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A B S T R A C T

We show that continuous functions u in the Sobolev space WX
V{B), 1 <p ^n, which have the limit zero

in a certain weak sense in a set of positive p-capacity on dB with

\Vu\pdx^Cepi\og\-

where B is the open unit ball of R" and

Be = {xsB:\u(x)\<e}
for 0 < e < |, are identically zero.

Conversely, we produce for each 1 < p < n and each positive S a non-constant function u in WUB),
continuous in B, and a compact set E <= dB of positive p-capacity such that u = 0 in E and the above
inequality holds with exponent p—l+S.

1. Introduction

In this note we address the following question. Suppose that u is a continuous
function in the Sobolev space Wl

v(B), 1 < p ^n, where B is the open unit ball of IRn

(then u has radial limits except for a set in dB of Bessel /^-capacity zero, see, for
example, [11, 8]). Assume that u approaches zero in the weak sense for each xeE c=
8B of positive ̂ -capacity. Here we declare that u approaches zero in the weak sense
if for any rectifiable curve y in B terminating at x there is a sequence of points in y
for which u tends to zero. We ask: under which conditions does it follow that u is the
constant function zero?

This question has been studied by several authors for analytic functions/of the
unit disc D with |/ ' | eL2(Z>). Note that in this situation the coordinate functions of/
belong to W\{D), and that / approaches zero in the above weak sense if/has the
radial limit zero for each xe E\ see Section 2. A. Beurling [2] established that there are
no bounded univalent functions with the radial limit zero in a set of positive 2-
capacity. L. Carleson [3] produced examples of non-constant analytic functions of D
with |/ ' | e L2(D) which have the radial (hence also non-tangential and weak) limit zero
in a set E of positive 2-capacity, and studied the properties of the associated sets E.
M. Tsuji [12] verified that such an / i s identically zero provided

; a 2 (i)

for all 0 < e < 1, where De = {zeD: \j{z)\ < e). Recently, E. Villamor [14] extended
this result by showing that it suffices to assume the integral in (1) to be of the order
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of o(e2log[l/e]). We establish that this phenomenon is not characteristic of analytic
functions but merely a property of continuous Sobolev functions. Let us introduce
some notation. We write ueACLv(B) if we wy^E) is continuous (we advise the reader
that our definition for ACLV{B) is not standard), and set

BE = {XEB:\U(X)\<B}

for e > 0. Then we have the following.

THEOREM A. Let ueACLp(B), 1 < p ^n, approach zero in the weak sense for a
set E a dB of positive p-capacity. If there is a constant C such that

^j (2)

for all 0 < e <\, then u is identically zero.

As the following result indicates, our assertion is essentially sharp.

THEOREM B. For each 1 < p ^ « and any S > 0, there is a non-constant function
usACLp(B), continuous in the closed unit ball, and a compact set E <= dB of positive
p-capacity with u = 0 in E such that

0)
J Bt \ Lfc J /

for all 0 < e < |.

It remains open whether the given bound in Theorem A is also essentially sharp
for analytic functions of the unit disc. We wish to point out that Theorem A extends
Villamor's result even when p = 2 and / is analytic (apply Theorem A to the
coordinate functions of/), and that the proof of Theorem A avoids the complicated
calculations in [14].

J. A. Jenkins [5] has recently established results related to Theorem A for
meromorphic functions for p = n = 2.

2. Preliminaries

We denote the p-modulus of a curve family T by modp(F). Thus

f
modp(O = inf ppdx,

P Jnn

where the infimum is taken over all non-negative Borel-measurable p such that

p ds ̂  1
c

for each locally rectifiable yeF; see [13, 6.1].
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Next, the p-capacity of E, F c D, for a domain Z) and a pair £", i7 of disjoint, non-
empty, compact sets is defined by

' D

where the infimum is taken over all functions in the class

L = L(E,F;D) = {ueL],(D) n C(D U E \ ) F): u\E ^ 0 , u \ F ^ 1}.

Here LX
V(D) denotes the Sobolev space of measurable functions u: D -*• U satisfying

JD|Vw|pdx < oo, where Vw represents the distributional gradient of u. Recall that
Wl

v{D) = Lp(D)0Ll(D) and that L\{D) a W\(D) if dD is sufficiently smooth. In
particular, this is true for B.

We say that a compact set E is of/^-capacity zero if capp(£, dD;D) = 0 for some
bounded (and hence for each bounded) domain D containing E. We remind the
reader that this is the case (see, for example, [15]) if the /^-modulus of the family of
curves in Un joining E to the boundary of some open ball B' is zero.

We begin by showing that for functions in ACLn(B), radial limits are limits in the
weak sense. This justifies the comment made in the introduction.

LEMMA 2.1. Let ueACLn(B) have the radial limit zero in a compact set E c dB.
Then u has the limit zero in the weak sense in E.

Proof. Let u and E be as above, and fix a curve y terminating at xe E. If u does
not tend to zero along any sequence in y, we find e > 0 and r > 0 such that \u\ > 2e
in Kx = y n B(x, r) and \u\ < e in K2 = J 0 B(x, r), where J is the radius containing x.
Thus

B(J?1,K2;B) ^ |Vw|n^x£-n < oo,
J B

which is a contradiction since both K1 and K2 connect x to dB(x,r); see [13,
10.12].

If h is an increasing homeomorphism of (0, oo), then the /j-Hausdorff measure of
a set E a Un is defined by

Hh(E) = sup Hs
h(E),

<5>0

where

H\{E) = inf {£ h(rt) :r^d,E^(J B(xp r,)\.

We record Theorem 7.1 in [7, p. 133].

LEMMA 2.2. IfHh(E)>0and

"1/2

(h(t)tp-n)1Kv-1)r1dt<cx>,

then capp(£) > 0.

Next, we recall the generalized Cantor construction. Let (/̂ ) be a sequence of
positive numbers decreasing to zero so that 2lj+l < l^ for eachy. Set /Oil = [0, /J, and
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let / l f l and Il2 be the intervals [0,/2] and [lx — /2,/J, respectively. Assuming that the
intervals Ik_x 1,...,Ik_x 2*-i have been selected, we defineIk 1?...,Ik 2* by deleting from
the middle of each of the intervals /fc_M an interval of length lk — 2lk+v

Write Fj = (jf-i/,.i, s e t ^ = ^ r 1 ( t n e product of i^ with itself {n-1) times), and

define £ = D r - i ^ r
We shall deduce Theorem B from the following.

LEMMA 2.3. For each 1 < p ^ « a«^ eac/i (5 > 0, f/iere w a compact set E c= dB of
positive p-capacity with

(4)

for allO<r<\, where E{r) - {x: dist(x,£) < r).

Proof. Fix S > 0. We may assume that S < 1. For 1 <p <n, let £ be the
generalized Cantor set in IR""1 obtained from the sequence

where a = {n — \)/(n—p), b = S + (p— \)/(n—p), andy0 is selected sufficiently large to
ensure the inequality 2lj+l < l} for all j. Next, for p = n, replace /, with

We show that E has the indicated properties; a subset of dB with these properties is
then clearly obtained as an appropriate bi-Lipschitz image of E.

First let 1 < p < n, and define

for 0 < / < 1. Now
ln-p _ 2-<»-l>0+io>( i-\- i \V~1+d{n~v)

and thus a straightforward calculation verifies that

for some constant C for each / As is well known (see, for example, [1, p. 899]), this
gives H\E) > 0. Since

Jo

Lemma 2.1 permits us to conclude capp(is) > 0.
We are left with the estimate on \E(r)\. Let 0 < r < \. Then there exist a constant

C depending only on p, n, 8 and a positive integer j such that

r ^ l}^ Cr.

Now E(r) is contained in E}(r), and we have

\ E ( r ) \ ^ \ E } ( r ) \ ^ ( 3 / , ) " 2 ( " - " ' ^ 3 n d
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A simple but tedious calculation verifies that

^p-l+(n-p)<5

for a constant C1 independent of r, and hence

/ ]\p-l+(n-p)S

\E(r)\^C2r»

for some constant C2 independent of r, as desired.
Next, let/7 = n, and define h(t) = 2""1 (log[l/t]yn+1-s. Then £(/;) = 2-(n-1)j and we

conclude, reasoning as above, that capn(£) > 0. Now fix 0 < r < f. We may assume
that r ̂  exp( —4). Then there is a positive integer j^-2 with l} < r ̂  /,_15 and we
obtain

\E(r)\ < \E}{r)\ < 2<«-1>'(3r)n < 3 V ^ l o g ^ j j " 1+".

The proof is complete.

3. Proofs of Theorems A and B

First we prove Theorem A.

Proof of Theorem A. Assume that u is not identically zero, and fix a closed ball
BQ with non-empty interior so that |«| ̂  2~j«, j0 > 0, in Bo. Write

Bj = {XGB: 2~j~x < \u(x)\ < 2"1}

fory = jo,jo + 1, Next, define p(x) = |VM(JC) | (J logy)"12} when x e Bp and set /? to be
zero elsewhere in Un. Then p is Borel-measurable (see, for example, [13, 26.4]) and

< C(log2)p-1 j^j-\\ogj)-p < oo.

Fix a rectifiable curve y joining dB0 to E in B, and assume that u is absolutely
continuous on each closed subcurve of y. Then u approaches zero for some sequence
of points in y and, in particular, there is a subcurve yj c Bi of y for each j = y0,
y o +l , . . . ,wi th

Thus

Finally, /?-almost every curve in B is rectifiable, and by Fuglede's theorem [13, 28.2],
the /^-modulus of the curves y, for which u fails to be absolutely continuous on some
closed subcurve, is zero. Hence we infer that the /7-modulus of the curve family T
joining E to Bo in B is zero. As is well known, this yields that the /7-modulus of the
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curve family joining E to Bo in Un is zero. Indeed, by a simple reflection argument,
this holds for the corresponding curve family, say, in B(0,2), and consequently by [6]
the /^-modulus of the curve family joining E to Bo in Un is zero. Hence the /^-capacity
of E is zero, as desired.

Proof of Theorem B. Fix 1 <p ^n, and let E be the corresponding set from
Lemma 2.3. Define u(x) = dist (x, E) for x in the closed unit ball. Then u is continuous
in the closed unit ball, u = 0 in E, and u is Lipschitz continuous and hence belongs
to ACLP(B). Moreover, E is of positive /^-capacity and the inequality (3) follows
from (4).

REMARKS. (1) The logarithmic term (log [\/s]f~1 in Theorem A can be replaced
by, say,

for all e sufficiently small. This is easily seen using the argument of the proof of
Theorem A. In fact, any string of iterated logarithms such as above can be used to
replace this logarithmic term. So the bound in Theorem A is not best possible. On the
other hand, the proof of Lemma 2.3 indicates that one could sharpen Theorem B to
allow strings of essentially this type in inequality (3). Since this would cause technical
difficulties, we have elected not to do so.

(2) The proof of Theorem A shows that one could make the following
modifications to the claim of Theorem A. In the definition of the weak limit, one
could only require the given condition for each curve y terminating in E except for
curves in a family whose ̂ -modulus is zero. The condition ueACLp can be replaced
by requiring u to be a /̂ -precise function. This class, which is larger than ACLP, has
been studied, for example, in [9], [10] and [16].

(3) One can replace the unit ball B in Theorem A by any bounded domain D if
one replaces the compact set E of positive /j-capacity by any set E c= 3D for which the
/^-modulus of the family of curves joining E to the closure of some open ball in D is
positive. For/? = n,D uniform and E compact, this is equivalent to E being of positive
/7-capacity; see [4, 2.6].

(4) One often replaces \f'(z)\ with \f*{z)\ in questions dealing with analytic (or
meromorphic) functions, wheref*(z) =f'(z)/(l + \f{z)\2) is the spherical derivative of
/. Theorem A is relevant also in this context, as seen by applying it to the function
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