SUCCESSIVE COEFFICIENTS OF UNIVALENT FUNCTIONS

P. L. DUREN

Let S be the class of functions

$$
f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\ldots,|z|<1,
$$

analytic and univalent in the unit disc. Hayman [3] proved that the difference of successive coefficients is bounded:

$$
\left\|a_{n+1}|-| a_{n}\right\| \leqslant A, n=1,2, \ldots
$$

for all $f \in S$, where A is an absolute constant. Milin [7, 8] discovered a different proof which showed that $A<9$. Ilina [5] sharpened Milin's method and found $A<4.26$. Quite recently, Grinspan [2] modified Milin's approach to show that $A<3.61$. It is known that A cannot be reduced to 1 , even for the subclass of odd functions. For the subclass of starlike functions, however, Leung [6] recently reduced the bound to 1 .

The object of this note is to establish another bound which improves upon Grinspan's for a certain subclass of S. The precise statement requires some preliminary discussion.

Hayman [3] showed that for each $f \in S$, the limits

$$
\alpha=\lim _{r \rightarrow 1}(1-r)^{2} M_{\infty}(r, f)=\lim _{n \rightarrow \infty} \frac{\left|a_{n}\right|}{n}
$$

exist, where $M_{\infty}(r, f)$ is the maximum of $|f(z)|$ on $|z|=r$. The number $\alpha(0 \leqslant \alpha \leqslant 1)$ is called the Hayman index of f. Furthermore, f has a direction of maximal growth $e^{i \theta_{0}}$ with the property

$$
\lim _{r \rightarrow 1}(1-r)^{2}\left|f\left(r e^{i 0_{0}}\right)\right|=\alpha
$$

The direction of maximal growth is unique if $\alpha>0$.
The logarithmic coefficients γ_{n} of f are defined by

$$
\log \frac{f(z)}{z}=2 \sum_{n=1}^{\infty} \gamma_{n} z^{n}
$$

The following two results $[8,9,1]$ give information about the logarithmic coefficients.
Milin's Lemma. For each $f \in S$,

$$
\sum_{n=1}^{N} n\left|\gamma_{n}\right|^{2} \leqslant \sum_{n=1}^{N} \frac{1}{n}+\delta, \quad N=1,2, \ldots,
$$

where $\delta<0.312$.
Bazilevich's Theorem. For each $f \in S$ with Hayman index $\alpha>0$,

$$
\sum_{n=1}^{\infty} n\left|\gamma_{n}-\frac{1}{n} e^{-i n \theta_{0}}\right|^{2} \leqslant \frac{1}{2} \log \frac{1}{\alpha},
$$

where $e^{i \theta_{0}}$ is the direction of maximal growth.

The smallest possible number δ is known as Milin's constant. It is a positive number whose exact value is unknown.

Our result can now be stated.

Theorem. Let $f \in S$ have Hayman index $\alpha>0$. Then

$$
\left\|a_{n+1}|-| a_{n}\right\| \leqslant e^{\delta} \alpha^{-\frac{1}{2}}<1 \cdot 37 \alpha^{-\frac{1}{2}}, \quad n=1,2, \ldots
$$

where δ is Milin's constant.
The proof uses an inequality due to Lebedev and Milin $[8,9,1]$. Let $\phi(z)=\sum_{n=1}^{\infty} \alpha_{n} z^{n}$ be an arbitrary power series with positive radius of convergence, and let

$$
\exp \{\phi(z)\}=\sum_{n=0}^{\infty} \beta_{n} z^{n}
$$

Then

$$
\left|\beta_{n}\right|^{2} \leqslant \exp \left\{\sum_{k=1}^{n}\left(k\left|\alpha_{k}\right|^{2}-\frac{1}{k}\right)\right\}, \quad n=1,2, \ldots
$$

Proof of theorem. Let ζ be a complex parameter with $|\zeta|=1$. Then

$$
\psi(z)=(1-\zeta z) \frac{f(z)}{z}=1+\sum_{n=1}^{\infty}\left(a_{n+1}-\zeta a_{n}\right) z^{n}
$$

and

$$
\log \psi(z)=\sum_{n=1}^{\infty}\left(2 \gamma_{n}-\frac{1}{n} \zeta^{n}\right) z^{n}
$$

According to the Lebedev-Milin inequality,

$$
\begin{aligned}
\left|a_{n+1}-\zeta a_{n}\right|^{2} & \leqslant \exp \left\{\sum_{k=1}^{n}\left(k\left|2 \gamma_{k}-\frac{1}{k} \zeta^{k}\right|^{2}-\frac{1}{k}\right)\right\} \\
& =\exp \left\{2 \sum_{k=1}^{n}\left(k\left|\gamma_{k}\right|^{2}-\frac{1}{k}\right)+2 \sum_{k=1}^{n} k\left|\gamma_{k}-\frac{1}{k} \zeta^{k}\right|^{2}\right\}
\end{aligned}
$$

In view of Milin's lemma and Bazilevich's theorem, it follows that

$$
\| a_{n+1}\left|-\left|a_{n}\right|\right| \leqslant\left|a_{n+1}-e^{-i \theta_{0}} a_{n}\right| \leqslant e^{\delta} \alpha^{-\frac{1}{2}}, \quad n=1,2, \ldots .
$$

This completes the proof.
For functions $f \in S$ with large Hayman index α (more precisely, with $\alpha \geqslant 0.15$), our bound improves upon that of Grinspan.

References

1. P. L. Duren, Univalent Functions, Springer-Verlag, New York and Heidelberg, to appear.
2. A. Z. Grinspan, "Improved bounds for the difference of adjacent coefficients of univalent functions", in Some Questions in the Modern Theory of Functions, Sib. Inst. Mat., Novosibirsk, 1976, pp. 41-45 (Russian).
3. W. K. Hayman, "The asymptotic behaviour of p-valent functions ", Proc. London Math. Soc. 5 (1955), 257-284.
4. W. K. Hayman, "On successive coefficients of univalent functions ", J. London Math. Soc. 38 (1963), 228-243.
5. L. P. Ilina, " On the mutual growth of neighbouring coefficients of univalent functions", Mat. Zametki, 4 (1968), 715-722 = Math. Notes 4 (1968), 918-922.
6. Yuk Leung, "Successive coefficients of starlike functions", Bull. London Math. Soc. 10 (1978), 193-196.
7. I. M. Milin, "Adjacent coefficients of univalent functions", Dokl. Akad. Nauk SSSR 180 (1968), 1294-1297 = Soviet Math. Dokl. 9 (1968), 762-765.
8. I. M. Milin, Univalent Functions and Orthonormal Systems, Izdat. "Nauka ", Moscow, 1971; English transl., Transl. Math. Monographs, vol. 49, Amer. Math. Soc., Providence, R.I., 1977.
9. Ch. Pommerenke, Univalent Functions, Vandenhoeck und Ruprecht, Göttingen, 1975.

Department of Mathematics, University of Michigan,

Ann Arbor,
Michigan 48109,
U.S.A.

