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1. Introduction

Let k be a number field, let k be an algebraic closure, and write G = Gal (k/k) for
the relative Galois group. If E is an elliptic curve defined over k, then G acts on the
group E(k) of points of E defined over k. In particular, for any positive integer n it
acts on the group En of points of E with finite order dividing n. From now on, suppose
n — I is prime. We can regard Et as a vector space (of dimension 2) over the finite field
F, with / elements, and so there is a natural homomorphism (j>t from G to the
corresponding general linear group GL(.Ej). A fundamental result of Serre ([16,17])
says that if E has no complex multiplication over k, then (fr^G) = GL (EJ for all
sufficiently large /. In other words, there exists l0, depending only on k and E, such
that <f>t{G) = GL(£Z) for all / > /0.

Up to now it seems that no general estimate for /0 has been written down. Serre
gives a number of results for special classes of elliptic curves. For example, Corollaire
1 of [17, p. 308] yields a simple estimate when k = Q and E is semistable. In his later
paper [18] he was able to eliminate the semistability condition by assuming the
Generalized Riemann Hypothesis (see Theoreme 22 and Lemme 15, p. 196). But in
a talk at the D.-P.-P. Seminaire in April 1988, he did announce an effective estimate
in the general case.

In this note we give a general upper bound for /„. As Serre himself pointed out
during a conference at Schloss Ringberg in July 1988, such a result is a relatively
simple deduction from some isogeny estimates proved by us. Indeed, our exposition
in Sections 3 and 4 follows closely a talk he gave there on this subject. After recording
the necessary isogeny estimates in Section 2, we apply these in Section 3 to rule out
some particular possibilities for (p^G). Then in Section 4 we prove our main result by
appealing to the group-theoretical analysis of [17].

We also prove two further results of a similar type. In Section 5 we generalize to
several elliptic curves, and in Section 6 we consider the corresponding problem for
several points of infinite order on a single elliptic curve.

To state our main result we define the Weil height of the elliptic curve E as the
(absolute logarithmic) Weil height of its y-invariant.

THEOREM. There are absolute constants c, y with the following properties. Suppose
E is an elliptic curve of Weil height h defined over a number field k of degree d, and
assume E has no complex multiplication over k.

(a) If I > c(max {d, h})7, then 0£(G) contains the special linear group SL(i?j).
(b) If, further, I does not divide the discriminant ofk, then (pt(G) = GL(Et).
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Our exponent y is completely effective, but rather large at the moment. There is
little doubt that it could be substantially reduced without any new ideas. It is rather
more difficult to estimate the constant c, and it would be an interesting project to
attempt.

Generally, throughout this paper we use c,cx,c2,...(but not C,Cl5C2,...) for
sufficiently large positive absolute constants.

It is a pleasure to thank Serre for valuable correspondence on these topics. The
first author was supported in part by the National Science Foundation, and the paper
was written while he was enjoying the hospitality of the University of Konstanz and
supported by the Alexander von Humboldt Foundation.

2. Isogeny estimates

The following result is a preliminary version of what we shall need. For an
abelian variety A defined over a number field k, we denote by h(A) the (absolute
logarithmic) Faltings height of A, obtained by passing to any field extension over
which A has semistable reduction (see, for example, p. 248 of Chai's article in [4]). For
an elliptic curve E, this is known to have the same order of magnitude as the Weil
height h (see, for example, Proposition 2.1 on p. 258 of Silverman's article in [4]). In
particular, h(E) ^ cmax{l, h) and so it suffices to prove our Theorem for the Faltings
height in place of the Weil height.

LEMMA 2.1. Given a positive integer n, there are constants C1? kv depending only
on n, with the following property. Suppose that A, A* are abelian varieties of dimension
n defined over a number field k of degree d, and that they are isogenous over k. Assume
further that A, A* are principally polarized. Then there is an isogeny from A* to A,
defined over k, of degree at most Cx{m&x{d, h{A)})kK

Proof. In the Theorem of [13] we proved a result of this kind with Cx depending
on d as well as on n; but in Section 6 of the paper we computed the dependence on
d. From the formulae given there, in particular equation (6.2), the present lemma
follows at once.

Note that for elliptic curves, a result of this form, with Cx depending also on d,
was proved in [11] with Xx = 4. So small exponents can be achieved in this game. The
result was then used in [10] to give some effective estimates like our Theorem when
the y-invariant of E is not an algebraic integer.

In fact, we shall need a modified version of Lemma 2.1 in which the polarization
hypothesis on A* is removed at the expense of an extra condition on A.

LEMMA 2.2. Given a positive integer n, there are constants C, X, depending only on
n, with the following property. Suppose that A, A* are abelian varieties of dimension n
defined over a number field k of degree d, and that they are isogenous over k. Assume
further that A is principally polarized andfactorizes as A^x ... x Ae/, where ev...,er

are positive integers and Ax, ...,Ar are abelian varieties, pairwise non-isogenous over k,
with trivial endomorphism rings over k. Then there is an isogeny from A* to A, defined
over k, of degree at most C(max {d, h{A)})x.
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Proof. We define Z = (A xAf, where A is the dual of A, and we define Z*
analogously for A*. Then Z,Z* are defined over k and isogenous over k. Moreover,
since A is principally polarized, Z is isomorphic over k to A6; and a well-known
observation of Zarhin (see, for example, [19, p. 314]) shows that Z* is principally
polarized. Therefore by Lemma 2.1 there is an isogeny from Z* to A8 of degree b ^
C2(max {d, h(A8)})x, where C2 and X are the values of Cx and Xx with n replaced by 8«.
Choose any embedding of A* into Z*, and compose this with the above isogeny to
obtain a homomorphism e from A* to A8. This is surjective onto its image B = e(A*),
and it is easy to see that e is an isogeny from A* to B of degree at most b.

Thus B is an abelian subvariety of A8 which is isogenous to A (that is, it is ' stably
isogenous' to A in the sense of [19]). Now it follows from our factorization
assumptions about A that in fact B must be isomorphic to A. One way of seeing this
is to use the concept of' disjointness' introduced in [9, p. 235]. Each of Ax,..., Ar is
simple, and any two are non-isogenous, so by Lemma 7(i) of [9, p. 262], any two are
disjoint. It follows from Lemma 7(iii) that A1,...,Ar are disjoint. Hence, by repeated
use of Lemma 7(ii), we see that the factors A\e\...,A8

r
e* of A8 are also disjoint.

In other words, B in A8 must factorize as Bx x ... x Br for Bt in A\e* (1 < / < r).
But since Ai has trivial endomorphism ring, Bi must be isomorphic to some power
Af

t* (1 ^ / ^ r). Now 'uniqueness of factorization up to isogeny' shows that
ft = et (1 ^ i ^ r); hence the desired conclusion.

So we end up with our required isogeny from A* to A; and because h{A8) = &h(A),
its degree satisfies the required bound with C = 8AC2. This proves the lemma.

3. Isogeny arguments

Throughout this and the next section we let E be an elliptic curve of Faltings
height h defined over a number field k of degree d, with no complex multiplication
over k; and for a prime / we define El and (f>l as in Section 1. We write, for brevity,

M = max {d, h},

and we denote by X = X{ri) the exponent in Lemma 2.2.

LEMMA 3.1. Suppose l> cxM
X(V). Then (f>t{G) does not fix any one-dimensional

subspace of Ev

Proof. This is in [10], but for completeness we reproduce the argument. Suppose,
to the contrary, that ^(G) fixes some one-dimensional subspace T of Ev Then F is
defined over k. So the abelian varieties A = E and A* = E/T are defined over k and
isogenous over k. Hence by Lemma 2.2 (or Lemma 2.1) there is an isogeny from E/T
to E of degree b ^ cx M

xa). Composing this with the natural isogeny from E to E/T
of degree /, we end up with an endomorphism of E, which by hypothesis must be
multiplication by some integer p. Comparing degrees, we obtain p2 = bl. So / divides
p, and therefore / must also divide b. In particular, / ^ b. This is a contradiction, and
the lemma is proved.

The next result uses a two-dimensional version of the same argument.

LEMMA 3.2. Suppose I > c2 M
A(2)/2. Then if^iG) is commutative, it is contained in

the group Ff of scalars in
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Proof. Suppose, to the contrary, that (p^G) is commutative but not contained in
Ff. Choose any/in <pi(G) not in Ff, and define F in Ex E as the group of elements
(x,fx) as x runs over Er Then F is defined over k, since an arbitrary g in G acts on
(x,fx) to give (<pi(g) x, <pi(g)fx), which is (y,fy) for y = (p^g) x by commutativity.
Hence A = ExE and A* = A/T are both defined over k and isogenous over k.

We can now apply Lemma 2.2 to obtain an isogeny of degree b ̂  czM
X(2) from

A* to v4; note that h(A) = 2h. Composing this with the natural isogeny from A to
A/T of degree I2, we obtain an endomorphism e of A. This can be represented by an

integral matrix I I acting on elements (x, x') of ExE. Since it annihilates F, we

obtain
px + rfx = qx + sfx = 0

for all x in Er On the other hand, since/is not in Ff there is no integer a such that
fx = ax, and we deduce easily that p, q, r, s are all divisible by /. So /4 divides the
degree (ps — qr)2 of e. But this is bl2; hence I2 divides b and / ^ b1/2. This contradiction
completes the proof of the lemma.

4. Group theory

We can now prove part (a) of our Theorem. Suppose first that / divides the order
of 0,(G). By Proposition 15 (p. 280) of [17], either 0,(G) contains SL(Et) as desired,
or (j)t{G) is contained in a Borel subgroup. By definition, the latter fixes some one-
dimensional subspace of Et, so we can use Lemma 3.1 to eliminate this possibility if

l>ClM
Xa). (4.1)

So henceforth we may assume that / does not divide the order of <Pi(G). Let H
be the image of <pt(G) under the canonical map from GL (£,) to the projective group
PGL(Et). By Section 2.6 (p. 282) of [17] we have the following three possibilities:

(i) <pt(G) is contained in a Cartan subgroup C;
(ii) 0,(G) is contained in the normalizer N of a Cartan subgroup C;
(iii) H has order at most 60.

We proceed to eliminate each of these in turn.
In case (i) we may suppose (p^G) is not contained in Ff by assuming (4.1) and

using once again Lemma 3.1. Now every Cartan subgroup is commutative, and so we
can use Lemma 3.2 to eliminate this case completely if

l>c2M
mi2. (4.2)

Next, in case (ii) it is known that C has index 2 in AT if / > 2 (see p. 279 of [17]).
Thus K = C (1 (Pi{G) has index at most 2 in <pt(G). Hence it corresponds to an extension
kQ of k with

for Go = Gal (kQ/k0). So over k0 we are back in case (i). Thus to eliminate this it
suffices to replace d by 2d, and therefore it is enough to assume (4.1) and (4.2) with
M replaced by 2M.

Finally, in case (iii) the group K = Ff n (f>i(G) has index at most 60 in (pt(G), and
we obtain an extension k0 of k with
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So over k0 we are back in a special case of (i), and to eliminate this it suffices to replace
M by 60M in (4.1) and (4.2).

This completes the proof of part (a) of the Theorem. From (4.1) and (4.2) we see
that we can take

(4.3)

To prove part (b), we introduce the number

e = e(k, I) = d[*fo): Q ^ ) ] " 1 = ( / -1) [k^): k]~\

where ^, = e2ni/l. This is an integer since Gal (kQi^/k) is a subgroup of Ff and so its
order divides /—I. Now an arbitrary g in G sends ^ to //™, where m is the determinant
det ^>i(g) in Ff. It follows easily from part (a) that if l> cMY, then 0,(G) is the
subgroup of GL (EJ consisting of all elements whose determinant is an eth power in
Ff. So <pi(G) = GL(iij) if and only if e = 1. But this last condition is certainly satisfied
when / does not divide the discriminant of k. For then / does not ramify in k, and the
Eisenstein criterion shows that the minimal polynomial for /z{ over <Q remains
irreducible over k; hence [k(jit): k] = I— 1. This proves part (b), and thereby completes
the proof of the Theorem.

5. Several elliptic curves

For an integer n ^ 2 let Ea),...,E(n) be elliptic curves defined over a number field
k, with /-torsion groups E(f\...,E\n) respectively. These provide homomorphisms $ °
from G = Gal (k/k) to GL (£{*>) (1 ^ i ^ n) and so a homomorphism 0>t = {(f>^\...,
$B)) from G to the product GL (£j») x ... x GL (E\n)). Let A = A(£<1},..., E\n)) be the
subgroup of this product consisting of all (/(1>,... ,/ (n )) with

det/(1) = ... = det/(n )

in Ff. When n = 2, Serre proved in [17, p. 327] that Oj(G) = A for all sufficiently large
/, provided Ea),E{2) have no complex multiplication over k and the associated /-adic
representations are not isomorphic over k. By Faltings [7], this latter condition is
equivalent to Ea), Ei2) being non-isogenous over k. We shall prove the following more
precise version for arbitrary n; when n = 1 it reduces to our Theorem already proved.

PROPOSITION 1. There are absolute constants c,y with the following property.
Suppose Ea\..., E(n) are elliptic curves defined over a number field k of degree d, with
Weil heights at most h. Assume that Ea\...,E(n) have no complex multiplication over
k and that they are pairwise non-isogenous over k.

(a) / / / > c(max {d, h})y, then 0>t((7) contains SL (£|1}) x ... x SL (E\n)).
(b) If, further, I does not divide the discriminant ofk, then 0{(G) = A(£jX),..., is jn)).

For the proof we shall need the following result, which slightly generalizes the
arguments of Lemma 8 of [17, p. 326].

LEMMA 5.1. For a prime / ^ 5, let e be a divisor of 7— 1, let V, V be vector spaces
of dimension 2 over Fi5 and let B,B' be the subgroups of GL(K) and GL(F ' )
respectively consisting of all elements whose determinants are eth powers. Let D be the
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subgroup of BxB' consisting of all (b, b') with det b = det b', and suppose H is a
subgroup of D in BxB' whose projections to each factor are surjective. Then ifH # D
there is an isomorphism f from V to V and a character x of H with x2 = 1 such that

b'=xih)fbf-X

for all h = (b, b') in H.

Proof. As in [17], we let TV, N' be the kernels defined by

Nx{\} = H(\(Bx{\}), {\}xN' = H(]({\}xB');

then the image of H in B/N x B'/N' is the graph of an isomorphism a from B/N to
B'/N'. Since H £ D we have N c SL(F). If N = SL(K), it is easily seen that H = D;
thus since TV is a normal subgroup and / ^ 5, it follows that N = {\} or {1,-1}.
Similarly for TV'. Let Z,Z' be the centres of B,B' respectively; then Z/N,Z'/N' are
the centres of B/N, B'/N' respectively, so a induces an isomorphism between these.
So it also induces an isomorphism a from B/Z to B'/Z'.

However, these latter quotients are isomorphic to either PGL2(Fj) or PSL2(Fi),
according to whether e is odd or even. It is known that every automorphism of these
groups is induced by an inner automorphism of PGL2(F,) (see [6, pp. 103-104] and
also [14, p. 795]). It follows that there is an isomorphism / from V to V such that
<x(b) =fbf~1 for every b in B/Z. This means that for every h = (b,b') in H, we have
b' = xfbf~l for some x = x(h) in Ff. Clearly x defines a homomorphism, and by
taking determinants we see that #2 = 1. This proves the lemma.

We can now prove part (a) of Proposition 1 for n = 2; for consistency of notation,
we rename £'(1),£(2),^[1),0|2) as E, E', $[,& respectively. Assume first that

l>cMy (5.1)

for c,y as in the Theorem and M = max{d,h). We shall apply Lemma 5.1 to
H = Oj(G) for V = Et, V = E\. By the Theorem and the remarks at the end of
Section 4, we know that //projects surjectively onto B, B'. If H = D, then //contains
SL^E,) x SLCE,') and we are done. Otherwise, H # D and Lemma 5.1 gives

ti(g)=Xo(g)fti(g)r1 (5-2)
for every g in G, where / 0 is the induced character on G, with xl = 1 •

Assume for the moment that x0 = 1 identically. We define F in E x E' as the group
of elements (x,fx) as x runs over Ev Then F is defined over k, since an arbitrary g in
G acts on (x,fx) to give (<f>t(g) x, ^(g)fx), which is (yjy) for y = <pt(g)x by (5.2).
Hence A = ExE' and A* = A/T are both defined over k and isogenous over k.

We can now apply Lemma 2.2 to obtain an isogeny of degree b ̂  c4 M
m from

A* to A; note that h(A) = h(E) + h(E') ^ 2h. Composing this with the natural isogeny
from A to A/T of degree I2, we obtain an endomorphism £ of A. This can be

represented by an integral matrix L , and since it annihilates T we obtain
\0 <l)

px = qfx = 0 for all x in Ev Because/is an isomorphism, this implies that / divides
p and q. Therefore /4 divides the degree p2q2 of e. But this is bl2; hence I2 divides b,
and / ̂  b1'2. So this case can be ruled out by assuming that

l>c,MM2)l2. (5.3)

It remains to consider the case when x0 is
 n o t identically 1 in (5.2). But then there

is a quadratic extension k0 of k such that Xo = 1 on Go = Gal(£0/A:0). Now the
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foregoing arguments apply over k0, and by assuming (5.3) with M replaced by 2M we
conclude that $>i(G0) contains SL(is,) x SL(£j). Hence so does ®i(G). This proves
part (a) of Proposition 1 for n = 2; from (4.3), (5.1) and (5.3) we see that a single
condition

l>c6M
y (5.4)

suffices, where y as in (4.3) is the exponent appearing in the statement of the Theorem.
Part (b) of the proposition follows easily, as at the end of Section 4, and this
completes the proof for n = 2.

We now deduce the general case. Write St = SL (E^) (1 ^ / ^ «), and consider the
intersection H of ^>t{G) with S = Sx x ... x Sn. If (5.4) holds, then the projection of H
to each product Si x S\ (1 ^ i <j: ^ ri) is surjective. Since Sx,...,Sn have no non-
trivial commutative quotients for / ^ 5, Lemma 5.2.2 (p. 793) of [14] implies that
H = S. This proves part (a), and again part (b) is an immediate consequence. This
completes the proof of Proposition 1; once more the exponent y is as in (4.3).

6. Points of infinite order

Let E be an elliptic curve defined over a number field k, and for a positive integer
m let P1,...,Pm be elements of the group E(k) of points of E defined over k. For a
prime / let <fit be the homomorphism of G = Gal (k/k) into GL (Et) defined in Section
1, and write Gt for its kernel in G. We now define a homomorphism y/t from G, into
the additive group £™, as follows. Pick Q1,...,Qm in E(k) with lQt = Pt (1 ^ i ^ m),
and for g in Gt let

Viig) = (gQi - Gi, • • •, gQm ~ Qm)-
Since g fixes all points of order /, it is easily checked that y/t is independent of the
choice of Qx,..., Qm.

Assume now that P1,...,Pm are linearly independent over the ring of endo-
morphisms of E over k. Bashmakov [1] proved that ^(G1,) = E™ for all sufficiently
large /. In [2], Bertrand extended this result and gave an effective version when E has
complex multiplication. When E has no complex multiplication, we obtained in [10]
an effective version for m = 1. Our Theorem now enables this to be generalized to
arbitrary m. We shall need the (absolute logarithmic) Neron-Tate height q on E(k).

PROPOSITION 2. There are absolute constants c, S with the following property.
Suppose E is an elliptic curve of Weil height h defined over a number field k of degree
d. Assume E has no complex multiplication over k, and Pl,...,Pm are points of E(k)
linearly independent over Z. Then if l> (cMsU)ml2, we have y/^G^ = Ef, where

M = m?ix{d,h}, U

For the proof we follow the proof of Theorem 3 of [10]. We have to check the
validity of the axioms Blt B2, Bz, Bi of Ribet's paper [15, p. 747] for E.

First, if / > cMy for the constants c, y of our Theorem, then (j)t{G) contains SL^E,),
and therefore the commutant of ^t(G) in End El is contained in the commutant of
SL(iij) in EndEt, which is well-known to be F,. This settles Bv

Similarly, if / > cM\ then Et is irreducible as a 0j(G)-module, and so by Lemma
10 of [3, p. 179], the cohomology group H^^G), Et) vanishes. This deals with B2

and 2?3.
Finally, the validity of £4 is obvious, and from Proposition 1.1 [15, p. 747] it will

suffice to make /so large that P1,...,Pm remain linearly independent modulo lE{k). By
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the discussion in [2, pp. 85, 87], this holds if / > (/T1£/)m/2, where n is the minimum
of q{P) taken over all non-torsion P in E(k). Since U ̂  /i, we deduce Proposition 2
with <5 = /?+2y as soon as we can show that ^^c^M^ for some absolute
constant ft.

Such a bound follows from a recent result of S.David [5]. For g = \, his
Theoreme 1.4 leads to the estimate

IT1 ^ c%k?dXh^ + Xogdf ^ c9Mn,

with hx = max{l,h}. A slightly better exponent can be obtained using the method of
[8]; in this paper we did not work out the dependence on d, but it is a relatively easy
matter to do so, and we find

This completes the proof of Proposition 2.
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