EQUIVALENCE OF ELEMENTS UNDER AUTOMORPHISMS
OF A FREE GROUP

P. J. HIGGINS anp R. C. LYNDON

J. H. C. Whitehead [4,5] proved by topological means a theorem that enables
one to decide whether the elements of a free group represented by two given words
are equivalent under an automorphism of the free group. E. S. Rapaport [3] gave a
purely algebraic proof of this result. We present here a simplification of her argument.
This paper originally appeared as a mimeographed note (Queen Mary College,
London, 1962) but is no longer available in that form. We publish it here as an
adjunct to J. McCool’s paper [1] which immediately follows it.

Whitehead’s theorem is essentially equivalent to the assertion that, if w is any
word, and w’ is an equivalent word of minimum length, then it is possible to pass
from w to w’ by a succession of automorphisms of an especially simple kind, and in
such a way that the lengths of the successive words obtained decrease strictly until
minimum length is attained, thereafter remaining constant. The set W of Whitehead
automorphisms used in the successive steps comprises two sorts. For F the free
group on the set X of free generators (which may be taken finite), let L be the set
of all letters, that is, the set of all generators x in X together with their inverses
%= x"1. Then W contains all those automorphisms which merely permute the
letters, together with all automorphisms which, for fixed @ in L, carry each generator
x into one of x, xa, ax, or axa. The assertion is a consequence of the analogous result
for cyclic words, that is, cyclically ordered sets of letters with no pair of inverses
adjacent, and is more easily proved for cyclic words. The length |w| of a cyclic word
w is the number of elements in the cyclically ordered set. The proof applies without
change to finite sets of cyclic words, and the theorem follows with some effort for
finite sets of ordinary words, the successive Whitehead automorphisms now reducing
the sum of the lengths of the words until the minimum value is attained. (Lemma 2
of [1] leads easily to a proof of this result).

Whitehead’s result follows by an obvious induction from the following

THEOREM. If w and w' are cyclic words equivalent under an automorphism of the
free group F,and if w' has minimum length for their equivalence class, then there exist
Ty, T,y ..., T, in W (n = 0) such that, writing w; = wT, T, ... T; (0 < i < n), one has
w, = W and

|W1|’|Wz|,---s|W,.| < IWI (1)

with strict inequality unless w also has minimum length.

The hard part of the theorem is contained in the following lemma, whose proof
we postpone.

LEMMA. Let u=wS, v=wT, with S, Te W, and let |u| < |w|, |v] < |w|, with
either |u|l < |w| or [v| <|w|. Then v=uS,S,...S, for some S,,S,,...,S,eW
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(n = 0), such that, writing u; = uS, S, ... S; for all 0 < i < n, one has |u;| < |w| for
all0<i<n.

To establish the theorem we observe that since W contains Nielsen’s generators
(see [2]) for the automorphism group, w can be connected to w' by some “ path”
as in the statement of the theorem except possibly not satisfying (1). If (1) is not
satisfied, then n > 2, and the maximum value m = |w;| for 0 <i <n must be at
least as large as |w|. Moreover, either m > |[w] = [w'| or m > |w| > |w']. In either
case, choosing i maximal for |w]|=m, 0<i<n, one has |w,_,| <|w| and
[w;| > |w;4,]. We may therefore use the lemma to obtain a new path by deleting
w; and passing from w;_, to w;,; by way of a succession of words of lengths less
than m. The new path then has corresponding m’ < m, and in any case contains one
word fewer of length m. The conclusion now follows by induction first on m and
second on the number of w; of length m.

We now introduce notation to be used in the proof of the lemma. If S is a
Whitehead automorphism carrying each generator x into one of x, xa, ax, axa, we
denote S by the symbol (4, a), where A consists of a together with all those letters
y # a, a that are carried into either ya or aya. (Thus, if x — ax, then X e 4, while
if x - axa, then x, xe€ A). It is clear that

(4,a4)"! = (A—a+a,a). 0)
It is also clear that, if A" is the complement of A4 in L, then
(A: a)(A’a a)—l = (A5 a)(A, —a+ta, a)

is the inner automorphism (L —a, a) carrying each element w of F into awa. Since
inner automorphisms leave cyclic words unchanged, this implies that

w(A, a) = w(A',a) for any cyclic word w. (ii)

For A, B < L, and any cyclic word w, we denote by (A.B),, the number of con-
secutive pairs of letters in w of either of the forms xj or yx, where xe 4 and yeB.
(If w = x has length 1, we count xx as a consecutive pair.) We shall ordinarily
suppress reference to w in this symbol. We write A+Bfor AU Bonlyif 4 n B = &,
and A—B for An B’ only if B < A. Then it is clear that

>0, A.B=B.A, (A+B).C=A.C+B.C,
(4—-B).C=A.C-B.C, a.a=0; (iii)
also a.L = a.L is the total number of letters a and @ in w.

If S = (4,a), we write A,(S), or, more simply, A(S) for |wS|—|w|. We shall
show that
A(S)=A.A'—a.L. (iv)
First, we let w’ be the unreduced cyclic word obtained from w be replacing each
letter x by xS, and let w’ be the result of deleting all parts ad from w'. We shall
show that w'’ is reduced, whence it follows that w"" = wS. Since w is reduced, and
w’ is obtained from w by inserting letters a and a, w’ can contain parts xX only of
the form aa or aa, where at least one of the letters is newly inserted. Now a new a
can arise only following an old x, with x in A—a, hence never following an a;
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similarly a new a can arise only preceding an old X, with x in A—a. It follows that
w' contains no part aa. To prove that w'’ is reduced, it remains to show that w’
contains no part xaax. Since one of @, & must be new, we can suppose, by symmetry,
that a is new, and so follows an old x, with x in A—a. If a is old, then it occurs in
w in a context xay, giving rise in w' to a part xaay or xaaay, the latter if ye A—a; in
particular, since x € A—a, xaay does not arise if y = x. If a is new, then w contains
xy, where ye A—a but y # x, giving rise to xaay with y # x. It follows that w'
is reduced, and w'"’ = wS.

It is now clear that A(S) = A, — A,, where A, is the number of new ¢ or @ in w'
that do not cancel in passing to w'’, while A, is the number of new a or a that cancel
against an old a or a already present in w. We have seen above that a new g, intro-
duced following x € A —a, will not be followed in w’ by an a if and only if x occurs in
win a context xj for some y € A’; similarly, a new a preceding X will not be preceded by
an aif and only if X occurs in w in a context yX forsome ye A’. Thus A, = (4—a).4’,
the number of such parts xy and yX in w. It was also seen that a new a, introduced
following x € A —a, if followed by an old a if and only if w contained xa; similarly, a
new 4 is preceded by an old a if and only if w contained aXx. Thus A, = (A—a).a. It
follows that

AS) = (A—a).A'—(A—a).a= A.A'—a.(A+A) +a.a.
Since A+ A’ = L and a.a = 0, this gives (iv).

To prove the lemma, consider a fixed cyclic word w. Let u = wS and v = wT,
where S, T € W, and suppose that
lul < |wl, |v] < ]| with either |u| < |[w| or |o| < |w|. )
It follows that
[wl > F(lul +[v]). 3

It will be shown that there exist S, S5, ..., S, in W (in fact with n < 4) such that
uS,S,...S,=vand

|uS;S,...S;| < |w] foralli,0 <i<n. @)
We first dispose of some special cases.
Case 1. Suppose that T effects a permutation of the letters.

Then |v] = |w|. Clearly S* = T-*S™! T is in W since S is in W. Setting n = 2,
S,=T and S,=S* we have uS;S,=uS"'T =0, and (4) holds since
[uS} = [uT| = lu] < |w|.

In view of this case, we may suppose that neither S nor T is a permutation.
Accordingly, we now write S = (4,a) and T = (B, b).

Case 2. Suppose that AnB=, and b=a. Then uS, =v, where
S,=S8S"'T = (A—a+a,a)B,a) = (A+B—a,a) is in W, and (4) holds vacuously
withn = 1.

Case 3. Suppose that An B = J,and a e B'. We shall first show that [uT| < |w|.
Let w', v’ be the unreduced cyclic words obtained from w, u by replacing each letter
xby xT. Since u = wS, and a, a ¢ B, all letters x or X in w with x e B—b are preserved
in u, and no new ones are introduced. It follows that |«’| —|u| = [w'| —|w|. We have
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seen that w’, u’ contain no parts bb, and that wT, uT are obtained from them by
deleting all parts bb. Now, a part bb in w' must occur in one of the contexts xbb,
bby or xbby arising from parts xb, by or xj in w, where x, y € B—b. Since x,y,b¢ A,
and x,y, b # a, any such part in w is preserved in u = wS, and so gives rise to a
part bb in «’. Thus, at least as many cancellations are possible in #’ as in w’, and we
conclude that |[uT|—]u| < [wT|—|w|. (In fact equality holds, but we do not need
this.) Since wT = v, and |u|+{v] < 2|w| by (2), we have |[uT| < |u|+|v|—|w| < |w],
as asserted.

Now v =uS™' T = uTS*™?, where S* = T™!ST. It is easy to verify that
S* = Sifbe A, while S* = (A+b—Db,a) if be A. In either case S* is in W, and the
conclusion follows withn =2, S, = T and S, = S*~1.

Case 4. Suppose that AnB= . Since ae A, be B, this implies a # . In
view of Case 2 we can assume also that ¢ # b. Further, in view of Case 3, we can
assume that @ € B, and, symmetrically, that b € A. If we define S’ = (4, b), T’ = (B, a),
and write A for A,, we find, using the fact that 3.L = a.L and b.L = b.L, that
A(S)+ A(T') = A(S)+ A(T). Since, by (3), A(S)+A(T) = |u|+|v|—2|w| < 0, one
of A(S’), A(T') must be negative. By symmetry, we may suppose that A(T') < 0.
Setting w, = wT’, we therefore have |w,| < |w|. Also, w, = uS,, where

S, =S ! T' = (A—a+3,a)(B,d) = (A+B—a,d)
isin W. Nowo=wT =w, T'""! T, and
T'"'!'T =(B-a+a,a)(B,b) = S,(B—a+a—b+b,a) = S, S,

where S, is the permutation carrying a into b, b into a, and leaving fixed all letters
other than a,a,b,b. Thus v = uS, S, S, with S,,S,,S; in W, and, since S, is a
permutation, |uS, S,| = |uS,| = |w,;| < |w|, as required.

We now prove the general result, for S = (4, a), T = (B, b), by reduction to the
case A n B = . We first observe that (3) can be written A(S)+ A(T) < 0, which,
according to (iv), gives

A.A+B.B'—a.L-b.L <0. 3%

For convenience, we now write A, = A, A, =A', B,=B, B, =B and
P, = A;n B;. Ttis easily verified that

Ay .A2+B;.B; = P .P,'+Py;.P,"+2P,.Py; 2 Py . P+ Py,. Py,

and, interchanging B, and B,, that 4,.4,+B,.B, > P,,.P,,’+P,,.P,,’. Since,
by (3*), 4,.4;+B,.B,—a.L-b.L < 0, we have

P”.P11'+P22.P22'—0.L—b.L <O,

)
Plz.P12’+P21.P21’—0.L—b.L <0.

Let x stand for any one of the letters a, @, b, b, which need not all be distinct,
and denote by P(x) the set P;; to which x belongs; clearly X ¢ P(x). We shall deduce
from (5) that at least one of the Whitehead automorphisms (P(x), x) decreases the
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length of w. First, if each of the four sets P;; contains one of the letters a, a, b, b,
then
TA(P(x),x) = TP(x). P(x) = Tx.L

= ZPU.PU'—z(a.L‘}'b.L)
<0 by (%),

and it follows that some A(P(x), x) < 0. Second, if P;;, say, contains none of these
letters, then, writing @, = a, a, =a, b, = b, b, =b, we have a,e 4, = P,, + P,,,
b;e B; = P,;+P,;, whence a;€ P, (k # j) and b;e P; (h # i). Thus

A(P(ai),a[)‘i'A(P(bj), bj) = P;k.P,k'+P,,j.P,U-'—a.L—b.L < 0

by (5), and again some A(P(x), x) < 0.

Interchanging S and T if necessary, we can assume that A(P(x),x) <0 for
x =ga or d. Since, by (ii), S can be replaced by (A4', a), we can even assume that
x = a. Then P(x) must be either P,, or P,,, and, replacing T by (B’, b) if necessary,
we can assume that P(x) = P,,. Thus we may suppose that aeB’ and
A(ANnB',a) < 0. Setting U = (4n B’,a) and w, = wU, we have |w,| < |[w|]. Now
w=u(A’,a)"! = u(A’—a+a,a). Hence w, = uS,, where

S, = (4'—-a+a,a)(AnB,a) = (4'U B —a,a)

is in W. Moreover, w, = w(4An B’,a), v = w(B,b), and (An B)n B = . Since
[w;} < |w| and |v] < |w|, Case 4 provides a path from w, to v with at most three steps,
and with all intermediate words shorter than w.  This completes the proof of the
lemma, and with it the theorem.
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