 2ru, 2r�), (8.9)

where

U(m, r, h, d ;x, y)¯3
ld

3
!
%b,c!d

e((xb­yc)}d ), (8.10)

with the sum over l
d
, b, c satisfying (8.8). Recalling that (2r, da )¯ 1, we can use Lemma

8.4 to obtain the upper bound

S(m, r, h, d ; u, �)' 21ω(r)r"/#~(r,m(u, �))((r ; u, � ;m) rU(m, r, h, d ; 2ru, 2r�)r.
(8.11)

9. Estimation of ν
$
(m, h)

We are now able to obtain a bound for ν
$
(m, h). In order to do this, it is sufficient

to use (8.11) to deduce the bound

S(m, r, h, d ; u, �)' 21ω(r)r"/#~(r,m(u, �)) g(r ;m) d #. (9.1)

Using this bound in (7.12), we see that

ν
$
(m, h)'mε 3

!
!rur!m

1

rur
3
r%M

~(r,m(u, 0)) g(r ;m)

r"/#
3

d%ξ#

1

'mεξ # 3
!
!rur!m

1

rur
3
r%M

~(r,mu) g(r ;m)

r"/#

'm("/"!)+#
β+ε 3

!
!u!m

1

u
3

r%m
"/&

~(r,mu) g(r ;m)

r
. (9.2)
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By (5.1) and (8.2), the inner sum of (9.2) satisfies

3
r%m

"/&

~(r,mu) g(r ;m)

r
% 0

p+mu

p%m

01­
2

p
­O(p−$/#)1 0

prmu

02­
2

p"/#

­O(p−")1

' 2ω(mu) 0
p%m

01­
1

p1
$

0
prmu

01­
1

p"/#

­O(p−")1
'mεσ

−"/%
(mu)'mετ(mu)'mε,

since 0! u!m. Inserting this estimate into (9±2) yields

ν
$
(m, h)'m("/"!)+#

β+ε 3
!
!u!m

1

u
'm("/"!)+#

β+ε logm'm("/"!)+#
β+ε, (9.3)

which proves to be a sufficient bound for ν
$
(m, h).

10. Preparations for estimating ν
%
(m, h)

In order to estimate ν
%
(m, h), we desire an estimate for the inner sum of the

expression for ν
%
(m, h) given by (7.13), which we denote by

Ω(m, h, d ; u, �)¯ 3
r%M

(r,d)="

rS(m, r, h, d ; u, �)r. (10.1)

Note that by virtue of the conditions on the summation in (7.13), we only need to

consider values of m, h, d, u, � for which 0! rur, r�r!m, d is square-free and primes

dividing d satisfy (4.5), and d! ξ #. Then by (8.11), we have

Ω(m, h, d ; u, �)'m("/"!)+
ε

¬ 3
r%m

"/&

(r,d)="

~(r,m(u, �))((r ; u, � ;m) rU(m, r, h, d ; 2ru, 2r�)r.

Next,
Ω(m, h, d ; u, �)'m("/"!)+

ε 3
!
%∆%d

(∆,d)="

rU(m,∆, h, d ; 2∆u, 2∆�)r

¬ 3
r%m

"/&

r3∆ (modd)

~(r,m(u, �))((r ; u, � ;m)

¯m("/"!)+
ε 3
!
%∆%d

(∆,d)="

rU(m,∆, h, d ; 2∆u, 2∆�)r

¬Γ(m"/&,m(u, �) ; u, �,m ;∆, d ),

where
Γ(z,ω ; u, �, y ; a,k)¯ 3

r%z

r3a (modk)

~(r,ω)((r ; u, � ; y), (10.2)

and where 2∆2∆3 1 (mod d ). Then by the Cauchy–Schwarz inequality,

Ω#(m, h, d ; u, �)'m("/&)+
εΩ

"
(m, h, d ; u, �)G(m"/&,m(u, �) ; u, �,m ; d ), (10.3)

where
Ω

"
(m, h, d ; u, �)¯ 3

!
%∆!d

(∆,d)="

rU(m,∆, h, d ; 2∆u, 2∆�)r#, (10.4)

and where
G(z,ω ; u, �, y ;k)¯ 3

!
%a!k

(a,k)="

rΓ(z,ω ; u, �, y ; a,k)r#. (10.5)
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11. Estimation of Ω
"
(m, h, d ; u, �)

In order to obtain an upper bound for Ω, we need bounds for Ω
"
and G, so in this

section, we obtain an upper bound for Ω
"
(m, h, d ; u, �). To do this, we first consider

U(m,∆, h, d ; 2∆u, 2∆�) by replacing the variables of summation l
d
, b, c in (8.10) by L

d
,

B,C, where

l
d
3 16∆%L

d
(mod d ), b3 2∆B (mod d ), c3 2∆C (mod d ).

Note that since l
d
is in B(d ), then L

d
is also in B(d ), because (2∆, d )¯ 1, and because

16∆% is a quadratic residue modulo d. This change of variables causes the congruence

condition in (8.8) to become

L
d
­B&­C &3 (2∆)&m®4a h#! (mod d ), (11.1)

so that

U(m,∆, h, d ; 2∆u, 2∆�)¯3
Ld

3
!
%B,C!d

e((uB­�C )}d ), (11.2)

where the summation is over L
d
,B,C satisfying (11.1). Since all prime divisors of d

must satisfy (4.5), then (m, d )¯ 1, so that the congruence

(2∆)&m®4a h#!3µ (mod d )

has at most 5ω(d) ' d ε solutions in ∆, modulo d. Then by (10.4) and (11.2),

Ω
"
(m, h, d ; u, �)' d ε 3

!
%µ!d

)3
Ld

3
!
%B,C!d

e((uB­�C )}d ))#,
where the inner sums are over L

d
,B,C for which L

d
­B&­C &3µ (mod d ). If we let

H(d ; u, �)¯ 3
ld,Ld

3
!
%b,c,B,C!d

e((uB­�C®ub®�c)}d ), (11.3)

where the sum is over l
d
,L

d
, b, c,B,C satisfying

L
d
­B&­C &3 l

d
­b&­c& (mod d ), (11.4)

then we have

Ω
"
(m, h, d ; u, �)' d εH(d ; u, �). (11.5)

In order to estimate H(d ; u, �), we make use of the following multiplicative

property.

L 11.1. If (k
"
,k

#
)¯ 1, then we ha�e

H(k
"
k
#
; u, �)¯H(k

"
; u

"
, �

"
)H(k

#
; u

#
, �

#
),

where (k
"
k
#
, u, �)¯ (k

"
, u

"
, �

"
) (k

#
, u

#
, �

#
).

Proof. The proof is similar to those of Lemma 8.1 and Lemma 8.2 *

The following result about quadratic non-residues is also useful.

L 11.2. Let κ(p,µ) denote the number of solutions in L
p

and l
p
, modulo p, of

the congruence

L
p
®l

p
3µ (mod p).
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If (®1 r p)¯®1, then

κ(p,µ)¯
1

2
3

4

(p®3)}4 if p +µ

(p®1)}2 if p rµ.

Proof. This is Lemma 8 in Hooley [8], in which there is a short proof. *

We are now in a position to obtain a bound for H(d ; u, �) in the following result.

L 11.3. If H(d ; u, �) is defined as in (11.3), then

H(d ; u, �)' d $+
ε(d, u, �)#,

for d which are square-free and whose prime factors satisfy (4.4) and (4.5).

Proof. The proof of this lemma is essentially the same as that of [8, Lemma 9],

which we include for the sake of completeness. Owing to the restrictions on d, it suffices

to prove the lemma for H(p ; u, �) for primes p satisfying (®1 r p)¯®1, from which

the general result follows by Lemma 11.1. Note that if (p, u, �)¯ p, then the result is

trivial, so we only need to prove it when (p, u, �)¯ 1.

If we rewrite (11.4) as

L
p
®l

p
3 b&­c&®B&®C & (mod p), (11.6)

then we can see from Lemma 11.2 that, if b, c,B,C are fixed, then (11.6) has (p®3)}4

solutions, modulo p, in L
p

and l
p

when

B&­C &J b&­c& (mod p),

and that (11.6) has (p®1)}2 solutions when

B&­C &3 b&­c& (mod p).

Combining these two contributions gives

H(p ; u, �)¯
p­1

4
3

!
%µ!p

) 3
B
&
+C

&3µ (modp)

e((uB­�C )}p))#

­
p®3

4 ) 3
!
%B!p

e(uB}p))# ) 3
!
%C!p

e(�C}p))#

¯
p­1

4
3

!
%µ!p

) 3
B
&
+C

&3µ (modp)

e((uB­�C )}p))#,
where the second term in the first equation vanishes since (p, u, �)¯ 1. Thus, Lemma

8.3 gives

H(p ; u, �)' p(p#­(p®1) p)' p$,

which proves the result in the specialized case, and the general case follows by the

preparatory remarks. *

On substituting the bound for H(d ; u, �) from Lemma 11.3 into (11.5), we may

conclude this section with the desired estimate

Ω
"
(m, h, d ; u, �)' d $+

ε(d, u, �)#. (11.7)
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12. Estimation of G(z,ω ; u, �, y ;k)

We now require an estimate for G(z,ω ; u, �, y ;k) to use in (10.3).

L 12.1. Let &(t ; a) denote the multiplicati�e function of t defined on prime

powers by

&(pα ; a)¯

1

2
3

4

p if α¯ 2 and p r a

p# if α& 3 and p r a

1 otherwise.

Then for 1%ω% z"!, we ha�e

G(z,ω ; u, �, y ;k)'&(u ; y)# 0z#+
εkε

k
­z"+εk#+

ε1 .
Proof. We first observe from (8.3) and (5.1) that for any values of r and �, we

have
((r ; u, � ; y)%&(u ; y).

On noting that ((r ; u, � ; 1)¯ 1, we have from (10.2)

Γ(z,ω ; u, �, y ; a,k)%&(u ; y)Γ(z,ω ; u, �, 1 ; a,k). (12.1)

Substituting (12.1) into (10.5) yields

G(z,ω ; u, �, y ;k)%&(u ; y)#G(z,ω ; u, �, 1 ;k). (12.2)

In [8], Hooley defines G and Γ which do not depend on the parameters u, � or y,

and which only differ from our definitions in that they do not contain the factor of

((r ; u, � ; y) which appears in (10.2) in our definition of Γ(z,ω ; u, �, y ; a,k). (The

function ~ which appears in (10.2) is identical to that of Hooley.) From (8.3) and

(5.1), we see that ((r ; u, � ; y)¯ 1, so that when y¯ 1, our functions G and Γ are

identical to those of Hooley. Therefore, by [8, Lemma 10], we have

G(z,ω ; u, �, 1 ;k)%
z#+εkε

k
­z"+εk#+

ε. (12.3)

The lemma now follows from (12.2) and (12.3). *

We can now apply Lemma 12.1 to the factor in (10.3) to obtain

G(m"/&,m(u, �) ; u, �,m ; d )'&(u ;m)# (m(#/&)+
εd−"+

ε­m("/&)+%
β+ε), (12.4)

where d% ξ #¯m#
β.

13. Completion of the estimate for ν
%
(m, h)

We have now laid the groundwork to obtain an upper bound for ν
%
(m, h). From

(10.3), (11.7), and (12.4), we have

Ω(m, h, d ; u, �)' (m($/"!)+
ε­m("/&)+$

β+ε) d(d, u, �)&(u ;m).

Recalling (10.1), we see from (7.13) that

ν
%
(m, h)' (m($/"!)+

ε­m("/&)+$
β+ε) 3

!
!rur, rvr!m

&(u ;m)

rur r�r
3

d%ξ#

(d, u, �). (13.1)
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The inner sum of (13.1) satisfies

3
!
!d%ξ#

(d, u, �)% 3
δ r(u,v)

δ 3
!
!d%ξ#

δ rd

1% ξ # 3
δ r(u,v)

1¯ ξ #τ[(u, �)],

so that (13.1) becomes

ν
%
(m, h)' (m($/"!)+#

β+ε­m("/&)+&
β+ε) 3

!
!u,v!m

&(u ;m)

u�
. (13.2)

Since &(u ;m) is multiplicative in u, the sum in (13.2) satisfies

3
!
!u,v!m

&(u ;m)

u�
% 3

!
!u!m

&(u ;m)

u
3

!
!v!m

1

�

'mε 0
p!m

p +m

01®
1

p1
−"

0
p!m

p rm

01­
1

p
­

p

p#

­3
¢

j=$

p#

p j1

'mε2ω(m) 0
p!m

01®
1

p1
−"

'mε logm'mε.

Therefore, our bound for ν
%
(m, h) is

ν
%
(m, h)'m($/"!)+#

β+ε­m("/&)+&
β+ε. (13.3)

14. Completion of the proof

We can now proceed to complete the proof of Theorem 1.1. By (7.11), (9.3), and

(13.3), we have

ν
#
(m, h)'m($/"!)+#

β+ε­m("/&)+&
β+ε. (14.1)

Next, by (4.21), (6.11), and (14.1),

ν(m, h)'m(#/&)−
β+ε­m($/"!)+#

β+ε­m("/&)+&
β+ε. (14.2)

If we set ξ¯m"/$!, so that β¯ 1}30, then (14.2) yields the estimate ν(m, h)'m""/$!.

One should note that this definition could have been made in Section 4, but we

delayed this choice until now to make more clear how the final result depends on our

intermediate results. Thus, from (3.6), we have

R§(n)' n(""/$!)+
ε 03

h
& rn

h−""/'1' n(""/$!)+
ε.

Finally, by (3.2) and (3.4), this proves Theorem 1.1. *
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