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ON A DIOPHANTINE EQUATION

P. ERDOS*.

Throughout this paper the letters n, k, I, x, y denote positive integers
satisfying l> l,x> l,y> 1, w > 2&, and p denotes a prime. In a previous

paper f I proved that the equation (h)—^ n a s n o solutions J if k ^ 2l\

i) =x3 has no solutions. Oblath§ proved that

• Received 26 April, 1950; read 18 May, 1950.
t Journal London Math. Soc, 14 (1939), 245-249.
J The assumption n > 2k is not a loss of generality since we havo ( t ) •• (n . t) •
§ Ibid., 23 (1948), 252-253.
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( n\ f n\

» j = x4 and ( , ) = x5 have no solutions. On the other hand it is

well known that f « j = x% has infinitely many solutions and that the only

solution of ( g.J = x2 is n = 50, x = 140.*
In the present paper we prove the following
THEOREM. Let k>d; then I » j = x1 has no solutions.

Remark. The cases k — 2 and k — 3 are left open, and it will be dear
that our method cannot deal with these cases.

For the sake of completeness we repeat some of the proofs from my
previous paper.

A theorem of Sylvester and Schurf states that ( . J always has a prime

factor greater than k. Denote one of these primes by p. If ( » j = x1, we

must have for some i with 0 ̂  i < k,

n— *==0 (modpO,

since only one of the numbers n—i can be a multiple of p. Hence

(1) n^jt>V.

Write now n—i = a{x/, where all the a's are integers which are not
divisible by any l-th power and whose prime faotors are all less than or
equal to k. First we prove that all the a's are different. Assume a,- — aj}

% <j. Then

k > atxf-atxf^atiiZf+iy-xf] > la,^1 > l(atx/)i > l(n-k+l)* > n*.

which clearly contradicts (1).
Next we prove that the a's are the integers 1, 2, ..., k in some order.

To prove this it will clearly suffice to show (since the a's are all different) that

(2) a1aa.

From ( » J = x1 we have

jfc!

* I cannot find a reference to this fact.
t Ibid., 9 (1934), 282-288.
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Let q < k be any prime. ' The number of multiples of qa among the o's is
f k ~]dearly not greater than —- + 1 (since the number of multiples of q*

f k~\among the integers n—i, 0 ̂ t < k, is at most — -f-1). Also sinoe no

a is a multiple of tft axa2...akjk! is divisible by q to a power whioh is not
greater than

i
Thus t«= 1, and (2) is proved.

Hence if I = 2 and k > 3, ( , ) = x2 is impossible, sinoe 4 being a square

cannot be an a, and thus aiaz ...ak > k!, which contradiots (2).
So far our proof is identical with the one contained in my previous

paper*. Now we can assume / > 2. Since k > 4, we can ohoose iv t2, *3

(0<»v<&) so that

(3) n—1\ = xj, n—i2 = 2xJ, n—i3 = 4«8
/.

Clearly (n—i2)
2 ^ (n—ijin—i3). For otherwise put n—i2 = m; then

m a = (m—x)(m-\-y), or (y—x)m = xy.

x = y is clearly impossible. On the other hand, if x ^ y we have, by (I),

xy = m(y—x) > m > n—k> (k—l)2 ^xy (since x<k, y <k),

an evident contradiction. Hence x^^x^xj. We can assume without
loss of generality that xz

2 > xx aj3; then

2{k-l)n> n2-{n-k+ l)a > (n-ia)
2-(n-ijin-ij

Hence, since n > k* > Qk and I ̂  3,

Thus, since by (3) xi < »'•,

kn-^lexlxt> (k—l)x1xt>n, or fc3>n,

which contradicts (1). Thus our theorem is proved.
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* Ibid., U (1939). 246-849.


