
THE BOUNDARY BEHAVIOUR OF BLOCH FUNCTIONS

S. ROHDE

1. Introduction and results

A function/, analytic in the unit disk D, is a Block function if

H/IU = SUP (1-|Z|2)|/'(2)|<O).
zeD

The (linear) space of all Bloch functions is denoted by Si. The number \\f\\a is the
Bloch semi-norm of/. Bloch functions have been extensively studied because of their
close connection to univalent functions: if g is univalent in D then/= logg'e^, and
if fe&8 with / = clogg', then g is univalent whenever c is small enough. See, for
example, [1] for further information on $ .

There are Bloch functions / that have no finite radial limits, that is, the limit

/({) = lim/(r{) (1.1)

exists for no point £eT. Here T denotes the unit circle <5B. An example of such a
Bloch function is the Hadamard gap series/(z) = Y*nzoz2 »19, Chapter 8]. We denote
by R(f) the set of those points CeT for which the limit (1.1) exists and is finite. When
studying the boundary behaviour of/ the set R(f) is rather uninteresting since/
behaves nicely there. We furthermore consider the set P(f) <= T of those £eT for
which the image /(5() is dense in C, for any Stolz cone 5( c D at £• These are the
Plessner points of/and the classical theorem of Plessner [9, Chapter 6] shows that,
if/is a Bloch function, then

T = R(f)[)P(f)[jE(f), (1.2)

where £ ( / ) is a set of Lebesgue measure 0. For subsets A c T we shall use the
notation \A\ for the Lebesgue measure divided by 2n, thus |T| = 1.

In this paper we study the behaviour of/on the set E{f). Since this set is already
small by Plessner's theorem, we consider the Hausdorff dimension, abbreviated to
dim, of several subsets of E{f). To avoid trivialities, we restrict our attention to the
subclass of those functions for which \R(f)\ = 0. With a suitable normalization this

£ = 0, H/IU = 1 and \R(f)\ = 0}. (1.3)

The above mentioned gap series belongs to this class as well as logg' if g is a
conformal map onto a domain with a complicated boundary like the snowflake
domain.
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Our main result is the following.

THEOREM 1.1. Let fe$,a>0 and let y: [0, l)-^C,y(O) = 0 be an arbitrary
continuous curve. Then there is a set EY<acl with

dim^.^l—, (1.4)

so that for every (eEha
 tnere ^ a homeomorphism 0f: [0,1) —• [0,1) such that

sup \f{K)-y{Ur))\^a. (1.5)
O«Sr<l

Here K denotes a universal constant.

Inequality (1.4) only makes sense if a > K, and it becomes powerful when a tends
to infinity. If we denote by Ey the set

Ey= U £,.. (16)
0<a<oo

then (1.4) yields d im^ = 1. Roughly speaking, (1.5) says that the image of a radius
follows the given curve y (after a reparametrization) within an a-neighbourhood, and
for any given curve y there is a set Ey of Hausdorff dimension 1 so that for every point
CeEy the curve /([0,0) follows y (that is has bounded distance).

It is impossible to remove the reparametrization <f>( since the growth of Bloch
functions has certain bounds, whereas the curve y is arbitrary.

Next we show that Theorem 1.1 implies some well-known results in a slightly
weaker form.

Choosing y to be the positive real axis, that is y(r) = r/(l—r), we obtain the
following corollary from (1.6).

COROLLARY 1.2. If feM then

dim{CeT: Re/(r£) -> + oo as r -• 1), sup |Im/(rC)| < oo} = 1.

A weaker statement, involving the whole class of Bloch functions, is as follows.

COROLLARY 1.3. Iffe@ then

dim{£eT:/(C) exists as a finite radial limit or Re/(r£) -• — oo as r-+l} = 1.

Using the connection to univalent functions mentioned above, Corollary 1.3
implies the following result of Anderson and Pitt [2] and (independently) Makarov
[8].

THEOREM APM. For any function g univalent in D we have

dim{CeT: g'(O exists as a finite radial limit} = 1.

In fact, the results in [2] and [8] are slightly stronger since they show that the set
under discussion has positive Hausdorff measure with respect to a certain weight
function involving an iterated logarithm.
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Considering the curve y(r) = 0 we obtain the following result of Makarov.

THEOREM M. For any function fe 08 we have

dim{CeT: sup \f(rQ\ < oo} = 1.
O«gr<l

Our proof of Theorem 1.1 is similar to Makarov's proof of the previous theorem
in so far as we use the same lemma controlling the Hausdorff dimension of Cantor-
like sets, Lemma 3.1 below. However, whereas Makarov considered an approximation
of Bloch functions by a martingale, we approximate the level sets of a Bloch function
/ by chord-arc domains and compare the restrictions of / to these sets to inner
functions.

Our final application of Theorem 1.1 is again to conformal mappings. Let G be
a simply connected domain and / : D -*•G be conformal. Recall that a point
/ (O = wedG is called well-accessible [9, Chapter 11] if there is a Jordan arc C c G
ending at w and a constant c> 0 so that diam Cz^c dist (z, dG) for every zeC, where
Cz denotes the subarc from z to w. Denote by W the set of those points ( eT for
which/(O is well-accessible. It is not hard to construct a domain G so that \W\ - 0.
On the other hand, it follows from known estimates (see again [9, Chapter 11]) that
/(() is well-accessible if info<r<1|/'(r()| > 0 and sup0!gr<1|/'K)I < oo. Hence Theorem
1.1 easily implies the following result.

COROLLARY 1.4. For any simply connected domain we have

= 1.

By another theorem of Makarov [7] this implies that dimflW) = 1, that is, for any
simply connected domain the set of well-accessible boundary points has dimension 1.

In a forthcoming paper we shall modify the method developed in this paper to
obtain results about functions in the little Bloch space @0 and about inner functions
in 0SO. In particular we shall show that every function in $ n ^0 assumes every value
we C as a radial limit on a set of dimension 1, and similarly that every inner function
in 08Q assumes every weD on a set of dimension 1. This sharpens results of
Hungerford [4] and Makarov [8].

Acknowledgement. The results of this paper were part of my dissertation. I want
to thank my advisor Christian Pommerenke for several discussions and helpful
comments on this subject.

2. Level sets of Bloch functions

Throughout this chapter/will be a Bloch function. For points zoeD>, and for
a > 0 we consider the component Qa = Qa(f,z0) of {zeD: \f[z)~f{zo)\ < a} that
contains z0. These components have also been studied in [10]. The boundary dCla need
not be rectifiable, even if / i s bounded [5]. The main object of this chapter is to
construct rectifiable domains Ga c= D that behave like the components Qa, that is,
they will have the property Cla_c c= Ga c Qo+C.

Our construction relies on the following analog due to Pommerenke [9, Chapter
4] of a well-known result of Lehto and Virtanen.
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THEOREM P. Let 5 c D be a circular arc with endpoints on T and consider a
Jordan arc C cz B\B with endpoints on B. Let G be the component of O\(i? U C)for
which G fl T = 0 . Let /? be the angle between B and T towards G. Finally, let

. (2.1)
zeG

Then

KG) <= jweC: dist(M;C)) < ^ j . (2-2)

This result implies that
"«(/;*(>) m r # 0 (2.3)

if fe8B, | | / | | ^^ 1, z0eO and a > \e (see [3]). Since Bloch functions are in the
MacLane-class s& of analytic functions [6], the level curves end at points. More
precisely (see [6]), we have the following result.

THEOREM ML. Iffe 08, Q is a component of{\f{z)\ < a) and dQ n T ^ 0, then the
components of dQ f] D are (open) Jordan arcs. The closures of these Jordan arcs
intersect T in at most two points.

Now we are in the position to describe our approximating domains. L e t / e ^ ,
a > \e and zoe D. By (1.3) and (2.3) we have Qo(/, z0) n T # 0 , hence

T \ r r o ^ = (j/«, (2-4)

n

where the In are disjoint open arcs.
Since/is a Bloch function and \R(f)\ = 0 ((1.2) and (1.3)) we obtain

limsup|/(rOI = oo
r-»l

for almost all £eT. From this we conclude that

prnnac/;z0)| = o (2.5)
in the following way.

After applying a Mobius transformation we may assume that z0 = 0. Let

zeTnflfl(/,0).

The radius [0,0\dQo consists of line segments that are entirely in Qa or in D\H^. On
the line segments in Qo,/is bounded above by a, and an application of Theorem P,
with /? = \n, shows that \f{z)\ ̂  a + \en on the other segments. Hence

lim sup | / K ) | ^a+±en<oo (zeTn fia(/,0)) (2.6)
r-»l

and (2.5) is established.
We fix a small constant 0 < fi < \n whose value is to be determined later. We

denote by Bn = B(In) the circular arc in D whose endpoints are the endpoints of /„
and which intersects T in the angle /?. The intersecting angle is measured between Bn

and In. The midpoint of Bn (in the obvious meaning) will be denoted by zn or z(/n).
It depends, of course, on the angle p.



492 S. ROHDE

Let Ga = Ga(f, z0) denote the component of B\{Jni?n that contains z0. We shall
use the notation A(A) for the linear measure of sets AcC. One of the important
features of the domain Ga is that it is a chord-arc domain, that is, for points zl5 z2 e dGa

we have A(C(zl5z2)) ^ c\zx — z2\, where C(zvz2) denotes the shorter subarc of dGa

between zx and z2. The constant c tends to 1 as ft -> 0. We shall not use this fact
explicitly, but it is the reason why our proof of Theorem 2.2 below works.

LEMMA 2.1. Letfe$, a>\e and Ga = Ga(f,0). There are constants KX and K2,
depending only on fi, so that for any arcs /„, Bn described above we have

for zeBn, (2.7)
inGa(f,0) (2.8)

and
\In\^K2e~a. (2.9)

Proof Let V be the component of D\H^ so that Vf] T = In. Pick two points
zvz2edV\T near the endpoints of In and consider the circular arc2? that contains zx

and z2 and intersects T in the angle /?. Let B' denote the subarc of B with endpoints
zx,z2. By MacLane's result (Theorem ML) we know that C = dV\J is a Jordan arc
and we can apply Theorem P to all those components Ck of C\B' for which (^ c D.
We obtain from (2.2) with p = n-0

Letting zx,z2 tend to T gives (2.7).
To prove (2.8), let us first assume that/is unbounded in Ga. Then there is a curve

in Ga so that | / | tends to infinity along this curve and we conclude, again using
Theorem P, that there is a radial segment [0, z] in Ga along which | / | tends to infinity.
The endpoint z cannot be in D because of (2.7). Hence zeTfl Qa(/, z0) and we obtain
a contradiction to (2.6). Hence/is bounded in Ga. But then (2.8) follows from the
maximum principle by (2.6) and (2.7).

Next we show that |/J < | for a > c r Assume that this is not true, then there are
points zx,z2eC satisfying argzx = argz2 + n. Applying Theorem P (with/? = %n) to the
interval [zlt z2] we obtain |/(z)| > a — c1 (with c1 = \en) for any z e [z15 z2] and choosing
z = 0 gives the contradiction |/(0)| > 0 =/(0) if a > cv

Since ||/|U = 1 and/(0) = 0 we have |/(z)| ^ log(l + |z|)/(l -|z|). Since zn is the
midpoint of Bn, (2.7) yields

Now (2.9) follows since 1 — |zj ^ c2|/n| with a constant c2 depending only on ft.

For points we B\{0} we shall denote by p(w) the projection of w onto T, that is,

The next result says, roughly speaking, that the map

pof(dGa(f,0),A) >(T,|-|)

is nearly measure preserving i f / e ^ (see (1.3)), /? is small and a is large.
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THEOREM 2.2. Let fe$ and consider an arc A a T. Let

)eA}. (2.10)
Then

|/J > 1—-M| (2.11)
JeJ \ nJ

for a ^ ao(\A\).

Before proving the theorem we establish the following.

LEMMA 2.3. Let 0 = 0O: D -» Ga with 0(0) = 0 be conformal and let

). (2.12)

Then
\{CeJ:p(h(O)eA1}\ = | ^ | + o(l) asa->oo, (2.13)

for any arc Ax c T. The o{\) depends only on a and p.

Note that for inner functions g: D -> D with g(0) = 0 we have

. (2.14)

Now h is nearly an inner function in the sense that h is a selfmap of the unit disk with
boundary values close to 1 almost everywhere. Hence (2.13) is a generalization of this
result. On the other hand, (2.14) holds for arbitrary Borel sets on T whereas in (2.13)
we make the assumption that Ax is an arc. The proof of (2.13) follows the proof of
(2.14).

Proof of Lemma 2.3. We have already noted that \h(z)\ ^ 1 in D by (2.8).
Additionally we have

^ fora.e. CeT (2.15)

by (2.5) and (2.7), since dGa is rectifiable. Here it is important that/is in $ and not
merely in $&. Let

_ ^ a-K1_ 2KX

and

With B = {^eJ\p{h{Q)eA^ we consider the harmonic functions

1 f \-\z\\ „.
2n]B\C-z\i

" > w 2TT

Let <5 > 0 be given. Standard estimates with the Poisson kernel show that for any
e < eo((5) (hence for all a ^ a(S)) and all WE D such that p(w)eA1 and \w\ > 1 — e, we
have w2(w) ^ 1 — 8. We conclude that ux{Q = 0 almost everywhere on J\B and
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M2(C) ^ 1 - S almost everywhere on B. Hence (t^ - w2) (£) ^ S almost everywhere on T
and, since ux—u2 is a bounded harmonic function, the maximum principle yields
«i(0) ^ w2(O) + (5. With MX(0) = \B\ and «2(0) = \A[\ we obtain

Applying the same reasoning to the complement of A1 establishes (2.13).

Proof of Theorem 2.2. Let Ax c A be the concentric subarc so that

|- ( 2 1 6 )

With the function h defined by (2.12) and

B = {(eT:p(h(O)eA1},
Lemma 2.3 gives

1) asa->oo. (2.17)

Set c to be a number with 0 < c < 1 and c close to 1, whose value is to be determined
later. For every arc Bt ofdGa we denote by B\ = Bfe) the concentric subarc for which

J) = cA(2?,).
The maximum principle shows that

P\ co(z,I},D)

in Ga, since the left-hand side is 0 on dGa\B} and both sides coincide on B}. Hence

,!. (2.18)

Similarly,
atO,Bt\B;,Ga) ^ ct\p(Bt\B^\ ^ c4(l-c)\I,\. (2.19)

Here c4 depends only on fi. Now we consider

J1 = {j:B'i
Then

and (2.18) implies that

co(0, (f>(B), (?o)—co10, M (BABA), Ga
i

The last inequality follows from (2.19). Using (2.17) we see that we can choose
c = c(\A\) so that

for a > ao(\A\).
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Thus the theorem is proven if we show that J^^J.
To this end, pick ye 4. Since/e^ and \\f\\a ^ 1 we have

for all zeB'j, where c5 depends only on c and /?, hence only on \A\ (and $ . By (2.7)
and the definition of the projection p,

\p(f(z))-p(f(z}))\ = /(*)-/(*,) .(\f(z,)\ !

«^+
a—Kx a—Kxa — Kx

for sufficiently large a > 2KV By the definition of Jx there is a zeB'j satisfying
C = ^"1(Z)G^> a nd the definition of /i and B gives

Finally, (2.16) implies that
p{f{zt))eA

for large a and we have shown that je J.

Theorem 2.2 was formulated only for the special case G = GJJ, 0). The next result
applies to all domains GJJ, z0) and is essentially a Mobius invariant formulation of
Theorem 2.2. In what follows all constants will depend (only) on /?, unless otherwise
stated.

COROLLARY 2.4. Let fe£ and let A c T be an arc. Let I ̂ zl be an arc with
|/| < \. Consider the domain G = GJJ, Zj) and the corresponding points z} and arcs

J={j:p{j{zj)-J{zI))eA and I, c /}, (2.20)
where again p(w) = w/\w\. Ifa^ ao(\A\), then

and

|/,|^e-|/| forjeJ. (2.22)

Proof. Let T(z) = (z + z7)/( 1 + 27 z) and
b(z) =f(nz))-f(T(0)) =f(T(z))-f(zI).

Furthermore, let G' = GJb(z),0). Then G = T{G') and It = TiJ]), if we denote by /;
the arcs corresponding to G'. Standard estimates show that

c7\I\^\T'(O\^cs\I\ (2.23)

for Ce T\I)- Applying Lemma 2.1 to b(z) we obtain from (2.9) that

and this proves (2.22). Next we consider the concentric arc Ax c= A so that \A^ = \\A\,
and the set
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We show first that J' c J if a is large enough. Observe that this would be obvious if
zt = T(z'}). However, in general a Mobius transformation will not map midpoints of
circular arcs onto the midpoints of the image arcs. For je J' we have T(I'}) e / by
definition. Now |arg(z^) —arg(—z7)| is bounded away from 0 so that the same is true
for |1 +zjzj|. It follows that

The last inequality follows from (2.23). Next, T^sBp hence

Thus p{f{z^—f{Zj))^A for a ^ a0 which proves that J' <= /.
Since

an application of Theorem 2.2 to Ax and b shows that

/;)i > C7I/I E n
jeJ jeJ' jeJ'

finishing the proof of the corollary.

3. The proof of Theorem 1.1

We shall apply the following lower estimate for Hausdorff dimensions, due to
Hungerford [4] and Makarov [8], see also [9, Chapter 10].

LEMMA HM. Let a > 0 and 0 < c < 1. Let Pn
k) («, k = 0,1,2,...) be a family of

arcs on T so that for every I™ there is a /^-1) ^ I™ such that

ICl^e-V^l (3.1)
and furthermore,

E IC+1>I > c\I^\ (3.2)

for alln,k^0. Then

dimfl [JI(»>l-l-\og(l-\. (3.3)
JfcSO n " \ C /
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Proof of Theorem 1.1. First we define inductively an increasing sequence
( O c (0,1), tn -> 1 as n -> oo and a sequence yneC so that

\yn+i-yn\ = a, for n = 0 ,1 ,2 , . . . (3.4)
and

yJ < 2a, with ?e[/n,tn+1]. (3.5)

To do so, let t0 = 0, y0 = 0 and suppose that tn and yn are already defined. If there
is a te(tn, 1) with |K0~ KOI = a w e s e t

*n+1 = min{te(tn, 1): |y(0—KOI = «). )\»+i = K'«+i)

and continue the induction. Otherwise we have |y(0 — KOI < 0 for all fn < / < 1, and
in this case we set inductively for k > n

In either case (3.4) and (3.5) hold.
Our goal is to construct arcs I™ c T having the following properties (a), (b), (c).

During the construction we shall finally fix the angle /? on which the points
z<*> = z(/w) depend.

(a) The arcs /£fc) satisfy the assumptions (3.1) and (3.2) of Lemma HM (with a
replaced by \a and c being a universal constant to be determined later).

(b) The inequality \J[z%>)-yk\ < \a holds for all n,k ^ 0.
(c) For all 7^, k ^ 1, and for the corresponding I%~X) => I™ we have

For a moment, let us take the existence of such a family of arcs for granted and
finish the proof of the theorem. Set

E= n u c
fc^O n

By (3.3) and Property (a) we have dim E^\— K/a and we shall be finished if we show
that E c Ey ba, (see (1.5) for the definition of Ey a). To this end let C,eE and denote
by Ik = /£fc) the arc with C,elk. Let zk = z{Ik) again be the midpoint and consider the
polygonal arc C consisting of the line segments [zk, zk+1]. The construction of the I™
will start with 7̂ 0) = T so that z0 = 0. Hence C is a half open Jordan arc starting at
0 and ending at C- It is easy to see that C lies entirely in a Stolz cone of vertex £ whose
opening angle depends only on /?. Let C be parametrized so that |C(r)| = r, for
0 < r < 1, then it follows that

I / ( C ( > O ) - / K ) I ^ 1 f o r O < r < l . (3.6)

Let cj> = 0{ be the piecewise linear homeomorphism of [0,1) satisfying <p(\zk\) = tk, for
k = 0,1,2,.. . . Given 0 < r < 1 we choose k so that \zk\ < r < \zk+1\. Then, using (3.6),
(c), (b) and (3.5), we have

< \ y k y ( / ( ) ) \ l 1 ^ l 1 < 5a

for a > clf hence iT c= £"y 5a.
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It remains to construct the family F®.
Let /J0) = T and let us suppose that the arcs TJ*"1* are already defined. Consider

the disks
Dx = {w: |w—yfc_x| < \a), D2 = {w: \w-yk\ < \a).

It follows from (b) that w} =f{zf~X))eDx for any index/ Setting d} = |wj—yfc| we
obtain

\a^d^\a. (3.7)

Consider the domain G} = Gd (J, zf~l)) defined in Chapter 2, together with the
arcs InJczJ, 2?Bi/cD and points znjeBnj. Let I^(m = 0,1,2,...) denote an
enumeration of those Inj(n,j = 0,1,2,...) for which

(3.8)

hold. We shall show that these arcs satisfy (a) to (c) if a is large enough.
(a) Fix / = If~X) and set z7 = z(/), B = B{I). A simple geometric consideration

shows that

arg-
w — w. D.2'

Apply Corollary 2.4 with a replaced by d} to

For meJ, where J is defined by (2.20), it easily follows that/(zm)eM. Hence all the
arcs Im for me J are arcs I™ a I of our collection. Corollary 2.4 shows that the
collection /<*> satisfies (3.1) with (\/c(fi)) e~(am instead of e~a and (3.2) holds with c
replaced by the factor of |/| in (2.21). Since \A\ = l/(47r) we can choose ft so small that
this factor is positive, for example fi = TT/165 will do so.

(b) This is immediate from the definition of the I™ by (3.8).
For proving (c) fix two arcs / = 7J*"1* and In = I™. Note that the hyperbolic

geodesic from z(/) to z(/n) lies in Gd(f, z(/)) with d = |/(z(/)) -yk\ ^ fa by (3.7). Hence
|/(z) —/(z(/))| ^ fa + Kx on the geodesic by (2.8). It remains to apply Theorem P to the
hyperbolic geodesic and to C = [z(/), z(/J] to obtain |/(z) —/(z(/))| < 2a on C if a is
large enough, thus finishing the proof.
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