

This is the author manuscript accepted for publication and has undergone full peer review but has

not been through the copyediting, typesetting, pagination and proofreading process, which may

lead to differences between this version and the Version of Record. Please cite this article as doi:

10.1111/poms.12606

This article is protected by copyright. All rights reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

http://dx.doi.org/10.1111/poms.12606�
http://dx.doi.org/10.1111/poms.12606�
http://dx.doi.org/10.1111/poms.12606�

Submitted to Production and Operations Management

manuscript POM-Jun-15-OA-0438.R2

Priority Rules for Multi-Task Due-Date Scheduling

Under Varying Processing Costs

Yunjian Xu
Engineering Systems & Design, Singapore University of Technology and Design, Singapore, yunjian xu@sutd.edu.sg

Cong Shi
Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, shicong@umich.edu

Izak Duenyas
Technology and Operations, Ross School of Business, University of Michigan, Ann Arbor, MI 48109, duenyas@umich.edu

We study the scheduling of multiple tasks under varying processing costs and derive a priority rule for optimal

scheduling policies. Each task has a due date, and a non-completion penalty cost is incurred if the task is

not completely processed before its due date. We assume that the task arrival process is stochastic and the

processing rate is capacitated. Our work is motivated by both traditional and emerging application domains,

such as construction industry and freelance consulting industry. We establish the optimality of Shorter Slack

time and Longer remaining Processing time (SSLP) principle that determines the priority among active

tasks. Based on the derived structural properties, we also propose an effective cost-balancing heuristic policy

and demonstrate the efficacy of the proposed policy through extensive numerical experiments. We believe our

results provide operators/managers valuable insights on how to devise effective service scheduling policies

under varying costs.

Key words : multi-task due-date scheduling, varying processing costs, make-to-order, priority rule

History : Received May 2015; revisions received December 2015, February 2016; accepted March 2016 by

Michael Pinedo after two revisions.

1. Introduction

We study the scheduling of multiple processors to perform multiple tasks under varying (and

possibly random) processing costs. The task arrival processes can be random and intertemporally

correlated. Each task can be processed at a limited rate before its due date (which is sometimes

referred to as deadline in the literature). Failure to meet the due dates will result in non-completion

penalty costs. The critical feature of our model is that the processing cost can also be random and

nonstationary. In many practical settings, the processing cost of each task may fluctuate over time

due to varying labor, energy or raw material costs. The objective is to find a feasible scheduling

1This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

2 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

policy to process incoming tasks so as to minimize the total expected costs, i.e., the sum of the

expected processing cost and the expected non-completion penalty for not finishing tasks before

their pre-specified due dates. The main focus of this paper is to derive priority rules for optimal

scheduling policies and also to develop effective heuristic policies based on these rules.

Our work is primarily motivated by the scheduling problem faced by subcontractors in the

construction industry. There are many firms that specialize on one aspect of construction (e.g.,

cabinet or garage installation, kitchen remodeling, etc.) that are used by the contractor who is

responsible for the whole construction project on an as-needed basis. Typically, the subcontractors

will get requests that have strict due dates (with penalties for non-completion), and they need

to decide how to schedule their work force across the multiple projects that are waiting to be

completed before their due dates. The subcontractor has access to a labor pool that has varying

availability (i.e., the number of total workers available in any given day varies) and also different

pay rates depending on the day that the work has to be done (e.g., to complete the project faster

the manager can get the workers to work on a Sunday at a much higher labor cost). Depending

on the nature of the job, energy and materials costs can significantly vary across time as well.

Thus, the scheduler has to consider all jobs competing for his available capacity and decide how

to schedule his work force across the different jobs. This paper focuses on the case in which the

subcontractor cannot allocate parallel capacity to a job on the same period to speed up the job.

For example, installing a garage door cannot be significantly speeded up if the scheduler sends

multiple teams instead of a single team to install the garage door. Similarly, installing kitchen

cabinets usually involves one installation team and sending two teams to a house does not speed

up the work (except in the rare house that has multiple kitchens). This is in contrast to other

activities like painting or flooring where sending more people to one location can accelerate the

job.

A similar problem arises in the freelance consulting industry (e.g., HourlyNerd). Unlike the

regular consulting companies, which hire employees for the whole year and allocate them to client

projects, other consulting companies hire freelance consultants only on an as-needed basis and

allocate them to individual clients. The problem is that the availability of the number of freelance

consultants available to the firm at any point in time varies, resulting in the firm having to pay

higher amounts in certain periods to secure consulting capacity to serve their clients’ needs. For

example, in the metro Detroit area, there are several firms that specialize on lean consulting. Most

of these firms do not have the lean consultants on staff but only contact them on an as-needed

basis. Often the lean consultants are affiliated with these companies but also have other work that

they do on their own. Depending on the time of year, and industry demand trends, the daily rate

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 3

that the firm has to pay for a consultant’s services to allocate them to a given client can vary

significantly (one of the co-authors of this paper has consulted himself and charged highly varying

rates to these firms depending on his level of availability).

The difficult question that the firms face is to decide which job(s) should have teams allocated

to them on any given day. A common rule of thumb is to allocate teams according to the earliest

due date first rule. In this paper, we show that the earliest due date first rule is not necessarily

optimal when the firm faces varying costs over time. Instead, we develop an alternative priority

rule and establish its optimality.

1.1. Main results and contributions of this paper

The major results and contributions of this paper are summarized as follows.

We study the scheduling of multiple tasks under demand and cost uncertainty in order to min-

imize the expected total cost (the sum of the processing cost and non-completion penalty). (A

non-completion penalty cost will be incurred if a task is not completely processed at its due date.)

We derive a priority rule for optimal scheduling policies that provides managers valuable insight

into designing effective heuristic policies. We demonstrate (via Example 1) that giving priority to

a task with the earliest due date could be sub-optimal, even if it is feasible to complete all tasks

before their due dates. We further argue that even earliest due date together with shortest slack

time does not guarantee the priority of a task (cf. Example 2). Here, the slack time (or the laxity

interchangeably) of a task is defined as the difference between the remaining time before its due

date and its remaining processing time. Somewhat surprisingly, under a mild assumption that each

task’s non-completion penalty cost is convex in its remaining processing time at its due date, we

establish the optimality of Shorter Slack time and Longer remaining Processing time (SSLP) prin-

ciple: priority should be given to a task with shorter slack time and longer remaining processing

time, regardless of future system dynamics, e.g., the dynamic processes that describe future task

arrivals and time-varying processing cost.

It is worth noting that if a task j has shorter (or the same) slack time and a later due date

than another task i, then task j must have longer remaining processing time than i, and according

to the SSLP principle task j has the priority. Among two tasks with the same slack time, our

result suggests that priority should be given to the task with later due date. The optimality of the

Latest Due date First (LDF) principle among jobs with the same slack time is in sharp contrast

to the common sense that the Earliest Due date First (EDF) policy is optimal. Although the LDF

principle has been mentioned in the literature (Chen and Yih (1996), Farzan and Ghodsi (2002)),

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

4 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

the authors are not aware of any formal results that establish the optimality of LDF. We believe

that our results provide managers valuable insights on how to devise effective service scheduling

policies under demand and cost uncertainty.

The intuition behind the SSLP principle is conceptually simple. Consider two tasks with the

same slack time and the same non-completion penalty. Priority should be given to the task with

longer remaining processing time (and a later due date), which leads to a larger number of small

unfinished tasks in the future (cf. the discussion following Example 1). Facing time-varying (and

possibly stochastic) processing costs and processing rate constraint (i.e., each task can be processed

only by a limited amount in each time period), the operator/manager prefers to have many small

unfinished tasks that could be simultaneously processed when the processing cost becomes lower.

In other words, the SSLP principle enlarges the admissible set of actions in future periods, and

therefore reduces the long-term expected cost by enabling the operator/manager to better explore

cheaper resources that may become available in the future.

We note that computing exact optimal policies by brute-force dynamic programming is

intractable, since the number of system states grows exponentially with the number of tasks. Based

on the structural properties of optimal policies derived above, we devise an effective cost-balancing

heuristic policy, and our numerical results show that the proposed policy consistently outperforms

existing earliest-due-date-first-based (EDF) greedy policies for a large set of demand and parame-

ter instances. We observe that the cost improvement of our SSLP-based policy over the benchmark

EDF-based policy is most significant when the processing cost has a stationary or decreasing trend.

This is mainly because in such scenarios our SSLP-based policy tends to save many small unfin-

ished jobs (with shorter remaining process time) that could be simultaneously processed later with

lower cost, which is in line with our theoretical results.

1.2. Literature review

Our work is closely related to two streams of on-going research, namely, production/service schedul-

ing and stochastic MTO systems.

Production or service scheduling. Our work is intimately related to the large body of

literature on the scheduling of multiple jobs in production/service systems with tardiness penalties

(see, e.g., Baker and Scudder (1990), Cheng and Gupta (1989), Keskinocak and Tayur (2004),

Bülbül et al. (2007)). Closer to the present work, a few recent works study the scheduling in make-

to-order environments with order due dates (see, e.g., Pundoor and Chen (2005), Leung et al.

(2006), Chen (2010), Leung and Chen (2013)). We note that this literature usually considers the

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 5

scheduling of a fixed set of orders, while our model allows for random order arrival processes.

While the aforementioned literature usually adopts mathematical programming based approaches

to study the scheduling of make-to-order systems, to deal with random order arrivals we resort

to dynamic programming which is a standard approach for sequential decision problems under

uncertainty.

There also exists a substantial body of literature on due date scheduling models that incorporates

random order arrival processes in the context of real-time dynamic systems and queuing systems.

For single-processor periodic task scheduling systems, it is well-known that simple scheduling algo-

rithms, such as the earliest due date first (EDF) policies (see, e.g., Liu and Layland (1973)) and

the least-laxity-first (LLF) policies (see, e.g., Dertouzos (1974)) are optimal, in the sense that both

the EDF and LLF policies must be able to complete all tasks before their due dates, provided that

completion of all tasks before due dates is feasible. For a variety of single-server queuing systems,

Panwar et al. (1988) showed that a variation of the EDF policy maximizes the fraction of customers

served within their respective due dates, and Pinedo (1983) characterized simple policies that min-

imize the expected weighted number of late jobs. We note, however, that when the completion of

all tasks is not feasible, EDF and LLF policies may perform poorly (see Locke (1986)). Indeed, in

this “overload” setting there does not exist an optimal “on-line” policy which makes scheduling

decision based only on the states of active tasks that have arrived (see G. Buttazzo (1995)). There

is also a literature on due date scheduling of multiple processors (see, e.g., Davis and Burns (2011)

for a comprehensive survey). To our knowledge, no characterization on optimal scheduling policies

is provided for the multi-processor setting considered in this paper.

Whereas in the aforementioned literature the processing cost is usually assumed to be constant

over the entire operation interval, the key distinction in our setting is that the processing cost

is allowed to be time-variant and random, which is a more general and realistic assumption. We

show by example that under time-variant processing cost and processing capacity constraint, EDF

policies could be highly sub-optimal. Somewhat surprisingly, we further establish the optimality of

a priority rule (the SSLP principle), which sometimes gives priority to tasks with later due date,

for example, among a set of tasks with the same slack time. To our knowledge, the present work

is the first that rigorously investigates priority rules for due-date scheduling of multiple processors

under varying processing costs and random task arrivals.

Stochastic MTO systems. Dellaert and Melo (1995) gave heuristic procedures for a stochastic

lot-sizing problem in a MTO manufacturing system. Duenyas and Van Oyen (1996) designed a

heuristic scheduling policy for a MTO system with heterogeneous classes of customers in a queueing

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

6 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

context. He et al. (2002) studied a MTO inventory production system consisting of a warehouse

and a workshop and also discussed the value of information in this simple supply chain. More

recently, Buchbinder et al. (2013) studied an online MTO variant of the classical joint replenishment

problem. There is also a stream of research devoted to the study of joint MTS/MTO systems

(see, e.g., Carr and Duenyas (2000), Gupta and Wang (2007), Dobson and Yano (2002), Youssef

et al. (2004), Iravani et al. (2012)). The aforementioned literature mainly deals with procurement,

job assignment or production-line assignment decisions in order to minimize the waiting (penalty)

costs. The present work, on the other hand, deals with a due date scheduling problem whose state

space is much larger (since for each active task the manager has to keep track the start time,

the end time, the required processing time, and how much it has been processed). The resulting

dynamic program is much more complicated to analyze. We contribute to the existing literature

by prescribing a set of optimal priority rules for such complex due-date-based MTO systems under

varying costs.

There is another major stream of scheduling literature on MTO systems that falls outside the

scope of this paper, which focuses on the impact of lead time and due date quotation. Kaminsky

and Kaya (2008) considered a scheduling model where a manufacturer in a MTO production envi-

ronment, is penalized for long lead time and for missing due dates. Afèche et al. (2013) studied

revenue-maximizing tariffs that depend on realized lead times where a provider is serving multiple

time-sensitive types of customers. Zhao et al. (2012) studied and compared the profits between

uniform quotation model and differentiated quotation model in MTO manufacturing industries.

Benjaafar et al. (2011) considered a supplier with finite production capacity and stochastic pro-

duction times, where customers provide advance demand information (ADI) to the supplier by

announcing orders ahead of their due dates. In this stream of research, the authors are interested

in the due date quoting, whereas we take the due dates of tasks as given and are interested in the

optimal sequencing of these tasks.

1.3. Structure of this paper

The remainder of the paper is organized as follows. In §2, we present the mathematical formulation

of our service scheduling problem. In §3, we characterize some important structural properties of

optimal policies under our capacity settings. In §4, we propose an effective heuristic policy and also

carry out an extensive numerical study. In §5, we establish the SSLP principle in a more general

setting with heterogeneous non-completion penalty, and show the optimality of EDF policies in an

alternative setting without processing rate constraint. Finally, we conclude our paper and point

out some plausible future research avenues in §6.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 7

2. Due-Date Scheduling with Random Processing Cost

We study the scheduling of multiple due-date-constrained tasks in a stochastic environment with

random arrival, stochastic processing cost, and limited processing rate. Our model focuses on a

capacitated MTO system, where the production/service only starts after orders are placed by

customers. We consider a periodic-review system over a planning horizon of T +1 periods (possibly

infinite), where time periods are indexed by t = 0,1, . . . , T . There is a capacity constraint Nt on

the total amount of service in each period t.

Symbol Type Description
ft State The information set that is available at the beginning of period t.
Ft Parameter The finite set of all possible ft.
It State The set of active tasks available for processing in period t.
ai State The arrival time of an active task i∈ It.
bi State The due date of an active task i∈ It.
mi State The required processing time to complete an active task i∈ It.
ni
t State The time already spent processing an active task i∈ It.

xi
t State In period t, the remaining time before task i’s due date, bi− t.

yi
t State In period t, the remaining processing time of task i, mi−ni

t.
zit State The state of an active task i∈ It: z

i
t = (xi

t, y
i
t).

zt State The state of all active tasks in period t: zt = {z
i
t : i∈ It}.

sit State The slack of an active task i∈ It, x
i
t− yi

t.
ui
t Decision The processing amount allocated to an active task i∈ It in period t.

ut Decision The action vector taken in period t: ut = {u
i
t : i∈ It}.

U(zt, ft) State The set of admissible action vectors in period t.
Dt State The set of newly arrival tasks at the beginning of period t.
Wt State The external information available at the beginning of period t.
J1
t State The set of tasks that are successfully completed in period t.

J2
t State The set of tasks that are not successfully completed in their due date t.

Nt Parameter The total processing capacity available in period t.
ci Parameter The per-unit processing cost of an active task i∈ It.
ǫ(ft) Parameter The (random) perturbation on tasks’ per-unit processing cost under ft.
q(·) Parameter The mapping from the remaining processing time of a task

(at its due date) to its non-completion penalty.

Table 1 Summary of Major Notation

Demand structure. The demand sets, denoted by D0, . . . ,DT , are random, where the demand

Dt is the set of all new tasks available to be processed in period t (e.g., the newly requested

installation/remodeling projects in period t). More specifically, for each new task i∈Dt, we use ai

to denote its arrival time (We set ai to be t for each new arriving task i in period t), bi ≤ T + 1

to denote its due date, and mi to denote its required processing time to complete the task. We

assume that the task i can be processed during any periods within [ai, bi). We use ni
t to track the

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

8 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

time already spent processing the existing unfinished task i between its arrival ai and time t. (Note

that if i is a new task arriving in period t, then ni
t = 0.)

As part of the model, we assume that at the beginning of each period t, we are given what we call

an information set that is denoted by ft. The information set ft contains all the information that is

available at the beginning of period t. More specifically, the information set ft contains the realized

demand sets (D0, . . . ,Dt), and possibly some more (external) information denoted by (W0, . . . ,Wt)

(e.g., the state of economy, energy and raw material costs) that may have influence on demand

and cost. The information set ft in each period t belongs to a finite set consisting of all possible

information sets Ft. In addition, we assume that in each period t there is a known conditional

joint distribution of the future demands (Dt+1, . . . ,DT), which is determined by ft. This demand

model is very general, allowing for nonstationarity and correlation between the demands of different

periods. In particular, it includes not only independent demand processes, but also most time-

series demand models such as autoregressive (AR) and autoregressive moving average (ARMA)

demand models, demand forecast updating models such as Martingale models for forecast evolution

(MMFE) (e.g., Heath and Jackson (1994)), demand processes with advance demand information

(ADI) (e.g., Gallego and Özer (2001)), as well as economic-state driven demand processes such as

Markov modulated demand processes with state transition matrix.

State of the system. In each period t, let It be the set of active tasks available for processing.

The state of the system consists of the information set ft and the states of all active tasks. It is

clear that the state of the active tasks in period t can by fully described by a set of quadruplets

{(ai, bi,mi, ni
t) : i∈ It}. However, this state variable is not convenient to work with. It turns out

that we can keep track of the effective state by using only two variables. Now, for each task i∈ It,

we introduce xi
t , bi− t as the remaining time before its due date, where , means “defined as”. We

also introduce yi
t ,mi − ni

t as the remaining processing time required to complete the task. The

state of the active tasks in period t is therefore given by

zt ,
{

zit , (xi
t, y

i
t) : i∈ It

}

.

In period t, for every task i∈ It, we define its slack time sit , xi
t−yi

t, which is the difference between

the remaining time before the due date and the remaining time required to complete the task. A

task’s slack time is the maximum allowance time for the system to stay idle if the task has to be

eventually processed before its due date.

System dynamics. We now proceed to describe the dynamics of our model. At the beginning of

period t, the information set ft (containing the new task arrivals Dt) is revealed to the manager.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 9

Let Ĩt be the set of active tasks available for processing before the demands arrive in period t. (We

assume that Ĩ0 = 0.) Then the manager updates the state of active tasks to be It = Ĩt ∪Dt. Next,

the manager decides the processing amount allocated to each active task i ∈ It, denoted by the

decision variable ui
t. We define ut , {u

i
t : i∈ It} as our actions or decisions, and Ut(zt, ft) as the

admissible set of actions depending on the capacity scenario (defined later in this section). The

distribution of ft+1 (over the set Ft+1) is determined by the current information set ft and does

not depend on the action taken in period t, ut.

It follows that yi
t+1 = yi

t−ui
t, i.e., the remaining process time for task i in the next period t+1 is

reduced by how much we process task i in period t, ui
t. Also, it is clear that x

i
t+1 = xi

t− 1, i.e., the

remaining time before its due date reduces by 1 period (independent of our action). We remove

the task i from the active set It at the end of period t if xi
t+1 = 0 (in which we run out of time) or

yi
t+1 = 0 (in which the task has been completely processed).

Let J1
t be the set of tasks successfully completed in period t, i.e., J1

t , {j ∈ It : y
j
t+1 = 0}. Let J2

t

be the set of tasks that we are unable to fully process but have already reached their due dates in

period t, i.e., J2
t , {j ∈ It : x

j
t+1 = 0 and y

j
t+1 > 0}. Then the state transition is Ĩt+1 = It \J

1
t \J

2
t .

Capacity constraints. Since the production or processing rate is limited (e.g., installation or

remodeling projects), we assume that for each task, zero or one unit of a task can be processed in

each time period. Furthermore, the total processing capacity assigned to all active tasks in period

t is upper bounded by Nt. Formally, at a state zt, the feasible action space is defined as

Ut(zt, ft),

{

ut : u
i
t ∈ {0,1} for all i∈ It and

∑

i∈It

ui
t ≤Nt

}

.

We also consider the uncapacitated counterpart model in §5.2.

Cost structure. For each decision ui
t, we incur a linear processing cost (ci + ǫ(ft))u

i
t, where ci is

the per-unit processing cost of task i and ǫ(ft) is a perturbation term depending on the information

set ft. For simplicity, we consider aggregate (non-idiosyncratic) random shock ǫ(ft) to reflect the

macroeconomic impact of cost volatility in a given application (e.g., the state of economy, energy

or raw material costs in the installation or remodeling example). We note that no assumption

is needed on the distribution of the aggregate random shock, i.e., the mapping ǫ(·) is allowed to

be arbitrary. In practice, the manager can use past observable costs (from markets or firms’ own

database) or forecasted costs (from markets or forecasting agencies) to determine an appropriate

choice of ǫ(·). For example, if the data suggest that the costs are independent, one may use Normal

or other general-purpose distributions such as Weibull to fit the random error distribution. If the

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

10 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

data suggest a clear trend, one may use linear regression model to determine the mapping ǫ(·)

assuming normality of the random error term (see Draper and Smith (1998)).

The total processing cost in period t is given by

∑

i∈It

(ci + ǫ(ft))u
i
t. (1)

For each task j ∈ J2
t that is not completed before its due date, the firm incurs a nonnegative

penalty cost that is a function of its remaining processing time, denoted by q(yj
t −u

j
t), with q(0) = 0.

The function q(·) maps the remaining processing time of each task to its non-completion penalty.

In our setting, if a particular task is not completed by the due date, the firm may face severe

penalties, including loss of profit and goodwill, or customers compensation expenses for the incon-

venience. In practice, the remaining process time at due date implies an extra delay is required

after the due date. The firm often needs to request the workers to work overtime, or resort to hiring

additional subcontractors from other firms to wrap up the task at more expensive rates. Moreover,

the more incomplete the task remains at its due date, the heavier penalty the firm has to pay to

compensate customers for the inconvenience. For example, if a housing project is 98% complete

(only requiring some additional finishing touches), the residents may generally move in and request

no compensation. However, if it is only 80% complete and the residents are unable to move in,

they may need to stay in a hotel for an extended period of time and the firm may have to pay all

the hotel expenses. In such scenarios, as the percentage completion decreases, the service provider

tends to incur higher costs. Thus we model the penalty associated with the non-completion (of task

j), q(yj
t − u

j
t), to be a general convex (including linear as a special case) function of its remaining

processing time. We note that this general convex tardiness cost assumption has been used in the

scheduling literature (see Federgruen and Mosheiov (1997) and the references therein). The total

non-completion penalty cost incurred in period t is then given by
∑

j∈J2

t
q(yj

t −u
j
t).

Combining the above two types of cost, the total cost associated with period t is therefore

Ct(zt, ft,ut),
∑

i∈It

(ci + ǫ(ft))u
i
t +

∑

j∈J2

t

q(yj
t −u

j
t). (2)

We remark that one may also consider the idle costs of processors and holding costs of completed

tasks. However, to keep the model succinct and bring out the important insights, we decide not

to model them in our setting, since these costs tend to be much smaller than the processing and

non-completion penalty costs. For example, the idling machines do not consume electricity in a

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 11

construction project (so the idle costs are negligible). Also, there is typically no penalty for finishing

a construction project earlier (so the holding costs of completed tasks are also negligible).

Objective. Our objective is to find a feasible scheduling policy π = (u0,u1, . . .) to minimize the

average per-period cost for this MTO system. Given any initial states (z0, f0), the expected total

cost over interval [t, T] induced by a policy π is given by

V π
t (zt, ft) =E

{

T
∑

k=t

Ct(zk, fk,uk)

}

,

where the expectation is taken over the distribution of (ft+1, . . . , fT), conditioned on the current

information set ft. Our objective is to minimize the expected total cost over the finite planning

horizon [0, T].

Dynamic Programming Formulation. The dynamic programming formulation is

V π
t (zt, ft) = min

ut∈Ut(zt,ft)

{

E [Ct(zt, ft,ut)] +E
[

V π
t+1(zt+1, ft+1) | ft

]}

, (3)

with boundary conditions V π
T+1(·, ·) = 0. In Eq. (3), the expectation is over ft+1 (the information set

in period t+1), conditioned on the current information set ft. In every period t, the system state

of the dynamic program consists of the information set ft and the state of all active tasks zt. Note

that the size of state space grows exponentially with the number of active tasks. Even for a simple

case where |Ft|= 1 for every t (i.e., there is no randomness in the demand and cost processes), the

processing time of each task is less than 4 periods, and each task has to be completed within 8

periods, the size of the system state space scales with 32maxt |It|, where |It| is the number of active

tasks in period t. Reasonable numbers of active tasks lead to very high dimensions, which makes

brute-force dynamic programming computationally intractable.

3. Priority Rules for Optimal Scheduling Policies

In this section, we study the priority rule among active tasks and derive the main result of this

paper, the SSLP principle. First, we provide a simple counter-example to show that the EDF

(earliest due date first) scheduling may be suboptimal.

Example 1 (A simple counter-example). Consider the following problem with capacities

N0 = 1 and Nt = 2 for all t ≥ 1. In period 0, suppose that there are two tasks in the set I0 and

that no task will arrive in the future. The states of the two tasks are z10 = (2,1) and z20 = (3,2).

That is, task 1 can be processed in the two periods 0 and 1, and requires to be processed for one

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

12 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

time period, while task 2 has a due date at the beginning of period 3, and requires to be processed

for two time periods. The two tasks have the same slack time, and task 2 has longer remaining

processing time.

We assume that the per-unit processing cost is uniformly 1 for all tasks in period 0, is zero in

period 1, and is uniformly 2 in period 2. We also assume that the per-unit non-completion penalty

is much higher than the highest per-unit processing cost 2, and therefore it is optimal to finish all

tasks before their due dates.

Since the processing cost in period 0 is higher than that in period 1, and is lower than that in

period 2, it is straightforward to check that under the unique optimal policy, task 2 is processed

in period 0, and both tasks are processed in period 1. This optimal policy yields a total processing

cost of 1 and no non-completion penalty. We note that this optimal policy is strictly better than

any EDF policy that gives priority to task 1 in period 0. This is because under EDF, task 1 is

finished at the end of period 0, which makes it impossible to utilize the free resource in period 1

to process task 1. �

In the above counter-example, priority should be given to task 2 with longer remaining processing

time. This is because processing task 1 in period 0 restricts the admissible set of actions in period

1: the operator could process at most one task in period 1 if task 1 were processed in period 0.

Facing time-varying (and possibly stochastic) processing costs, the manager prefers to have a larger

number of small unfinished tasks that could be simultaneously processed when the processing cost

becomes lower.

The above example motivates us to consider a different policy based on slack time and remaining

processing time. Recall that in period t, for every task i∈ It, its slack time is defined by sit , xi
t−yi

t,

which is the maximum allowance time for the system to stay idle if the task has to be eventually

processed.

Definition 1. In period t, for two tasks i and j in the set It, we say i4 j (task j has priority to

task i) if sit ≥ s
j
t , y

i
t ≤ y

j
t and at least one of these inequalities strictly holds. If tasks i4 j or j 4 i,

we call the tasks i and j comparable. �

It is clear that the relation 4 is reflexive, antisymmetric, and transitive, and therefore is a partial

order (among the states of all tasks in the set It). It is worth noting that if task j has shorter slack

time and a later due date than task i, i.e., if sit ≥ s
j
t and bit ≤ b

j
t , then task j must have longer

remaining processing time than i, and therefore i4 j. For two tasks i and j that are comparable

(according to Definition 1), priority should always be given to task j, regardless of future demand

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 13

and cost processes. This result is referred to as the Shorter Slack Time and Longer Remaining

Processing Time (SSLP) principle, which will be formulated and proved later in this section.

In period t with task state zt, there are only two cases where the two tasks i and j are incom-

parable, namely, (a) sit ≥ s
j
t and yi

t > y
j
t ; (b) sit > s

j
t , y

i
t ≥ y

j
t . In this case, which task should have

a higher priority is a decision that depends on future system dynamics. The following example

demonstrates that shorter slack time together with earlier due date does not guarantee priority

along every sample path.

Example 2. In period t, suppose that there are two tasks in the set It, and that no task will

arrive in the future. The states of the two tasks are z1t = (2,1) and z2t = (4,2). The total available

capacity in each period is given by: Nt =Nt+2 =Nt+3 = 1 and Nt+1 = 2. They are incomparable:

task 1 has shorter slack time and shorter remaining processing time (and of course, an earlier due

date).

The per unit processing cost in period t is zero. Consider two different scenarios after period

t. First, suppose that the per unit processing cost is zero in periods t+ 2 and t+ 3, but is q(2)

(the non-completion penalty incurred to task 2 if it were not processed at all) in period t+1. As a

result, it is optimal to process task 1 in period t, and process task 2 in periods t+2 and t+3. On

the other hand, if the per unit processing cost is zero in period t+1, but is q(2) in periods t+2

and t+ 3, then the operator should process task 2 in period t, and process both tasks in period

t+1. �

We are now in a position to formulate the Shorter Slack time and Longer remaining Processing

Time (SSLP) principle. For any given feasible policy π that violates the SSLP principle, we will

define an interchanging policy π̃ that gives priority to a task with shorter slack time and longer

remaining processing time, and then show that the SSLP-based interchanging policy π̃ is feasible

and can improve the expected total cost compared to original feasible policy.

Definition 2 (An SSLP-based Interchanging Policy). Assume that in period τ with active

tasks zτ , task j has priority to i (i.e., i4 j), and that a policy π= {uτ ,uτ+1, . . . ,uT} processes task

i but not j. An interchanging policy π̃= {ũτ , ũτ+1, . . . , ũT} (generated from policy π with respect

to tasks i and j at state zτ) processes the same tasks as the original policy π (i.e., copies π), except

that:

1. In period τ , the interchanging policy π̃ processes task j but not i at task state zτ .

2. If there exists a period t ∈ (τ, biτ) such that the original policy π processes task j but not i,

then the interchanging policy π̃ processes task i but not j. This case results in a complete

swap of tasks i and j between π and π̃.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

14 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

3. If there does not exist a period t∈ (τ, biτ) such that the original policy π processes task j but

not i, then it implies that for each period t∈ (τ, biτ), the original policy π always processes task

i whenever it processes j. In this case, the interchanging policy π̃ will take the same action as

the original policy π after period τ . �

Two simple (illustrative) scenarios on the interchanging policy defined above are given in Table

2 (corresponding to item 2 above) and Table 3 (corresponding to item 3 above), where the state

evolution of two tasks under the actions taken by two policies are presented. In period τ , task j

has priority over i and policy π processes i but not j. In Table 2, the original policy π processes

task j but not i in period τ + 1. According to Definition 2, the interchanging policy π̃ processes

task i but not j in period t= τ +1. In Table 3, on the other hand, such a period t does not exist:

the original policy π does not process task i or j in period τ + 1. In this case, the interchanging

policy π̃ will follow exactly what the original policy π does after period τ . We finally note that in

the second scenario, the interchanging policy π̃ results in a non-completion penalty of 2q(1), which

cannot be higher the non-completion penalty resulting from the original policy π, q(2), due to the

convexity of the non-completion penalty function q(·).

Period (s) τ τ +1 τ +2 τ +3 τ +4
Capacity (Ns) 1 1 1 0 0
Task j : (xj

s, y
j
s) (4,3) (3,3) (2,2) (1,2) penalized q(2)

Task i : (xi
s, y

i
s) (3,2) (2,1) (1,1) completed –

Policy π : (uj
s, u

i
s) (0,1) (1,0) (0,1) (0,0) (0,0)

Policy π̃ : (ũj
s, ũ

i
s) (1,0) (0,1) (0,1) (0,0) (0,0)

Task j : (xj
s, y

j
s) (4,3) (3,2) (2,2) (1,2) penalized q(2)

Task i : (xj
s, y

j
s) (3,2) (2,2) (1,1) completed –

Table 2 A simple scenario for which the period t∈ (τ, biτ) defined in Definition 2 exists: t= τ +1.

Period (s) τ τ +1 τ +2 τ +3 τ +4
Capacity (Ns) 1 2 0 0 0
Task j : (xj

s, y
j
s) (4,3) (3,3) (2,2) (1,2) penalized q(2)

Task i : (xi
s, y

i
s) (3,2) (2,1) completed – –

Policy π : (uj
s, u

i
s) (0,1) (1,1) (0,0) (0,0) (0,0)

Policy π̃ : (ũj
s, ũ

i
s) (1,0) (1,1) (0,0) (0,0) (0,0)

Task j : (xj
s, y

j
s) (4,3) (3,2) (2,1) (1,1) penalized q(1)

Task i : (xj
s, y

j
s) (3,2) (2,2) (1,1) penalized q(1) –

Table 3 A simple scenario for which the period t∈ (τ, biτ) defined in Definition 2 does not exist.

We are now ready to state our main result below.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 15

Theorem 1 (The SSLP Principle). For the make-to-order multi-task scheduling problem under

varying processing costs, suppose that task j has priority to i (cf. Definition 1) at task state zτ ,

and let π̃ be the interchanging policy generated by a policy π. The interchanging policy π̃ cannot

incur higher total costs than the original policy π along any sample path.

Theorem 1 suggests that among two tasks with the same slack time, priority should be given to

the task with later due date. (Note that our result holds sample-pathwise.) This is in sharp contrast

to the earliest due date first (EDF) policy commonly implemented in practice. Even though this

priority rule is only a partial characterization of optimal policies, it sheds some light on this complex

scheduling problem, and managers can use this insight to design effective heuristics.

Now we focus on the proof of Theorem 1 in the remainder of this section. The proof of Theorem

1 is an immediate consequence of Lemma 1 (showing feasibility of the interchanging policy π̃) and

Lemma 2 (showing improvement of π̃ over the original policy π).

Lemma 1. An interchanging policy π̃ is feasible.

We note that the feasibility of policy π̃ after period t follows from Definition 2 (if such a period

t does not exist, we can set t=∞). To argue the feasibility of the interchanging policy π̃, we show

in the proof that

1. in period t when the original policy π first processes task j but not i, it is feasible for the

interchanging policy π̃ to process task i;

2. in period k= τ +1, . . . , t− 1, whenever the original policy π processes task j, it is feasible for

the interchanging policy π̃ to process task j.

Proof of Lemma 1. It is straightforward to verify the first point. Within periods [τ, t), the

interchanging policy π̃ has one less unit of i to process than π. (This is because π processes i in τ

but π̃ does not, and within periods (τ, t), π̃ copies the actions of π.) This suggests that in period

t < biτ , the policy π̃ can process task i since task i still has at least 1 unit to be processed.

To prove the second point, we consider three cases as follows.

Case 1: Suppose there exists a period t ∈ (τ, biτ) in which the original policy π first processes

task j but not i. Since in period τ , task j has higher priority to task i, we have yj
τ ≥ yi

τ (i.e., the

remaining process time of task j is no less than that of task i in period τ). Then in period τ +1,

ỹ
j
τ+1 = yj

τ − 1 under the interchanging policy π̃ and yi
τ+1 = yi

τ − 1 under the original policy π. This

implies that ỹ
j
τ+1 ≥ yi

τ+1. We also know that in period k = τ + 1, . . . , t− 1, policy π must process

task i whenever it processes task j (according to the definition of t). Then it is feasible for the

interchanging policy π̃ to process task j whenever the original policy π processes task j.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

16 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

Case 2: Suppose there does not exist a period t ∈ (τ, biτ) in which the original policy π first

processes task j but not i, and task j’s due date is no later than i’s, i.e. bjτ ≤ biτ . The argument

is identical to that of Case 1. Still, in period τ + 1 the remaining processing time ỹ
j
τ+1 of task j

under the interchanging policy is no less than the remaining processing time yi
τ+1 of task i under

the original policy π. We also know that in period k = τ +1, . . . , biτ , policy π must process task i

whenever it processes task j, since bjτ ≤ biτ < t=∞. Then it is feasible for the interchanging policy

π̃ to process task j whenever the original policy π processes task j.

Case 3: Suppose there does not exist a period t ∈ (τ, biτ) in which the original policy π first

processes task j but not i, and task j’s due date is later than i’s, i.e. bjτ > biτ . In this case, since t

does not exist and bjτ > biτ , so within periods (τ, biτ), the original policy π processes task i whenever

it processes task j. Since in period τ , task j has higher priority to task i, we have sjτ ≤ siτ (i.e., the

slack time of task j is no greater than that of task i in period τ). Then in period τ +1, siτ+1 = siτ

and s
j
τ+1 = sjτ − 1 under the original policy π (since π processes i but not j in period τ). This

implies that sjτ+1 < siτ+1 and therefore s
j

biτ
< 0. It then follows that under the interchanging policy

π̃, the slack time of task j is non-positive in period biτ (i.e., s̃j
biτ
≤ 0). This suggests that π̃ can

possibly process j in every period within [biτ , b
j
τ). Then it is feasible for the interchanging policy π̃

to process task j whenever the original policy π processes task j. Q.E.D.

The following lemma shows that a feasible interchanging policy π̃ weakly dominates π along

every sample path.

Lemma 2. The interchanging policy π̃ cannot incur higher total costs than the original policy π

along any sample path.

Proof of Lemma 2. Within this proof we fix a given sample path f τT = (fτ+1, . . . , fT). We con-

sider two cases.

Case 1: Suppose first that there exists a period t ∈ (τ, biτ) in which the original policy π first

processes task j but not i. In this case, the two policies π̃ and π always use the same amount of

capacity, and thus these two policies result in the same (ex-post) total processing cost, along every

possible sample path (cf. the expression of total processing cost in (1)). Finally, these two policies

lead to the same total non-completion penalty (for all tasks) along every sample path, since policy

π̃ can also finish both tasks i and j before their due dates. As a result, the two policies π̃ and π

must result in the same total cost along the given sample path.

Case 2: The second case is more involved. Suppose now that there does not exist a period

t, i.e., the original policy π processes task i whenever it processes task j, for period k = τ +

1, . . . ,min{biτ , b
j
τ} − 1. Again, the two policies π̃ and π use the same amount of capacity in every

period, and therefore result in the same total processing cost along the sample path.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 17

It is possible that the two policies lead to different non-completion penalty on tasks i and j.

We use ri to denote the remaining processing time of task i at its due date (on the beginning of

period biτ), under the original policy π along the considered sample path. We note that under the

interchanging policy π̃, task i’s remaining processing time at its due date must be ri+1. Similarly,

if we use rj to denote task j’s remaining processing time at its due date under policy π, then

task j’s remaining processing time at its due date under policy π̃ must be rj − 1. Since task j’s

remaining processing time is no less than task i’s in period τ , we must have 0≤ ri < rj. Due to

the convexity of non-completion penalty costs, it follows that the total non-completion penalty

resulting from policy π̃ cannot be higher than that resulting from π, because

q(ri)+ q(rj)≥ q(ri +1)+ q(rj − 1), for all 0≤ ri < rj.

Hence, the interchanging policy π̃ cannot result in a higher total cost than the original policy π,

along the given sample path (π̃ incurs potentially less non-completion costs than π). Q.E.D.

4. An Effective Heuristic Policy and Numerical Experiments

Since computing the optimal policies using brute-force dynamic programming is intractable due to

the curse of dimensionality (discussed earlier in §2), we exploit the structural properties of optimal

policies to devise an effective SSLP-based policy to approximately solve this class of problems.

The underlying idea of our proposed heuristic policy is conceptually simple – to compute a pro-

cessing decision that strikes a good balance between the potential non-completion penalty costs (if

processing less) and the processing costs (if processing more).

4.1. Description of the SSLP-based heuristic policy

To fully describe the heuristic policy, we introduce additional notation. Given the information set

ft, let rt be the maximum number of tasks that can be processed in period t, i.e., rt =min{|It|,Nt}.

We describe a simple and effective way of determining the the number of active tasks (denoted

by wt) to be processed in each period t. First, we quantify the potential penalty cost for tasks not

completed before due dates if we choose to process wt in period t under the SSLP principle.

For any time period t, we generate an arbitrary sample-path fT that contains all the (determin-

istic) task arrival and cost information until the end of planning horizon T . We rank all the active

tasks in period t according to their slack times from shortest to longest (tie-breaking in favor of

longer remaining processing time), and then choose to process the first wt tasks from the ranked

list. Conditioning on processing wt number of active tasks in period t, we proceed to the next

period t+1. We then carry out the same ranking of active tasks It+1 (which depends on wt), and

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

18 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

choose to process the first rt+1 tasks (maximum possible) from the ranked list. We then repeat the

procedure in period t+1 until the end of planning horizon T . Essentially, we process wt number

of active tasks in period t and then use full capacities to process active tasks from period t+1 to

period T (under our ranking rule).

We then sum up all the non-completion penalty costs from t to T along this sampth path fT , and

denote it by Qt(wt;fT). This quantity is in fact the potential non-completion penalty cost impact

caused by the decision wt made in period t. It is not hard to check that Qt(wt;fT) is decreasing

(in the non-strict sense) in wt under our ranking rule, i.e., the more we process in period t, the less

potential non-completion penalty cost we pay.

Second, we quantify the total processing costs of producing the first wt tasks from the ranked

list in period t as S(wt;fT) =
∑

i∈wt
cit, which is increasing in the number of tasks wt. Here we

slightly abuse the notation wt (in the summation) to also mean the set of tasks.

The production amount w∗
t in period t can then be computed as

w∗
t = arg min

wt∈{0,...,rt}
E[Q(wt)+S(wt)], (4)

where the expectation is taken over all possible sample paths fT . One can approximate the expec-

tation well by generating sufficiently large number of sample paths (typically having 1000 sample

paths leads to an error tolerance ±0.1% in our examples). Due to lack of structure of Q(·), one may

have to exhaustively search for w∗
t . Implementation-wise, if the non-penalty completion penalty is

much more convex than the (linear) processing cost, one can search the optimal solution w∗
t from

rt downwards, and stop when the objective value in (4) does not improve. Upon computing the

production amount wt in each period t, we then exploit the optimality of SSLP principle to devise

an effective heuristic policy presented in Algorithm 1.

4.2. Numerical experiments

An important question is how our proposed heuristic policy performs numerically. In this section,

we have conducted extensive numerical experiments, and the numerical results show that our

proposed policy performs consistently well. All algorithms are implemented in Matlab R2014a on

an Intel Core i7-3770 3.40GHz PC.

Choice of benchmark. The prevalent strategies in the literature is to use earliest-due-date-first-

based (EDF) policies (e.g., Stankovic et al. (1998), Doytchinov et al. (2001), Moyal (2013)), i.e.,

the decision maker processes the active tasks that have the earliest due dates. This type of policies

are very easy to implement and ubiquitous in practice (e.g., Phan et al. (2011) in cloud computing

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 19

Algorithm 1 Procedures for computing the SSLP-based heuristic policy

Require: demand processes, cost processes, information sets

Ensure: totalCost

1: function SSLP-Based Policy

2: for t← 1 to T do

3: Compute the production quantity w∗
t using (4).

4: Rank all active tasks in It according to their slack times from shortest to longest

5: (tie-breaking with longer remaining processing time);

6: Process the first w∗
t tasks from the ranked list of active tasks.

7: end for

8: return totalCost

9: end function

applications). Since T is set long and Nt is kept time-invariant in our numerical experiments, we

restrict our attention to stationary EDF-based policies (i.e., processing min{|It|, γNt} tasks in

each period t where γ is a given threshold percentage). For each problem instance, we optimize on

γ and choose the best stationary EDF-based policy as our benchmark to gauge the performance

of our SSLP-based policy.

Performance measure. Since computing the exact optimal solution is intractable, we shall com-

pare the total cost of our proposed policy πSSLP, with that of the benchmark policy πEDF. Then

the improvement ratio is defined as follows,

Improvement ratioη=

(

1−
C (πSSLP)

C (πEDF)

)

× 100%,

where C (π) is defined as the total cost incurred by an arbitrary feasible policy π. That is,

the improvement ratio is the percentage cost improvement of our SSLP-based policy over the

benchmark EDF-based policy.

Design of experiments. The numerical experiments are designed as follows. Since our paper is

focused on the multi-task due date scheduling problem with random processing costs, we keep the

demand process independent and identically distributed (i.i.d.), and choose to test the following

four stochastic cost processes (including one independent and three correlated processes) as follows:

(a) Independent and identically distributed (i.i.d.) cost process (IID);

(b) Markov-modulated cost model with three states (MMC).

(c) Autoregressive cost model AR(1) with decreasing trend (ARD);

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

20 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

(d) Autoregressive cost model AR(1) with increasing trend (ARI);

We set the planning horizon T = 100 periods and the production capacity Nt = 16 for each period

t. The demand process is initialized as follows: the number of incoming active tasks follows an

i.i.d. Poisson distribution with rate λ ∈ [6,8] in each period, which represents a mild overloaded

regime; and for each incoming active task, the remaining processing time is an i.i.d. discrete uniform

distribution on [1,4] and the remaining time is its remaining processing time plus another i.i.d.

discrete uniform distribution on [1,4]. We consider three types of non-completion penalty cost

functions (convex in remaining processing time y), e.g., linear cost function q(y) = 30y, quadratic

cost function q(y) = 30y2 and exponential cost function q(y) = (6)5y.

Next we specify our four processing cost models. We set the base cost ci for each task i dependent

on the type κ(i) of task i, i.e., ci = cκ(i) for each task i. For simplicity, we consider two types of

tasks: κ(i) = 1 if task i is discounted, κ(i) = 2 if task i is regular, and we set c1 = 15 and c2 = 20.

Each incoming task i has equal probability to be one of the two types defined above.

For the IID model (a), the cost in period t is c
κ(i)
t = cκ(i) + ǫt for each task i, where the random

perturbation term ǫt follows an i.i.d. Normal distribution with mean 0 and standard deviation

2. For the MMC model (b), the cost is governed by the state of the economy: low-cost economy

(labeled as state 1), and high-cost economy (labeled as state 2). If the state of the economy in

period t is j (j = 1,2), then the cost in period t is c
κ(i),j
t = j(cκ(i)+ ǫt) for task i where the random

perturbation term ǫt follows an i.i.d. Normal distribution with mean 0 and standard deviation

2. We assume that the state of the economy follows an exogenous Markov chain with transition

probabilities

p11 = p22 = 0.8, p12 = p21 = 0.2.

For the ARD model (c), the cost in period t is c
κ(i)
t = αc

κ(i)
t−1 + ǫt for each task i, where the drift term

α= 0.99 and the random perturbation term ǫt follows an i.i.d. Normal distribution with mean 0

and standard deviation 0.5, and initial value cκ(i). For the ARI model (d), the cost structure is

identical to (c) except that the drift term α= 1.01.

Numerical Results. For brevity in presentation, we only present the numerical results for the

quadratic and exponential penalty costs, since the linear case is comparable to the quadratic case.

Figures 1 – 2, 3 – 4, 5 – 6 and 7 – 8 show the average costs of EDF- and SSLP-based policies for the

IID model (a), the MMC model (b), the ARD model (c) and the ARI model (d), respectively. In

general, we observe that the improvement ratio η increases as the system gets more overloaded, i.e.,

more tasks are subject to non-completion penalty costs. Also, the improvement ratio η increases

as the non-completion penalty cost becomes more convex.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 21

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
250

300

350

400

450

500

Arrival Rate

A
vg

 C
os

t

IID Case with Quadratic Penalty

EDF
SSLP

Figure 1 IID with Quadratic q(y) = 30y2

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
250

300

350

400

450

500

550

600

Arrival Rate

A
vg

 C
os

t

IID Case with Exponential Penalty

EDF
SSLP

Figure 2 IID with Exponential q(y) = (6)5y

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
400

450

500

550

600

650

700

Arrival Rate

A
vg

 C
os

t

MMC Case with Quadratic Penalty

EDF
SSLP

Figure 3 MMC with Quadratic q(y) = 30y2

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
400

450

500

550

600

650

700

750

800

Arrival Rate

A
vg

 C
os

t

MMC Case with Exponential Penalty

EDF
SSLP

Figure 4 MMC with Exponential q(y) = (6)5y

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
150

200

250

300

350

400

Arrival Rate

A
vg

 C
os

t

ARD Case with Quadratic Penalty

EDF
SSLP

Figure 5 ARD with Quadratic q(y) = 30y2

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
150

200

250

300

350

400

450

Arrival Rate

A
vg

 C
os

t

ARD Case with Exponential Penalty

EDF
SSLP

Figure 6 ARD with Exponential q(y) = (6)5y

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

22 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
500

550

600

650

700

750

Arrival Rate

A
vg

 C
os

t

ARI Case with Quadratic Penalty

EDF
SSLP

Figure 7 ARI with Quadratic q(y) = 30y2

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
500

550

600

650

700

750

800

Arrival Rate

A
vg

 C
os

t

ARI Case with Exponential Penalty

EDF
SSLP

Figure 8 ARI with Exponential q(y) = (6)5y

For the IID and MMC and ARD models, in the mild overloaded regime, the improvement ratio

η can go up to 20% and 35% for quadratic and exponential penalty cost functions, respectively.

For the ARI model, the improvement ratio η is observed to be much lower, up to 10% and

15% for quadratic and exponential penalty cost functions, respectively. The key reason for lower

improvement ratios lies in the processing cost component. As seen from our theoretical analysis,

the benefit of SSLP in the processing cost component is due to the fact that the firm prefers to have

many small unfinished tasks that could be simultaneously processed in some future period when the

processing cost becomes lower. As a result, if the processing cost has a clear increasing trend, this

benefit of saving processing costs becomes very small. Most of the improvement comes from the non-

completion penalty cost component. We also remark that, in the case of ARI, both the EDF- and

SSLP-based heuristic policies are expected to work very well in practical implementations (since

any near-optimal policies should process as many tasks as early as possible when the processing

cost is increasing).

It is worth mentioning that the major advantage of our SSLP-based heuristic policy is that,

based on the demand and cost information, all the decisions could be made in an online manner

(which avoids recursive computation), which makes the algorithm especially appealing in practice.

5. Extensions

In §5.1, we establish the SSLP principle in a more general setting with heterogeneous non-

completion penalty. In §5.2, we consider an alternative setting where the processing rate constraint

is relaxed, and show that EDF-based policies are optimal under Assumption 1.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 23

5.1. Heterogeneous non-completion penalty cost

We have assumed that all tasks have the same non-completion penalty function. Now we consider

a more general model where each task has an individual penalty cost function. For each task j ∈ J2
t

that is not completed before its due date, the manager incurs a nonnegative penalty cost in terms

of its remaining processing time, denoted by qj(yj
t −u

j
t), with qj(0) = 0. The total non-completion

penalty cost incurred in period t is given by
∑

j∈J2

t
qj(yj

t −u
j
t).

We first note that the definition of the interchanging policy π̃ as well as Lemma 1 naturally

extend to the generalized setting considered in this subsection. The following lemma will be useful

in the establishment of the SSLP principle.

Lemma 3. Suppose that i 4 j at task state zτ , a policy π processes i but not j at system state

(zτ , fτ), and that along a given sample path, π can finish both tasks i and j before their due dates.

Then, along this sample path there exists a period t∈ (τ, biτ) in which policy π processes task j but

not i.

Proof of Lemma 3. Within this proof, we consider a fixed sample path (fτ+1, . . . , fT). Since

i4 j at task state zτ , and policy π processes i but not j at system state (zτ , fτ), task j must have

strictly shorter slack time and longer remaining processing time in period τ + 1, i.e., sjτ+1 < siτ+1

and y
j
τ+1 > yi

τ+1 under policy π.

Suppose that Lemma 3 does not hold, i.e., in period k= τ +1, . . . , biτ − 1, whenever the policy π

processes j, it must also process i. If the due date of task i is not earlier than that of task j, then

the policy π cannot finish task j before its due date, since in period τ +1 task j has strictly longer

remaining processing time than i.

If, on the other hand, the due date of task i is earlier than that of task j, then before task i’s

due date, whenever the policy π processes j, it must also process i. Since in period τ +1 task j has

strictly shorter slack time than i, we conclude that at task i’s due date biτ the slack time of task

j must be negative. As a result, policy π cannot finish task j before its due date. We have proved

the lemma by contradiction. Q.E.D.

If the original policy π can finish both tasks i and j along a given sample path, Lemma 3 shows

the existence of a period t ∈ (τ, biτ) in which policy π processes task j but not i. In this case, we

have shown in the proof of Theorem 1 that the two policies π̃ and π must result in the same total

cost on this sample path.

Theorem 2 (The SSLP Principle). Suppose that task j has priority to i (cf. Definition 1) at

task state zτ , and let π̃ be the interchanging policy generated by a policy π. The interchanging policy

π̃ weakly dominates the original policy π, i.e.,

V π
τ (zτ , fτ)≥ V π̃

τ (zτ , fτ), ∀ fτ , (5)

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

24 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

if at least one of the following two conditions holds:

1. the original policy π can finish both tasks i and j before their due dates with probability one;

2. task j’s incremental non-completion penalty is no less than task i’s, i.e,

qj(y)− qj(y− 1)≥ qi(y′)− qi(y′− 1), 1≤ y≤ yj
τ , 1≤ y′ ≤ y. (6)

If the first condition holds, e.g., when there is enough time to complete both tasks, it follows from

Theorem 1 and Lemma 3 that the two policies π̃ and π incur the same total cost with probability

one. If the second condition holds, Theorem 2 shows that the SSLP principle helps reduce the

non-completion penalty cost.

Proof of Theorem 2. If the first condition holds, it follows from Lemma 3 that there exists a

period t∈ (τ, biτ) in which the original policy π first processes task j but not i with probability one.

In this case, it follows from the proof of Theorem 1 that the two policies π̃ and π must result in

the same expected total cost.

We now consider a sample path (fτ+1, . . . , fT) along which the original policy π processes task i

whenever it processes task j, for period k = τ +1, . . . , biτ − 1. Again, the two policies π̃ and π use

the same amount of capacity in every period, and therefore result in the same total processing cost.

It is possible that the two policies lead to different non-completion penalty. We use ri to denote

the remaining processing time of task i at its due date (on the beginning of period biτ), under the

original policy π along the considered sample path. We note that under the interchanging policy

π̃, task i’s remaining processing time at its due date must be ri + 1. Similarly, if we use rj to

denote task j’s remaining processing time at its due date under policy π, then task j’s remaining

processing time at its due date under policy π̃ must be rj − 1. Since task j’s remaining processing

time is no less than task i’s in period τ , we must have 0≤ ri ≤ rj − 1. It therefore follows from the

second condition in (6) that the total non-completion penalty resulting from policy π̃ cannot be

higher than that resulting from π, since

qi(ri)+ qj(rj)≥ qi(ri +1)+ qj(rj − 1).

Hence, the policy π̃ cannot result in a higher total cost than the original policy π, along the given

sample path. Q.E.D.

5.2. The case without capacity constraint

In this subsection, we consider the case where no processing rate constraint is imposed on each

individual task. However, the total processing capacity used by all tasks has to be bounded by Nt

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 25

in each period t. At a state zt, the feasible action space is

U o
t (zt, ft),

{

ut : u
i
t∈ {0, . . . , y

i
t} for all i∈ It and

∑

i∈It

ui
t ≤Nt

}

. (7)

Definition 3 (An EDF-based Interchanging Policy). Let π be a heuristic policy that can

finish all tasks before their due dates along every possible sample path. In every period, an EDF-

based interchanging policy π̂ uses the same amount of capacity as the original policy π, and gives

priority to those active tasks with earliest due dates. Under policy π̂, at every system state (zt, ft)

and for every active task i, we have ui
t > 0 only if for every task j with a due date earlier than i,

its the remaining processing time y
j
t is zero. �

Before proceeding, we introduce additional notation that will be useful in the statement and

proof of Theorem 3. Under one full sample path fT = (f0, . . . , fT), we let G
π(z0, fT) denote the total

(realized) cost under policy π, i.e.,

Gπ(z0, fT) =
T
∑

k=0

Ct(zk, fk,uk) | fT .

In the following Theorem 3, we will prove the feasibility of an EDF-based interchanging policy

π̂ defined above, i.e., it is always feasible for the policy π̂ to process the same amount of orders as

the original policy π. The crux of our argument rests on showing that the policy π̂ can also finish

all orders before their due dates, along every sample path. This result directly leads to the main

result in Theorem 3.

Theorem 3. We consider a policy π that can finish all tasks before their due dates along every

sample path. Let π̂ be an EDF-based interchanging policy generated from the policy π according

to Definition 3. The policy π̂ is feasible, and achieves the same realized total cost as the original

policy π along every sample path, i.e.,

Gπ(z0, fT) = Gπ̂(z0, fT), ∀ z0, ∀ fT .

Proof of Theorem 3. Within this proof, we fix an arbitrary sample path (i.e., a sequence of

realizations fT). We will show by induction that the interchanging policy π̂ can also finish all tasks

before their due dates along this sample path. We note that this result directly implies that it is

feasible for the interchanging policy π̂ to utilize the same amount of capacity as the original policy

π in every period. The desired result then follows from the fact that the two policies incur the

same processing cost in every period, and both policies yield zero non-completion penalty.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

26 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

It is straightforward to check (from Definition 3) that the above claim holds for t = 0. Now

suppose that the claim holds for t = 0,1, . . . , k − 1, we now argue that it holds for period k. We

note that since the policy π̂ finishes all tasks before their due dates in periods 0,1, . . . , k − 1, it

must be feasible for policy π̂ to use the same amount of capacity as policy π in period k.

Suppose that the desired result does not hold for period k, i.e., the interchanging policy π̂ fails

to finish all tasks before their due dates at the end of period k, i.e., there exists some task j with

due date k+1 that is not finished by policy π̂ at the end of period k. Let wπ
k (zk, fk) =

∑

i
ui
k denote

the total capacity utilized in period k by policy π. According to Definition 3, in period k the EDF

policy π̂ must process wπ
k (zk, fk) unit of unfinished tasks with due date k+1. We therefore conclude

that in period k−1, the total processing time of all unfinished tasks with due date k+1 is strictly

less under the original policy π, i.e.,

∑

i∈Ik−1: b
i=k+1

yi
k−1 <

∑

i∈Îk−1: b̂
i=k+1

ŷi
k−1, (8)

where the hat symbol is used to denote quantities resulting from the interchanging policy π̂, e.g.,

Îk−1 is the set of unfinished tasks at period k− 1, under the policy π̂.

We note that both policies π and π̂ complete all tasks with due dates no later than k, before

their due dates. Since both policies always use the same amount of capacity and face the same set

of arrived tasks, the inequality in (8) contradicts with Definition 3, since the interchanging policy

π̂ does not process any orders with due dates later than k + 1 before it finishes tasks with due

dates no later than k, and gives highest priority to tasks with due date k+1 once it completes all

tasks with due dates no later than k, in every period t∈ {0, . . . , k− 1}. Q.E.D.

Theorem 3 considers the case where the completion of all tasks before their due dates is always

feasible. The theorem essentially shows the existence of an EDF policy that is at least as good as

any policy that always finishes all tasks before their due dates. If each task’s non-completion penalty

is higher than its highest possible processing cost (for example, when the following Assumption 1

holds), then it is optimal to finish all tasks before their due dates (provided that it is feasible to

do so), and therefore an optimal EDF policy must exist (see the formal statement in the following

corollary).

Assumption 1. Suppose that for every task i, its incremental non-completion penalty is no less

than its highest per-unit processing cost, i.e.,

qi(y)− qi(y− 1)≥ ci + ε(ft), y= 1,2, . . . , ∀ft.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 27

We note that if Assumption 1 is violated, then the operator/manager may prefer to withhold capac-

ity and pay non-completion penalty. This assumption may not always hold in practical situations

when the jobs cannot be done in certain periods (due to factors such as unavailability of workers

or unfavorable weather conditions) , i.e., the processing cost is infinite in those periods.

Corollary 1. Suppose that Assumption 1 holds and that it is feasible to finish all tasks along

every sample path. There exists an optimal EDF policy that minimizes the expected total cost.

We note that similar results on the optimality of EDF policies are well known in periodic task

scheduling systems with a single processor (see, e.g., Liu and Layland (1973)) or multiple identical

processors (see, e.g., Goossens et al. (2003) under additional assumptions on processor capacity).

While processing cost are usually assumed to be constant in the aforementioned literature, in our

setting the processing cost is allowed to be time-variant and stochastic. We would like to emphasize

here that for the case with capacity constraint we have shown (in Example 1) that giving priority

to tasks with earlier due dates could be suboptimal, even if it is feasible to complete all tasks before

their due dates.

When the completion of all tasks is not feasible, on the other hand, it is well known that

EDF policies may perform poorly (see Locke (1986)). In this “overload” setting (without capacity

constraint) there does not exist an optimal “on-line” policy which makes scheduling decision based

only on the states of active tasks that have arrived (see G. Buttazzo (1995)). We further believe

that in this overload setting, there does not exist an optimal rule that determines the priority

among active tasks without taking into account future system dynamics (like the SSLP principle

established for the case with capacity constraint). As a result, in order to efficiently schedule existing

active tasks the manager has to look ahead into future (random) task arrivals and processing costs,

and the design of effective heuristic policies depends on the pattern of task arrival and processing

cost processes.

6. Conclusion and Future Directions

We have established the optimality of Shorter Slack time and Longer remaining Processing time

(SSLP) principle for capacitated MTO systems under varying processing costs and convex non-

completion penalty costs: priority should be given to a task with shorter slack time and longer

remaining processing time. Our main result suggests the optimality of the Latest Due date First

(LDF) principle among jobs with the same slack time. This is sharply contrary to the convention

and the common sense that the EDF policy is optimal. The main methodology employed in this

paper is using interchanging arguments to show that the updated policies (with desired structures)

dominate the original ones, which is an effective tool to analyze systems with huge state spaces (that

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

28 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

render the direct computation using dynamic programming intractable). We have also proposed an

effective cost-balancing heuristic policy for this class of problems, based on the derived structural

results. Our computational results show that our proposed policies significantly outperform the

myopic EDF-based benchmark policy.

We believe that this class of optimal production planning models in capacitated MTO systems

under varying costs represents a fertile area for future research. To conclude the paper, we would

like to point out several plausible future research directions. (a) The SSLP-based priority rule is still

a partial characterization of optimal polices (see Example 2). (b) The current model only considers

processing and non-completion penalty costs. Other costs, such as the idle costs of processors

and holding costs of completed tasks, could be considered as well. (c) One may also consider the

options to reject or accept the incoming tasks (where managers can control the production load

by acceptance and rejection of incoming tasks). This class of problems would require new models

and methodological innovations.

Acknowledgments

We sincerely thank the department editor Michael Pinedo, the anonymous senior editor, and the anonymous

referees for their constructive comments and suggestions, which helped significantly improve both the content

and the exposition of this paper. The research is partially conducted when Yunjian Xu was visiting the

University of Michigan. The research of Yunjian Xu is partially supported by the MIT-SUTD International

Design Center (IDC) Grant IDG21400103. The research of Cong Shi is partially supported by NSF grants

CMMI-1362619 and CMMI-1451078.

References

Afèche, P., O. Baron, Y. Kerner. 2013. Pricing time-sensitive services based on realized performance. Manufacturing & Service

Operations Management 15(3) 492–506.

Baker, K. R., G. D. Scudder. 1990. Sequencing with earliness and tardiness penalties: A review. Operations Research 38(1)

22–36.

Benjaafar, S., W. L. Cooper, S. Mardan. 2011. Production-inventory systems with imperfect advance demand information and

updating. Naval Research Logistics 58(2) 88–106.

Buchbinder, N., T. Kimbrel, R. Levi, K. Makarychev, M. Sviridenko. 2013. Online make-to-order joint replenishment model:

Primal-dual competitive algorithms. Operations Research 61(4) 1014–1029.

Bülbül, K., P. Kaminsky, C. Yano. 2007. Preemption in single machine earliness/tardiness scheduling. Journal of Scheduling

10(4-5) 271–292.

Carr, S., I. Duenyas. 2000. Optimal admission control and sequencing in a make-to-stock/make-to-order production system.

Operations Research 48(5) 709–720.

Chen, C. C., Y. Yih. 1996. Indentifying attributes for knowledge-based development in dynamic scheduling environments.

International Journal of Production Research 34(6) 1739–1755.

Chen, Z. L. 2010. Integrated production and outbound distribution scheduling: review and extensions. Operations Research

58(1) 130–148.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2 29

Cheng, T. C. E., M. C. Gupta. 1989. Survey of scheduling research involving due date determination decisions. European

Journal of Operational Research 38(2) 156–166.

Davis, R. I., A. Burns. 2011. A survey of hard real-time scheduling for multiprocessor systems. ACM Computing Surveys 43(4)

35:1–35:44.

Dellaert, N. P., M. T. Melo. 1995. Heuristic procedures for a stochastic lot-sizing problem in make-to-order manufacturing.

Annals of Operations Research 59(1) 227–258.

Dertouzos, M. 1974. Control robotics: The procedural control of physical processes. Proceedings of IFIP Congress. 807–813.

Dobson, G., C. A. Yano. 2002. Product offering, pricing, and make-to-stock/make-to-order decisions with shared capacity.

Production and Operations Management 11(3) 293–312.

Doytchinov, B., J. Lehoczky, S. Shreve. 2001. Real-time queues in heavy traffic with earliest-deadline-first queue discipline.

Annals of Applied Probability 11(2) 332–378.

Draper, N. R., H. Smith. 1998. Applied regression analysis. No. 1 in Wiley series in probability and statistics: Texts and

references section, Wiley, New York.

Duenyas, I., M. P. Van Oyen. 1996. Heuristic scheduling of parallel heterogeneous queues with set-ups. Management Science

42(6) 814–829.

Farzan, A., M. Ghodsi. 2002. New results for lazy bureaucrat scheduling problem. Proceedings of the 7th CSI Computer

Conference. CSICC ’02, 66–71.

Federgruen, A., G. Mosheiov. 1997. Single machine scheduling problems with general breakdowns, earliness and tardiness costs.

Operations Research 45(1) 66–71.

G. Buttazzo, F. Sensini, M. Spuri. 1995. Value vs. deadline scheduling in overload conditions. Proceedings of the 1995 IEEE

Real-Time Systems Symposium. 90–99.

Gallego, G., Ö. Özer. 2001. Integrating replenishment decisions with advance demand information. Management Science 47(10)

1344–1360.

Goossens, J., S. Funk, S. Baruah. 2003. Priority-driven scheduling of periodic task systems on multiprocessors. Real-time

Systems 25(2) 187–205.

Gupta, D., L. Wang. 2007. Capacity management for contract manufacturing. Operations Research 55(2) 367–377.

He, Q.-M., E. M. Jewkes, J. Buzacott. 2002. The value of information used in inventory control of a make-to-order inventory-

production system. IIE Transactions 34(11) 999–1013.

Heath, D. C., P. L. Jackson. 1994. Modeling the evolution of demand forecasts with application to safety stock analysis in

production/distribution system. IIE Transactions 26(3) 17–30.

Iravani, S. M. R., T. Liu, D. Simchi-Levi. 2012. Optimal production and admission policies in make-to-stock/make-to-order

manufacturing systems. Production and Operations Management 21(2) 224–235.

Kaminsky, P., O. Kaya. 2008. Scheduling and due-date quotation in a make-to-order supply chain. Naval Research Logistics

55(5) 444–458.

Keskinocak, P., S. Tayur. 2004. Due date management policies. D. Simchi-Levi, S. D. Wu, Z.-J. Shen, eds., Handbook of Quan-

titative Supply Chain Analysis, International Series in Operations Research & Management Science, vol. 74. Springer

US, 485–554.

Leung, J. Y. T., Z. L. Chen. 2013. Integrated production and distribution with fixed delivery departure dates. Operations

Research Letters 41(3) 290–293.

Leung, J. Y. T., H. Li, M. Pinedo. 2006. Scheduling orders for multiple product types with due date related objectives. European

Journal of Operational Research 168(2) 370–389.

Liu, C. L., J. W. Layland. 1973. Scheduling algorithms for multiprogramming in a hard-real-time environment. Journal of the

ACM 20(1) 46–61.

Locke, C. D. 1986. Best-effort decision-making for real-time scheduling. Phd thesis, Carnegie Mellon University.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling Under Varying Processing Costs

30 Article submitted to Production and Operations Management; manuscript no. POM-Jun-15-OA-0438.R2

Moyal, P. 2013. On queues with impatience: stability, and the optimality of earliest deadline first. Queueing Systems 75(2-4)

211–242.

Panwar, S. S., D. Towsley, J. K. Wolf. 1988. Optimal scheduling policies for a class of queues with customer deadlines to the

beginning of service. Journal of the ACM 35(4) 832–844.

Phan, L. T., Z. Zhang, Q. Zheng, B. T. Loo, I. Lee. 2011. An empirical analysis of scheduling techniques for real-time cloud-

based data processing. Proceedings of the 2011 IEEE International Conference on Service-Oriented Computing and

Applications. SOCA ’11, IEEE Computer Society, Washington, DC, USA, 1–8.

Pinedo, M. 1983. Stochastic scheduling with release dates and due dates. Operations Research 31(3) 559–572.

Pundoor, G., Z. L. Chen. 2005. Scheduling a production-distribution system to optimize the tradeoff between delivery tardiness

and distribution cost. Naval Research Logistics 52(6) 571–589.

Stankovic, J. A., K. Ramamritham, M. Spuri. 1998. Deadline Scheduling for Real-Time Systems: EDF and Related Algorithms.

Kluwer Academic Publishers, Norwell, MA, USA.

Youssef, K. H., C. Van Delft, Y. Dallery. 2004. Efficient scheduling rules in a combined make-to-stock and make-to-order

manufacturing system. Annals of Operations Research 126(1-4) 103–134.

Zhao, X., K. E. Stecke, A. Prasad. 2012. Lead time and price quotation mode selection: Uniform or differentiated? Production

and Operations Management 21(1) 177–193.

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
250

300

350

400

450

500

Arrival Rate

A
vg

 C
os

t
IID Case with Quadratic Penalty

EDF
SSLP

poms_12606_f1.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
250

300

350

400

450

500

550

600

Arrival Rate

A
vg

 C
os

t
IID Case with Exponential Penalty

EDF
SSLP

poms_12606_f2.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
400

450

500

550

600

650

700

Arrival Rate

A
vg

 C
os

t
MMC Case with Quadratic Penalty

EDF
SSLP

poms_12606_f3.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
400

450

500

550

600

650

700

750

800

Arrival Rate

A
vg

 C
os

t
MMC Case with Exponential Penalty

EDF
SSLP

poms_12606_f4.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
150

200

250

300

350

400

Arrival Rate

A
vg

 C
os

t
ARD Case with Quadratic Penalty

EDF
SSLP

poms_12606_f5.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
150

200

250

300

350

400

450

Arrival Rate

A
vg

 C
os

t
ARD Case with Exponential Penalty

EDF
SSLP

poms_12606_f6.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
500

550

600

650

700

750

Arrival Rate

A
vg

 C
os

t
ARI Case with Quadratic Penalty

EDF
SSLP

poms_12606_f7.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
500

550

600

650

700

750

800

Arrival Rate

A
vg

 C
os

t
ARI Case with Exponential Penalty

EDF
SSLP

poms_12606_f8.pdf

This	article	is	protected	by	copyright.	All	rights	reserved

A
u
th

o
r

M
a
n
u
s
c
ri
p
t

