APPROXIMATION ON WILD JORDAN CURVES

JACOB KOREVAAR AND HERBERT ALEXANDER†

1. Introduction

Throughout this paper, the letter γ denotes a (positively oriented) Jordan curve in the z-plane which contains the origin in its interior. By a well-known result of Walsh [7, 8], all continuous functions on such a curve γ are uniform limits of polynomials in z and 1/z. In other words, the integral powers z^n , $n = 0, \pm 1, \ldots$ form a spanning set for the Banach space $C(\gamma)$.

One may ask if all powers z^n are required for such a spanning set. If γ has finite length L, the answer is yes: by Cauchy's theorem,

$$|2\pi i| = \left| \int_{\gamma} \left(z^{-1} - \sum_{n \neq -1} c_n z^n \right) dz \right| \le \left\| z^{-1} - \sum_{n \neq -1} c_n z^n \right\| \cdot L$$

for every finite sum $\sum_{n\neq -1} c_n z^n$, and hence the power z^{-1} has positive distance (actually equal to $2\pi/L$, cf. [2]) to the closed span of the other powers z^n . The same is true for every integral power z^s .

In 1957, Wermer [9] observed that for every Jordan curve γ of infinite length, (at least) one power of z is superfluous (the powers z^n , $n \neq s$, form a spanning set for $C(\gamma)$). A different proof and an extension of this result have been given by Pia Pfluger and the first author [2]. They constructed curves for which precisely $p(\geq 1)$ powers are superfluous, as well as a curve for which any finite set of powers can be omitted. In the present note, we obtain simple Jordan curves γ^* with the following property. For every (increasing) sequence of positive integers $\{p_k\}$ of positive density, the set of powers

$$\{z^n, n = ..., -p_2, -p_1, 0, 1, 2, ...\}$$
 (1.1)

spans the space $C(\gamma^*)$. We observe further that for any such curve, $C(\gamma^*)$ must even have spanning sets (1.1) corresponding to certain sequences $\{p_k\}$ of density zero.

One is thus led to ask: Could there be a curve γ such that (1.1) is a spanning set for $C(\gamma)$, no matter how the (infinite) sequence $\{p_k\}$ is selected?

2. Measures orthogonal to (1.1) as boundary values of holomorphic differentials

Let D be the interior of our curve γ in the z-plane, Δ the open unit disc in the w-plane. We let $w = \Phi(z)$ be the 1-1 conformal map of D onto Δ , normalized so that $\Phi(0) = 0$, $\Phi'(0) > 0$. By the theorem of Carathéodory and Osgood, this map has a continuous 1-1 extension to \overline{D} (onto $\overline{\Delta}$), which we also call Φ . The inverse map will be called $z = \Psi(w)$. For $0 < r \le 1$, we denote the positively oriented circle |w| = r by Γ_r , its image $\Psi(\Gamma_r)$ in the z-plane by γ_r (so that $\gamma_1 = \gamma$).

Received 16 June, 1975.

[†] Work supported, in part, by NSF grants GP38584 and GP38214.

LEMMA. Let μ be a complex Borel measure on γ orthogonal to the powers z^n , $n \ge 0$ and z^{-p_k} , k = 1, 2, ..., where the p_k 's are distinct positive integers. Then there is a (unique) holomorphic function g on D with the following properties:

(i) μ is a weak boundary value of dg: for every Borel set $A \subseteq \gamma$, one has

$$\mu(A)\left(=\int\limits_A d\mu(z)\right)=\lim\limits_{r\uparrow 1}\int\limits_{A_r}dg(z),\tag{2.1}$$

where A_r is the set obtained by "pulling A back to γ_r ": $A_r = \Psi\{r\Phi(A)\}$.

(ii) Near z = 0, g(z) has the form

$$\sum b_j z^{q_j}, \tag{2.2}$$

where $\{q_j\}$ is the set of positive integers complementary to the set $\{p_k\}$ (the powers \mathbf{z}^{-q_j} are "missing" in (1,1)).

COROLLARIES. (i) One has

$$\operatorname{Var}_{A} \mu = \int_{A} |d\mu(z)| = \lim_{r \uparrow 1} \int_{A} |g'(z)| |dz|. \tag{2.3}$$

(ii) If γ' is a closed subarc of an open analytic (or merely rectifiable) arc in γ , and g' has a continuous extension to $D \cup \gamma'$, then

$$\int_{y'} |d\mu(z)| = \int_{y'} |g'(z)| |dz|. \tag{2.4}$$

Proof of the lemma. By a theorem of Walsh [6, 8], all continuous functions f on \overline{D} that are holomorphic on D are uniform limits on \overline{D} (hence on γ) of polynomials. Thus, the condition

$$\int_{\gamma} z^n d\mu(z) = 0, n = 0, 1, 2, \dots$$

implies in particular that

$$\int_{\gamma} \Phi(z)^{k} d\mu(z) = 0, k = 0, 1, 2, \dots$$

We now introduce the measure $\nu = \mu \circ \Psi$ on $\Gamma_1 = \Gamma$. Then

$$0 = \int_{\Gamma} w^k dv(w) = \int_{0}^{2\pi} e^{ikt} dv(e^{it}), k = 0, 1, 2, \dots$$

the measure $v(e^{it})$ has all its Fourier coefficients with non-positive index equal to zero. Thus, by the theorem of F. and M. Riesz [5, cf. 1, 4],

$$dv(w) = dh(w), |w| = 1,$$

with $h(e^{it})$ absolutely continuous and

$$h(w) = \sum_{1}^{\infty} a_n w^n \quad \text{for} \quad |w| \le 1;$$

the derivative h'(w) being equal to the Poisson integral of $h'(e^{it})$ on Δ , one has

$$\int_{0}^{2\pi} |h'(e^{it}) - h'(re^{it})| dt \to 0 \quad \text{as} \quad r \uparrow 1.$$
 (2.5)

Going back to D, we introduce the holomorphic function $g = h \circ \Phi$, so that dh = dg at corresponding points of Δ , D. Now let A be any Borel set on γ , and $B = \Phi(A)$. Then $A_r = \Psi(rB)$, and the boundary behaviour (2.5) of h' readily implies that

$$\mu(A) = \nu(B) = \int_{B} h'(w) dw = \lim_{r \uparrow 1} \int_{rB} h'(w) dw$$
$$= \lim_{r \uparrow 1} \int_{A} g'(z) dz,$$

which is (2.1).

Again using (2.5), the condition

$$0 = \int_{\gamma} z^{-p_k} d\mu(z) = \int_{\Gamma} \Psi(w)^{-p_k} h'(w) dw, k = 1, 2, ...$$

shows that

$$\int_{\Gamma_r} \Psi(w)^{-p_k} h'(w) dw = \int_{\Gamma} = 0, \quad 0 < r < 1.$$

Thus

$$\int_{a}^{b} z^{-p_k} dg(z) = 0, \quad k = 1, 2, ...,$$

which establishes part (ii) of the lemma.

Comments on the corollaries. Relation (2.3) is a consequence of (2.1)—or can be proved by the same method. Now let $\tilde{\gamma}$ be an open analytic arc in γ . Then the mapping function Φ has a 1-1 holomorphic extension which maps a certain open set Ω containing $\tilde{\gamma}$ onto an open set $\Phi(\Omega)$ containing $\Phi(\tilde{\gamma})$; on $\Phi(\Omega)$, the inverse Ψ is also holomorphic. It follows that for every closed subarc $w = e^{tt}$, $\alpha \leq t \leq \beta$ of $\Phi(\tilde{\gamma})$,

$$\int_{\alpha}^{\beta} |\Psi'(e^{tt}) - r\Psi'(re^{tt})| dt \to 0 \quad \text{as} \quad r \uparrow 1.$$

This relation (which can be proved also if $\tilde{\gamma}$ is only rectifiable—for example, by comparing Ψ with a suitable conformal map Ψ_1 of Δ onto a subdomain D_1 of D bounded by a rectifiable Jordan curve containing $\tilde{\gamma}$, cf. also [4; p. 158]) suffices to establish (2.4):

$$\left(\int_{\gamma'}|d\mu(z)|=\right)\lim_{r\uparrow 1}\int_{\gamma_{r'}}|g'(z)|\,|dz|=\int_{\gamma'}|g'(z)|\,|dz|.$$

3. Conditions on γ under which (1.1) spans $C(\gamma)$

Let γ be a Jordan curve around 0, and μ a measure on γ orthogonal to the powers (1.1). We wish to impose conditions which force μ , or the determining holomorphic function g on D, to be zero. Matters will be arranged so that γ behaves very badly in the vicinity of a point where g must be regular. This presents no problem at all if g is a polynomial $\sum b_j z^{q_j}$ (case where finitely many negative powers z^{-q_j} are omitted, cf. [2]).

To get beyond this case, we ask that γ behave badly where it comes closest to z=0. It is simplest to require that γ contain only one point closest to the origin, the point z=1, say. A simple sufficient condition for regularity of g at z=1 is then given by evenness or oddness of g: the point z=-1 is inside D! Oddness of g is achieved by including all the even powers z^{-2k} in (1.1) (we may omit all the odd powers z^{-2k-1}). More generally, the condition that $\{p_k\}$ have positive density (defined as $\lim k/p_k$) will guarantee that z=1 be a regular point of g. Indeed, the (increasing) sequence $\{q_j\}$ complementary to $\{p_k\}$ will then have density d<1. Thus by a theorem of Fabry and Pólya [3], every arc of the circle of convergence of the power series (2.2) for g(z), of angular measure $> 2\pi d$, will contain a singular point. It follows that this circle must have radius greater than 1 (otherwise, there would be at least two singular points on the unit circle).

We now specify some conditions of "bad behaviour" of γ near z = 1.

Concrete example. Let us start with a cardioid-type curve,

$$z = \phi_0(t) = (1 + 4\sin\frac{1}{2}t)e^{it}, \quad 0 \le t \le 2\pi,$$

and superimpose an "exponential wiggle" near z = 1 to define γ :

$$z = \phi(t) = \begin{cases} \phi_0(t), \ 1/\log \pi \le t \le 2\pi, \\ \phi_0(t) + (t \sin e^{1/t}) e^{it}, \ 0 \le t \le 1/\log \pi. \end{cases}$$

Suppose now that $g \neq 0$. Then g' has a zero of finite multiplicity m (which may be zero!) at z = 1. Thus on a small neighbourhood N of z = 1, it satisfies an inequality of the form

$$|g'(z)| \ge c |z-1|^m, c > 0.$$

We choose an analytic subarc γ' of γ in N corresponding to, say $\delta \leqslant t \leqslant \varepsilon$, where $0 < \delta < \varepsilon < 1/\log \pi$. Then

$$\int_{\gamma'} |g'(z)| \, |dz| \geq \int_{\delta}^{\epsilon} c \, |\phi(t) - 1|^m \, |\phi'(t)| \, dt \geq c \int_{\delta}^{\epsilon} t^{m-1} \, e^{1/t} \, |\cos e^{1/t}| \, dt - O(1).$$

However, the right-hand side tends to ∞ as $\delta \downarrow 0$, contradicting the boundedness of (2.4).

An alternative condition of bad behaviour on γ is that there should be a neighbourhood N of z=1 in which every subarc of γ has infinite length. If $g \neq 0$, the function g' would be regular and its modulus would have a positive lower bound on some such subarc. One would then appeal to (2.3) to obtain a contradiction.

4. A spanning set (1.1) where $\{p_k\}$ has density zero

Let γ^* be any Jordan curve around 0 with the property that (1.1) is a spanning set for $C(\gamma^*)$ whenever the sequence $\{p_k\}$ has positive density. We will show that for such a curve γ^* , there is also a spanning set (1.1) with $\{p_k\}$ of density zero.

Our final sequence $\{p_k\}$ will be of the following type. For integers

$$0 \le k_1 \le k_2 \le \dots \le k_r \le \dots$$

which will be specified below, we define

$$p_{k} = k, 0 < k \leq k_{1}; p_{k} = 2k, k_{1} < k \leq k_{2}; ...;$$

$$p_{k} = rk, k_{r-1} < k \leq k_{r};$$

$$(4.1)$$

To define the numbers k_r , it will be convenient to give a name, S_r say, to the closed span in $C(\gamma^*)$ of the powers

$$z^n$$
; $n \ge 0$ and z^{-p_k} , $1 \le k \le k_*$.

For k_1 , we choose the smallest integer ≥ 0 such that z^{-1} has distance to S_1 not exceeding 1. For k_2 , we next take the smallest integer $\geq k_1$ such that z^{-1} and z^{-2} have distance to S_2 not exceeding 1/2. Assuming that $k_1, ..., k_{r-1}$ have been determined, we take for k_r the smallest integer $\geq k_{r-1}$ such that $z^{-1}, z^{-2}, ..., z^{-r}$ all have distance to S_r not exceeding 1/r. That k_r exists follows from the fact that $z^{-1}, ..., z^{-r}$ belong to the closed span of the powers

$$z^{n}, n \ge 0; z^{-p_{k}}, 1 \le k \le k_{r-1}; z^{-r_{k}}, k_{r-1} < k < \infty.$$

(Indeed, for this set, the opposites of the negative exponents have density 1/r.)

The above construction leads to a set (1.1) whose closed span S_{∞} is all of $C(\gamma^*)$, while $\{p_k\}$ has density zero. Indeed, the distance between an arbitrary negative power z^{-q} and S_{∞} (which contains all S_r) is $\leq 1/r$ for all $r \geq q$, and hence $z^{-q} \in S_{\infty}$. Also, it is clear that a sequence $\{p_k\}$ of the form (4.1) must have density zero, whether k_r tends to ∞ or not.

It is easy to see, incidentally, that k, must tend to ∞ . For suppose not. Then our present set (1.1) would contain only a finite number of negative powers. However, if no power in (1.1) would have exponent $\leq -s$ (s integral, ≥ 0), then z^{-s-1} could not be in the closed span on γ^* , or z^{-1} would be a uniform limit of polynomials on γ^* , and therefore, also on the interior D^* !

References

- 1. P. L. Duren, Theory of H^p spaces (Acad. Press, New York, 1970).
- J. Korevaar, and P. Pfluger, "Spanning sets of powers on wild Jordan curves", Nederl. Akad. Wetensch. Proc. Ser. A, 77 (1974), 293-305.
- 3. G. Pólya, "Untersuchungen über Lücken und Singularitäten von Potenzreihen", *Math. Z.* 29 (1929), 549-640.
- I. I. Priwalow, Randeigenschaften analytischer Funktionen (VEB Deutscher Verlag der Wiss., Berlin, 1956).
- F. Riesz, and M. Riesz, "Über die Randwerte einer analytischen Funktion", Quatrième Congrès des Mathématiciens Scandinaves (Stockholm 1916), Uppsala 1920, 27–44.
- J. L. Walsh, "Uber die Entwicklung einer analytischen Funktion nach Polynomen", Math. Ann., 96 (1927), 430-436.
- 7. ———, "Über die Entwicklung einer Funktion einer komplexen Veränderlichen nach Polynomen", Math. Ann., 96 (1927), 437–450.

- 8. ———, Interpolation and approximation by rational functions in the complex domain (Amer. Math. Soc. Colloq. Publ., Vol. 20, New York, 1935).
- 9. J. Wermer, "Nonrectifiable simple closed curve", Advanced problems and solutions, no. 4687, Amer. Math. Monthly, 64 (1957), 372.

University of California, San Diego.

University of Michigan.

University of Amsterdam.