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ABSTRACT
The multivariate regression model is a useful tool to explore complex associations between two kinds of

molecular markers, which enables the understanding of the biological pathways underlying disease eti-

ology. For a set of correlated response variables, accounting for such dependency can increase statistical

power. Motivated by integrative genomic data analyses, we propose a new methodology—sparse multivari-

ate factor analysis regression model (smFARM), in which correlations of response variables are assumed

to follow a factor analysis model with latent factors. This proposed method not only allows us to address

the challenge that the number of association parameters is larger than the sample size, but also to adjust for

unobserved genetic and/or nongenetic factors that potentially conceal the underlying response-predictor

associations. The proposed smFARM is implemented by the EM algorithm and the blockwise coordinate

descent algorithm. The proposed methodology is evaluated and compared to the existing methods through

extensive simulation studies. Our results show that accounting for latent factors through the proposed

smFARM can improve sensitivity of signal detection and accuracy of sparse association map estimation.

We illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset, and an

ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression arrays

to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub regions: one

in cytoband 17q12 whose amplification influences the RNA expression levels of important breast cancer

genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance in ovarian cancer.
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1 INTRODUCTION

Unveiling regulatory patterns between genetic variants and
gene expressions is of great importance to a broad range of
biological studies, in the hope to improve our understanding
of complex disease pathogenesis. As reported in many recent
genetic studies, high-throughput gene expression array exper-
iments and genotype or DNA copy number array experiments
are carried out on the same set of subjects. This provides the
unique opportunity to assess regulatory relationships among
DNAs and RNAs via an integrative genomic analysis. Copy
number alterations (CNAs), including both germline variants
and somatic copy number aberrations, are found to be largely
associated with disease mechanisms in many studies; see, for
example, Pollack et al. (1999). In particular, somatic aberra-
tions are discovered to be important for tumorigenesis. For
instance, oncogene activation by gene amplification or the
loss of a tumor suppressor by gene deletion can cause tran-
scriptional errors, which contributes to cancer pathogenesis

(Yuan, Curtis, Caldas, & Markowetz, 2012). On the other
hand, gene expression can be related to CNAs in proximal
genes within a window of several megabase pairs (cis-acting),
as well as remote alterations throughout the genome (trans-
acting). It has been regarded as a difficult task to detect
genome-wide cis- and trans-acting effects simultaneously due
to the fact that numerous passenger genes amidst the limited
set of drivers may contribute to tumor progression. Recent
studies (Horlings et al., 2010; Lahti, Schafer, Klein, Bicciato,
& Dugas, 2013; Pollack et al., 2002) have focused on the cis-
acting effects of copy number on gene expressions and there
are few studies that have considered trans-acting effects on a
genome-wide scale. To address these challenges require new
analytic tools suitable for well-powered genomic studies.

The construction of genome-wide regulatory map by
exploiting genomic and transcriptomic data typically involves
in a large number of gene expressions as response variables
and high-dimensional genetic variants (e.g., DNA CNAs) as
predictors. This analytic task can be primarily formulated by
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a multivariate regression analysis (e.g., Bedrick & Tsai, 1994;
Lutz & Buhlmann, 2006). Usually, the genetic regulatory rela-
tionships are intrinsically sparse, in the sense that one genetic
variant may regulate only a small proportion of gene expres-
sions, rather than the majority of them. It is also reported
that some genetic variants, known as master regulators, play
more important roles than other variants in the regulatory
network, in terms of their ability of influencing many gene
expressions simultaneously (Gardner, di Bernardo, Lorenz,
& Collins, 2003; Jeong, Mason, Barabasi, & Oltvai, 2001).
Thus, it is of great interest to develop proper multivariate
regression models that account for both the sparsity in the
regulatory relationships and the existence of master regula-
tors in the mapping of genetic associations. Towards this goal,
sparse penalty functions such as LASSO (Tibshirani, 1996),
elastic net (Zou & Hastie, 2005), and group LASSO (Yuan &
Lin, 2006) have been introduced to the multivariate regression
framework (e.g., Lutz & Buhlmann, 2006; Turlach, Venables,
& Wright, 2005; Yuan et al., 2012). Readers can find more
details about the comparison of our work with the existing
methods in Section 5.

Some researchers have pointed out (e.g., Gibson, 2008;
Leek & Storey, 2007) that gene expressions are influ-
enced by many biological and nonbiological factors. Bio-
logical factors could include, for example, genotype poly-
morphisms/mutations, DNA copy number variations, DNA
methylation, microRNA regulations, protein regulations, and
others. Nonbiological factors include sample collection noise,
instrumental errors, and batch effects. In addition, population
admixtures or kinships in a study population may also influ-
ence data generation mechanism of gene expression profiles.
Because of these complications, quite often only a small por-
tion of variations in gene expressions can be explained by
one type of genetic markers under investigation. Moreover,
it is reported that gene expression heterogeneity is presented
strongly in many studies but it is not yet properly taken into
account in statistical analysis. For example, Leek and Storey
(2007) and Stegle, Kannan, Durbin, and Winn (2008) have
showed that gene expression heterogeneity not only leads to
the reduction of statistical power but also produces spurious
association signals when studying the regulatory relationships
between genotypes and gene expressions. This motivates us to
develop a new method that employs the factor analysis model
to account for such heterogeneity attributed to some unob-
served genetic and/or nongenetic variabilities. As a result, we
can improve both statistical power and accuracy of identifying
significant associations between genes and genetic markers.

In this article, we plan to achieve three objectives
via a sparse multivariate factor analysis regression model
(smFARM): (i) to identify both trans-acting and cis-acting
effects in one modeling framework; (ii) to regularize the asso-
ciation map by encouraging the selection of important pre-
dictors (or regulators); and (iii) to estimate the covariance
matrix of the response variables via the means of multivariate

factor analysis. The smFARM is specified in a similar spirit
of the seemingly unrelated regression (SUR) model (Zellner,
1962), which aims to improve the estimation efficiency of
association in the detection of important signals by utilizing
the residual correlations of gene expressions among genes.
The factor analysis model enables us to understand and inter-
pret additional association features beyond what expression-
genetic variant associations describe. The mean model
component of smFARM is parameterized by a matrix of
regression coefficients that are supposed to contain many
zeros because of sparse genetic regulatory relationships. This
part of modeling relates closely to the remMap method pro-
posed by Peng et al. (2010) for the identification of genetic
regulatory relationships and master predictors using a regu-
larized multivariate regression model. Compared to remMap,
our proposed smFARM further extends their model and is
able to capture residual correlations of the responses using
latent factors. As discussed earlier, when studying the regula-
tory relationships between gene expressions and DNA copy
numbers, gene expression levels could be often confounded
by unobserved genetic and/or nongenetic factors. Thus, incor-
porating latent factors in smFARM leads to a more efficient
method to extract important features of the regulatory net-
work than remMap. This advantage is shown in both the anal-
ysis of breast cancer dataset and the analysis of ovarian can-
cer dataset. As shown, smFARM identifies several new novel
regulatory relationships between gene expressions and CNA
intervals (CNAIs).

2 MODEL

2.1 Multivariate regression model

Multivariate regression model plays an important role in mul-
tivariate data analysis. Such model extends the classical one-
dimensional regression model, which is widely used to deal
with correlated response variables. Following the common
notations in multivariate regression model, for subject 𝑖, we
assume that the conditional distribution of a 𝑄 × 1 random
vector 𝐲𝑖 = (𝑦𝑖1,… , 𝑦𝑖𝑄)𝑇 given 𝑃 -element explanatory vec-
tor 𝐱𝑖 = (𝑥𝑖1,… , 𝑥𝑖𝑃 )𝑇 is a multivariate normal distribution.
And its expectation is specified by the following linear equa-
tions:

𝐸(𝐲𝑖|𝐱𝑖) = 𝚯𝐱𝑖, 𝑖 = 1,… , 𝑁, (1)

where 𝚯 = {𝜃𝑞𝑝} is a 𝑄 × 𝑃 matrix of unknown regres-
sion coefficients, and its covariance is Var(𝐲𝑖|𝐱𝑖) = 𝚺, which
is an unknown 𝑄 ×𝑄 positive definite covariance matrix
independent of 𝐱𝑖. Obviously, if 𝑄 = 1, model (1) becomes
the classical one-dimensional regression model, where 𝚯 is
a P-dimensional regression coefficient vector. In matrix 𝚯,
the 𝑞th row represents the vector of regression coefficients
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corresponding to the 𝑞th regression model, i.e., 𝐸(𝑦𝑖𝑞|𝐱𝑖) =∑𝑃

𝑝=1 𝜃𝑞𝑝𝑥𝑖𝑝, which is a linear model of the 𝑞th response vari-
able 𝑦𝑖𝑞 on all P predictors. Clearly, the ordinary least square
method (or equivalently the maximum-likelihood method
under the normally distributed errors) yields an estimator of

𝚯 as �̂�𝑇 = (𝐗𝑇𝐗)−1𝐗𝑇𝐘. This implies that each row of 𝚯
can be estimated separately by regressing each of 𝑄 responses
on the 𝑃 predictors without accounting for any dependence
across the 𝑄 responses. This is because in this estimation
there are no common coefficients and/or common parameters
in 𝚺 shared across 𝑄 individual one-dimensional regression
models. In contrast, when some common features are present
in the mean models and/or covariance matrices, borrowing
data information across different margins will be beneficial to
improve statistical power, and consequently, joint estimation
involving all 𝑄 rows is the focus of methodology development
in this paper.

2.2 Factor analysis model

In this paper, we propose to model the covariance 𝚺 by the
following factor analysis model:

𝚺 = 𝐁𝐁𝑇 +𝚿, (2)

where 𝐁 is a 𝑄 ×𝐾 matrix of factor loadings pertinent to
communalities for 𝐾 (≤ 𝑄) latent factors and 𝚿 is a 𝑄 ×𝑄

diagonal matrix of uniqueness. Clearly, the mean model (1)
does not involve the 𝐾 latent factors, while the covariance
model (2) is determined by loadings𝐁 and uniqueness𝚿. Fac-
tor analysis is one of the popular dimension reduction tech-
niques, which represents variations of correlated variables by
a low number of latent factors. See, for example, Blum, Le
Mignon, Lagarrigue, and Causeur (2010), Friguet, Kloareg,
and Causeur (2009), and Kustra, Shioda, and Zhu (2006) and
Stegle et al. (2008), among others, in which the factor anal-
ysis model has been employed to deal with heterogeneity in
functional gene expression profiles.

2.3 Multivariate factor analysis regression model

Combining models (1) and (2), with 𝑃 predictors 𝐱𝑖 and
𝐾 unobserved latent factors 𝐳𝑖 = (𝑧𝑖1,… , 𝑧𝑖𝐾 )𝑇 , we propose
the following multivariate factor analysis regression model
(mFARM):

𝐲𝑖 = 𝚯𝐱𝑖 + 𝐁𝐳𝑖 + 𝝐𝑖, 𝑖 = 1,… , 𝑁, (3)

where 𝐳𝑖’s are i.i.d. 𝐾-variate vectors of latent factors fol-
lowing multivariate normal distribution MVN𝐾 (𝟎, 𝐈), and 𝝐𝑖’s
are i.i.d. measurement errors with MVN𝑄(𝟎,𝚿) and are inde-
pendent of the latent factors 𝑧𝑖1,… , 𝑧𝑖𝐾 . In matrix notation,
model (3) may be rewritten as follows:

𝐘 = 𝐗𝚯𝑇 + 𝐙𝐁𝑇 + 𝐄, (4)

where 𝐘𝑇
𝑄×𝑁 = (𝐲1,… , 𝐲𝑁 ), 𝐗𝑇

𝑃×𝑁 = (𝐱1,… , 𝐱𝑁 ), 𝐙𝑇
𝐾×𝑁 =

(𝐳1,… , 𝐳𝑁 ), and 𝐄𝑇
𝑄×𝑁 = (𝝐1,… , 𝝐𝑁 ). For simplicity, we

assume that all 𝑄 responses and all 𝑃 predictors are stan-
dardized to have zero mean and thus the intercept terms are
removed from (4).

Our proposed mFARM model (4) will improve the capacity
of statistical analysis for the construction of genetic regulatory
maps with high-throughput array data, because it accounts
for unobserved factors that better capture variabilities in the
residuals.

3 REGULARIZED ESTIMATION

To achieve sparsity in the estimation of parameter matrix 𝚯,
which characterizes the association map of interest, and to
encourage the detection of master predictors (i.e., master reg-
ulators) in a similar spirit to the remMap method (Peng et al.,
2010), we propose the following doubly penalized loss func-
tion:

𝐿(𝚯,𝚿,𝐁) = 1
2𝑁

𝑁∑
𝑖=1

(𝐲𝑖 −𝚯𝐱𝑖)𝑇 (𝐁𝐁𝑇 +𝚿)−1(𝐲𝑖 −𝚯𝐱𝑖)

+ 𝜆1

𝑄∑
𝑞=1

𝑃∑
𝑝=1

|𝜃𝑞𝑝| + 𝜆2

𝑃∑
𝑝=1

√
𝜃21𝑝 +⋯ + 𝜃2

𝑄𝑝
,

(5)

where 𝜆1 and 𝜆2 are two nonnegative tuning parameters. The
first penalty term in (5) is the 𝐿1 norm penalty that controls
the overall sparsity in 𝚯 by tuning parameter 𝜆1, while the
second penalty is the 𝐿2 norm penalty that controls the col-
umn sparsity in 𝚯 via tuning parameter 𝜆2. The use of the
two penalties facilitates the selection of important predic-
tors, at both individual and group levels, that affect multiple
responses simultaneously.

If there is some a priori knowledge about the known rela-
tionship between a predictor 𝑋𝑝 and a response 𝑌𝑞 , such infor-
mation may be incorporated into the estimation procedure via
(5) in a similar way suggested in Peng et al. (2010). That is,
consider a prespecified 𝑄 × 𝑃 matrix 𝐂∗ whose (𝑞, 𝑝)th ele-
ment is given by:

𝐶∗
𝑞𝑝

=
⎧⎪⎨⎪⎩
2, if 𝑋𝑝 is independent of 𝑌𝑞;
0, if 𝑋𝑝 is associated with 𝑌𝑞;
1, if there is no prior information.

(6)

According to (5), given an unknown matrix 𝚯∗, the (𝑞, 𝑝)th
entry 𝜃∗

𝑞𝑝
will be set as 0 in advance if 𝐶∗

𝑞𝑝
= 2; otherwise,

𝜃∗
𝑞𝑝

will or will not be penalized by a flag value 𝐶∗
𝑞𝑝

= 1 or
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𝐶∗
𝑞𝑝

= 0. After setting matrix 𝚯 = 𝚯∗ according to 𝐂∗, the
modified objective function is given by

𝐿(𝚯,𝚿,𝐁) = 1
2𝑁

𝑁∑
𝑖=1

(𝐲𝑖 −𝚯𝐱𝑖)𝑇 (𝐁𝐁𝑇 +𝚿)−1(𝐲𝑖 −𝚯𝐱𝑖)

+ 𝜆1

𝑄∑
𝑞=1

𝑃∑
𝑝=1

|𝐶𝑞𝑝𝜃𝑞𝑝|

+ 𝜆2

𝑃∑
𝑝=1

√
𝐶

1𝑝
𝜃21𝑝 +⋯ + 𝐶𝑄𝑝𝜃

2
𝑄𝑝

, (7)

where a 𝑄 × 𝑃 matrix 𝐂 = {𝐶𝑞𝑝} is defined as 𝐶𝑞𝑝 =
𝟏{𝐶∗

𝑞𝑝
= 1}.

Without loss of generality, we assume that both 𝜆1 and 𝜆2
are positive, and if one of them is zero, we can modify our
methodology with little effort. Also, the proposed smFARM
may be used to deal with the case of high-dimensional mea-
surements with 𝑚𝑖𝑛(𝑃 ,𝑄) ≫ 𝑁 , which is pervasive in bio-
logical studies, such as microarray data that contain thousands
of biological markers measured from typically dozens to hun-
dreds of subjects.

4 ALGORITHM

4.1 EM-blockwise coordinate descent algorithm

In this paper, we estimate three unknown parameter matri-
ces, (𝚯,𝐁,𝚿), through minimizing the doubly penalized loss
function (7), where 𝚯 and (𝐁,𝚿) are involved in the mean
model and the covariance model, respectively. A two-step
iterative approach is used to estimate these three matri-
ces. Given the current estimates of the factor model terms,
(𝐁(𝑡),𝚿(𝑡)), updating the association matrix, 𝚯(𝑡+1), is done by
minimizing the doubly penalized loss function (7) using the
blockwise coordinate descent algorithm proposed by Simon,
Friedman, Hastie, and Tibshirani (2013), while updating the
factor model terms (𝐁(𝑡+1),𝚿(𝑡+1)) is carried out through the
EM algorithm after 𝚯(𝑡+1) being given. Repeating these two-
step procedures iteratively till algorithmic convergence, we
obtain estimates (�̂�, �̂�, �̂�) at the end of the algorithm oper-
ation. The computational complexity of the above algorithm
may be assessed separately for the operation of the EM algo-
rithm to estimate the loading coefficients 𝐁 and the unique-
ness 𝚿 = 𝜎2𝐈, and the operation of blockwise coordinate
descent algorithm to obtain sparse group lasso estimation for
the association matrix 𝚯. The computational complexity of
the former is in the order of 𝑂(𝑁𝑄𝐾) per iteration, and that
of the latter is in the order of 𝑂(𝑁𝑃𝑄). Refer to the supple-
mentary material where actual computation times in simula-
tion studies are reported.

4.2 Tuning parameter selection

We consider the selection of the tuning parameters (𝜆1, 𝜆2)
with a given 𝐾 = 𝐾0. Following Peng et al. (2010), we
adopt the 𝑀-fold cross-validation method to choose the tun-
ing parameters (𝜆1, 𝜆2). Because the true model is believed
to be sparse, as suggested by Peng et al. (2010), we uti-
lize the ordinary least squares (OLS) estimates instead of
the shrunken estimates to calculate the cross-validation score.
This is because, when there are many potential poor predic-
tors, the cross-validation score based on shrunken estimates
often leads to severe false-positive rates (Efron, Hastie, John-
stone, & Tibshirani, 2004; Peng et al., 2010). In contrast,
using the OLS estimates seems to make a reasonable rem-
edy for such a problem, which is also observed in our simu-
lation studies. It is worth pointing out that Bayesian informa-
tion criterion (BIC), another popular tuning selection method,
is not considered here, mainly because estimating the degrees
of freedom required by the BIC is difficult under a nonorthog-
onal design matrix of predictors.

In this paper smFARM is run at a prespecified number of
latent factors 𝐾 . In practice, 𝐾 may be estimated from the
data, and there exists a large amount of the literature con-
cerning consistent estimation of 𝐾 , including the widely used
AIC Akaike (1992) and BIC Schwarz (1978), as well as other
methods proposed by Bai and Ng (2002) and Onatski (2009),
and Ahn and Horenstein (2013), among others.

5 SIMULATION

5.1 Simulation setup

We conduct two simulation experiments to assess the perfor-
mance of the proposed model and optimization method. To
specify simulation settings, we mimic a microarray dataset
with 𝑁 = 200 subjects, 𝑄 = 400 gene expressions, and 𝑃 =
400 variables of CNAs. For each simulation, we consider a
specific association map between genes and CNAs, which is
specified as being sparse in groups. The graphic presentations
of the association maps are given, respectively, in panels (a)
and (b) of Figure 1. In simulation experiment I, we begin with
a simple association map shown in Figure 1a, in which five
CNAs (i.e., black nodes) are set as master regulators (or hubs).
These master CNAs are designed to be strong that they link to
a total of 114 genes (i.e., circles), on average each CNA reg-
ulating 20–30 gene expressions. The total number of nonzero
associations in this map is 125. Simulation experiment II con-
cerns a more practical situation, where the topology of the
given association map appears to be neither group dominated
nor individual dominated. As shown in Figure 1b, such asso-
ciation map includes five strong master regulators, each influ-
encing 24–37 genes, five weak master regulators, each influ-
encing 3–7 genes, and 20 CNAIs linking to only one or two
genes. The total number of nonzero associations is 192.
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F I G U R E 1 True association maps of 𝚯 (connectivity vs. heatmap) for Simulations I and II. (LHS: connectivity maps of 𝚯 between genes (white) and

biomarkers (black); RHS: corresponding heatmap of 𝚯)

In the first simulation experiment, 𝑃 categorical CNAs
𝐱 = (𝑥1,… , 𝑥𝑃 )𝑇 are generated as predictors from 𝑥𝑝 ∼
Binomial(2, 0.2) − 1, with values −1, 0, or 1, representing
copy number deletion, normal, or amplification. In the second
simulation study, continuous CNAIs are generated to mimic
the true predictor characteristics discussed in Section 6. Based
on the real breast cancer data and ovarian cancer data, we find
that there exits the heterogeneity within CNAIs, characterized
by certain chromosome-specific structures, occurring in the
forms of both within-chromosome and between-chromosome
differences. Here we assume that these 𝑃 continuous CNAIs
belong to 23 distinct chromosomes, where the number of
CNAIs on the 𝑖th chromosome (i.e., 𝑃𝑖, 𝑖 = 1,… , 23) is pro-
portional to the size of that chromosome obtained from the
real data. Within the 𝑖th chromosome, any pair of CNAIs,
say, CNAI𝑚 and CNAI𝑛, is set to be positively correlated
and such correlation decreases when their genetic distance
increases according to 0.9|𝑚−𝑛|∕2 for 𝑚, 𝑛 = 1,… , 𝑃𝑖. If two
CNAIs come from different chromosomes, a much weaker
correlation is randomly drawn from {0.25, 0.252,… , 0.2523}
together with a randomly generated positive or negative sign.
Finally we compute the nearest positive definite symmetric
matrix 𝚵 based on the above correlations using the algorithm
in Higham (1988), and 𝑃 continuous CNAs are generated
from 𝐱 ∼ MVN𝑃 (𝟎,𝚵).

To specify the 𝑄 × 𝑃 association map of 𝚯 = {𝜃𝑞𝑝}, we
first specify a sparse indicator matrix 𝚫 = {𝛿𝑞𝑝}, which
defines the connectivity in a genetic association mapping
between 𝑄 genes and 𝑃 CNAs. If 𝛿𝑞𝑝 = 1, we generate 𝜃𝑞𝑝
from Unif([−5,−1]

⋃
[1, 5]); otherwise, 𝜃𝑞𝑝 = 0. To specify

the 𝑄 ×𝐾 factor loadings matrix 𝐁, we start with an initial
matrix 𝐁∗ = {𝑏∗

𝑞𝑘
}, with 𝑏∗

𝑞𝑘

𝑖.𝑖.𝑑.∼ Unif([0, 𝜏]) and 𝜏 is a given
positive constant. Then, we specify a matrix 𝐁 as of the form
𝐁 = 𝐔𝐕

1
2 , where 𝐕 is a diagonal matrix with diagonal entries

being the eigenvalues of 𝐁∗𝐁∗𝑇 , and the column vectors of 𝐔
are the orthonormal eigenvectors of 𝐁∗𝐁∗𝑇 . In other words,
matrix 𝐁 is specified by an orthogonal rotation of the ini-
tial matrix 𝐁∗. Note that the factor loadings have an “inde-
terminacy” problem, which means both 𝐁 and 𝐁𝐓 give rise
to the same covariance matrix 𝚺 = 𝐁𝐁𝑇 +𝚿, where 𝐓 is an
arbitrary orthogonal matrix. To ensure a unique solution, we
impose a constraint on 𝐁, according to Anderson and Rubin
(1956), to enforce that 𝐁𝑇𝐁 is a diagonal matrix , which is
accounted for in our procedure of generating the values of
factor loadings for matrix 𝐁. Given 𝚯 and 𝐁, for each sub-
ject, we generate 𝐾 latent factors 𝐳 = (𝑧1,… , 𝑧𝐾 )𝑇 by 𝑧𝑘 ∼
Normal(0, 1) and 𝑄 measurement errors 𝝐 = (𝜖1,… , 𝜖𝑄)𝑇 ∼
MVN𝑄(𝟎,𝚿), where the uniqueness 𝚿 is set as 𝚿 = 𝜎2𝐈𝑄
in the simulation studies. Recall that 𝜏 and 𝜎2 are two vari-
ance parameters that control the size of communality and that
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T A B L E 1 Impact of different number of latent factors 𝐾 and different SNR levels on regulator selection and group selection

Regulator selection Group selection

SNR 𝑲true Method TF Sen MCC TF Sen MCC

Simulation I.1

1:0:3 0 smFARM𝐾=0 18.90 (6.02) 0.89 (0.04) 0.92 (0.02) 0.06 (0.24) 1 (0) 0.99 (0.02)

remMap 21.88 (6.61) 0.93 (0.02) 0.92 (0.02) 0.02 (0.14) 1 (0) 1 (0.01)

1:0:5 0 smFARM𝐾=0 27.24 (3.51) 0.81 (0.03) 0.88 (0.01) 0 (0) 1 (0) 1 (0)

remMap 34.10 (5.17) 0.88 (0.03) 0.87 (0.02) 0 (0) 1 (0) 1 (0)

Simulation I.2

1:1:3 2 smFARM𝐾=2 18.24 (3.46) 0.87 (0.03) 0.92 (0.01) 0 (0) 1 (0) 1 (0)

remMap 25.68 (11.32) 0.83 (0.04) 0.89 (0.04) 0.02 (0.14) 1 (0) 1 (0.01)

1:1:5 2 smFARM𝐾=2 28.51 (4.26) 0.80 (0.03) 0.88 (0.02) 0 (0) 1 (0) 1 (0)

remMap 33.40 (4.92) 0.76 (0.04) 0.86 (0.02) 0 (0) 1 (0) 1 (0)

Simulation II

1:3:5 2 smFARM𝐾=2 48.89 (11.54) 0.82 (0.05) 0.87 (0.03) 10.89 (2.53) 0.66 (0.06) 0.79 (0.05)

smFARM𝐾=0 79.80 (16.76) 0.77 (0.02) 0.79 (0.04) 12.10 (1.25) 0.62 (0.04) 0.76 (0.03)

remMap 87.46 (20.67) 0.79 (0.03) 0.77 (0.05) 12.46 (1.35) 0.62 (0.05) 0.75 (0.03)

Note: For each total false (TF), sensitivity (Sen), or Matthews correlation coefficient (MCC) measurement, we report mean values together with their standard
errors on 50 replicates. smFARM𝐾=𝐾0

represents fitting the smFARM on a given number of latent factors 𝐾0. SNR a:b:c refers to the variabilities of x:z:𝜖 .

of uniqueness, respectively. The choice of 𝜏 and 𝜎2 is based
on a prespecified scale of signal-to-noise ratio, according to
SNR1 of regression mean effects and SNR2 of latent fac-
tor’s effects; they are, SNR1 = avg[ diag(Cov(𝚯𝑥))

diag(Cov(𝜖)) ] and SNR2 =

avg[ diag(Cov(𝐁𝑧))
diag(Cov(𝜀)) ], respectively. Finally, 𝑄 gene expressions

𝐲 = (𝑦1,… , 𝑦𝑄)𝑇 are generated from model (3) by 𝐲|𝐱, 𝐳 ∼
MVN𝑄(𝚯𝐱 + 𝐁𝐳,𝚿). Hereafter, a dataset of 𝑁 i.i.d. (𝐲, 𝐱)
pairs is generated for each simulation round.

For convenience, the response variables and predictors are
all centered to have mean zero, and the prior knowledge
matrix 𝐂 = {𝐶𝑞𝑝} is set as all entries being 1; in this case,
all predictors are subject to shrinkage. Our primary evalua-
tion criterion is the total number of false discoveries, TF =
FP + FN, where FP and FN are the respective numbers of
false positives and false negatives. Here, a “positive” (or a
“negative”) refers to a nonzero (or a zero) entry of 𝚯. Fol-
lowing Fan, Feng, and Wu (2009), additional criteria used in
the evaluation include sensitivity (Sen), and Matthews corre-
lation coefficient (MCC) score defined, respectively, by Sen =
TP∕(TP + FN), and MCC = (TP×TN−FP×FN)√

(TP+FP)(TP+FN)(TN+FP)(TN+FN)
.

To assess the performance of our smFARM, we mainly
compare it with remMap (𝐾 = 0) by varying SNR1, SNR2,
and 𝐾 . It is worth noting that Peng et al.’s (2010) remMap
approach, which is established for the classic multivariate
regression models (i.e., 𝐾true = 0), has been compared with
two popular existing methods, single lasso penalty (i.e., 𝜆2 =
0) and 𝑄 separate individual lasso regressions, and its supe-
riority has been showed in Peng et al. (2010). So the com-
parisons to the latter two methods are not reported in our
comparison. Here we set the true number of latent factors
as 𝐾true = 2, and focus on comparing three scenarios with

𝐾 = 0 (i.e., remMap), 𝐾 = 𝐾true (i.e., 2), and 𝐾 = 3. The
tuning parameters (𝜆1, 𝜆2) are determined by five-fold cross-
validation. And a total of 50 independently replicated datasets
is used in the evaluation of our method. Results of method
comparisons are summarized in Table 1. Additional simula-
tion results may be found in the supplementary material.

5.2 Findings from simulation studies

The results given in Table 1 concern simulation studies I
and II. These results show that the proposed smFARM per-
forms very well in all key aspects of regulator detection
and group selection. Let us first focus on simulation study
I, including two cases I.1 and I.2, with the corresponding
numerical results being reported in the top part of Table 1.
In Simulation I.1, when the true model contains no latent
factors, subject to rounding errors, the proposed smFARM
and the existing remMap perform equally well in terms of
MCC. With no surprise, we find that, in both smFARM and
remMap, larger SNR1 leads to better performance in terms
of lower TF, higher sensitivity and higher MCC in the com-
parison between SNR=1:0:3 and SNR=1:0:5. This outperfor-
mance of the smFARM repeats in the comparison between
SNR=1:1:3 and SNR=1:1:5 with 𝐾true = 2 in Simulation I.2.
When the ratio of SNR1 to SNR2 is fixed at 1:1, smaller vari-
ation in the measurement errors (i.e., larger SNR1) will lead
to better performances. Moreover, an encouraging finding in
Simulation I.2 is that, comparing our method accounting for
the latent factors to the remMap that ignores latent factors, the
smFARM approach is clearly more effective to identify true
signals than the remMap when the data are from a multivari-
ate model with correlated residuals or 𝐾true ≠ 0. With fixed
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SNR1, in a comparison of (SNR, 𝐾true) = (1:0:3, 0) in Simu-
lation I.1 with (SNR, 𝐾true) = (1:1:3, 2) in Simulation I.2, or
in another comparison of (SNR, 𝐾true) = (1:0:5, 0) in Simula-
tion I.1 with (SNR, 𝐾true) = (1:1:5, 2) in Simulation I.2, very
similar findings are obtained from the smFARM that accounts
for latent factors. We also find that SNR2 has a strong influ-
ence on the reconstruction of the association map, when the
dependency of latent factors is ignored in the analysis.

It is interesting to note that results of group selection in
simulation study I are rather stable and accurate across the
four cases in the top part of Table 1. This is probably because
identifying clusters in these settings is not hard due to group-
dominant topology designed in the association maps (see
Fig. 1a). In other words, relative to the 𝐿1-penalty, the 𝐿2-
penalty is more effective to remove irrelevant groups or clus-
ters.

In addition, all the above conclusions have repeated con-
sistently in the more realistic simulation study II with con-
tinuous predictors. To examine the robustness of the pro-
posed method, we simulated 50 replicates under the Sim-
ulation II setup from a model 𝐲𝑖 = 𝚯𝐱𝑖 + 𝐮𝑖, 𝑖 = 1,… , 𝑁,

where the errors 𝐮𝑖 are drawn directly from a multivariate
normal distribution MVN𝑄(𝟎,𝐁𝐁𝑇 +𝚿) with a certain non-
diagonal covariance matrix used in the data simulation. In this
case, we again found that the proposed smFARM model with
𝐾 = 2 performed better in identifying the true signals than the
remMap (or smFARM model with 𝐾 = 0). The detail of this
simulation is included in the supplementary material. To sum
up, our proposed method has demonstrated clearly as being
a very effective tool to achieve desirable statistical power by
accounting for latent factors in the regulatory map reconstruc-
tion with high-dimensional complex data.

6 APPLICATION

In this section we apply the proposed smFARM to analyze
TCGA (The Cancer Genome Atlas) breast and ovarian can-
cer datasets. We are interested in detecting DNA CNAs that
have large impact on transcript activities (i.e., trans-regulate
many RNA expressions). Such trans-hub CNAs often play
important roles in tumor initiation and progression. Informa-
tion on the regulatory pattern between these trans-hub CNAs
and their downstream genes deems to shed important light on
disease etiology.

6.1 Data preparation

Level-three RNAseq data and level-three segmented DNA
copy number data of breast and ovarian cancer tumor sam-
ples were obtained from the TCGA website. We focus on
subsets of samples (77 breast tumors and 71 ovarian tumors),
which are also subjected to deep protein profiling by CPTAC
(Clinical Proteomic Tumor Analysis Consortium). Thus find-

ings from our analysis may lead to a further investigation and
knowledge generation through the corresponding protein pro-
files in the future.

We preprocess the breast and ovarian cancer data sepa-
rately. For breast cancer data, based on level-three segmented
DNA copy number profiles, we first break the genome using
the union of the break-points detected in all tumor samples
and filter the small regions with less than 10k base pairs. This
result in 17,482 regions. Then for each region of each sample,
we record its copy number based on the inferred DNA copy
number of the corresponding segment in the sample, with tail
values truncated at ±1.5. Due to the high spatial correlation in
DNA copy number profiles, we further condense these 17,482
regions into 1,730 CNAIs by applying the fixed order cluster-
ing (FOC) (Wang, 2010), so that DNAs in the same interval
tend to have similar CNA patterns in one sample. The copy
number of one CNAI in a given sample is then calculated as
the mean of the copy number of all regions within the interval
in that sample. We exclude CNAI with no variation across the
77 samples, which results in 1,571 CNAIs. For RNAseq data,
we first set zeros to be missing values and take log transforma-
tion. We then standardize each sample to have median 0 and
MAD (median absolute deviance) 1. We exclude genes with
more than 10% missing, and select the top 15% genes with
largest interquartile ranges across samples. The resulting data
matrix consists of 1,466 gene expressions.

We preprocess the ovarian cancer dataset in the same man-
ner as described above. Specifically, we derive 1,617 CNAIs
by applying FOC on merged level-three segmented DNA
copy number profiles. By further eliminating CNAIs with lit-
tle variation, we end up with 1,300 CNAIs that are actually
used in the analyses in this paper. For RNAseq data, we select
2,437 genes after applying the same normalization and filter-
ing criteria as those applied in the breast cancer data above.

6.2 smFARM analysis

We apply smFARM to analyze the preprocessed breast can-
cer data and ovarian cancer data separately. Our primary goal
is to construct the regulatory map between CNAs and RNA
expressions in each cancer dataset, adjusting for potential
latent factors. Specifically, for each cancer type, we fit the fol-
lowing model:

𝐘RNA = 𝐗CNAI𝚯𝑇 + 𝐙𝐁𝑇 + 𝐄, (8)

where 𝐘RNA is the RNA expression matrix, 𝐗CNAI is the
CNAI copy number matrix, 𝚯 is the regression coeffi-
cient matrix with respect to CNAIs. In the above model,
𝑄 responses (𝐘RNA) and 𝑃 predictors (𝐗CNAI) are all stan-
dardized to have mean 0 and standard deviation 1. Note that
𝑄 = 1, 466, 𝑃 = 1, 571 in the breast cancer data, while 𝑄 =
2, 437, 𝑃 = 1, 300 in the ovarian cancer data. The estimated
latent factors (𝐁) help to account for additional genetic and/or
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nongenetic features beyond the observed CNAI genetic mark-
ers, 𝐗CNAI.

In addition, we classify a CNAI×RNA pair to be a cis pair,
if the RNA gene falls in the genome region of the CNAI; or
otherwise the pair is referred to as a trans pair. There are in
total 1,172 cis pairs in the breast and 1,862 cis pairs in the
ovarian cancer dataset, respectively. Because we are partic-
ularly interested in identifying trans-hub CNAIs, we do not
impose shrinkage on the coefficients of these cis pairs. As
pointed above, this choice can be managed by setting 𝐶𝑞𝑝 = 0
given that the 𝑝th CNAI and the 𝑞th gene form a cis pair;
and 𝐶𝑞𝑝 = 1, otherwise in equation (7). We apply the pro-
posed model fitting procedure and select the tuning parame-
ters (𝜆1, 𝜆2) using 10-fold cross-validation on a 25 × 25 grid.
We vary the number of latent factors 𝐾 from 0 to 20, and
explore how the regulatory map varies accordingly as 𝐾

increases.

6.3 Results

Some interesting trans-hub CNAIs are revealed by the appli-
cation of smFARM for both the breast cancer and the ovarian
cancer.

Figure 2 shows that with an increase in the number of
latent factors, the detected number of trans-edges decreases.
When fully ignoring latent factors in the analysis, we detect
a total of 2,429 trans-edges from the breast cancer data and a
total of 318 trans-edges from the ovarian cancer data. How-
ever, most of these detected edges are deemed false positive
and are not biologically meaningful. Note that in either the
breast cancer dataset or the ovarian dataset only about 70
subjects are measured, each being observed with thousands
of genes and CNAIs. Indeed, both give rise to an ultrahigh-
dimensional estimation problem, for which it is not easy to
select the optimal number of latent factors. In this analysis,
we choose 𝐾 = 2, because this choice leads to the associa-
tion maps that achieve a desirable balance between sparsity
and discovery of important biological signals.

For the breast cancer data, at 𝐾 = 2, the proposed
smFARM detected 190 trans-regulation edges between 10
CNAIs and 134 transcripts. The detailed CNAI-RNA regu-
latory map is illustrated in Figure 3. The biggest trans-hub
CNAIs are all from chromosome arm 5q. Deletions on chro-
mosome arm 5q are key characteristics for basal-like breast
cancer. Our findings that the DNA CNAs in 5q have big
impact on a large number of transcripts is consistent with
previous observations in the literature (Curtis et al., 2012).
Besides the trans-hub CNAIs on 5q, another major trans-hub
is from 17q12. This CNAI is known as the harbor of the
famous oncogene ERBB2, whose amplification is a trigger
event for HER2 subtype of breast cancer (Bergamaschi et al.,
2006). In addition to ERBB2, the 17q12 amplicon also har-
bors many other important cancer genes and transcript factors
(Lamy et al., 2011), thus it is expected that this region serves
as a trans-hub in the CNAI-RNA regulatory map. Among the
transcripts regulated by these major trans-hub CNAIs, one
transcript, TNFSF10, is regulated by all CNAIs in 17q12,
5q34, and 5q35.3. TNFSF10 is a member of the tumor necro-
sis factor superfamily. It has been shown to mediate p53-
dependent cell death (Kuribayashi et al., 2008) and can be
used as therapeutic targets to improve the treatment of triple-
negative breast cancer patients (Hunter, Edson, & Coleman,
2014). Our analysis suggests that the DNA CNAs in ERBB2
amplicon and 5q34-35.3 region could act as upper-stream reg-
ulator for TNFSF10 during tumor initiation and progression.
These intriguing results help to cast light on the regulatory
mechanism of these important disease genes.

On the other hand, the analysis of the ovarian cancer data
reveals a different set of CNAIs trans-hubs, suggesting these
two types of cancers are driven by distinct tumor mechanisms.
Specifically, we find that the CNAI-RNA regulatory map
consists 77 trans-regulation edges between five CNAIs and 77
transcripts. The CNAI with the largest number of trans-edges
locates in 9q21.32-33. Copy number gain in this region is
reported to be associated with chemoresistance in ovarian
cancer patients (Österberg et al., 2010). The transcripts

F I G U R E 2 The number of detected trans-edges under different 𝐾
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F I G U R E 3 Detected association maps under 𝐾 = 2. (Top: Breast cancer;

Bottom: Ovarian cancer)

regulated by this CNAI include two known cancer genes,
GREB1 and NODAL. Gene GREB1 regulated by estrogen in
breast cancer 1 was first identified as a hormone-responsive
gene in the breast cancer cell line. Recently, this gene has
also been found to be upregulated by E2 (exogenous 17𝛽-
estradiol) in ovarian tumors, and thus could serve as a novel
gene target for therapeutic intervention (Laviolette, Hodgkin-
son, Minhas, Perez-Iratxeta, & Vanderhyden, 2014). Gene
NODAL encodes a protein belonging to the TGF-beta super-
family, which is an important regulator of embryonic stem
cell and possibly cancer stem cells (Lonardo et al., 2011). The
signaling of NODAL promotes a tumorigenic phenotype in
human breast cancer through activating MAPK(microtubule

associated protein kinase) signaling pathway and could serve
as a promising target for treating triple-negative breast cancer
(Kirsammer et al., 2014). Our analyses suggest potential
regulatory relationships among these known cancer related
alterations and genes in the current literature. Such findings
could lead to useful biological hypotheses to be tested in
future studies.

7 DISCUSSION

We developed a new methodology, smFARM, to reconstruct
a sparse genetic association map. The proposed smFARM
extended the classic multivariate regression model, allowing a
low-dimensional set of latent factors to account for the depen-
dence among response variables instead of assuming residu-
als being independent noise. We developed an effective and
flexible EM-blockwise coordinate descent algorithm to obtain
regularized estimation and variable selection in the smFARM.

We have shown that by accounting for latent factors,
the proposed smFARM can effectively identify response-
predictor associations from high-dimensional data with
improved sensitivity and accuracy. The numerical results have
indicated that the proposed smFARM works well to derive
the underlying sparse association relationship. Furthermore,
both real breast cancer and ovarian cancer data examples
have also shown that our proposed smFARM provides richer
and biologically relevant discoveries to facilitate transcrip-
tomic analyses. The sparse genetic association map between
CNAIs and gene expressions helped us understand and inter-
pret genetic regulation mechanisms and generate useful bio-
logical hypotheses on those detected signals given in this
paper.

To our knowledge, there are some other methods that can
characterize the variability in the gene expressions such as
singular value decomposition (SVD) or principle compo-
nent analysis (PCA). There is a direct relationship between
PCA and SVD in the case where principal components
are calculated from the covariance (Wall, Rechtsteiner, &
Rocha, 2003). Furthermore, the essential difference between
SVD/PCA and factor analysis lies whether or not a covari-
ance model is used for the residuals. Refer to Schneeweiss
and Mathes (1995) and Tipping and Bishop (1999) and
Van Wieringen and Van De Wiel (2011) for more details.
We find that unlike PCA/SVD using superficial labeling
such as “eigengenes,” “supergenes,” or “meta-genes” without
clear biological entity (Alter, Brown, & Botstein, 2000), the
number of latent factors can provide a biologically relevant
parameter in the reconstruction of association map, which is
appealing in practice.

Besides the gene-CNA association analysis illustrated in
this paper, our proposed method may be applied in a broad
range of problems. For instance, it may be applied to sys-
tematically explore the relationship between gene expression
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levels and genotypes as to, for example, whether a gene is dif-
ferentially expressed with different genotypes (or alleles) at a
specific locus. The loci that are associated with gene expres-
sion levels are known as expression quantitative loci (eQTL).
For a given gene, an eQTL data analysis aims to identify
genetic loci or single nucleotide polymorphisms (SNPs) that
are linked or associated with expression levels of a common
gene. Moreover, in eQTL analysis, SNPs may be naturally
grouped according to their functionality or biological path-
ways based on some prior knowledge. When we are interested
in associations of multiple SNPs simultaneously within a bio-
logical pathway, incorporating genetic or nongenetic latent
factors would help us to achieve a more powerful and richer
analysis, leading to better understanding of the underlying
biological mechanisms.
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