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Abstract The 25 April 2015, M, 7.8 Gorkha, Nepal, earthquake ruptured a shallow section of

the Indian-Eurasian plate boundary by reverse faulting with NNE-SSW compression, consistent with

the direction of current Indian-Eurasian continental collision. The Gorkha main shock and aftershocks were
recorded by permanent global and regional arrays and by a temporary local broadband array near the
China-Nepal border deployed prior to the Gorkha main shock. We relocate 272 earthquakes with M,, > 3.5
by applying a multiscale double-difference earthquake relocation technique to arrival times of direct and
depth phases recorded globally and locally. We determine a well-constrained depth of 18.5 km for the main
shock hypocenter which places it on the Main Himalayan Thrust (MHT). Many of the aftershocks at shallower
depths illuminate faulting structure in the hanging wall with dip angles that are steeper than the MHT.
This system of thrust faults of the Lesser Himalaya may accommodate most of the elastic strain of the
Himalayan orogeny.

1. Introduction

The collision between the Indian and Eurasian continental plates formed the Himalaya mountain range,
the highest orogenic belt on Earth with widespread continental seismicity. The region is classically divided
into four tectonic units from south to north: Sub-Himalaya, Lesser Himalaya, Higher Himalaya, and Tethyan
Himalaya [Yin, 2006] (Figure 1). The Main Frontal Thrust (MFT), Main Boundary Thrust (MBT), Main Central
Thrust (MCT), and South Tibet Detachment (STD) separate the four tectonic units. They converge at the
Main Himalaya Thrust (MHT), the detachment along which the Indian plate subducts beneath the Himalayan
Mountains [Ni and Barazangi, 1984; Zhao et al., 1993; Ndbélek et al., 2009].

The potential for devastating earthquakes in the Himalaya has long been recognized. Historical documents
since the tenth century show evidence for great Himalayan earthquakes with a recurrence interval of about
800 years [Kumaretal.,2010; Bollinger et al., 2014]. Nearly 500 earthquakes of M,, >4.5 have occurred along the
Himalayas orogen since 1964. The Gorkha, Nepal, earthquake has heightened concern for large earthquakes
along the Himalayan front [Bilham, 2015; Hand and Pulla, 2015]. This is the first well-recorded earthquake and
aftershock sequence on a shallow portion of the MHT. The seismic data will provide new constraints on the
fault zone structure of the Indian-Eurasian plate boundary at shallow depth and insight into seismic hazard
in the region.

In this study, we relocate aftershock hypocenters to infer the structure of the Gorkha earthquake fault zone.
Our data come from the Global Seismic Network, the China National Seismic Network, and a temporary array
of 15 broadband seismic stations that we deployed at the China-Nepal border in December 2014. The com-
bination of teleseimic (30-90°) P waveforms and regional Pg, Sg, Pn, and Sn signals is optimal for precise
hypocenter determinations.

2. The Main Himalayan Thrust

The MHT is defined as the detachment that separates the underthrusting Indian plate from the overriding
Himalaya orogeny. The concept of the MHT was proposed by Ni and Barazangi [1984] based on the locations

BAIET AL.

FAULTING STRUCTURE ABOVE MHT 637


http://publications.agu.org/journals/
http://onlinelibrary.wiley.com/journal/10.1002/(ISSN)1944-8007
http://dx.doi.org/10.1002/2015GL066473
http://dx.doi.org/10.1002/2015GL066473

@AG U Geophysical Research Letters 10.1002/2015GL066473

]
T T T 1
2000 4000 6000 8000 m

Figure 1. The study region showing the relocations of the M,, 7.8 Gorkha, M, 7.3 Kodari earthquakes (yellow stars),
aftershocks (red circles), and earthquakes that occurred before the Gorkha earthquake since 1980 (blue circles), which
are superposed on a slip model [Wang et al., 2015]. Historic seismicity of M,, > 7.0 since 1000 is shown with large black
circles. Blue triangles show the 15 stations of the China-Nepal seismograph array deployed before the Gorkha
earthquake. Green triangles show the short period seismic stations of the National Seismic Network of Nepal. Stations
EVN and ZBA belong to the 10 and CEDC networks, respectively. The square shows the location of Nepal’s capital city,
Kathmandu. The double lines indicate the location and the direction N20°E of the cross section shown in Figure 4. The
inset at the lower left corner shows seismic stations from the China National Seismic Network (green triangles) and the
Global Seismic Network (black triangles) used in this study.

and fault plane solutions of moderate earthquakes at 10-20 km depths. A similar concept of a Main
Detachment Fault was put forward by Schelling and Arita [1991] from a tectonic reconstruction of eastern
Nepal. The MHT was imaged at a depth of 30-40 km by Zhao et al. [1993] with a deep seismic reflection profile
in southeastern Tibet. In the past decade, broadband seismic arrays have been deployed to constrain the struc-
ture of the MHT in the central [Hetényi et al., 2007; Ndbélek et al., 2009; Xu et al., 2015], eastern [Schulte-Pelkum
etal., 2005; Acton et al., 2011], and western [Rai et al., 2006; Caldwell et al., 2013] Himalaya, respectively.

Subduction of the Indian continental lithosphere beneath the Himalaya has been shallow and nearly hori-
zontal since the initiation of the Indo-Asian collision. The dip angle increases with depth from the MCT to
the Indus-Tsangpo suture (ITS). The deeper sections of the MHT are constrained best [e.g., Zhao et al., 1993].
However, the shallow structure of the MHT remains uncertain because the interpretation of shallow seismic
wave refraction is difficult [Hetényi et al., 2007; Ndbélek et al., 2009].

3. Waveform Modeling and Multiscale Double-Difference Earthquake Relocations

We relocate a total of 272 earthquakes, including the Gorkha main shock, 233 aftershocks within T month and
38 earthquakes that occurred before the Gorkha earthquake since 1980 (Figure 1 and Table S2 in the sup-
porting information). Our estimates are based on five data sets: (1) bulletins from the National Earthquake
Information Center (NEIC) of the U.S. Geological Survey for 234 earthquakes of M,, > 3.5 that occurred within
1 month after the main shock, (2) bulletins from the National Seismic Network of Nepal and the International
Seismological Centre (ISC) for 38 earthquakes of M, > 3.5 that occurred in the source region during three
decades prior to the Gorkha earthquake, (3) seismic and waveform data from the China Earthquake Data
Center (CEDC) and the China National Seismic Network (CNSN), (4) teleseismic P waveforms from the Global
Seismic Network, and (5) waveform data from a temporary array of 15 broadband seismic stations along the
China-Nepal border, deployed by the Institute of Tibetan Plateau Research, Chinese Academy of Sciences,
prior to the Gorkha earthquake. Our local temporary array recorded many of the aftershocks at epicentral dis-
tances less than 100 km (Figure 2a), including the M,, > 7.3 Kodari earthquake [Lindsey et al., 2015]. Permanent
seismic stations in the Tibetan region at epicentral distances of 2-7° recorded clear Pn and Sn head waves
and Pg and Sg waves (Figure 2b). At teleseismic distances, surface reflections pP and sP phases for moderate
earthquakes (Figure 3) provide constraints on focal depths.
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Figure 2. Record section of vertical-component seismograms for event 222 (Table S2) recorded by the (a) China-Nepal
array and (b) China National Seismic Network. Dotted red lines are observed arrival times of each phase.

Our analysis comprises three steps. First, we determine hypocenters for the Gorkha earthquake and its 233
aftershocks based on the HYPOSAT methodology [Schweitzer, 2001]. Absolute traveltimes and traveltime dif-
ferences at common stations are modeled using a layered velocity structure in the source region, representing
the Himalayan orogenic prism, the Indian upper and lower crust, and the Indian mantle, respectively [Pandey
etal., 1999; Monsalve et al., 2008; Ndbélek et al., 2009] (Table S1). We constrain the absolute focal depths of mod-
erate aftershocks (M, 5.5 to M,,6.3, Table S2) by modeling the teleseismic waveforms of the direct P and the
surface reflections pP and sP (Figure 3) following Kikuchi and Kanamori [1991]. Using the depths determined
by HYPOSAT and by waveform modeling, we calculate hypocenters of all earthquakes using a multiscale
double-difference earthquake relocation method (Multi-DD) [Bai and Zhang, 2015], which is modified from
the hypoDD programs [Waldhauser, 2001] to include phases recorded by regional and teleseismic networks.
Since differential traveltimes do not depend strongly on the assumed velocity models along the whole
raypath [Waldhauser and Ellsworth, 2000; Waldhauser and Schaff, 2007], the joint analysis of local, regional, and
teleseismic data and the precise measurements of differential phase arrival times via waveform cross correc-
tion for the China-Nepal array (Figure S1) improve the relative focal depth determinations considerably. The
focal depths for earthquakes determined by waveform modeling are held fixed during the Multi-DD process-
ing to constrain the absolute focal depths of all earthquakes. We calculate differential traveltimes between
each event and up to eight of its nearest neighbors. Each event pair has 8—32 commonly observed phases
within a 15 km distance between the two events. The data include 9690 Pg and Sg, 5288 Pn and Sn, 174 pP
and sP, and 17,664 teleseismic P and S arrival times.

4, Results

We estimate the uncertainty of the relocations by a bootstrap analysis [Bai et al., 2006] using 100 sampling
iterations (Figure S2). This analysis indicates that epicenters are estimated with an accuracy of +3.5 km, which
is 2 times smaller than the average uncertainty of +7.0 km reported in the NEIC catalog. The uncertainty in
the focal depth estimate is 2.0 km, in agreement with the estimates of focal depth uncertainty based on
waveform fits (Figure 3). The differential time residuals are reduced substantially from +5 s before to +1.5 s
after relocations (Figure S3). The weighted L1 and L2 norm residuals decreased from 1.10 sand 1.58 s t0 0.46 s
and 0.60 s after relocations, respectively, demonstrating that the earthquakes are better relocated.
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Figure 3. Comparison of the recorded (thick lines) and computed P waveform for event 98 (Table S2) at stations
(@) TIXI, (b) JSD, and (c) KIV. Waveforms are band-pass filtered from 0.01 to 1 HZ. The preferred focal depth for this
event is 15.5 km below the surface (thin lines) or 14.2 km beneath sea level. Waveform misfits for H = 10 km (0.73)
and H = 20 km (0.96) are much higher because pP and sP phases in the data and the computed seismograms are
misaligned. (d) Focal mechanism of the earthquake. Locations of the three stations shown in Figures 3a-3c are

shown by open circles.

The average focal depth after relocation is 14.7 km below the surface, deeper than the default value of 10 km
in the NEIC catalog for most of the aftershocks. Almost all aftershocks occurred to the southeast of the main
shock. Few aftershocks occurred northeast of Kathmandu, where coseismicsslip is large [Avouacetal., 2015; Fan
and Shearer, 2015; Lindsey et al., 2015; Wang et al., 2015; Wang and Fialko, 2015]. The M,, 7.3 Kodari earthquake
occurred on the eastern edge of the aftershock zone. We estimate the focal depth of the main shock to be
18.5 + 2 km (Figure 3), consistent with the depth of the MHT [Ndbélek et al., 2009] and the locking line at the
source region [Bilham et al., 2001; Avouac et al., 2015]. The focal depths of the M, 7.3 and M, 6.7 aftershocks
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Figure 4. Cross section along the double lines in Figure 1 showing relocated earthquakes that occurred before the
M,, 7.3 event. Yellow and blue earthquake focal mechanisms show events in cross-sectional view with dip angles of
about 10° and 25°, respectively (http://www.globalcmt.org/). Numbers are the earthquake ID (Table S2 in the
supporting information). The dotted black lines indicate the steeply dipping faults where aftershocks occurred within

the Lesser Himalayan thrust system.
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(events 150 and 86 in Table S2) are 21 km, slightly deeper than the depth of MHT near a patch of large slip
below the plate surface [Galetzka et al., 2015].

Figure 4 shows relocated hypocenters of the main shock and major aftershocks along a N20°E cross section
perpendicular to the strike of the Gorkha main shock fault plane. Most aftershocks are shallower than the main
shock and located in the hanging wall. They line up as clear north dipping structures with dip angles of about
25°, which is 15° steeper than the dip of the MHT [Ndbélek et al., 2009] and the shallow nodal plane of the main
shock [Avouac et al., 2015]. The steeper dips are in good agreement with the focal mechanism solutions of
aftershocks 12, 76, 98, 156, and 222 (Table S2) reported in the global centroid moment tensor (QCMT) catalog.

5. Discussion and Conclusions

The 2015 Gorkha earthquake sequence on a shallow section of the MHT has been recorded extremely well
by local, regional, and global seismic arrays. From precise relocations, we infer that the Gorkha aftershocks
(Figure 1) are distributed above the anticlinorium system of the MCT. The southern edge of the aftershock
zone is very close to the MBT [Amatya et al., 1994], which is the thrust placing the lesser Himalaya over Tertiary
sedimentary strata. Pandey et al. [1999] suggested that earthquakes along Himalaya orogeny are mostly paral-
lel to the MBT. These observations indicate that the MBT may control earthquake occurrence along the frontal
edge of the Himalaya.

While the main shock ruptured a section of the MHT, most of the aftershocks with M,,3.5 or larger have
shallower focal depths and the northward dipping nodal planes of the largest aftershocks have larger dip
angles. We infer therefore that the aftershocks are mainly distributed on steeper dipping structures within the
hanging wall of the Lesser Himalaya (Figure 4).

Northward motion on the Indian plate was associated with the development of a thrust system that consists
of both the near-horizontal MHT and more steeply dipping faults above. Pandey et al. [1999] and Yin [2006]
suggested such a Lesser Himalayan duplex system to exist in the western Himalaya and to cause folding of
the MCT and STD at deeper depth. The Gorkha aftershock locations indicate that this thrust system is also
present in central Nepal.

Active faults exist throughout the Kathmandu basin [Nakata et al., 1990]. However, strike-slip earthquakes on
these near-vertical faults have not been recorded in the past 50 years [Bai et al., 2016]. Great earthquakes in
the past 200 years include the 26 August 1833 M, 8.0 event [Bilham, 1995] and the 15 January 1934 M, 8.0
Bihar-Nepal event [Sapkota et al., 2012] (Figure 1), which have been attributed to slip on the MHT. Many
of the historical large earthquakes along the Himalaya orogeny were located beneath the Lesser Himalaya
[Rajendran et al., 2015]. We infer that the Lesser Himalaya thrust system is the most seismically active region
along the Himalaya convergence and accommodates most of the elastic strain accumulation of the region.
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