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ABSTRACT

Let K be a compact set in the plane. It is shown that if L is a peak set for A(K), then A(K)|L = A(L).
It is also shown that if E is a compact subset of K with no interior such that each component of C\E
intersects C\K, then A(K)| E is dense in C(E). One consequence of the latter result is a characterization of
the real-valued continuous functions that when adjoined to 4(K) generate C(K).

Introduction

This paper concerns certain problems involving uniform algebras on sets in the
plane. Throughout the paper, K will denote an arbitrary compact set in the plane,
except where indicated otherwise. Let A(K) denote the algebra of functions in C(K)
that are holomorphic on the interior of K, and let R(K) denote the algebra of
functions in C(K) that can be approximated uniformly on K by rational functions
with poles off K.

If 4 is a uniform algebra on a compact Hausdorff space X, a subset Y of X is
said to be a peak set for A if there is a function fe A4 such that f(y) = 1 for ye ¥, and
|f(x)] < 1 for xe X\ Y. In this situation, the function fis said to peak on Y. A point
xe X is said to be a peak point for A if {x} is a peak set for 4. It follows easily from
Runge’s theorem that if K is a compact set in the plane and L is a peak set for R(X),
then R(K)|L = R(L). (The proof can be found in [3, pp. 164-165].) The main result
of Section 1 is the analogous assertion for A(K). Several corollaries concerning
A(K) are then obtained.

Wermer’s maximality theorem [6, Theorem II.5.1] states that the disc algebra
on the circle is a maximal subalgebra of C(6D). (Here D denotes the open unit disc.)
In contrast, the algebra A(D) (the disc algebra on the disc) is not a maximal
subalgebra of C(D). In other words, there is a function fin C(D) but not in 4(D) such
that the norm-closed subalgebra A(D)[f] of C(D) generated by A(D) and f is not
equal to C(D). For example, take f to be zero on a nonempty proper open subset
of the disk. There is no known characterization of the functions fin C(D) such that
A(D)[f]= C(D). A theorem of John Wermer [9] shows that when f is continu-
ously differentiable on a neighborhood of D, then A(D)[f] = C(D) if and only if the
graph of f is polynomially convex in C* and R(E) = C(E), where E is the zero set
of 3f. It was observed by E. M. Cirka [4] that Wermer’s technique yields a more general
result. Using that more general result, Cirka obtained the following theorem.

1 THEOREM. Let K be a compact set in the plane and suppose that every point of
0K is a peak point for R(K). Let fe C(K) be harmonic on the interior of K, but
nonholomorphic on each component of the interior of K. Then, the norm-closed
subalgebra of C(K) generated by R(K) and f is equal to C(K).
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Unaware of the above theorem, Axler and Shields [1] proved the special case
where f is real-valued (under a somewhat more restrictive condition on K) using
entirely different methods from those employed by Cirka. More precisely, the case
they proved was the following.

2 THEOREM. Let K be a compact set in the plane and suppose that there is a positive
number d such that each component of C\K has diameter greater than d. Let ue C(K)
be real-valued and harmonic on the interior of K, but nonconstant on each component
of the interior of K. Then the norm-closed subalgebra of C(K) generated by A(K) and
u is equal to C(K).

This result led Axler and Shields to raise the following two questions.

3 QUESTION. Does the above theorem continue to hold if K is an arbitrary compact
set in the plane, that is, if the hypothesis on the components of C\K is dropped?

4 QUESTION. Which compact sets K in the plane have the property that A(K)|E is
dense in C(E) whenever E is a compact subset of K with no interior such that each
component of C\E contains a component of C\K?

At first glance, Question 4 appears unrelated to Theorem 2. However, Axler and
Shields noted that their proof for Theorem 2 works whenever K has the property
indicated in Question 4. It should be observed that the condition in Question 4 that
each component of C\ E contains a component of C\ K is equivalent to the condition
that each component of C\ E intersects C\K.

Section 2 is devoted primarily to answering the two questions above. First an
affirmative answer to Question 3 is obtained. Next it is shown that all compact sets
in the plane have the property indicated in Question 4. This yields a characterization
of those compact subsets E of K for which A(K)|E is dense in C(E). Another
consequence is a characterization of the real-valued continuous functions u for which
the norm-closed subalgebra of C(K) generated by 4A(K) and u is equal to C(K).

In Section 3 the methods of Sections 1 and 2 are used to give new proofs of some
results of Christopher Bishop [2]. For Q2 an open set in the Riemann sphere, let H*(2)
denote the algebra of bounded holomorphic functions on Q. The main result of the
section asserts that if fe H*(Q)) is nonconstant on each component of €, then the
norm-closed subalgebra of L®(Q) generated by H*(Q2) and f contains C(Q).

The paper concludes with some open questions.

Throughout the paper, m will denote planar measure (that is, Lebesgue measure
on the plane), and ‘a.e.’” will always mean almost everywhere with respect to planar
measure. The word ‘measure’ will mean regular complex Borel measure. Given a set
L in the plane, 6L will denote the boundary of L, and Int (L) will denote the interior
of L. If fis a complex-valued function, and X is a subset of its domain, then by

definition || ], = sup,x | f(x)].

I would like to dedicate this paper to Allen Shields, whose talk in the Functional
Analysis Colloquium at Berkeley on November 10, 1986 first interested me in the
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problems considered here. Most of the material in this paper is from my doctoral
dissertation [7], and it is a pleasure to take this opportunity to thank my thesis advisor,
Donald Sarason, for his valuable guidance. In addition, I would like to thank
Theodore Gamelin, Walter Rudin, and especially Sheldon Axler for helpful
correspondence and encouragement. I would also like to thank Christopher Bishop
for sharing his preprints with me.

1. The restriction of A(K) to a peak set

The following theorem is the main result of this section.

1.1 THEOREM. If K is a compact set in the plane and L is a peak set for A(K), then
AKK)| L = A(L).

Before proving Theorem 1.1, we need some preliminaries. For K a compact set in
the Riemann sphere S and U an open set in S* contained in X, let A(K, U) denote
the algebra of continuous functions on X that are holomorphic on U. The following
lemma, which is a generalization of [5, Lemma 1.1], will be used throughout the

paper.

1.2 LEMMA. Suppose that K is a compact set in the Riemann sphere S®, U is an
open set in S* contained in K and such that oo ¢ K\U, and N is a relatively closed subset
of U that does not contain co and has planar measure zero. Then, C(K\U) U N) is the
closed linear span of A(K, U) and the functions z\—(z—z,)", z,€ U\(N U {00}).

Lemma 1.2 can be proven by the same argument used to prove [S, Lemma 1.1].
However, a more elementary proof will be given below.

If 1 is a measure on the plane with compact support, then the Cauchy transform
[ of u is defined by
du(w)

Mz) = Wz

for all z such that the integral converges absolutely.

The following lemma, which can be proven by applying Fubini’s theorem, will be
used in the proof of Lemma 1.2.

1.3 LEMMA. Let B be a Borel set in the plane and let u be a measure on the plane
with compact support. Then, ji = 0 a.e. on B if and only if u annihilates all functions of
the form

z—w

fw) = f”(z) dm(2)

where h is a bounded Borel function on the plane with compact support vanishing off’ B.

5-2
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Proof of Lemma 1.2. Suppose that u is a measure on (K\U) U N that annihilates
A(K, U) and the functions z— (z—2z,)™", z,€ U\(N U {00}). Then, obviously j(z,) =0
for every z € U\(N U {o0}). If his a bounded Borel function on the plane with compact
support such that A is zero on U, then the function f defined on K by

fony = [ 72

——,am(@)

is in A(K, U), and hence is annihilated by u. Consequently, Lemma 1.3 shows that
ft=0ae. on C\U. Since N has planar measure zero, we conclude that i =0 a.e,,
so u is the zero measure.

Lemma 1.2 will not be used in its full generality. For convenience we state here
two special cases that will be used. For Q an open set in the Riemann sphere, let A(Q)
denote the algebra of continuous functions on  that are holomorphic on Q.

1.4 COROLLARY. IfSQisan open set in the Riemann sphere and oo ¢ 02, then C(3S2)
is the closed linear span of A(Q) and the functions z+—(z—z,)™", z,€ Q\{0}.

1.5 CorOLLARY. If K is a compact set in the plane and N is a relatively closed
subset of Int(K) having planar measure zero, then C(0K U N) is the closed linear span
of A(K) and the functions z+— (z—z,)7", z,€ Int (K)\N.

The next lemma is an immediate consequence of the maximum modulus principle
and the definition of peak set.

1.6 LemMa. If K and L are as in Theorem 1.1, then 0L < oK.

1.7 LeMMA. If K is a compact set in the plane and L is a peak set for A(K) (that
is, the hypotheses of Theorem 1.1 hold), then each component of C\L intersects C\K.

Proof. Assume, to get a contradiction, that some component U of C\L lies
entirely in K. Since L is a closed subset of the plane, each component of C\ L is open.
It follows that dU is contained in L. Now let fin A(K) be a function that peaks on
L. Then, f] U is in A(U) and is 1 on dU. Consequently, by the maximum modulus
principle, f'is 1 on all of U. Hence, U is contained in L, contradicting our assumption
that U was a component of C\L.

1.8 LEMMA. Let K and L be as in Theorem 1.1, and let M = (K\L)n L. Then
AR\L)| M = C(M).

Proof. Let fin A(K) be a function that peaks on L. Then, f|(K\L) is in
A(R\L) and peaks on K\Ln L = M. Thus, M is a peak set for A(K\L). Therefore,
AR\L)| M is closed in C(M) [8, Lemma 12.3]. In addition, Lemma 1.7 (with K\L
as K and M as L) shows that each component of the complement of M intersects
the complement of K\ L.

Note that M is contained in dL. Hence M is contained in 0K (by Lemma 1.6), and
consequently, M is contained in (K\L). Hence, by applying Corollary 1.5 (with K\L
as K and N empty), we see that the linear span of A(K\L)|M and the functions
z(z—2zy)7Y, z,eInt(K\L), is dense in C(M). Since (as noted in the preceding
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paragraph) each component of the complement of M intersects the complement of
K\L, Runge’s theorem shows that each of the functions z+ (z—z,), z,€ Int (K\L),
can be approximated uniformly on M by rational functions with poles off K\ L. Thus,
A(K\L)| M is dense in C(M).

Having shown that A(K\L)| M is both closed and dense in C(M), we conclude
that A(K\L)| M equals C(M).

Proof of Theorem 1.1. Since the inclusion A(K)|L < A(L) is obvious, it is
enough to consider the reverse inclusion.

Let fin A(L) be arbitrary. By the preceding lemma, there exists a function g in
A(K\L) that agrees with fon (K\L) n L. Hence, there is a well-defined function 4 on
K given by

f(z) ifzeL
W) = {g(z) if zeK\L.

Now h is continuous on K and holomorphic on Int(K) (since L < 6K by
Lemma 1.6). Thus, 4 is in A(K) and clearly h| L = f. Hence, A(L) = A(K)|L.

The above proof shows that Theorem 1.1 follows readily from Lemma 1.8. On the
other hand, it is easy to see that Lemma 1.8 is actually a special case of the theorem.
The following special case of Theorem 1.1 should also be noted.

1.9 CorOLLARY. If E is a peak set for A(K) contained in 0K, then
AK) | E = C(E).

The above corollary can also be proven without Theorem 1.1, using essentially the
same argument as that used to prove Lemma 1.8.

If A is a uniform algebra on a compact Hausdorff space X, a subset Y of X is said
to be an interpolation set for A if A|Y = C(Y). The set Y is said to be a peak-
interpolation set for A if for each non-zero fe C(Y) there is an FeA such that
F|Y=fand |F(x)| < |f|y for all xeX\Y. It can be shown that a set is a peak-
interpolation set if and only if it is simultaneously a peak set and an interpolation set
[8, Lemma 20.1]. Thus, Corollary 1.9 can be reformulated as follows.

1.9° COROLLARY. If E is a peak set for A(K) contained in 0K, then E is a peak-
interpolation set for A(K).

The next result is an immediate consequence of Theorem 1.1 and its analogue
for R(K).

1.10 CorOLLARY. If K is a compact set in the plane for which A(K) and R(K)
coincide, and L is a peak set for this common algebra, then A(L) and R(L) also coincide.

We conclude this section with one more corollary of Theorem 1.1. (For the
analogue for R(K) see [3, p. 165] and [8, p. 309].) First we need some definitions.
Suppose 4 is a uniform algebra on a compact Hausdorff space X. A subset Y of X
is said to be a set of antisymmetry for A if every function in A that is real-valued on
Yisin fact constant on Y. We say that A is antisymmetric if every real-valued function
in A is constant. (Obviously these concepts can be defined for any subalgebra of C(X),
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not just for uniform algebras. In Section 3 we will make use of the sets of
antisymmetry for an algebra of functions that does not separate points and hence is
not a uniform algebra.)

1.11 CorOLLARY. Let {E,} be the family of maximal sets of antisymmetry for
A(K). Then, A(K)| E, = A(E,) for every a, each E, is connected, and E, is a singleton
for all but countably many a.

Proof. Each E, is a peak set [6, Theorem II.13.1 and Lemma II.12.1], so the
first assertion is an immediate consequence of Theorem 1.1. Since A(K)|E, is
antisymmetric, the second assertion follows from the first, and so does the last
assertion as E, has empty interior for all but countably many a.

2. Two questions raised by Sheldon Axler and Allen Shields

For ue C(K), let A(K)[u] denote the norm-closed subalgebra of C(K) generated
by A(K) and u. This section is devoted primarily to proving the following two
theorems which answer the questions of Axler and Shields mentioned in the
introduction.

2.1 THEOREM. Let K be a compact set in the plane. Let ue C(K) be real-valued and
harmonic on the interior of K, but nonconstant on each component of the interior of K.
Then A(K)[u] = C(K). '

2.2 THEOREM. If K is a compact set in the plane, and E is a compact subset of K
with no interior such that each component of C\ E intersects C\K, then A(K)|E is dense
in C(E).

Since, as mentioned in the introduction, the proof of Theorem 2 given by Axler
and Shields works whenever K has the property established in Theorem 2.2, we see
that Theorem 2.1 follows from Theorem 2.2. However, Theorem 2.1 does not require
the full strength of Theorem 2.2. To illustrate this, we first given an independent proof
of Theorem 2.1. The overall strategy of the proof is the same as that of the proof of
Theorem 2 given by Axler and Shields. We shall make use of the following elementary
fact whose proof is omitted.

2.3 LEMMA. Let K and u be as in Theorem 2.1, and let E be a level set of u. Then,
E nInt(K) has planar measure zero.

Proof of Theorem 2.1. Let E be a maximal set of antisymmetry for A(K)[u]. The
closure of every antisymmetric set is antisymmetric, so E is compact. Moreover, since
u is a real-valued function in A(K)[u], clearly ¥ must be constant on E, so Lemma 2.3
shows that E N Int(K) has planar measure zero.

We claim that each component of C\E intersects C\K. To prove this, let F be a
component of C\ E and assume, to get a contradiction, that Fis contained in K. Then,
u is continuous on F and harmonic on F. Moreover, dF is contained in E, so u is
constant on 0F. Consequently, u is constant on F, which contradicts the hypothesis
that u is nonconstant on each component of Int (X). Thus, each component of C\E
intersects C\K.
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Since E NInt(K) has planar measure zero, Corollary 1.5 shows that the linear
span of 4(K)|E and the functions z+— (z—z,)™, z,e(Int (K))\E, is dense in C(E).
Since each component of C\E intersects C\ K, Runge’s theorem shows that each of
the functions z+(z—z,)™", z,e(Int(K))\E can be approximated uniformly on E
by rational functions with poles off K. Thus, A(K)|E is dense in C(E). Hence,
A(K)[u]| E is certainly dense in C(E). Since E is a maximal set of antisymmetry for
A(K)[u], we know [8, Theorem 12.1] that A(K)[u]| E is closed in C(E), and so
AK)[u]|E equals C(E). The Bishop antisymmetric decomposition
[8, Theorem 12.1] now implies that A(K)[u] equals C(K).

In view of the theorem of Cirka stated in the introduction, it should be noted that
the existence of compact sets K with no interior and with R(K) # C(K) implies that
Theorem 2.1 does not remain valid if 4(K) is replaced by R(X).

We now give the proof of Theorem 2.2.

Proof of Theorem 2.2. Let fin C(E) be arbitrary and fix ¢ > 0. By Corollary 1.5,
the linear span of 4(K) and the functions z+— (z—z,)™}, z,€ Int (K), is dense in C(0K),
and hence dense in C(E N dK). Since E has empty interior, each component of
C\(£n dK) contains a component of C\E, and hence intersects C\ K. Therefore, by
Runge’s theorem, each of the functions z+— (z—-2z,)™?, z,eInt(X), can be approxi-
mated uniformly on EnJK by rational functions with poles off K. Consequently,
A(K)|(En éK) is dense in C(E n 0K).

So choose g in A(K) such that

€

"f_g”(snax) < 3

By the Tietze extension theorem, there is a continuous function ¢ on E that agrees
with f—g on a neighborhood of E£n éK in E, and satisfies

[
Ile <3 (M

Now f—g—¢ is a continuous function on E that vanishes on a neighborhood of
EndK. For each point z lying in E but not on the boundary of K, choose an
open disc A, containing z and contained in K. The hypothesis that each component
of C\E intersects C\K implies that En A, has connected complement. Hence, re-
calling that £ has empty interior, Lavrentiev’s theorem [6, Theorem I1.8.7] shows
that R(ENA,) = C(EnA,). In particular, the restriction of f—g—¢ to ENA4, is in
R(ENnA). Since f—g—¢ vanishes on a neighborhood of EndK in E, the local-
ization theorem for rational approximation [6, Corollary I1.10.3] now shows that
f—g—¢isin R(E). Therefore, since each component of C\ E intersects C\ K, Runge’s
theorem shows that f—g—¢ can be approximated uniformly (on E) by rational
functions with poles off K, and hence certainly by elements of 4(K). So choose
h in A(K) such that

IU—g~#)—hle <5. @
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Combining (1) and (2) yields

e ¢
If=@E+Mle < I(f—g—@)—hlz+dl: < s+5=¢
Since g and A are both in A(K), this establishes the theorem.

As mentioned earlier, Theorem 2.2 enables us to give another proof of
Theorem 2.1. One shows that if E is a maximal set of antisymmetry for A(K)[u], then
E satisfies the hypotheses in Theorem 2.2, so A(K)| E is dense in C(E). Consequently,
AK)[u]| E= C(F), and the conclusion of Theorem 2.1 follows from the
Bishop antisymmetric decomposition. Moreover, using Theorem 2.2 we obtain the
following characterization of the real-valued continuous functions on K that
when adjoined to A(K) generate all of C(X).

2.4 COROLLARY. Suppose that K is a compact set in the plane, and ue C(K) is real-
valued. Then, A(K)[u] = C(K) if and only if u is nonconstant on the boundary of each
open set (of the plane) contained in K.

Proof. 'The proof of the “if” part is similar to the proof of Theorem 2.1 suggested
above. To prove the ‘only if” part, suppose u is constant on the boundary of an open
set of the plane contained in K. Then there exists a connected open set U of the plane
such that u is constant on dU. Since the maximum modulus principle implies that
A(0)|(0U) is closed in C(D), it is easy to see that

AK)[u]| (9U) = A(K)[(8U) = A(D)|(3V).

Moreover, A(U)|(8U) is not equal to C(9U) since the connectedness of U implies that
every real-valued function in A(J)|(0U) is constant. Consequently, A(K) [u4] # C(K).

As Christopher Bishop* has pointed out, an alternative formulation of
Corollary 2.4 is as follows.

2.4 COROLLARY. Assume that K and u are as in Corollary 2.4. Then,
A(K) [u} = C(K) if and only if each level set of u has empty interior and has the property
that each component of its complement contains a component of the complement of K.

The condition on the set E in Theorem 2.2 characterizes the compact subsets of
K for which A(K)|E is dense in C(F). More precisely, we have the following
corollary.

2.5 COROLLARY. Suppose that K is a compact set in the plane, and E is a compact
subset of K. Then, A(K)| E is dense in C(E) if and only if E has empty interior and each
component of C\E intersects C\K.

Proof. The ‘if’ statement is Theorem 2.2. To prove the ‘only if’ statement,
suppose some component U of C\E does not intersect C\K. Then, U = K and
0U < E. Now, A(K)|(0U) = A(U)|(@U), and A(U)|(0U) is closed in C(6U) (by the

* Christopher Bishop should not be confused with Errett Bishop after whom the antisymmetric
decomposition and splitting lemma are named.
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maximum modulus principle) and is not equal to C(0U) (since every real-valued
function in A(U)|(@U) is constant). Thus, A(K)|(@U) is not dense in C(8U), so
A(K)| E is not dense in C(E).

In the proof of Theorem 2.2, we started with a function f in C(E) and
approximated it by elements of A(K)| E. It is also possible to prove the theorem using
duality. We now illustrate this approach.

2.6 LEMMA. Let K be a compact set in the plane, and L a compact subset of K such
that each component of C\L intersects C\K. Suppose u is a measure on L that
annihilates A(K). Then, i = 0 a.e. off Int(L).

In the proof we will need the following lemma which is an easy consequence of
Lemma 1.3.

2.7 LemMA. Suppose that K is a compact set in the plane, and p is a measure on
K that annihilates A(K). Then, ji =0 a.e. off Int(K).

Proof of Lemma 2.6. By the above lemma, g2 = 0 a.e. off Int(X). The Cauchy
transform of a measure is holomorphic off the closed support of the measure, so /i is
holomorphic off L. In view of the hypothesis on the components of C\L, it follows
that 4 = 0 off L. Thus, it suffices to show that i =0 a.e. on (0L) n Int (X).

For each ze (0L) n Int(X), choose an open disc A, centered at z and contained in
K. Then, LNA, has connected complement, so by Mergelyan’s theorem
[6, Theorem I1.9.1] R(L N A,) = A(L n A,). Let A, be the disc centered at z with radius
half that of A,.

Now fix we (L) N Int(K), and let U, = Ln A, and U, = LN (C\A,). Since ji = 0
off L, we have that x4 1 R(L) [6, Theorem I1.8.1]. Hence, by the Bishop splitting
lemma [6, Theorem I1.10.2] there exist measures y, and u, such that u =y, +pu,,
u; L R(U)), and the closed support of u, is contained in U, (j=1,2). Now,
wmLR(LnA,)=ALnA,), so by Lemma 2.7, 4, =0 a.e. off Int(LNA,). In
particular, 4, =0 a.e. on dL. Moreover, g, =0 off U, (since u, L R(U,)), so
fi, = 0 on A;,. We conclude that 4 = ji, + /i, = 0 a.e. on 0L N A,,. Since there exists a
countable collection & of points in (6L) N Int(K) such that the discs A}, ze Z,
cover (0L) n Int(X), it follows that 4 =0 a.e. on (0L) N Int(X), and the proof is
complete.

Theorem 2.2 is an immediate consequence of the lemma just proven, for if L has
no interior, then the conclusion of the lemma is that 4 =0 a.e. whenever u is a
measure on L that annihilates A(K). Thus, the zero functional is the only linear
functional on C(L) that annihilates A(K)|L, and hence 4A(K)|L is dense in C(L).

For K a compact set in the plane and M a Borel subset of K, let R(K, M) denote
the closed linear span in C(K) of the functions of the form

zZ—Ww

fow) = f"(z) dm(z)

where 4 is a bounded Borel function on the plane with compact support such that
h=0a.e. on M. Lemma 1.3 shows that a measure z on K annihilates R(K, M) if and
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only if i = 0 a.e. off M. Now we can repeat the proof of Lemma 2.6 to show that the
lemma continues to hold if we replace the hypothesis that u annihilates 4(X) by the
hypothesis that x annihilates R(K,Int(K)). Hence, we obtain the following
generalization of Theorem 2.2.

2.8 THEOREM. With K and L as in Lemma 2.6, R(K,Int(K))|L is dense in
R(L,Int(L)).

To see that this result is a generalization of Theorem 2.2, note that R(K, Int (X))
< A(K), and that if L has no interior then R(L,Int (L)) = C(L).

3. Some results of Christopher Bishop

For h a bounded harmonic function on an open set Q in the Riemann sphere, let
H>(Q)[h] denote the norm-closed subalgebra of L*(2) generated by H*(2) and h.
The following theorem is due to Christopher Bishop [2].

3.1 THEOREM. Suppose that Q is an open set in the Riemann sphere and that
fe H®(Q) is nonconstant on each component of Q. Then C(Q) = H*(Q)[f].

We shall present a proof of this result using the methods of Sections 1 and 2. As
in Bishop’s original proof, the following lemma will be needed.

3.2 LeMMA. If Q is an open set in the Riemann sphere and ge C(Q), then g can be
approximated uniformly by a continuous function on Q that is smooth on Q and
holomorphic on QN U, for some neighborhood U of 0.

Bishop’s proof of this lemma is rather long and involves the notion of continuous
analytic capacity. We present here a proof that is both shorter and more elementary.

Proof. Assume without loss of generality that oc0¢dQ. Fix &> 0. By
Corollary 1.4, there exists a function 4 in A(Q), points z,,...,z, in , and complex
numbers a,, ..., a, such that

lg@)—(h@)+a,z—z)+...+a,(z—z,) ) <& VzedQ. (3)

Let ¥ be a neighborhood of Q in the plane such that (3) holds with ¥ n Q in place
of dQ. Let {¢, v, 7} be a smooth partition of unity on the Riemann sphere subordinate
to the cover {V,Q, S?\Q} with supp¢ = V, supp v < Q, and suppt = S7\Q. Let / be
a smooth function on Q such that

suplg(z) —l(z)| <e.

zeQ
Now the function
2= @) (A2 +a(z—z) " +.. ta,(z—z,)) +y(2) (z)

is a continuous function on Q that is smooth on Q and holomorphic on
Qn (S®\supp v), and approximates g uniformly to within e.
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We are now ready to prove Theorem 3.1. Much of the proof given below is similar
to Bishop’s original proof. However, Bishop’s proof involves a partition of unity
argument which is avoided below by using the Stone-Cech compactification so as to
make an application of the Bishop antisymmetric decomposition possible.

Proof of Theorem 3.1. Assume without loss of generality that co¢Q. Let X
denote the Stone-Cech compactification of Q. We will identify each bounded
continuous function on Q (or Q) with the function it induces on X, and thus regard
H>2(Q)[f] and C(Q) as closed subalgebras of C(X). By the Bishop antisymmetric
decomposition [8, Theorem 12.1], it suffices to show that H*(Q)[f]| E is dense in
C(Q)| E, for each maximal set of antisymmetry E for H*(Q)[f]. Since both fand f
are in H*(Q)[f), the real and imaginary parts of f are in H*(Q)[f]. Hence, each
maximal set of antisymmetry for H®(Q)[f] is contained in a level set of f.
Consequently, it suffices to show that if g is in C(Q) and A is in the image of f, then
g can be approximated uniformly on the set {f = 1} by elements of H*(S2).

So fix g in C(€)) and A in the image of /. By Lemma 3.2, we may assume without
loss of generality that g is smooth on Q and holomorphic on Qn U, for some
neighborhood U of 8Q. Then, the set {f = 1} N supp (Jg) is finite, so by modifying g
to be constant in a neighborhood of each point of this set, we may assume that the
support of dg is in fact disjoint from the set {f = A}. Now

%2

f—A
is a smooth function on Q with compact support. Let & be its Cauchy transform
divided by —=. Explicitly,

1 0g(w)
n ) (fiw)—A)(w—2)

Now #4 is a smooth function on the complex plane, and

h(z) = — dm(w).

=3

5h=_g

f—2
on Q. Therefore, g—h(f—2) is a bounded holomorphic function on Q. Thus,

g—h(f—2) is an element of H®(Q) that obviously agrees with g on the set {f = 1}.
This concludes the proof.

It is very easy to see that adjoining to H*(Q2) the complex conjugate of a function
in H*(Q) is equivalent to adjoining a real-valued bounded harmonic function on Q
having a single-valued bounded harmonic conjugate. Thus, in Theorem 3.1 we can
replace the condition fe H*(Q) by the condition that f be a real-valued bounded
harmonic function on Q having a single-valued bounded harmonic conjugate. In fact,
as noted in [2], it is not necessary to assume that the conjugate is bounded. Explicitly
we have the following result.

3.3 COROLLARY. Suppose that S is an open set in the Riemann sphere and that u
is a real-valued bounded harmonic function on € that is nonconstant on each component
of Q and has a single-valued harmonic conjugate. Then, C(Q) = H*(Q)[u].
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Proof. Let u* denote the harmonic conjugate of u, and let F = exp (u+ iu*).
Then, FeH®(Q), and Theorem 3.1 shows that C(Q) < H®(Q)[F]. Since
F = exp (—(u+iu*))exp (2u), we see that Fe H*(Q)[u], and the conclusion of the
theorem follows.

The following result (also due to Bishop) can be proved by making minor changes
in the proof of Theorem 3.1 given above.

3.4 THEOREM. Suppose that Q is an open set in the Riemann sphere and that
fe€ A(Q) is nonconstant on each component of Q. Then, C(Q) = A(Q)[f).

The proof of this theorem is actually easier than the argument given above for
Theorem 3.1, as the Stone-Cech compactification is not needed since all the functions
involved are continuous on the compact space €.

The reader has undoubtedly noticed the similarity between Theorems 3.4 and 2.1.
In view of this similarity, one might hope to obtain an analogue of Theorem 2.1 for
A(Q) (2 an open set in the Riemann sphere). More precisely, one might hope that if
u is a real-valued continuous function on Q that is harmonic on Q and nonconstant
on each component of Q, then C(Q) = 4(Q)[u). However, Bishop [2] has given an
example showing that this is not the case.

4. Open questions

4.1. Does Theorem 2.1 continue to hold if the hypothesis that u be real-valued
is dropped? More precisely, if K is a compact set in the plane and f is a complex-
valued continuous function on K that is harmonic on the interior of K but
nonholomorphic on each component of the interior of K, does A(K)[f] = C(K)? As
noted in the introduction, it was shown by Cirka [4] that the answer is affirmative in
the special case where each point of 0K is a peak point for R(K). For the specific case
where K is the closed disc, another proof was given by Axler and Shields [1]. Some
other special cases (for example, the case when A(K) is Dirichlet) have been
considered by Bishop [2].

4.2. If Kis a compact set in the plane, and L is a compact subset of K such that
each component of C\L intersects C\K, is A(K)|L dense in A(L)? An affirmative
answer would obviously generalize Theorem 2.2 and would easily yield a
generalization of Corollary 2.5. In view of Lemma 1.7 (and [8, Lemma 12.3)), it would
also generalize Theorem 1.1.
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