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1. Introduction

Investigations concerning the generating function associated with the kth powers,

f
P
(α)¯ 3

"
%n%P

e(αnk), (1.1)

originate with Hardy and Littlewood in their famous series of papers in the 1920s,

‘On some problems of ‘‘Partitio Numerorum’’ ’ (see [7, Chapters 2 and 4]). Classical

analyses of this and similar functions show that when P is large the function

approaches P in size only for α in a subset of (0, 1) having small measure. Moreover,

although it has never been proven, there is some expectation that for ‘most ’ α, the

generating function is about oP in magnitude. The main evidence in favour of this

expectation comes from mean value estimates of the form&"

!

r f
P
(α)rs dαCΓ("

#
s­1)P s/#. (1.2)

An asymptotic formula of the shape (1.2), with strong error term, is immediate from

Parseval’s identity when s¯ 2, and follows easily when s¯ 4 and k" 2 from the work

of Hooley [2, 3, 4], Greaves [1], Skinner and Wooley [5] and Wooley [9]. On the other

hand, (1.2) is false when s" 2k (see [7, Exercise 2.4]), and when s¯ 4 and k¯ 2.

However, it is believed that when t!k, the total number of solutions of the

diophantine equation
xk

"
­I­xk

t
¯ yk

"
­I­yk

t
, (1.3)

with 1%x
j
, y

j
%P (1% j% t), is dominated by the number of solutions in which the

x
i
are merely a permutation of the y

j
, and the truth of such a belief would imply that

(1.2) holds for even integers s with 0% s! 2k.

The purpose of this paper is to investigate the extent to which knowledge of the

kind (1.2) for an initial segment of even integer exponents s can be used to establish

information concerning the general distribution of f
P
(α), and the behaviour of the

moments in (1.2) for general real s. Of particular interest is the case s¯ 1 because,

although it seems hard to prove (1.2) in that case, it is relatively easy to carry out

computations, and these are in strikingly close agreement with (1.2). We remark that

D. Covert, at the University of Michigan, has very recently performed extensive

computations in the cases k¯ 2 and k¯ 3, which provide compelling evidence in

favour of the conjectured asymptotic formula (1.2) when 0% s! 2k.

It is conceivable that the behaviour (1.2) might even persist into the region

s& 2k provided that one excludes the ‘peaks’ of the generating functions f
P
(α) in the
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neighbourhoods of rational points having relatively small denominators. Let η(P)

denote any positive decreasing function with η(P)! 0 as P!¢, and let G
P

denote

the set of α in (0, 1] with the property that for every pair a, q with (a, q)¯ 1 and

rqα®ar% η(P)P−k/# one has q" η(P)Pk/#. This is just about the thinnest set of

‘minor arcs ’ that is likely to be useful, yet we observe that the measure of G
P

approaches 1 as P!¢. If we replace the interval (0, 1] in (1.2) by G
P
, then we can

hypothesise that (1.2) holds for each s& 2k and this would be in line with our

philosophy that the ‘minor arcs ’ correspond to ‘trivial ’ solutions (see [8] for

connected remarks and results). It is not at all clear that G
P

is the most appropriate

choice for our purposes, and quite likely a set which includes more of the peaks may

be necessary in order to achieve (1.2).

In view of the general limitations to our current knowledge, it is convenient to

work with a somewhat idealised situation. To this end let

f(α)¯
1

2

3

4

P −"/#r f
P
(α)r, when α `G

P
,

0, otherwise

and consider the consequences of the supposition that for t¯ 0, 1,… , n, one has, for

some positive number δ, the asymptotic formula&"

!

f(α)#t dα¯Γ(t­1)­O
t
(P −δ). (1.4)

As we discussed in our opening paragraph, it is expected that (1.2) should hold with

a strong error term for each even integer s with 0% s! 2k. Consequently, if we define

f (α) now by f(α)¯P −"/#r f
P
(α)r for each α ` (0, 1], then the relation (1.4) is expected to

hold for t¯ 0, 1,… ,k®1. It is convenient to retain this possible ambiguity in the

definition of f(α), such making no material difference in either our methods or our

conclusions since the only properties of f(α) of which we make use are the assumed

asymptotic formulae (1.4).

It is relatively easy to show that if (1.4) were to hold without the error term for

all positive integers t, then the distribution function for f(α) would be 1®e−λ#. In

Section 2, as our first step, we show that we can approximate to this ideal situation

with a precision which depends on n and P. In order to be precise, let χ!(x) denote

the indicator function of the set !, and let

φ(λ)¯&"

!

χ
[!,

λ]
( f(α)) dα. (1.5)

T 1. Suppose that λ" 0 and that the asymptotic formula (1.4) holds for

t¯ 0, 1,… , n. Then

φ(λ)¯ 1®e−λ#­O(λ"/#e−λ#/#n−"/%­(λ­λ−") n−"/#)­O
n
((λ­λ−")P −δ).

The conclusion of Theorem 1, of course, is not unexpected given that one believes

that each of the summands in (1.1) is behaving almost everywhere approximately like

an independent random variable on the unit circle, whence f
P
(α) should have a

Normal distribution.

The question then arises as to how well one can interpolate between the even

moments in order to obtain (1.4), at least approximately, for non-integral values of

t. For smaller values of t this is comparatively easy, but as t grows it becomes much

harder to keep control of the situation. In Section 3 we are able to make use of

Theorem 1 to conclude as follows.
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T 2. Suppose that the asymptotic formula (1.4) holds for t¯ 0, 1,… , n.

Then for each s with 0% s% 2n®n#/$, we ha�e

&"

!

f(α)s dα¯Γ("
#
s­1) (1­O((s­1)"/# 2s/#n−"/%))­O

n
(P −δ).

Moreo�er, for each s with 0% s% 2n, we ha�e

&"

!

f(α)s dα¯Γ("
#
s­1) 01­O 0 1

log (2n)11­O
n
(P −δ).

With essentially no additional effort, our methods may be generalised so as to

handle multidimensional exponential sums. In particular, if k
"
,… ,k

t
are integers with

1%k
t
!k

t−"
!I!k

"
, then analogues of Theorems 1 and 2 may be derived for the

exponential sum

fk(α)¯P −"/# 3
"
%x%P

e(α
"
xk

"­I­α
t
xkt).

Moreover, a theorem of Steinig [6] implies that when r is an integer with 0% r% t,

one has &
(!,"]

t

r fk(α)r#r dα¯Γ(r­1)­O
r
(P −δ),

for a positive number δ. In consequence, one may establish the asymptotic formula

lim
P!¢

&
(!,"]

t

r fk(α)r dα¯Γ(3}2)­O(t−"/%)¯ "

#
oπ­O(t−"/%)

unconditionally, and this might be regarded as offering evidence in favour of the

conjectured asymptotic formula (1.2) in the case s¯ 1. For comparison, we remark

that the best unconditional bounds known for the first moment are

(2−"/#­o(1))P"/#%&"

!

r f
P
(α)r dα%P"/#,

which follow easily from known asymptotic formulae for the second and fourth

moments of f
P
(α) via an application of Ho$ lder’s inequality.

Throughout this paper, implicit constants occurring in Landau’s O-notation and

Vinogradov’s notation ' will depend at most on those variables occurring as

subscripts to the aforementioned notations.

2. Determining the distribution function

Our main objective in this section is the proof of Theorem 1. However, in order

to motivate our proof, we first consider the following simple formal argument. We

assume that the formula (1.4) holds, without error term, for all non-negative integers

t. Next we note that

&¢

!

sin(ay)

y
dy¯

1

2

3

4

π}2, when a" 0,

0, when a¯ 0,

®π}2, when a! 0,



116 . .   . . 

and hence when x is a positive real number with x1 λ, one has

χ
[!,

λ]
(x)¯

2

π&¢

!

y−" sin(yλ) cos(yx) dy.

Therefore, without justifying the manipulations,

&"

!

χ
[!,

λ]
( f(α)) dα¯

2

π&¢

!

y−" sin(yλ)&"

!

cos(yf(α)) dα dy. (2.1)

We now make use of the power series expansion for cosine together with the formula

(1.4), without error term, for all non-negative integers t. Thus, on recalling the

formula

m !¯&¢

!

tme−t dt, (2.2)

we conclude from (1.5) and (2.1) that

φ(λ)¯
2

π&¢

!

y−" sin(yλ)&¢

!

cos(yt"/#) e−t dt dy

¯&¢

!

02π&¢

!

y−" sin(yλ) cos(yt"/#) dy1 e−t dt

¯& λ#

!

e−t dt¯ 1®e−λ#.

In order to establish Theorem 1, we need to modify the above argument in various

ways. First, we must truncate the power series for cosine, in view of the incomplete

nature of our input from (1.4) regarding the even moments. This, in turn, forces us

to truncate the range for the dummy variable y in (2.1). In order to perform this

truncation without too much pain, we apply a smoothing argument, in the sense that

we replace the indicator function χ
[!,

λ]
(x) by max²0, λ®x´¯ !λ

!
χ
[!,

µ]
(x) dµ. This

replacement has the effect, of course, of accelerating the convergence. We then

complete the argument by unsmoothing.

We begin by noting that for non-negative x,

max²0, λ®x´¯
2

π&¢

!

0sin(yλ)

y 1# cos(2yx) dy,

and hence for any positive real number X, one has

max²0, λ®x´¯
2

π&X

!

0sin(yλ)

y 1# cos(2yx) dy­O(X−"). (2.3)

It follows that

&"

!

max²0, λ®f(α)´ dα¯
2

π&X

!

0sin(yλ)

y 1#&(y) dy­O(X−"), (2.4)

where

&(y)¯&"

!

cos(2yf(α)) dα. (2.5)
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But by Taylor’s Theorem with a remainder term, one has

cos u¯ 3
n−"

j=!

(®1) j u#j

(2j ) !
­θ

"
(u, n)

u#n

(2n) !
,

where rθ
"
(u, n)r% 1. On recalling the hypothesis that (1.4) holds for t¯ 0, 1,…, n, we

therefore deduce that

&(y)¯ 3
n−"

j=!

(®1) j (2y)#j j !

(2j ) !
­θ

#
(y, n)

(2y)#n n !

(2n) !
­O

n
((1­y#n)P−δ), (2.6)

where rθ
#
(y, n)r% 1. Next we observe that in view of (2.2), one has

3
n−"

j=!

(®1) j (2y)#j j !

(2j ) !
¯&¢

!

3
n−"

j=!

(®1) j (2yt"/#)#j

(2j ) !
e−t dt.

Thus, on applying Taylor’s Theorem once again, we deduce that

3
n−"

j=!

(®1) j (2y)#j j !

(2j ) !
¯&¢

!

0cos(2yt"/#)­θ
$
(yt"/#, n)

(2yt"/#)#n

(2n) ! 1 e−t dt, (2.7)

where rθ
$
(u, n)r% 1. On substituting (2.7) into (2.6), we obtain

&(y)¯&¢

!

cos(2yt"/#) e−t dt­2θ
%
(y, n)

(2y)#n n !

(2n) !
­O

n
((1­y#n)P−δ),

where rθ
%
(y, n)r% 1. We may therefore conclude from (2.4) that

&"

!

max²0, λ®f(α)´ dα¯'(λ)­E, (2.8)

where

'(λ)¯
2

π&X

!

0sin(yλ)

y 1#&¢

!

cos(2yt"/#) e−t dt dy (2.9)

and

E'
(2X )#n−" n !

(2n®1) (2n) !
­X−"­O

n
((X­X #n−")P−δ). (2.10)

We now interchange the order of integration, this interchange being justified by

absolute convergence. Thus we obtain

'(λ)¯&¢

!

02π&X

!

0sin(yλ)

y 1# cos(2yt"/#) dy1 e−t dt,

whence by (2.3) we have

'(λ)¯&¢

!

max²0, λ®t"/#´ e−t dt­O(X−"). (2.11)

We take X¯ "

#
((2n) !}(n®1)!)"/(#n) in (2.8)–(2.11), and conclude that

&"

!

max²0, λ®f(α)´ dα¯&¢

!

max²0, λ®t"/#´ e−t dt­O(n−"/#)­O
n
(P−δ). (2.12)
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The unsmoothing operation is straightforward. We write

Φ(λ)¯&"

!

max²0, λ®f(α)´ dα, (2.13)

and consider the expression Φ(λ³η)®Φ(λ). When x is non-negative and η is a real

number with 0! η% λ, it is easily verified that

max²0, λ®x´®max²0, λ³η®x´³ηχ
[!,

λ]
(x)% 0.

It therefore follows from (2.13) and (1.5) that

Φ(λ)®Φ(λ®η)% ηφ(λ)%Φ(λ­η)®Φ(λ). (2.14)

Meanwhile, from (2.12) and (2.13) one has

³(Φ(λ³η)®Φ(λ))¯ η& λ#

!

e−t dt³& (λ³η)#

λ#

(λ³η®t"/#) e−t dt­O(n−"/#)­O
n
(P−δ).

(2.15)

Thus by combining (2.14) and (2.15), we conclude that whenever 0! η% λ and

ηλ' 1, one has

φ(λ)¯ 1®e−λ#­O(ηλe−λ#­η−"n−"/#)­O
n
(η−"P−δ). (2.16)

We now proceed to minimise the error term

%(n, λ)¯ ηλe−λ#­η−"n−"/#

in (2.16) subject to the constraints 0! η% λ and ηλ' 1. We observe that in the

absence of any constraints, a good approximation to this minimum is provided by the

choice

η¯ λ−"/#e λ#/#n−"/%. (2.17)

Suppose first that λ% 1, so that λ% λ−". When λ−"/#e λ#/#n−"/%% λ, we may make the

ideal choice (2.17), and hence obtain

%(n, λ)' λ"/#e−λ#/#n−"/%. (2.18)

On the other hand, when λ−"/#eλ#/#n−"/%" λ, the simple choice η¯ λ yields

%(n, λ)' λ−"n−"/#. (2.19)

Suppose next that λ" 1, so that λ−"! λ. Then the ideal choice (2.17) is again

accessible when λ−"/#eλ#/#n−"/%% λ−", and we obtain (2.18) once more. Meanwhile,

when λ−"/#eλ#/#n−"/%" λ−", the choice η¯ λ−" yields

%(n, λ)' λn−"/#. (2.20)

The proof of Theorem 1 is completed on collecting together (2.16) and (2.18)–(2.20).

3. Interpolating between the e�en moments

We now employ Theorem 1 to prove Theorem 2. In advance of the main body of

our argument, we provide two estimates for φ(λ) which, although more trivial than

the conclusion of Theorem 1, are nonetheless of greater utility in certain

circumstances.
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L 3.1. Suppose that the asymptotic formula (1.4) holds for t¯ 0, 1,… , n.

Then when 1% λ%on one has

1®φ(λ)' λe−λ#­Oλ(P−δ), (3.1)

and when λ&on one has

1®φ(λ)% λ−#nn !­O
n
(λ−#nP−δ). (3.2)

Proof. Suppose that λ is a positive number, and that m is any natural number

with m% n. Then plainly

1®φ(λ)¯&"

!

χ
[λ,¢)

( f(α)) dα% λ−#m&"

!

f(α)#m dα.

Consequently, in view of the assumed asymptotic formula (1.4) in the case t¯m,

1®φ(λ)% λ−#m(m !­O
m
(P−δ)). (3.3)

On applying Stirling’s formula to (3.3), one obtains

1®φ(λ)' exp(®2m log λ­(m­"

#
) logm®m)­O

m
(λ−#mP−δ),

and the estimate (3.1) follows when 1% λ%on on taking m¯ [λ#]. Meanwhile, (3.2)

is immediate from (3.3) on taking m¯ n. This completes the proof of the lemma.

Proof of Theorem 2. We may suppose without loss of generality that n is large.

We next observe that&"

!

f(α)s dα¯&¢

!

λsd(φ(λ))¯&¢

!

sλs−"(1®φ(λ)) dλ. (3.4)

It transpires that the range of integration in the latter integral may be broken up into

four subintervals, the contribution of each one of which may be estimated successfully

by using either Theorem 1 or Lemma 3.1. To this end, we define

λ
!
¯ n−"/', λ

"
¯ ("

#
log n)"/#, λ

#
¯ n"/#. (3.5)

(i) The contribution of the interval [0, λ
!
]. We have& λ

!

!

sλs−"(1®φ(λ)) dλ¯& λ
!

!

sλs−"e−λ# dλ­)
"
, (3.6)

where

)
"
¯& λ

!

!

sλs−"(1®e−λ#®φ(λ)) dλ.

Since φ(λ) is an increasing function with φ(0)¯ 0, it follows that )
"

lies between& λ
!

!

sλs−"(1®e−λ#) dλ and & λ
!

!

sλs−"(1®e−λ#®φ(λ
!
)) dλ.

Consequently,

)
"
'

s

s­2
λs+#

!
­λs

!
φ(λ

!
),

and thus we deduce from Theorem 1 that )
"

is O(n−"/$)­O
n
(P−δ). We therefore

conclude from (3.6) that& λ
!

!

sλs−"(1®φ(λ)) dλ¯& λ
!

!

sλs−"e−λ# dλ­O(n−"/$)­O
n
(P−δ). (3.7)
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(ii) The contribution of the interval [λ
!
, λ

"
]. We apply Theorem 1 directly to the

second interval to obtain& λ
"

λ
!

sλs−"(1®φ(λ)) dλ®& λ
"

λ
!

sλs−"e−λ# dλ')
#
­)

$
­)

%
­O

n
(P−δ), (3.8)

where

)
#
¯& λ

"

λ
!

sλs−"/#e−λ#/#n−"/% dλ, (3.9)

)
$
¯& λ

"

λ
!

sλsn−"/# dλ, (3.10)

)
%
¯& λ

"

λ
!

sλs−#n−"/# dλ. (3.11)

We estimate )
#
through the substitution λ¯o(2t), thereby obtaining the bound

)
#
¯ n−"/%& λ#

"
/#

λ#
!
/#

s(2t) s
#
−
$

%e−t dt% s2 s
#
−
$

%Γ0s2­
1

41 n−"/%. (3.12)

On applying the same substitution, and recalling (3.5), we deduce from (3.10) that

)
$
% n−"/%& λ

"

λ
!

sλse−λ#/# dλ% s2 s
#
−
"

#Γ0s2­
1

21 n−"/%. (3.13)

Meanwhile,

)
%
% n−"/%& λ

"

"

sλse−λ#/# dλ­n−"/#&"

λ
!

sλs−# dλ

' s2 s
#
−
"

#Γ0s2­
1

21 n−"/%­n−"/$. (3.14)

On collecting together (3.8) and (3.12)–(3.14), therefore, we conclude that& λ
"

λ
!

sλs−"(1®φ(λ)) dλ¯& λ
"

λ
!

sλs−"e−λ# dλ­O02s/#Γ0s2­
3

21 n−"/%1­O
n
(P−δ). (3.15)

(iii) The contribution of the interval [λ
"
, λ

#
]. Using estimate (3.1) of Lemma 3.1,& λ

#

λ
"

sλs−"(1®φ(λ)) dλ®& λ
#

λ
"

sλs−"e−λ# dλ'&¢

λ
"

sλse−λ# dλ­O
n
(P−δ).

But on recalling (3.5) and making the same substitution as in case (ii), one obtains&¢

λ
"

sλse−λ# dλ% n−"/%&¢

λ
"

sλse−λ#/# dλ% s2 s
#
−
"

#Γ0s2­
1

21 n−"/%.

Thus & λ
#

λ
"

sλs−"(1®φ(λ)) dλ¯& λ
#

λ
"

sλs−"e−λ# dλ­O02s/#Γ0s2­
3

21 n−"/%1­O
n
(P−δ). (3.16)

(iv) The contribution of the interval [λ
#
,¢). We note first that on recalling the

argument of case (iii) above,&¢

λ
#

sλs−"e−λ# dλ%&¢

λ
"

sλs−"e−λ# dλ% s2 s
#
−
"

#Γ0s2­
1

21 n−"/%. (3.17)
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Next, on using estimate (3.2) of Lemma 3.1,&¢

λ
#

sλs−"(1®φ(λ)) dλ% n !&¢

λ
#

sλs−"−#n dλ­O
n 0P−δ&¢

λ
#

sλs−"−#n dλ1 .
By hypothesis we have s% 2n®n#/$, and hence by Stirling’s formula,

&¢

λ
#

sλs−"(1®φ(λ)) dλ%
s

2n®s
n !ns

#
−n­O

n
(P−δ)

' nΓ("
#
s­1) exp (µ®n­µ log(n}µ))­O

n
(P−δ),

where µ¯ "

#
(s­1). But the function of µ in the latter exponent is an increasing

function for 0!µ% n, so that since s% 2n®n#/$, we deduce that&¢

λ
#

sλs−"(1®φ(λ)) dλ'Γ("
#
s­1) n−"/%­O

n
(P−δ). (3.18)

Collecting together (3.4), (3.7), (3.15) and (3.16)–(3.18), we conclude that

&"

!

f(α)s dα¯&¢

!

sλs−"e−λ# dλ­O02s/#Γ0s2­
3

21 n−"/%1­O
n
(P−δ).

Moreover, by substituting t¯ λ#, the integral on the right-hand side of the latter

equation is readily seen to be Γ("
#
s­1), and the first conclusion of Theorem 2 follows.

As an alternative, we could argue directly from (2.12) via an expression of the kind&F

!

λt&"

!

max²0, λ®f(α)´ dα dλ.

We might also hope to do better by imposing more smoothing, so that the Fourier

transform used in Section 2 converges even more quickly. However, it soon becomes

apparent that none of these devices gives any substantial advantage, when s is as large

as log n, over the argument given above.

In order to complete the proof of Theorem 2, we have merely to note that when

s is a real number with 2% s% 2n, and m is the integer with 2m% s! 2m­2, then

by Ho$ lder’s inequality one has&"

!

f(α)s dα% 0&"

!

f(α)#m dα1p 0&"

!

f(α)#m+# dα1q,
where p¯m­1®s}2 and q¯ s}2®m, and&"

!

f(α)#m dα% 0&"

!

f(α)s dα1p« 0&"

!

f(α)#m−# dα1q«

,

where p«¯ 2}(s®2m­2) and q«¯ (s®2m)}(s®2m­2). In view of the assumed

asymptotic formulae (1.4), therefore, one has

∆−

s
Γ("

#
s­1)­O

n
(P−δ)%&"

!

f(α)s dα%∆+

s
Γ("

#
s­1)­O

n
(P−δ),

where
log∆+

s
¯ p logΓ(m­1)­q logΓ(m­2)®logΓ("

#
s­1)

and

log∆−

s
¯

1

p«
logΓ(m­1)®

q«
p«

logΓ(m)®logΓ("
#
s­1).
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An application of Stirling’s formula reveals that ∆³
s

¯ 1­O(1}s), and the desired

conclusion follows immediately whenever s" "

#
log (2n). Meanwhile, the first part of

Theorem 2 yields a stronger conclusion in the complementary case s% "

#
log(2n). This

completes the proof of Theorem 2.
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