
ON THE FREIHEITSSATZ

ROGER C. LYNDON

0. Summary

The classical proof of the Dehn-Magmis Freiheitssatz, due to Magnus, is recast
in the language of combinatorial geometry. This provides an extension of the
Freiheitssatz from free groups to groups that are free products of groups isomorphic
to subgroups of the additive group of real numbers, and, at the same time, a sharpening
of the author's Identity Theorem.

1. Introduction

The following theorem is our main result.

THEOREM 1. Let G be a free product of groups each isomorphic to a subgroup of the
additive group of real numbers. Let r be a cyclically reduced element of G, and let w
be anon-trivial element of the normal closure of r in G. If the normal form for r contains
a factor from a certain one of the components, then so does the normal form for w.

This theorem clearly contains the classical Freiheitssatz, in which each component
is an infinite cyclic group.

There is essentially only one proof known for the Freiheitssatz, that given by
Magnus [5; see also 6]. Our starting point was an attempt to translate this proof
into the language of combinatorial geometry, using a result of van Kampen [7]
which we have discussed and exploited elsewhere [3]. (We have learned recently
that Weinbaum [8] has already carried out a translation very similar to ours; however,
his further applications of the method lie in a different direction from ours.) Our
effort has been only partially successful. However, we were able to shift the emphasis
of the proof, especially with regard to the induction argument, in such a way that it is
easily adapted to prove the somewhat more general Theorem 1 above. The same
argument without essential modification yields also a sharpened form of our Identity
Theorem [1,2], which we state as Theorem 4 below.

The result of van Kampen, as adapted to the group G, concerns what we have called
diagrams. A diagram M consists of a connected and simply connected finite complex
\M\ in the plane together with a function (j> assigning to each directed edge (1-cell)
as label a non-trivial element of one of the component groups Ga of the free product G}

and assigning inverse elements to oppositely oriented edges. The result of van Kampen
asserts that if R is any set of cyclically reduced elements of G, and w any non-trivial
element of the normal closure of R in G, then there exists a diagram M such that the
product of the labels on the boundary of M, starting at a suitable point, is w, while,
for any face (2-cell) of M, the product of the labels on the boundary of the face,
starting at a suitable point, is r or r"1 for some element r of R.
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We may always suppose M chosen with the smallest possible number of faces for
given R and w. Then M will be reduced in the following sense. If Mx is any sub-
diagram of M containing at least one face but not all faces of M, then the product
of the labels on Mu starting at any point, does not reduce to the trivial element
1 ofG.

In view of van Kampen's theorem, we can restate Theorem 1 in the following form.

THEOREM 2. Let R consist of a single element r, let w be a non-trivial element in
the normal closure ofR in G, and let Mbea reduced diagram as above. If any edge of M
bears a label from a certain component Ca, then some edge on the boundary ofM bears a
label from that component.

Magnus' proof went by an induction, applied not to the Freiheitssatz itself, but
to an extension of it. Similarly, we shall prove by induction an analogous extension
of Theorem 2.

THEOREM 3. Let certain among the components Ga be denoted as Ha, Ha+l,..., Hb,
and suppose that R consists of elements rl5 r2,..., rm where each rt contains at least one
factor from some Hj. For each rt let at be the least index j such that rt contains a factor
from Hj, and let bt be the greatest such index. Assume that al<a2< ... <am and
bi<b2< ... < bm. Let w be a non-trivial element in the normal closure of R in G,
and let M be a reduced diagram as above. Ifj0 is the largest index such that some edge
of M bears a label from HJ0, then some edge on the boundary of M bears a label from

It is perhaps curious that, formulated thus, the extended Freiheitssatz takes the
form of a combinatorial maximum principle (see [4]).

The main difference, although a minor one, between Magnus' argument and that
to be given below seems to be that he argues by induction on the common length
(in his case) of the ?-,-, while we argue by induction on the number of faces in the
diagram M.

The planar diagrams M considered above could just as well be taken as diagrams
on the sphere, but not covering the entire sphere. If, now, we start with a diagram M
that exhausts the entire sphere, the arguments to be given below apply equally, and
yield the following result.

THEOREM 4. Let r be a cyclically reduced element ofG. Then there does not exist a
reduced diagram M on the sphere such that \M\ is a decomposition of the entire sphere,
and such that the product of the labels on each face, starting at a suitable point, is r
orr-\

Theorem 4, in the case in which G is a free group, implies the Identity Theorem of
the author [1,2]. Theorem 4 admits an obvious extension to the situation of
Theorem 3.

2. The inductive step for m > 1

We shall prove Theorem 3 by induction on the number of faces of M. The initial
case, where M has only a single face, is immediate. In this Section we prove Theorem 3
in the case in which m > 1, assuming inductively that Theorem 3 holds for all diagrams
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with fewer faces than M. The remainder of the paper is devoted to the case in which
m = 1; the truth of Theorem 3 for given M with m = 1 will be reduced to that of
Theorem 3 for a new diagram M" with the same number of faces as M, but with
m > 1.

We assume then the hypotheses of Theorem 3, with m > 1. To simplify notation,
we may suppose that M contains faces with labels r fx and r *L. We must show that some
edge on the boundary of M bears a label from Htm (or, symmetrically, from Hai).
In fact, we assume that no edge on the boundary bears a label from Hhm, and from
this derive a contradiction.

Let Mx be a subcomplex of M, maximal with respect to the property that Mx is
connected and the union of a set of (closed) faces, each with boundary label rm

±l

Let e be an edge on the boundary of Mx. If e lies also on the boundary of M, then,
by hypothesis, e does not bear a label from Hbm. Otherwise e separates Mx from a
face F that does not belong to M^. From the maximality of Mx we conclude that F
has boundary label rfl for some i < m. Since rt contains no factor from Hbm, the
label on e does not come from Hbm. We have shown that no edge on the boundary
of M y bears a label from Hbm.

Suppose that Mx is simply connected. Then Mx is a subdiagram of M, containing
at least one face but not all faces of M. Since M is reduced, Mx is reduced, and has
non-trivial boundary label. This contradicts the induction hypothesis, according to
which Theorem 3 holds for the smaller diagram Mx.

Suppose that Mx is not simply connected. Then one of the components of the
complement of Mx in M is a connected and simply connected subdiagram M2 of Mt

with its boundary entirely contained in the boundary of Mx. From the maximality
of Mx it follows that M2 contains a face with label r*1 for some i < m; let j be the
least such i. Then M2 contains an edge with label from Haj. But every edge on the
boundary of M2 lies on the boundary of Mx, and hence on the boundary of some
face F of Mx; since the label rj11 on F contains no factor from Haj) the label on the
edge cannot come from Haj. This contradicts Theorem 3 (in the symmetric form
noted above) for the smaller diagram M2.

3. The case m = 1

We assume that M is given, with more than one face, and satisfying the hypotheses
of Theorem 3 with m = 1. We shall modify M to obtain a new diagram M" with the
same number of faces, and satisfying the hypotheses of Theorem 3 with m > 1.
By the previous case, the conclusion of Theorem 3 follows for M". We shall show
that this implies the conclusion of Theorem 3 for M.

It is easy to see that the case m = 1 of Theorem 3 is equivalent to Theorem 2. We
assume that G, r, w, and M are as in the hypothesis of Theorem 2.

Let \i be any homomorphism from G into U, the additive group of reals, such that
n(f) = 0. If n is any path in M, let S(n) be the sum of values of ju on the labels on the
edges of n. The condition /i(r) = 0 implies that S(n) depends only on the endpoints
of it. Choose a vertex v0 in M for base point, and, for each vertex v in M, define h(v)
to be the common value of S(n) for all paths n from v0 to v. Without loss of generality
we can suppose that each component Ga of G is isomorphic to U, and that a standard
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isomorphism ya from U on to Ga is given. With this we can extend the function h
by linearity to interior points of the edges of M.

Let K be the finite set of values assumed by the function h at the vertices of M;
we can suppose the elements of K are kx < k2 < ... < kn. If, on a given edge e, the
function h is not constant, it is strictly monotonic, hence assumes each of the values ki
at most once. We modify our diagram M by introducing as new vertices all those
points on e where h assumes a value k{ from K. Each edge e is now subdivided into a
succession of edges ex, e2,..., et. Using the functions ya and linearity, we can factor
the label g o n e into labels glt g2, ...,gt for eu e2>..., et. We have thus obtained a
new diagram M', with the same number of faces as M.

The group G is the free product of components Ga, for a in some index set A.
We define a new group G" to be the free product of components Ga> k> for a in A and k
in K; we suppose given isomorphisms ya% k from Ga onto Ga> k. If h is constant on an
edge e, then h(e) = k{ for some kt in i<C; otherwise h(e) = [kt,ki+l] for some k-r

In either case we define k(e) = /:,-. Now let e be an edge, directed in such a way that
its label g i s ' positive', that is, if g is in Ga, then ya~

1(g) is a positive element in U.
We replace the label g on e by the new label ya> k(e)(g) in Gai fc(c). We have thus a new
diagram M", with labels from the group G"; it is evident that M" is reduced and has
non-trivial boundary label. We shall next examine the labels on the faces of M".

Let Fx and F2 be two faces of M, with px a vertex on the boundary of Fx and p2

on F2. We shall say px and p2
 a r e corresponding points if the boundary labels, on

Fx beginning at px and on F2 beginning at p2, are the same or inverses. (Apart from
the case in which r is a proper power, which can be excluded, px uniquely determines
p2.) Let qv and q2 be another pair of corresponding points. Then the path along the
boundary of Ft fvompy to qlf in the positive or negative sense according as the
label on Fx is r or r ~ \ and the similar path on the boundary of F2, will bear the
same product-label, say u. From this we have that h(q{) = /J(PI) + J"(M) and

It follows that h(q2)-h(qi) - /z(p2)-^(Pi)- Thus there exists a real number d,
depending only on Fx and F2, such that if p{ and p2 are any two corresponding points,
px on Ft andp2 on F2, then h(p2) = h{px)+d. Similarly, ifex ande2 are corresponding
edges, that is beginning at corresponding points, and have positive labels, then
k(e2) = k(ex)-\-d. Now, in the new diagram M", Fx and F2 will have boundary labels
r j 1 1 and r 2

± l , where r t and r2 are obtained from r by replacing each factor of r,
from some Ga by a corresponding factor from some Ga, k. From the above we see that
r2 is obtainable from rx by replacing each factor of rl5 from some Ga k, by the
corresponding factor from Ga k+d. We now arrange the finite set of rh arising as
above, in order: rlt r2, ..., rm, in such a way that in passing from an earlier r{ to
a later r,-, the second subscript on the component Ga k containing corresponding
factors is always increased.

We now show that if Theorem 2 failed for M, then Theorem 3 would fail for
M". Suppose Theorem 2 fails for M. Then M contains an edge with a label from a
certain Gp, but no such edge on its boundary. Now M" will contain edges with labels
from some of the Gfi>k, but no such edge on its boundary. Let Ht = Gfitki,
H2 = GPtki, ...,//„ = Gpkn. The hypotheses of Theorem 3 are evidently satisfied, but
the conclusion fails flagrantly. Now, provided we know that m > 1, this is a contradic-
tion, and the proof is completed.
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The next Section is devoted to showing that 11 can always be chosen in'such a way
as to yield m > 1.

4. Completion of the proof

Let G, r, w, and M be, as before, as in the hypothesis of Theorem 2. We want to
show that it is always possible to choose pi in such a way that the construction above
yields M" with m > 1.

There is in fact one degenerate case where n cannot be so chosen; we dispose
of this case by a direct argument. Let r be called special if it is of the form
>' = (#i 82 ••'• 8tY f° r some t ^ 1 and w > 1, and with each gt from a different Ga(. We
assume that no boundary edge of M has a label from, say, Gp = Gai, and will derive a
contradiction. Note that this assumption implies that t ^ 2. Let B be that part of the
1-skeleton of M consisting of all edges with labels from Gp; then B is non-empty and
contains no edge from the boundary of M. If any component of B were a tree, it
would contain a vertex v with a single edge e of B emanating from it. Since e is not
on the boundary of M, it separates two faces Ft and F2. Now it is easy to see that the
subdiagram ML = Fx u F2 violates the assumption that M is reduced. We conclude
that B contains a circuit, and hence that some component of the complement of B in M
is a subdiagram M 2 with boundary contained entirely in B. It follows that no edge on
the boundary of M2 bears a label from Gai. Since M2 is smaller than M, we can
conclude by induction that this is impossible.

A point on r splits r into two parts: r = uv, product without cancellation; formally,
we define a point a to be an ordered couple a = (u, v) such that r = uv without
cancellation. Let p be a vertex of M, lying on the boundary of a face F. Then the
boundary label of F, beginning at p, is s±l for some cyclic conjugate s of r; now,
for some u and v, we have r = uv and s = vu. We say that p determines the point
a = (u, v) on r relative to F. It is clear how to extend this definition to the case in
which p is an interior point of an edge. Let p lie on an edge separating faces Ft and
F2. Then p determines two points ay and a2 on r, relative to Ft and F2. We say that
at and a2 are immediately related. We call two points a and b on r related if they are
connected by a chain with consecutive members immediately related. We call two
factors of r related (immediately related) if they contain interior points that are
related (immediately related).

Suppose that, for some component Ga, not all the factors of r from Ga are related.
Then we can divide these factors into two sets Sx and S2 such that no factor in Sj is
related to a factor in S2. We modify G to G' by replacing the component Ga by two
components Ga> j and Ga# 2. If an edge e of M separates faces Ft and F2, and has
label from Ga, then the two factors of r that it determines relative to Fx and F2 are
related and so belong to the same set S,-; we replace the label on e by the corresponding
element of Ga> t. We have now a new diagram M', all of whose faces have label r '*1,
where r' is obtained from r by replacing each factor from St by the corresponding
element of Ga<,-. If Theorem 2 holds for M', then it holds also for M. Finite iteration
of this argument permits us to confine attention to the case in which all factors of r
from the same component are related.

We return to a point p on an edge separating two faces Fl and F2, and the points
a, and a2 of r determined by p relative to faces Fx and F2. Let v be the segment of /•
(or a cyclic conjugate) running from ax to a2; that is, suppose r = uvz with
ay = (u, vz) and a2 = (uv, z). Suppose \x has been chosen so that \i{v) ^ 0. The
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point«! on r will be determined by a point q on the boundary of F2, and the segment
of the boundary of F2 running from q to p will bear label v, whence

Thus the corresponding points p on Ft and q on F2 receive different values of //,
and it follows that, in M", Ft and F2 will bear labels r , 1 1 for different i, whence
m > 1. Suppose now that we have a chain a0) au ..., an of points on r, with each
pair ahai+l immediately related. We may write a{ = {uvx v2 ... vh vi+l...vnz),
hence a0 = (w, vz) and a,, = (wi>,z) for v = vx v2 ... yn. Now if /t(y) # 0, then some
^(y.) ^ 0, and m > 1 as before. To obtain m > 1 then it suffices to choose /i so that
/t(y) # 0 where v is the segment of r determined by two related points of r.

Write G = Gt* G2* ...* Gn. Using the given isomorphisms ya from U onto the
Ga, we can write each element of Ga as ya(x), for * in R. Clearly a homomorphism
/( from G into IR is uniquely determined by its values jta = ^(ya(l)). We can identify
the commutator quotient group G of G with the direct product of the components,
G = GiXGzX ... x G r Let the image of r in G be r = yi(xi)y2(*2) ••• YnW-
Then ^(r) = 0 if and only if Znaxa = 0.

We call a component Ga irf/e if xa = 0, and otherwise engaged. Evidently, to choose
\i with n(r) = 0, we may choose fia arbitrarily for all idle Ga, and also for all but one
of the engaged Ga. Suppose first that r contains a factor from some idle component
Ga. Then r must contain at least two factors g and h from Ga, and, choosing successive
such factors, r has a part guh where u is a product of factors none of which lies in
Ga. We may now suppose this configuration chosen with as few factors in u as
possible; then u does not contain two factors from the same idle component. Suppose
u contained a single factor / from an idle component, say u = u1fu2. Then, by
choosing fi(f) arbitrarily we make n(u) arbitrary. Now if a in g and b in h are related
points in g and h, we have in r a part v from a to b, where v = g2 uhu g — gy g2,
h = hx h2. If n(u) is arbitrary, then so is fi(y); in particular, we can make n(v) # 0,
and the proof is complete.

Suppose next that u contains no factor from an idle component. Again fi(u)
is arbitrary, and the proof is complete, unless u contains factors from all the engaged
components. Let k be the next factor in r from Ga after h; here we take r cyclically,
and it may happen that k is g. Then r has a part hzk. If z contains a factor f2 from
an engaged component, then u also contains a factor fx from this component, and r
has a p a r t / ^ / 2 , where q contains the single factor h from Ga. Since we can choose
fi(h), and so fi(q), arbitrarily, the proof is complete as before. The case remains in
which all factors from z are idle. If we now choose a shortest segment hzk consisting
of idle factors only, and with h and k factors from the same component, then z must
contain a single factor / from some idle component. Now n(f), and so fi(z), is
arbitrary, and again the proof is complete. This completes the case in which r contains
any factor from an idle component.

We may suppose now that all components are engaged. Suppose r contains two
factors g and h from the same component, Ga and hence a part guh. Unless u contains
a factor from each component other than Ga, we may choose n(g2 uh{) arbitrarily,
and the proof is complete. Thus we may assume that in r, between two factors from
the same component there occurs a factor from each other component. This implies
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that r has the form

i) •••) ••• (yi(xn)y2(xl2)...y,,(xtn))

for some t > 1. We may put aside the case n = 1, where the theorem to be proved
is trivial, and also the case t = 1, where r is special. Now, taking yi(xn) and ViO^i)
in the role of g and A, we can still make ju(g2«^i) ^ ^ u n^e s s *i2>*i3» ••• xin are
proportional to ^ 2 ,x 3 , ...,xn> say x12 — cix2, xiZ = cix3i...ixln = c^x^ Next,
taking ^ ( ^ n ) a n ^ li&ii) a s 8 a n d K we have, for some c2, that

•••» X21 ~ C2xl'

If « ^ 3, we have xl3 = c ^ = c2x3, whence ^ = c2 = c. Continuation of this
argument shows that each xu - cxp whence

r = {yx(cxi)
and r is special.

The case remains in which « = 2, and this is a genuine exception to the argument
above. To treat this case we remark first that, if there are two related points in the
same factor, then the segment separating them lies in one of the components; then n
can be chosen not to vanish on this segment, and the proof is complete. We assume
now that there are not two related points in the same factor. Pick a point a of r,
interior to some factor, and a small segment u of that factor containing a in its interior.
In each other factor from the same component Ga> the set of points related to points
in u will be a finite union of intervals (possibly empty). We introduce all end points
of such intervals, on all faces of M, as new vertices, and we relabel such intervals with
elements from a new component Ga> x. We have thus replaced M by a new diagram
M' with labels r'±l where r', in a new group G', has factors from three components.
Evidently Theorem 2 for M' implies the same for M. Thus we have reduced the case
n — 2 to the case n ^ 3, already treated. This completes the proof of the theorem.
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