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Let S be the class of functions

analytic and univalent in the unit disc. Hayman [3] proved that the difference of
successive coefficients is bounded:

I k + i l - k l l <A> « = 1,2,...,
for all/e S, where A is an absolute constant. Milin [7, 8] discovered a different proof
which showed that A < 9. Ilina [5] sharpened Milin's method and found A < 4-26.
Quite recently, Grinspan [2] modified Milin's approach to show that A < 3-61. It is
known that A cannot be reduced to 1, even for the subclass of odd functions. For the
subclass of starlike functions, however, Leung [6] recently reduced the bound to 1.

The object of this note is to establish another bound which improves upon
Grinspan's for a certain subclass of S. The precise statement requires some pre-
liminary discussion.

Hayman [3] showed that for each/e S, the limits

IflJ
a = lim (l—ry Mn(r,f) = hm

r-»l n -»oo n

exist, where Mm(r,f) is the maximum of \f(z)\ on \z\ = r. The number a (0 ^ a ^ 1)
is called the Hayman index of/ Furthermore,/has a direction of maximal growth eie°
with the property

lim(l-r)2|/(re'"0o)| = a.

The direction of maximal growth is unique if a > 0.
The logarithmic coefficients yn off are defined by

The following two results [8, 9,1] give information about the logarithmic coefficients.

MILIN'S LEMMA. For each fe S,
N N 1
Z n\yn\2 ^ Z —*-$> w = l, 2 , . . . ,

n=1 n = l n

where 8 < 0-312.

BAZILEVICH'S THEOREM. For eachfe S with Hayman index a > 0,

1 _.n6o
2 1 1

n 2a'

where eWo is the direction of maximal growth.
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The smallest possible number <5 is known as Milin's constant. It is a positive number
whose exact value is unknown.

Our result can now be stated.

THEOREM. LetfeS have Hayman index a > 0. Then

I k + i l - k . i l ^ e*«~* < l-37oT* n = 1, 2 , . . . ,

where d is Milin's constant.

00

The proof uses an inequality due to Lebedev and Milin [8,9,1]. Let 0(z) = ]£ an z"

be an arbitrary power series with positive radius of convergence, and let

exp{<Hz)}= £ A.*"-

n = l

n = 0

Then

exp { S^lofcl2- j - ) \ , n = 1,2, ....

Proof of theorem. Let C be a complex parameter with

H) ( 1 C )

= 1. Then

S ian

and
= S [2yn--C

n z".
n = l \ « /

According to the Lebedev-Milin inequality,

exp

( n I 1 \

2 E ( % * I 2 - - +2E

In view of Milin's lemma and Bazilevich's theorem, it follows that

I k + i l - k l l < \an + 1-e-ie°an\ <e5a~K « = 1,2,.. . .

This completes the proof.
For functions feS with large Hayman index a (more precisely, with a ^ 0-15),

our bound improves upon that of Grinspan.
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