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1. Introduction

The class of plane quasiconformal mappings, introduced by Ahlfors (2)
and Pfluger (20), has been studied rather extensively in the last ten
years. In particular, there exist a surprisingly large number of equivalent
definitions for this class of mappings. The definition of Ahlfors and
Pfluger involves the moduli of quadrilaterals. However, these mappings
can also be characterized by means of the moduli of rings ((11) (22)),
by means of extremal lengths (28), by means of harmonic or hyperbolic
measure (13), or by studying how they distort infinitesimal circles
((6) (19)). There are, in addition, several analytic definitions ((3) (4)
(10) (16) (21)), as well as more qualitative definitions concerning com-
pactness or distortion properties ((7) (8)). See also (9), (23), and (24).

All of the above definitions involve selecting a certain property of
conformal mappings and then studying the class of all homeomorphisms
which enjoy a slightly weakened form of this property. However, until
very recently, no definition for this class has been given which generalizes
the fact that a conformal mapping is an angle-preserving diffeomorphism.
Perhaps one reason for this is that a plane quasiconformal mapping
may have an exceptional set of zero measure at which it is not differen-
tiable. Hence an angle with vertex at an exceptional point may be carried
onto a pair of arcs which do not have tangents at their common end-
point. In order to circumvent this difficulty, one must assign a kind of
measure to each topological angle consisting of two arcs with just one
end-point in common.

One can introduce such an angular measure in several ways. For
example, one might use auxiliary conformal mappings to straighten out
one of the sides of the topological angle; the measure could then be
defined by means of a lower limit as in (2.4).J However, this method
is a little complicated, and in § 2 we use the triangle inequality to give

t This research was supported in part by the National Science Foundation,
Contracts NSF-G-18913 and NSF-GP-1648, and by the Air Force, Grant
AFOSR-393-63.

X A characterization for quasiconformal mappings using such an angular measure
appears in (26).
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a direct geometric definition for the measure of a topological angle. In
§§3, 4, and 5, we consider how this angular measure is changed under
various kinds of mappings. In particular, we establish in §4 a new
distortion theorem for K-quasiconformal mappings of the extended plane
which is of independent interest. Then in §6 we show how quasi-
conformal mappings can be characterized in terms of what they do to
the measure of topological angles, and in §7 we obtain a new theorem
on conformal mappings which is similar to earlier results of MenchofF (15).

2. Inner measure of a topological angle
We say that two arcs yx and y2 form a topological angle at a point z0

if both yx and y2 have z0 as an end-point and if z0 is the only point yx

and y2 have in common. We then define the inner measure A(yvy2) of
this topological angle as follows:

(2.1) A(yx,y2) = Iiminf2arcsin(
Z1~ZO\~I~\Z2~~ZO\\Z1~ZO\~I~\Z2~~ZO\

We see that 0 ̂  A(yx,y2) ^ TT, that A(y1)y2) does not depend upon the
behaviour of yx and y2 outside of a neighbourhood of z0, and that

(2-2) Af(yx),f(y2))=A(yx,y2)

when / is a similarity mapping or a reflexion in a line.
To see how this inner measure is related to the usual unsigned measure

of an angle, given two distinct points zv z2 ̂  z0, let 9 = 9(zv z0, z2) denote
the radian measure of the angle at z0 in the triangle whose vertices are
zv z0, z2. Then by the law of cosines,

and we obtain

(2.3) liminf sin \9 ^ sin ^4(yi,y2) ^ liminf sin£0, zieyi.
Zi , S | —>• ZQ Z\ yZ% —^ ZQ

We see from (2.3) that
y2) = liminf 9(zx,z0,z2)

provided that yx or y2 has a tangent at z0. In particular, if both yx and
y2 have tangents \x and A2 at z0, then ^4(yl5y2) gives the radian measure
of the smaller of the two angles determined by Xx and A2 at z0.

As we mentioned earlier, one can use conformal mapping to define
another kind of measure of the topological angle formed by yx and y2.
Let y be the segment joining 0 to 1, and for * = 1, 2 let w =fi(z) map
the complement of Yi conformally onto the complement of y so that z0
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corresponds to the origin. Then if we take A*(yv y2) as the minimum of

\imm£d{wv0,w2), wxey, w2ef1(y2),

liminf 6{w1} 0,w2), wx ef2{yx), w2 e y,

we obtain a second kind of inner measure. It is not difficult to show that

whenever yx and y2 have tangents at z0.
However, there do not exist any non-trivial relations between

A(y1,y2) and A*(y1,y2) when yx and y2 are arbitrary arcs. For example,
if 0 < a < oo and if yx and y2 are the closures of the logarithmic spirals

z = e-
{a+i)l, z = - e-{a+i)l, 0 ^ t < oo,

then it is easy to show that

Since the bound for A(yvy2) tends to 0 as a ->• 0, there can be no
inequality of the form

(2.5) ^(yi,ya)^0(^*(yi.y«)),
where i[/(t) > 0 for 0 < t ^ TT, relating these two measures. Next a
complicated but elementary construction in the logarithm plane yields
a pair of arcs yx and y2 which form a topological angle with

A(yi,y2)>0, A*(yi,y2) = Q.

(See (1).) Hence there can be no inequality of the form

(2.6) ^*(yi,y2)>0(4(yi.ya)),

where ip(t) > 0 for 0 < t ^ TT.
On the other hand, if we combine Theorem 3 of § 5 with known results

on the behaviour of harmonic measure under quasiconformal mappings
(12), we can show that for each K, 1 ^ K < oo, there exists a continuous
increasing function i/jK{t) > 0 for 0 < t ^ IT with the following property:
if yx and y2 form a topological angle and if, for i = 1, 2, there exists a
K-quasiconformal mapping fi of a neighbourhood Ĉ  of ŷ  which carries
yi onto a segment, then both (2.5) and (2.6) hold with if/ = ipK.

3. Inner measure under differentiable homeomorphisms
We study here how the inner measure of a topological angle is changed

under a homeomorphism which is differentiable at the vertex of the
angle. We require two preliminary results.
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LEMMA 1. Suppose that f is a homeomorphism of a neighbourhood U of
the origin, that

f(z) = z + o(\z\)

near the origin, and that yx and y2 are two arcs in U which form a topological
angle at the origin. Thenf(yx) and f(y2) form a topological angle and

Proof. Given that 0 < e < 1, we may choose S > 0 such that
\f{z) — z\ < e\z\ for \z\ < 8. Choose zi in yi so t h a t 0 < {z^ < 8, i = 1, 2.
Then

,

and letting zv z2 -> 0 yields
4e

sin%A{f(yx),f{y2)) ^ sin ^ ( y ^ y , ) + -

Since e is arbitrary, we obtain

The reverse inequality follows by symmetry.

LEMMA 2. Suppose that D ^ 1 and that

(3.1) g(z) = Dx + iy.

If K> D, then

(3.2) ^

for each pair of arcs yx and y2 which form a topological angle at the origin.
Conversely, if (3.2) holds for each pair of segments yx and y2 which form
an angle at the origin, then K ^ D.

Proof. Choose zx = xx + iyx in yx and z2 = x2 + iy2 in y2 so that zx, z2 # 0,
and set

(3.3) ^ = a r c s i n ( J ^ L l 9> = arc sin
* \l«il + | 2 l /

Then (3.1) and (3.3) yield

2 D*xxz2 + yxy2 + ( D V + S/i2)*^V

>
" 2D* xxx2 + yxy2 + (xx*

Hence
9?' ^ arc tan I yr tan 9? I ^ y ; ^



ANGLES AND QUASICONFORMAL MAPPINGS

and we obtain

A(g(yx),g(y2)) = liminf 2p' > -=:liminf 293 = -
U 0 V

Thus (3.2) holds if K > D. Next, for 9 > 0 let yx and y2 denote the
segments from 0 to eid and e~i0. Then

A{g(yx),g{y2)) = 2 arc tan(-^ tan ^j ~ -pA{yx,y2)

as 6 -> 0, and hence (3.2) implies that K ^ D.

THEOREM 1. Suppose that f is a homeomorphism of a domain 0, that f
has a differential at z0, and that

(3.4) max|2>,/(zo)|>O,
e

where Def denotes the directional derivative off. If

(3.5) max I DJ(z0) F U Z I J(z0) I,
6

where J denotes the Jacobian of f, then

(3-6) A(f(yx),f(y2))>±A(yx,y2)

for each pair of arcs yx and y2 which form a topological angle in G at z0.
Conversely, if (3.6) holds for each pair of segments yx and y2 which form
an angle in G at z0, then (3.5) holds.

Proof. Suppose that (3.5) holds. Then (3.4) implies that J(z0) ^ 0.
Hence by performing preliminary similarity mappings and reflexions,
we may assume that z0 = f(z0) = 0 and that, near z0 = 0,

(3.7) f(z) = g(z) + o ( \ z \ ) = g(z) + o ( \ g ( z ) \ ) ,

where g is as in (3.1) and D ^ 1. Inequality (3.5) implies that D ^ K,
and with Lemmas 1 and 2 we obtain

A(f(yi),f(y2)) = A{g{yi),g{y2)) > ±A(Yl,y2)

for each pair of arcs yx and y2 in G which form a topological angle at
the origin. This completes the proof of the first part of Theorem 1.

For the second part, suppose first that J{z0) # 0. Then again we may
assume that z0 =/(z0) = 0 and that (3.7) holds, where g is as in (3.1)
and D ^ 1. Then Lemma 1 and (3.6) imply that

A(g(yx),g(y2)) = A(f(Yx),f(y2)) > ±
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for each pair of segments yx and y2 which form an angle in G at the
origin. Hence D ^ K by Lemma 2, and we obtain (3.5).

Finally, to complete the proof, we observe that (3.4) and (3.6) imply
that J(z0) T£ 0. For suppose that J(z0) = 0. Then by performing pre-
liminary similarity mappings, we may assume that z0 = f{z0) = 0 and
that, near z0 = 0,

Next, for 0 < 6 < TT/2 and r > 0, let yx and y2 denote the segments joining
0 to rei0 and re~ie. Then these segments lie in G for small r, it is easy to
see that

4(/(yi),/(y.)) = o, A(yi,y2) = 29,

and we have a contradiction.

4. A distortion theorem for quasiconformal mappings
We establish next a distortion theorem for quasiconformal mappings

of the extended plane. This will yield a sharp estimate for the change
in the inner measure of a topological angle under a quasiconformal
mapping.

We introduce some notation. Let C(z1: ...,zn) denote the domain which
consists of the extended plane minus the n points zv ..., zn. Next let
z(£) map the half-plane Im(£) > 0 conformally onto the universal covering
surface of C( — 1,1, oo), and for z in C( — 1,1, oo) set

r v ' 2Im£(z)'
where £(z) is a local inverse of z(£). The function p is called the hyperbolic
density for C( — 1, l,oo); it is easy to show that it does not depend upon
the choice of the local inverse of z(£). The hyperbolic distance between
two points zx, z2 of C( — 1, 1, oo) is then given by

^(zi>22) = inf p(z)\dz\,
y Jy

where y is any rectifiable arc which joins zx and z2 in C(— 1, l,oo).
Suppose next that / is a quasiconformal mapping of C( — 1, l,oo) onto

itself. Then / can be extended to be a quasiconformal mapping of the
extended plane. We say that / is normalized if for the extended mapping
we have / ( — I) = —1, / (I) = 1, and /(oo) = oo. Our distortion theorem
is based upon the following fundamental result due to Teichmuller
((27) 29-31).

LEMMA 3. / / / i s a normalized K-quasiconformal mapping of C( — 1,1, oo)
onto itself, then
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for each zQ in C( — l,l,co). Moreover, given any pair of points z0, w0 of
C( — 1,1, oo) satisfying

there exists a normalized K-quasiconformal mapping f of C( — 1, l,oo) onto
itself such thatf(z0) = w0.

In order to make use of Lemma 3, we shall establish a result which
yields a lower bound for the hyperbolic distance between pairs of points
in C( — l,l,co). However, first we require some information about the
density p. For £ in C{ - 1 , 0 , l,oo), let

(4.2) m==l
Then/(£) e C(-l, l,oo), and we set

(4.3) «(0

LEMMA 4. For £ in C( - 1,0,1, oo),

(4.4) u(0>u

Proof. (Cf. (14).) The function u is continuous, and is symmetric with
respect to the real and imaginary axes, that is

(4.5) t*(O = «(O = « ( - Q

for £ in C( — 1,0, l,oo). Next, since p satisfies the differential equation

inC( — 1, l,oo) ((18) 51), and since log |/'(£)l is harmonic in C( — 1,0, l,oo),
we see that

(4.6)

in C( — 1,0,1, oo). Now /(£) -> oo as ^ 0 or oo, and /(£) ^ 1 as £ -> 1.
Hence, if we compare the asymptotic behaviour of /(£) and /'(£) near
0, 1, oo with that of p(z) near 1 and oo ((18) 246), we obtain

(4.7) logu(0 =

\

near £ = 0,

near £ =

near £ =
where «/»0, 01} ^ are continuous at 0, 1, oo respectively.

Now choose 9lf 62, r so that 0 ^ 6t < 62 ^ n/2, 0 < r < oo, and rei:6>1 ^ 1.
We shall show that

(4.8) u(rei01) ^ u(rei0°-).
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For this, let a = K ^ - ^ i ) a n d i8 = 2(̂ 2 + ^1). a n d s e t

(4.9) v(t) = log u{&i<x) - log u(&-™).

From (4.7) it follows that v has limits at 0 and 00, and from (4.5) we see
that v vanishes on the real and imaginary axes. Hence we can extend v
to be continuous at 0 and 00 by defining v(0) = v(oo) = 0. Let Q be the
open first quadrant of the £-plane minus the point eioi. Then v is con-
tinuous in Q, and since, by (4.7),

lim v(Q = — 00,

we conclude that v has non-positive boundary values at each point of
dQ. Now suppose that v(Q > 0 for some £ in Q. Then v must have a
positive maximum at some point £0 of Q. From (4.6) it follows that

By (4.9), v(£,0) > 0 implies t h a t u(£,oe
i<x) > u(t,oe~i<x), and since u is non-

negative, this in tu rn implies t h a t Av(£0) > 0. On the other hand, since v
has a maximum a t £0, the second-derivative condition implies t h a t
Av(£0) ^ 0, and we have a contradiction. Thus v ^ 0 in Q, and (4.8)
follows by setting £ = reV 7̂  ei0L in (4.9).

Finally, (4.4) follows from (4.8) for £ in C{- 1,0, l,oo), provided t h a t

0 ^ arg£ ^ JTT. The general case then follows from (4.5).

LEMMA 5. If z0, w0 e C( — 1,1,00) then

(4.10) h(zo,wo) ^ h(i cot a, *cotj8),
where

/ 2 \ / 2 \
a = arc sin ( ——; T-T I > j8 = arc sin ——; —- .

\ |2 0 +l | + | 2 0 - l | / ' H
 ^ I ^ + I I + I ^ - I I ;

Proof. By means of a limiting argument, we may assume that z0 and
wQ are not on the segment joining — 1 to 1. Next, by symmetry, we may
further assume that j3 < a. Let / and u be as in (4.2) and (4.3). Then
we choose a and b, with 1 < a < b, so that / maps the circles | £| = a and
1 £ I = b onto the ellipses which have foci at — 1 and 1 and which pass
through icota and z0 and through icotjS and w0, respectively. Let y be
any rectifiable arc which joins z0 and w0 in C{ — 1,1,00). Then there exists
an arc y in a ^ | £| ^ b which joins the boundary circles and for which
f{y') £ y- Since p and u are non-negative, we have, by (4.4),

(4 .11 ) \ p { z ) \ d z \ > f P ( z ) \ d z \ = f u { £ ) \ d l \ > \ b u { i \ t ) \ ) d \ l \ = \ 9 { z ) \ d z \ ,
Jy Jf(y') J y' J a JS
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where 8 is the segment joining icota and icotfi. Inequality (4.10) then
follows from (4.11).

LEMMA 6. / / 0 < j8 < a < \TT, then

where, for 0 < r < 1, fx(r) is the modulus of the unit disk slit along the real
axis from 0 to r.

Proof. It is easy to see that the imaginary axis is a geodesic for the
hyperbolic metric in C( — 1,1, oo). Hence, by symmetry, it will be suffi-
cient to show that

2
(4.12) h(i cot a, 0) = £l

Let v(z) be the local inverse of the elliptic modular function which
maps the half plane Im(z) > 0 conformally onto the curvilinear triangle A
which lies in Im(£) > 0 and is bounded by Re(£) = 0, Re(£) = 1, and
l £ - i l = 2> s o t n a t v(°) = °°, v(l) = 0, and v(oo) = 1. Next let

where we choose the branches of the square roots with non-negative
real part. Then it is easy to verify that both / x and / 2 map Im(z) > 0
conformally onto a second curvilinear triangle Ao, and that/x(O) =/2(0),
/i(l) =/2(

1)> a n d A M =/2(°°)- Hence fx(z) = f2(z) in Im(z) ^ 0, and
setting z = — (cot a)2 yields

By (12) and by ((5) 437) or ((17) 319),

2
(4.14) — jii(sin^a) = — iv((sin£a)2).

Now £(z) = v{\z 4- \) is a local inverse of the function which maps Im(£) > 0
conformally onto the universal covering surface of C(—l,l,oo). Hence
h{i cot oc, 0) is equal to the hyperbolic distance in Im(£) > 0 between
£(i cot a) and £(0); that is

Since | t,(i cot a) | = 1 and £(0) = i, an elementary calculation gives

(4.15) h{i cot a, 0) = \ log i

and (4.12) follows from (4.13), (4.14), and (4.15).
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For 0 < r < 1 and K ^ 1, we introduce the distortion function

(4.16) ?K(r) = ii

where, as above, fx(r) is the modulus of the unit disk slit along the real
axis from 0 to r, and where yr1 is the inverse of /x. Then cpK is continuous
and strictly increasing in 0 < r < 1, with boundary values ^(O) = 0 and
<pK{l) = 1. It is also easy to verify that <pK(t) ^ t, and that

using known properties of /u(r) (12).
If we now combine Lemmas 3, 5, and 6, we obtain the following

distortion theorem.

THEOREM 2. Suppose that f is a K-quasiconformal mapping of the
extended plane, and that /(oo) = oo. Then for each triple of distinct finite
points zv z0, z2,

where <pK is as in (4.16) and

. ( \Z\-Z2,\
a = arc sin —,—rAJ

B - arcsiJ—_JZMzZML___\

This inequality is sharp.

Proof. By performing preliminary similarity transformations, we may
assume that z1=f(z1) = — 1 and that z2=/(z2) = l. Next, since
<pK(t) ^ t, we may assume that jS ̂  a, for otherwise (4.17) follows trivially.
Now / is a normalized if-quasiconformal mapping of C( — l,l,oo) onto
itself, and hence Lemma 3 implies that

(4.18) h(zo,f(zo))

From Lemmas 5 and 6 we obtain

(*.i9) » W W )

and (4.17) follows from (4.18) and (4.19).
To show that (4.17) is sharp, given that 0 < a ^ |?7 and 1 ^ K < oo,

we must find a if-quasiconformal mapping of the extended plane, and
three finite points zl5 z0, z2, such that /(oo) = oo and (4.17) holds with
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equality. Choose ft, with 0 < ft ^ a, so that sin^ft = ^(s in^a) , and let
zQ = icota and w0 = i cot ft. Then by Lemma 6,

and hence, by Lemma 3, there exists a normalized if-quasiconformal
mapping / of C( — 1,1, oo) onto itself such that f(zQ) = w0. If we set
zx = — 1 and z2 = 1, we see that / is the desired mapping and zx, z0, z2

the desired triple of points.

5. Inner measure under quasiconformal mappings
We consider next how much the inner measure of a topological angle

is changed under a quasiconformal mapping.

THEOREM 3. Suppose that f is a K-quasiconformal mapping of a
domain 0. Then

(5.1) si

for each pair of arcs yx and y2 which form a topological angle in G, where
q>K is as in (4.16). This inequality is best possible.

Proof. Suppose that yx and y2 are arcs which form a topological angle
at ZQ in G. By performing a preliminary similarity mapping, we may
assume that z0 = 0 and that G contains the unit disk \z\ < 1. We may
further assume that yx and y2 lie in | z \ < 1, since A(y1} y2) does not depend
upon the behaviour of yx and y2 outside any neighbourhood of z0 = 0.

Now let U denote the image of \z\ < 1 under / , and let g map U
conformally onto \w\ < 1 so that g(f{0)) = 0. Then gof is a iC-quasi-
conformal mapping of \z\ < 1 onto \w\ < 1 which we can extend, by
reflecting in \z\ = 1 and \w\ = 1, to obtain a /f-quasiconformal mapping h
of the extended plane with &(oo) = oo. For zx in y1? z2 in y2, zlf z% ^ 0, let

ex = arc sin ) .
l\ + \

Then by Theorem 2,

(5.2) sin lA(h(y1),h(y2)) = Iiminfsin|j8

\ n -I l^(Zl)-ft(Z2)l \
, ft = arc sin ,' v *'—,,V2;' .

) W l ) l + I*(*2)l/

Since h = gof in \z\ < 1, and since g is conformal,

(5.3)

by virtue of Theorem 1, and (5.1) follows from (5.2) and (5.3).
5388.3.14A B
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To show t h a t (5.1) is best possible, given e > 0, 0 < a < \TT, and
1 ^ K < oo, we shall exhibit a jK'-quasiconformal mapping h of a domain G,
and two segments y1 and y2 which form an angle in G, such t h a t

Yz) = 2a and

(5.4) si

The argument is similar to one given in (14).
First choose jS, with 0 < £ ^ a, so that

(5.5) sin^8 = ^(s in^a) .

Then, as in the proof of the last part of Theorem 2, we can find a
normalized /f-quasiconformal mapping/ of C(— 1, l,oo) onto itself, and a
point z0 on the imaginary axis, such that

/ 2 \ / 2 \
(5.6) a = arc sin ——; —I , j8 = arcsin(- ——; —I,

where w0 = f(z0). For n > \ z0 - 11, let

n = {' n < | Z ~ Z ° ' K

and let grn map f(An) conformally onto an annulus

Bn = {w: an < \w-wQ\ < bn}

so that gn{l) = 1 and so that the inner components of dAn and dBn

correspond under hn = gnof. Given a compact subset E of C(l,w0,oo),
the gn are defined in E for n > n(E) and omit the values 1, wQ, oo there.
Hence the gn form a normal family in C(l,wQ,co), and there exists a
subsequence {gn^ which converges in C(l,wQ,oo) to a function g which
is easily seen to be the identity mapping. Let

r)-
- t i ; o | /

Then since hn(l) = 1 and hnk( — 1) -»• — 1, we can find an N such tha t

(5.8) sin |jSA, < ^^(sin | a ) + e,

by (5.5) and (5.6).
Now h = hN is a iT-quasiconformal mapping of A N onto BN under

which the inner components of dAN and 8BN correspond. Hence by
reflecting successively in the pairs of circles

I [r. \m-\\

\°NJ )
m = 1, 2, ..., we can extend h as a iT-quasiconformal mapping of
0 < \z — zo\ < N onto 0 < \w — wo\ < 6A?. Then since z0 is an isolated
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boundary point, we can further extend h to be if-quasiconformal in
| z — z01 < N by setting h(zQ) = w0.

Let y1 and y2 denote the segments joining z0 to - 1 and 1, respectively,
and for m = 1, 2, ..., let zlm and z2m denote the points obtained by
reflecting — 1 and 1 successively in the circles Cv C2, ..., Cm. Then h(zlm)
and h(z2m) are obtained by reflecting h( — l) and h(l) successively in the
circles Dv D2, ..., Dm, and hence with (5.7) we have

for m = 1, 2, .... By (5.6), A{yx,y2) = 2a, and since zl m and z2m converge
to z0 along yx and y2 respectively, we obtain, from (5.8) and (5.9),

sinlA{h(yi),h(y2)) ^ siniftv ^ <pK(smlA{yi,y2)) + e,

as required.

6. Characterization of quasiconformal mappings
We shall require some properties of the linear measure of plane sets.

For d > 0, let # denote any covering of a plane set E by sets Ea, where
dia Ea ^ d, and let

A(E,d) = i

where the infimum is taken over all such coverings <o. Then A(E,d) is
non-increasing in d, and the outer linear measure of E is denned as

(6.1) A{E) =

This is a regular Carathe'odory outer measure (25). Hence all Borel sets
are measurable with respect to A.

LEMMA 7. If F is a bounded perfect linear set, then for each e > 0 there
exists a 8 > 0 with the following property: given that 0 < t < S, there exist
N non-overlapping intervals In, with end-points in F and lengths not greater
than t, such that

N
(6.2) F c U 4 and Nt ^ A{F) + e.

I

Proof. We may clearly assume that F lies in the positive half of the
real axis A. Then for t > 0 let F(t) be the set of points of A within distance
t of F. Since F is compact,

F= ClF(t), A(F) = \imA(F(t)),

and we can choose S > 0 so that

A{F{t))
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for 0 < t < 8. Pick any such t, and let J1} J2, ..., JN denote the intervals
of the form [(m — l)t, mt] which contain at least two points of F. Since F
contains no isolated points, these intervals cover F in F(t), and hence

Nt = A((J A ^ A(F(t)) ^ A(F) + e.

For each n, let In denote the smallest closed subinterval of Jn which
contains the set Ff\Jn. It is then easy to see that the intervals In have
all of the desired properties.

We show now how quasiconformal mappings can be characterized in
terms of what they do to the inner measure of angles.

THEOREM 4. A homeomorphism f of a domain G is K-quasiconformal,
1 < K < oo, if and only if it satisfies the following conditions.

(i) For all z0 in G, and for all segments yx and y2 which form an angle
in Q at z0,

(6.3) A(f(Vl),f(y2)) > 0.

(ii) For almost all z0 in G, and for all segments yx and y2 which form an
angle in G at z0,

Proof. Suppose that / is a K-quasiconformal mapping of G, and let E
be the set of points z0 of G at which / is diflFerentiable with

0 < max | Def(z0) |2 <K | J(zo)|.
e

Then m{G\E) = 0 by (10) or (16) and by (3) or (11). Next let Yl and y2

be any pair of segments which form an angle in (? at z0. Since A(y1, y2) > 0,
(6.3) follows from Theorem 3. Moreover, if z0 e E, then (6.4) follows from
Theorem 1, and hence / satisfies both conditions (i) and (ii).

Now suppose that / is a homeomorphism of G which satisfies these
two conditions. To prove tha t / i s a if-quasiconformal mapping, we must
first show t h a t / i s ACL (absolutely continuous on lines) in (-r.f This will
imply that / has finite partial derivatives a.e. in G, and hence, by (10),
that / is diflFerentiable a.e. in G. Then we must show that

(6.5) ma,x\Def(z)\*^K\J(z)\
e

a.e. in G.
f A function / is said to be ACL in a domain O if, for each closed rectangle R c O

with sides parallel to the coordinate axes, / is absolutely continuous on almost all
horizontal and vertical segments in R.
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Since the ACL proof is rather long, we postpone it and consider (6.5)
first. For this, let E be the set of points z0 at which (6.4) holds, let F be
the set of points at which/ is differentiable, and fix z0 in E n F. If

(6.6) max|DJ(zo) | > 0,
6

then we see from Theorem 1 that (6.5) holds for z = z0. If (6.6) does not
hold, then (6.5) holds trivially for z = z0. Thus (6.5) holds for z in EnF,
and hence a.e. in G.

We turn now to the proof tha t / is ACL in G. Let R be a closed rectangle
which lies in G and has sides parallel to the coordinate axes. We must
show that / is absolutely continuous on almost all horizontal and vertical
segments in R. By performing a preliminary similarity transformation,
we may assume that R is the rectangle 0 ^ # ^ 1, 0 ^ y ̂  c. Then, by
symmetry, it will be sufficient to prove that f(x + iy) is absolutely con-
tinuous in 0 ^ x ̂  1 for almost all y in 0 ^ y ̂  c.

For 0 < y0 ^ c, let I(y0) denote the interval 0 ^ x ̂  1, y = y0, let R{y0)
denote the rectangle 0 ^ x ̂  1, 0 ^ y ̂  y0, and set g(y0) = m(f{R{yo)))-
Since f(R) is compact, g(y) is finite and increasing in 0 < y ̂  c. Hence
g'{y0) exists and is finite for almost all y0 in 0 < y < c. Next fix r so that
0 < r < \p{R,dG), where p(R,dG) denotes the distance between R and
8G, and for each z0 in R let yi = yi(z0) be the segment joining z0 to
«o + £<, where

By condition (i), we have

^(/(yi),/(y2)) > 0, A(f(y3),f(yJ) > 0.
This, in turn, implies that

i • l/(zi) ~f(zo) I + l/(z2) -/(So) I
limsupl<y v 1; * I,0'; ';/ ?, < oo,

(6.7) — I/W-/WI
l/W/fa)l l/(J/WI

Now for each pair of integers £> and q, with )̂ > 0 and 0 < \/q < r, let
H(p, q) denote the set of z0 in R such that

l/(*i) -/(«o) I +1/(*2) -/(^o) I

1/(̂ 3) -/(«o) I + l/(*4> -/(«o) I

whenever \zt~zo\ ^ 1/g and zi G y^z,,) for i = 1, 2, 3, 4. Then H(p,q) is
compact, and, by (6.7),

(6-9) £ = U#(2M),

where the sum is taken over relevant p and q.
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LEMMA 8. Suppose that 0 < y0 < c, that g'(y0) exists and is finite, and
that F is a compact set in I(y0) n H(p, q). Then

(6.10) A(f(F))* ^ 2pg'(yo)A(F).

Proof of Lemma 8. Suppose that / is a closed subinterval of I(y0) with
end-points a, b in F, where b — a > 0 and

and let T be the open right triangle which has a, b, and a + i(b — a) as its
vertices. We say that T is the triangle associated with the interval / .
Clearly T c R, by (6.11).

We shall show that
(6.12) \f(a)-f(b)\2^2pm(f(T)).

By performing a change of variables, we may assume that f(a) = 0 and
f(b) = I > 0. Then for each u0, 0 < u0 < I, the line u = u0 contains an
open interval which lies in f(T) and has end-points wx in / ( / ) and w2

in /(a) u/(/3), where a and j8 are the sides of T which join a and b to
a + i(b — a), respectively. Suppose that w2 e/(a), and let zi = f~x(wi) for
i = 1, 2. Then zi e y^a), 12̂  — a| ^ \/q by (6.11), and hence (6.8) yields

2uQ ^ | wx| +1 w21 ^ p | wx — w21.

If w2 e/(j3), a similar argument yields

2(1 —uQ) < | wx — 11 +1 w2 — 11 ^ p | wx — w21.

Hence, for 0 < u0 < I, the line u = uQ contains an open interval which
lies in/(T) and has length not less than (2/p)mm(uQ,l — u0). By Fubini's
theorem

2 Cl I2

m(f(T)) > - mm(u, I — u) du = —,
p Jo *>p

from which (6.12) follows.
Since F is closed, F = FX\JF2, where F1 is countable and F2 is either

perfect or empty. Obviously

A(F) = A(F2), A(f(F)) = A(f(F2)),

and hence for the proof of (6.10) we may assume that F is a perfect set.
Fix £ > 0, choose the corresponding S of Lemma 7, and fix 0 < t < 8

so that

(6.13) 2H^mm(l/q,c-y0).

Next let Ix, ..., IN be the covering of F described in Lemma 7, and let
Tn be the open right triangle associated with In. Then each pair of points
a, b in F n In, with b — a > 0, bounds a closed interval I whose associated
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triangle T lies in Tn. Since b-a ^ t, (6.13) implies (6.11), and hence

l / (a)- / (W ^ 2pm(f(T)) ^ 2pm(f(Tn))

by (6.12). From this it follows that

(6.U) ( d i a / W ) 2 = dn* < 2pm(f(Tn)),

where En = F n /n.
Let d = m a x ^ , . . . , ^ ) . Then the sets f(En) form a covering of f(F),

dia,f(En) ^ d, and hence by (6.2), (6.14), and the Schwarz inequality,

^2p
Z

If we now let t -> 0, then d -> 0 by the continuity of/, and we obtain

by (6.1). Since e is arbitrary, this implies (6.10), and the proof of
Lemma 8 is complete.

LEMMA 9. Suppose that 0 < yQ < c, that g'(y0) exists and is finite, and
that E is a subset of I(y0) with A(E) = 0. Then A{f(E)) = 0.

Proof of Lemma 9. Suppose first that E is compact. Then
F — Ef)H(p,q) is compact for relevant p and q, and from (6.9) and
(6.10) we conclude that

Suppose next that E is a G^-Borel set. Then, since F = I{yQ) n H{p, q)
is compact,

A(f(EnH(p,qW ^ 2pg'(yo)A(I(yo)nH(p,q)) ^ 2pg'(y0) < oo

by (6.10). Hence, by (6.9), f(E) is of 2-finite linear measure; that is, it is
the countable union of sets of finite outer linear measure. Since f(E)
is itself a CrrBorel set, Lemma 2 of (6) implies that

(6.15) A(f(E)) = sup{A(i^'): F' compact, F' cf(E)}.

Now let F' be any compact subset of f(E), and set F =f-l(F'). Then
F is compact and F c E. Hence A(.F) = 0 and A(.F') = 0, by what was
proved above. Thus A(f(E)) = 0 by (6.15).

Finally, in the general case, we can find a #5-Borel set H such that
E?=H^ I(y0) and A{H) = A(E) = 0. Then A(f{E)) ^ A{f(H)) = 0, and
this completes the proof of Lemma 9.
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With the help of these two lemmas, we can now complete the proof
of the ACL property of/ as follows. For each integer p > 0, set

H(p) = \JH(p,q),
Q

where the sum is taken over relevant q. Then condition (ii) implies that
m(R\H(p)) = 0 whenever £> > CSC(TT/8/{"). Fix such a, p. Then by Fuhini's
theorem,

(6.16) A(I(yo)\H(p)) = 0

for almost all y0 in 0 ̂  y ^ c. Fix 0 < y0 < c so that g'(y0) exists and
is finite, and so that (6.16) holds, and let E be any compact set in I(y0).
Then

E = (EnH(p))u(E\H(p)),

where A{E\H(p)) = 0 by (6.16). Hence, by Lemmas 8 and 9,

(6.17) A{f{E)f = A(f(EnH(p)))* = lim A(f(EnH(p,q)))*
q->co

^ 2pg'(yQ) lim A(EnH(p,q)) = 2pg'(yo)A(E),
q—y<x>

and it follows that/(a; + %0) is absolutely continuous in 0 ̂  x ^ 1. Since
(6.17) holds for almost all y0 in 0 < y < c,/has the desired ACL property,
and the proof of Theorem 4 is complete.

7. Conformal mappings
We conclude with a result on conformal mappings which shows how

the sufficiency part of Theorem 4 could be established under weakened
hypotheses.

We say that two segments yx and y2 form an angle at z0 parallel to an
angle in a triangle A if there exists a mapping of the form f(z) = az + b,
where a > 0, which maps z0 onto a vertex of A and yx and y2 into the
corresponding sides of A.

THEOREM 5. Suppose that & is a fixed triangle and that f is a sense-
preserving homeomorphism of a domain 0 which satisfies the following
conditions:

(i) for all z0 in G\E, where E is of Y,-finite linear measure, and for all
segments yx and y2 which form an angle in 0 at zQ parallel to an angle in A,

(7.1) A{f(Yl),f(ya)) > 0;

(ii) for almost all z0 in G, and for all segments yx and y2 which form an
angle in G at z0 parallel to an angle in A,

(7.2) A(f{yi)

Then f is a conformal mapping.
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Proof. We begin by showing that / is ACL in 0 under the assumption
that the triangle A has its vertices at 0, 1, i. For this, let R, I(y), y±
H(p,q), and H(p) be as in the proof of Theorem 4, and set

H = \JH(p).
P

Then Lemma 8 holds as before, and it is easy to verify that Lemma 9
is also valid, provided that I(yQ)\H is countable. Since the segments
yv y2 and y3, y4 form angles which are parallel to angles in A, condition (i)
implies that R\H is of 2-finite linear measure, and condition (ii) implies
that m(R\H(p)) = 0 for p > CSC(TT/8). Fix such a p. Then by a theorem
due to Gross ((25) 279), I(yo)\H is countable for almost all y0 in 0 ^ y < c.
Hence for almost all y0 in 0 ^ y ^ c, (6.16) holds by Fubini's theorem,
E c I(y0) and A{E) = 0 imply that A(f(E)) = 0, by Lemma 9, and thus
f(x + iy0) is absolutely continuous in 0 ^ x ^ 1. Since A is symmetric
in the line y = x, the same argument shows that f(xo + iy) is absolutely
continuous in 0 ^ y < c for almost all x0 in 0 ^ x ^ 1, and we conclude
t h a t / i s ACL in 0.

We prove next that / is conformal under the assumption that / is
ACL and A is an arbitrary triangle. For this it is sufficient to show that

(7.3) max|IV(zo)|2 = J(z0)
e

at each point z0 of 0 where (7.2) holds and where/ is differentiable with
max | Def(zQ) \ > 0. By performing preliminary similarity transformations,

e
we may assume that z0 = f(z0) = 0 and that, near z0 = 0,

f(z)=Dx + iy + o(\z\),

where 0 ^ D < oo. We must show that D = 1. If D > 0, then by
Lemma 1 we may assume that f(z) = Dx + iy, and (7.2) implies D = 1
by elementary trigonometry. If D = 0, it is easy to see that there exist
segments yx and y2 which form an angle parallel to an angle in A and for
which

= 0.

This contradicts (7.2), and hence the proof for (7.3) is complete.
Finally, to complete the proof of Theorem 5, we must show that /

is ACL under the assumption that A is an arbitrary triangle. For this,
let g be an affine mapping with dilatation K which carries the vertices
of A onto the points 0, 1, i, and set h = fog'1. Then h satisfies conditions
(i) and (ii) with A, Q, E replaced by gr(A), g{G), g(E), and A{yi,y2) by
(l/K)A(yvy2) in (7.2). Since g(E) is of 2-finite linear measure, and
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since gr(A) has its vertices at 0, 1, *, a slight modification of the above
arguments shows that h is quasiconformal in g(G) with maximal dilatation
dependent upon K. Hence f= hog is quasiconformal and, a fortiori,
ACL in G.
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