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In an address before the London Mathematical Society, M. L. Cartwright asked
whether there exists a normal analytic function in \z\ < 1 with an infinite radial limit at
z = 1 *but with a derivative that has no radial limit at z = 1. W. K. Hayman and D. A.
Storvick [4] answered this in the affirmative, using a geometric construction to exhibit
a univalent function with the required property. In this paper, we give three different
explicit examples relevant to Cartwright's question.

1. A logarithmic function with a Blaschke disturbance

Let {zn} (0 < Zi < z2 < ... < 1) be an interpolating sequence, and let

B(z) = Y[ I ~r~ ) be t n e Blaschke product with simple zeros at the points of {zn}.
n=l \1 ~znzj

Then B is a real-valued function on the segment [0,1) of the real line, and it changes
sign at each point zn. Thus {B'(zn)\ is a sequence of real numbers, negative when n is odd,
positive when n is even. Since {zn} is an interpolating sequence, there exists a number
<5>0 such that {i-\zn\

2)\B\zn)\ > 5 (n = l,2,...) [3; p. 148]. Thus B\z2n) >
(5/(1 — z2n) and B'(z2n + i) ^ — <5/(l — |̂n + x). Consider the normal (Bloch) function

()
Z

Clearly, lim f(x) = co. On the other hand, f\z2n) < 0 and f'(z2n + 1) ^ 25/(1 -zjn + x).

By continuity, / ' vanishes between z2n and z2n + 1, while f'{z2n + x) -> oo. Thus / ' has no
finite or infinite radial limit at z = 1.

2. /4n example obtained by integration

Our second example illustrates a connection between the non-Euclidean distance of
consecutive points of an exponential interpolating sequence {zn} and the behaviour of
the Blaschke product that vanishes at each point zn. Let {zn} be an exponential
interpolating sequence on the positive real line [3; p. 156]. For simplicity let us suppose
that zn = 1 — c" (0 < c < 1). Let B{z) be the Blaschke product with a simple zero at
each zn. Since the pseudo-non-Euclidean distance from zn to zn + x satisfies the condition

zn+x—zn 1 — c \—c

l-zMzM + I l+c-cn

Received 26 March, 1979.

The second author gratefully acknowledges support from the National Science Foundation.

[J. LONDON MATH. SOC. (2), 20 (1979), 467-471]



468 DOUGLAS M. CAMPBELL AND GEORGE PIRANIAN

we can find points z'n and z'^+i such that zn < z'n < zj,'+1 < zn + 1 ,

z'n-zn 1 1 -c —z

1—z'z 4 1+c 1—z ,z" , '
t t - n ' n + l f i + 1

and the non-Euclidean distance p{z'n,z'^+l) from z'n to zj,'+1 is bounded below by a
positive number d depending on c but not on n. Since {zn} is an interpolating sequence,
there exists a number 5 > 0 such that

n (fe = 1 , 2 , . . . )

[3; p. 148]. Thus, for z'n < z < %+l,

B2W = n {{t^2

\-ZnZ

2 n - 1

li 11 i n
j= l \ L ZjZn/ j = n +

2 oo

1+cJ \4l+c

2 / o o If 00n
n ^ n+1

= /4 > 0 .

Consider the normal (Bloch) function

-I-F(z) = B2(w)(l-w2y1dw.

o

Clearly, F'(zn) = 0 for each n. On the other hand

£ /I

.d

= nAd,
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and therefore lim F(x) = co. Since F(x) -> oo as x -> 1, there exists a sequence of
x - l

points xn on [0,1) such that lim F'(xn) = oo. Thus lim F'(x) fails to exist.
n-»oo x-» 1

3. A univalent example

Our third example is inspired by the domain described by Hayman and Storvick;
but instead of analyzing a univalent mapping defined by a precisely preassigned
domain, we use a univalent function described by a simple formula.

Let {#„} denote a decreasing sequence of positive numbers such that 0X < 1 and

EllogflJ-1 '2 < oo.Forn = 1,2,..., let ^(z) = e~ie" log j - L ^ + eie" log t _^_i6n,

where the two logarithmic expressions represent principal values. Obviously the
function

g{z) = z+ £ 0B(z)/|log 0n|
n = l

is holomorphic in the unit disc D.
In the formula

g\z) = |

the real part of each term under the summation sign is positive; therefore g is a
univalent, close-to convex Bloch function in D.

It is easy to see that the domain g(D) consists roughly of D together with pairs of
narrow fingers reaching to infinity in the directions elOn and e~lOn. The positivity of g' on

m

the segment [0,1) guarantees that lim g(r) exists. Since g(r) ^ r+ £ 0n(r)/|log 0J, we
r-»l „ = !

have the inequality

lim

which together with gn(l) ~ 2|log 9n\ proves that lim g(r) = oo. Since g(r) -* oo as
r-»l

z -»• 1, the derivative g'{r) is not bounded on [0,1).
We subject the 6n to an additional requirement. Assuming that 0l,62,...,6j have

been chosen, let D} denote the set of points in D where \g'}{z)\ ^ |log07-|
1/2. Since

|gf'/z)| < \z — ei°i\~1 + \z-e~'°i\~i, the set D} lies in the union of the two overlapping
discs \z — e±i0'\ ^ 2|log 0,1"1/2. However g'-{l) = 1 which implies there is an open disc
around z = 1 which is disjoint from D,. We choose 6j+1 so that DJ+, lies in this open
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disc and is therefore disjoint from D}. Each neighborhood of z = 1 contains a point zn

of [ 0 , 1 ) - Q Dn satisfying \g'n(zj < |log 0J1/2 for every m = 1,2,.... Therefore,

n = l

| l /2|log6»J
n = l

This inequality together with g' being unbounded on [0,1) proves that g' has no radial
limit at z = 1 and completes the proof.

The function constructed by Hayman and Storvick in [4] has infinite planar area
and maps the disc onto a Jordan domain (on the Riemann sphere). A slight
modification of our example produces a function which has finite planar area and
which also maps the disc onto a Jordan domain (on the Riemann sphere). It suffices to
move the logarithmic branch points slightly beyond the unit circle. To be precise let

Then G(z) -> oo as z -> 1. If {&„} -* 0 fast enough, then the sequence {G'(l -0J)} is
bounded, the stereographic image of G{D) is a Jordan domain, and the domain G(D) has
finite planar area.

4. Concluding remarks

We note that the existence of a normal analytic function in D for which lim f(z) is
2-»l

finite while lim f'(x) fails to exist is easily established. The bounded function (1 — z)1 +i

x->l

tends to zero as z -*• 1 radially while its derivative (which is also bounded) has no
radial limit at 1. In fact, there exists a univalent function / and a set E of measure In
such that for each 6 in E the radial limit f{rei0) exists while lim f'(rei0) fails to exist.

r-»l

Simply let

Since (1 -\z\2)\f"(z)/f'{z)\ < 1/2, the function f(z) is univalent [6; p. 172] and
therefore has a radial limit almost everywhere [2; p. 56]. On the other hand,

1 *
log f'{z) = - Y_ z2" has no finite radial limits by the high-indices theorem of Hardy

and Littlewood (see [1 ] for an elegant proof). Thus f\z) can have only 0 and oo as radial
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limits. Since f'{z) is normal, each radial limit is an angular limit. Thus / ' can have only 0
and oo as angular limits. It follows from Privalov's uniqueness theorem for angular
limits [2; p. 146] that the radial limits 0 and oo can occur only on a set of measure 0.
Therefore there exists a set E of measure 2n such that lim f{rei0) exists for all 9 in E while

r-»l

lim f'{rei0) exists for no 9 in E.
r - l
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