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1. Introduction

1.1 Beurling [3] considered the following problem: given a function/, holomorphic
in the unit disc and belonging to the Hardy space H2, are its polynomial multiples dense
in H2 ? An immediate necessary condition is (denoting by D the open unit disc)

f(z)*0, zeB, (1.1)

but this does not suffice; a necessary and sufficient condition is, as Beurling showed
271

j - J log \f{eie)\d0 = log|/(0)|. (1.2)
o

Beurling called functions satisfying (1.2) outer.
If X denotes some topological vector space of holomorphic functions in D, such

that

(a) X contains the constant functions,

(b) X is stable under multiplication by z (and hence by all polynomials),

we may again consider, for a given/, whether its polynomial multiples are dense in X.
If (as will be the case for the concrete spaces we consider) X also satisfies

(c) the set of all polynomials is dense in X,

then / has the aforementioned property if, and only if, (using an obvious notation for
the function identically equal to 1),

the closure of the set of polynomial multiples off contains 1. (1-3)

Following a terminology employed in [16], we say that an / satisfying (1.3) is
weakly invertible (abbreviated henceforth w.i.). Weak invertibility can also be
reformulated in several slightly different (equivalent) ways, which are natural in the
context of certain other investigations: a reformulation in terms ofweighted polynomial
approximation may be found in [16]; also, to say that / i s w.i. is equivalent to saying
that it is a cyclic vector for the linear operator f-*zf (or, equivalently, for the " forward
shift " applied to its sequence of Taylor coefficients), i.e. the " orbit" of/ under this
operator spans a dense linear submanifold of A". In this connection see Rabindranathan
[14].

For spaces X subjected to the natural further condition,

(d) for each a e O , evaluation at the point a is a continuous linear functional,

the condition (1.1) is clearly necessary f o r / t o be w.i.; in general, however, it is not
sufficient, and the problem of characterizing the w.i. elements of a concretely given X,
in terms of more accessible properties of the given function / , may be extremely
difficult. It is noteworthy that the Beurling criterion (1.2) persists when X is any
Hp space (0 < p < oo) (cf Duren [5; p. 114]). The present paper continues the study of
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the case when X is B, the square-summable holomorphic functions on D, which was
begun in [16]; the results to date, although far from giving a complete picture, make it
seem most unlikely that any simple metric condition like (1.2) could possibly
characterize the w.i. elements of B; the main achievement of the present paper is a new
sufficient condition for weak invertibility in B (cf. Theorem 2).

Although we explicitly study only the space B, we wish to emphasize that Theorem 2
(like the results in [15,16] on which it depends) retains its validity when B is replaced
by any of a large class of Banach spaces determined by norms of the type Lp(p),
where p is a positive measure on D. These generalizations are completely straight-
forward; their inclusion here would merely complicate the notations, therefore we
leave them to the reader. Another reason for concentrating on the space B is, as we
shall see below, that the question of weak invertibility is in that case equivalent to a
very natural (but apparently new) problem concerning mean square approximation
by bounded analytic functions on a Riemann surface; thus, our main result is a contribu-
tion to the study of this problem, too. Finally, from the point of view of technique,
the space B presents some of the challenge of the most general case, because functions
in B may be of unbounded (Nevanlinna) characteristic; there exists no complete
theory of their zeros, let alone a factorization theory such as we have for Hp spaces,
and in general they do not possess radial boundary values. Hence the powerful and
elegant methods that have been developed for the study of weakly invertible elements,
invariant subspaces, etc. in Hp spaces, heavily based as they are on a complete
boundary value and factorization theory, are unavailable in the present instance.

1.2 Before turning to our main result, it will be convenient to make a few more
preliminary observations about our problem, establish our notations, etc.

1.2.1 B will denote the Hilbert space of holomorphic functions in D for which
the norm

" 1/2
(1.4)

is finite, a denoting areal measure on D.
Introducing the Taylor expansion

f(z) = £ anz\
n = O

we may also write

2 1/2

We shall, without further reference, employ standard notations and terminology of
Hp spaces, as in [5]. Observe, for any/ eB, ge/f00, thatfgeB and

Hence, one deduces readily: an element feB is w.i. if and only iffHm is dense in B or
(equivalently) if and only if there exists a sequence {#„} a H00 such that

l im | |^ / - l | | f l = 0. (1.6)
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1.2.2 This may be cast in yet another form, that is useful for some purposes:
An element f eB is w.i. if and only if there exists a sequence {gn} c H00 and a

positive number M such that

(ii) lim gn(z) = l / / (z) , z e e .
n-»oo

Indeed, the necessity of these conditions follows at once from (1.6), and the
continuity of point evaluations (property (d) above) for B. If, conversely, {gn} and M
exist satisfying (i) and (ii), there is a sequence of integers {/zj such that {#„,/} converges
in the weak topology of B to some element h e B. Then h is in the strong closure
of///00, and moreover (ii) implies, using once again the continuity of point evaluations,
that/2= 1.

1.2.3 A somewhat less obvious reformulation of weak invertibility will now be
given, which also adds greatly to the function-theoretic interest of the problem of w.i.
elements in B. It is analogous to the relation between w.i. elements of HJ, and poly-
nomial approximation to analytic functions on rectifiable Jordan curves in the metric
LP(ds) (ds = arc length), due essentially to Smirnov (for an up-to-date account of
these matters see [6]). As already remarked, in studying w.i. elements of B, we may
as well restrict our attention a priori to functions/satisfying (1.1). Then the integrated
function

z

j (1.7)

is holomorphic in D with non-vanishing derivative; consequently, it is locally univalent,
and maps D conformally onto some simply connected Riemann surface S. Because
f eB, F has a finite Dirichlet integral, so that S has finite area. Conversely, given
any such Riemann surface S, the derivative / of any conformal map from D onto S
is an element of B without zeros. Of special interest is the case

/ is the derivative of a univalent function in D, (1-8)

which is equivalent to S being a (one-sheeted) region in the complex plane.

THEOREM 1. Let f be an element of B satisfying (1.1), and S the above-described
associated Riemann surface. Then, f is weakly invertible if and only if the bounded
analytic functions on S are dense in the square summable analytic functions on S.

Proof. Let La
p(S) denote the closed subspace of LP(S) = LP(S; a) (a = areal

measure on S) consisting of those functions which are holomorphic on S. Our
problem is thus to show tha t / i s w.i. if and only if U°a(S) is dense in Ifa(S). In what
follows we shall write H°°(S) to denote L^iS).

Now consider the function F defined by (1.7), mapping D conformally onto S.
Let G denote the function inverse to F. Observe that G' e La

2(S). Also, because of the
identity

G'(F(z))/(z) = i -
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we have, for every h e//°°(B),

n\\hf-\\\2 = [ \h(z)f{z)-G\F{z))f{z)\2da.
b

Now make the change of variables w = F(z). The Jacobian is | / (z) | 2 , so the last
integral equals

" \h(G(w))-G'(w)\2dam.

Now, as h runs over all bounded analytic functions on D, ho G runs over all bounded
analytic functions on S. We have therefore shown:fis w.i. if and only if G' lies in the
closure (in L2

a(Sj) ofH°°(S). In particular, if this closure is all of L2
a(S), it certainly

contains G', and consequently/is w.i. Thus, the " if " part of the theorem is established.
To prove the " only if" part, it remains to show that if the closure of #°°(S) in

L2
a(S) contains G', this closure comprises all of L2

a(S). Since this closure is stable
under multiplication by elements of H°°(S), we have therefore only to show: the
multiples of G' by elements of H°°(5) are dense in L2

a(S).
This can be seen in various ways; the most elegant is to observe that for each

X e S the function

G'{k)G'{w)

(l-G(A)G(w))2

is a bounded analytic function multiplied by G'. But, (1.9) is just the reproducing
kernel of La

2(S) for evaluation at the point X (cf Bergman [2]; the fact that our
surface S is not schlicht imposes no changes), and these are dense in L0

2(S).
Alternatively, the most general element of L2

a(S) can be written in the form ($ o G) G'
where $ e B (this is immediate, by changing variables as above), and so we need only
show, given 4> e B and e > 0, that there exists h e //°°(D) such that

s

i.e., changing variables, such that

J \h(G(w))G'(w)-<t>(G(W))G'(>v)\2dam < s,

But this merely expresses that //°°(D) is dense in B, and the proof is finished.

Remark. The problem of approximating elements of L2
a(S) by elements of

La
m(S), even when S is a schlicht region, does not seem to have been studied in the

literature. Carleman proved in a 1923 paper [4] that if Sis a Jordan domain the
polynomials are already dense in L2

a(S); this polynomial result has been extended
to more general domains (cf. Mergelyan [10], also Havin [8]) and the conditions
for its validity are now fairly well understood. The corresponding questions for
rational approximation were completely settled by Havin [7]. An interesting feature of
approximation in the space L2

a(S) by bounded holomorphic functions, as opposed
to (say) rational functions, is that the presence of slits is an obvious obstruction to the
latter, but not to the former. Recently, in response to a query by the authors, L. T.
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Hedberg was able to show that if S is any (schlicht) region of finite connectivity,
#°°(S) is indeed dense in L2

a(S), and in fact in all spaces LP
Q(S), 1 ^ p < oo. The

proof is outlined in a letter to one of the authors received in Dec. 1971; it is based
upon techniques employed by Hedberg in [9]. In view of Theorem 1, Hedberg's
result implies: iffe B satisfies (1.8), it is w.i. As a test of the efficacy of our methods,
we have attempted to prove this latter proposition directly. This we have thus far
been unable to do; on the other hand, our methods establish t h a t / e B is w.i. if it is
the derivative of a. finitely valent (but not necessarily univalent) function subjected to
some very mild further.restrictions. This yields results on mean approximation by
bounded holomorphic functions on non-schlicht regions, which do not seem accessible
to the potential-theoretic methods employed by Hedberg.

2. Main results

We shall lean heavily on the following result, proved in [15]:

THEOREM A. Letfe B satisfy (1.1), and for 0 < r < 1 write

m(r) = mm\f(rei0)\.
o

If, for some E > 0,

2n 1
J0\\2II

thenfisw.i.inB.

|/(rel0)|2 m(r)-'rdrd9 < oo, (2.1)
o o

We note a special case of this theorem: suppose, for some positive constants S, c,
we have

|/(z)|^5(l-|z|)c, zeD. (2.2)

Thenfis w.i. if, in addition to (2.2),
271 1

J j\f(rei0)\\l-ryerdrd9 (2.3)
o o

holds for some s > 0. This follows at once from Theorem A.
Our main concern in this paper is the weak invertibility of functions satisfying

(2.2). Observe that any/satisfying (1.8) must satisfy (2.2) (with c = 1) by virtue of
Koebe's distortion theorems. It is a very interesting question whether (2.2) alone
implies t h a t / i s w.i.; we know of no counter-example. Since (2.3) certainly holds
(with e = \, say) when / is bounded, a weak corollary of Theorem A is

COROLLARY A. If f satisfies (2.2), and moreover / (z ) omits all values in some
neighbourhood of infinity, then f is w.i. in B.

Thus (2.2) plus a suitable restriction on the range of/implies t h a t / i s w.i. Our
main result is on this same pattern, except that the set of values which / is required
to omit (which in Corollary A has non-empty interior) is now cut down drastically.

THEOREM 2. Let feB satisfy (2.2), and suppose, moreover, f{z) omits a set
of values having positive logarithmic capacity. Thenfis w.i. in B.
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Actually, we can prove a little more, namely

THEOREM 2'. Let feB satisfy (2.2), and suppose, moreover, for some positive
integer n,f= g", where g is holomorphic in D and omits a set of values having positive
logarithmic capacity. Then f is w.i. in B.

Surprisingly, Theorem 2 is deducible from the apparently much weaker Corollary
A; Theorem 2' is a consequence of Theorem A. These deductions are based on the
following lemma.

LEMMA. Let E be a compact subset of the complex plane having connected comple-
ment and positive logarithmic capacity, and such that

diamjB<l/2. (2.4)

Let V denote the (open) set of points having distance < 1/2 from E. Then, there exists a
function (j), holomorphic in C\E (not necessarily single-valued), indefinitely continuable
holomorphically in C\E, and non-vanishing, such that

(i) |$(w)| is single-valued, weC\E,

(ii) l im |W</>(H>)| = 1,
>v-»oo

(iii) |<£(H>)| is bounded on C\E,

(iv) \4>(w)\ > 1, weV\E.

Proof. There exists a positive measure fi (the "equilibrium distribution",
cf. [19; p. 55]) supported on E and having total mass 1, such that the function

u(w)= -l\og\w-s\dii{s) (2.5)

(" conductor potential") satisfies, for some finite positive number M,

u(w)^M, weC\E (2.6)

(see [19; p. 60]). Now, u is harmonic and single-valued off E; let v denote any (in
general, multiple-valued) harmonic conjugate of u, and

(j) = exp (u+iv).

Then <p is holomorphic off£, and \<f>(w)\ = e"(H>) is single-valued. Moreover,

log |w0(w)| iL

which tends to 0 as w -» oo, hence (ii) holds. Also, (2.6) implies (iii). Finally, because
of (2.4), log|w—s\ ^ OforseE, we V; hence u(w) ^ 0, and consequently \$(w)\ ^ 1,
when w e V\E. Thus, (iv) holds, and the lemma is proved.

Proof of Theorem 7. Let £ be a compact set having connected complement and
positive logarithmic capacity, satisfying (2.4), and disjoint from the range of g. The
hypotheses clearly imply the existence of such a set. Let 0 be the associated function
constructed in the lemma. Then, by the monodromy theorem, h = (j) o g is single-
valued, holomorphic and bounded on D. By virtue of the discussion in 1.2.1, it
suffices to prove that/x = hf is w.i. Now, gh is bounded in D, since w(f)(w) is bounded
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on C\£ ; therefore

f1-™" (2.7)
for some constant A. Also, since/ satisfies (2.2), we have

\g(z)\> 5,(1-12^ (2.8)

where 8^= 8xln, c^ = c/n. We claim now that

\g{z)h{z)\^d2{\-\z\r (2.9)
for some <52 > 0. Indeed, because of property (ii) and the fact that <j> never vanishes,
|w0(w)| has a positive minimum on the compact complement (relative to the extended
plane) of V, and so \g(z) h(z)\ has a positive lower bound on the set {z: g{z) $ V).
Therefore, it is enough to prove (2.9) for values of z such that g(z) e V. But, because
of (iv), \h{z)\ ^ 1 for suchz, and (2.9) follows from (2.8). Thus, (2.9) is established,
and so/i = hg" also satisfies an estimate of the form

l / iOOI^ 3 ( l - |* l ) e 3 . (2-10)

To complete the proof we have only to observe that (2.7) implies (2.3), with / x

in place of/ and suitably small e > 0. For, by (2.7), / x elf(<r), p = 2nf(n-l) > 2;
therefore the product of | / J 2 and (1 — r)~e is integrable over D, for suitably small
e > 0, by Holder's inequality. Since also (2.10) shows that/x satisfies a condition of the
type (2.2), Theorem A shows that/i is w.i., and Theorem 2' is proved.

As an application of Theorem 2', we can prove

THEOREM 3. Let K be any compact connected subset of C\{0}, but not a single
point, which does not separate 0 from oo. Suppose f satisfies (2.2), and moreover
Z " 1 ^ ) , as a subset of D in its relative topology, is a finite union of connected sets.
Then f is w.i. in B.

Proof. By hypothesis, /"1^) is the union of disjoint connected sets Eu ..., Em.
Let n = m+1. Slit the plane from 0 to oo in the complement of K. In the slit plane
there are n distinct, single-valued analytic branches of the function z = wl/". Let
Ju ...,Jn be the images of K under these n branches. These n sets are disjoint,
compact, connected, and each contains more than one point. Hence each has positive
capacity.

Let g be any holomorphic (in D) branch of fi/n. Then z lies in E^ ... u 2sm

if and only i f / (z)eX, if and only if g(z) lies in Jx u ... u Jn. Since the image of
Et u ... u Em under g is the union of at most m connected sets, at least one of the sets
J,- is disjoint from the range of g. The result now follows from Theorem 2'.

By virtue of Theorem 1, Theorems 2 and 3 can be reformulated as theorems on
mean approximation by bounded holomorphic functions on certain Riemann surfaces.
We do not trouble to formulate these explicitly; the theorems so obtained suffer from
the blemish that a condition is imposed on the value distribution of the derivative
of the mapping function from the unit disc onto the Riemann surface. Unfortunately
almost nothing seems to be known concerning conditions of a metric character
pertaining to a Riemann surface which would force restrictions on the range of
values of the derivative of this mapping function (e.g. omission of a continuum, or
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of a set of positive capacity); this problem seems to be of interest. On the other hand,
condition (2.2) can be shown to hold whenever the Riemann surface has at most
finitely many sheets, i.e. the mapping function is «-valent for some finite n. In [16]
it was shown that (2.2), together with the hypothesis feH1, imply that f is w.i. Since
feH1 is equivalent to rectifiability of the boundary of the image domain under the
map (1.7), we can therefore conclude: if S is any simply connected (not necessarily
schlicht) region, at most finitely sheeted and bounded by rectifiable arcs of finite total
length, then tf °°(S) is dense in L2

a(S).
In view of the distortion theorem for finitely valent functions, the study of weak

invertibility of functions subjected a priori to (2.2) seems not unreasonable, but it
is of course clear from Theorem A that (2.2) is not necessary for/to be w.i. However,
a function that is of too rapid decrease along a radius vector, in particular one
satisfying

|/(*) | ^ A exp(- l / ( l -x)) , 0 ^ x < 1, (2.11)

for some constant A, cannot be w.i. in B (or in any " reasonable " space, for that
matter).

THEOREM 4. / / / e B satisfies (2.11) it is not w.i.

Proof Let A denote the open disc enclosed by the circle centred at z = 1/2,
of radius 1/2. Because every/e B satisfies the estimate

a simple computation shows that the restriction of/to A is of class Hp (relative to A),
for any p < 1/2, and the Hp norm is majorized by | | / ||B. Thus, if/is w.i. in B, / |A is
w.i. in /J1/3(A). Therefore, / |A must be outer. However, it is readily seen that if
(2.11) holds, / |A must have a non-trivial inner factor, indeed a factor of the type
exp(c(z + l)/(z — 1)), c > 0, relativized by a change of variable from D to A. Thus/
cannot be w.i. in B.

3. Concluding remarks

The main question left open by this paper is whether or not (2.2) alone is sufficient
for/to be w.i. Until this question is decided, or if it should be decided in the negative,
it is of interest to seek supplementary conditions on /, as weak as possible, which
together with (2.2) imply that / is w.i. Thus (2.3) is such a condition, as is the
condition on omitted values imposed on Theorem 2'. In this connection, observe
that if/ satisfies the hypotheses of Theorem 2', it is necessarily of bounded (Nevan-
linna) characteristic, since g is, by virtue of a well-known theorem of R. Nevanlinna
[11; p. 213]. The same is true of/which satisfy the hypotheses of Theorem 3. Thus, a
generalization of these theorems, which would also include the theorem from [16]
referred to earlier, that (2.2) and/e / / 1 imply that/is w.i., would be:

(*) IffeB satisfies (2.2) and is of bounded characteristic it is w.i.

We have been unable to prove (*). One approach we have tried, although thus far
unsuccessful, leads to interesting factorization problems, of an apparently new kind,
for functions of bounded characteristic; therefore we describe briefly this approach.
It is based on the following
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LEMMA. Suppose / ,eLp ' a (D), i = 1,2, ... n and / , is w.i. in Lp'0(0). Then

= f\fi •••/„ belongings to Lp
a(D), where l/p = £ 1/p,, a«d is w.i. in L"a(0).

1« = 1

Proof. Tha t / eZ / a (O) follows from Holder's inequality. The rest follows by a
simple induction. For, the case n = 1 is trivial. Now consider the case n = 2. By
hypothesis there exists a sequence {fa} c H°° such that ^ / x —> 1 in LPl. Then, with

as y ->• oo. Thus, the closure of (/i/2)#°° in Lp{o) contains /2. But the closure of
f2H

co in LPz(a), and a fortiori in Lp(a), contains 1. T h u s / ^ is w.i. in Lp
a{a).

For the general case, suppose n ^ 3 and the lemma has already been proved for
n— 1 (or fewer) functions. Let g = / i •••/„-1- By the inductive hypothesis, g is w.i.

in Lr
a(B), \/r = £ l/pf. Now, using the case n = 2 of the lemma it follows that

f = i

#/„ is w.i. in Lp
a(0), completing the inductive proof.

Suppose n o w / e £ satisfies (2.2), and moreover is of bounded characteristic. This
does not force/to omit any values, except of course 0. Suppose, however, we could
prove the following proposition:

(**) Let feB be of bounded characteristic and satisfy (2.2). Then there exists a
positive integer n, and a factorization f = ftf2 .../„ such that

(i)fieL2"a(B),i = \,2,...n,

(ii) \fi(z)\ ^ <5,-(l — \z\)c', i = 1,... n, where the dh c: are positive constants,

(iii) each fi omits a set of values ofppsitive capacity.

Any /admitting such a factorization is w.i. in B by the lemma, since the/,- are all
w.i. in L2"a(O) by Theorem 2 (or, more precisely, by Theorem 2 as generalized in an
obvious way from B = L2

0(D) to L2"fl(O)). We do not know whether (**) is true.
Obviously, one could also try to work with more general factorizations whereby the
/,- are in different LPi spaces.

In any case, the following special case of (*) is true (cf M. Rabindranathan [14]).

Iffe B satisfies (2.2) and belongs to Hp for some p > 0 it is w.i.

Rabindranathan has also observed that if/ = g/h is in B, where g and h are in
H00 and g is outer, then / is weakly invertible. Indeed, g is a bounded multiple of/,
and the multiples of g span 1 even in the H2 topology.

The referee has raised the following question: if/ = FSJS2 is in B, where S^ and
S2 are singular inner functions, and if/satisfies (2.2), must St satisfy (2.2)? If so
it would follow that Sl5 and hence/, is weakly invertible. Unfortunately, St need
not satisfy (2.2). Indeed, by Theorem 2 of [17] the question is equivalent to the
following: if a real-valued function of bounded variation has modulus of continuity
O(t log 1//), must its positive variation also have this property? A counter-example
can be constructed along the lines indicated in [18] (see Theorems 3 and 4 on pages
271-2).
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