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1. Introduction

Let + be a J-adic field, and consider the system F¯ (F
"
,… ,F

R
) of diagonal

equations

a
""

xk

"
­…­a

"N
xk

N
¯ 0

] ] ]

a
R"

xk

"
­…­a

RN
xk

N
¯ 0 (1)

with coefficients in +. It is an interesting problem in number theory to determine

when such a system possesses a nontrivial +-rational solution. In particular, we define

Γ*(k,R,+) to be the smallest natural number such that any system of R equations of

degree k in N variables with coefficients in + has a nontrivial +-rational solution

provided only that N&Γ*(k,R,+). For example, when k¯ 1, ordinary linear

algebra tells us that Γ*(1,R,+)¯R­1 for any field +. We also define Γ*(k,R) to be

the smallest integer N such that Γ*(k,R,1
p
)%N for all primes p.

When +¯1
p
, much is known about this problem. In the case where R¯ 1,

Davenport and Lewis [5] showed that Γ*(k, 1)%k#­1 for each k, with equality

holding whenever k¯ p®1 for some prime p. When R¯ 2 and k is odd, Davenport

and Lewis [6] showed that Γ*(k, 2)% 2k#­1. For general R, a conjecture of Artin’s

suggests that one should have Γ*(k,R)%Rk#­1, but this is not known in any case

other than the three above. Despite the inability to obtain the conjectured bound,

several authors have found upper bounds for Γ*(k,R). Davenport and Lewis [7]

obtained the bound Γ*(k,R)% [9R#k log(3Rk)] for all odd k, and the bound

Γ*(k,R)% [48R#k$ log(3Rk#)] for all even k larger than 2. This was improved in most

cases by Low, Pitman and Wolff [11], who showed that the bound Γ*(k,R)%
[48Rk$ log(3Rk#)] is sufficient for all k larger than 2, and that the bound Γ*(k,R)%
2R#k logk holds whenever k is odd and sufficiently large.

Recently, Bru$ dern and Godinho [3] obtained the bound Γ*(k,R)%R$k# whenever

R and k are at least 3, except for the case in which R¯ 3 and k is a power of 2, when

one has Γ*(k, 3)% 36k#. This bound is better than those of Low, Pitman and Wolff

and Davenport and Lewis when k is even and suitably large compared with R. Also,

this result is notable because it shows that a bound of the form Γ*(k,R)'
R
k# is

possible for all values of k.

The primary purpose of this paper is to make an improvement on the bound

of Bru$ dern and Godinho through methods involving the use of Teichmu$ ller
representatives. To this end, we will prove the following theorem.
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T 1. For any R `. and k& 2, one has

Γ*(k,R)% 4R#k#.

We note that when R" 4, the conclusion recorded in this theorem plainly

improves on the aforementioned bound Γ*(k,R)%R$k# of Bru$ dern and Godinho [3].

If k is even and R is suitably small in terms of k, then this is the best known bound

on Γ*(k,R). Theorem 1 is actually a corollary of a more precise estimate which is

somewhat more complicated to state.

T 2. Suppose that +¯1
p
, and that k¯ pτk

!
, where (k

!
, p)¯ 1. Then the

following statements are true.

(i) If p1 2, then the system (1) of R diagonal equations of degree k has a nontri�ial

solution o�er 1
p

pro�ided only that

N&R#k#­R#kk
! 0p

τ®1

p®11­2Rk®R#k.

Hence, whene�er p1 2, one has Γ*(k,R,1
p
)% $

#
R#k#.

(ii) If p¯ 2, then the system (1) has a nontri�ial solution o�er 1
p

pro�ided only that

N& 4R#k#®R#kk
!
­2Rk®R#k.

Therefore, one has Γ*(k,R,1
#
)% 4R#k#.

When + is a finite extension of 1
p
, much less is known. In the case where

R¯ 1, Birch [2] has recorded the bound Γ*(k, 1,+)% (2τ­3)k (m#k)k−", where m¯
(k

!
, p f®1), the numbers τ and k

!
are as in the statement of Theorem 2, and p f is

the cardinality of the residue field of +. Note that this bound implies that

Γ*(k, 1,+)% 02 logk

log 2
­31kk$k−$,

which is independent of the field +, and indeed this appears to be the only such

estimate in the literature. If the bound on Γ*(k, 1,+) is allowed to depend on the

degree n of + over 1
p
, then Dodson [8] has shown that the bound Γ*(k, 1,+)%

16n#k#(logk)# holds. If + is an unramified extension of 1
p
, then Dodson notes that

his method leads to the bound Γ*(k, 1,+)% 36k#(logk)#, which is independent of the

degree of + over 1
p
. Additionally, Skinner [13] has shown that if + is a finite

extension of 1
p

and k¯ pτ is a power of p, then the bound Γ*(k, 1,+)%
k((k­1)#τ+"®1)­1 holds. (Skinner claims in [13] to prove this bound for all

exponents k, but this is incorrect. The crucial error is in the proof of his Lemma 5,

in which he uses Hensel’s lemma to lift kth power residues modulo the maximal ideal

of + to kth powers in +. Unfortunately, some of these may be the zero residue, in

which case Hensel’s lemma may not be applied.) From the above bounds for one

equation, bounds for systems of equations can be derived from statements due to

Leep and Schmidt [10]. While proving their second basic inequality, Leep and

Schmidt show that one has

Γ*(k,R,+)%Γ*(k, 1,+)R,

which provides a bound exponential in R. Furthermore, as a consequence of [10,

Theorem 1] one also has

Γ*(k,R,+)'
k,+

R#
k−",
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giving a bound polynomial in R. However, one feels that the correct bounds should

be rather smaller than these.

The methods used to prove Theorem 2 may also be used to develop a bound for

Γ*(k,R,+) for arbitrary J-adic fields +.

T 3. Let + be a finite extension of 1
p

of degree n. Suppose that the

ramification index of + is e, and that the residue field of + contains q¯ p f elements.

Suppose that k¯ pτk
!
, where (k

!
, p)¯ 1. Then the system of equations (1) of degree k

has a nontri�ial +-rational solution pro�ided that

N&R#kk
! 0q#e

τ+"®1

q®1 1®R#k­2Rk.

Note that Theorem 3 implies that one has

Γ*(k,R,+)%R#kk
! 0q#e

τ+"®1

q®1 1®R#k­2Rk

%R#k#+#n
τ

%R#k#+#n(logk)/(log
#).

Although this bound is still not as strong as could be desired, and in particular is

not independent of the degree of + over 1
p
, it does at least show that one has

Γ*(k,R,+)'
k,+

R#.

We prove these theorems by making a small improvement on the method of

Bru$ dern and Godinho. We begin by employing a suitable normalization process, and

then using the idea due to Low, Pitman and Wolff of partitioning the matrix of

coefficients of our system into disjoint submatrices which are all nonsingular modulo

a generator of the maximal ideal of +. We then attempt to find a nonsingular solution

of the system modulo a suitably high power of the maximal ideal of +. By setting

variables corresponding to columns of the same submatrix equal to each other, we

obtain a new system of congruences to solve. Our improvement is to now solve

this system by restricting our variables to be elements of the Teichmu$ ller set T+ ¯
²x `+rxq¯x´. Suppose first that k has the special form k¯ qtk

!
. If x `T+, then we

have xk¯xk
!, and so we need only to solve a system of congruences of degree k

!
.

We solve these congruences through an extension of a theorem of Schanuel. Finally,

we use Hensel’s lemma to lift this solution to a +-rational solution of (1). Should k

not have the above shape, we show that when solving the system of congruences,

k may be replaced by a different exponent which does have this form, and apply our

argument to the resulting set of equations.

This plan is actually employed to prove both Theorem 2 and Theorem 3. The

reason why Theorem 2 is not merely a special case of Theorem 3 is that in the general

case one needs to use the standard version of Hensel’s lemma to lift a solution of a

congruence to a solution in +. However, the theory of kth power residues of rational

integers leads to a better version of Hensel’s lemma when +¯1
p
.

2. Normalization and preliminaries

In what follows, + will be a finite extension of degree n of the field 1
p
, with

maximal ideal generated by π. The ramification index will be denoted e, and we set

f¯ n}e so that πe ¯ p and the residue field of + modulo π has cardinality q¯ p f. Let
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/+ represent the integers of +. Finally, we denote by &
q
the finite field containing q

elements.

Before we can prove the theorems, we must discuss the concept of the normal-

ization of a system of equations. For 1% j%N, let a
j

denote the column in the

matrix of coefficients of (1) corresponding to the variable x
j
, and set

Θ(F)¯ 0
"
%i

"
!…!iR

%R

det((a
ij

)
"
%j%R

).

By a standard argument involving the compactness of the J-adic field +, we may

assume that Θ(F)1 0, and we make this assumption throughout this paper. (One may

see [7, pp. 572–573] for an example of this argument. As with [7, Lemma 11], which

will be quoted shortly, although this fact is written down only for the case +¯1
p
,

it is not hard to see that it extends to general J-adic fields by merely replacing

occurrences of 1
p

and p by + and π respectively.) Next, we say that two systems of

additive equations with coefficients in /+ are equi�alent if one can be obtained from

the other through a combination of the following three operations:

(i) replacing a variable x
i
by παx

i
for some integer α ;

(ii) dividing one or more equations by an integral power of π ;

(iii) taking nonsingular /+-linear combinations of the equations.

A system F is said to be π-normalized if both Θ(F)1 0 and the power of π dividing

Θ(F) is less than or equal to the power of π dividing Θ(G) for all systems G equivalent

to F. Since any system F with Θ(F)1 0 is equivalent to a π-normalized system, it

suffices to show that Theorems 2 and 3 are true for π-normalized systems. The major

benefit of working with normalized systems is that they have nice properties when

considered modulo π. In particular, we have the following lemma.

L 1. A π-normalized system of additi�e forms can be written (after

renumbering the �ariables) as

F
i
¯ f

i
(x

"
,… ,x

r
)­πg

i
(x

r+"
,… ,x

N
)

for i¯ 1,… ,R, where r&N}k, and if 1% i% r, then the coefficient of x
i
in at least one

of the forms is not di�isible by π.

Moreo�er, if we form any s linear combinations of F
"
,… ,F

R
(these combinations

being independent modulo π), and denote by q
s
the number of �ariables that occur in at

least one of these combinations with a coefficient not di�isible by π, then for each s with

1% s%R®1, we ha�e

q
s
&

sN

Rk
.

Proof. After making the changes indicated above, this is [7, Lemma 11]. *

Following Bru$ dern and Godinho, let A be the matrix of coefficients of the

variables x
"
,… ,x

r
. In [3], they use the idea of Low, Pitman and Wolff [11] of showing

when +¯1
p

that A has many disjoint R¬R submatrices which are nonsingular

modulo p. We repeat this argument here, making the trivial modifications necessary

to apply it to general J-adic fields +.

Let µ(d ) be the maximal number of columns of A which lie in a d-dimensional

linear subspace of &R

q
. Then for 1% s%R, we have

q
s
­µ(R®s)¯ r.
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The idea of Low, Pitman and Wolff was to make use of the following lemma, which

is a special case of a theorem of Aigner [1].

L 2. Let A be an R¬r matrix o�er a field + and let m be a positi�e integer.

The matrix A includes m disjoint R¬R submatrices which are nonsingular o�er + if and

only if we ha�e

r®l&m(R®rank((a
ij

)
"
%j%l

))

for any l% r and 1% i
"
! i

#
!…! i

l
% r.

Proof. This is [11, Lemma 1]. One can find in [1] a proof of Aigner’s more

general result for matroids. *

Observe that this lemma implies that A has m disjoint submatrices with

determinants not divisible by π if and only if

r®µ(d )&m(R®d ) for all 0% d%R,

and that this is equivalent to the condition

q
s
&ms

for 1% s%R. Hence, we have the following lemma, which is (after making the

obvious changes) [3, Lemma 2].

L 3. Suppose that (1) is a π-normalized system written in the form gi�en in

Lemma 1. Then the R¬r matrix A contains at least [N}(Rk)] disjoint submatrices which

are nonsingular modulo π.

Now that we have dealt with normalization, we need to prove a lemma about

solutions of congruences modulo powers of π. This generalizes the result given by

Schanuel in [12]. As above, the proof of this lemma differs only trivially from

Schanuel’s proof, but is given here for completeness.

L 4. Suppose that + is a finite extension of 1
p

of degree n, with maximal

ideal generated by π. For 1% i%R, let F
i
be a polynomial of degree k

i
in N �ariables

with coefficients in /+ and no constant term. Finally, let T+ ¯²x `/+ rxq¯x´ be the

set of TeichmuX ller representati�es of /+}(π). Then the system of equations

F
i
(x

"
,… ,x

N
)3 0 (modπvi) (1% i%R)

has a nontri�ial solution in TN
+ pro�ided that

N"3
R

i="

k
i

qvi®1

q®1
.

Proof. For any function F `/+[x
"
,… ,x

N
], define ∆F¯∆(")F by

(∆F ) (x
"
,… ,x

N
)¯π−"(F(x

"
,… ,x

N
)q®F (q)(xq

"
,… ,xq

N
)

­F (q)(x
"
,… ,x

N
)®F(x

"
,… ,x

N
)),

where F (q)(x
"
,… ,x

N
) denotes the polynomial obtained by raising each coefficient of

F to the qth power, and define ∆( j)F¯∆(∆( j−")F ) when j" 1. Note that ∆F is a

polynomial in x
"
,… ,x

N
of degree at most q[degF. Since the map sending x to xq is
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the identity homomorphism on &
q
, all of the coefficients of the polynomial in

parentheses are elements of /+ congruent to 0 modulo π. Hence, all of the coefficients

of ∆F are in /+. Furthermore, if F(x
"
,… ,x

N
)¯ c is a constant polynomial, then we

have

∆F¯∆c¯π−"(cq®c).

We wish to show that we have c3 0 (mod πv) if and only if the numbers

∆(!)c,∆(")c,… ,∆(v−")c are all congruent to 0 modulo π, where we set ∆(!)c¯ c for

convenience. To see this, note that if r∆( j)crπ ! 1, where we have normalized so that

rπrπ ¯ p−"/e, then we have

r∆( j+")crπ ¯ rπ−"((∆( j)c)q®∆(j)c)rπ ¯ p"/er∆( j)crπ.

Using this equation inductively, we find that if rcrπ ¯ p−τ/e, with τ" 0, then we have

r∆(i)crπ ¯ p(i−τ)/e provided that r∆(i−")crπ ! 1, and hence r∆( j)crπ ! 1 for 0% j% τ®1.

Suppose that c3 0 (mod πv). Then r∆(!)crπ % p−v/e, and the above statement

implies that r∆( j)crπ ! 1 for 0% j% �®1. We therefore have ∆( j)c3 0 (mod π)

whenever 0% j% �®1. Conversely, suppose that ∆(!)c,∆(")c,… ,∆(v−")c are all

congruent to 0 modulo π. Then the equation displayed above holds for each j with

0% j% �®2, and we find inductively that rcrπ ¯ p("−v)/er∆(v−")crπ % p−v/e, whence c is

congruent to 0 modulo πv.

Now suppose that a
"
,… , a

N
are elements of T+. Then since aq

j
¯ a

j
, we have

F (q)(aq

"
,… , aq

n
)¯F (q)(a

"
,… , a

N
), and hence

(∆F ) (a
"
,… , a

N
)¯π−"[F(a

"
,… , a

N
)q®F(a

"
,… , a

N
)]

¯∆(F(a
"
,… , a

N
)).

Therefore, for such elements, one has F(a
"
,… , a

N
)3 0 (mod πv) if and only if

(∆( j)F ) (a
"
,… , a

N
)3 0 (mod π) for 0% j% �®1.

In view of the above discussion, solving the system of equations

F
i
(x

"
,… ,x

N
)3 0 (mod πvi) (1% i%R)

nontrivially with variables in T+ is equivalent to nontrivially solving the system of

congruences

(∆( j)F
i
) (a

"
,… , a

N
)3 0 (mod π) (1% i%R, 1% j% �

i
).

This is a system of �
"
­…­�

R
congruences modulo π, where for each i we have �

i

congruences of degrees at most k
i
,k

i
q,… ,k

i
qvi−". By the Chevalley–Warning theorem

(see [14]), we may do this provided that

N"3
R

i="

3
vi−"

j=!

k
i
q j ¯3

R

i="

k
i 0qvi®1

q®1 1 ,
which is our desired bound. *

Now that we have a lemma allowing us to solve congruences modulo powers of

π, we need one more lemma which tells us that we may ‘ lift ’ such a solution to a

solution of an equation over +. Therefore, we give one form of Hensel’s lemma.
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L 5. Suppose that F(x) is a polynomial in r �ariables, with coefficients in +,

and a `/r
+ satisfies the equation

rF(a)rπ ! )¦F

¦x
i

(a))#
π

for some �ariable x
i
. Then there exists a unique a* `/r

+ such that both F(a*)¯ 0 and

max

"
%i%r

ra$
i
®a

i
rπ % ) ¦f

¦x
i

(a))−"
π

rF(a)rπ.

In particular, if a is nontri�ial modulo π, then a* is a nontri�ial solution of F(x)¯ 0.

While versions of Hensel’s lemma exist which simultaneously lift solutions of

several congruences to solutions of equations in +, we will see later that this version

is all that we need. A very thorough exposition of Hensel’s lemma may be found in

[9, Chapter 5].

3. The proof of Theorem 3

In order to prove Theorem 3, we follow in general the method used by Bru$ dern

and Godinho to prove [3, Theorem 4]. As mentioned above, we may assume that our

system (1) is reduced. Then, by Lemma 3, it is equivalent to a system

b
","

xk

"
­…­b

",r
xk

r
­b

",r+"
xk

r+"
­…­b

",N
xk

N
¯ 0

] ] ] ] ]

b
R,"

xk

"
­…­b

R,r
xk

r
­b

R,r+"
xk

r+"
­…­b

R,N
xk

N
¯ 0, (2)

which is in the form given in Lemma 1 and has the property that the matrix of

coefficients of the variables x
"
,… ,x

r
contains at least s¯ [N}(Rk)] disjoint

submatrices B
!
,… ,B

s−"
which are nonsingular modulo π. By relabeling variables if

necessary, we may assume that for 0% l% s®1, the columns of B
l
correspond to the

variables x
lR+"

,… ,x
(l+")R

. We now set x
sR+"

¯…¯x
N

¯ 0, and attempt to solve the

system of congruences

b
","

xk

"
­…­b

",r
xk

r
3 0 (mod π#e

τ+")

] ] ]

b
R,"

xk

"
­…­b

R,r
xk

r
3 0 (mod π#e

τ+"). (3)

Next, for 0% l% s®2 and 1% i%R, we define

c
i,l

¯ 3
(l+")R

j=lR+"

b
i,j

,

and consider the system of equations

3
s−#

l=!

c
i,l

yk
!

l
­ 3

Rs

j=R(s−")+"

b
i,j

yk
!

j
3 0 (mod π#e

τ+") (1% i%R). (4)

This is a system of R equations of degree k
!
in s­R®1 variables. By Lemma 4, we

can solve this system with each of the variables in T+ provided that

s­R®1"Rk
! 0q#e

τ+"®1

q®1 1 .
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That is,

s&Rk
! 0q#e

τ+"®1

q®1 1®R­2. (5)

Writing τ¯αf­β with 0% β! f, we see that since the elements x of T+ have the

property that xq¯x, any solution of the system (4) is also a solution of the system

3
s−#

l=!

c
i,l

yk
!
p
(α+")f

l
­ 3

Rs

j=R(s−")+"

b
i,j

yk
!
p
(α+")f

j
3 0 (mod π#e

τ+") (1% i%R). (6)

We now set x
lR+"

¯…¯x
(l+")R

¯ yp
f−β

l
for 0% l% s®2, and x

j
¯ yp

f−β

j
when

R(s®1)­1% j%Rs. Since we have

(yp
f−β

l
)k¯ yk

!
p
(α+")f

l
,

the vector (x
"
,… ,x

r
) is then a solution of the system (3).

Now, we must lift this solution to a solution of (2) over +. Since the matrix of

coefficients of the second summation in (6) is nonsingular modulo π, at least one of

the y
l

with 0% l% s®2 must be nonzero modulo π. Without loss of generality,

suppose that y
!
J 0 (mod π). Consider the matrix B

!
of coefficients of the variables

x
"
,… ,x

R
in (2). Recall that this matrix is nonsingular modulo π, and hence

nonsingular. One may therefore apply elementary row operations to the system (2)

which transform B
!

into a diagonal matrix. Since we have set x
sR+"

¯…¯x
N

¯ 0,

when we look at the resulting system modulo π#e
τ+" we obtain a system

b
","

xk

"
­b

",R+"
xk

R+"
­…­b

",r
xk

r
3 0 (mod π#e

τ+")

] ] ] ]

b
R,R

xk

R
­b

R,R+"
xk

R+"
­…­b

R,r
xk

r
3 0 (mod π#e

τ+"), (7)

which is equivalent to (3). Since elementary row operations do not change the

determinant of a matrix, the image of B
!
under this transformation is still nonsingular

modulo π, and so b
","

b
#,#

…b
R,R

J 0 (mod π). Finally, because we have only taken

linear combinations of equations, our solution of (3) is also a solution of (7).

We now wish to find ζ
"
,…, ζ

R
`+ such that we have

b
","

ζk

"
­b

",R+"
xk

R+"
­…­b

",r
xk

r
¯ 0

] ] ] ]

b
R,R

ζk

R
­b

R,R+"
xk

R+"
­…­b

R,r
xk

r
¯ 0. (8)

If we consider x
R+"

,… ,x
r
to be fixed, then we have a system of R equations, each in

only one variable ζ
i
, and the variable in each equation is different. Hence, we may use

Hensel’s lemma on each equation separately. If, for 1% i%R, we set

G
i
(t

i
)¯ b

i,i
tk
i
­(b

i,R+"
xk

R+"
­…­b

i,r
xk

r
),

then we have G
i
(x

i
)3 0 (mod π#e

τ+"), whence

rG
i
(x

i
)rπ ! p−#

τ,

and

rG!
i
(x

i
)rπ ¯ rkb

i,i
xk−"
i

rπ ¯ rkrπ ¯ p−τ.

Hence, for each value of i, we have

rG
i
(x

i
)rπ ! rG!

i
(x

i
)r#π.
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Therefore, we may apply Lemma 5 to see that the desired ζ
i
all exist, and we have

found a +-rational solution of (8). When combined with our having set x
r+"

¯…¯
x
N

¯ 0, this provides us with a +-rational solution of the system (2). Finally, since the

systems (2) and (1) are equivalent, there is a nontrivial +-rational solution of (1).

Hence, there is a nontrivial solution of (1) provided only that the lower bound

given in (5) holds. However, by Lemma 3, this bound will hold if

9 N

Rk:&Rk
! 0q#e

τ+"®1

q®1 1®R­2,

which is true provided that

N&R#kk
! 0q#e

τ+"®1

q®1 1®R#k­2Rk,

which is the desired bound.

4. The proof of Theorem 2

Throughout this section, we will assume that +¯1
p
. While one could trivially

obtain a bound on the value of N needed in this case by setting e¯ f¯ 1 and q¯ p

and applying Theorem 3, the following version of Hensel’s lemma, which is a

consequence of the theory of kth power residues of rational integers, makes it possible

to do better.

L 6. Suppose that pτ sk, and define γ¯ γ(k, p) by

γ¯

1

2
3

4

1 if τ¯ 0

τ­1 if τ" 0 and p" 2

τ­2 if τ" 0 and p¯ 2.

Then if the congruence
axk­b3 0 (mod pγ)

with abJ 0 (mod p) is soluble, then the equation

axk­b¯ 0

has a nonzero solution in 1
p
.

A proof of this result can be found in [4, p. 36].

If γ¯ 1, then pik, and the following result of Bru$ dern and Godinho shows that

the theorem is true in this case.

L 7. Let p be a prime, pik, and N&Rk(R(k, p®1)®R­2). Then the

system of equations (1) admits a nontri�ial solution in 1
p
.

Proof. This is [3, Theorem 3]. *

In the other cases, we proceed as in the proof of Theorem 3, except that we use

Lemma 7 instead of the standard version of Hensel’s lemma (Lemma 5). In particular,

we need to solve the system (4), except that the congruences are now modulo pγ. If

p1 2, then γ¯ τ­1, and by Lemma 4 we can solve this system with elements of

the Teichmu$ ller set provided that

s&Rk
! 0p

τ+"®1

p®1 1­2®R.
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Therefore, as above, it is enough to have

9 N

Rk:&Rk
! 0p

τ+"®1

p®1 1­2®R,

and this is true provided that

N&Rk 0Rk
! 0p

τ+"®1

p®1 1­2®R1
¯R#k#­R#kk

! 0p
τ®1

p®11­2Rk®R#k,

as desired. Note that if R& 2, then this bound is strictly less than $

#
R#k#. Moreover,

when R¯ 1, one can use the bound N&k#­1 due to Davenport and Lewis [5] to

show that the bound N& $

#
R#k# also suffices in this situation. Hence, this bound

suffices whenever p1 2.

In the final case, we have p¯ 2 and γ¯ τ­2. Then we wish to solve the sysem (4),

again with the congruences now being modulo pγ. By Lemma 4, this can be done

provided that

s&Rk
!
(2τ+#®1)­2®R.

Again, it suffices to have

9 N

Rk:&Rk
!
(2τ+#®1)­2®R,

and this is true provided that

N&Rk(Rk
!
(2τ+#®1)­2®R)

¯ 4R#k#®R#kk
!
­2Rk®R#k,

as desired. It is trivial to see that this lower bound cannot be greater than 4R#k#.

Therefore, if N& 4R#k#, then the system (1) has a nontrivial 1
#
-rational solution.
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