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1. Introduction

We continue our study of diophantine approximation by prime numbers.
The problem that we study in this paper arises naturally from the subject
matter of [13], but our approach will differ from that of either [13] or
[14]). However, before passing to a description of the contents of this
paper we make some remarks concerning [14]. Let A;, Xy, ...,A; be s
non-zero real numbers, not all of the same sign and not all in rational
ratio. Let n be any real number. As in [14] we define 2(k) to be the least
s for which there is a positive real number o such that the inequality

< (maxp;)~ (1.1)

8
n+ X Aok
j=1

has infinitely many solutions in prime numbers p;. The number D(k) is
the corresponding value for s if we insist only that the variables are
natural numbers. The major interest in the results of [14] lies in the
bounds for the number of variables rather than that on the right of
(1.1) we have a power of the maximum value of the variables. For this
reason bounds are given only when k > 4 and k£ > 5 respectively, that
is, only when the bounds for the number of variables are better than those
known previously even when there is only a fixed ¢ on the right of (1.1).

By combining the methods of [13] and [14] with Theorem 4 of Hua [7]
we can easily show that 2(2) < 5 and 2(3) < 9. As far as D is concerned,
when k = 2 a great deal is known and we have nothing new to add. When
k = 4 the method of [14] will give D(4) < 14, and when & = 3 the method
can be combined with that of Davenport and Roth [4] to give D(3) < 8.
In each of these, of course, the bound for the number of variables is not
new. What is new is that the right of (1.1) contains a power of the
maximum of the variables.

In this paper we are concerned with the following question, posed by
Halberstam in conversation. Suppose that A,/A, is negative and
irrational. Then can one use sieve methods to show that there exists a
positive integer k£ such that the numbers of the form A, p +A,F,,, with p a
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prime number and P, a natural number having at most k£ prime factors,
are dense on the real line? We answer this question in the affirmative and
show that 4 is a permissible value for k.

We use results of Richert [10] and a new idea of Chen, who has recently
shown [1] (for a shorter proof see Ross [11]) that every large even integer
is of the form p+F,. We also require two analogues of the Bombieri-
Vinogradov mean value theorem (see Chapter 24 of Davenport [2]) and
these form the bulk of our work. Here the exponent 4 which appears in
the Bombieri-Vinogradov theorem has to be replaced by } and is the
cause of our being unable to do better than &k = 4. It has been found that
the most satisfactory approach is to adapt the arguments of [15].

Our main theorem is as follows.

TrEEOREM. There is a positive number + such that if Ay, Ay, and A, are real
numbers with A /A, < 0 and A /), irrational, then there are infinitely many
prime numbers p for which there exists a square free natural number P,
having at most four prime factors, such that

[Ag+A1 D+ AP < p~. (1.2)
It clearly suffices to prove the theorem with
Ap=—1, A, >0, (1.3)

which we assume henceforward.

2. Notation and assumed results

Throughout p is a prime number, a,g, k,m,n,q,r are natural numbers,
J,b, b are integers, ¢,a, A, o are real numbers, u,v,2,y,T, X,7, £ are real
numbers greater than or equal to 1, z is a real number with

0 < z < min(A, 1/2;),

8 is a real number satisfying 0 < 8 < £, and ¢ is a sufficiently small positive
real number in terms of 6. Implied constants in the O and < notations
depend at most on §, ¢, A;, and A,. We write [|«| = min, |a—=]| and if
a+ 4 is not an integer we use [[«]] to denote the integer nearest to . We
further define % = logy, and given an arbitrary function f, B(o,f) is
used to denote the formal expression

s 3 [ ferit )l

NEY Xmodnr v =T 1+|tl.

Here 3¥ denotes summation over all the primitive characters modulo nr.
We reserve d, ¢, w, A, and Q for respectively the divisor function, Euler’s
function, the number of different prime divisors, von Mangoldt’s function,



DIOPHANTINE APPROXIMATION, III 179

and the total number of prime divisors. As usual (z) = ¥, An),
m(x) = Ypee 1, and L(s,x), where s = o+it, denotes the Dirichlet L-
function formed from the character y. The letters &/, 2, 4, and A~
denote sets of integers and |27 | is the cardinality of &/. We further use
&, to denote {h: h € o, r|h}.

For our proof of (1.2) we require the following results from multiplicative
number theory.

Lemma 2.1. Suppose that T' > 2. Then

o j | L+t ) 1y < plnlloge T (2.1)
Xmodn v =T
and
s [* L'+t at < p(n)log® nT (2.2)
Emf_f' X 1) < elmllogn '

Proof. Theorem 10.1 of Montgomery [8] states that

T
* [ |L@G+it, 0P dt < p(n)TlogtnT.
x v-T
The inequality
z* [T +it 0kd < pn)TlogenT
T

can be shown in the same way as Corollary 10.2 of Montgomery [8]. The
lemma now follows by partial summation.

LemMa 2.2, Let T > 2 and
U(s’ X) = zcmX(m)m_u:

where the summation is over any set of positive integers m for which
SmlCm|2m exists. Then

B(0,U?) € 3¢y (m+9?rlogT).

Proof. By Theorem 1 of Davenport and Halberstam [3], with the x; the
set of points a/nr with 1 < a < nr, (a,nr) = 1, and n < 5, we have

nr M+N 2

X X 3 cpm~He(am/nr)| < (N +n%) Z [Cm 2.
n<y (aa:r]i=1 m=M+1 m=M+1

We then complete the proof of the lemma by using the method of
Theorem 3 of Gallagher [6] combined with (5) of Gallagher [5], and
performing a partial integration.
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Lemma 2.3. Suppose that

O0<axl, (2.3)
1 <ouc<4, (2.4)
0<A<l, (2.5)
X 3@ 3 1—an1| < x/log?x, (2.6)
n<x® besty
P() = Tl (2.7)
p<v
and
W(,u,d) = 3 (1_ 3 /\(l_ulo_ﬂ))+ T Y,

beod EAS A2 10g z p=z*bess

(b, P(z%/4))=1 plb Db
(2.8)

where Y means that those b which have a repeated prime factor are not
counted in the summation. Then

(log3 —Ax f 6it+0((log:z:)‘1’15)).
(2.9)

This,} apart from a few trivial modifications, is a special case of
Theorem 1 of Richert [10].

Levma 2.4. Suppose that (2.3) and (2 6) hold. Then

W(,u,)) >

S(L,2%) = b% 1< log (1+0((log z)~1/14)).
®, Pa®)=1

This follows from Theorem B of Richert [10].

Lemma 2.5 (Pélya—Vinogradov). Let x be a mon-principal character
modulo n. Then
3 x(m) € n'’2logn.

msu
For a proof of this see, for instance, p. 146 of Prachar [9].
Lemma 2.6. Let f(s) = 32 a,n~% (¢ > 1) where a, <log2n. Then for
every natural number N and every 6 > 1,

L [T Ay, o @b
=m0 a0 ((0—1)2“°g2N,))'

(2.10)
This is a special case of Lemma 3.12 of Titchmarsh [12].

t Note added in proof. Proofs of Lemmas 2.3 and 2.4 can be found in the recent
book of Halberstam and Richert [6a].
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3. An analogue of the Bombieri-Vinogradov theorem

Let
2 = {[A+Mp]: 2 <y, A+ A0 < 42}, (3.1)
R, =|2,|-art, x=2zn(y), (3.2)
and
Ylo,r,hm)= T An). (3.3)

hn=m(modr)

In (3.1), if [Ag+2A.p,] = [Ag+A,p.]] With P, # p,, then the elements
[Ao+A,p;]] are considered as distinct. In order to sieve the set 2 we
require information concerning R,, which is provided by the following
theorem.

TrEOREM 3.1. Suppose that 0<8< 3} and |M—a/ql<q? with
(a,q9) =1 and q > q,(8, Ay, Ay). Let y = ¢?0+8), Then

1-8/4
T | Bel <y (3.4)

The proof of (3.4) rests on the following lemma.

LEMwMA 3.1, Let

_ _$)
W(u,v,7,h) = (J%‘,il(t/:(v, r,h,m) P (r)) (3.5)
and '
W(r) = max|¥(u,v,7,h)|, (3.6)

where the maximum s taken over all h,u,v with (h,7r) =1, u < ¢(2+|A,]),
and v < y respectively. Then

2 II!'(mq) < yl—(28/7). (3'7)

msym—a

We defer the proof of this lemma until the next section and proceed
with the deduction of (3.4) from (3.7).
Write Ay = (b+0,)/q and A, =a/q+6,g7% where |6,], |6,] <1, and
suppose that p < y. Then
X+0p = (b+ap+8y)/9+0,pg7%
Now write b+ap = j+hq with — 39 <7 < 4¢. Then
Ao+Mp—h = (j+6,)/q+0,pq2
Thus —3z < Ap+A;p—% < $z if and only if
—329 <j+0,+0,p/q < }2q. (3.8)

Consider the inequality
171 < $2q. (3.9)
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Clearly all but O(y/q) = O(¢*~?) possible values of j which satisfy (3.8) also
satisfy (3.9) and vice versa. Moreover, if —32 <A +Ap—% < 32, we
must have A = [Ag+A,p]) and in this case r|[Ay+A, 2] if and only if 7|,
that is, if and only if 6+ ap = j (modgr). If j is exceptional then A either
is [Ag+Ap]] or differs from [Aj+A, 2] by 1. In the latter case,
r|[A+A,p]] implies that either b+ap =j+g (modgr) or b+ap=j—gq
(mod g¢r). Thus, by (3.1),
19,]= ¥ > 1+0(q1 ((‘q‘ T)+1))

ljl<deq <Y
b+ap=j (mod qr)

Therefore, by (3.2),

|
S IRI<WOL+ 3 - 8 .
r<yt/e-8 r<yt/e-d 1fl<dzq P<Y
b+ap=j (mod gr)
(3.10)
Let
= (a,7). (3.11)
Then
151<izq <y h <Y
b+ap=j (modar) |b+hl<izq ap=h (mod gr)
= Z > 1+0(Z%).
o<y, prarlg
l1bg— ‘+1|<zq/20 ap/a=1 (mod gr/g)
Hence, by (3.10) and (3.11),
z R,
rytie-8
<) Lri+s 3 W s g
nla mgyt®—8yp \ | 4,lbn—14-fl<eq/2n ?(mQ) p<y
(m,a/n)=1 (4,mq)=1 ap/n=j (mod mq)

1
+ —_— —_—
") mn :illmjl+j|<zq/2n p(mq) )
mq)=1
It is easily verified that
2 1= _u+0@r), (3.12)

u<lj< r

j,r)=1
and we recall that A, = (b+8,)/q, so that |b] < g(1+]A,|). Hence

> | R,

,<y1u-a

Lyd(a)Lql+da) X max
m<yl-8 z<q(2+140))
(h,mg)=1

< yd@)Lqrt+da) X ‘P‘(mq), (3.13)

m<yl -8

7(y)
12; (gp(mq ) pz\: l)

(§,mq)=1 hp=j (mod mgq)
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where we have used the inequality

Y ¢, < max
2<n<y <Y

chlogn‘.

n<w

The theorem now follows from (3.13) and (3.7).

4. Proof of Lemma 3.1
Suppose that (h,mg)=1, mg< é<y, u<q2+|3]), and v<y.
Consider the expression ¥'(u, v, mg, ) given by (3.5). We use the inequality

)= T Aln)| < L2
n<v .
(n,mq)=1
to replace ¥(v) by X,y mmp=1A(n). We then write the resulting
expression in terms of characters modulo mg. Next we replace each
character y modulo mg by the primitive character x* that induces it,
making use of the inequality

[ (v, x) — (v, x*)| < L2
and Lemma 2.5. Furthermore, we note that

3 x(n) < dimg) max| 3 ¥(n)|. (41)
n<u k<u in<k

Hence, by (3.6),

Wing) < XM 5 max |5yt )| £ mingngs
go(,'nq) XFX0mod mg usq(2<+1-lle|) k<u
LAY
Thus
T ¥(mg) < £2qV2L3+yq 'y X w7t X* max | Bx(kW(v,x)
m<g rlg r—1<n<g Xmodnr uSq(”2<-I;IIAoI) k<u
3
< £2qU2P8 4 yeg—1 2,3 ( £13,(8) + f ()2 d,)) , (4.2)
7| 1
where ‘
)= X T* max | I x(k)(v,x)|-
r=1<N<Y Xmodne u€q:}2<-i;ll Aol) | k<u
By Holder’s inequality,
21("7) < 221/4233/4 (4.3)
where .
4
S,= ¥ T* max | Ty (4.4)
7=1<N<Y Xmodnr U< (2+1Agl) | k<
and »
y= 3 X* max (v, x)[*3. (4.5)

r~1<N<Y Xmodnr VSV
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Let
T =y, (4.6)
6=1+.2", (4.7)
and
uy = }+maxm. (4.8)
m<u
Then, by Lemma 2.6,
_ 1 6+iT uos
EX =5 )y o) s 00

We note that L(s, x) is regular for ¢ > 0, and

L(s,x) < m2qV3(1 +|¢])12 (o > §).
Thus i

2 x(k) ==

k<u 2mi

1/2+47' s
! f Lis, )2 ds +0(1). (4.9)
1/2—iT $

Hence, by Holder’s inequality and (2.1),

4
5t max | 50| < B I+ plan)
Xmod nr u<q(2+120l) | k<u
< 2o(nr)L8.
Therefore, by (4.4),
3, € n2tr &8 (4.10)
We next treat Z,. Let
¥p = 3+ maxm, (4.11)
m<y
F(s,x)= X Al)x(n)n=e (4.12)
nyr
and
G(s,x) = nguan(n)x(n)n"“~ (4.13)

Then, by Lemma 2.6, for a non-principal character x, we have
04T ( %

2mip(v, x) = L—w T + F) (LG-1)(s,x) v_;,f ds

1/24<T Va8
+ f (F~L'G~LF@)(s, ) "Cds +0(1).  (414)

1/2—iT
Hence, by (4.5) and Holder’s inequality, applied several times,
Ty < LV3yABBO,|(L/L+ F) (LG —1)|¥3)
+ LUy23B(%, | F— L'G— LFG |*3) +n2r
< LUsysB(G, (LY/L+ F))SB(6, (LG — 1)2)2/3
+ LUBR, 1+ Lt +| LB, 1+ F 9B, 1+ G
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Thus, by Lemmas 2.1 and 2.2,
Ty K yA3+o(1 4 mlry—L2)2/3 4 gy203+e(2p)2/3(yy 4 p2p) LIS
& y4/3+s + y1+s(7]2,r)2/3 + y2/3+‘1;27’.

Hence, by (4.3) and (4.10),

Ty (n) <€ yltenl/2gliagl/d 4 o 3/0+ey8/201/2,3/8 | o1 /24ey 20112y
Therefore, by (4.2),

2 lP'(mq) < ySB(yq—1/4 + y3/4§1/2q1/4 + y1/2§q1/2 + f3/2q1/2).

m<§

This implies Lemma 3.1.

5. Another analogue of the Bombieri-Vinogradov theorem
Let
Y1=2t+Ay, (6.1)

1/4
N =H(X)= [p1p2p3p4p5: X <p, <y py <P < (%i) s

1/3 1/2
A e ,p3<p4<(i~) X <ps B,
D1P,

1Dz P1DP:2Ps P3Py
(5.2)
2* = 2%(X) = fn: n < g+l < B[ +Am] € 4}, (5.3)
ﬁ(k: j: h) = 2 1’ (54)
neN
hn=j (mod k)
and

2, =Nz A1) (5.5)

Further write
R¥ = | D} | —ayr L. (5.6)

THEOREM 5.1. Suppose that 0 < 8 < g5 and y19-93 < X < yV8, Then
on the hypothesis of Theorem 3.1,

> |R¥| <yt (5.7)

r<yllé— )

Our procedure is similar to that of §§ 3 and 4, but is sufficiently different
because of the nature of 2* for it to be necessary to give the details. As
in § 3 the proof depends on a lemma.

LrmMma 5.1, Let

4]
®(u’ r, k) = Z 0(7‘: m, k)—_ (58)
(an;;l( 9"("'))

and
O(r) = max| OQ(u,r,h)], (5.9)
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where the maximum s taken over all u,h with w < ¢(2+]|Ay|) and (h,r) = 1.

Then
O(ma) < y1—287, (6.10)

m<y! /4 8

To deduce the theorem from the lemma we argue as follows. By (5.2)

and (5.3),
12F1= X 1+0(1)
m, n,neN,rlm
| )lo+/\1m—'n ' <tz

= p 14+0(1).

ned,I(n—2Ag)/A)I<z/221
il(n—20)/A,]

Write —A,/A; = (b+0,)/a with |8,] < 1 and note that
1/ = g/a+05/(\0q)
with | 03] < 1. Thus by repeating the argument of § 3 we have

|271= X dar,j- bm+%x%)q“ﬂ

lil<ears2A,
= 3 HMar, h, q)+0(-y(—q;1)+q1‘5) . (5.11)
h, \b+hi<ea/22, q°r
Let
g =(qr) (5.12)
Then, by (5.11),
|D*| = Y ﬂ(af,j,g)w(yg +q1—) (5.13)
ilblgtil<ear2ig \ 9 G q°r
By (5.4),
0(&—, j,g) 3 1
1,4,ar/g)>1 g9 g 7, \blg+jl<zalel,g pmed, pll,arlg)
b/g+-71<ea/2A:9 (g/g)pm=j(mod ar/g)
< X 2 > 1.

plarlg m<y/p
p=X Ib/(ap)+h|<za/2:\10p (q/a)m—h(mod ar/gp)

This is easily seen to be

?/19
< ,;%/g (910 ) ( )

LYFLX 14y Lo iri+9qLX 1+ 2.
Hence, by (5.13),

. Lg
9| = ﬂ(af, ,2)+0(3’—+ 1—8).
| 'l j,lb/a+j|2s;za/2/\,g g J g qu g

(4,ar/g)=1
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Thus, by (5.6), (5.5), and (3.12),
r . q [A] )
z‘z‘(a—, ,—)—
i.(f,glghl ( 7’7 9) " e(ar/g)

b/g+il<zareryg

We note that (za/2X;)+|b] < g+ (a/A)|A| < ¢(2+]Ay]). Theorem 5.1
now follows from (5.14) and Lemma 5.1.

R¥ < +yLoqrt.  (5.14)

6. The proof of Lemma 5.1

By (5.2),
21 ¥ ¥ 1yZXL
net plr m</p
(n,r)>1 =X
Hence, by (5.8) and (5.4),
1
Ot =~ 5 ( 5 5m))x(h) 900+ OuLX-tg(r)),
(7') XFXomod
where #(x) = X, x(n). Thus, by the analogue of (4.1), and (5.9),
O(ma) < yg.LXp(ma)1 + L) max | %) alx")
p(ma) X% XYomod ma ¥<@(2+1 o)) | j<u
where
)= X x(). (6.1)

neAy(rn)=1
Hence, if ¢ < y1/4-8,

2 O(ma) K yP+yqlYmax ¥ 71F* max

rla k<y r-1<n<E Xmodnr u<@(2+120l)

<y1“’+y“q‘12max(§‘lz4 (£, k) + f Zy(n, k)~ dn) (6.2)

2 x(7)9(x)

jsu

rla k<y
where
b= B 5t mex | Sy)a|. (6.3)
r~1<N<y xmod nr U<SG(2+IA0l) | j<u
Let
Zs= X ZF [0V (6.4)
r= 1<n<1) Xmod nr
Then, by (6.3), (4.4), and Holder’s inequality,
Zy(n, k) < ZMAZ 34, (6.5)
Let
={m:m = p;P,P304, X < Py < Y15, D1 < P2 < (Y1/PL)YV4,
VIRV IES _%/(Ihpz) Y3, Py < Py < (41/(P122D3))%},  (6.6)
My ={m:me M,m <y, (6.7)
and

My={m:me M,m > y/?. (6.8)
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Then, by (6.1) and (5.2),

ForOO 3 < 10100 1V3 + [ o (x) 142, (6.9)
where
Yxlx) = X x(mp). (6.10)
m, D, meM;
X<psy/m
(mp,k)=1
Let .
Dy(s,x) = Z x(m)m=2, (6.11)
(m,k)—l
Ei(s,x) = z  x(pp~® (0>1), (6.12)
p>max(yir, X)
ik
By(s,x) = Z x(p)p~* (o> 1), (6.13)
p=max(yrl/3 X)
prk
Hl(s, X) = > X(p)p_s: (6'14)
X<p<lnPr
F 2¢]
and
Hy(s,x)= X x(p)p~*. (6.15)
X\p<ﬂrlls
Dtk
Further, let
Yo = 3 +maxm. (6.16)
m<y1

Then for a non-principal character y to a modulus not exceeding y, we
have, by Lemma 2.6, (4.6), (4.7), and (6.10),

) 0+iT Yo' 1/2+1'T ¥y
Qi u(x) = f (DyE)5,x) 22 ds + f DH,)(s, x) L2 ds +0(1).
6—iT 1/2—iT $
Hence, by Holder’s inequality,
18, 1(x) |43 < yA/3.LV3 fT D,E;)(0 +it, x) |43 dt

+1.

+y2/3$1/3f |(D;H;)(} +it, %) 14/3 T

Thus, by Hélder’s inequality,
2 T P01

1~1<N<Y ¥modnr
< y4/3$1/3(B(0 _D14))1/3(B(0 E 2))2/3
+y2BLV3(B(L, D)V (B(L, H2))2/ + 9.
Therefore, by Lemma 2.2, (6.6), (6.7), (6.11), (6.12), and (6.14),

DD Ml ko109 e

r—1<n<) xmod nr
& y3+e(1 4 n2rX-8)3 4 y2/3+o(y | n2r)LI3(p2p)23 4 2y
< 94/3+8 + y7/6+8(n27-)1/3 + yl+s(,72,.)2/3 + y2/3+a,727-_ (6. 17)
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Similarly

3 TR D) M3
r"1<'n$77 Xmodnr

< Y3 LU (B(0, D,2))3(B(8, E,2))\/3
+yHLV (B, D) A(B(, B+t
& YA3F(1 4 mlry V)28 4 gy2/3 (/5 4 p2p)203(p2p LIS 4 2y
< y4/3+a + y6/5+5(")27')1/3 + y1+e(7’2r)2/3 + y2/3+s7’2,r_
Hence, by (6.4) and (6.9),
25 < y4/3+e + y6/5+s(n27-)1/3 + y1+s(n27~)2/3 + y2/3+s.,’27-'
Therefore, by (4.10) and (6.5),
24(77: k)
' & yLHogl/2qU2pLia 4 o9/10+epql/2p1/2 4 o3/4+ep3/2q1I2p314 4 g1/ 2+en2g1/2y
Thus, by (6.2),
3 O(ma) < ye(yq—V4 +y¥/10 4 y3/4( L2q)V/4 4 L2 (£2q)12),

m<g

Lemma 5.1 now follows easily.

7. The proof of the main theorem

Let

§ = 105, (7.1)
r= 1, (7.2)
a=%-34, (7.3)
I)‘l_a’/q] < q_z’ q> qO(AO: Al)’ (a’ Q) = 1: (74)
Y= q2/(1+8), (7.5)
z = y—8/5’ (7.6)
& = zn(y), (7.7)
w = 4(1+3)/(1—45), (7.8)

and
A=1/(6—u—3). (7.9)

Let

V= 3 (1 - ¥ AM1-(u(log p)/]ogx))) , (7.10)
bep xxligp<gliv
(b,P(z®/%))=1 old

where the ” indicates that the summation is restricted to those elements of
2 which do not have repeated prime factors. By (3.1), |9,| < 1+y/7.
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Hence, by Lemma 2.3 and Theorem 3.1,

2z
> —_—
alogx
x (log 3—A(1 + 8)log 4 + A(1 + 8)log(1 + 8) + A log(3/8) + O((log z)~1/15)).

(7.11)
By (7.8) and (7.9), 0 < A—} < 63. Hence

A(1+8)log 4 —A(1 +8)log(1 +8) —Adlog(3/9)
< ($+63)(log4 +dlog4—133) < log2+43.
Hence, by (7.11) and (7.3),

8log$—-328 =

V> 1-45 logz’

Thus, by (7.1),
V > 3-243z/logx. (7.12)

Consider the definition of V, (7.10). The weight in the sum satisfies

1— ( __uloﬁ’) < I_A(Q(b)_uM).
2 N<p<alin log» logx
plb

Hence, by (3.1), (7.5), (7.7), (7.9), and (7.1),

logp) < /\(6_9(1))+ulog()t0+)\1y+éz)_u_8)

logx

1—- ( l—wu
xald$p<x1/u log T
!

plb

< A(6—-Q(b)).
Thus the weight is negative if Q(b) > 5 and is at most A if Q(b) = 5. More-
over, every element of & for which there is a positive contribution to ¥V
has no prime factor less than x*/4, and is squarefree. It therefore suffices
to show that the contribution to V from those elements of 2 having

exactly five prime factors is at most 3-041z/logz. By (3.1), (5.2), and
(5.3) it is thus enough to show that

AS(D*(ax/4), y1/4-%) < 3-041x/logx. (7.13)
By Lemma 2.4, Theorem 5.1, and (7.3),

S(D*(x2/), y114-3) < (l —848+ )loxglxl'
Hence, by (7.9), (7.8), (5.5), (5.2), (5.1) and (7.6),
AS(D* (2214, y1/4=8) < (4+ 1008)2,/log . (7.14)
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We now proceed to estimate ;. By (5.2), (5.1), and the prime number
theorem,

Y/ dul J(Ul/ul)]/‘ du2 J‘ (Y1/uug)V/3 dua

/4
| A (x/4) | < (1+8)?/1f “ Uglog uy J, uglogug

yq1/18-8/8 Uy log Uy

(a/urugug)*/? du,
x J ug uy(log ug)log(y,/uusustty)
< A (1 +8)m(y)({ + 5005), (7.15)
where
J«1/5 ‘_l_'ﬁ (1-v,)/4 d_v2 (1—v1—5)/3 % (1-v;—vg—03)/2 dv,

17186 V1 Ju, Vg Jog V3 Juy Vg(l— v — vy —v3—1v,)
(7.16)
The substitution 1 —v; — ... —v;_; = vju; gives
I- fl‘* du1 w-1 dy, (vl dua J‘"s—l du4
Uy — 1 4 Ug — 1 -1

15 dv, fvl dv, valog vy —3) dv,

4 U Jg vp—1 -2
J‘lG]og(va_ 3)d J‘IS dru2 méﬂ
4 Vg — vs Va—1lJuy U

16 ylog(u—3) 151
SL =)= 2dJ —dv

15 ylog(w—3)
=3, teao 2)0’g ) @

We compute an upper bound for I as follows. Let

L G+1G-2)
7() = L2 (10g 22) “log?(j—2) - log?(i—3))
Then

114 (341 y(y—3) 15\2log(u— 3)
IsZﬂL w—nw—m@° ) u—3

114

1 2J0)- (7.17)

j—4

In the following table, J(j) denotes a number such that J(j) > J(j).

JGy 7 JG) 5 J0)
070 8 024 12 0-03
079 9 015 13 0-01
0-57 10 009 14 0-01
0-38 11  0-05

SO OB S,
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(This table was computed with the use of a table of five-figure natural
logarithms. It was then checked on an HP65.) Hence, by (7.17), 41 < 3-02.
Therefore, by (7.15), (5.5), (7.14), and (7.7), we have (7.13).
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