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Chapter 1: 

Introduction – Understanding Variations in Synthetic Biology Regulation 

 

1.1 Introduction 

Emerging technologies (or those technologies with novel characteristics or components 

that differ from conventional options) challenge the understanding of policymakers and 

regulators to understand the technology’s potential risks and benefits due to the uncertainty 

that such technologies inherently possess (Ludlow et al 2015). With regards to their scope, a 

report issued by the United States’ Presidential Commission for the Study of Bioethical Issues 

describes emerging technologies as revolutionary and/or evolutionary technological and 

scientific advances that are geared to improve various aspects of human life (PCSBI 2010). This 

report specifically sought to review the risks and regulatory concerns of novel biotechnologies, 

and noted on behalf of the United States government that the technologies’ uncertainties make 

regulatory reform for such technologies difficult to accomplish without further experimentation 

and research (PCSBI 2010). Further, the report also acknowledges that many such technologies 

have ‘dual use’ concerns, where the perceived benefits from a particular technology or 

innovative product may also be coupled with risks driven by an intentional misuse of 

technological innovation for deliberately hazardous purposes (PCSBI 2010). For such emerging 

technology enterprises, understanding the differences between novel and generally 

unconventional health risks versus well-understood conventional health risks is of high 

importance to regulators and decision makers (Bates et al 2015). This is driven by concerns 

where novel risks may arise from the emerging materials or engineering processes that 

traditional regulatory paradigms may or may not be able to properly cover (Carter et al 2014).  

However, not all emerging technologies possess the uncertainty and novel health risks 

that key stakeholders must consider when reviewing an emerging technology’s governance. All 

innovation poses some degree of uncertainty and risk, yet a contrasting point for those 
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emerging technologies containing uncertain risks includes their novel physical characteristics 

which could drive them to act in an unpredictable and irreversible manner (Moe-Behrens et al 

2014). Current examples of this includes nanotechnology and synthetic biology. For the former, 

Maynard (2007) notes that “some purposely made nanomaterials will present hazards based on 

their structure—as well as their chemistry—thus challenging many conventional approaches to 

risk assessment and management”, indicating that the chemical and structural novelties of such 

nanomaterials pose possible novel yet uncertain threats to human and environmental health. 

Likewise for synthetic biology, the substantial modification of an organism’s DNA may 

contribute to the transfer of novel genetic information to the natural environment that could 

yield uncertain and irreversible risks to plant, animal, and human biology (Schmidt et al 2008; 

Cardinale & Arkin 2012; Dana et al 2012; Wright et al 2013; Dröge et al 1998).  

 

1.2 Synthetic Biology 

Synthetic biology is one of the more recent cases of emerging technology development, 

where the technology is purported to contain significant potential benefits to a variety of 

industries (Tucker & Zilinskas 2006; Neumann & Neumann-Staubitz 2010; Dormitzer 2013). The 

‘novelty’ expressed within synthetic biology research includes several different factors, but 

generally includes the ability of synthetic biology research to generate greater control of 

genetic systems and the enabling of novel gene expression through the application of 

standardized engineering techniques to biology and thereby create organisms or biological 

systems with novel or specialized functions (Tabor et al 2009; PCSBI 2010).  

The ability to alter, manipulate, and control cell expression has driven many scholars to 

hypothesize the technology’s potential benefits within fields ranging from medicine (Dormitzer 

et al 2013; Paddon et al 2014) to ethanol production to insect population control (Georgianna 

and Mayfield 2012; Nading 2015). One specific area of this includes pharmaceutical 

development, where synthetic biology has been purported to provide several benefits to this 

field (Weber and Fussenegger 2009; Weber and Fussenegger 2012). Such discussed benefits 

include the ability to speed up the rate of drug and vaccine production (Dormitzer 2013; Rojahn 

2013), facilitate the production of pharmaceutical components that are expensive or scarce 
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naturally (Paddon et al 2014), or even advance research on vaccines and drugs for diseases with 

limited to no vaccine, treatment, and/or cure (Barocchi and Rappuoli 2015; Ando et al 2014; 

Bugaj and Schaffer 2012). Such benefits have worldwide implications for delivering treatments 

to areas around the world suffering from debilitating disease (Barocchi and Rappuoli 2015; 

Paddon et al 2014), and improve public health response times and treatment capabilities to 

various pandemics (Dormitzer 2013).  

This potential has already been partially realized for the treatment of malaria (Keasling 

2012; Nandagopal and Elowitz 2011). Researchers have successfully produced the antimalarial 

drug precursor known as artemisinic acid from engineered Saccharomyces cerevisiae yeast, 

which has shown promise in malaria treatment (Paddon et al 2014; Ro et al 2006). In 2004, 

Keasling et al received a $42.5 million grant by the Bill and Melinda Gates Foundation to 

develop this research for eventual distribution in malaria-stricken countries (Cameron et al 

2014). The drug was launched for commercial use by Sanofi in April 2013 (Sanders 2013). By 

May 2015, 15 million treatments were shipped to Africa, with projections of 100-150 million 

treatments to be produced via this method for use in Africa, Asia, and South America per year 

(TwistBioScience 2015). Stöhr (2014) and Vohra and Blakely (2013) note that other diseases 

have been targeted for future synthetic biology research, such as limiting the incidence and 

health consequences of diarrheal disease, mass-producing drugs for HIV treatment, and 

reducing the timeline needed to produce influenza vaccinations.  

However, synthetic biology may also yield potential novel health risks. While synthetic 

biology product development may generate conventional health risk that are relatively well 

understood and known from non-synthetic biology drug and vaccine use, considerations of how 

the technology may generate problems for biosecurity and biosafety require a measured 

response by regulators and policymakers (Kelle 2009). From a biosafety perspective, this 

includes the concept of horizontal gene transfer (the transfer of genes between organisms in a 

manner other than traditional reproduction), where horizontal gene transfer is a particular 

problem of concern for synthetic biology as such gene transfer “is a common and somewhat 

uncontrolled trait through the microbial biosphere.” (Schmidt et al 2008; Cardinale and Arkin 

2012). A specific concern of horizontal gene transfer includes the notion that modified cells may 
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transfer synthetic information to the natural environment and yield negative or unanticipated 

consequences (Schmidt et al 2008; Cardinale & Arkin 2012; Dana et al 2012; Wright et al 2013; 

Dröge et al 1998).   

Likewise for biosecurity, concerns by policymakers and regulators reflect fears that a 

nefarious agent or bioterrorist could utilize principles of synthetic biology to produce a 

biological weapon, and with disastrous consequences (Kelle 2009; National Research Council 

2004). The central issue here includes the notion of ‘dual use concerns’ raised in the PCSBI 

(2010) report noted above, where such nefarious actors utilize synthetic biology research in a 

manner that deliberately yield harms to humans, animals, or the environment. As with 

synthetic biology’s benefits, synthetic biology biosafety and biosecurity risks will be discussed in 

Chapter 3. 

The novel and uncertain health risks produced by synthetic biology research includes 

the substantial genetic modification of cells that, under certain circumstances, could have 

deleterious effects upon humans and/or the natural environment (Mukunda et al 2009; Moe-

Behrens et al 2014). Given such uncertainties, regulators and key stakeholders may or may not 

seek to consider whether or not traditional measures of governance are sufficient to protect 

humans and the environment from significant health risk (Wiek et al 2012; Kuzma & Tanji 

2010). The pathways of such risk may include, among others: 

i) exposure in a laboratory setting (Rabinow & Bennett 2012),  

ii) accidental releases in an occupational/production setting (biosafety) (Schmidt 

2008),  

iii) intentional release of potentially harmful microorganisms (biosecurity) (Vogel 

2014),  

iv) acute risk concerns to individual human health upon commercialization (Fatehi & 

Hall 2014), and  

v) improper disposal of such microorganisms upon their end-of-life disposal and 

their unintended proliferation in the environment (Traavik 2000; Myhr & Traavik 

2011; Ho et al 2001).  
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In this way, attempts to review risk of synthetic biology products such as 

pharmaceuticals must consider collective biosafety and biosecurity concerns that could 

generate health concerns to humans, animals, and/or the environment (Bates et al 2015; Carter 

et al 2014). Normatively, to protect against uncertain technological risks associated with 

synthetic biology’s biosecurity and biosafety concerns, policymakers and key stakeholders 

within a given country must engage in active governance of the field based upon their 

perceptions of how serious such risks actually are.  

However, local regulation and governance does not occur in a vacuum, where 

contextual factors such as with regulatory history and institutional culture may influence how 

technologies are regulated in a unique manner from one government to another (Parthasarathy 

2012; Kelemen 2011; Kagan 1991). Synthetic biology is no exception to this rule, where 

individual governmental systems such as with the United States, the European Union, and 

Singapore have all adopted differing approaches to regulate and govern the process of 

synthetic biology development despite limited information regarding technological risks and 

hazards (Bar-Yam et al 2012; Bates et al 2015). Such differing approaches serve as the focal 

point of this dissertation, and are expanded upon below in Section 1.3. Overall, however, this 

dissertation seeks to understand the extent of how various elements of risk culture as 

independent variables explain varations in synthetic biology regulation within the three cases 

noted above. 

Where Sections 1.1 introduced the general issue of accounting for emerging technology 

risk under high uncertainty and 1.2 further applied this concern to synthetic biology, the 

remainder of this chapter outlines both the general focus of this dissertation as well as the key 

concepts that will be used throughout the remaining chapters. Specifically, Section 1.3 outlines 

the focus of this dissertation upon explaining variations in synthetic biology regulation. Further, 

that section also outlines the explanatory hypotheses regarding the drivers of such variations, 

where these hypotheses are tested to determine the effect that specific elements of risk 

culture may have upon generating these regulatory variations for synthetic biology across the 

three governments examined here. Later, Section 1.4 defines and unpacks key terms that are 

essential to understanding regulatory variations for synthetic biology, including (i) regulation, 
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(ii) governance, and (iii) legalism. Lastly, Section 1.5 lays out the structure for the overall 

dissertation. 

 

1.3 Identifying Variations in Synthetic Biology Regulation – Driving Theories for the 

Dissertation 

After understanding the general concerns raised by the uncertain and potentially risky 

nature of emerging technologies like synthetic biology noted in Sections 1.1 and 1.2, this 

section outlines how this dissertation reviews one area of concern that arises amidst such 

uncertainty – the differing regulatory stances taken by various governments engaged with the 

technology’s research and development. In this way, this dissertation seeks to explore two 

general research questions, including (i) do variations for synthetic biology regulation exist 

across specific case countries, and (i) if so, why do such variations occur? 

In this manner, this study takes a comparative approach to review the regulatory 

instruments and actions of the United States, European Union, and Singapore that capture the 

process of synthetic biology pharmaceutical development. As such, this dissertation will review 

whether such regulatory variations exist between the three cases, and if so, review whether 

elements of risk culture may influence such variations. Overall, this dissertation adopts the 

stance that elements of legalism and risk culture may explain the differing regulatory 

approaches utilized within each of the three cases studied here (Vogel 2001; Jasanoff 1986; 

Jasanoff 1987).  

Further, this dissertation argues that the factors of path dependency (i.e. how the 

historical path of regulatory reform and decision making influences future decision making) and 

governmental legalism (the style of regulatory dispute resolution possessed by each individual 

government) serve as key variables of consideration for this research question. For the former, 

Jasanoff (1986), Vogel and Lynch (2001), and Parthasarathy (2012) indicate that such path 

dependence may have a role not only in binding the regulatory options available to govern 

emerging technology risks, but also influencing how those risks are perceived by local 

policymakers and stakeholders. This dissertation argues that this factor is the strongest element 

of risk culture to influence regulatory variations on synthetic biology, where path dependency 
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in each of the three cases has influenced the regulatory authority and mechanisms available to 

govern the process of synthetic biology development (Carter et al 2014; Bar-Yam et al 2012).  

For the latter, Kelemen (2011), Kagan (1991), and Volcansek (2014) contend that the 

inherent cooperational or adversarial style of legalism within a given government influences 

regulatory decision making, and can have a strong influence upon whether such governments 

can adapt quickly to emerging risks such as with emerging technologies. This dissertation 

argues that such legalism has a lesser but still significant effect upon regulatory variations. This 

is particularly due to the ability of an adversarial style of legalism to favor the regulatory status 

quo and increase the political resources needed to generate regulatory reform, where a 

cooperational style of legalism is less encumbered by such formal and resource-intensive 

barriers to adaptive and anticipatory regulation. 

Below, risk culture is further defined and unpacked inclusive of the factors described 

above as well as other considerations that may or may not influence variations upon synthetic 

biology regulation within the United States, European Union, and Singapore. 

 

1.3.1  Risk Culture and Variations on Synthetic Biology Regulation and Governance 

Within each government, risk culture serves as the sum of local culture, politics, and 

institutions within a given government that influences governmental perception of risk and 

ability to act against potential challenges and emerging risks (Lash 2000; Van Loon 2002; 

Douglas and Wildavsky 1983; You 2015). One particular avenue of this includes emerging 

technologies, where the unique institutional and political factors within a government may 

cause it to regulate a particular emerging technology in a manner entirely different with other 

governments – even in the presence of identical information on the technology’s hazard, 

exposure, and health consequences (Wildavsky and Dake 1990; Parthasarathy 2012). 

In this way, risk culture in this dissertation focuses on factors ranging from government 

structure to history of regulatory development to perceptions of technological benefit. Further 

considerations include the style of legalism and ‘legal culture’ within each government 

(Kelemen 2011; Kagan 1991), which are also tested alongside more traditional considerations of 

risk culture such as with regulatory path dependency (Jasanoff 1986). However, risk culture in 
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this context does not consider unique demographic factors (local considerations of religion, 

race, ethnicity, population size/makeup, etc.), economic considerations (i.e. the economic 

strength or capabilities of a state), or existing scientific capability (i.e. the degree of 

advancement and complexity within synthetic biology research). Many of these factors are 

introduced and discussed within each case’s background, but are not studied as potential 

independent variables to explain variations in government regulation of synthetic biology (for 

similar approaches and discussion, see also Douglas and Wildavsky 1983, Jasanoff 1986, 

Kelemen 2011, and Volcansek 2014). 

Further for this dissertation, the different avenues of risk culture and legalism are 

respectively operationalized: 

i)  the degree of centralization in government power (autocratic/authoritarian, 

multipolar democratic, etc.) (Kagan 1991; Knutsen 2015; Kelemen 2011) 

ii) how disputes in regulatory decision making are resolved (i.e. formally via 

courts, or informally via government-stakeholder meetings) (Kelemen 2011; 

Volcansek 2014), 

iii) the historical path of regulatory reform (Vogel and Lynch 2001; Jasanoff 

1986),  

iv) the perceived practicality and benefits of the technology to a nation (in other 

words, will the technology be useful and provide substantial benefits and 

minimal risks versus more conventional options?) (Lofstedt and Schlag 2016; 

Söderholm et al 2015). 

This case study sought to test how societies interpret and regulate risk in a unique 

manner. In other words, a government’s risk culture influences not only how regulators and 

legislators perceive risk within a potentially hazardous practice, but also the ability, willingness, 

and drive of such government actors to reform existing regulations or establish sui generis 

regulation for an emerging technology altogether. Further, the concept helps account for the 

institutional and bureaucratic histories, interactions, and interdependencies to execute 

regulation and governance for emerging technologies – something noted as crucial for the 

study of governance by Levi-Faur (2013) and Abbott and Snidal (2012). As such, each of these 
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characteristics of risk culture are used as hypotheses to test, via qualitative expert elicitation, 

which factors if any have influenced the three comparative cases to produce differing and 

divergent regulatory policies for synthetic biology in general and pharmaceutical production in 

particular. Ultimately, these four hypotheses are tested individually to review the qualitative 

strength that these factors have individually upon influencing variations in synthetic biology 

regulation across differing governments. 

The three geographic cases within this comparative assessment include the United 

States, European Union, and Singapore. The United States and European Union were chosen at 

the onset of this research due to their status as housing various research centers and 

institutions engaging in synthetic biology research, alongside the growth of various conferences 

focused on the technology’s development being held in both areas on a national and 

international scale since at least 2004 (Cameron et al 2014; Kuiken 2015). Both cases here are 

examples of transparent authorities with power-sharing across different actors of government.  

Divergent from the initial two examples, Singapore is, instead, more authoritarian in its 

approach to regulation and governance, and is less transparent than its Western partners. 

Further, it remains several orders of magnitude smaller than the other two cases in the size of 

its research capacity, gross domestic product, and population count. However, its state funding 

for local universities such as with the National University of Singapore and Nanyang 

Technological University on the subject of synthetic biology and medical products such as 

pharmaceuticals make it relevant for study regarding the promotion of adaptive regulation and 

governance of synthetic biology products (Mitchell 2011; Oldham et al 2012). Additionally, 

Singapore’s extensive commercial and research connections in higher education with other 

Asian nations such as China, Sri Lanka, Malaysia, Indonesia, and others also makes it a potential 

window by which to assess an Asian example of synthetic biology research and development 

alongside the challenges of balancing precaution and proaction as it matures (Welch 2015).  

 

1.4 Factors for Consideration for Governmental Risk Culture: Key Definitions and Concepts 

After outlining the general research question and hypotheses for this dissertation, this 

section further unpacks the various terms and theories that will be deployed throughout the 
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remaining chapters. Specific considerations include (i) adherence to a precautionary or 

proactionary mindset towards risk regulation, (ii) the hard and soft law regulatory instruments 

available to capture the process of synthetic biology development within a given government, 

and (iii) the instrinsic style of governmental legalism as outlined by Kagan (1991) and Kelemen 

(2011).These considerations directly relate to the four components of risk culture and style of 

legalism noted above, where such factors explain how power is centralized within 

governments, which priorities and considerations governments are required to consider when 

engaging with regulatory reform, and how easily such reform is accomplished. In turn, these 

considerations offer tools by which the four hypotheses may be comparatively reviewed across 

the three cases included here. 

 

1.4.1  Precaution versus Proaction: Engaging in Synthetic Biology Research and Development 

 Looking first at precaution and proaction, governments have adhered to the 

precautionary principle to varying degrees in their risk management of emerging technologies 

like synthetic biology. The precautionary principle has roots pertaining to the aphorisms such as 

“better safe than sorry” in 1980s publications on government regulation in Europe (Christiansen 

1994), and was established in German environmental law as the concept Vorsorgeprinzip in the 

late 1970s and early 1980s (Boehmer-Christiansen 1994). At its core, the precautionary 

principle serves as a motivational philosophy to drive risk management (Lofstedt 2003).  

Later, the precautionary principle became an established international norm via the Rio 

Conference of 1992, which contributed to an international statement by the United Nations 

dubbed ‘The Rio Declaration’ (Harremoës et al 2013). Specifically, the Rio Declaration stated 

that:  

“In order to protect the environment, the precautionary approach shall be widely applied 
by States according to their capabilities. Where there are threats of serious or 
irreversible damage, lack of full scientific certainty shall not be used as a reason for 
postponing cost-effective measures to prevent environmental degradation” (Harremoës 
et al 2013). The purpose of the Rio Declaration was to promote sustainable 
development in a manner that promotes human welfare and advancement while 
preserving environmental health and quality internationally (Viñuales 2015). 
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 Further extensions of the precautionary principle after the Rio Declaration included the 

Cartagena Protocol on Biosafety, which sought to protect biological diversity from threats 

posed by genetically modified organisms (Ansari and Wartini 2013; Gupta 2015). Passed in 2000 

and in effect since 2003, the Cartagena Protocol reaffirmed the precautionary approach 

adopted in the Rio Declaration with applications the genetically modified organisms. Specific to 

this point, the Cartagena Protocol noted the importance of uncertainty within the decision 

making context for such organisms, where the Protocol insists that signatories take appropriate 

steps to avoid or minimize adverse effects of modified organisms in all cases regardless of the 

availability of scientific information (Gupta 2015).  

 In the aftermath of these international conventions, the precautionary principle has 

been interpreted in a number of different ways. Some of the more common interpretations 

include (O’Riordan 1994; Tosun 2013): 

 i) preventative anticipation 

 ii) safeguarding of ecological space 

iii) proportionality of response or cost-effectiveness of margins of error, and 

iv) duty of care, or onus of proof on those who propose change 

O’Riordan (1994) states that items one and two are driven by the need to prepare for 

and protect against risks from uncertain or unknown technological developments until more 

evidence is available to facilitate their risk assessment. For item one, focus is centered on the 

need to “to take action in advance of scientific proof of evidence of the need for the proposed 

action on the grounds that further delay will prove ultimately most costly to society and nature, 

and, in the longer term, selfish and unfair to future generations” (O’Rioran 1994). On the other 

hand, item two seeks to establish the notion that the limits of risk tolerance amongst humans 

and the environment should not even come close to being approached – let alone breached 

(Origgi 2014). 

Item three takes a different approach by indicating that the selected degree of 

precaution or restraint does not pose undue or excessive cost to developers and other 

stakeholders in favor of technological development (Origgi 2014; O’Rioran 1994). In other 

words, this approach requires risk managers to account for cost and benefit in their risk 
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calculations – something that Origgi (2014), O’Rioran (1994), and Tosun (2013) argue is 

inherently difficult due to the uncertain nature of emerging technologies. Further, O’Rioran 

(1994) states that such a mindset introduces bias into cost-benefit calculations by potentially 

allowing for inaccuracies in general risk perception. 

Lastly, item four encourages risk managers and regulators to adopt an approach where 

innovators are required to overcome a burden of proof that their products cause no undue 

harm, and such innovators and developers are required to compensate those harmed by their 

products (Owen et al 2013). O’Rioran (1994) argues that this approach may or may not seek to 

balance potential technological advances and economic benefits against environmental and 

human health risks, yet generally seek to outline clear liability and damage amelioration by 

innovators and developers should any risky events arise. 

The precautionary principle is often discussed within the context of emerging 

technologies research, where the need to avoid potentially harmful risks is an important task 

for regulators to fulfill within the scope of technological uncertainty and development (Kelle 

2013; Grunwald 2012; Kelle 2009). For synthetic biology, this includes the need to avoid the 

potential for horizontal gene transfer and other potential novel risks associated with human 

and environmental health alongside the need to prevent the rise of biosecurity threats (Kelle 

2009; Dana et al 2012; Wright et al 2013; Dröge et al 1998). Such calls for the precautionary 

principle in such research stem from the Cartagena Protocol related to genetically modified 

organisms, organisms engineered via synthetic biology processes fall under the category of 

‘living modified organisms’ and share similar uncertainties relative to their impact upon natural 

organisms (Kuiken 2015).  

For purposes of this dissertation, the precautionary principle is discussed as where the 

introduction of a new product or process whose ultimate effects are disputed or unknown 

should be resisted (Sandin 1999; Kriebel et al 2001). As a risk management tool, this mentality 

falls within preventative anticipation and safeguarding of environmental space. Within such an 

arrangement, regulators and risk managers are required to prepare for and protect against risks 

from uncertain or unknown technological developments until more evidence is available to 

facilitate their risk assessment (O’Rioran 1994; Origgi 2014). 
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Such an approach was discussed and reinforced at the Asilomar Conference on 

Recombinant DNA of 1975 (Ansari and Wartini 2013; Hurlbut 2015). At the Conference, 140 

professionals (including biologists, physicists, lawyers, and others) met to discuss the potential 

risks that may arise from novel and developing field of genetic engineering (Ansari and Wartini 

2013). Specifically focused on the potential risks of recombinant DNA (or the ability to bring 

together DNA from multiple sources – creating sequences that would not be found in nature), 

discussants voiced opinions that the potential biosafety risks associated with the technology’s 

use warranted a moratorium on such recombinant research (Carmen 1985). The lasting impact 

of the Conference was to apply the precautionary principle to research on recombinant DNA 

and other work on genetic engineering as well as to propose voluntary agreements to improve 

the governance of such research via soft law (Friedberg 2014). 

 An opposing perspective to the precautionary principle includes the proactionary 

principle (Chen et al 2015; Newson 2015; Suppan 2014). Proponents of proaction seek to 

advance technological prowess by reducing governmental and regulatory impediments to the 

technology’s development (Fuller and Lipinska 2014). Further, proponents of the proactionary 

principle seek to consider the opportunity costs associated with limiting innovation via a 

restrictive measure against potential risks and damages posed by the new technologies, as 

opposed to consideration of damages by themselves (Fuller and Lipinska 2014). Synthetic 

biology has such proponents, where a proactionary approach is stated as the manner in which 

synthetic biology advances in medicine, industry, and various other fields will develop and 

mature (Murray 2010).   

Such a proactionary context must account for the need for a ‘responsible stewardship’ 

of the technology in the midst of potential risks to human and environmental health (Colussi 

2014), yet generally is framed from the perspective of the technology as providing eventual 

benefits to health that far outweigh risks, which are occasionally framed as minute or highly 

unlikely (Glick 2012; Beyleveld and Brownsword 2012). Overall, however, the proactionary 

principle has remained limited in scope and driven as a response to those who argue that the 

precautionary principle hinders technological development (Bennett et al 2009; Colussi 2013). 

Tenets of the proactionary principle have not been formally adopted by any government on the 
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subject of technology regulation (Colussi 2013), although it does serve as an emerging school of 

thought on the subject of emerging technology regulation that government regulators may 

consider in the near future for synthetic biology and genetic modification (Kaebnick et al 2014; 

Fuller and Lipinska 2014).  

 

1.4.2  Hard and Soft Law 

 Aside from considerations of precaution and proaction, another important term to 

understand synthetic biology regulation within each government is the use of hard and/or soft 

law to capture the process of synthetic biology development. Hard law, or the formal legislation 

passed and implemented by legislative authorities within a given government, serves as a 

resource-intensive yet legally binding approach to regulate risky activities (Trubek et al 2005; 

Mandel et al 2014). On the other hand, soft law serves as a more flexible yet nonbinding 

approach for agencies to indicate recommendations and best practices for technology 

development (Mandel et al 2014). Generally speaking, these concepts are key to understanding 

the regulatory tools and instruments available to individual governments for the governance of 

synthetic biology, and serve as central considerations for both legalism (i.e. how are differing 

governments able to shape/reform emerging technology governance) as well risk culture 

considerations of path dependency (i.e. how previous regulations, recommendations, and best 

practices of the past shape current and future capabilities for technology governance reform). 

As such, these terms will be utilized throughout each case in Chapters 4-7. 

 Schaffer and Pollack (2010) and Blauberger (2009) describe hard law as the legally-

binding instruments taken by legislatures and executed by regulatory agencies to govern 

specific activities. An advantage to the development of such hard law is that once passed and 

implemented, it has the advantage of possessing the full force of law of and thereby must be 

followed as described (Gluck 2011). Further, such hard law has the ability to establish new 

executive agencies or expand the power of existing ones to cover regulatory activity as 

established in the law (Mandel et al 2014). Using such authority, regulatory actors can capture 

synthetic biology development under their existing pre- and post-market reviews which allow 

them to gauge the safety and efficacy of a given product. Within such legislative change, 
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innovators and developers would generally be unable to bring a new substance or product to 

market without such approval or a corresponding waiver from the given regulatory agency in a 

manner identical to existing pharmaceutical regulation (Markell 2014; Carter et al 2014).  

 However, the development and implementation of hard law can be hindered by the 

political and institutional difficulties with getting desired legislation passed in an effective and 

efficient manner (Mandel et al 2014). In the United States, for example, hard law often requires 

significant political resources and support in order to pass a government’s legislature, and 

thereby can be significantly delayed, altered, or otherwise prevented from being passed due to 

political disagreements and/or an unwillingness to expand the power of certain government 

agencies (Schaffer and Pollack 2010). Kelemen (2011) and Kagan (2008) also state that such 

hard law also requires political resources and manpower in the European Union, although they 

note that this may be alleviated somewhat by the cooperational nature of European legalism 

(see Section 1.4.4 below). Concerns of hard law passage and implementation are less 

problematic for Singapore due to the high degree of power centralization and informal 

approach to dispute resolution, yet hard law changes are generally minimized in order to avoid 

perceptions of abuse of power and to maintain public trust in a predictable and fair regulatory 

system (Turner 2015; Reilly 2016; Ortmann 2012; Olds 2007). 

While the passage of new legislation is often burdened by the need for significant 

political resources and compromise in order to get such law passed, soft law empowers certain 

governments with the ability to avoid such logjams by allowing for the imposition of guidelines, 

best practices, and rules to indicate proper behavior and actions by innovators and developers 

(Marchant et al 2013; Mandel et al 2014). Virtually all national governments have some 

capability to foster and implement variations of soft law, yet for some this task is a much more 

common and politically feasible task (Brady and Vogel (2001; Volcansek 2014). As such, 

considerations of soft law are important for this dissertation where the differing levels of 

potential use of soft law by the three case governments may indicate how certain 

governmental systems institute regulatory reform easier than others, and serve as mechanism 

to better understand the legal elements of risk culture (i.e. adversarial and cooperational 

legalism) within each case country. 
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Such soft law can come in various forms such as with voluntary programs, consensus 

standards, partnership programs, codes of conducts, principles, and certification programs that 

developers and innovators are asked to abide by (Schaffer and Pollack 2010; Trubek 2006). Such 

guidance documents and recommendations created by regulatory agencies are established 

outside of the traditional route of lawmaking, making them politically easier to develop and 

utilize by agencies with cases of technology regulation like synthetic biology (Bradley and 

Posner 2006). Further, soft law approaches initiated by members of industry via multi-

stakeholder, public-private, or industry-NGO arrangements further outline voluntary best 

practices and codes of conduct that seek to drive technology development towards reducing 

risk via best practices (Mandel et al 2014).  

A crucial consideration here includes the fact that soft law includes both government 

and non-governmental activity – particularly within key stakeholders in industry (Cini 2001; 

Shaffer and Pollack 2010; Senden 2005). Specific to synthetic biology, Marchant and Scheckel 

(2014) state that the private standards, guidelines, codes of conduct, and partnership programs 

utilized by industry to meet emerging challenges and enable relevant researchers to advance 

development of commercial products.  Further, Marchant and Scheckel (2014) note the 

importance of both government and industry players relative to soft law development for a 

given technology, where positive relationships between both sets of players are important to 

overcome adversarial relationships that potentially hinder technology regulation and 

governance. 

Mandel et al (2014) further note that soft law can “impose substantive expectations or 

requirements”, yet “are not directly enforceable” in a manner similar to legislation or Executive 

Orders, nor offer regulatory agencies the same coverage and legitimacy in action as with hard 

law. However, Guston and Sarewitz (2002) and Mandel et al (2014) do indicate that soft law 

approaches to governance can work within “new governance modes of oversight”, where 

government oversight capabilities are broadened to include the participation of other relevant 

stakeholders such as within industry, subject experts, and non-governmental organizations. In 

such a model, Mandel et al (2014) contends that soft law governance can be extended beyond 
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national and regional borders to influence international governance of a technology’s 

regulation. 

 

1.4.3 Regulation, Governance, and Risk Governance 

A further crucial consideration includes the definition and scope of regulation, 

governance, and risk governance that will be used throughout the remainder of the 

dissertation. Such terms are central to understand regulatory variations for synthetic biology, 

where their common usage has produced multiple definitions for various applications in 

government oversight and activity. However, for purposes of this dissertation, the definitions 

used in this section are explicitly focused with respect to technology development.  

 

1.4.3.1  Defining Regulation 

Looking first at regulation, Levi-Faur (2011) notes that regulation is hard to define 

because it maintains so many different meanings to different people. From a state-centered 

disciplinary focus, Laffont (1994) argues that regulation centers on the development and 

execution of state-made laws. This perspective is similar to scholars of public administration, 

where examples such as with Coen and Thatcher (2005) and Gilardi (2005) view regulation as 

the scope of state authority as laid out by regulatory authority. However, Levi-Faur (2011) also 

notes that scholars of global governance discuss regulation as including the soft norms and 

standards that drive international conventions and agreements (see also Dejlic and Sahlin-

Andersson 2006).  

 Further, some scholars have discussed the potentially normative nature of regulation, 

where such government action may be ‘good’ or ‘bad’ depending on perspective and context 

(Hood et al 2001; Hutter 2001). Levi-Faur (2011) describes this normative question as being 

centered on considerations of cost and benefit, where regulations may hinder or amplify 

economic activity by establishing best practices and standards to follow. Consideration of such 

regulatory costs and benefits have even been reviewed and predicted via regulatory impact 

analysis assessments, where such tools of risk management seek to understand whether a 

regulation will offer net-positive results to a society (Sunstein 2002). 
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 Both Levi-Faur (2011) and Black (2002) argue that based upon the complexity and 

numerous perspectives on the field, establishing a catch-all definition of regulation is 

unproductive and limits the ability of scholars to review the causes and effects of regulation 

within specific contexts. With this in mind, Selznick (1985) does note that the study of 

regulation is inherently focused on the connection between legislative bodies and regulatory 

agencies to develop and implement new standards for society to follow. Using this core 

understanding of regulation, this dissertation adopts the viewpoint of Laffont (1994), Coen and 

Thatcher (2005), and Gilardi (2005), where regulation serves as the development and execution 

of state-made laws. However, this dissertation acknowledges that a focus only upon state 

authority would limit discussion of technology regulation, where consideration of non-state and 

industry activity within regulation and governance are noted below in Section 1.4.3.2 (see also 

Levi-Faur 2011). 

 

1.4.3.2  Theory of Governance 

A central element of risk culture inherent within a given government includes the style 

of governance utilized to capture the process of synthetic biology development and manage its 

potential risks. In other words, the differences in the style of governance serve as a main 

concern that this dissertation seeks to review, where different elements of risk culture and 

legalism are individually hypothesized as contributing to such variations in governance-

style.Multiple viewpoints and definitions of governance have arisen, such as with Levi-Faur 

(2011), Kersbergen and van Waarden (2004), Fukuyama (2013), and Börzel  and Risse (2010). 

For starters, Fukuyama (2013) defines governance as “a government’s ability to make and 

enforce rules, and to deliver services, regardless of whether that government is democratic or 

not.” This perspective is helpful for this dissertation, where cases included for discussion are 

both democratic and undemocratic in nature. Levi-Faur (2013) acknowledges Fukuyama’s 

(2013) perspective, but argues that governance is broader than the state-centric approach 

inferred by Fukuyama. Further, Levi-Faur (2013) and Levi-Faur (2011) state that governance is 

more than just government capacities, but also includes the involvement of the private sector 
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and other non-government entities. Levi-Faur (2013) and Kersbergen and van Waarden (2004) 

use this perspective by defining and describing governance as:  

“the approach is pluricentric rather than unicentric. Second, networks, whether inter- or 

intraorganizational, play an important role. These networks organize relations between 

relatively autonomous, but interdependent, actors (e.g., business firms in a sector, public 

and private organizations, EU Member States). In these networks, hierarchy or 

monocratic leadership is less important, if not absent. The formal government may be 

involved, but not necessarily so, and if it is, it is merely one – albeit an important – actor 

among many others. Third, one finds an emphasis on processes of governing or functions 

as against the structures of government. These processes are relatively similar in the 

public and private sectors, and concern negotiation, accommodation, concertation, 

cooperation and alliance formation rather than the traditional processes of coercion, 

command and control. Fourth, the relations between actors pose specific risks and 

uncertainties, and different sectors have developed different institutions to reduce these 

in order to make cooperation possible or easier. Finally, many approaches are 

normative. They prescribe an ideal as well as an empirical reality. This holds in particular 

for the ‘good governance’, ‘corporate governance’, ‘new public management’ and 

‘multilevel governance’ approaches.” 

 Within such an approach noted above, Levi-Faur (2011), Kersbergen and van Waarden 

(2004), and Börzel  and Risse (2010) do not argue that researchers should ignore or minimize 

the importance of the state within the study of governance. However, the authors do argue for 

the need for multi-level approach to governance that includes non-governmental actors such as 

within industry. Further, Levi-Faur (2013) and Abbott and Snidal (2012) note that the study of 

governance should also account for the interdependencies and interactions by different 

institutions and bureaucratic agencies within the regulatory development process, where the 

scope and magnitude of such interactions can shape how regulatory reform is carried out and 

implemented. 

For this dissertation, governance is reviewed as the processes and capabilities of a given 

government to manage or govern an activity, regardless of whether the state is democratic or 
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not (Fukuyama 2013; Pierre 2000; Perry & May 2007; Bevir 2008). These processes and 

capabilities may vary with respect to the regulation and governance of synthetic biology, where 

elements of risk culture and legalism are hypothesized as being the potential cause of this. 

Further, while regulation focuses on governmental authorities and instruments, governance 

includes the involvement of both governmental and non-governmental actors involved with the 

risk management of emerging technologies (Kersbergen and van Waarden 2004; Levi-Faur 

2011). This multi-level arrangement is all reviewed under the consideration of the institutional 

interactions and relationships that influence how regulation is established and implemented – 

something that will prove to be important for the study of ‘risk culture’ in Section 1.4.4 below 

(Abbott and Snidal 2012).  

 

1.4.3.3  Introduction to Risk Governance 

Where synthetic biology’s high uncertainty related to potential novel health risks and 

limited guidance may challenge existing national governance paradigms dedicated to chemical 

and traditional genetic engineering, synthetic biology requires the use of risk governance to 

assess technological risk while suggesting ideal hard and soft law to govern synthetic biology 

moving forward. According to the International Risk Governance Council, risk governance 

applies the principles of good governance to the identification, assessment, management and 

communication of risks in situations of high risk and uncertainty alongside multiple 

stakeholders (IRGC). For synthetic biology and pharmaceutical research and development, risk 

governance requires a consideration of both hard and soft law in order to govern the field in a 

way that neither exposes humans to undue risk nor is too prohibitive with respect to allowing a 

potentially beneficial field to mature and develop (Mandel et al 2014). In this way, synthetic 

biology regulation and governance requires an inherent consideration of the precautionary and 

proactionary principles, respectively (Newson 2015; Gutmann 2011; Bubela et al 2012). 

 However, a significant challenge to promoting effective risk governance and balancing 

the precautionary and proactionary divide includes the notion of regulatory pacing, where 

Kuzma and Tanji (2010) and Kuzma (2013) argue that pacing of more complex genetic 

engineering capabilities like synthetic biology may outstrip the capabilities of existing 
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regulations to adequately cover synthetic biology product governance. Such discussion was 

further echoed by Carter et al (2014) and Bar-Yam et al (2012), and which noted that as 

synthetic biology products become increasingly artificial in their genetic makeup, they will 

come to challenge the ability of existing regulatory structures to cover the product’s research, 

production, sale, and disposal. Further, Carter et al (2014) state that such pacing problems are 

already occurring in the United States, where regulatory agencies like Animal and Plant Health 

Inspection Service, the Environmental Protection Agency, and the Food and Drug 

Administration are losing their ability to regulate certain synthetic biology products. Overall, as 

synthetic biology’s pacing problems challenge the ability of governments to cover a particular 

product’s risks, the need for governance reform via hard and/or soft law may become 

necessary to update such regulation and governance over time (Paradise et al 2009; Wolf et al 

2012).  

An avenue to improve regulation for synthetic biology products and prevent the 

development of pacing problems outlined in Kuzma (2013) includes the concept of adaptive or 

anticipatory governance, where more flexible and less politically-intensive soft law approaches 

may provide flexible yet temporary guidance mechanisms to promote oversight, codes of 

conduct, and best practices for synthetic biology’s pharmaceuticals (Mandel et al 2014; Guston 

2014). This adaptive approach allows regulatory bodies to maneuver in a more active fashion in 

the face of developing technologies such as synthetic biology without requiring significant 

political resources or action by leading lawmakers that are traditionally less capable of 

developing quickly (Gorman 2012; Mandel et al 2014). 

Adaptive and anticipatory governance was posited as potentially necessary by the 

Presidential Commission for the Study of Bioethical Issues, where regulators are able to revisit 

past regulatory decisions related to synthetic biology product risks and amend guidelines and 

rules as necessary based upon the availability of new information that warrants a change in the 

product’s overall governance (PCSBI 2010). Under this purview, Mandel et al (2014) advocate 

for the use of soft law governance as it “can often be adopted more rapidly and amended more 

quickly than traditional regulation, providing a more adaptive oversight system.” Such a 

framework also allows for greater flexibility with adjusting rules and guidelines to anticipate 
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incoming challenges for synthetic biology governance (Fatehi and Hall 2014; McNamara 2014), 

where new activities, products, or areas of novel risk may warrant a review by regulators with 

respect to whether or not existing guidance is sufficient to monitor and regulate risks from such 

products. Tucker and Perkins (2010) agree with Mandel et al (2014) in that not only can soft law 

be shifted on an as needed basis more rapidly than hard law legislation, it may also be extended 

beyond regional and national boundaries and be taken up as a collaborative model that review 

the international exchange of synthetic biology products in a safe yet efficient manner. This is a 

helpful notion as synthetic biology research and development is international in scope, making 

a common understanding of synthetic biology risk and governance beneficial as the 

technology’s products are produced, consumed, and disposed of on an international scale. 

 

1.4.4 Adversarial and Cooperational Legalism 

 A significant benefit of accounting for the unique political and institutional influences 

that make up a government’s risk culture includes an understanding of the legal obligations and 

political possibilities relative to driving for regulatory change (Kelemen 2011; Kagan 2009). For 

the former, legal obligations via existing hard law includes those statutes and binding 

obligations that compel certain behavior in the regulatory process. These include formal 

requirements in the risk assessment process (i.e. what type of information and assessment is 

mandated within the context of emerging technology governance), clear notations of potential 

divisions in authority (i.e. which agencies or ministries have the legal mandate to execute such 

governance, and how does legal and/or regulatory change arise), and the formal requirements 

to drive regulatory change (see Carter et al 2014, Renn and Roco 2006, and Stirling 2008). These 

factors are all crucial to the regulatory development process within a given government, where 

those seeking reform must understand who has authority to legislate and institute new policy 

change (Jasanoff 1986; Kelemen 2011). 

 For the latter, the institutional and political realities behind regulatory change must be 

accounted for in order to craft governance that works within the government in question and 

yields the desired changes in regulation in a legal, expedient, and practical manner. 

Considerations here center on the behaviors and tendencies that policymakers, regulators, and 
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stakeholders express in the process of regulatory reform, where such behaviors and 

interactions can facilitate or complicate regulatory reform (Kelemen 2011; Kagan 1991). One of 

the concepts here includes the notion of adversarial/cooperative legalism, which is noted by 

Kagan (1991) and Kelemen (2011) as including notions of a government’s (i) process to resolve 

regulatory disputes, (ii) requirements for transparency related to the dissemination of 

information, (iii) reliance upon formal or informal approaches to propose new technological 

governance, and (iv) the degree of combativeness that may be expected via legal challenges to 

regulatory proposals.  

 According to Kelemen (2011) and Kagan (1991), adversarial legalism is defined by (i) 

strict transparency and disclosure requirements in the regulatory reform process, (ii) legalistic 

approaches to regulatory enforcement and dispute resolution, (iii) financially costly legal 

contestation by companies and governments involved in regulatory disputes, and (iv) active 

judicial review of administrative decision related to regulatory reform. In this way, Kelemen and 

Sibbitt (2004) and Kelemen (2011) envision adversarial legalism in the United States as being 

notable for “enforcing legal norms through transparent legal rules […], empowering private 

actors to assert their legal rights.” Overall, Kelemen (2011) and Kagan (2009) argue that legal 

requirements for transparency alongside formal and combative regulatory disputes within the 

courtroom contribute to a regulatory environment that makes it difficult for hard law to quickly 

or easily be passed and implemented within an environment of adversarial legalism. 

Likewise, cooperational legalism is defined by (i) a reliance upon informal approaches to 

dispute resolution between actors in government, industry, academia, and non-governmental 

institutions to foster regulatory reform, (ii) limited use of legal disputes and judicial resolution 

to resolve disagreements amongst key actors in the reform process, (iii) often, less stringent 

requirements for transparency and disclosure of all activity related to government actions 

pertaining to reform, and (iv) coordinated discussion amongst stakeholders across government, 

industry, academia, and non-governmental institutions to drive regulatory best practices in a 

manner that is inclusive of various viewpoints and needs (Kagan 1991; Kelemen 2011; Kelemen 

and Sibbitt 2004).  
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 Adherence to either an adversarial or cooperational approach to legalism is driven by a 

variety of factors, including, among others, the historical path of legislation for technology 

governance, the separation of powers and lawmaking capabilities within government, and 

cultural practices regarding the relationship between industry and government via regulatory 

disputes (Kagan 1991; Jasanoff 1986; Kelemen 2011). Each of the three cases in Chapters 5 – 7 

will be reviewed for individual and unique elements of the respective government’s risk culture 

that drive it towards and adversarial or cooperational style of legalism – an important driver of 

the types of regulatory reform that may be instituted without significant political, legal, and/or 

institutional resistance 

 The concept of adversarial and cooperative legalism was included in this dissertation 

due to its ability to explain key elements of a country’s risk culture, with particular emphasis on 

how regulatory disputes are resolved within a given government. In other words, legalism as 

discussed above and expressed by Kelemen (2011) and Kagan (1991) offers a clear explanation 

regarding how and why regulatory change is easier to produce in certain governmental 

contexts than others.  

 

1.4.5 Structure and Content of the Dissertation 

 Given the discussion noted above, the central argument of this dissertation is that 

elements of risk culture and legalism have a direct influence upon generating variations in the 

regulation and governance of emerging technologies within individual governments. As noted 

by Bar-Yam et al (2012), Carter et al (2014), and Bates et al (2015), the uncertainty behind the 

risks and hazards of such technologies create an environment where limited objective 

information is available by which to shape regulations and guidance for specific emerging 

technology developers, leaving such regulators and policymakers to utilize their existing 

authorities to capture the process of such technology development until sui generis regulation 

is justified. Synthetic biology is one such example of an emerging technology, where the 

technology’s high uncertainty has contributed to diverging opinions on how the process and 

products of synthetic biology should be regulated and governed (Mandel et al 2014; Bar-Yam et 

al 2012; Carter et al 2014). Ultimately, this study finds that such variations in early stage 
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synthetic biology regulation are attributable to various elements of risk culture and legalism, 

with particular emphasis on the effect of the path dependence via historical regulation and 

legislation to limit the feasible options to apply existing regulation and future reform to 

synthetic biology and its various enabling technologies (for similar perspectives on path 

dependence fostering diverging regulatory and governance structures, see Vogel and Lynch 

2001, Jasanoff 1986, and Parthasarathy 2012). 

Looking towards the structure of the dissertation, Chapter 2 discusses the 

methodological approach to the literature review, subject interviews, and discourse analysis 

used to generate and assess qualitative data for this dissertation. The methodological approach 

described within this chapter was carried out in three phases for subject experts in the United 

States, Europe, and Singapore, and represents the demonstration regarding how each of the 

cases (i) perceive the novel health risks associated with synthetic biology research and 

development, (ii) discuss existing regulatory options to monitor and regulate such risks that 

account for the specific country’s political, social, economic, and scientific drivers that influence 

local synthetic biology governance, and (iii) achieve regulatory change to improve coverage of 

synthetic biology development where necessary and helpful. Information generated from this 

methodology is used to drive the three-system comparative assessment in Chapters 4-7. 

Next, Chapter 3 includes a more targeted discussion on synthetic biology, including 

information related to the field’s history, the search for its definition, the scientific principles 

guiding synthetic biology research, the risks and benefits of such research, and existing 

conversations and debate for the technology’s governance from 2000-2016. As such, this 

chapter provides a general understanding of the existing scientific capabilities expressed by 

synthetic biologists over time, and offers insight into the developments of synthetic biology’s 

use with pharmaceutical development in particular.  

Chapters 4-6 include these respective cases, which unpack the perceptions of synthetic 

biology pharmaceutical benefits, risks, and regulatory needs/capabilities as discussed by 

identified interview subjects and literature analysis collectively. Using the methodological 

approach described in Chapter 2, each case is respectively broken down into several parts, 

including:  
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(i) the relative strength of synthetic biology research within the country,  

(ii) perceptions of synthetic biology health risk for pharmaceutical products across the 

product life cycle by subject experts within that country,  

(iii) discussion of existing regulatory frameworks used to address synthetic biology risk 

within that given country, and  

(iv) discussion of the efficacy of such government regulation, alongside perceptions by 

experts of what extensions of those existing regulatory paradigms are needed to better 

regulate the risks and promote the benefits of synthetic biology in the future. 

Lastly, Chapter 7 includes a synthesis of the dissertation’s findings, and discusses how 

the various veins of risk culture may cause variations in the regulation of synthetic biology 

within different governments. Specifically, this chapter will include a comparative analysis from 

the cases to review which elements of risk culture, if any, influence regulatory decision making 

and technological risk perception in a unique manner within each of the three cases. 
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Chapter 2: 

The Qualitative Method Chosen for this Dissertation: Subject Expert Interviews & Discourse 

Analysis 

  

2.1.0 Statement of the Problem and Subsequent Selection of Method 

2.1.1 Statement of the Problem: Regulating Synthetic Biology Under Uncertainty 

As described in Chapter 1, a small number of emerging technologies possess unique 

physical characteristics that make it difficult to understand their potential risks to human and 

environmental health (Maynard 2007). The uncertainty posed by such technologies makes their 

regulation a more complicated task than with technologies that possess more predictable and 

well-known risk profiles (Pierre 2000; Perry & May 2007; Bevir 2008). Within such situations, 

individual governments chose unique measures to regulate and govern such technologies in the 

midst of high uncertainty – the measures of which may be driven by various elements of local 

risk culture. Synthetic biology serves as one example of such a technological approach that 

possess a unique genetic structure may pose uncertain and consequential risks to humans or 

the natural environment (Carter et al 2014; Bar-Yam et al 2012; Mandel et al 2014).  

Given the technology’s uncertainty and novel potential risk profile, governments have 

already begun to adopt diverging approaches to synthetic biology regulation (Bar-Yam et al 

2012; Carter et al 2014). These differing approaches are generally not driven by local data on 

technological risk, hazard, and exposure, but may instead be the result of unique cultural, 

political, and institutional factors that influence technology regulation within each government 

(Jasanoff 1986; Kelemen 2011).  This dissertation seeks to explore more direct causes of why 

such variation might exist, where such variation is hypothesized to be caused by one or more 

factors that comprise a government’s risk culture as noted in Section 1.3.  

 Qualitative methods offer multiple approaches that may address various angles of 

synthetic biology risk analysis and regulation. However, given the specific focus on this 
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dissertation regarding the potential risks that may arise within the process of synthetic biology 

development and the need to review regulatory capabilities to cover such risks, this 

dissertation made use of narrative discourse analysis via subject expert interviews alongside a 

literature analysis.  

 

2.2 General Project Description 

Given the central focus on reviewing how elements of risk culture generate variations in 

synthetic biology regulation, the following sections specifically describe the methodological 

underpinnings of this study and the specific hypothesis that were reviewed. To begin with, this 

dissertation focused explicitly on the following two research questions, including: 

1. Do stakeholders in the United States, European Union, and Singapore approach risks to 

synthetic biology in differing manners? 

2.  If so, what factors cause them to do this? 

 Collectively, addressing these research questions will allow for an improved 

understanding of whether the three included cases have adopted differing approaches to the 

risk perception and regulation of synthetic biology as well as offer some explanation regarding 

why this is the case. As such, research findings are centered on (i) the potential biosafety and 

biosecurity risks as noted by local subject experts that may arise from synthetic biology, and (ii) 

the regulatory and governance mechanisms required to address such concerns. 

 To test these research questions and review how risk culture may influence variations in 

synthetic biology regulation, this dissertation explores the effect of several elements of risk 

culture, including: 

 ii) The degree of formality in regulatory dispute resolution 

iii) The degree of centralization in government power 

 iv) The general appetite by local stakeholders for risk acceptance 

 v) The perceived domestic benefit of a particular innovation 

 Where these factors serve as the main components of risk culture operationalization in 

this dissertation, such research may allow for an improved understanding of which elements of 

risk culture, if any, may cause governments to regulate and govern synthetic biology in a 
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culturally unique manner from their peers. As noted in Section 1.2 and 1.3, this dissertation 

hypothesizes that the specific factors of regulatory path dependency (i above) and style of local 

regulatory legalism (ii above) are the strongest influencing factors to generate variations in 

synthetic biology regulation across the three cases studied here. Further, it argues that 

regulatory path dependency has the strongest influence, where Jasanoff (1986) and Vogel and 

Lynch (2001) argue that such path dependency limits the political and policy options available 

to generate regulatory reform in various governments. On the other hand, the style of local 

regulatory legalism is hypothesized as having a lesser but still significant effect upon such 

regulatory variations, where Kelemen (2011) notes that an adversarial style of legalism can 

make regulatory reform too politically costly for regulators and policymakers to engage with. 

The remaining factors noted above are hypothesized as having lesser degrees of influence upon 

such regulatory variations, where instead considerations of regulatory path dependence 

(Jasanoff 1986; Vogel and Lynch 2001) and legalism (Kelemen 2011; Volcansek 2014) are argued 

as having more substantial effects. 

To address these research questions, a holistic approach was undertaken to review the 

entire lifespan of the pharmaceutical’s life cycle stages in order to integrate all potential 

relevant factors to societal health risk through the use of literature analyses and subject expert 

interviews. This was undertaken due to the need to consider both the existing published 

scholarly opinion as well as qualitative subject expert input with respect to synthetic biology 

risks during the production, manufacturing, consumption, and disposal life cycle stages. 

Methodologically, such a focus is essential to obtain a more context rich view of where 

synthetic biology risk may arise as well as to indicate which areas may be more difficult for 

regulators to address when shaping new guidance or regulation for the technology or its 

products (see Mohan et al 2012 and Bates et al 2015 for similar approaches to nanotechnology 

and synthetic biology). 

 Driven by the need to better understand the uncertainty regarding the potential risks of 

synthetic biology development, the first portion of research centers on the need to discuss 

novel versus conventional synthetic biology health risks across a pharmaceutical product’s life 

cycle, both from a general perspective (a typical pharmaceutical) and with specific cases 
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currently within development (notably, Keasling’s artemisinic acid, Novartis’ influenza vaccine 

production, and the potential for a synthetic biology-derived probiotic). The goal here is to gain 

insight into the novel risks associated with synthetic biology for pharmaceutical products in 

order to map out where, if at all, these hazards may occur and damage human health. This is a 

difficult exercise due to the uncertain nature of synthetic biology research and the need to 

think speculatively about the interactions and exposure between synthetic and human cells, yet 

taking a case-by-case approach offers some insight into the various bounds of risk that 

developers must account for in separating conventional pharmaceutical health risk versus novel 

risk generated through complex genetic manipulation.  

Further, concerns of proprietary knowledge and trade secrets complicate horizon 

scanning and anticipatory decision making, where private companies do not fully disclose the 

novel circuit and biological engineering developments that may contribute to novel health risk 

(Konig et al 2015). With these complications and impediments in mind, research here seeks to 

acquire insight into areas across the pharmaceutical life cycle that may produce novel risks due 

to the exposure of biologically active synthetic DNA utilized within synthetic biology research 

and development.  

Qualitative approaches, with the notable inclusion of narrative analysis via subject 

expert interviews, can serve as an avenue to generate information regarding where these risks 

such as with threats to biodiversity or horizontal gene transfer may occur along a synthetic 

biology product’s life cycle. Such information may in turn be used to review variations in both 

the perception of synthetic biology risk as well as the regulatory mechanisms available to 

regulate and govern the technology’s development. A review of such risks is an essential piece 

of this review, where such risks may or may not possess irreversible and harmful consequences 

due to the presence of synthetic DNA within the engineered cells (Redford et al 2013; Dana et 

al 2012).  

Lastly, to better understand the effect of the political and institutional factors that drive 

the regulatory risk culture of a given government, the next portion of research seeks to identify 

existing regulatory structures within specific cases (United States, European Union, and 

Singapore) that have been discussed as being applicable to synthetic biology regulation across 
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the process of product development. Through subject expert elicitation, this also includes the 

need to identify trends in opinion regarding the ability and effectiveness of those hard and soft 

law to govern said technological products, and discuss (if necessary) the novel extensions of 

hard and/or soft law that may be implemented to strengthen a specific case’s regulation. 

Strategies explored will include those intended to perceive, monitor, manage, and mitigate risk 

amongst multiple stakeholders – a critical component of the International Risk Governance 

Council’s definition of what proper regulation and governance of emerging technologies should 

include (IRGC 2009).  

With regards to defining metrics for success or failure, the three primary goals of this 

framework are to (i) identify the institutional and political factors that may influence the 

regulation of synthetic biology within specific countries, (ii) acquire expert insight into the 

potential risks posed by synthetic biology pharmaceuticals, and (iii) review how specific 

institutional and political factors that comprise risk culture influence variation in synthetic 

biology risk perception and regulation. Given this, methodological success is determined by 

whether a diverse set of subject experts may be acquired for interview and whether a mixture 

of literature and expert assessment can identify the political and institutional factors of the 

government’s risk culture which influence their regulatory decision making.  

With this in mind, the joint literature-expert interview approach taken here is used to 

both review the existing discourse related to synthetic biology and government regulation 

while also gaining insight from targeted subject experts related to their perception of synthetic 

biology risks and the regulatory mechanisms available to cover such risks. For the former, the 

literature analysis generates background knowledge regarding the various issues and concerns 

raised about synthetic biology risks and benefits. The results of this study can both frame the 

initial areas of study and interview questions pertaining to the process of synthetic biology 

development – something that was undertaken in this dissertation (Pickering and Byrne 2014; 

Green and Hall 1984). For the latter, subject expert interviews and subsequent discourse 

analysis can help researchers build off of their initial understanding of synthetic biology 

regulation from literature and gain expert insight into specific questions about the field in 

general, particular areas of risk specifically, or even both (Bogner et al 2009; Kvale and 
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Brinkmann 2009; Seidman 2013). As such, the joint approach utilized here is complementary, 

where literature analysis allows researchers to gain a general overview of emerging challenges 

in the field whileexpert interviews subsequently allows them to gain more in depth 

understanding and analysis. 

 The following sections detail (i) the literature analysis methodology undertaken to 

review scholarly analysis of synthetic biology regulation, and (ii) the interview protocols and 

analysis utilized to acquire, organize, and understand information offered within the three 

phases of subject expert interviews undertaken specific to this research project.  

 

2.3 Literature Analysis: Description and Approach 

 With respect to this dissertation’s literature analysis, this dissertation sought to 

incorporate literature from three streams of thought, including (i) synthetic biology health risk 

in general, (ii) synthetic biology health risk from pharmaceutical products, and (iii) synthetic 

biology regulation (inclusive of hard and soft law options used by governments to cover 

synthetic biology risk).  

 Methodologically, this dissertation utilized the ISI Web of Knowledge to identify papers 

from peer-reviewed journals that discuss synthetic biology health risks along with the 

mechanisms that potentially contribute to these risks for the technology in general and for 

pharmaceutical products in particular. These efforts were initially conducted in tandem with an 

additional Alfred P Sloan Foundation grant entitled Designing a ‘Solution-Focused’ Governance 

Paradigm for SynBio: Case Studies of Improved Risk Assessment and Creative Regulatory Design, 

of which I served as a co-investigator in 2013. Outlined below, this general framework was 

repeated in 2014 and 2015 to update my literature base to include those publications and gray 

literature (or information that falls outside the mainstream of published journals and literature) 

released after the initial 2013 search.  

By September 2013, 8 keyword search phrases were identified with the assistance of 

other participants in the Sloan Foundation grant that were used within the ISI Web of 

Knowledge along with Google Scholar. ISI was utilized to identify formal publications within 

peer-reviewed journals, while Google Scholar was used conduct the ‘forward to backward 
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search’ described below (Webster & Watson, 2002; Levy & Ellis, 2006). ISI Web of Knowledge 

was utilized due to its recognition as one of the primary collections of academic literature 

worldwide (Chadegani et al 2013, Huang et al 2011). Within this initial search, each keyword 

was utilized in a case-sensitive manner (where these terms and phrases are listed below) to 

acquire a list of publications related to synthetic biology risk and regulation from a general 

perspective, and for pharmaceuticals and therapeutics in particular. After conducting these 

initial searches, articles were culled using a variety of criteria, which are described further 

below. 

By March 2014, this initial literature analysis was refocused explicitly on synthetic 

biology pharmaceutical regulation. As such, the literature analysis was undertaken for a second 

time with the specific focus of this targeted application of synthetic biology. This included the 

removal of one irrelevant search term specific to a different case under the abovementioned 

Sloan Foundation Project (Synthetic Biology Biofuels), and included the addition of one search 

term to amplify the search’s capability to acquire articles relevant to the concept of anticipatory 

governance, respectively.  

Several criteria were used to cull articles that were not topically related to synthetic 

biology regulation as defined by me and with guidance from certain literature sources as 

Cameron et al (2014). The first criteria used included considerations of article publication date, 

where the initial search was focused around those articles published between January 2000 and 

September 2013, the second search from 2000-March 2014, and the third search serving as an 

update for April 2014-July 2015. The initial date was identified due to the publication of two 

significant articles in Nature that discussed the deliberate creation of biological circuit devices 

by combining genes within E. coli cells and subsequently triggered discussion and research 

related to systems and circuit engineering that served as an important launch point for modern 

synthetic biology research (Elowitz and Leibler 2000; Collins et al 2000). The significance of this 

start point was later emphasized by Cameron et al (2014), who described it as one of the early 

origins of research engaged directly at the concept of ‘synthetic biology’. 

The next criteria used for literature analysis evaluation included the removal of 

duplicate and near duplicate entries. While pure duplicates (or exact copies of the article under 
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consideration) were relatively rare (approximately 1% of articles used for review), certain 

publications contained material very similar in nature that warranted the inclusion of only the 

original publication within the literature analysis sample (approximately 17% of articles used for 

review). Examples of this included conference proceedings or book chapters by certain authors 

that were derived from their previously published material. As a rule, an article was only 

deemed a ‘near duplicate’ if the research methodology, abstract, and general discussion of 

synthetic biology was identical to previously published work, and at least one author matched 

for both the original and near duplicate paper (consistent with Hart 1998 and Dillon and 

Gabbard 1998). In cases where this occurred, the earliest published document within a peer-

reviewed journal was kept in the review for further analysis to maintain consistency in the 

review process. Further, articles that appeared for multiple search terms were eliminated in 

this stage of the article culling process. 

After filtering out duplicates and near duplicates, the next round of evaluation included 

focusing only those articles published in English as well as removing irrelevant or extraneous 

material. For starters, only papers published in English were kept for analysis, consistent with 

Huang et al (2011) and Juni et al (2003). The next step included removing those articles not 

directly related to synthetic biology, where such articles did not contribute to this dissertation’s 

discussion of synthetic biology regulation in general and for pharmaceuticals in particular. Such 

a process involved reviewing for articles that did not explicitly state the phrase ‘synthetic 

biology’ (except for the search term ‘synthetic biology engineering’, where the term had not 

become widely used until 2004-2005), where this culling process for term relevance is 

consistent with Hart (1998) and Huang et al (2011).  

To supplement the literature search and to ensure that it was thorough, a forward and 

backward search (Webster & Watson, 2002; Levy & Ellis, 2006) was undertaken. Backward 

searches reviewed papers that were cited in studies and scholarly discussion previously 

identified for review, while forward searches allowed for a review of papers that cited the 

selected studies to see if those should also be included for assessment. Articles identified here 

were assessed using the same exclusion criteria noted above. Further, this entire process was 
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repeated in March 2014 (prior to Phase I interviews) and July 2015 (prior to Phase III 

interviews). The resulting list of publications is noted below in Table 1. 

 

 
Table 1. Breakdown of Literature Search Statistics Across 3 Years 

 

Article analysis was conducted in terms of whether the papers were driven by 

experimental research, social science/implications research, or both. For experimental 

research, information was gathered regarding the biological, chemical, and engineering 

processes utilized by researchers to foster advancement in circuit and metabolic engineering 

relevant to synthetic biology research. These articles were used to inform the dissertation 

chapter on synthetic biology’s history, development, risk, and overall regulatory concerns. For 

social science/implication research (or those articles that discussed the implications, 

consequences, and future outlook of synthetic biology research), these articles were used to 

frame Phase 1 and Phase 2 interviews, which are described further below. As the smallest third 

of the subdivided literature, those that discussed both biological and engineering information 

related to synthetic biology research alongside the social science and implications 

considerations were used to inform the specific cases of synthetic biology pharmaceuticals and 

therapeutics (Keasling’s antimalarial, Novartis’ influenza vaccine production, and a theoretical 

probiotic), while also informing on general discussion of synthetic biology questions for 

interviews in Phases 1 and 2. 

Looking at the final list of 419 articles chosen for review, general percentages were 

derived regarding the timeline of article publication (i.e. the count of articles published across 

the timespan covered here) as well as how the articles were framed (i.e. as articles with a focus 

on social science and implications discussion, the presentation of experimental and/or 

Queried Selected Queried Selected Queried Selected DuplicatesFinal Count

Synthetic Biology - Synthetic Bacteria 826 24 1257 216 147 35 52 199

Synthetic Biology Biofuel 123 21 0 0 0 0 0 0

Synthetic Biology ethics 85 19 112 75 38 17 15 77

Synthetic Biology Medicine 78 24 207 54 98 23 9 68

Synthetic Biology Pharmaceutical 47 9 82 33 95 21 0 21

Synthetic Biology Risk Governance 6 6 17 14 7 4 4 14

Synthetic Biology Risk Management 2 2 7 5 4 3 0 8

Synthetic Biology Governance 35 7 77 29 14 8 10 27

Synthetic Biology Anticipatory Governance 0 0 2 2 3 3 0 5

Total 1202 112 1761 428 406 114 90 419

2013 Mar-14 Jul-15
Search Terms
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methodological information related to the science of synthetic biology research, or a mixture of 

both). Categorically, articles dedicated to discussion of social science and/or implications 

research of synthetic biology research and development accounted for 53% of articles included 

in the 419 article sample, with Experimental (37%) and Both (10%) accounting for the 

remainder (Figure 1). Temporally, publication across all three literature categories grew in 

number throughout most of the timeline mentioned here (Figures 3 and 4). 

 
 

 
  Figure 1. Categorical Breakdown of Literature Analysis Articles 
 
 

 
  Figure 2. Distribution of all Articles from 2003 – July 2015. 
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  Figure 3. Breakdown of Article Categories by Year 

 
 

 Given the growth of articles pertaining to synthetic biology research and regulation 

above, certain trends have begun to emerge related to the regulatory landscape of the process 

of synthetic biology development as well as concerns pertaining to future regulation of 

synthetic biology products. For the former, Carter et al (2014), Bar-Yam et al (2012), Pei et al 

(2012), and Heavy (2012)discuss the challenges associated with regulating synthetic biology in 

the United States and European Union. In their discussion, authors such as Mandel et al (2014), 

Allan et al (2015), and Buhk (2014) note that for most governments as with the United States 

and European Union, no new hard law has been developed to explicitly cover synthetic biology 

health risks. Instead, Carter et al (2014), Bar-Yam et al (2012), and Buhk (2014) discuss how 

such risks are covered under extensions of existing law, such as with the Toxic Substances 

Control Act or the Food, Drug, and Cosmetic Act in the United States. Such law derives from the 

regulation of chemical and genetically engineered materials (respectively) on one hand, as well 

as from specific product regulation on the other (Suppan 2014; Kuzma 2015), Kuzhabekova and 

Kuzma 2014).  

For the latter, scholars such as Douglas and Stemerding (2014), Calvert (2013), Serrano 

(2007), Landrain et al (2013), and Way et al (2014) all note the difficulties facing governments 

relative to the future of synthetic biology regulation. In this vein, Douglas and Stemerding 
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(2014), Carter et al (2014), Landrain et al (2013), and Bar-Yam et al (2012) all note that whereas 

the United States and European Union regulate the process and products of synthetic biology 

under existing chemical and genetic modification laws and guidance, such law will become 

increasingly unable to cover synthetic biology risks as the resultant organisms become 

increasingly artificial in their genetic structure. While the discussion of such regulatory 

challenges was noted in the mid-2000s as a theoretical concern (Tucker and Zilinskas 2006; 

Serrano 2007; Maurer et al 2006), such discussion has grown in significance since 2014 as 

synthetic biology research continues to mature in various fields such as pharmaceuticals, 

biofuels, and rodent control (Mandel et al 2014; Roberts et al 2015; Carter et al 2014; Allan et al 

2015; Winter 2015).  

A further point of discussion related to difficulties facing synthetic biology regulation 

includes the pressures by government regulators to develop policy and guidance without robust 

experimental data or commercialization of synthetic biology products. This is not a unique 

challenge for synthetic biology, where Malloy (2008) and Beaudrie et al (2013) describe similar 

concerns related to the regulation of nanotechnology. However, Bates et al (2015), Roberts et 

al (2015), Bubela et al (2012), and Moe-Behrens et al (2014) do note that such challenges 

complicate synthetic biology regulation and governance by making it difficult for such 

regulators to foster guidance and policy that adequately addresses potential risks of synthetic 

biology products. Further, Kuzma and Tanji (2010) and Colussi (2013) indicate that such 

uncertainty can exacerbate regulatory pacing problems as the technology becomes more 

refined (further discussion in Chapter 1).  

Relative to the potential risks posed by the development of synthetic biology, authors in 

the United States, European Union, and Singapore have continually noted concerns of biosafety 

and biosecurity, respectively (White and Vemulpad 2015; Simirenko et al 2015; Guston 2014; 

Winter 2015; Douglas and Stemerding 2014). Specifically, Guan et al (2013), Church et al (2014), 

Carter et al (2014), and Garfinkle and Knowles (2014) state that the presence of novel genetic 

information in organisms modified within synthetic biology research pose specific problems if 

accidentally or deliberately misused and/or exposed to an unintended target. For biosafety, 

unintentional release outcomes have been described as potentially problematic for several 
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reasons, including (i) the potential for engineered organisms to act as invasive species and 

negatively impact biodiversity, (ii) concerns of exposure of engineered organisms to unintended 

human and animal targets, and (iii) the inability to control engineered organisms – particularly 

bacteria – once they are taken outside of a contained environment (Wright et al 2013; Schmidt 

2008; Church et al 2014). Such concerns are noted both for commercial research (Bubela et al 

2012; Saukshmya et al 2010) as well as for academic competitions and ‘do-it-yourself’ 

developments such as with iGEM (Guan et al 2013; McNamara 2014). However, more recent 

biosafety discussion has centered on the regulation of research intended for eventual 

commercialization due to advances in the technology’s development for several potential 

product applications (Moe-Behrens et al 2014; Chugh et al 2015; Schmidt and de Lorenzo 

2016).  

For biosecurity, emerging trends of discussion center around questions of access (i.e. 

how nefarious agents could gain expertise and materials to misuse synthetic biology research 

for harmful purposes) and plausibility (i.e. how likely are biosecurity events). For the former, 

early concerns of biosecurity include the potential for synthetic biology research to have ‘dual-

use’ implications, where a nefarious agent could use technological capabilities to develop 

harmful substances like a genetically modified virus (Kelle 2007; Tucker and Zilinskas 2006; 

Selgelid 2009). Discussion here has developed to focus more specifically on how biosecurity 

threats may be mitigated in specific regulatory areas, including export control (Shaw 2016), 

screening of synthetic biology research prior to public dissemination (Krishna 2014; Edwards 

2014), and regulatory approval of proposed experiments for dual-use implications and harms 

(Chugh et al 2015; WHO 2016; Oye 2012).   

With respect to the likelihood of biosecurity issues, scholars have taken varying 

positions on whether such concerns are plausible. On one hand, Jefferson et al (2015), Jefferson 

et al (2014), and Marris et al (2014) argue that such concerns may be unfounded and induce 

unnecessary fear in synthetic biology research within commercial and academic research alike. 

On the other, Chen et al (2015), Mukunda et al (2009), and Tucker and Flanagan (2010) contend 

that such risks may grow in likelihood as the technology matures, and that governments have 

an ethical imperative to protect against dual use threats to human and environmental health. 
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The diverging opinion of these two schools of thought is particularly noted within the context of 

pharmaceutical development, where scholars argue from both a scientific and ethical 

standpoint about biosecurity issues. Relative to scientific concerns, authors note that 

biosecurity risks are plausible (Chen et al 2015) or implausible (Jefferson et al 2014). For ethical 

concerns, scholars argue that governments have a responsibility to protect against perceived 

biological threats from engineered organisms (Tucker and Flanagan 2010), or that governments 

have a responsibility to facilitate synthetic biology research in order to unlock potentially life-

saving advances that such research may provide (Wimmer et al 2009; Vohra and Blakeley 

2013). 

 Overall, the literature analysis conducted for this exercise served as the key background 

work to acquire an understanding of the progression and current status of the field and general 

scholarly opinion and research into regarding synthetic biology health risks. This exercise also 

served to elucidate some of the existing research questions related to synthetic biology 

regulation, where issues such as whether existing regulatory paradigms within the three case 

governments studied here are sufficient to cover synthetic biology products serve as necessary 

information to inform interview questions for the second half of this study.  

 

2.4 Subject Expert Interviews and Narrative Discourse Analysis 

 Alongside a formal literature review of synthetic biology regulation, this dissertation 

included three rounds of interviews with synthetic biology and emerging technology subject 

experts within Europe, Singapore, and the United States between May 2014 and December 

2015 (entirely separate from the interview transcripts acquired from Drs. Kuzma and 

Cummings). These interviews were constructed to acquire information regarding the perceived 

risks by experts within the three case governments pertaining to synthetic biology development 

in general and for pharmaceutical production in particular. Specific discussion here centered on 

the general likelihood that such risks may arise, the mechanisms which contribute to novel risks 

to human and environmental health, the potential consequences of such risks, and discussion 

of regulatory capabilities currently available within a given country’s national government to 
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cover such risks. This section describes the methodological approach of these subject Expert 

interviews, including: 

(i) case selection within the United States, European Union, and Singapore,  

(ii) the general interview protocols used for the three interview phases,  

(iii) how each interview was analyzed and information was organized to identify common 

points of discussion for synthetic biology risk regulation, and  

(iv) the limitations of this narrative analysis approach.  

 

2.4.1 Case Selection 

After acquiring a University of Michigan Internal Review Board Exemption 

(HUM00090576) for human subjects research, this research project sought to engage with 

various experts within industry, academia, government, and non-governmental organizations 

directly engaged with synthetic biology research and regulatory discussion. This section details 

this dissertation’s case selection philosophy utilized for the three phases of interviews 

undertaken for this research project. 

Case selection was accomplished across two axes: geographic and vocational. The 

motivation of this was to provide metrics for comparison regarding the general background and 

scope of work for the various experts interviewed for a given country – see Table 2 for a 

breakdown of completed interview responses. Further, these results may be reviewed 

comparatively across geographic lines, with this case including assessment from the United 

States, European Union, and Singapore.   

 
 

  Vocational Axis Locational Axis  

Interview 
Phase 

Academia Industry Government NGO Singapore USA Europe Total 

1 14 5 2 1 22 0 0 22 

2 10 3 3 2 0 13 5 18 

3 5 2 1 1 1 4 4 9 

Sloan 26 5 8 6 0 33 12 45 

Total 55 15 14 10 23 50 21 94 

 
Table 2. Breakdown of Completed Interviews by Location and Vocation 
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A limiting factor in the search for expert interviews included the fact that synthetic 

biology is a relatively new field, and does not have more than a few hundred subject experts 

that could be called upon to give their opinion. Given such limitations, case selection was 

determined via a stratified and purposeful sampling of synthetic biology experts and scholars 

(whose status was determined by their publication of synthetic biology research in a peer-

reviewed journal with an impact factor of at least 1, or published at least 3 papers in peer-

reviewed journals or conference proceedings). Such published research could include 

experiments or proposals for experiments related to synthetic biology research, as well as 

discussion of synthetic biology regulation and policymaking. The vocational axis included 

respondents from industry, academia, government, and other non-governmental organizations. 

The locational axis was assessed between the United States, Europe, and Singapore. These twin 

axes allow for a comparison of both disciplinary and political/cultural similarities and 

differences associated with synthetic biology risk perception and regulation. Due to the 

sensitive nature of the field, all responses are kept anonymous, where identifying information 

for any single respondent is removed for discussion.  

 For the vocational axis, interview subjects were selected due to their theoretically 

differing motivations related to the role of synthetic biology research and development 

alongside the need for regulation to both protect human health while promoting technological 

development for those products utilizing synthetic biology. Bates et al (2015) and Linkov et al 

(2012) took a similar strategy towards comparing semi-structured interview responses across 

vocational lines, with Bates (2015) particularly noting the need to balance potentially conflicting 

points of view from members of industry and members of government.  

All interviewees for research conducted within this dissertation alongside the interview 

transcripts donated by Dr. Jennifer Kuzma and Dr. Christopher Cummings fall into one of the 

four vocational subsections. Generally speaking, all interviewees have a PhD-level education in 

biology, chemistry, or similar field in science, or have a PhD in a social science background 

pertinent to the risk analysis and regulation of emerging technologies. Overall, academia is the 

most represented group (58.5% of total completed interviews) due to the emerging nature of 
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the field and the relatively preliminary nature of most commercial and industrial research. 

However, including early perspectives from other groups is important to elucidate the differing 

perspectives available to the field – particularly those that directly discuss risk acceptance or 

aversion based upon desires to protect public health or advance technological capacities.  

 On the other hand, the locational axis was used to identify different cases by which the 

qualitative approach described within this dissertation could be used to acquire and assess 

information related to synthetic biology’s potential health risks alongside the regulatory 

capabilities that may or may not be available within the given country to cover such risk. While 

Kuiken (2015) claims that accurately measuring the level of effort related to synthetic biology 

research and development is currently improbable, both Kelley et al (2014), and Check (2015) 

describe the United States and European Commission as being two of the primary funding 

bodies for synthetic biology research while also serving as the area of operations of dozens of 

research projects related to a variety of synthetic biology applications, pharmaceuticals 

included.  

For the case of Europe, Kuiken (2015) notes that various funding bodies within the 

European Union have grown their funding for synthetic biology research every year, and 

eclipsed $100 million in 2014. The European Union has also actively engaged with synthetic 

biology implications research such as with dual-use challenges related to biosecurity and 

biosafety, leaving organizations such as SYNBIOSAFE, COSY, and the International Associated 

Synthetic Biology to actively debate the role of regulation needed to cover synthetic biology’s 

novel risks within European borders.  

As with the United States, Oldham et al (2012) assert that Europe’s status as one of the 

two major financiers of synthetic biology research alongside a willingness to engage with 

implications-based research and discussions of regulation (something that Kuiken 2010 

described the United States as taking a limited approach towards) makes it one of the primary 

regions of focus for synthetic biology research moving forward. Collectively, the United States 

and Europe serve as two case studies that cover well financed and scientifically advanced 

regions with a growing appetite for synthetic biology innovation (Oldham et al 2012; Kuiken 

2015). 
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An important comment to note relative to case selection centers on the unconventional 

nature of the cases reviewed here. Specifically, the respondents regardless of vocation come 

from three very different environments, and do not reflect the classic cases in comparative 

research that seek to explain certain outcomes in the United States or European Union. 

Specifically, the inclusion of Singapore differs from traditional comparative research, where the 

smaller gross domestic product, geographic size, and population count of Singapore causes it to 

differ inherently from the larger and wealthier United States and European Union. However, 

the inclusion of Singapore as a case study brings unique benefits to this dissertation, which are 

described below. 

 Singapore was chosen as a third case for this dissertation for two reasons: (i) its growing 

interest in funding and conducting research of synthetic biology product development, and (ii) 

the need to promote generalizeability and external validity to this study by reviewing regulatory 

variations of synthetic biology for an Asian economy heavily invested in emerging technologies 

research (Olds 2012). For the former, Chapter 6 will discuss the growing level of funding and 

research capabilities within Singapore’s universities, although it is noting that Singapore’s 

Nanyang Technological University, the National University of Singapore, an A*Star all maintain 

research facilities with research directly related to synthetic biology and pharmaceutical 

research (Mitchell 2011; Oldham et al 2012; NUS 2015), with the Singaporean government 

investing $15 million in 2015 to advance such research at the National University of Singapore. 

For the latter, it is important to understand that Singapore’s research capacity for work 

pertaining to synthetic biology is growing within academia and industry, and reflects a 

developing interest and millions of dollars of investment in emerging technology and synthetic 

biology research in Asian countries like South Korea, China, Japan, and Singapore, among others 

(NUS 2015). Particularly for the case of China and Singapore, these countries possess differing 

governmental structures that may be equally influenced by legalism and risk culture with 

respect to their early stage decisions for synthetic biology regulation, and should be reviewed 

alongside their counterparts in the United States and Europe to strengthen the dissertation’s 

generalizeablility. As such, Singapore offers an opportunity for such generalizeability, and 
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serves as a vehicle to review potential synthetic biology research and development in China due 

to the strong research and development connections between the two countries.  

 A further justification of using qualitative methods across an international scale includes 

the notion that regulators and stakeholders within a given country will naturally be interested 

in understanding the perceptions of risk as well as the regulatory options used for synthetic 

biology. This is driven by the global supply chains and the potential exchange and trade of 

synthetic biology products from one country to another, where the risk culture of one country 

may drive it to regulate and govern new pharmaceutical products in a manner different from 

others (Jasanoff 1986; Jasanoff 1987).  

 

2.4.2 Interview Collection 

 Interview collection was carried out in three main phases based upon funding 

availability and stakeholder access.  Phase 1 was completed during May-September 2014, the 

entirety of which was spent within Singapore.  Stakeholders within industry, academia, and 

government were particularly targeted for interview, with on-site interviews successfully 

conducted at The Institute of Occupational Medicine in Raffles Place, Nanyang Technological 

University, the National University of Singapore, A*Star in Biopolis, and various contacts within 

Singapore’s City Hall. The purpose of these interviews was to both (i) begin to understand the 

novel versus conventional human health risks fostered by synthetic biology products, and (ii) 

gain insight into the perception of these risks by local Singaporean emerging technology 

scientists and synthetic biology researchers. In this stage, 22 formal interviews were completed, 

with approximately 20 unofficial discussions with experts that offered some insight into 

Singaporean technology development and regulation. Formal interviews were semi-structured 

and roughly one hour in length on average, with a range of 30 minutes to two hours based 

upon interviewee availability and expertise on the subject. The instrument (interview protocols) 

for this and the other two phases will be attached in the dissertation’s Appendix 3. Interview 

responses are kept anonymous within this dissertation. Percentages regarding interview 

completion are noted above in Table 2. 
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 Phase 2 interviews began on October 2014 and ran through March 2015. Interviews 

were typically conducted over telephone or video conference calls from Ann Arbor, Michigan. 

Similar to Phase 1, interviews conducted here were centered on i) the novel versus 

conventional human health risks fostered by synthetic biology products, and (ii) the ability of 

regulatory capabilities within the respondent’s national regulatory regime to adequately cover 

such novel risks should they arise. Interview questions included a mixture of those included in 

Phase 1 interviews alongside new points of inquiry raised from Phase 1 interview transcripts. 

Stakeholders specifically targeted here included American and European stakeholders across 

each element of the vocational axis. 

Phase 3 interviews began on July 2015 and concluded December 2015. Rather than a 

dedicated search for new interview contacts, this phase of inquiry instead focused upon 

tracking down leads suggested by previous interview contacts (consistent with Goodman 2011 

and Cohen and Arieli 2011). As such, these interviews were dedicated towards resolving any 

preliminary gaps in analysis, particularly on the subject of specific applications of synthetic 

biology pharmaceuticals and their subsequent options to manage risk. Interviews were carried 

out both in-person and over the phone, with locations including Singapore, Denver, Colorado, 

Washington DC, and Ann Arbor, Michigan. Supplementing discussion here includes interview 

transcripts and surveys from the external Sloan Foundation Grant Looking Forward to Synthetic 

Biology Governance:  Convergent Research Cases to Promote Policy-Making and Dialogue. 

 At the onset of all interviews, respondents are asked for their permission for their 

interview to be recorded using a Philips DVT5500/00 Digital Voice Tracer. Of the 49 interviews 

conducted, 29 (59%) agreed to be recorded provided their identifying information was kept off 

of the record and transcription information was coded exclusively by me. If permission was not 

granted, respondents were asked for their permission for the interviewer to take notes 

throughout discussion. Of the remaining 20 respondents, 19 gave their permission for such 

note taking (95%), with one preferring that no written notes be taken during the interview. For 

that single case, important quotes related to the interview questions were written down shortly 

after the interview concluded, and were placed alongside the pool of other interview 

responses. 
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2.4.3 Interview Protocols & Instrument 

 Structurally, interview protocols were formed with five general sections. Section 1 of 

each interview included statements where each respondent was asked to state their general 

familiarity with synthetic biology, the type of research and scholarship they perform, and their 

level of exposure with discussion and research of synthetic biology pharmaceutical products. 

Sections 2 and 3 included specific questions which ask the respondent to articulate their 

perceptions of synthetic biology risks in general and for pharmaceutical cases in particular, with 

the specific aim of fostering conversation related to conventional versus novel risks alongside 

the potential mechanisms by which novel risks may be exposed to humans and the 

environment. Questions here sought to focus discussion related to placing perceptions of risk 

along the product’s life cycle, where respondents were asked to articulate where they believe 

novel health risk may occur throughout a product’s lifespan along with the relative likelihood 

and severity of such risk (if that level of detail was available). Section 4 included interview 

questions related specifically to the regulation of synthetic biology in general and 

pharmaceutical products in particular, where respondents where explicitly asked about their 

familiarity with relevant regulations within their country geared to cover synthetic biology risks, 

the effectiveness of such hard and soft law regulation to actually do this, and where (if at all) 

new regulation is needed to strengthen state capabilities to monitor, manage, and mitigate 

such risk. Lastly, Section 5 gave respondents the opportunity to indicate where they believe 

synthetic biology research may develop and evolve into, and offer general insight into how 

state regulation should move to ‘keep up’ with the shifting technological landscape relative to 

health risk. 

 Accounting for bias across interview subject responses, the three-tiered structure where 

interviews were conducted in a variety for phases is consistent with Chenail (2011), who argued 

that ‘pilot studies’ serve as an avenue to test instrument rigor as well as control for any biases 

that may have appeared within early interview protocols. The first round of interviews served 

as a check on the rigor of the interview instrument, where questions that generated initial 
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respondent confusion or lack of response were removed, and other questions were added 

based upon the common streams of discussion raised by groups of interviewees.  

 To account for bias within individual interviews, subjects were given definitions of key 

terms such as with synthetic biology (discussed in Chapter 3, and included in the dissertation 

Appendix 3). Such material was provided in the initial email contact with each interviewee, as 

well as within the initial in-person discussion but prior to any interview questions being asked. 

Respondents were asked to provide their insight into discussion of synthetic biology risk and 

regulation based upon such guidance, and were asked to state their exposure to and expertise 

on the subject at the beginning of each interview. Such an approach allows for increased 

standardization and reduced bias within individual interviews as noted by Boyce and Neal 

(2006) and Turner (2010). 

 

2.4.4 Interview Discourse Analysis 

 As with many interview projects, the assessment of qualitative interview material 

requires a robust discourse analysis to make sense of the various streams of logic described by 

interviewees (Wetherell et al 2001; Phillips and Hardy 2002; Starks and Trinidad 2007). Often, 

such discourse analysis is driven by the quantification of key terms and phrases, where the 

frequency of occurrence of such phrases denotes a relative strength of agreement or 

disagreement on a subject alongside a general understanding of its magnitude within a given 

subject (Wetherell et al 2001; Phillips and Hardy 2002). However, due to the lack of 

standardization within emerging technology and synthetic biology research (including a 

common list of definitions), traditional keyword or phrase searches are ineffective to assess 

information from transcribed interviews (Bates et al 2015). Such complications are only 

furthered by the international scope of this project, where the description and understanding 

of regulatory tools for high-risk, high-uncertainty projects and products may differ strongly 

within separate cultural or political contexts (Bates et al 2015; Silverman 2010; Gee 2014).  

 Given this, a more generalist approach towards discourse analysis was utilized to make 

sense of interview data from the United States, Europe, and Singapore. Discourse analysis is a 

technique within the narrative analysis family of qualitative approaches that includes the 
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analysis of language in order to “shed light on the creation and maintenance of social norms, 

the construction of personal and group identities, and the negotiation of social and political 

interaction” (Starks and Trinidad 2007). Potter and Wetherell (2002) argue that one vein of 

discourse analysis is centered on understanding how scientists construct their talk and text to 

formalize knowledge and express meaning within their research (Mulkay et al 1983). Related to 

yet unique from content analysis, discourse analysis seeks to gain greater meaning into the 

context of what is being said, with emphasis placed upon how discussants frame their thoughts 

and opinions in differing manners (Thorne 2000; Burck 2005). In this way, discourse analysis 

differs from content analysis by focusing on the social, historical, and knowledge-driven 

differences in projecting opinions and ideas for a given topic, which is particularly beneficial 

where specific linguistic framing and conventions for discussion are still emerging as with the 

case of synthetic biology (Potter and Wetherell 2002). Similarly, Charmaz and McMullen (2011) 

state that one of the functions of discourse analysis is to review how knowledge is constructed 

within specific groups or organizations given the experiences, knowledge, and beliefs of those 

groups.  

 Discourse analysis begins with the analyst turning to readings related to their topic at 

hand and gaining perspective related to the important research questions specific to a given 

topic alongside various strains of discussion related to it (Potter and Wetherell 2002). After 

reviewing written literature, Potter and Wetherell (2002) and Charmaz and McMullen (2011) 

state that the next task for a discourse analyst is to obtain verbal feedback in the form of 

interviews, where Wengraf (2001) notes semi-structured interviews as being sufficiently 

organized and focused to keep discussion rooted on a particular subject while also affording 

interview respondents the capability of framing discussion on their own terms and based upon 

their existing knowledge and beliefs. Later, the analyst uses responses from such interviews 

(and, if possible, transcripts of interview discussion) to assess the meaning behind interviewee 

responses to particular questions (Wood and Kroger 2000; Potter and Wetherell 2002). Within 

this exercise, Wetherell (1998) contends that it is the job of the discourse analyst to acquire 

certain shared claims and beliefs relative to a specific topic, where the quotes and information 

used within interview discussion is chosen by the analyst to describe knowledge constructions 
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for a given area. As such, Wetherell (1998), Wood and Kroger (2000), and Potter and Wetherell 

(2002) state that it is impossible to divorce analyst views and perceptions from the analytical 

process, where the analyst is inherently required to review a large body of interview responses 

and text to determine which statements are relevant and interesting for a given topic.  

 Given such concerns, strategies to reduce bias by the interpreter are centered around 

proving that the researcher offered a realistic assessment of qualitative information that limits 

the potential for personal bias or error (Shenton 2004). Three strategies particularly noted by 

Shenton (2004) include (i) triangulation, (ii) iterative questioning, and (iii) building towards a 

larger sample size. For this study, research was triangulated via a comparison of interview 

information between interviews conducted in Rounds 1-3. Second, this study engaged within 

iterative questioning, where questions related to the various topics discussed within the 

interview instrument were asked in various manners to view if interview responses changed or 

wavered. Lastly, this project sought to acquire as many interviews as feasible within the given 

timeframe and budget available, and when combined with information loaned by Kuzma et al, 

offers a rich sample size as defined by Guest et al (2006) (n≥60) by which qualitative 

information may be drawn relative to synthetic biology regulation (see also Johanson and 

Brooks 2009). 

Using guidance from Potter and Wetherell (2002), Wood and Kroger (2000), and 

Charmaz and McMullen (2011), this project’s discourse analysis involved the perusal of each 

interview for certain elements of discourse that illuminated beliefs behind emerging technology 

and synthetic biology risk. Where interview protocols were divided into sections geared 

specifically on interview responses towards potential synthetic biology risk, the mechanisms 

driving such risk, and the regulatory options to cover such risk, this discourse analysis was 

facilitated by reviewing these targeted responses relative to expert perception of these issues.  

Lastly, analysis of expert feedback included a review of whether novel extensions and 

improvements of such regulation was necessary to (i) better regulate against risk, (ii) better 

enable the efficient research and development of synthetic biology products, or (iii) a mixture 

of both. These efforts fostered the creation of a transcript index, or a collection of general 

terms and phrases that serve as placeholders for identified quotes from various interviews on a 
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given subject. This is consistent with Potter and Wetherell (2002), Wetherell (1998), and Wood 

and Kroger (2000), which collectively contend that discourse analysts must review and organize 

response information in a manner that describes beliefs and behaviors in various observed 

subjects, with this case serving as synthetic biology regulation.  Overall, the index included 26 

unique entries, with relevant quotations aggregated for each entry.  

 Creation of index terms was facilitated by the semi-structured nature of each interview. 

Typically, interviews were framed in a small number of self-contained subsections, including (i) 

potential synthetic biology novel health risk (generally speaking), (ii) potential synthetic biology 

novel health risk (pharmaceuticals), (iii) synthetic biology regulation within the process of the 

technology’s development, and (iv) differences in cultural risk perception. Given this 

framework, the interview index was sub-divided into these four subsections. Individual 

quotations within a given index line item retained interview codes assigned to each individual 

interviewee, allowing for a vocational and locational analysis of each index item.  

 Additional qualitative discourse analysis was used to generate simple metrics related to 

expert perceptions of where novel synthetic biology risk may occur across the life cycle of a 

typical pharmaceutical product (Wetherell 1998; Wood and Kroger 2000). Specifically, interview 

discussion included considerations of where within a product’s life cycle, if at all, novel health 

risk and the mechanisms to generate such hazards may arise within the process of 

pharmaceutical product development.  

Further, Kelle (2009)’s use of qualitative subject expert interviews to test the general 

level of familiarity of various respondents of the hard and soft law regulatory tools was used to 

acquire a general understanding of how interview respondents perceived existing regulation of 

synthetic biology within their country. Kelle (2009) expressed familiarity with synthetic biology 

regulatory authority on a binary metric, where respondents were either aware of the authority 

and its ability to govern synthetic biology health risk or not. This dissertation took Kelle’s (2009) 

approach further by breaking down respondent familiarity with such regulation and authorities 

by reviewing responses based upon the respondent’s general line of work (the vocational axis).  

Further, this dissertation expanded Kelle (2009)’s coding approach, where respondents were 

able to indicate differing levels of familiarity with synthetic biology regulation, including (i) no 
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knowledge or awareness of regulation and relevant policymakers and regulators, (ii) awareness 

of a particular regulatory authority but not specific regulation or vice versa, and (iii) intimate 

awareness of both the regulatory body and regulatory codes dedicated to synthetic biology 

regulation within their given country.  

 Aside from the general review of respondent opinions of synthetic biology life cycle risks 

and regulatory capabilities, the ultimate output of this discourse analytic approach is to foster 

an index of quotations on various subjects related to synthetic biology regulation. The specific 

index terms will be included in the dissertation Appendix 2. 

 

2.4.5 Supplemental Interviews: Sloan Foundation Project “Looking Forward to Synthetic 

Biology Governance:  Convergent Research Cases to Promote Policy-Making and 

Dialogue” 

Further bolstering this interview framework includes the use of qualitative expert 

interviews and ordinal surveys conducted within a project funded by an Alfred P. Sloan 

Foundation grant (#G-2013-3-02) entitled “Looking Forward to Synthetic Biology Governance:  

Convergent Research Cases to Promote Policy-Making and Dialogue.” The project’s researchers 

conducted a 4 round expert elicitation for several different applications of synthetic biology, 

with the similar goal of identifying areas of potential health risk alongside technological 

economic benefits and the corresponding regulatory options to promote such benefit. 

Researchers for this project (led by Dr. Jennifer Kuzma and Dr. Christopher Cummings) made 

use of semi-structured interviews for Rounds 1 and 4, with more structured survey questions 

for Rounds Two and Three (see Table 3 below). For purposes of this dissertation, information 

generated from Rounds 1 and 4 are used in tandem with subject expert interview information 

acquired within the scope of this project, although specific takeaways or indicators of risk and 

regulation from Rounds Two and Three were utilized on an as-needed and as-applicable basis.  

Round 1 interview transcripts were parsed using the same analytical approach described 

below, where these transcripts were reviewed for particular discussion on synthetic biology 

health risk, the mechanisms that may drive this risk, and the regulatory options available and 

necessary to cover those novel risks discussed by stakeholders. All interviews here were 
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transcribed and coded to retain respondent anonymity, where only information related to their 

geographic region and general vocation was utilized for coding purposes specific to this 

dissertation’s methodological approach. Information responses within Phase 1 as well as survey 

responses in Rounds 2-4 were used to triangulate interview findings discussed within interviews 

from Rounds 1-3, and allowed for the expansion of subject expert perceptions of synthetic 

biology health risks and the appropriate level of regulation to cover the novel risks that may or 

may not arise from the technology’s use. While also adding to various quotes to this 

dissertation’s discourse analysis, the use of these interviews served also as a method to review 

potential bias or interpretation errors from the resultant transcripts. 

 
 

Round Method Description 

One Standardized open-
ended interview 

protocol; 
n=45 

Participants responded to a variety of questions about risk 
analysis, regulation, and societal issues for different cases of 
synthetic biology product development.  Interviews were 
approximately 75 minutes in length. 

Two Online quantitative 
survey; 
n=34 

Designed from preliminary round one findings. Included various 
scaled items regarding regulatory issues associated with the case 
studies.  

Three Face-to-face workshop 
and ordinal ranking 

exercise; 
n=35 

Focused on concept-mapping and mind-mapping exercises to 
generate lists of challenges and opportunities for SB regulation. 
Also included an ordinal ranking exercise of ideal regulatory 
characteristics.  

Four Online qualitative and 
quantitative survey; 

n= 35 

Open- and closed-ended items and scales assessing factors that 
may influence future policy and regulatory options concerning the 
case studies.  

Table 3. Breakdown of 4 phase research designed from Alfred Sloan project (#G-2013-3-02) 
 

2.5 Limitations to This Approach 

Such an approach has natural limitations. Firstly, discourse analysis contains elements of 

subjectivity that are essentially impossible to remove. This is exacerbated by the differing 

terms, phrases, definitions, and mindsets deployed by each interview contact to describe their 

understanding and familiarity of emerging technologies like synthetic biology, requiring any 

transcript analysis to ‘read between the lines’ to understand exactly what is being discussed for 

individual interview questions (Wetherell 1998; Potter and Wetherell 2002). Second, discourse 

analysis within this application is generally descriptive rather than causal or quantitatively 
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driven, where this research is better able to describe the existing state of the emerging 

technology regulatory universe rather than draw strict causal conclusions regarding how risk 

and uncertainty may be measured and understood. Further, the primary motivation of such a 

discourse analytic approach is to take into account the conditions and contexts which interview 

statements are made and account for the methods and measures used by interview 

respondents to make sense of synthetic biology regulation (Potter and Wetherell 2002). These 

limitations are frequently noted in emerging technology and synthetic biology literature, 

particularly due to the lack of quantitative risk, hazard, and exposure data by which to make 

traditional risk-based decisions on the technology’s health risk (Bates et al 2015; Kuzma and 

Tanji 2010).  

 Other limitations important to note here include the instrument design used within 

each interview phase. Specifically, interview questions were scoped around explicit 

considerations of synthetic biology potential risk and benefit such as with biosafety and 

biosecurity considerations. While this does allow for more targeted discussion around notable 

issues raised within scholarly literature about synthetic biology risk, this level of scoping may 

prime interview responses in a manner that would potentially influence respondent answers to 

discuss only the prompted risk categories instead of raising other issues that may not be as well 

understood or known to arise (Wheeldon and Faubert 2009). Such targeted responses allow for 

greater comparability between interview answers along the lines of specific risk issues, yet also 

potentially reduces the richness of interview responses that may allow for greater discussion of 

implications concerns and less discussed risks pertinent to synthetic biology research (Hollway 

and Jefferson 2000). 

 

2.6 Discussion 

Overall, the maturation of synthetic biology may produce dramatic improvements to 

medicine and public health in a rapid and systems-wide fashion. Similar to other emerging 

technologies like nanotechnology, however, synthetic biology may also pose environmental and 

human health risks if not developed and implemented responsibly. Further, the uncertainty 

behind such risks may cause regulators within different governments to govern the process of 
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synthetic biology development in differing manners (Kelemen 2011; Jasanoff 1986). Qualitative 

approaches such as with narrative discourse analysis may enable researchers to acquire insight 

into how such variation occurs, where this dissertation explicitly sought to review whether and 

to what extent specific elements of risk culture drove such variation within the United States, 

the European Union, and Singapore. 

Even in the absence of robust guidance regarding hazard and exposure data for such 

emerging materials, subject experts can offer preliminary thoughts and opinions that effectively 

bound the field’s uncertainty, and offer a general framework with how to proceed forward with 

effective yet responsible innovation for fields ranging from systems engineering and synthetic 

biology to nanotechnology to nanorobotics. Such insight is helpful to gauge both local 

perceptions of risk as well as beliefs by interviewed experts regarding the regulatory 

mechanisms need to cover such risks – information that is essential to study variations in 

synthetic biology regulation across different governments. 

 This dissertation does not seek to completely rewrite our existing understanding of how 

emerging technologies are used within society and produce risks to individual health. Instead, it 

leverages available information from an international body of subject experts, and use such 

information to explore a) whether variation in synthetic biology regulation exists within the 

United States, European Union, and Singapore, and b) if so, whether elements of risk culture 

may be the cause of this.  
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Chapter 3: 

Synthetic Biology – Background, Applications, and Risks 

 

3.1 Introduction 

 Synthetic Biology has the potential to revolutionize the development and production of 

pharmaceutical products (Barocchi and Rappuoli 2015; Ando et al 2014; Bugaj and Schaffer 

2012). However, there is uncertainty over the potential novel health risks it may present to 

humans and the environment (Marris 2015; Kelle 2009; Carter et al 2914). This dissertation 

does not seek to resolve the various worries and problems that drive uncertainty of synthetic 

biology’s regulation, where it would be impossible to do so given the current state of the field 

in its earliest stages of development. Instead, it seeks to understand whether variations in 

synthetic biology regulation exist within three noted case studies, and review whether 

elements of risk culture are the cause of such variation. In this vein, this chapter lays the 

groundwork for how synthetic biology is framed based upon an exhaustive literature review of 

the technology’s scientific underpinnings, potential risks, potential benefits, and perceived 

regulatory needs within the three cases included for study. 

 To accomplish this aim, Section 3.2 lays out the history of synthetic biology – both from 

its early roots in late 19th through mid-20th Century work on biological and genetics research. 

This is coupled with discussion of modern synthetic biology research (2000-2016), where 

cellular modification evolved to incorporate more complex engineering concepts. Next, Section 

3.3 will include a general discussion of potential synthetic biology health risks given the 

technology’s various potential products and applications. Section 3.4 builds off of this by 

offering differing perspectives on efforts within scholarly literature to define synthetic biology. 

Lastly, Section 3.5 will focus upon a more substantial discussion regarding the potential 

pharmaceutical risks and benefits yielded by early developments in the field.  
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3.2 History of Synthetic Biology 

3.2.1 Redesigning Living Systems in a Lab: Early Aspirational Ideas from 1900-1940 

 Despite its relatively recent development as scientific practice, principles of ‘synthetic 

biology’ have discussed in English language literature at least since the early 20th Century. One 

of the earliest known of the term comes from French biologist Stéphane Leduc in 1912, who 

spent his career exploring the mechanical and chemical foundations and operations that make 

up living organisms (Leduc 1912; Keller 2003). While several eminent scientists in the late 19th 

Century did seek to explain some of the core principles and functionalities of cells and 

molecules, Leduc differed in his focus on identifying certain mechanistic conditions by which 

cells could be manipulated or created through the use of osmotic pressure (Leduc 1910). 

Specifically, Leduc argued that such mechanistic manipulation through the use of various 

chemical substances could contribute to a manipulation of individual cells for differing purposes 

than they were organically produced to achieve (Pereto and Catala 2007).  

For Leduc, the fledgling focus of early synthetic biology included both the synthesis of 

organic molecules and cells to even more complex biological tissues and structures – a notion 

that carries over to the modern synthetic biology community today even in spite of its various 

scholarly and intellectual differences. Between 1910 and 1922, Leduc published three 

manuscripts on his general philosophies regarding this early manipulation and reorganization of 

cells for certain purposes, and made use of several experiments using various chemicals to 

produce his intended outcomes. One of these publications in particular (La Biologie Synthétique 

- 1912) served as the first manifestation of ‘synthetic biology’ as an academic term (Leduc 

1912). Discussion within Leduc’s work serves as an early precursor to more modern synthetic 

biology, specifically relative to the notion of manipulating biological organisms on a systemic 

level to produce cellular change (where more modern synthetic biology takes this beyond a 

theoretical concept and applies concepts of modern engineering for synthetic biology research 

experiments) (Leduc 2012; Pereto and Catala 2007). However, the failure of many of Leduc’s 

experiments alongside extensive criticism from the Roman Catholic Church (often derived from 

perceptions that Leduc sought to find evidence of spontaneous generation of cells) and 
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academic peers such as Jacques Loeb prevented the early scientific notions of synthetic biology 

from taking root (Pereto and Catala 2006; Pereto and Catala 2007). 

 Even with Leduc’s theories and assertions being largely resisted by various academics of 

his time, certain ideas of cell and molecule manipulation individually and in larger biological 

systems took root for some who criticized Leduc’s failed experiments but considered the 

potential of artificial organic life (Pauly 1996; Loeb 1912). One particular case included 

biochemist Jacques Loeb, who, despite criticizing Leduc for attempting to engage in research 

that was beyond the scope and capability of contemporary science, did acknowledge that 

“nothing indicates […] at present that the artificial production of living matter is beyond the 

possibility of science” (Loeb 1912). Loeb eventually argued that it was imperative for biologists 

to produce living organisms artificially and in a directed manner, or at the very least identify 

those conditions that make such research impossible (Pereto & Catala 2007). 

 For Leduc and Loeb’s time in the early to mid-20th Century, practical applications of 

engaging with work on the artificial production of life and its cellular functions was quite 

elementary by modern standards, with only a small number of research facilities and 

laboratories available in the world to conduct such research (Pereto and Catala 2007). Even 

within these contexts, such early attempts at synthesizing biotechnology research did not differ 

too strongly from the experiments towards selective breeding and basic exposure to emerging 

chemical solutions of the time (Pauly 1996; Pereto and Catala 2007). Beyond a small number of 

intrepid universities and research facilities, scholarly opinion was largely set against the pursuit 

of fostering artificial life. This was driven particularly with those scientists with funding from 

religious institutions decrying such work on the possibility of spontaneous generation (or the 

creation of a novel cell from scratch rather than the asexual production of the given cell from a 

previous parent cell) as being against the religious ideas of a divine Creator as being the 

progenitor of all life from a single starting point (Pereto and Catala 2006).  

Russian biologist and chemist Aleksandr Oparin sought to navigate this hostile 

environment by concluding that while spontaneous generation was an improbable 

phenomenon, biochemistry should seek as a long term goal the ability to synthetize the various 

compounds of living cells (Pereto and Catala 2007). In his 1924 treatise and later 1936 work, 
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Oparin argued that “life originated as a result of a process of chemical evolution on a primitive 

Earth, where the right components, ingredients and physical conditions coincided, giving rise to 

the first elementary cells” (Procar and Pereto 2014). Oparin’s widely publicized and discussed 

works allowed for a maligned yet mildly optimistic collection of early synthetic biology scientists 

to continue their work under the guise of not clashing too seriously with the prevailing 

biological opinions of the time (Pereto and Catala 2007). However, all were cautious to 

acknowledge the technological limitations of the day, with a general understanding that many 

of life’s basic principles were largely unknown beyond larger-scale molecular and systemic 

activity (indeed, the structure of a deoxyribonucleic acid, or DNA, was not fully described until 

1953 by James Watson and Francis Crick).  

 

3.2.2 Advances in Biology and Genetic Engineering:  1953 - 1990 

 Biological research advanced during the mid- to late-20th Century via the development 

of genetic engineering due to breakthroughs in understanding of DNA and its synthesis. One of 

the early advancements here includes the discovery of DNA as having a double-helix structure 

(Watson and Crick 1953). Similar developments included the reconstruction of viruses and 

bacteria in a laboratory setting. One example includes the 1955 artificial reconstruction of the 

tobacco mosaic virus, where researchers Heinz Fraenkel-Conrat and Roblay Williams at the 

University of California at Berkeley engaged in the elementary composition of macromolecular 

components of the virus (Fraenkel-Conrat and Williams 1955).  

Driven by Watson and Crick’s description and growing technological capabilities to study 

DNA and cellular structures, a later substantial development in early biotechnology and genetic 

engineering included the ability to sequence DNA genomes (Sanger et al 1977).  Specifically, a 

Stanford University team led by Dr. Fred Sanger conducted a genomic synthesis of the PhiX174 

virus, which was the first synthesis of a virus’ genome that remained biologically vigorous 

(Sanger et al 1977). This breakthrough even got the attention of President Lyndon Johnson, 

who exclaimed that “[this] is going to be one of the most important stories you ever read, […] 

some geniuses at Stanford University have created life in the test tube!” (Porcar and Pereto 

2014).  
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Improvements in understanding of genetics facilitated the development of the first 

organism to be artificially engineered in a laboratory setting. In 1983, researchers engineered 

tobacco cells to contain resistance to an antibiotic – the results of which were successfully 

developed into full plants (Lemaux 2008). Further advancements included the creation of the 

first transgenic animal in 1985 (pigs), as well as transgenic corn in 1988 (Klein et al 1988). These 

advancements eventually contributed to the rise of genetically modified organisms being sold 

in markets, such as with the engineered tomato in 1994 (Uzogara 2000). Generally speaking, 

the development and maturation of genetic engineering during this period focused on addition, 

deletion, or substitution of specific DNA base pairs, where more substantial genetic 

modification of cellular systems was limited by technological constraints of the day (Cameron et 

al 2014). However, the computational and engineering advancements from 2000 – onward 

would enable more complicated research to take place. 

 

3.2.3 Modern Synthetic Biology: 2000 - Present 

 After decades of similar and incremental improvements in biochemical and genomic 

science from the 1950s-1990s, modern synthetic biology began to take root in the 1990s and 

early 2000s as an attempt to engage in more complex systems engineering of viruses and 

bacteria. During the 1990s, Cameron et al (2014) note that “automated DNA sequencing and 

improved computational tools enabled complete microbial genomes to be sequenced, and 

high-throughput techniques for measuring RNA, protein, lipids and metabolites enabled 

scientists to generate a vast catalogue of cellular components and their interactions” (Cameron 

et al 2014). This, coupled with a systems engineering approach to biology, served as the core 

principles that made modern synthetic biology possible (Porcar and Pereto 2014; Cameron et al 

2014). In other words, genetic engineering around this time began to ponder questions of 

whether complex cellular networks could be viewed as an engineered system, where deliberate 

biological engineering of a cell’s DNA could yield complex changes to how those systems 

operate.  

 In 2000, the journal Nature published two articles that discussed the deliberate creation 

of biological circuit devices (where biological parts inside a cell are designed to perform logical 
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functions mimicking those observed in electronic circuits) by combining genes within E. coli 

cells (Elowitz and Leibler 2000; Collins et al 2000). One of these papers discussed how the 

authors (Alon 2006; Collins et al 2000) were able to construct a genetic toggle switch which 

influenced “the expression of mutually inhibitory transcriptional repressors” (Cameron et al 

2014). For the other paper, Elowitz and Leibler (2000) engineered an oscillatory circuit that, 

when activated, “resulted in the ordered, periodic oscillation of repressor protein expression” 

(Cameron et al 2014). It has been suggested that these publications spurred the further 

development of research centered on circuit engineering and synthetic circuit construction to 

influence a cell’s network design, including the ability to influence cell to cell communication 

and interactions (Weiss and Knight 2001). Further, the early 2000s included early attempts to 

“rewire post-translational regulation using protein–protein interaction domains and scaffold 

proteins”, which was accomplished through the manipulation of S. cerevisiae (Park et al 2003; 

Cameron et al 2014). 

 It was during this time that the field of systems biology emerged as a mature and 

independent field of inquiry pertaining to the computational and mathematical modeling of 

complex biological systems (Kitano 2002; Ideker et al 2001). Among the central aims of the field 

is to better understand the various properties of cells, tissues, and the systemic infrastructure 

that comprises living organisms (Hucka et al 2004; Hood et al 2004). This is generally 

undertaken by researching cell signaling networks, or the signals and stimuli that govern and 

control cellular actions (Ingber 2003; Kitano 2002). Coupled with earlier principles of genetic 

engineering, the technological and scientific advancements derived within systems biology 

serve as some of the driving forces behind the development of synthetic biology research 

(Andrianantoandro et al 2006; Khalil and Collins 2010). 

 By 2003, nascent synthetic biology research grew both from an academic and 

professional standpoint. Professionally, the conference “Synthetic Biology 1.0” in June 2004 at 

the Massachusetts Institute of Technology served as the first international conference explicitly 

dedicated to synthetic biology research (Ball 2004). At this meeting, an interdisciplinary 

collection of professionals ranging from biology and chemistry to computer science, and 

centered on the desire to design, build, and characterize biological systems and interactions 
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(Ferber 2004). This conference series spurred further international meetings known colloquially 

as the SBx.0, with the latest iteration as of this writing held in Imperial College, London in 2013 

(SB 6.0). Cameron et al (2014) note that this conference series furthered discussion around 

blending elements of engineering with molecular biology, with a general goal of describing 

whether or not synthetic biology could become as developed an engineering field as electrical 

engineering or materials science. Specifically, Endy (2005) and Cameron et al (2014) described 

these early efforts as an attempt to produce a collection of modular parts and improve design 

pathways for engineered cells – with the idea that modifying specific cell circuit designs could 

deliberately change the behavior or interactions of that cell with its local environment. 

 Within the period from 2004 and 2010, various elements of synthetic biology research 

began to materialize in the form of circuit design and metabolic engineering, which became 

collectively known by Purnick and Weiss (2010) as “the second wave of synthetic biology” 

(Purnick and Weiss 2009; Isaacs 2004).  For the former, this includes attempts to expand RNA-

derived cellular systems to broaden biological circuit engineering from “transcriptional control” 

into post-transcriptional control vehicles and capabilities (Bayer and Smolke 2005). Generally 

accomplished using E. coli, various scientists sought to expand circuit and part designs, with one 

such circuit dedicated to the conversion of light into gene expression for a collection of E. coli 

cells (Levskaya et al 2005). For the latter, a group of scientists at the University of California, 

Berkeley engaged in research on isoprenoid biosynthesis, which enabled the production of 

artemisinic acid, or the component precursor to the wormwood Artemisia annua (Ro et al 

2006). Using a collection of organisms including S. cerevisiae and E. coli, this group under the 

leadership of Dr. Jay Keasling was able to produce antimalarial components of the artemisinin 

plant in a faster timeline and more efficient use of resources than occurs naturally with plant 

growth.  

Artemisinin combination therapies have been utilized by the World Health Organization 

as the primary initial treatment for P. falciparum malaria, which destroys the majority of 

parasites in a patient’s blood immediately upon the drug’s consumption (Nosten and White 

2007; Van Agtmael et al 1999). However, where the plant maintains erratic price points 

(ranging from $120 to $1200 USD per kilogram between 2005 and 2008), the natural 
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production of artemisinin for antimalarial drug use is often too expensive for distribution in 

Africa and Southeast Asia (Mutabingwa 2005; White 2008; Kindermans et al 2007). 

Furthermore, the lack of production remained a concern for much of the 2000s, where 

artemisinin farmers in China, Vietnam, and East Africa did not maintain steady levels of plant 

production in the midst of large-scale market swings (Kindermans et al 2007; Mutabingwa 

2005). One approach to resolve such concerns includes the subsidy and controlled development 

of artemisinin crops to prevent substantial price swings, ensure steady and predictable 

production, and help make artemisinin-based treatments more accessible and affordable to 

populations in Africa and Southeast Asia (Mutabingwa 2005; White 2008). 

However, another potential approach includes the synthetic production of artemisinic 

components to remove the reliance upon natural crop cycles and growth of artemisinin plants. 

This included the research accomplished by Keasling’s team, where Keasling’s semi-synthetic 

artemisinin precursor is seen as an improvement over traditional production measures of 

artemisinin due to its capability to produce the medicinal properties of the plant using 

fermented yeast cells, and in controlled and pre-planned settings (Ro et al 2006; Hale et al 

2007). By 2013, the World Health Organization prequalified the use of semi-synthetic 

artemisinin, allowing Sanofi (the pharmaceutical producer who commercialized Keasling’s 

product) to begin distributing such products, with an initial shipment of 1.7 million artemisinin 

treatments sent largely to Africa in August 2014 (Singh and Vaidya 2015). Among other things, 

this advancement in synthetic biology research demonstrated the ability of the technology to 

yield therapeutic benefits for human health while also yielding commercial products for various 

industries such as with pharmaceuticals (Hale et al 2007; Westfall et al 2012; Kong and Tan 

2015). 

 Outside of academia and industry, another development within synthetic biology 

discussion and work by 2003 included the International Genetically Engineered Machine (iGEM) 

competition, which is an annual event where high school students, undergraduate students, 

graduate students, and entrepreneurs compete to build synthetic biological systems using pre-

defined parts as a team (Kelwick et al 2015). Normally, groups register and are given a kit of 

biological components by which they are asked to build biological systems and operate them in 
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living cells (Kelwick et al 2015; Mercer 2015; Stemerding 2015). The competition’s membership 

grew to 130 teams worldwide by 2010 and 280 teams by 2015, with at least one team from 

every habitable continent on Earth (iGEM 2016). Within such competitions, however, Tocchetti 

and Aguiton (2015) and Kwik (2015) note that there exist concerns about the potential for 

biosafety and biosecurity risk when enabling ‘do-it-yourself’ research. Responding to such 

concerns, Tocchetti and Aguiton (2015) and Evans and Frow (2015) state that iGEM participants 

are screened and reviewed by multiple judges for safety concerns. Nevertheless, Guan et al 

(2013) states that some stakeholders in government and the lay public remain concerned about 

the potential for such risks. 

 

3.3 Synthetic Biology’s Recent Development: 2008-Present 

 Where the period between 2003 and 2007 saw a rise in circuit design and eventual 

characterization alongside the growth and development of the synthetic biology research 

community, Cameron et al (2014) notes that by 2008 the technology’s development had 

accelerated to include the creation of more complex biological circuits and greater control of 

systemic biological behavior within cells. In this timeframe, circuit engineering was advanced by 

a decline in the cost of gene synthesis alongside the development of high-throughput DNA 

assembly approaches (Engler et al 2008; Gibson et al 2009; Cameron et al 2014). This enabled 

greater control genetic systems and enabled novel gene expression such as with light sensing 

circuits within bacteria (Tabor et al 2009) along with faster and more complex pattern 

formation in E. coli swarms (Liu et al 2011). Overall, this period drove greater connections 

between synthetic biologists with network engineers in order to engage with greater attempts 

to control and alter the form and function of cellular networks on a systems level (Cameron et 

al 2014). 

Perhaps one of the more widely publicized developments within this timeframe includes 

the advancements made by the James Craig Venter Institute (Gibson et al 2010; Ellis et al 2011; 

Elowitz and Lim 2010). In 2010, the James Craig Venter Institute announced the creation of the 

first synthetic cell (Gibson et al 2010). Using a modified Mycoplasma mycoides genome, 

Venter’s team fostered a proof of principle regarding the notion that genome design may be 
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“constructed on a computer, chemically made in the laboratory and transplanted into a 

recipient cell to produce a new self-replicating cell controlled only by the synthetic genome 

(JCVI 2010). In their experiment, Venter’s team synthesized a version of the M. mycoides 

genome, which was subsequently transferred and transplanted into a Mycoplasma capricolum 

bacterial shell that had its DNA previously removed (JCVI 2010; Cameron et al 2014; Gibson et 

al 2010; Ellis et al 2011). The ultimate result of this process was to foster a self-replicating 

bacteria cell that only contained Venter et al’s synthesized genome – with proof that digital 

synthesis of genetic base pairs on a computer for assembly and transplantation of an entirely 

artificial genome within biological material was a viable process for synthetic biology research 

(Gibson et al 2010). Less than a year later, a research team led by Jef Boeke at Johns Hopkins 

University was able to utilize a similar synthesis of S. cerevisiae in yeast (Dymond et al 2011).  

The technological breakthrough by Venter’s team was a turning point for synthetic 

biology research, which now had proof that the process of computerized genome construction 

and editing for physical transplantation of a fully synthetic genome in a bacterial cell was viable 

in controlled settings (JCVI 2010; Gibson et al 2010). One such development includes the 

multiplex automated genome engineering platform (MAGE), where a team led by George 

Church developed a platform to rapidly alter multiple loci in the E. coli genome (Wang et al 

2009; Cameron et al 2014). This platform enabled the “proof-of-principle replacement of all 

TAG stop codons with the synonymous TAA codon” (Isaacs et al 2011; Cameron et al 2014; 

Wang et al 2009). Another prominent technological development includes the clustered 

regularly-interspaced short palindromic repeats system (or CRISPR-Cas, for short), which was 

utilized by Jiang et al (2013) and DiCarlo et al (2013) to serve as a genome-editing tool that 

helped to generate genomic mutations within a cell. This increased the ability of geneticists to 

alter bacterial and yeast genetic structures (Jiang et al 2013; DiCarlo et al 2013). Another 

genetic editing technique includes zinc fingers, which are particularly useful to engineer 

proteins that target specific genes (Klug 2010). Specifically, zinc finger manipulation facilitates 

synthetic biology engineering capabilities by allowing scientists to selectively switch specific 

genes on and off (Heinemann and Panke 2006; Klug 2010), and helps enable the more complex 

genetic manipulation of larger eukaryotic organisms (Khalil et al 2012). 
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 Based upon these developments, synthetic biologists have within the current period 

through 2016 become increasingly able to alter cell DNA and produce systemic-level change to 

the cell’s genome and behavior. However, significant challenges remain specific to the science 

of synthetic biology research, such as with the high variability of cellular part and circuit 

performance to overall cellular circuit construction (Nandagopal and Elowitz 2011; Cameron et 

al 2014). Smith et al (2014), and Baltes and Voytas (2015) further note that variability within a 

complex intracellular environment difficult to prevent or avoid.  

Purnick and Weiss (2009), Andrianantoandro et al (2006), Ellis et al (2009), and Cheng 

and Lu (2012) sought to work around this problem by constructing libraries of synthesized 

cellular parts and rigorously quantify the behavior and activity of these parts under certain 

conditions. The general goal of such libraries is to enable the assembly of cellular circuits from 

these thoroughly researched collection of parts, which would then be screened and improved 

as necessary for a particular function or project. One such library project in this aim includes 

the International Open Facility Advancing Biotechnology (BIOFAB), which serves as a facility 

geared towards constructing and characterizing libraries of bacterial promotors and 

transcription terminators (Mutalik et al 2013; Cambray et al 2013). Specific to this aim, BIOFAB 

is currently looking to foster a reliability score for individual cellular parts, which allows for 

greater understanding of the potential flaws that each part may express and has been shown to 

assist with debugging efforts within circuit engineering exercises (Mutalik et al 2013).  

 

3.4 Synthetic Biology Today: Defining the Field 

A complicated issue that still faces the field today includes defining what ‘synthetic biology’ 

actually means, and the processes that are implied by it. Such a formal definition remains 

elusive and misconstrued even as of December 2015. Voosen (2013) described it as” arguably 

the world’s hottest and most poorly defined scientific discipline.” Schmidt (2010) further stated 

that if you ask 10 experts to define synthetic biology, you are likely to get 10 different answers 

(Schmidt 2010). Likewise, the Royal Academy of Engineering (2009), the President’s 

Commission on the Study of Bioethical Issues (2010), The National Bioeconomy Blueprint 

(2012), and the Synthetic Biology Engineering Research Center (SYNBERC 2013) all state and 
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describe their own definitions of ‘synthetic biology’ and the various processes and scientific 

techniques involved within its research in differing ways (see Table 4 below)– although they 

come to some fundamental agreement on the technology as being ‘the deliberate design and 

construction of novel biological parts and systems for pre-identified purposes.’  

 

Institution Definition 

UK Royal Academy of Engineering "Synthetic biology is an emerging area of 
research that can broadly be described as the 

design and construction of novel artificial 
biological pathways, organisms or devices, or the 
redesign of existing natural biological systems." 

SYNBERC "Synthetic biology is a maturing scientific 
discipline that combines science and engineering 

in order to design and build novel biological 
functions and systems. This includes the design 

and construction of new biological parts, devices, 
and systems (e.g., tumor-seeking microbes for 
cancer treatment), as well as the re-design of 
existing, natural biological systems for useful 

purposes (e.g., photosynthetic systems to 
produce energy). 

President’s Commission on the Study of 
Bioethical Issues 

“…apply standardized engineering techniques to 
biology and thereby create organisms or 

biological systems with novel or specialized 
functions” 

European Commission Scientific Committees “SynBio is the application of science, technology 
and engineering to facilitate 

and accelerate the design, manufacture and/or 
modification of genetic 

materials in living organisms” 

Table 4. List of Synthetic Biology Definitions by Selected Organizations 

For this dissertation, the definition presented to interview contacts centers on ‘the 

deliberate design and construction of novel biological parts and systems for pre-identified 

purposes’. This definition is consistent with discussion by PCSBI (2010), SynBERC (2013), the UK 

Royal Academy of Engineering (2009), and the European Commission Scientific Committees 

(2014) – all of which are important resources for the field’s discussion and eventual regulation. 

After reviewing this general definition, more expansive discussion centered around SynBERC 

(2013)’s explanation of the field. This was chosen for two reasons. The first includes the fact 

that SynBERC also included governmental definitions of synthetic biology from other prominent 
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publications as the President’s Commission on the Study of Bioethical Issues (USA) and the 

European Union – factors that are important to consider when reviewing the technology’s 

regulation. The second reason is that SynBERC directly states that they sought to balance 

biological and engineering perspectives of synthetic biology to be inclusive of the various 

approaches taken to develop the field. Overall, SynBERC’s definition at its core is consistent 

with other definitions in the field, and served as the up-to-date account of synthetic biology 

discussion at the onset of this dissertation (2014). SynBERC’s full definition is listed here: 

"Synthetic biology is a maturing scientific discipline that combines science and 
engineering in order to design and build novel biological functions and systems. This includes 
the design and construction of new biological parts, devices, and systems (e.g., tumor-
seeking microbes for cancer treatment), as well as the re-design of existing, natural 
biological systems for useful purposes (e.g., photosynthetic systems to produce energy). As 
envisioned by SynBERC, synthetic biology is perhaps best defined by some of its hallmark 
characteristics: predictable, off-the-shelf parts and devices with standard connections, 
robust biological chassis (such as yeast and E. coli) that readily accept those parts and 
devices, standards for assembling components into increasingly sophisticated and functional 
systems and open-source availability and development of parts, devices, and chassis." 
(SynBerc 2013). 

           

3.5 Synthetic Biology and Health Risk 

 Aside from issues surrounding the field’s definition from an administrative standpoint, 

further discussion related to synthetic biology research has focused on the pathways of 

potential risk to humans and the environment (Carter et al 2014; Moe-Behrens et al 2014). Two 

such early topics of risk-based discussion in the early 2000s related to synthetic biology 

research include the concepts of biosafety and biosecurity (Kelle 2009; Guan et al 2013; Carter 

et al 2014). Specific discussion on these topics centers on the potential for irreversible and/or 

hazardous outcomes from the process of synthetic biology product development, either from 

deliberate misuse (biosecurity) or unintended consequences (biosafety) (Kelle 2009; Guan et al 

2013; White and Vemulpad 2015). 

 Noted above, the two major potential risk categories associated with synthetic biology 

include biosafety and biosecurity. The former includes accidental release and exposure 

scenarios, where novel genetic material may produce harms to humans, animals, and the 
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environment (Schmidt 2008; Guan et al 2013). Biosafety concerns are relevant and challenging 

for synthetic biology research, where accidental release of modified organisms could 

potentially yield risks to local biodiversity as well as contribute to horizontal gene transfer of 

artificial genetic material into natural cells. For the latter, biosecurity risk focuses on dual-use 

concerns, where technological advancements may be deliberately misused to produce potential 

harms to humans and the environment (Garfinkle and Knowles 2014; Church et al 2014). Such 

concerns have been noted by Garfinkle and Knowles (2014) and Perkins and Nordmann (2012) 

as potentially enabling bioterrorists and other nefarious agents in their abilities to produce 

harmful biological agents like an engineered virus. In the following sections below, each 

potential risk category is discussed from the perspective of how such risks are viewed in the 

literature. 

 

3.5.1 Biosafety  

 Biosafety considerations generally consider the unintentional release of genetically-

modified material that may subsequently alter or overwhelm its local environment and incur 

negative health consequences (Wright et al 2013; Schmidt 2008; Seyfried et al 2014). Such 

concerns may occur across the life cycle of a given synthetic biology material, including at the 

research and development stage (i.e. biological material accidently escapes lab containment 

and reaches unintended human or environmental hosts), the manufacturing stage (i.e. 

concerns of occupational health due to unintended exposure to modified cells), the commercial 

stage (i.e. unintended use amongst consumers), and the end-of-life stage (i.e. improper 

disposal or treatment of synthetic biology byproducts and waste) (Bates et al 2015). Across all 

stages, an important consideration includes how such an event could occur alongside the 

magnitude of health consequences that it may produce. 

 One potential biosafety risk concerns noted in the literature includes the concept of 

horizontal gene transfer (Schmidt et al 2008; Cardinale & Arkin 2012; Dana et al 2012). 

Generally referring to the transfer of genes between organisms in a manner other than 

traditional reproduction, horizontal gene transfer is a particular problem of concern for 

synthetic biology as such gene transfer “is a common and somewhat uncontrolled trait through 
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the microbial biosphere” (Wright et al 2013; Dröge et al 1998).  Davison (1999) and Wright et al 

(2013) state that horizontal gene transfer occurs by transduction, conjugation, and/or 

transformation of modified cells within the natural environment. For each of these three 

methods of transfer, transduction involves the active transfer through bacteriophages, 

conjugation through pili, and transformation via “sequence-independent uptake of free DNA 

from the environment” (Wright et al 2013).  

 Synthetic biologists have begun to explore avenues to prevent horizontal gene transfer 

via one or more of these avenues, yet the process of fully resolving the ‘transformation’ gene 

transfer avenue is challenging due to the potential for lingering cell DNA to persist in the 

environment well after cell death (Thomas and Nielsen 2005). Neilsen et al (2007) note that 

even months after a cell is placed within certain environmental conditions, extracellular DNA 

can be detected. Further, such extracellular DNA may be actively assimilated by bacteria along 

with some unicellular and multicellular eukaryotes (Lorenz and Wackernagel 1994; Wright et al 

2013; Boschetti et al 2012). While Khalil and Collins (2010) describe how engineering a ‘self-

destruct’ option can limit some vectors of horizontal gene transfer by programming the cells to 

die under certain conditions or time intervals, Wright et al (2013) and Lorenz and Wackernagel 

(1994) discuss how even with cases of cell death, extracellular DNA may be scavenged and 

absorbed by other natural cells afterwards. Callura et al (2010) and Wright et al (2013) 

discussed how self-destruct mechanisms serve as the best available tool to prevent synthetic 

material from escaping control and interacting with the environment, where engineered cells 

could be preprogrammed to self-destruct en masse if cell population density becomes too 

great. 

 Wright et al (2013) and Townsend et al (2012) go on to state that monitoring the rates 

of horizontal gene transfer is a complicated process due both to the large swarms of cells 

required to monitor for gene transfer along with the extended timeframe needed to monitor 

whether or not a rare genetic mutation was able to grow into larger populations of cells. 

Nielsen and Townsend (2004) and Wright et al (2013) further argue that horizontal gene 

transfer events are difficult to monitor due to their limited rate of occurrence, where the 

frequency of transformation of microbes in soil is less than 1 x 10-7 per bacterium exposed, with 
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transformation generally capable only within a few hours to days after the release of novel 

cellular material into the environment. However, Pruden et al (2012) note that despite the 

general rarity of horizontal gene transfer, certain DNA elements have been shown to proliferate 

through large and complex ecosystems. One of these includes antibiotic-resistance genes, 

which Mulvey & Simor (2009) describe as cases of horizontal gene transfer where antibiotic-

resistance spreads in environments such as hospitals and produces antibiotic resistant 

superbugs. From the perspective of biosafety, Wright et al (2013) argue that such antibiotic-

resistant genes should not be utilized by synthetic biologists unless absolutely necessary, 

although such genes remain “commonly used as markers during plasmid construction.”  

 Aside from cellular self-destruction, another approach to promoting biosafety includes 

making it easier to identify where cells escaping containment may have originated from in 

order to fix existing containment issues and prevent future breakout events. Wright et al (2013) 

describe that synthetic operons within cellular DNA may be fashioned to contain a genetic 

‘barcode’ that may be indexed within a database in order to facilitate cellular recognition and 

communicate the cell’s origin point to identifiers. Another approach described by Gibson et al 

(2010) includes the introduction of a ‘DNA watermark’ into several locations on the cell’s 

genome, which acts as an identifier similar to that describe above. Wright et al (2013) further 

argue that such a watermark or barcode may also have proprietary benefits, where such unique 

codes may be used for commercial purposes to ‘brand’ a cell’s DNA with unique identifying 

information in the event of theft. 

 Even should these approaches to reduce the opportunities for horizontal gene transfer 

fail, the chance for mutated genes that are harmful to humans to transfer and proliferate are 

minute (Arber 2014; Wright et al 2013). In other words, it is rare that transferred traits are 

evolutionarily beneficial to targeted organisms that are also detrimental to human and 

ecosystem health in a natural setting (Rossi et al 2014). However, White and Vemulpad (2015) 

note that synthetic biology may increase the potential for harmful gene transfer due to the use 

of artificial gene sequences. Even in such scenarios, however, Armstrong et al (2012) argue that 

such concerns are more likely in deliberate biosecurity situations rather than through 

accidental release and random gene transfer. 
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3.5.2 Biosecurity 

 Biosecurity, or concerns of risk driven by the use of synthetic biology for nefarious or 

deliberately harmful means (i.e. bioterror), centers on the ‘dual use’ concerns associated with 

emerging technology development (Perkins and Nordmann 2012; Marris et al 2015). Such 

concerns include fears that technological developments may also be utilized for deliberately 

harmful purposes (Marris et al 2015). Dual use concerns have been discussed within synthetic 

biology research since at least 2004, when the World Health Organization outlined certain 

guidelines to promote lab safety while reducing the potential for malicious use of synthetic 

biology’s concepts and tools at cellular manipulation (WHO 2004; Mandel et al 2014).  

Particularly within the United States, federal policymakers increasingly concerned with 

the potential for life sciences research to be misused in warfare or terrorism began to assize 

their own inquiries with respect to synthetic biology biosecurity, with the first such council 

including ‘The Committee on Research Standards and Practices to Prevent the Destructive 

Application of Biotechnology’ of 2004 – colloquially known as the Fink Committee (National 

Research Council 2004; Kelle 2009). Specific to synthetic biology, the Fink Committee was asked 

to review those “practices that could improve US capacity to prevent the destructive 

application of biotechnology research while still enabling legitimate research to be conducted” 

(National Research Council 2004). Specific recommendations produced by the Fink Committee 

include: 

1) To educate the scientific community  

2) Review experiment proposals and plans related to genetic manipulation and 

experimentation 

3)  Likewise, to review submitted manuscripts in this field prior to their publication,  

4) Foster the creation of a national science advisory board related to combatting 

bioterrorism and other threats arising from the misuse of life sciences research like 

synthetic biology,  

5) To “harmonize international oversight” (Kelle 2009) 
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6) To achieve a more active role for the life sciences in efforts to prevent biosecurity 

concerns. 

 In response to the Fink Committee’s recommendations, the US National Research 

Council established the Committee on Advances in Technology and the Prevention of their 

Application to Next Generation Bioterrorism and Biological Warfare Threats, which later also 

became known as the Lemon–Relman Committee (Kelle 2009). To more specifically address 

potential biosecurity risks and threats of emerging life sciences research such as with early 

synthetic biology, the committee established a four-group classification methodology which 

included:  

1) Technologies that seek to acquire novel biological or molecular diversity, 

2) Technologies that seek to generate novel but predetermined and specific biological or 

molecular entities through directed design, 

3) Technologies that seek to understand and manipulate biological systems in a more 

comprehensive and effective manner, and 

4) Technologies that seek to enhance the production, delivery and 'packaging' of 

biologically active materials (National Research Council, 2006; Kelle 2009). 

 Under the Lemon-Relman categorization, synthetic biology falls into categories 1 and 2, 

with Committee recommendations for the technology to have increased awareness and 

oversight for biological capabilities to damage, for example, host homeostatic and defense 

systems or for constructing synthetic organizations with limited control and/or the potential for 

deliberate negative health risk (National Research Council 2006). A primary outcome of the 

Lemon-Relman Committee and its subsequent categorization was an increased call for 

government oversight and monitoring related to the potential for dual use applications in life 

sciences research (Choffnes et al 2006).  

Further, discussion from both committees, with particular discussion from the Lemon-

Relman Committee which called for increased consideration of the societal implications of and 

access to synthetic biology research, was discussed at the SB2.0. Specifically, SB2.0 conference 

attendees produced a collective statement that discussed some of the biosecurity implications 

of DNA synthesis, including calling for an open working group to “improve existing software 
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tools for screening DNA sequences” and promote further discussion on options for national 

governments in Europe and the United States to govern DNA-synthesis technology that may be 

produced in synthetic biology research (Conferees SB2.0 2006; Kelle 2009).   

 

3.5.3 Considerations of Hard and Soft Law in Synthetic Biology Regulation 

 Aside from government-directed discussion on biosecurity issues, one of the early 

descriptive papers on the regulation of synthetic biology biosecurity concerns includes Church 

(2004). Specifically, Church called for a biosecurity paradigm where oversight agencies would 

screen any genetically modified material with various research projects based upon the 

product’s oligonucleotide and DNA information to identify and similarities between the 

discussed organism and other traditional pathogenic organisms. To limit the proliferation of 

such research outside of institutions with clear external oversight and regulation, Church (2004) 

also called for the licensure of certain instruments and reagents involved in the production of 

genetically modified material deemed similar to harmful pathogens (Church 2004; Kelle 2009).  

 Despite these calls for expanded government oversight of synthetic biology research, 

Maurer and Zoloth (2007) and Bügl et al (2007) argued instead for a governance paradigm 

driven by synthetic biologists instead of preemptive national regulation. Specifically, Maurer 

and Zoloth (2007) placed emphasis on the need for self-governance without external 

interventions or intrusive oversight. In a similar vein, Bügl et al (2007) argued for a governance 

structure that, while incorporating external oversight from government, placed companies 

squarely within the governance-building process.  

 Overall, Kelle (2009) identifies two distinct strands of discussion related to biosecurity 

regulation that emerged with the second and early third waves of synthetic biology. First, 

industry and DNA‐synthesis companies generally emphasize the “formation and 

implementation of best practices across the industry” where “oversight and enforcement of 

these standards […] is not regarded as falling into the purview of industry itself, but rather as a 

governmental task” Kelle (2009). For the second element, Kelle (2009) acknowledges the 

growing discussion of self-governance within the synthetic biology community, which Maurer 

and Zoloth (2007) and Kelle (2009) describe as not easily reconciled with governmental wishes 
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to strengthen external oversight over an industry they perceive as advancing potentially 

threatening technological capabilities if nefarious agents were able to gain access to them.  

Kelle (2013) and Grunwald (2012) describe the former as generally precautionary in 

approach, which while reducing the probabilities of bioterrorism and similar risks would 

potentially limit the advancement of the field by reducing the ability to disseminate knowledge 

freely and quickly. Likewise, Murray (2010) describes discussion similar to the latter as relatively 

proactionary (or behavior geared towards advancing a particular aim of science in spite of 

potential risks or hazards), where limited to no oversight hinders the ability of regulators and 

decision makers to understand emerging trends in the field of synthetic biology and identify 

areas of concern related to biosecurity.  

 

3.6 Synthetic Biology and Health Risk: Pharmaceutical Development 

3.6.1 Background 

 As noted in Chapter 1, one of the emerging applications of synthetic biology is for 

pharmaceutical development (Neumann & Neumann-Staubitz 2010; Carter et al 2014). From a 

perspective of contemporary synthetic biology research beginning around 2000, 

pharmaceutical and therapeutic research has remained one of the primary focal points of 

synthetic biology scientists, with a focus upon improving access and production options for 

certain drugs while producing novel vaccines for those viruses lacking any vaccine approved for 

commercial distribution. More specifically, such development is driven by one or more benefits 

that synthetic biology approaches offer, including: 

1) The ability of synthetic biologists to produce pharmaceuticals and pharmaceutical 

components on a faster and less expensive timeline, and 

2) The ability of synthetic biologists to potentially synthesize and engineer drug and 

vaccine treatments for diseases that traditionally lack a vaccine or lack effective 

treatments to control disease symptoms or provide novel health benefits relative to 

current pharmaceutical offerings.  

 Both areas of research are being discussed by synthetic biologists vested in research of 

various pharmaceutical and therapeutic treatments. The first option has already seen some 
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advancement, such as with the case of Keasling’s antimalarial drug. The second option, 

however, is more elusive due to the more intensive gene synthesis and engineering required to 

produce a safe and effective pharmaceutical treatment (Carter et al 2014; Pade et al 2015; 

Haelmann and Fusnegger 2015).  

 

3.6.2 Synthetic Biology for More Efficient Production of Pharmaceuticals 

With respect to the ability of researchers to produce pharmaceutical material in a faster 

and less costly timeframe, synthetic biologists have advocated for a systems engineering 

approach to produce specific drugs and vaccines (Paddon and Keasling 2014; Oberg et al 2011). 

One of the first instances of this includes the research group at University of California, 

Berkeley led by Dr. Jay Keasling, which was briefly discussed above as an attempt to produce 

semi-synthetic artificial artemisinin to treat those suffering with malaria (Paddon and Keasling 

2014). Keasling’s process involved the synthesis of antimalarial precursors in the form of 

artemisinic acid, which facilitated a faster, cheaper, and more reliable alternative to traditional 

artemisinin to be used to alleviate malarial conditions experienced by the afflicted (Singh and 

Vaidya 2015). By 2014, pharmaceutical producer Sanofi produced 1.7 million doses of 

artemisinin treatment using Keasling’s method (Singh and Vaidya 2015). 

Another synthetic biology pharmaceutical in this category includes an early attempt to 

mass produce the influenza vaccine on a more rapid time scale than within conventional 

production measures. Specifically, the Swiss pharmaceutical company Novartis International AG 

(or Novartis, for short) began in 2012 an attempt to utilize principles of synthetic biology to 

reduce production times for influenza vaccine production (Rojahn 2013). Novartis Head of 

Virology Dr. Philip Dormitzer stated in a public presentation at the National Academy of 

Sciences in October 2013 that such an effort was geared towards addressing the lag time 

between the initial onset of a viral outbreak and the distribution of a viable vaccine to the 

masses (Dormitzer 2013).  

Dormitzer further noted that using current vaccine production methods (generally, 

growing large numbers of the pathogen in question in chicken eggs to use as starting material 

for a vaccine), approximately 40% of cases of viral infection of influenza will occur before any 
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vaccine is made available to the public – largely due to the time needed to produce the vaccine 

material in significant quantities for large-scale manufacturing (Dormitzer 2013). Rappuoli and 

Dormizer (2012) stated that the time lag for H1N1 in 2009 was approximately three months, 

where the virus’ detection in March initial vaccine manufacturing in June, and initial 

widespread vaccine distribution by November had delayed vaccination to a point where the 

virus’ incidence had already begun to subside (Perkel 2015). To help resolve this lag time and 

speed up vaccine production for emerging strains of influenza, Novartis utilized synthetic 

biology approaches to sequence strains of the influenza virus, reprogram said virus on a 

computer, and then use that computer code to facilitate vaccine production at sites across the 

globe (Perkel 2015).  

The first case of this technological process included influenza strain H7N9, which was 

first sequenced by Chinese epidemiologists in March 2013. Using this information, a joint team 

from Novartis, the James Craig Venter Institute, Synthetic Genomics, and a few others were 

able to review the H7N9 gene sequence over the internet and subsequently synthesize artificial 

genes within the gene sequence. Later, this modified virus was “inserted […] into a pre-existing 

viral backbone” and subsequently used to infect eukaryotic Madin-Darby canine kidney (MDCK) 

cells in a cell culture for subsequent growth and harvesting over the course of 2-3 days 

(Dormitzer et al 2013; Bart et al 2014). The entire process from downloading the Chinese gene 

sequence to growing material needed for early vaccine production was approximately 100 

hours, did not involve the physical shipment of any vaccine material to research labs, and 

ultimately reduced vaccine production times from about 6 months down to approximately 1 

week (Dormitzer et al 2013).  

The key novelty associated with this vaccine production process centers on the ability to 

synthesize, modify, and engineer virus material on a computer that could then be used to 

develop vaccine material. Dormitzer et al (2013) note that not only does this process 

dramatically reduce the time requirements needed to produce vaccine material needed for 

manufacturing, but it also allows for the rapid geographic distribution of digital vaccine material 

for localized work at laboratories around the world. Further, the ability to modify and 

reprogram material via a computer allows for greater control over the genetic engineering 
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process, and allows biologists and engineers to engage in more complicated and systems-wide 

genetic modification of biological material (McGuigan 2016; Ulmer et al 2015). 

 

3.6.3 Synthetic Biology for Novel Pharmaceutical Production 

Aside from facilitating the development of existing pharmaceuticals, the ability to use 

synthetic biology to synthesize and produce novel pharmaceuticals for diseases which currently 

lack an approved vaccine or effective treatment such as with the ebolavirus, malaria, and the 

dengue virus has been discussed as a futuristic application of the technology (Weber & 

Fussnegger 2012; Tucker & Zilinskas 2006; Barocchi & Rappuoli 2015). Similar applications 

include the development of engineered probiotics to assist with digestion and improve overall 

human health (Ando et al 2014; Bugaj and Schaffer 2012; Folcher and Fusnegger 2012). Each of 

these potential treatments respectively has the ability to provide health benefits that are either 

currently unavailable or advance health improvement capabilities beyond traditional and 

conventional pharmaceuticals, both from the perspectives of preventative and acute medical 

care (Weber and Fusnegger 2012). 

However, the health benefits generated from such novel drug and vaccine creation as 

well as the in vivo use of genetically modified biological agents also inherently possess greater 

uncertainty regarding the scope of potential health risks that they may potentially pose to 

humans and the environment. This uncertainty centers on, among others, the potential risks 

from the in vivo use of biological agents (Ruder et al 2011). Ruder et al (2011) and Church et al 

(2014) note the need for greater attention to be paid to the potential for novel health risks of 

such pharmaceuticals to arise throughout the material’s life cycle, such as the potential for 

unintended exposure to humans and the environment and subsequent gene transfer. Getino et 

al (2015) argue that research is needed and becoming increasingly available to mitigate the 

horizontal transfer of synthetic genetic material such as those transferred by plasmids, 

although other avenues of horizontal gene transfer exist as noted above that have a small 

probability of occurring within human and environmental cells.  

One specific application within this category includes the production of synthetic 

probiotic bacteria, or an improvement of existing probiotics that are purported to confer health 
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benefits to users such as the decrease of potentially pathogenic microorganisms, improvement 

in the body’s immune system, reduced gastrointestinal discomfort, the improvement of bowel 

regularity, and others (Danino et al 2015; Ray 2015; Rijkers et al 2011). However, the medical 

benefits derived from conventional probiotic use have not been causally confirmed (Rijkers et al 

2011). Synthetic biologists have discussed the potential for certain bacteria to be synthesized 

and engineered in a manner that incurs health benefits such as screening for disease in vivo 

(Danino et al 2015; Ray 2015) or improving gastrointestinal health and function (Zhang and 

Nielsen 2014; Piñero-Lambea et al 2015). 

Of these two general categories of probiotic benefit, the former (disease detection in 

vivo such as with cancer) is closest to commercial medical use (Danino et al 2015; Ray 2015). 

Slomovic et al (2015) describe how bacterial cells such as with E. coli have been reprogrammed 

to serve as a diagnostic tool for cancer screening, and could in the future be repurposed for 

therapeutic delivery in vivo and directly upon a tumor target site. Further, Danino et al (2015) 

note that such semi-synthetic E. coli can “noninvasively indicate the presence of liver 

metastasis by producing easily detectable signals in urine”, where no harmful health effects of 

the treatment were observed in mice within 12 months after oral delivery of the engineered 

probiotic. While this stage of engineered probiotic testing is in the earliest stages of animal 

testing, Danino et al (2015) and Ray (2015) note that the limited approach to engineering 

various bacterial cells will likely yield little novel health risk.  

Aside from disease detection, the use of probiotics to improve gastrointestinal health 

and metabolism is an emerging application of synthetic biology research with significant 

potential benefits yet more elevated levels of risk than with its disease-detecting cousins 

(Zhang and Nielsen 2014; Burrill et al 2011). This is due to the enhanced complexity and 

involvement of gene synthesis and engineering needed to deliver therapeutic treatment in vivo 

(Piñero-Lambea et al 2015), along with the potential need for other novel technologies to assist 

with drug delivery and probiotic control such as with micro robotics and nanomaterials (Tripathi 

et al 2013). Further, such probiotics may yield acute and risky side-effects to an individual’s 

cardiovascular and/or gastrointestinal systems such as the disruption of ‘good’ bacteria 

populations and the uncontrolled production of unhealthy gut bacteria (Tang et al 2013), 
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although such findings remain uncertain due to the lack of clinical testing and commercial 

development in the field on humans. From an environmental perspective, the potential 

introduction via misuse or accidental release of modified material into the environment 

(Halling-Sørensen 1998) may contribute to opportunities for horizontal gene transfer (Endy 

2005) and subsequent environmental invasion and proliferation, although the probability of this 

is very small (Wright et al 2013).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

81 
 

 

 

 

Chapter 4: 

Synthetic Biology and Risk Regulation – The Case of the United States 

 

 

4.1 Introduction 

 Since the early 2000s, synthetic biology research has been studied by research facilities 

across United States (Kuiken 2010; Kuiken 2015; Stephanopoulos 2012; Cheng and Lu 2012). 

Ranging from government laboratories to universities and early private sector research, 

synthetic biology innovation has grown for both military and civilian purposes each year since 

at least 2008 (Kuiken 2015). Such spending (approximately $200 million annually by 2014) is 

geared for a variety of purposes, such as with the financing and improvement of circuit and 

metabolic engineering to improve the science of synthetic biology (Wright 2014; Georgianna 

and Mayfield 2012). One particular application of this includes research into pharmaceutical 

and therapeutic improvements, including options to facilitate the more efficient and less costly 

production of existing products and further inquiry into elusive drugs and vaccines (Paddon and 

Keasling 2014; Wright 2014; Weber and Fussenegger 2012).  

 This chapter indicates how each case was addressed from an analytical perspective. 

While each individual case maintains its intricacies related to the availability of interview 

subjects, the regulatory environment that synthetic biologists must operate under, and the 

degree of scientific achievement and progress, these cases cover three general sections, 

including: 

 (i) the history and current status of synthetic biology research within the given case 

(where this is partially covered within the Chapter 3),  

(ii) The perceptions expressed by subject experts regarding where synthetic biology 

pharmaceutical product health risk may arise along the technology’s life cycle as well as 

the mechanisms that may contribute to such harms, and  
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(iii) discussion of existing hard and soft law regulation available to cover synthetic 

biology products within a given country, including discourse analysis and respondent 

perceptions of whether or not these mechanisms are capable of adequately regulating 

the field moving forward.  

Within this framework, the goal of such discussion is to review how differing elements 

of risk culture have influenced the regulation of the process of synthetic biology. Specifically, 

this includes the need to review in this Chapter how the regulatory history and institutional and 

political structure has come to foster a risk culture in the United States that is formal, 

transparent, and generally adversarial in nature, and makes any attempt at regulatory reform in 

the United States a politically difficult task. Specifically, Sections 4.2 and 4.3 seek to unpack the 

political and institutional factors that cause the American government to favor the regulatory 

status quo and adopt regulatory change slowly, while later sections review US-based expert 

perception of synthetic biology risk as well as the ability of existing regulatory instruments to 

capture the process of synthetic biology development. 

 

4.2 Regulatory Instruments and Tools Relevant to Synthetic Biology in the United States 

 To better describe the regulatory capabilities and legislative instruments within the 

United States directed at regulating the process of synthetic biology development, literature 

and expert interview responses were used to review several considerations important for 

synthetic biology regulation. These include the need to (i) identify applicable hard and soft law 

that has been used directly or indirectly to cover synthetic biology research, (ii) discuss 

potential limitations of such regulation to cover novel risks associated with synthetic biology, 

and finally (iii) describe potential improvements (where necessary) to rectify these discussed 

shortcomings.  

 Looking first at describing the existing regulatory instruments and tools within the 

United States applicable to synthetic biology, such regulation is generally not geared towards 

synthetic biology but instead an extension of existing regulation and law to temporarily cover 

synthetic biology research (Carter et al 2014). Clift (2006) and Marchant et al (2009) state that 

other emerging technologies with potential risk and inherent uncertainty are also regulated 
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using existing legislation and regulatory policy until the need for sui generis regulation is 

deemed necessary (Marchant et al 2012). Further, Jasanoff (1995) and Dana et al (2012) 

contend that a product-driven focus for the regulation of new technologies such as with 

nanotechnology makes it necessary for regulators to review the context in which a technology 

will be used – not simply its inherent characteristics.  

Carter et al (2014) state that American regulation related to genetically engineered 

products stems from a mixture of regulations and non-binding recommendations, which 

specifically centered on the 1976 National Institutes of Health (NIH) Guidelines for Research 

Using Recombinant DNA Molecules. These guidelines were explicitly targeted at addressing the 

potential biosafety risks that may arise from the research, production, use, and disposal of 

products containing genetically engineered material.  

NIH (2013) and NIH (2012) maintain that such guidelines ensure within the current era 

of biotechnology research funded by NIH is conducted within set guidelines regarding the 

physical containment of genetically engineered material in order to (i) protect researchers from 

potential exposure to harmful material, and (ii) prevent as much as possible potential releases 

of such materials into the environment. Where Carter et al (2014) describe ongoing debates 

specific to the ability of existing regulation to adequately cover against biotechnology and 

genetic engineering risks, the Office of Science and Technology Policy in 1986 established their 

‘Coordinated Framework for Regulation of Biotechnology’, which contended that established 

federal law appeared capable of governing products stemming from biotechnology research 

(OSTP 1986). As new products, processes, and risks stemming from technological innovation 

developed, however, OSTP (1986) also indicated that regulation needed to evolve over time to 

better protect against such risk. Such evolutions included OSTP (1992) and OSTP (2002), which 

further explained OSTP’s position that agencies should regulate technologies with genetically 

engineered components on a product level.  

 Under the Coordinated Framework’s guidelines that products derived from genetic 

engineering processes should be regulated in a manner similar to those produced via traditional 

means, three agencies were explicitly empowered to govern products utilizing genetic 

engineering capabilities (Carter et al 2014). These include the Environmental Protection Agency 
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(EPA), the Food and Drug Administration (FDA), and the Department of Agriculture’s Animal 

and Plant Health Inspection Service (APHIS).  

 Looking first at the Department of Agriculture, APHIS regulates experiments and field 

trials of genetically engineered crops and plants, and “reviews requests to “deregulate” the 

crop or plant, which, if granted, allows it to be grown without a permit at a commercial scale” 

(Carter et al 2014). APHIS’ authority within this context derives from the Federal Plant 

Protection Act of 2000, where the agency is granted the capability to inspect, seize, 

quarantine/isolate, remediate/treat, or dispose of imported plant and animal materials that are 

potentially harmful to U.S. agriculture, horticulture, forestry, and, to a certain degree, natural 

resources (Plant Protection Act 2000; House 2006). While this does not explicitly include pre-

market assessment, Bundy (2012) argues that APHIS has ‘strong authorities’ to remediate 

contaminated sites and prevent the dissemination of modified plant material that could be 

harmful to humans or the environment (Bundy 2012). Specifically, these authorities derive from 

the Federal Plant Pest Act of 1957, the Plant Quarantine Act of 1912, and the Federal Noxious 

Weed Act, which were collectively incorporated into the Plant Protection Act of 2000 (Bundy 

2012). 

 APHIS’ authority over genetically modified organisms was first established in 1986 under 

the Federal Plant Pest Act of 1957 and the Plant Quarantine Act of 1912. These rules, along with 

the addendums established by the Plant Protection Act of 2000 (specifically 340), defined 

genetically engineered organisms pertaining to plants and noxious weeds as ‘regulated articles’, 

and explicitly states the ability of APHIS to monitor, control, and prohibit the importation, 

transportation, and release of such organisms unless said organisms are within the guidelines 

established by the PPA (Plant Protection Act 2000, Part 340). With respect to what a ‘regulated 

article’ actually is, 7414(a) of the Plant Protection Act indicates that the genetically engineered 

organisms in question must have “some connection to DNA from a natural plant pest” (Plant 

Protection Act 2000, Part 340; Bundy 2012).  

 Key provisions related to APHIS’ regulatory authority over synthetic biology product 

development via the PPA include 7711(a), 7712(a), and 7414(a) (Bundy 2012). For 7711(a) and 

7712(a), this includes the ability of APHIS to prevent the important, distribution, and 



 

85 
 

commercialization of plant pests without prior regulatory approval. Further, 7414(a) empowers 

APHIS with the ability to review and prevent the distribution of plant pests new to the United 

States environment in order to protect local environmental health. Statements of these 

provisions are noted below. 

PPA Section 7712(a) (7 USC 7712(a)): “[t]he Secretary may prohibit or restrict the 
importation, entry, exportation, or movement in interstate commerce of any plant, plant 
product, biological control organism, noxious weed, articles, or means of conveyance, if 
the Secretary determines that the prohibition or restriction is necessary to prevent the 
introduction into the United States or the dissemination of a plant pest or noxious weed 
within the United States.” 

PPA Section 7414(a) (7 USC 7714(a)): “[i]f the Secretary considers it necessary in order to 
prevent the dissemination of a plant pest or noxious weed that is new to or not known to 
be widely prevalent or distributed within and throughout the United States, the 
Secretary may hold, seize, quarantine, treat, apply other remedial measures to, destroy, 
or otherwise dispose of any plant, plant pest, noxious weed, biological control organism, 
plant product, article or means of conveyance that is moving into or through the United 
States or interstate, or has moved into or through the United States or interstate and the 
Secretary has reason to believe is a plant pest or noxious weed or is infested with a plant 
pest or noxious weed at the time of the movement or is otherwise in violation of this 
title.” 

Given this defined authority, Bundy (2012) states that it is unclear whether a fully 

synthetic organism would qualify for cases where modified organisms do not contain plant pest 

DNA (even if the synthetic DNA was identical or nearly identical to its natural alternative). If 

APHIS’ regulatory authority is challenged under such circumstances, they would lose the ability 

to review synthetic biology products prior to environmental release and commercial 

consumption (Carter et al 2014; Bundy 2012). Currently, however, APHIS has begun to assert its 

capabilities under Part 340, Sections 7411, 7412, and 7414 of the Plant Protection Act for 

various synthetic biology research enterprises such as with pharmaceutical development, which 

frequently uses plant bacteria such as Agrobacterium tumefaciens to transfer synthetic DNA 

into a host genome (Carter et al 2014; Bundy 2012). Overall, Carter et al (2014) and Bundy 

(2012) both argue that APHIS currently possesses the ability to protect environmental health 

from engineered plant pests, although this authority is hazily defined and may be challenged in 

court by developers. 
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 Looking next at the United States EPA, the agency derives its authority over synthetic 

biology research via the Toxic Substances Control Act (TSCA 15 U.S.C. §2601), where it regulates 

genetically engineered microbes as novel chemical substances (Carter et al 2014). One specific 

section includes TSCA’s Section 5, which provides the EPA with the power to regulate and 

monitor proposed chemical substances before their manufacture, importation, or commercial 

distribution. This Section gives EPA the authority to regulate new chemical substances prior to 

their manufacture, import, processing, or distribution for commercial purposes (Nabholz et al 

1993; Wagner et al 1995). Using Section 5 of TSCA, the EPA has established rules indicating that 

novel yet artificially produced genetic sequences may be classified as novel chemical substances 

(EPA 2013a; EPA 2013b; EPA 1997).  

Under these extensions of soft law governance and rulemaking, Carter et al (2014) 

discusses that the EPA may “require developers to notify EPA prior to testing any genetically 

engineered microorganisms outside of a contained environment when the organism will be 

used for a commercial purpose” via their Microbial Commercial Activity Notice (MCAN). This 

‘pre-post’ notification process empowers EPA to review environmental health and safety 

concerns of emerging synthetic biology-derived products both before and after they have 

reached commercialization and market access, granting the EPA the capability of pulling such 

products if they have demonstrated the potential for health harms in various applications 

(Carter et al 2014). While TSCA has been applied to cover various activities such as with biofuel 

production (i.e. the conversion of algae to various biofuels – Glass 2015) or environmental 

remediation products (i.e. the remediation of brownfields or groundwater deposits – Schmidt 

2012) (Mandel and Marchant 2014; Lohmann 2013; Rodemeyer 2009), their ability to engage in 

pre-post reviews of pharmaceutical products remains limited Carter et al (2014). 

 Next, the FDA serves as the main regulatory body charged with protecting public health 

by regulating various fields such as with food safety, pharmaceutical drugs, vaccines, and 

medical devices (Katz 2008). Where APHIS and the EPA have been discussed as having limited 

or questionable authority to review synthetic biology drug and pharmaceutical production, the 

FDA instead has much clearer regulatory authority to review, monitor, and approve such 

products as they seek to gain clinical approval and market acceptance (Carter et al 2014). The 
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legislative authority by which FDA derives its capability to monitor and regulate such products 

and materials includes Chapters 2 and 5 (Medical Drugs and Devices) of the Federal Food, Drug, 

and Cosmetic Act (1938) and Section 351 (The Regulation of Biological Products) of the Public 

Health Service Act (1944). Within Chapter 2 of the FDCA, drugs re defined as “articles intended 

for use in the diagnosis, cure, mitigation, treatment, or prevention of disease in man or other 

animals”, or “articles (other than food) intended to affect the structure or any function of the 

body of man or other animals” (Fatehi and Hall 2014). Among other activities, this authority 

grants the FDA the capability to regulate the efficacy and safety of drugs and vaccines, where 

the drug is required to undergo a premarket approval requirement to test its safety and 

effectiveness according to FDCA Chapter 5 Section 505 (a-d) (Katz 2008). In this Section, the 

FDA’s premarket regulatory authority is stated where:  

“(a) No person shall introduce or deliver for introduction into interstate commerce any 
new drug, unless an approval of an application filed pursuant to subsection (b) or (j) is 
effective with respect to such drug. (b) Any person may file with the Secretary an 
application with respect to any drug subject to the provisions of subsection (a). Such 
persons shall submit to the Secretary as a part of the application (A) full reports of 
investigations which have been made to show whether or not such drug is safe for use 
and whether such drug is effective in use; (B) a full list of the articles used as components 
of such drug; (C) a full statement of the composition of such drug; (D) a full description of 
the methods used in, and the facilities and controls used for, the manufacture, 
processing, and packing of such drug Included outputs from this exercise include labeling 
requirements detailing proper drug use alongside manufacturer reporting of adverse 
effects, furthering the FDA’s post market authority to recall drugs with demonstrated 
harms to human health.” (21 U.S.C. 355). 

 As noted by Hutt (1990), Mathieu et al (2002), and Borchers et al (2007), the FDA’s 

regulatory authority via the Food, Drug, and Cosmetic Act (FDCA) along with the Public Health 

Services Act provides the FDA with the legislative scope to regulate drugs in the United States. 

Where the end-products of synthetic biology pharmaceutical production remain drugs as 

defined by the FDCA, Bergeson et al (2014) as well as Keasling and Venter (2013) indicate that 

the FDA will have the power and authority to regulate such products. Specifically, the FDCA 

empowers the FDA to engage within pre-market regulatory assessment and approval of 

pharmaceutical products prior to their mass production and commercialization (Mathieu et al 

2002). However, Carter et al (2014) notes that such authority has limited ability to consider the 
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environmental impacts incurred throughout the life cycle of drug production for any 

pharmaceutical product – something that Schmidt and de Lorenzo (2016) indicate as potentially 

being a significant risk for synthetic biology products.  

 One legislative instrument that has enabled the FDA to force developers to consider the 

environmental impacts of pharmaceutical development includes the National Environmental 

Policy Act (NEPA) (Anderson 2013). Specifically, NEPA gives the FDA the ability to consider the 

environmental ramifications related to pharmaceutical production (Anderson 2013). Under 

NEPA, the FDA can require those developers with products that may yield substantial risk to 

environmental health to generate an Environmental Impact Statement indicating the potential 

and consequences of such risk (Carter et al 2014). This is noted in Section 102 (c) of NEPA, 

where such Statements must: 

“(C) include in every recommendation or report on proposals for legislation and other 
major Federal actions significantly affecting the quality of the human environment, a 
detailed statement by the responsible official on— (i) the environmental impact of the 
proposed action, (ii) any adverse environmental effects which cannot be avoided should 
the proposal be implemented, (iii) alternatives to the proposed action, (iv) the 
relationship between local short-term uses of man’s environment and the maintenance 
and enhancement of long-term productivity, and (v) any irreversible and irretrievable 
commitments of resources which would be involved in the proposed action should it be 
implemented.” (42 U.S.C. 4321). 

While the FDA cannot require environmental risk mitigations as part of its regulatory 

decision and approval under NEPA (Anderson 2013), the cost and time associated with 

constructing the Impact Statements serve as an incentive for developers to take steps to reduce 

such environmental risks on a voluntary basis (Carter et al 2014). As such, although the FDA has 

no regulatory authority to regulate based upon environmental impacts, their ability to require 

Impact Statements by developers does serve as one measure to increase transparency and 

awareness of potential environmental harms derived from the pharmaceutical’s life cycle 

(Anderson 2013; Carter et al 2014). 

 Other regulatory bodies pertinent to synthetic biology research includes the 

Occupational Safety and Health Administration (OSHA) and the Recombinant DNA Advisory 

Committee (RAC). Via the Occupational Safety and Health Act of 1970, OSHA derives its legal 

authority to regulate workplace safety concerns that extend to research related to genetic 
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modification and synthetic biology (Mandel 2009; Pollack and Wilson 2010). Specifically, the 

Act’s Section 5 ‘general duty clause’ (Morgan and Duvall 1983), where employers: 

“shall furnish to each of his employees employment and a place of employment which 
are free from recognized hazards that are causing or are likely to cause death or serious 
physical harm to his employees” (OSHA Section 5(1)).  

While this clause has been applied to work related to the engineering of biological 

substances, its reliance on preventing against “recognized hazards” has limited the ability of 

OSHA to regulate against uncertain risk events to laboratory workers (Balbus et al 2006; 

Ramachandran et al 2011). Further, Section 8 requires the reporting of workplace accidents and 

potentially hazardous substances used within the workplace area (Ramachandran et al 2011).  

To account for these and other uncertain threats, OSHA established a series of rules via 

Standards Regulation 1910.1200 (OSHA 2006). Such classifications include toxic substances, 

harmful physical agents, electrical hazards, fall hazards, hazardous waste, infectious disease, 

dangerous atmospheres, and others, where genetic modification and biological engineering 

research has fallen under guidance based upon the potential hazards promoted by the research 

topic (i.e. viral research would fall under ‘infectious disease’). These rules have been applied to 

capture synthetic biology risks to workplace safety, although Balbus et al (2006) and 

Ramachandran et al (2011) note that 1910.1200 only loosely covers hazard protection from 

engineered biological substances until a given threat is proven plausible. 

 Relative to the RAC, this organization offers recommendations to the Director of the 

National Institutes of Health (NIH) relative to “basic and clinical research involving recombinant 

or synthetic nucleic acid molecules” (RAC 2016). Such guidance included recommendations that 

helped form the April 2016 “NIH Guidelines for Research Involving Recombinant or Synthetic 

Nucleic Acid Molecules”, which includes information for safety practices for basic and clinical 

research funded by the NIH and utilizing enabling technologies for synthetic biology (NIH 2016). 

Specifically, the NIH Guidelines:  

“detail safety practices and containment procedures for basic and clinical research 
involving recombinant or synthetic nucleic acid molecules, including the creation and use 
of organisms and viruses containing recombinant or synthetic nucleic acid molecules” 
(NIH 2016).  
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These Guidelines require that a “Biological Safety Officer is mandatory and shall be a 

member of the Institutional Biosafety Committee” for laboratories ranked at Biosafety Level 3 

or 4 that conduct relevant research using NIH funding (NIH 2016). 

 Given that these regulatory bodies are primary agencies that shall have a role in 

regulating synthetic biology applications, interview respondents were asked to identify their 

government’s relevant legislative instruments and regulatory bodies pertinent to 

pharmaceutical production in general and the process of synthetic biology development in 

particular. Figure 4 below includes the results of these interviews, with a general indication that 

all respondents were able to name at least one of the three regulatory agencies described 

above or a regulatory statute or guidance system applicable to synthetic biology regulation.  

Of the 17 US-based respondents interviewed for this study, 47% (n=8) were able to 

describe in detail both the agencies and legal authorities involved with the process, with 

specific descriptions regarding the responsibilities and powers held by such authorities relative 

to the process of synthetic biology development. Further, 29% (n=5) were able to identify an 

agency but not a particular law. Lastly, 24% (n=4) were able to identify the legislative 

instruments that capture a portion of the process of synthetic biology development, but were 

unable to go into detail regarding how the relevant regulatory agencies executed and upheld 

such authority granted to them by law.  Similar to the approach discussed in Kelle (2009), this 

general assessment indicates that there exists a general level of awareness of the regulatory 

authorities applicable to synthetic biology research amongst US-based respondents – where all 

respondents were able to identify and describe either the laws, regulatory bodies, or both 

factors that are relevant to the regulation of synthetic biology in the United States. 
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Figure 4. American Respondent Familiarity and Recognition of Synthetic Biology Regulation. 0 = no 

recognition, 1 = recognition of a piece of hard/soft law regulation but not an agency, 2 = vice versa, 3 = 

recognition of both hard/soft law regulation and relevant agencies. (n=17). 

 Another consideration that respondents were asked to offer tangential but relevant to 

existing regulatory authorities over synthetic biology research and development includes 

perceptions of how soon synthetic biology products will mature and commercialize for 

widespread consumption and distribution. Such discussion was speculative in nature and 

should not be taken as hard fact, where respondents were asked to only give a ‘best guess’ at 

when they thought that early cases of synthetic biology pharmaceuticals would enter 

commercialization. Despite such reservations, these questions do offer general insight 

regarding general beliefs of how quickly synthetic biology products may commercialize in a 

general sense.  

Using such ‘best guesses’, Figure 5 below shows that most respondents (n=11, 65%) 

believed that such products would begin the process of commercialization not sooner than 5 

years from December 2014 but prior to 2020, while equal proportions of respondents noted a 

belief that commercialization would occur either within the next 5 years, or more than 10 

years. In other words, such products (i.e. a vaccine with a modified viral backbone, a drug 

created with semi-synthetic components, and a probiotic containing engineered bacteria to 

improve gut health) would begin to be explored beyond a theoretical standpoint and enter into 

clinical trials. 
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For the former, US Respondent 6 (Lab Researcher) noted that “we’re already starting to 

see early commercialization, and I think this will only speed up the process for more 

synthetically-derived drugs.” Likewise for the latter, US Respondent 7 (Lab Researcher) argued 

that “despite recent progress, we’re still technologically very far away from building a fully 

synthetic cell that can perform reliably and efficiently, and it’ll take many millions of dollars and 

years of research across the globe to develop technology to a point where these issues 

evaporate.” This discussion was used as a segue to drive discussion related to evaluating 

existing regulatory options within the United States pertaining to synthetic biology, where 

weaknesses, gaps, and limitations in coverage may be reviewed within the lens of the fact that 

while synthetic biology innovation is currently underway. For pharmaceuticals, however, US 

Respondent 8 (Social Scientist) did note that “while commercialization may be years off, 

regulatory reviews [horizon scanning and/or updating relevant regulations] may occur sooner 

than we think […] maybe in two or three years, and we’ll need to have proper guidance to 

regulate these products before then.”  

 

Figure 5. American Perceptions of Distance in Time for Synthetic Biology Products to Enter Marketplace 

(n=17) (from December 2014) 

 

4.3. Regulatory Culture and Regulatory Decision Making in the United States 
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An important consideration to account for within each case includes understanding how 

each respective governments political and institutional circumstances drive relevant 

stakeholders to develop regulation and governance related to new scientific developments – 

synthetic biology included. For this chapter, this section includes a discussion of the regulatory 

system of the United States, with specific discussion related to (i) how existing regulatory 

frameworks have been applied (if at all) to cover the process of synthetic biology development, 

(ii) how different legal and institutional authorities influence behavior and regulatory change 

for synthetic biology, and (iii) considerations of what regulatory actions are probable based 

upon such regulatory history and institutional structure.  

 

4.3.1 History and Background of the Political and Institutional Structure of Synthetic Biology 

Regulation in the United States 

In order to review how elements of risk culture influence American regulation of 

synthetic biology, it is necessary to understand the political and institutional structure of the 

United States as it impacts regulatory change. For the former, power is shared both within the 

three branches that comprise the federal government, as well as between the federal and state 

governments (Smith 2004; Wilson 1961). This institutional framework influences policymaking 

by driving actors within the various branches of government to check the power and authority 

of each other and generally favor the status quo (Smith 2004; Wilson 1961). Laffont and 

Martimort (1998) argue that such relationships place high transaction costs for those seeking to 

develop policy reform in terms of legislation, executive orders, or court decisions. Given such 

transaction costs, Brady and Volden (1998), Epstein and O’Halloran (1999), and Cox and 

McCubbins (2007) argue that the power sharing and often adversarial nature of such 

policymaking often produces policy gridlock, where the development of new policy and law is 

slowed or halted by competing elements within Congress and/or between Congress, the Courts, 

and the Presidency. 

Such political competition affects the development of technology regulation in differing 

manners (Kessides 2004; Hammond and Knott 1996; Marchant et al 2013). For hard law, or 

those formal statutes and laws passed by Congress or Executive Orders signed by the President, 
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political combativeness and the sheer number of actors involved in passing a bill into a law 

indicates that significant time and political resources are often required in order to make such 

lawmaking efforts successful (Bowling and Ferguson 2001; Marchant et al 2013). A specific 

impediment includes divisions between Congress and the Presidency, where entrenched 

political differences may cause such politicians to refuse to collaborate with one another on the 

development of new regulatory law (Pauley 2012; Curry 2014; Brady and Volden 1998). Within 

such a system, hard law reform is difficult to achieve due to an environment that generally 

favors the status quo and resists rapid and/or frequent change to regulatory law (Curry 2014; 

Mandel et al 2014). 

This institutional structure also influences the implementation of new policy and law. 

Pressman and Wildavsky (1984) and Weaver and Rockman (1993) contend that adversarial 

relationships within a large and complex bureaucracy can derail and limit those policies and 

laws that are able to overcome transaction costs described by Epstien and O’Halloran (1999) 

and pass into law. Wilson (1989) asserts that bureaucracies and agencies tasked with 

implementing and administering policy reform are a product of their political realities, staffed 

by personnel with private agendas, and licensed for action by politicians with their own motives 

in mind. Further, Wright (2006) notes that bureaucracies are less concerned with brandishing 

political power, but rather operating as ‘network managers’ of the many complex actions and 

relationships within a particular area. Given such arrangements, Wright (2006), Pressman and 

Wildavsky (1984), and Wilson (1989) argue that bureaucracies often stymie or limit the 

intended development and execution of new policies and laws by executing their power in a 

manner inconsistent with the intentions of the lawmakers. Such concerns are exacerbated by 

unclear or confusing agency organization and distribution of power (Wilson 1989).  

 Given this discussion on technological hard and soft law in the United States, Section 

4.3.2 below details the risk culture within US technological regulatory policy  (see Lash 2000, 

Chapter 2). As will be argued further below, the political and institutional realities behind 

lawmaking and regulatory policymaking in the United States directly impact the approach to 

synthetic biology regulation that has been taken thus far by American regulators. Equally 

important includes the notion that these political and institutional factors shape the array of 
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regulatory options available for future regulation of the process of synthetic biology 

pharmaceutical development.  

 

4.3.2 Risk Culture in the United States 

 Looking here at the risk culture of the United States’ legislative bodies and regulatory 

agencies, this section details the political and institutional factors which influence the 

regulation of synthetic biology products. To accomplish this, this section begins by first 

discussing the historical path of regulation for chemicals and genetically-modified organisms – 

the history of which will be shown as an important guiding factor for synthetic biology 

regulation and governance in its current manifestation. Next, this section will discuss why 

options for future regulation are constrained by these political and institutional factors. Such 

discussion will be supplemented with discourse on how the risk culture of the United States 

directly influences expert responses within this dissertation’s interview data in Section 4.4.2.3 

below.  

 

4.3.2.1 Historical path of synthetic biology regulation 

 Reviewing first the historical path for regulation and governance for synthetic biology, it 

is important to note that legislative instruments pertaining to the regulation of chemicals and 

genetically-modified organisms have been and continue to be gradually extended to cover 

applications of synthetic biology, including pharmaceutical production (Carter et al 2014; PCSBI 

2010). Though specific regulatory items pertaining to synthetic biology will be discussed in 

further detail in Section 4.5.0 below, it is important to note here what hard and soft law has 

captured synthetic biology regulation and governance in its current iteration. One of these 

earliest precursors to synthetic biology regulation includes the TSCA, which is geared to 

regulate the production and sale of chemical materials and is administered by the EPA. Passed 

by Congress and signed into law by President Gerald Ford in 1976, TSCA represented at least 5 

years of negotiation and discussion between various elements of the federal government and 

chemical producers alike (EPA u.d.).  
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Specifically, discussion regarding the need for government oversight of chemical 

research, production, sale, and disposal was raised in 1971 by the Council of Environmental 

Quality (CEQ) under the Executive Office of the President, where CEQ officials urged for greater 

oversight in for toxic substances, with synthetic chemicals representing the bulk of uncovered 

producers (Schierow 2009; Markell 2014). CEQ explicitly noted that existing regulations were 

unsatisfactory relative to the protection of human and environmental health throughout the 

process of chemical production and use, particularly due to the fact that such regulation was 

reactionary to hazardous spill events and did little to mitigate the probability that future events 

would occur (Markell 2014). Such concern was echoed by the EPA when Deputy Administrator 

Johan Quarles argued that despite some authority by federal authorities to regulate substances 

such as with pesticides, food additives, and drugs, “most existing Federal authorities are 

designed to prevent harmful exposure only after the substances have been introduced into 

production” (Quarles 1975).  

 After their early comments in 1971, CEQ ultimately recommended to Congress and the 

President that the federal government should construct a comprehensive policy centered on 

the regulation and oversight of those chemicals produced, consumed, and disposed of within 

the United States (Schierow 2009). Specific recommendations by CEQ included the need to (i) 

establish premarket approval for those producers generating new chemicals or producing large 

quantities of existing ones, (ii)  premarket approval should require producers to test proposed 

chemicals and report information related to the risks, hazard, and exposure properties of such 

materials to a relevant government body, and (iii) information related to health risks posed by 

such chemicals to human and environmental health should be disclosed to the public (Markell 

2014). Within a backdrop of a rising incidence in cancer from exposure to industrial chemicals in 

consumer products (Markell 2014), Congress responded to CEQ’s statements by issuing 

separate bills in 1972 and 1973 related to chemical regulation (Schierow 2009; Markell 2014). 

Congress’ approach to designing formal regulation and oversight of potentially hazardous 

chemicals centered around three concepts, including (i) the need for robust premarket 

assessment of chemical risks along with a notation of available preventative measures to 

mitigate or manage such risks, (ii) the adopting of a holistic approach to risk assessment rather 
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than a fragmented one that considered only small portion of what causes such risks, and (iii) 

the promotion of data collection to guide risk assessments of existing and future chemical 

products (Markell et al 2014).  

 Even with widespread support within Congress, the codification of what eventually 

would become TSCA was stalled until 1976 due to disagreements of appropriate chemical 

screening and oversight measures enjoyed by the EPA under the new law (Schierow 2009; van 

Leeuwen and Vermeire 2007). However, growing environmental concerns such as the impact of 

chlorofluorocarbon (CFCs) to reduce global ozone as well as growing concerns of environmental 

contamination of industrial chemicals drove Congress to eventually pass the TSCA in 1976 

(Engel 2015). This effectively empowered the EPA to review and regulate chemical health risks 

throughout the life cycle of a novel chemical, where such substances are defined in TSCA as 

“any organic or inorganic substance of a particular molecular identity” as well as “any 

combination of such substances occurring in whole or in part as a result of a chemical reaction 

or occurring in nature” (15 U.S. Code § 2601).  

Two important considerations to account for relative to the passage of TSCA. The first 

includes the issue of ‘grandfathering’, where all chemicals in existence prior to TSCA’s passage 

in 1976 existing chemicals were considered to be safe for use (Ekey 2013; Lohmann et al 2013). 

This included approximately 62,000 chemicals, which were allowed to remain on the market 

without first assessing their toxic impacts (Wallinga 2008). The second issue includes concerns 

related to the burden of proof related to chemical safety, where EPA may regulate new 

chemicals that seek to enter the market under TSCA, it carries the burden of proof to test the 

safety of such chemicals (Wilson and Schwarzman 2011). Wilson and Schwarzman (2011) note 

that such a burden limits the EPA’s ability to effectively gauge risk for the thousands of 

chemicals they are required to review.  

 Even after its successful passage, TSCA implementation was frequently disrupted and 

challenged in the late 1970s and 1980s due to several factors, including: 

(i) the high cost of toxic impact assessments for thousands of proposed chemicals by the 

EPA (not including those already grandfathered),  
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(ii) limited available data by chemical manufacturers for various risk categories noted in 

TSCA (specifically a chemical’s identities, molecular structures, categories of use, 

amount manufactured and processed for each category of use, descriptions of 

byproducts across the product’s life cycle, environmental and health effects, number of 

individuals exposed, number of employees exposed and the duration of exposure, and 

manner or method of chemical disposal),  

(iii) the sheer quantity of what data is available for hundreds of thousands of existing 

and new chemical compounds, and  

(iv) uncertainty pertaining to environmental and human health outcomes associated 

with emerging chemical products (Markell 2014; Schierow 2009; van Leeuwen and 

Vermeire 2007).  

Wilson and Schwarzman (2009) particularly note data deficiencies of pre-manufacture 

notices (PMNs) provided by companies as being particularly problematic, with 85% of PMNs 

containing deficient health effects data. To help rectify concerns of limited health risk data 

being available for PMN submission, Wagner et al (1995) assert that models and comparisons of 

the novel substance with analogous chemicals as being approaches frequently used to gauge 

the degree of risk posed throughout the life cycle of a novel chemical to human and 

environmental health. 

 Despite its promise, the regulatory scope of TSCA has been decried as containing several 

weaknesses that limit its ability to regulate chemicals with potential hazards to human and 

environmental health (Wilson et al 2009). For starters, Vogel et al (2011) argue that TSCA has 

not been substantially updated since its passage in 1976,. The EPA has also been accused of 

inconsistency with how it regulates hazardous chemicals, such as with their failure to subject 

formaldehyde to TSCA regulatory requirements in 1982 (Jasanoff 1986) or the Office of the 

Inspector General’s statement regarding how trade secrets limit the ability of the EPA to 

conduct a thorough chemical risk assessment for proposed materials and otherwise have 

limited data by which to conduct a risk assessment with (Office of the Inspector General 2010). 

 Even in the midst of these limitations in addressing risk and conducting robust risk 

assessments of novel chemicals, TSCA has been noted as being one of the key legislative 
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instruments which capture the process of synthetic biology development. This is due to the 

ability of EPA under TSCA Section 5 to “assess potential risks from genetically engineered 

microbes and to require appropriate risk mitigation measures”, particularly where synthetic 

biology research involves the manipulation of plant genetic information and/or the 

modification of plants altogether (Carter et al 2014; Mandel et al 2014; Paradise and Fitzpatrick 

2014).  

 On June 7, 2016, the U.S. Senate passed the Frank R. Lautenberg Chemical Safety for the 

21st Century Act (Denison 2016). Known as the Frank R. Lautenberg Chemical Safety for the 

21st Century Act, these reforms sought to change the EPA’s responsibilities under TSCA via the 

following (Denison 2016): 

1) Shift from cost-benefit risk assessment to human and environmental health-only risk 

assessment, where non-health risk factors like cost are used to review only how to 

regulate, not whether to regulate, 

 2) Identify vulnerable populations at risk to exposure via chemical development, 

 3) Establish risk reviews of existing chemicals in active commerce, including those that  

were previously grandfathered-in to approved use without such a review, 

 4) Remove EPA’s previous Catch-22 requirement that EPA first have evidence of risk  

prior to testing, and 

5) Establish a ‘TSCA Implementation Fund’, where companies directly pay EPA for their 

risk evaluation. 

Such reforms were sought by Congress to resolve concerns of the EPA’s difficulties via 

TSCA to review and regulate new chemical candidates (genetically modified organisms 

included) due to issues of chemical grandfathering, the evidence-based Catch-22 noted above, 

and implementation concerns about EPA’s difficulties to execute their authority via TSCA 

(Denison 2016). 

Aside from TSCA, several other laws have been referenced as capturing the process of 

synthetic biology development, including the Plant Protection Act (PPA) and the FDCA. For the 

former, the PPA was introduced in 2000 to consolidate several statutes such as the Plant 

Quarantine Act, the Federal Plant Pest Act and the Federal Noxious Weed Act of 1974 
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(McHughen and Smyth 2008). Specifically, the PPA empowered the Department of Agriculture’s 

Animal and Plant Health Inspection Service (APHIS) to review any genetically engineered plan 

pest research and production, and conduct an environmental impact statement (EIS) related to 

the risks of such materials to human and environmental health if environmental risk is possible 

or uncertain (McHughen and Smyth 2008; Carter et al 2014).  

 However, similar to TSCA, APHIS’ authority via the PPA was criticized as containing 

loopholes that developers could exploit (Camacho et al 2014). Camacho et al (2014) and Pollack 

(2015) argue that APHIS’ regulatory authority under the PPA’s Sections 7414 and 7712 are only 

valid while the genetically-modified organism under discussion is genetically similar to an 

existing natural plant pest, where more artificially engineered plant pests would not qualify for 

oversight under the PPA. As such, the sections noted above would not enable APHIS to restrict 

or regulate the import and distribution of such genetically modified materials unless they had a 

clear effect upon plant pests. Likewise, Montgomery (2012) and Carter et al (2014) indicates 

that attempts to update the PPA to reduce oversight and tighten regulation for engineered 

plant pest organisms was discussed yet not implemented in 2008, with Quinn et al (2013) 

noting resistance by producers and certain government officials as strengthening such 

resistance to the implementation of the new rule. In this way, Carter et al (2014) notes the PPA 

as still containing regulatory loopholes that potentially harmful synthetic biology products may 

be able to exploit, although limited impetus exists for further regulatory development until 

synthetic biology products become more developed (see also PCSBI 2010).  

 For the Food, Drug, and Cosmetic Act of 1938, the Food and Drug Administration (FDA) 

is empowered with the capability of regulating, among other things, pharmaceutical 

development. The initial introduction of the law was driven by a reaction to dozens of patient 

deaths via sulfanilamide medication, and replaced the preexisting Pure Food and Drug Act of 

1906 (Borchers et al 2007). The law has been amended several dozen times since its passage in 

1938, including rules pertaining to the regulation of genetically-engineered material in FDA 

(1995) and soft law guidance in FDA (2002).  

Carter et al (2014) and Bar-Yam et al (2012) have also described the FDCA and NEPA as 

having the greatest coverage over synthetic biology pharmaceutical health risks, although also 
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notes several loopholes that may reduce the law’s efficacy as synthetic biology products begin 

to commercialize. One such loophole includes the inability of the FDA under the FDCA (Chapter 

5) or NEPA (Section 351, discussed above) to conduct field trials and risk assessment exercises 

of engineered plants until its pharmaceutical material has been submitted as a “investigational 

new drug” – effectively limiting pre-clinical regulation of synthetic biology pharmaceutical 

products (Winter 2016; Paradise and Fitzpatrick 2012; Carter et al 2014). Instead, Draft 

Guidance by FDA in 2002 noted that such preclinical assessment of plant development intended 

for use in pharmaceutical products would fall under the assessment of APHIS (FDA 2002). 

Further, the FDA has limited authority via Section 102 (c) of NEPA to regulate solely based upon 

perceived environmental harms such as with concerns to biodiversity that a synthetic biology 

pharmaceutical has the probability to disrupt (Carter et al 2014). 

Given the nature of federalism in the United States where power is shared between the 

national and state governments, state regulation must also be accounted for with respect to 

synthetic biology research and development. Generally speaking, each of the 50 state 

governments must meet the minimum standards indicated by national legislation and 

regulation. However, states may then pass legislation that strengthens such standards within 

their respective state borders (List and Gerking 2000; Warner and Shapiro 2013). Such state 

regulation may at times clash with national legislation, which may subsequently be contested in 

federal courts (Jones 2016). One subject pertinent to synthetic biology research includes state 

regulations on the labelling of genetically modified products (Reilly 2013). Specifically, 

Connecticut, Maine, and Hawaii have all passed regulation on the labelling of genetically 

modified products, with particular emphasis on food products or derivatives (Reilly 2013; 

Herling et al 2014). Further state regulation includes the importation and shipment of 

genetically modified organisms, where Idaho in the Idaho Plant Pest Act of 2002 sought to 

require permits and state regulatory approval for those who would seek to ship, import, or 

otherwise move genetically modified plant pest material within state boundaries (Hillson 2007). 

Further, local governments within states (cities, counties, etc.) are also empowered with 

the ability to pass and implement regulations that do not seek to invalidate or reduce related 

state and federal jurisdiction. One example includes the respective regulations of Mendocino 
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County, Marin County, Trinity County, and the Arcata City Government, which banned the 

propagation, cultivation, and development of genetically modified organisms within the local 

jurisdictions (Hillson 2007). Such local regulations are limited in power, however, where their 

implementation is affected by limited financial resources and a general subservience to state 

and national regulatory authorities. One example includes Maui County in Hawaii. Specifically, 

one of Hawaii’s county regulations (Maui) was invalidated by a federal court ruling in 2015, 

where the local government sought to introduce a “moratorium on the growing of genetically 

engineered crops until scientific studies are conducted on their safety and benefits” (Jones 

2016). The federal judge noted that such a regulation exceeded the authority of the local state 

and country governments (Jones 2016). 

 Of these three pieces of national legislation (TSCA, PPA, and FDCA) and their 

corresponding regulatory agencies (EPA, APHIS, FDA), common themes emerge related to how 

existing legislative and regulatory instruments regulate risk associated with emerging products 

such as with products derived from or containing genetically modified organisms. Among 

others, these include the notion that US hard law generally does not change quickly – 

particularly in the midst of uncertainty (Paradise and Fitzpatrick 2012; Mandel et al 2014; Carter 

et al 2014). Occasionally, regulators are able to overcome such impediments by employing their 

legislative and regulatory authorities in creative ways to address risk challenges such as where 

the EPA required notification by manufacturers of chemical substances contained in Significant 

New Use Rules (SNURS) via TSCA Section 5(a)(2) (Monica 2009). For cases where agencies do 

not have such leeway or do not have known solutions to extend their regulatory authority, 

changes in hard law are generally initiated in the aftermath of a triggering event related to 

substantial negative health consequences rather than with preemptive discussion about how to 

improve existing regulation for future threats (Borchers et al 2007; Markell 2014).  

 

4.3.2.2 Assessment of the risk culture influencing the regulation of novel compounds and 

scientific processes like synthetic biology 

 Discussion of the influences of the American regulatory system along with the political 

and institutional factors that sway regulatory change are important to better understand the 
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realities behind future regulatory change related to synthetic biology regulation. Below, this 

section centers on views of how the American risk culture related to the regulation of chemicals 

and genetically-engineered materials has come to be shaped by such political and institutional 

factors, which ultimately informs the lens by which American experts interviewed for this study 

understand the regulatory realities and possibilities by which synthetic biology risk may be 

perceived and governed.  

Among the first points to consider based upon the history of relevant synthetic biology 

legislation above includes the slow progress of legal and regulatory change to better cover risks 

pertaining to novel chemicals and genetically engineered products. Authors such as Vogel and 

Lynch (2001) and Jasanoff (1986) describe American regulatory decision making and 

management of technological risks in the 1970s and 1980s as “more contentious, 

confrontational and adversarial than in Europe”, with little incentive to engage with regulatory 

discussions in an informal and cooperative manner. Instead, Kelemen (2011) and Gouldson et al 

(2015) argue that the American regulatory system as being more ‘adversarial’, with various 

actors such as lawyers, courts, and combative politicians to resolve political disputes in a 

manner that removes incentive of policymakers to quickly resolve regulatory disputes or 

advocate for rapid change to the regulatory system. Instead, Volcansek (2014), Kagan’s (2009), 

and Kelemen’s (2011) discussion of adversarial legalism describes an American regulatory 

environment as containing: 

1) “detailed, prescriptive rules often containing strict transparency and disclosure 

requirements”, 

2) “legalistic and adversarial approaches to regulatory enforcement and dispute 

resolution”, 

3) “costly legal contestation”, and 

4) “active judicial review of administrative decisions and practice”. 

In this way, Kelemen and Sibbitt (2004) and Kelemen (2011) envision adversarial 

legalism in the United States as being notable for “enforcing legal norms through transparent 

legal rules […], empowering private actors to assert their legal rights.” Such a system is not just 

characterized by large volumes of litigation, but instead by an amalgam of growing judicial 
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power in the ability to resolve regulatory disputes as well as an adversarial rather than 

cooperative relationship between US government officials and their regulated entities (Kagan 

2009; Kelemen 2011). For the former, the notion of regulated entities turning to lawyers to 

dispute legal and regulatory developments, which, even if government regulators are successful 

in their endeavor, would cause substantial delays in the regulation-building process (Kelemen 

2011). For the latter, a lack of trust and inability for private, non-governmental, and 

governmental stakeholders to collaborate on the subject of regulation-building and best 

practices for product regulation can prevent the spread of information about risk across actors 

as well as limit the potential for a negotiated series of oversight that is neither excessively 

burdensome nor excessively limited – an outcome favorable to all parties (Farhang 2012; 

Kelemen 2011; Mandel et al 2014). Such instances related to genetically modified organisms 

and synthetic biology are described by Carter et al (2014) such as with the delay and lack of 

implementation to improve APHIS’ regulatory coverage of genetically modified plant pests.  

 Relative to adversarial legalism, Volcansek (2014), Kelemen (2011), and Kagan (2009) 

argue that legal requirements for transparency alongside formal and combative regulatory 

disputes within the courtroom contribute to a regulatory environment that makes it difficult for 

legislation to be passed and implemented. Kagan (1994) notes one of the major causes of this 

adversarial legalism in the United States as the result of lawyers and legal disputes being 

common within the regulatory development process, with Farhang (2012) and Kelemen (2011) 

particularly noting the rise of ‘mega-lawyering’ techniques where large firms engage in costly 

legal battles related to the rights of developers.  In this way, the United States’ regulatory 

system is one of high transparency and high reliance on formal mechanisms for legal and 

regulatory disputes, (Farhang 2012; Kagan 2009). 

 Aside from considerations of transparency and adversarial approaches to regulatory 

enforcement via legal contestation, an equally concerning development that complicates 

American regulation of emerging technologies like synthetic biology includes the presence of 

multiple actors in the hard law policymaking process. Via a transparent policy process with 

multiple adversarial actors, such a process can stymie the passage of new law and discourage 
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legislators and regulators from attempting to develop and implement new regulation (Brady 

and Volden 1998; Cox and McCubbins 2007; Howell 2003).  

In such scenarios, differing political agendas between members of the Legislative or 

Executive branches can contribute to situations where policy proposals are more subject to 

scrutiny and less likely to be passed into law (Howell 2003; Cox and McCubbins 2007). Such a 

situation feeds into the formal discourse and interactions in American regulatory reform noted 

in Farhang (2012), Volcansek (2014), and Kelemen (2011), where a rigid institutional framework 

and adversarial relationships between government officials contribute to situation where 

disputes are rarely resolved without financially and/or politically costly legal disputes.  

Such institutional policy gridlock may be alleviated by a triggering event (Markell 2014) 

or by unilateral Presidential action (Howell 2003), although these options are not without their 

own limitations and concerns (Brady and Volden 1998). For the former, reliance upon a 

triggering event (or a crisis where the public demands political action) places regulatory reform 

in an inherently reactionary manner, and can contribute to significant health harms to humans 

and the environment (Markell 2014; Schierow 2009). Likewise for the latter, unilateral 

Presidential action via signing statements and executive orders can contribute to relatively 

swifter policy change than with traditional hard law passed via Congressional approval, yet this 

option can also be politically costly and breed resentment and distrust for the President and 

their political party as acting outside of the formal policymaking process (Howell 2003; Brady 

and Volden 1998). Further, Cooper (2002) and Bradley and Posner (2006) note that such 

executive orders and signing statements are limited in scope, where major policy initiatives 

such as the creation of new regulatory agencies require Congressional legislation to approve.  

 

4.3.3 Applications to Interview Data 

 The values described within the risk culture of the American regulatory process 

described above (Section 4.2.2.2) are important factors to consider when reviewing comments 

left by American subject experts contacted for interview in this study on the subject of 

synthetic biology regulation. Keeping such institutional and political values in mind, several 

points of discussion were raised about the importance of dealing with such institutional and 
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political factors for synthetic biology regulation, including (i) preemptively avoiding the 

potential for policy gridlock, (ii) the adversarial nature of regulatory decision making for high 

uncertainty technologies, and (iii) working within a rigid yet transparent political system that 

limits options for regulatory reform on a federal level for any synthetic biology product. 

Inferred discussion on these points is indicative that US-based respondents are mindful of the 

political resources necessary to instill regulatory policy change within an adversarial 

environment as described in Volcansek (2014), Kagan (2009), or Kelemen (2011), and select 

comments are noted here to indicate an adherence to such risk culture. 

 The fear of regulatory reform getting caught in policy gridlock was a discussion point 

that framed several responses about the type of regulation needed to rectify perceived 

limitations of existing laws like TSCA or FDCA (a point of discussion also raised in Carter et al 

2014). When asked to describe appropriate measures needed to improve synthetic biology 

regulation, US Respondent 1 (Social Scientist) argued that “a big concern that we have to keep 

in mind includes how easy new regulations would be adopted, and sweeping reform is unlikely 

without a lot of evidence to back it up.” Further, US Respondent 2 (Social Scientist) discussed 

how “[American] regulatory reform moves slowly and can easily be held up in court. […] 

Governance for synthetic biology should navigate these issues by making use of existing 

regulations than fashioning brand new ones.” More cynically, US Respondent 3 (Social Scientist) 

noted that “it’s probably not a good time to advocate for significant regulatory change for 

synthetic biology, because it’ll be difficult to prove to lawmakers that it’s worth it to change 

existing laws like TSCA until there’s a clear reason to make such changes happen.” Given these 

and other comments noted throughout this Chapter, American interview respondents were 

generally mindful of the slow and complex timeline associated with regulatory evaluation in the 

United States – something that synthetic biology regulation would have to pass through if such 

regulation is found to be necessary in the future (Kelemen 2011; Carter et al 2014; Mandel et al 

2014). 

 Additionally, concerns related to adverse legalism in American regulatory politics can be 

inferred into interviewee responses on the subject of dealing with uncertainty for synthetic 

biology regulation and the ability to pursue a more adaptive regulatory framework moving 
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forward. From the perspective of government regulation, US Respondent 4 (Social Scientist) 

argued that “synthetic biology governance reforms will have to account for what is required by 

law for technological risk management […] and anything outside of these requirements would 

be difficult to implement.” Such concerns are noted by Kagan (2009), Kelemen (2011), and 

Vogel and Lynch (2001), which collectively argue of the importance of formal institutions and 

the ability of courts to resolve disputes – something that impedes efficient regulatory reform. 

US Respondent 5 (Social Scientist) may have described this point most explicitly when they 

stated “improvements to synthetic biology governance will probably be stepwise and 

incremental, because it’ll probably be unrealistic to replace established regulation quickly.” 

 These concerns overall led to comments by respondents about how best to improve 

existing legislative instruments and regulatory regimes given an adversarial culture around 

regulatory negotiation and reform as well as considerations of legal requirements that 

regulators must uphold when conducting regulatory assessments of synthetic biology products 

via TSCA (pre- and post-market environmental assessment of research involving modified plant 

microbes), FDCA, PPA, and others. American interview respondents generally advocated for 

improvements to existing regulatory frameworks, if any changes were described as being 

necessary and plausible to make within the current state of synthetic biology development. In 

sum, the risk culture of American regulatory discussion – one of adversarial relationships, 

reliance upon formal institutions, high transparency and multiple veto points in the policy 

process, and the high degree of political and financial resources needed in order to push 

forward regulatory change – shapes the debate regarding how synthetic biology should be 

governed now and in the future, with particular emphasis placed upon navigating a high 

visibility regulatory environment with combative players and incomplete information by which 

to advocate for regulatory change to a potentially skeptical audience (see Mandel et al 2014; 

Carter et al 2014; similar extensions for nanotechnology in Malloy 2012 and Marchant et al 

2013). 

 

4.4.  Synthetic Biology Research in the United States 
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 As noted within Chapter 3, some of the earliest scholarly discussion and research of 

modern synthetic biology began in the United States and Europe, with early research occurring 

in universities such as with the Massachusetts Institute of Technology, California Institute of 

Technology, the University of California, Berkeley, Carnegie Mellon University, and Stanford 

University (Endy 2005, Arkin 2008; Andrianantoandro et al 2006, Cameron et al 2014). As 

outlined within Chapter 3, the period between 2005 and 2010 included stepwise improvements 

to circuit and metabolic engineering, where biologists gained greater refinement and control of 

cellular inputs that are considered essential elements of synthetic biology research (Cameron et 

al 2014). This culminated in the 2010 announcement by the James Craig Venter Institute that 

the lab had fostered the creation of the world’s first ‘synthetic cell’ (Gibson et al 2010). While 

Chapter 3 describes in detail the history of synthetic biology research through 2015, it is 

important for this case to note here that research laboratories within the United States have 

been active with synthetic biology research in general and pharmaceuticals in particular since 

the field began to take more concrete shape in the early 2000s (Cameron et al 2014; Paddon 

and Keasling 2014). 

 Since the James Craig Venter Institute’s announcement in 2010, synthetic biology 

funding within the United States has been dominated by the Department of Defense, which 

accounts for approximately 67% of total research investment for US projects (Kuiken 2015) in 

agencies such as the Defense Advanced Research Projects Agency, US Army, US Navy, US 

Chemical and Biological Defense Program, and the Office of the Secretary of Defense (Kuiken 

2015). While many projects funded under the auspices of the Department of Defense are 

classified, the Woodrow Wilson International Center for Scholars noted available funding and 

general scopes of work for several hundred projects (Woodrow Wilson Center 2015), which 

includes funding for projects ranging from biofuels to pharmaceuticals to projects related to 

environmental remediation. Funding from the US government for these varied projects eclipsed 

$200 million in 2014 (Kuiken 2015), up from less than $20 million in 2008 for a collective total 

of approximately $800 million between 2008 and 2014 (Woodrow Wilson Center 2015; Kuiken 

2015). While it is difficult to estimate the degree of private funding invested into synthetic 

biology research, options for funding such research are likely to grow as companies come to 
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utilize synthetic biology for a variety of project development and proprietary innovation by 

2020 (Kuiken 2015; Mandel and Marchant 2014). 

 From the perspective of pharmaceutical development, United States synthetic biology 

research efforts have generated several projects related to developing drugs and therapeutics 

for applications such as with malaria, influenza, and diarrheal disease, among others (Paddon 

and Keasling 2014; Neumann and Neumann-Staubitz 2010; Khalil and Collins 2010). These 

efforts are also further detailed in Chapter 3, although one particular case of note includes an 

effort led by Jay Keasling at the University of California, Berkeley, who developed a method of 

producing artemisinic acid in order to foster more efficient and less costly measures of 

developing therapeutics for malaria victims (Paddon and Keasling 2014).  

 

4.5 Perceptions of Health Risk for Synthetic Biology Pharmaceutical Products 

 From an early stage, synthetic biology health risk within the United States centered 

around two primary concepts, including i) biosafety, and ii) biosecurity (Kelle 2009; White and 

Vemulpad 2015; Garfinkle and Knowles 2014). Within this dissertation’s interviews as well as 

discourse within Kuzma et al’s interview transcripts, these concepts were discussed as the 

primary considerations of the regulation of the processes associated with synthetic biology 

product development, and is consistent with such discussion within published literature (Kelle 

2009; Schmidt 2008; Wright et al 2013; Mukunda et al 2009). This section explicitly discusses 

feedback received from such interviews conducted with American experts on the subject of 

such synthetic biology health risks. In this vein, this section is further subdivided into (i) general 

discussion of synthetic biology risks, and (ii) synthetic biology risks across a pharmaceutical 

product’s life cycle. 

 

4.5.1 Conventional and Novel Risks from Synthetic Biology Pharmaceuticals 

 This Chapter focuses on responses from 17 experts, practitioners, and decision makers 

related to synthetic biology from the United States. Information about the backgrounds of 

these groups are noted below in Table 5. Such experts include those engaged in synthetic 
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biology laboratory research (9), as well as published scholars and researchers related to social 

science and implications studies for the field (8).  

 Further, interview respondents in this chapter have a PhD-level education in biology, 

chemistry, or similar field in science, or have a PhD in a social science background pertinent to 

the risk analysis and regulation of emerging technologies. Such interviewees also had a formal 

position of employment at an American institution at the time of interview, such as with a post 

doctorate or research professorship at an American university or a position at an American 

company based within the US borders. As noted in Chapter 2, these respondents were selected 

based upon their history of publications or conference presentations on the subject of synthetic 

biology. 

 

Table 5. Breakdown of Research Backgrounds of US-based Respondents 

  Lab Research Social Science/Implications Total 

Academia 5 3 8 

Government 2 2 4 

Industry 2 1 3 

NGO 0 2 2 

Total 9 8 17 

Table 5. Breakdown of Research Backgrounds of US Respondents. ‘Lab Research’ includes those 

respondents who work primarily in an experimental, laboratory-driven setting. ‘Social 

Science/Implications’ includes those respondents who work outside the lab and comment upon risk and 

regulatory needs for synthetic biology. 

 US-based respondents across all constituencies generally (16 of 17) noted that products 

derived from synthetic biology possess novel health risks that, while unlikely to occur in any 

individual case, are likely to occur in the aggregate as such technological development becomes 

more widely commercialized and used. Figure 6 below notes that aside from one respondent 

who argued that novel health risks from synthetic biology are so statistically unlikely that they 

should not be considered as plausible, the remaining 16 respondents did all state a belief that, 

with varying degrees of probabilistic occurrence, synthetic biology’s biosafety and biosecurity 

risks produced within the process of synthetic biology development were plausible and 

required the consideration of regulators for various products that may soon be commercialized 

as with pharmaceuticals. Of these, 5 (scored as ‘1’) respondents argued that such risks are 

implausible but are likely enough that it warrants regulatory review, while 9 argued that while 
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synthetic biology product risks are highly unlikely from a case-by-case perspective, it is very 

likely that they will occur throughout a given product’s life cycle as the use of such technologies 

becomes more widely available (scored as ‘2’). Lastly, one respondent did argue that the novel 

risks of synthetic biology are almost certainly bound to materialize through the vehicle of 

horizontal gene transfer, although probabilistically this will only occur on a very small number 

of cases for a given pharmaceutical product, and only where the end-product itself actually 

contains novel genetic material (scored as ‘3’).  

 

 

 

Figure 6. General Perceptions of Synthetic Biology Pharmaceutical Product Novel Risks by US 

Respondents. 0 = no novel health risk; 1 = possible but proportionally limited novel health risk; 2 = 

moderate chance of novel health risk across large populations; 3 = guaranteed novel health risk 

 Given these very general perceptions and beliefs regarding the probability of novel 

synthetic biology health risk, each interview respondent was asked to clarify (i) the type of risk 

that they describe as possibly occurring, (ii) the mechanism by which these risks generate 

negative health outcomes to humans or the environment, and (iii) where these risks occur 

along a given pharmaceutical product’s life cycle (discussed in the section below).  Looking at 

the first line of questioning, respondents were asked to offer their views on two general themes 

of synthetic biology risk that frequently arise within published literature, including biosafety 

and biosecurity (Kelle 2009; Schmidt 2008; Serrano 2007; Moe-Behrens et al 2014). Below, 
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Figure 7 indicates responses by interviewed US experts related to their perceptions of the 

probability that novel health risks to humans or the environment related to biosafety and 

biosecurity could respectively occur. Overall, the mean score of related to the respective 

probabilities of biosafety and biosecurity are 1.8 and 1.3, indicating that respondents 

considered novel biosafety risks as moderately likely while biosecurity risks were plausible but 

generally unlikely.  

Unpacking this further, interview respondents described biosafety risks as moderately 

likely due to the widespread nature of such research and historical examples of accidental and 

unintended exposure, containment breaches, and releases of such biological material in the 

United States and worldwide (Della-Porta 2008; Schmidt 2008; Altieri and Rosset 2000). A small 

number (4 of 17) contended that such risks are plausible but highly unlikely, and are consistent 

with discussion levied by de Lorenzo (2010) that the potential for novel biological material to 

interact with humans and the natural environment and produce noticeable health harms is 

unlikely given the current state of the science. However, the majority of respondents (12) noted 

that the potential for accidental release of such materials or the unintended exposure of novel 

genetic material to the natural environment in the midst of a controlled release was plausible 

and likely if carried out for various product development tests, pharmaceutical or otherwise. US 

Respondent 1 (Social Scientist) noted that “history isn’t on our side here […] we need to be very 

cautious about advancing [syn bio] research moving forward, because the potential for 

biosafety risks and the unique health consequences coming from such risks may negatively 

harm the lives of many.”  

Respondents were less certain of the exact consequences that may arise from such 

biosafety concerns, 8 mentioned the potential for “a potential rise in invasive species upon 

environmental contamination with [synthetic biology] material”, and “acute, possibly painful, 

and potentially life-threatening health risks to humans within [synthetic biology] 

pharmaceutical clinical trials.” Four academic respondents all stated that (specific to the case of 

pharmaceutical development), while the acute risks to individuals suffering from such side 

effects may be severe, the chances of this being a contagious phenomenon are highly 

improbable. 
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 While respondents were moderately concerned with the potential of biosafety risks to 

arise within the research and development of synthetic biology pharmaceuticals, 11 of 17 were 

less concerned about the potential for a biosecurity incident to accrue due to the actions of a 

deliberate or nefarious actor to use the principles of synthetic biology to develop a harmful 

virus or pathogen to damage human and environmental health. This concern, noted as the 

potential for ‘dual use’ applications of synthetic biology where technological improvements 

could be used for harmful applications, is noted in literature as a challenge to the regulation of 

synthetic biology (Tucker and Zilinskas 2006; Kelle 2013; Schmidt et al 2008; Marris et al 2014).  

However, 16 of 17 (94%) interview respondents argued that the potential for such 

events was highly unlikely due to the existing oversight structures in laboratories, the 

technological difficulty in fostering such a biological threat, and the degree of resources needed 

to produce such a harmful bacteria or virus. US Respondent 9 (Lab Researcher) noted that “I 

guess you can’t totally rule such a scenario out because it’s possible, but I can’t imagine such a 

situation being likely to occur across globe’s biological research capabilities, let alone within the 

United States.” Likewise, US Respondent 10 (Lab Researcher) stated that “we can’t ignore these 

threats on a policy level, but at the same time, truly malicious biosecurity threats via synthetic 

biology are a bit unlikely.” When asked to explain why, US Respondent 10 (Lab Researcher) 

stated that “do-it-yourself synthetic biology has opened up the potential for anyone to get 

involved with biological experimentation, but the synthesis and programming of biological 

material into a harmful and virulent pathogen is more complex than simple experimentation.”  

Similarly, US Respondent 5 (Social Scientist) noted that “existing oversight capabilities 

are fairly thorough to prevent something like bioterrorism in the United States […] where all 

biological material acquired by a lab is screened to make sure you aren’t weaponing smallpox, 

or something like that.” Further, US Respondent 11 (Lab Researcher) noted that “you’d need 

extensive resources to accomplish something like that […] like an extensive lab, biological 

samples, and lots of human assistance that just would not be easy to come by for a deliberately 

harmful exercise.”  
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Figure 7. United States Perceptions of Synthetic Biology Pharmaceutical Risks Associated with Biosafety 

and Biosecurity. Responses are coded on a scale from 0-3, where increasing values indicate greater 

likelihood of novel health risk. 0 = no novel health risk; 1 = possible but proportionally limited novel 

health risk; 2 = moderate chance of novel health risk across large populations; 3 = guaranteed novel 

health risk. (n=17). 

 After discussing the general probability that novel risks could arise from the process of 

synthetic biology development and incur negative health consequences to humans or the 

environment, respondents were asked about their perceptions regarding the mechanisms that 

could drive such risks to occur. From a biosafety perspective, the most consequential threat 

indicated by respondents includes ‘horizontal gene transfer’ (discussed in Chapter 3), which 

refers to the transfer of genes between organisms in a manner other than traditional 

reproduction (Wright et al 2013; De Lorenzo and Danchin 2008; Mukherji and van Oudenaarden 

2009).  

Horizontal gene transfer has been discussed as a potential mechanism by which novel 

genetic material may gain exposure to unintended human or environmental targets and 

contribute to the exchange of genetic material in a manner that could yield health harms for 

the unintended target (Endy 2005; Wright et al 2013; Cardinale and Arkin 2012). Specific to this 

point, 11 (65%) of respondents generally viewed horizontal gene transfer as the primary 

mechanism by which biosafety threats to humans and the environment could arise, with US 

Respondent 6 (Lab Researcher) noting that “the horizontal exchange of genetic information is a 
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known concept that, however unlikely, we should be concerned with.” When asked why, US 

Respondent 6 (Lab Researcher) replied that “the minute probability for artificial genetic 

material to interact with human or animal DNA is troubling, because the consequences of this 

could be troublesome […] because we would in effect be manipulating the natural environment 

and natural cellular interactions without an idea of what the harms could be.”  

 The other two commonly discussed concerns include (i) the potential for novel genetic 

material to break containment and proliferate in the natural environment, and (ii) a potential 

lack of efficacy of synthetic biology products to accomplish medical/therapeutic functions in 

vivo for a predetermined purpose. For the former, interview respondents raised discussion such 

as within Wright et al (2013) and Moe-Behrens et al (2014), which stated that there exists a 

potential for artificial genetic material to escape containment and proliferate within the natural 

environment, all outside the intended fate of the novel genetic material in question. US 

Respondent 12 (Lab Researcher) noted that “even with secure labs, you can’t rule out the 

human element […] and the potential for human error” – a concern noted by several US-Based 

respondents. US Respondent 13 (Lab Researcher) stated that, related to the process of 

synthetic biology development, “all it takes is one lapse of caution […] to generate a biosafety 

hazard event”, while US Respondent 2 (Social Scientist) argued more specifically that 

“particularly in less secure or modern labs, it is almost guaranteed that novel genetic material 

will unintentionally reach the environment as more and more countries conduct such research 

for drugs and other applications.” Further concerns here will be reviewed across a 

pharmaceutical product’s life cycle in the section below. 

 For the latter, Wright et al (2013) and Cardinale and Arkin (2012) have raised concerns 

that due to current limitations and control over circuit and metabolic engineering within the 

context of synthetic biology research, many products (pharmaceutical or otherwise) may have a 

high failure rate in terms of accomplishing their intended goal. US Respondent 6 (Lab 

Researcher) claimed that “the big issue here is that engineered cells may not be as reliable as 

conventional pharmaceuticals, and would contribute to economic losses and maybe even 

health concerns.” Other respondents noted similar concerns, although at least two respondents 

from academia, one from industry, and one from government all noted that issues with product 
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efficacy would likely be somewhat resolved as the technology further refines and develops. US 

Respondent 7 (Lab Researcher) stated that “once we are able to develop a more robust and 

reliable library of cellular inputs […] and gain greater control over cellular activity and behavior, 

we’ll make engineered cells more robust and reliable for purposes like with pharmaceuticals.” 

In the meantime, however, interview respondents described efficacy concerns associated with 

synthetic biology pharmaceutical products could yield financial and health harms, and reduce 

public confidence with such treatments due to the inability of such treatments to resolve or 

mitigate those conditions they are designed to treat. 

 Throughout interview discussion of biosafety risks and the mechanisms that may make 

such risks possible, all American interview respondents noted that an important distinction 

between novel and conventional health risks includes whether or not the pharmaceutical in 

question actually contains any novel genetic material within its final product. Specifically, 

respondents noted that for cases as with Keasling’s antimalarial or Novartis’ influenza vaccine, 

synthetic biology is used to foster the development and growth of pharmaceutical material that 

would be indistinguishable from their natural-occurring alternatives, leaving US Respondent 14 

(Lab Researcher) to state that “aside from early stage research, it’s unlikely that there are any 

serious novel biosafety threats from these products, […] conventional risk sure, like with 

adverse effects and side effects that you’d already see on labels of commercials, but probably 

no novel risks from exposure to genetically engineered cells.” Similarly, US Respondent 12 (Lab 

Researcher) noted that “as pharmaceuticals become more ‘synthetic’ in nature, there may be a 

greater risk for novel health consequences in terms of exposure to genetic material like with 

horizontal gene transfer […] but not likely with existing pharmaceutical candidates.”  

  Overall, US-based respondents did describe how biosecurity and biosafety risks in their 

various manifestations were plausible and should be addressed by regulatory authorities. 

However, they did indicate that biosafety concerns were far more plausible and consequential, 

due to the technological and oversight limitations that respondents described as making 

biosecurity risks highly unlikely to come to fruition. Instead, biosafety risks were viewed as less 

avoidable due to the potential for them to arise ‘accidentally’ or ‘serve as the result of 

unintended and unforeseen exposure to the natural environment’ – something that has been 
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discussed in literature for decades (Rhodes 2009; Zaki 2010; Kaufman et al 2007). Specific 

concerns here include the need to promote lab security and ensure that private organizations 

are following established requirements to protect against such biosafety concerns.  

 

4.5.2 Pharmaceutical Product Risk Across Life Cycle 

 After describing general perceptions of synthetic biology pharmaceutical risk 

probabilities as well as the mechanisms which make such risks possible, each interview 

respondent was next asked to discuss their perceptions of where risk may occur throughout a 

generic pharmaceutical product’s life cycle. This exercise was repeated for each of the three 

cases, where the life cycle stages discussed include Research, Manufacturing, 

Commercialization, and End-of-Life Disposal (consistent with considerations made by Bates et al 

2015 and Mohan et al 2012, where emerging technology risk is considered via these life cycle 

stages). Results specific to United States respondents are described below. The purpose of 

reviewing perceptions of novel risk across a pharmaceutical product’s life cycle is to gain a bit 

more insight into where such risk may be probabilistically likely. Further consideration includes 

where such risks might be more consequential, which in turn may indicate where 

improvements or extensions of existing regulation may be necessary relative to activities taking 

placing within those higher risk life cycle stages. 

 Figure 8 and Table 6 below indicate the collective perceptions of US-based respondents 

relative to the likelihood that a life cycle stage may experience a risky event (or those events 

where negative health consequences may possibly arise due to the use of engineered genetic 

material) within the development and use of a synthetic biology pharmaceutical. Generally 

speaking, respondents collectively argued that the ‘End-of-Life’ (16 of 17 respondents indicated 

high risk potential) and ‘Research’ (12 of 17 respondents) stages were those with the greatest 

potential for novel biosafety risk, while ‘Manufacturing’ (7 of 17 respondents indicated high risk 

potential) and ‘Commercialization’ (9 of 17 respondents) possessed lower perceived 

probabilities for such novel risk. Each life cycle stage is individually discussed below, yet it is 

important to note up front that responses within this life cycle exercise are coded based upon 
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the respondent’s belief in how likely novel health risk may occur within a given life cycle stage, 

as well as some indication of how and/or why this risk event arises.  

 

Figure 8. United States Perceptions of Synthetic Biology Pharmaceutical Biosafety Risks Across Product 

Life Cycle. Blue = No Risk; Orange = Unlikely yet Possible Risk; Gray = Moderately Possible Risk; Yellow = 

Likely Risk 

Research Manufacturing Commercialization End-of-Life 

1.8 1.3 1.4 2.1 

Table 6. US-based perceptions of risk likelihood scores for across a synthetic biology pharmaceutical’s 

life cycle (0 = no risk likelihood, 3 = maximum risk likelihood) 

 Looking first at the life cycle stage with the greatest degree of perceived novel risk 

probability, the ‘End-of-Life’ life cycle stage was described by all US-based respondents as 

potentially containing some degree of risk to humans or the environment. This concern is not 

necessarily unique to synthetic biology, however, where Breggin and Pendergrass (2007) and 

Gottschalk and Nowack (2011) note similar concerns with nanomaterials and other emerging 

technologies. The primary concern raised by respondents here specifically centered on 

environmental health concerns, where all 17 respondents described that there exists a varying 

degree of potential for novel health risk to occur upon the disposal of synthetic biology 

pharmaceuticals, with particular worry placed upon the unlikely potential for horizontal gene 

transfer to allow for the transmission of novel genetic material to the natural environment as 

well as the potential for engineered cells to act like an invasive species and proliferate in the 

environment. “There are a few avenues for these products to generate risk upon disposal” said 
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US Respondent 6 (Lab Researcher), “with the two most likely including aqueous disposal […] or 

the typical disposal of these products into a landfill.” US Respondent 15 (Social Scientist) argued 

that “we already have concerns of certain drugs proliferating within the water table by being 

flushed down the toilet or excreted […], and I think it’s premature to rule out the possibility that 

there isn’t a risk of this happening for synthetic biology drugs.”  

When asked to describe what types of health risks may occur should this scenario arise, 

US Respondent 12 (Lab Researcher) stated that “you’d be exposing living organisms (human, 

plant, and animal) to novel genetic material that, through horizontal gene transfer, has a tiny 

probability of allowing synthetic DNA to spread into their natural host.” Later in the interview, 

US Respondent 12 (Lab Researcher) continued by saying “while the risk to any one person, 

plant, or animal is fairly unlikely, when you commercialize these drugs and make them available 

in millions of doses, side effects and exposure hazards are going to arise.” US Respondent 7 

(Lab Researcher) further argued that “risks occurring post-disposal are those we’ll have the 

greatest difficult monitoring, and while it is unclear the consequences these risks may have, we 

have to bank on harmful scenarios happening fairly soon after some of these drugs reach the 

market.” Overall, 14 of 17 respondents stated that end-of-life risks have a moderate to likely 

probability of occurrence, which, depending on the type of drug and its degree of 

commercialization, would be exacerbated by “public dissemination of these drugs and vaccines 

rather than their controlled distribution and use by a physician or nurse.”   

 Similar to the ‘End-of-Life’ life cycle stage, the ‘Research’ stage was noted by all 

respondents as possessing some probability of novel biosafety risk to humans or the 

environment. The main point of discussion raised by all respondents with varying degrees of 

severity centered on laboratory safety and the ability to effectively contain novel biological 

material. For 12 respondents who described such risks as moderately or very likely to occur, the 

general consensus was that due to the potential for synthetic biology research to be 

widespread outside of modern laboratories and strict experimental protocols, the potential for 

novel genetic material to either gain accidental exposure to researchers or escape containment 

and proliferate in the environment was a strong possibility that cannot be ignored from a 

regulatory perspective. “We can impose rigorous biosafety protocols” US Respondent 1 (Social 
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Scientist) noted “yet there’s always going to be a chance for mistakes or downright failures in 

safety to prevent some of these synthetic organisms from breaking containment.” When asked 

to explain why such a scenario was likely to occur, US Respondent 1 (Social Scientist) further 

argued that “this [synthetic biology] research is going to go global, and won’t be conducted only 

at BSL-4 (Biosafety Level 4) facilities. Carelessness, ineffective containment measures, simple 

accidents that occur one out of a thousand times a veteran bench scientist conducts research 

[…], these biosafety risk incidents are bound to occur.”  

While each of the 17 respondents did note some agreement with this statement, 4 

respondents specifically noted that the consequences of such incidents were questionable, 

such as where US Respondent 16 (Lab Researcher) stated that “honestly, while I think biosafety 

risks may arise within the Research phase of product development, it’s far more likely that the 

synthetic organism would die off fairly quickly.” US Respondent 10 (Lab Researcher) went 

further for this line of discussion, stating that “as cells become increasingly synthetic, they’ll 

likely be less able to proliferate outside of ideal circumstances and without supervision […], 

meaning the consequences of biosafety incidents may be minimal in the rare event that they 

occur.” Overall, the collective respondents gave varying responses relative to the consequences 

of biosafety risk events at the Research life cycle stage, although most noted that risks of severe 

injury or death to humans or the extensive proliferation of an invasive engineered organism 

would be highly unlikely given the present state of science. Further, 12 of 17 respondents noted 

that the relative consequences of such risks varied based upon the material that researchers 

engineered, where “engineered vaccine material could be risky to human health on one hand, 

but in other cases less so due to the nature of the virus.” The majority opinion was that, 

particularly for emerging products as with artemisinic acid or an influenza vaccine, there exists 

a nonzero likelihood that biosafety events may occur at the Research phase, yet the novel 

health risks associated with these events would generally be minimal and short-lived (however, 

conventional health risks due to exposure with harmful biological materials would still pose 

risks to researchers). 

 While most interview respondents did note that the ‘Commercialization’ life cycle stage 

had the potential to produce novel biosafety risk, the collective general perception by 
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respondents was that the likelihood of such events occurring was highly unlikely. As with the 

other life cycle stages, the potential for such novel risk hedged on the need for novel genetic 

material to actually reside within the end-product pharmaceutical, where several respondents 

argued that existing applications and proposed products for synthetic biology pharmaceuticals 

do not. US Respondent 11 (Lab Researcher) stated that “right now, synthetic biology is more of 

a production process, meaning that it allows us to better produce drugs, rather than make 

entirely synthetic ones. This will come later, but with no novel gene sequences in a drug 

candidate, it’s hard to argue that something like horizontal gene transfer or novel health risks 

could occur.” US Respondent 10 (Lab Researcher) argued that “without novel genetic material, 

novel health risk is essentially impossible”, where “at that point, we’re only concerned with 

conventional risks that are well covered by the FDA.” Futuristically, several respondents noted 

that “the potential for novel health risk could change at the Commercialization life cycle stage”, 

with the primary reason being that vaccines and drugs containing increasingly synthetic 

pharmaceutical products will be available for public consumption. US Respondent 1 (Social 

Scientist) noted that “when these engineered products become available, we’ll have to consider 

whether our governance capabilities are adequate to cover the potential for gene transfer or 

harmful side effects in vivo.” For the foreseeable future, however, the general consensus by 

respondents is that novel health risks are possible but unlikely, and the consequences of such 

risks are likely to be minimal and short-lived. 

 Last, the ‘Manufacturing’ life cycle stage was generally described by most respondents 

as having the least probability of novel biosafety risk to humans or the environment (where 

only 7 of 17 respondents noted concern over the potential for risk events at this stage). This is 

not to say that this life cycle stage is entirely devoid of health risk – respondents noted that 

there exists significant potential conventional risks to those employed with the task of 

producing synthetic biology materials – yet the general perception amongst those interviewed 

centered on the notion that novel biosafety risks here were plausible yet highly unlikely to 

occur. US Respondent 7 (Lab Researcher) stated that “in the United States and Europe, facilities 

are generally well equipped to protect workers during the pharmaceutical production process, 

and I don’t think that synthetic biology products will be much different.”  
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This sentiment was shared by US Respondent 10 (Lab Researcher), who argued that “the 

exposure scenarios are possible, but biosafety protocols are fairly robust here and various 

pieces of automation and redundancy limit the potential for human error in the manufacturing 

process for drugs.” When asked to explain their opinion, US Respondent 10 (Lab Researcher) 

further articulated that “generally speaking, biosafety is taken very seriously, but I think there 

might be more potential for human error at the Research phase than in Manufacturing, 

because there’s less direct human interaction with novel and potentially unstable and harmful 

biological material”, and “by the Manufacturing stage, a lot of uncertainty related to novel risk 

of these products will be reduced by testing and trials […], which would allow for more 

redundancy and safety precautions to be taken prior to production.” While 7 respondent did 

state that novel risks are possible at the Manufacturing stage, the general belief across the field 

and explicitly argued by 8 respondents is that these exposure pathways are controlled through 

well-established safety protocols and machines, as well as the general notion that potentially 

harmful phenotypic expression by engineered cells or vaccines would be mitigated or 

eliminated prior to mass production. 

 As with the general discussion of biosafety and biosecurity risks noted in the previous 

section, respondents noted that the potential for novel biosafety risk to occur within any life 

cycle stage depends significantly upon whether or not a pharmaceutical product actually 

contains any artificial genetic material. Specifically referring to the particular examples of 

Keasling’s antimalarial and Novartis’ influenza vaccine candidate, various respondents stated 

that “the potential for novel risk heavily differs based upon whether the synthetic biology 

product contains novel genetic material, or is produced via novel manufacturing techniques.”  

For these and other early cases of synthetic biology research and development, novel 

risk may not be a significant factor of concern due to the lack of such novel genetic material in 

the end-product (Tait 2012; Kuzma and Tanji 2010). Ultimately, US Respondent 8 (Social 

Scientist) noted that “the inclusion of novel genetic material within end-product 

pharmaceuticals is what would trigger the need for stronger governance – otherwise it 

probably isn’t necessary.” Specific concerns noted by the respondent centered on the need for 

stronger pre-clinical trial regulation and approval of potential pharmaceutical candidates, 
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particularly in relation to environmental impacts. Below, the next section discusses (i) existing 

hard and soft law regulation to capture synthetic biology research as well as (ii) perceptions by 

interview respondents regarding perceived weaknesses within such frameworks.  

 

4.6 Regulatory Mechanisms Related to Synthetic Biology in the United States 

 Synthetic biology regulation within the United States has been widely discussed within 

published literature, including subjects of (i) the regulatory bodies currently able to govern 

synthetic biology product development, and (ii) the specific regulatory mechanisms that may or 

may not be capable of regulating various facets of such products. (Mandel et al 2014; Carter et 

al 2014; Kelle 2009). This section discusses both the actors responsible for executing such 

regulation alongside the regulatory and/or legal authority that empowers such organizations to 

engage in such activity, where such an understanding of the regulatory frameworks currently 

utilized within the United States is important in order to review where, if at all, potential 

limitations or gaps within such regulation exists relative to synthetic biology products such as 

with pharmaceuticals.  

 

4.6.1 Evaluating Existing Regulatory Capabilities within the United States 

 After discussing the various governmental agencies and hard/soft law pertaining to 

synthetic biology, interview respondents were next asked to offer their impression of (i) how 

capable existing hard/soft law are with respect to adequately regulating synthetic biology 

pharmaceutical products, and (ii) indicate what changes, if any, may be helpful to bolster or 

improve such regulation in order to better provide guidance for synthetic biology research 

companies and similar groups. Nearly all (16 of 17) respondents indicated that, while existing 

regulation captures some of the risks associated with synthetic biology pharmaceutical 

development, certain reforms to formal regulation or at least some guidance/best practices 

would be needed in order to adequately protect against potential risks (this stream of logic is 

further described in Mandel et al 2014). Figure 9 below reflects such discussion, where each 

respondent was asked whether they felt that new legislation/regulations were needed to meet 
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such challenges, whether improvements of self-regulation would be adequate, or whether 

existing regulation was appropriate and that no further regulation would be needed. 

 The largest group of respondents (n=11, 65%) argued that formal legislative instruments 

and agency power could be required in order to mitigate and control potential activities that 

have the potential to produce novel risks where artificial genetic material comes into contact 

with humans, animals, or the environment. Several respondents echoed concerns raised by 

Carter et al (2014), which articulated that the FDA may not retain the capability to regulate 

engineered pharmaceutical products within early trials that are derived from plant products. 

These respondents argued that, given the limitations of the FDA’s ability under Section 351 of 

the PHSA and Chapter 5 of the FDCA to prevent the entry of pharmaceutical products with 

potential risks to environmental health (which Carter et al 2014 indicates as being a significant 

precursor for many drug prototypes), extensions of pre-market approval by the FDA are 

necessary to mitigate potential risk. US Respondent 3 (Social Scientist) argued that “The FDA is 

going to be the organization in power to regulate syn-bio pharmaceuticals […] and they’ll need 

the capability to adapt to technological capabilities as we’re better able to engineer cells and 

viruses for medical purposes.” US Respondent 4 (Social Scientist) stated that “The FDA is 

currently the major pre-market approval authority for synthetic biology-derived drugs, and 

regulatory guidance is needed to close loopholes about what types of trials they can and cannot 

review […] because they should be involved in all early stage medical trials.” These comments 

correspond to the need for regulatory reform to bolster the FDA’s ability to engage within pre-

market approval of early stage synthetic biology pharmaceutical research (Mandel et al 2014).  

 Likewise for the EPA and APHIS, respondents argued that these regulatory agencies 

must have clear extensions of their existing capabilities to conduct post-market assessment of 

the effect that pharmaceuticals with artificial genetic material have upon the environment. US 

Respondent 1 (Social Scientist) argued that “While EPA under TSCA and APHIS under the PPA 

[Plant Pest Act] have post-market review capabilities for some synthetic biology products […], 

their ability to conduct post-market assessment and approval of pharmaceuticals over 

environmental risk concerns remains uncertain and potentially nonexistent with current 

governance.” While FDA maintains rigorous pre-market assessment via clinical trials with only 
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some lapses in coverage discussed in the paragraph above (Carter et al 2014), US Respondent 2 

(Social Scientist) stated that “post-market assessments for environmental health are absolutely 

necessary for syn-bio pharmaceuticals, but aren’t rigorously defined.” When asked to explain 

why this is a concern for regulators, US Respondent 2 (Social Scientist) continued by stating that 

“we [government regulators] need to be able to monitor for potential environmental risks such 

as environmental gene transfer, however unlikely these risks are, […] because we just don’t 

know enough about how these risks could impact environmental health.” In this way, several 

respondents noted that clearly outlining the ability of APHIS, EPA, or some other agency to 

conduct a post-market environmental risk assessment and evaluation process would help 

further protect the natural environment from long-term exposure to novel genetic material and 

the consequences thereof, where current authorities geared towards the post-market 

assessment of genetically-engineered pharmaceutical products are limited from the perspective 

of environmental risk assessment. 

 Frequent discussion centered on the need to establish a common series of terms and 

definitions that could be clearly included in future regulation of genetically-modified materials. 

US Respondent 1 (Social Scientist) noted that “without a regulation or law clearly referencing 

‘synthetic biology’, there exists potential loopholes or gaps in coverage where best practices 

aren’t enforced and these novel risks could arise.” Such concerns are not unique to synthetic 

biology, where Azoulay and Buonsante (2014) described similar concerns with nanotechnology. 

However, Carter et al (2014) and Mandel et al (2014) note that potential loopholes and gaps in 

coverage are important for synthetic biology regulation as they could potentially enable the 

release, without thorough regulatory reviews, of artificial genetic information that could harm 

human and environmental health. Most did not describe this as being a complicated action, but 

an important one where it would “clearly outline exactly what authority synthetic biology falls 

under, and the expectations of governance that producers would expect to operate under.”  
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Figure 9. Perceptions Amongst US-based Respondents Regarding the Regulatory Needs for Synthetic 

Biology Research and Development 

 A concern raised by 11 of 17 interview respondents related to the ability of regulatory 

authorities to cover synthetic biology research includes the lack of quantitative information to 

drive regulatory decision making in a manner consistent with the regulation of chemical 

products. Such concerns are similar to other technologies like nanotechnology (Breggin and 

Carothers 2006), where limited information on nanoparticle hazard, exposure, and health 

consequences complicates regulatory decision making. US Respondent 5 (Social Scientist) 

argued that “The President’s Commission of the Study of Bioethics in 2010 (PCSB 2010) was 

quite clear that preemptive regulation may be unnecessary and unhelpful, and I personally 

believe that working with scientists in the field to establish best practices may be a better path 

forward than new regulation or law.” US Respondent 15 (Social Scientist) stated that 

“conventional authorities seem to be working thus far, and self-governance activities like IRBs 

[internal review boards] and other non-governmental groups would be able to adequately 

review technological risk and understand the actual implications of such risk.”  

These statements reflect the general attitude of these respondents, where they all 

articulated a belief that conventional regulatory authority outlined by the FDA, APHIS, and EPA 

alongside formal additions of IRBs and similar self-governance review boards are all that is 

needed for synthetic biology research to be conducted responsibly unless a realistic risk 

scenario is proven plausible. This mentality was rejected by the 69% of respondents who 
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argued for enhanced national regulation, US Respondent 8 (Social Scientist) stated that “the 

precautionary principle likely applies to synthetic biology […], particularly given all of the 

unknowns surrounding how it may affect humans, animals, and nature.” 

 Only one respondent (US Respondent 5 – Social Scientist) argued that no new regulation 

of any kind was necessary to assess and govern synthetic biology health risks. Discussion raised 

within that interview centered on a belief that “the more synthetic a cell is, the less likely that it 

will propagate in nature and incur health harms”, and “the probability as we currently 

understand things of horizontal gene transfer occurring […] is essentially zero – basically a 

rounding error.” Rather than institute new regulation, the respondent argued instead that 

existing legislative instruments and regulatory authority dedicated to the review and 

management of genetically engineered organisms effectively captured much of the process of 

synthetic biology development, and that any new regulation would unnecessary impinge upon 

technological development moving forward. Specific to pharmaceuticals, the Respondent 5 

stated that “the FDA’s regulations for clinical trials are capable of reviewing health risks of 

synthetic biology drugs […], although greater stress will need to be placed upon early stage pre-

assessment of such drugs prior to Stage 1 Clinical Trials.” 

 Overall, however, most US-based subject experts argued that some improvements to 

synthetic biology regulation are required to monitor and assess novel health risks associated 

with the potential risk, hazard, and exposure effects related to synthetic biology 

pharmaceutical products.  The reasons for this are varied, but as articulated above, generally 

center on concerns that the exposure of humans, animals, or the natural environment to 

artificial genetic material could yield novel health risks at various stages of a given 

pharmaceutical’s life cycle. Frequently referenced include the need to improve pre- and post-

market assessment of such products to review the potential and health consequences of such 

risks occurring, as well as the need to reduce confusion and uncertainty related to which 

regulations apply to synthetic biology by clearly adding the term to various regulations’ list of 

defined terms and included processes which are regulated by the FDA, APHIS, EPA, or others. 

Given the discussion of risk probability above, the respondents further noted that additional 

scrutiny be placed at the Research and End-of-Life life cycle stages of pharmaceutical product 
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development, which corresponds with the need to improve and clarify pre- and post-market 

regulatory reviews and approval.  

 Aside from formal government regulation, industry stakeholders in the United States 

also have an important role relative to the governance of synthetic biology. Via discussion 

noted in Section 1.4.2, options here include, among other things (Mandel et al 2014): 

 i) NGO-Industry rule-setting partnerships, 

 ii) An ‘issue manager’ via a multi-stakeholder coordinating body amongst key industry  

stakeholders, 

iii) An international science advisory board on synthetic biology, and 

iv) Public-Private partnerships between government agencies and industry stakeholders. 

Relative to NGO-Industry partnerships, Mandel et al (2014) state that such soft law 

partnerships have arisen in the United States such as with the case of nanotechnology. One 

example here includes the partnership of the Environmental Defense Fund and the DuPont 

Corporation (Environmental Defense Fund-DuPont Partnership 2007). Specifically, the 

partnership sought to provide a framework available publically to nanomaterial developers that 

included evaluation procedures and metrics for products composed of or produced via 

nanoparticles (Environmental Defense Fund-DuPont Partnership 2007). Mandel et al (2014) 

noted that such a framework may be extended to synthetic biology, where the balanced 

assessment of industry and NGO risk perception and analysis would be seen as appropriately 

accounting for both risk and benefit for synthetic biology product development. 

A further approach with previous use in the United States includes public-private 

partnerships. As with above, an example of this includes nanotechnology, where the 

NanoSafety Consortium for Carbon was formed to generate knowledge and safety data (Monica 

2010b). Such data is intended to facilitate EPA guidance and best practices for carbon 

nanotechnology products (Mandel et al 2014).   

Four interview respondents directly advocated for self-governance for synthetic biology 

product development – all of which referred to public-private partnerships. Such partnerships 

would include voluntary membership from key stakeholders in industry alongside agencies like 

the EPA, APHIS, or FDA. Such partnerships would directly facilitate information-sharing and best 
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practices to mitigate risk as described by Abbott et al (2012), which Respondent 15 (Social 

Scientist) referred to as “an avenue to help govern synthetic biology quickly and efficiently 

without waiting for new law to be created.” 

 

4.7 Discussion 

 Over the course of interviews with US-based respondents, several important themes 

emerged related to synthetic biology and pharmaceutical regulation. First included a belief that 

biosafety risks are possible yet checked by existing regulation pertinent to synthetic biology 

biosafety and biosecurity concerns as with Chapter 5 of the FDCA, particularly “when synthetic 

biology research becomes more and more common across the globe, and labs with dubious 

safety records become engaged with such research.” These risks are noted by US-based 

respondents as being somewhat likely to occur, yet their consequences may be minimal and 

more problematic from the perspective of environmental health than risks to human health. 

Likewise, biosecurity risks, or deliberate attempts to utilize synthetic biology to incur harm to 

humans or the environment, are perceived as being plausible but unlikely, with various existing 

oversight mechanisms and resource requirements preventing such behavior from arising. 

Looking across the life cycle of a pharmaceutical product, the probability that such novel 

biosafety risks may occur was viewed as greatest in the Research and End-of-Life stages. 

 Looking next at discussion of regulation, US-based respondents generally sided with the 

notion that improvements and additions to existing regulation is necessary to both clarify how 

synthetic biology pharmaceutical production will be governed, while also strengthening pre- 

and post-market assessment capabilities by agencies such as the FDA and APHIS. Such 

improvements would correspond with perceived risks at the Research and End-of-Life life cycle 

stages, and would help reduce potential harms to human and environmental health while 

promoting best practices to help the technology continue to innovate for emerging applications 

in medicine. A small number of respondents (4) did argue that self-governance promotion and 

industry compliance with existing regulations may be the best option forward to prevent the 

imposition of exceedingly burdensome national regulation on a growing field, particularly given 

that existing regulatory regimes already capture synthetic biology biosafety and biosecurity 
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concerns. However, 11 of 17 respondents argued that at least some changes were needed 

based upon perceived loopholes and gaps in coverage as discussed within scholarly literature or 

described via the personal opinions of the respondents individually. 

 Synthetic biology research and development will continue to grow within the United 

States, with research eclipsing $120 million annually as of 2014 with indications that such 

growth will only continue for the near future (Kuiken 2015). Given this drive to innovate, 

establishing regulation to cover the process of synthetic biology development will be important 

in order to protect against novel risks associated with the exposure of novel genetic material to 

humans and the environment. This case demonstrates how the collective opinion of subject 

experts may help to better understand (i) the relative probability and consequences of novel 

health risks occurring, (ii) the mechanism or method by which such risks will propagate, (iii) the 

hard and soft law regulatory mechanisms applicable to synthetic biology, and (iv) perceived 

limitations and suggestions to improve such regulation moving forward.  
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Chapter 5: 

Synthetic Biology and Risk Regulation – The Case of the European Union 

 

5.1 Introduction 

 Synthetic biology is a research topic that has been widely discussed by European 

scholars with respect to the technology’s benefits alongside the risks that may accrue within 

the process of development (Kelle 2007; Torgersen 2009; Molyneux-Hodgson and Meyer 2009; 

Bhutkar 2005; Pei et al 2011; Oldham et al 2012; Konig et al 2016). However, while the United 

States and Europe are both confronted by shared exposure to emerging concepts and scientific 

process behind synthetic biology, the responses with respect to synthetic biology regulation 

have differed in terms of how stringently regulators and policymakers within each area believe 

the technology should be regulated and governed within the immediate term (Carter et al 

2014; Bar-Yam et al 2012). To better understand the perceptions and beliefs of synthetic 

biology risk and regulation for the European Union, this chapter discusses (i) the current state 

of European research and investment within synthetic biology innovation, (ii) the perceptions 

of synthetic biology risks by European experts within academia, government, industry, and non-

governmental organizations, and (iii) discussion of the legislative and regulatory mechanisms 

within the European Union covering synthetic biology research and development.  

 Similar to Chapter 4, the goal of this chapter is to review those elements of risk culture 

that may influence the regulation of synthetic biology within the European Union. To 

accomplish this goal, Sections 5.2 and 5.3 outline the regulatory history and political and 

institutional risk culture that shape regulatory decision making in the European Union. 

Specifically, this includes the need to account for how a historically cooperational, informal, yet 

democratic and transparent risk culture has come to influence regulatory decision making, 

along with considerations of how such a risk culture may or may not be moving towards a more 

adversarial nature for emerging technology regulation (Kelemen 2011; Volcansek 2014; Kagan 
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2009). Later sections build on this discussion by reviewing European Union-based subject 

expert opinion regarding the risk perception and regulation of synthetic biology within the EU – 

something that has been directly shaped by existing sui generis regulatory frameworks utilized 

for biotechnology and genetic engineering alongside the political and institutional risk culture 

that is prevalent for EU technology regulation. 

 

5.2 Regulatory Culture and Regulatory Decision Making in the European Union 

This section reviews several general considerations of the risk culture of European 

technology regulation, including (i) how existing synthetic biology hard and soft law formed in 

the manner that they did, (ii) how different legal and institutional authorities influence behavior 

and regulatory change for synthetic biology, and (iii) considerations of what regulatory actions 

are probable or improbable based upon such regulatory history and institutional structure.  

 

5.2.1 History and Background of the Political and Institutional Structure of Regulation in the 

European Union 

The European Union is a conglomerate of 28 member states (as of March 2016) that was 

gradually formed in the aftermath of the Second World War (Dinan 1999). An early precursor to 

the modern European Union began formally in 1958 with the Treaty of Rome, which created 

the European Economic Community (EEC) (Dinan 1999). The EEC grew to include many West 

and Central European states until the adoption of the Maastricht Treaty in 1993, which formally 

created the European Union (Craig and De Burca 2011). By 2009, the Lisbon Treaty further 

changed the structure and operations of the modern European Union, where it (i) merged the 

‘Three Pillars of the European Union’ (The European Communities, The Common Foreign and 

Security Policy, and the Police and Judicial Co-operation in Criminal Matters) into a single legal 

entity, and (ii) established the permanent position of ‘President of the European Council’ (Cini 

and Borragán  2016).  

Several institutions shape formal European Union regulation in its current state. 

Legislatively, this includes the European Parliament as well as the Council of the European 

Union. These bodies collectively administer European Union budgetary policy and develop hard 
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law policy to be carried out by executive bodies. The primary body here includes the European 

Commission, which is responsible for implementing policy decisions and managing daily 

business for the European Union. The Commission is comprised of 28 members (one per Union 

member state), with a Commission President chosen by the European Parliament to head the 

Commission (Schütze  2012). Lastly, the Court of Justice of the European Union represents the 

judicial branch of European Union regulation, and oversees the application and interpretation 

of European Union law and also resolves legal disputes between member state governments 

and EU institutions (Schütze  2012).  

Legislation passed by the European Parliament or the Council of the European Union 

takes on many forms, including those that are legally binding for member states (Regulations, 

Directives, and Decisions) and those that are not legally binding but are recommended to follow 

(Recommendations and Opinions) (European Union 2016; Hix and Høyland  2011). For the 

former, Regulations are those pieces of legislation that are legally binding across all member 

states and upheld by Commission agencies. Likewise, Directives are also legally binding, yet 

allow each member state to determine how to achieve the given policy goals and guidelines laid 

out in the Directive text. Lastly, Decisions are more limited in scope and are not generally 

applied across all member states, but remain binding for the member state or organization 

targeted within Decision discussion. For the latter, Recommendations and Opinions allow the 

European Union government to opine on certain issues and make statements for particular 

policy goals that are non-binding yet still signal the desires of government agencies.  

From an organizational perspective, while each member state participates within the 

Union’s legislative process and is bound by relevant hard law on various policy issues, member 

states retain autonomy relative to Directives, Recommendations, and Opinions issued by Union 

legislative authorities. Recommendation and Opinions serve further mechanisms by which 

regulators within the European Union may express their opinions on best practices and 

guidance on specific issues, yet generally lack a legal requirement for Member States to 

formally adopt such guidance into their own national regulatory frameworks (Hix and Høyland  

2011; Wallace et al 2015). On the other hand, Directives (such as 90/219/EEC on Contained Use 

of Genetically Modified Materials or 2001/18/EC on Deliberate Release into the Environment of 
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Genetically Modified Materials) have served as a common approach to govern genetically-

modified organisms , where each member state is required to achieve identified Directive 

policy goals via their own means. For genetically-modified organisms, this often includes the 

use of existing member state regulatory agencies to cover related research within the 

respective state’s political borders.  

 Bar-Yam et al (2012) and Konig et al (2016) described specific Directives and Regulations 

that have been applied to cover the process of synthetic biology development. This is driven by 

the sui generis framework for regulating biotechnology and genetically engineered organisms, 

which is comprised of the collection of Directives and Regulations that explicit address 

requirements that govern the process and products of genetic engineering exercises. 

Specifically, Directives concerning the transfer of genes 2001/18/EC), the deliberate release of 

genetically modified microorganisms (90/220/EEC), the mutation and potential proliferation of 

genetically modified microorganisms and biodiversity impacts (2001/18/EC), laboratory and 

workplace safety with experiments conducting genetic modification (2009/41/EC and 

2000/54/EC), general consumer health regulation for products with artificial genetic 

information (1829/2003), and specific Directives of pharmaceutical products containing 

artificial genetic material (726/2004) were viewed both in literature as well as amongst 

interview subjects as being sufficient and capable of capturing synthetic biology risks in general 

and pharmaceutical development in particular via pre and postmarket approval and review of a 

given product’s risks (Bar-Yam et al 2012; Konig et al 2016; Buhk 2014). These legislative 

instruments are discussed in further detail below. 

 Where the United States relies upon existing chemical regulatory instruments like the 

Toxic Substances Control Act to cover synthetic biology development, Bar-Yam et al (2012), 

Konig et al (2016), and Buhk (2014) have all noted that the European Union has instead applied 

legislative instruments pertaining to genetically-modified organisms as well as product-specific 

legislation for the same purpose. An early example of this includes 90/220/EEC, which sought to 

offer a definition and regulatory requirements for how GMOs should be covered. Specifically, 

the definitions in Article 2 have been used by future legislative instruments to discuss genetic 

modification, including: 
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i) “(2) 'genetically modified organism (GMO)' means an organism in which the genetic 

material has been altered in a way that does not occur naturally by mating and/or 

natural recombination.”, and 

ii) “(3) 'deliberate release' means any intentional introduction into the environment of a 

GMO or a combination of GMOs without provisions for containment such as physical 

barriers or a combination of physical barriers together with chemical and/or biological 

barriers used to limit their contact with the general population and the environment.” 

Directive 2001/18/EC built upon the definitions and framework of 90/220/EEC to further 

regulate the transfer of genes. Specifically, the Directive calls for Member State regulatory 

agencies to engage with premarket assessment and approval of genetically-modified materials 

intended for release in Provision 25, where: 

“(25) No GMOs, as or in products, intended for deliberate release are to be considered 

for placing on the market without first having been subjected to satisfactory field testing 

at the research and development stage in ecosystems which could be affected by their 

use.” 

Given that such Directives require Member States to execute such regulations using their 

own national regulatory instruments, it is necessary to consider how these Directives are 

explicitly applied to individual Member States. For example, requirements under 2001/18/EC 

have been applied to Part 6 of Environmental Protection Act 1990 and executed by the 

Department for Environment, Food and Rural Affairs in the United Kingdom (Environmental 

Protection Act 2002). 

Further regulatory concerns include laboratory and workplace safety, which is covered in 

2009/41/EC and 2000/54/EC. For 2009/41/EC, the Directive builds upon previous legislation 

(90/220/EEC and 2001/18/EC) to further outline best practices in laboratory and workplace 

safety for research involving genetic modification. Specific guidance includes Table 1A in Annex 

IV, which outlines proper laboratory safety for such experimentation. Further, the Directive 

states that: 

“Save to the extent that point 2 of Annex IV allows other measures to be applied, the user 

shall apply the general principles and the appropriate containment and other protective 

measures set out in Annex IV corresponding to the class of the contained use, so as to keep 

workplace and environmental exposure to any GMMs to the lowest reasonably practicable level, 

and so that a high level of safety is ensured.” 
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 Laboratory and workplace safety concerns noted in 2009/41/EC is amplified by 

2000/54/EC, which was set out earlier in 2000 to establish regulatory requirements for Member 

States related to biological agents in the workplace. Specifically, Objective 1 notes that: 

“1. This Directive has as its aim the protection of workers against risks to their health 

and safety, including the prevention of such risks, arising or likely to arise from exposure 

to biological agents at work.” 

Given this overall objective, 2000/54/EC requires employers to avoid using harmful 

biological agents where a less harmful agent may be used instead. Further requirements 

include providing safe facilities and equipment to mitigate and alleviate hazardous events, as 

well as requiring employers to acquire permissions to work with virulent or particularly 

hazardous biological substances prior to their use. This is noted in the Directive’s text where: 

“The employer shall avoid the use of a harmful biological agent if the nature of the 

activity so permits, by replacing it with a biological agent which, under its conditions of 

use, is not dangerous or is less dangerous to workers' health, as the case may be, in the 

present state of knowledge.” (Article 5), and 

“Where the results of the assessment referred to in Article 3 reveal risk to workers' 

health or safety, employers shall, when requested, make available to the competent 

authority appropriate information on: (a) the results of the assessment; (b) the activities 

in which workers have been exposed or may have been exposed to biological agents; (c) 

the number of workers exposed; (d) the name and capabilities of the person responsible 

for safety and health at work; (e) the protective and preventive measures taken, 

including working procedures and methods; (f) an emergency plan for the protection of 

workers from exposure to group 3 or a group 4 biological agent which might result from 

a loss of physical containment.” (Article 7). 

 Related to import and biosecurity control, Regulation 1946/2003 outlines requirements 

pertaining to the import and movement of genetically modified materials. The overall objective 

of this Regulation is noted in Article 1, where: 

 “the objectives of this Regulation are to establish a common system of notification and 

information for transboundary movements of genetically modified organisms (GMOs) and to 

ensure coherent implementation of the provisions of the Protocol on behalf of the Community in 

order to contribute to ensuring an adequate level of protection in the field of the safe transfer, 

handling and use of GMOs that may have adverse effects on the conservation and sustainable 

use of biological diversity, taking also into account risks to human health.” 
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Further, 1946/2003 includes provision on intended shipment and use (Chapter 2) and 

unintended distribution (Chapter 3), where each Member State is obligated to strictly control 

the transfer of genetically modified organisms and take necessary steps to prevent against 

unintended release scenarios. Further, Section 4, Article 12 of Chapter 2 outlines requirements 

for transferors to submit appropriate documentation to gain approval for any such shipments. 

Collectively, these Directives and Regulations are viewed in literature as capable of 

covering existing iterations of ‘semi-synthetic’ synthetic biology products, although may be 

challenged in the future as synthetic biologists are able to foster increasingly artificial synthetic 

biology -products such as with synthesized vaccines or other therapeutics (Konig et al 2016; 

Bar-Yam et al 2012). While their implementation occurs differently within each member state, 

general interpretation and guidance of risk is derived from the Scientific Committees within the 

Directorate-General for Health and Food Safety (Bar-Yam et al 2012). Specifically, these 

Committees include the Scientific Committee on Consumer Safety, the Scientific Committee on 

Health and Environmental Risks, and Scientific Committee on Emerging and Newly Identified 

Health Risks. Ultimately, Member States must comply with Directives such as those noted 

above within a predetermined timeframe, the European Commission may initiate legal action 

against the specific Member State in the European Court of Justice for monetary damages and 

legal requirements for the State to adopt the Directive as soon as possible (Falkner et al 2004; 

Zhelyazkova and Yordanova 2015). 

 

5.2.1 Risk Culture in the European Union 

As with Chapter 4, this section describes how political and institutional values that 

comprise the European Union’s regulatory risk culture affect its regulatory policies. Within the 

spirit of this notion, the following two subsections discuss (i) the historical path taken by 

European Union regulators to cover synthetic biology research, and (ii) the characteristics of 

the European Union’s risk culture which will ultimately influence how future synthetic biology 

regulation will be affected by such political and institutional factors.  

 

5.2.1.1      Historical path of synthetic biology regulation and its related regulatory instruments 
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 Looking at earlier influences of synthetic biology regulation in Europe, pan-European 

chemical regulation during the 1970s and early 1980s was relatively decentralized, where 

individual countries held jurisdiction over chemical regulation. Vogel and Lynch (2001) argue 

that early debates of European regulatory policy related to chemical risk assessment and 

regulation in the 1970s and early 1980s remained “closed to the public”, with non-

governmental organizations having limited access to policymakers and influence over the 

regulatory building process such as within the Directorate General on the Environment, 

Consumer Protection, and Nuclear Safety (Vogel and Lynch 2001; Jasanoff 1993). This was in 

direct contrast to American regulatory policy during that time, which Vogel (1986), Lofstedt and 

Vogel (2001), Wiener and Rogers (2002), and Kelemen and Vogel (2010) note as where 

American regulatory agencies were likely to ban products that were open to commercialization 

in the European Union.  

 By 2006, pan-European regulation of chemicals became more centralized with the 

passage of the Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) 

regulations (Williams 2009; Bergkamp 2013; Gergely and Gayral 2015). Managed by the 

European Chemicals Agency (ECHA), the REACH regulations provided clearer requirements on 

information-sharing by manufacturers, importers, and consumers on various chemical products 

produced, sold, and disposed of within the European Union (Williams et al 2009). Further, 

REACH involves the registration of hazardous properties of chemicals, as well as the premarket 

authorization requirements for those producers that seek to potentially utilize such substances 

(Williams et al 2009; Bergkamp 2013). Overall, REACH represents an increase in centralized 

authority within the European Union, where Member States are required to implement and 

uphold standards established by the European Commission. Further, while chemical regulations 

have not been used to capture the process of synthetic biology development as with TSCA in 

the United States, the path of regulatory development here offers background insight into how 

the regulatory risk culture in the European Union unfolded in the second half of the 20th and 

early 21st Centuries (Guehlstorf and Hallstrom 2005; Kurzer 2001; Vogel 2003). This culture has 

affected the development of regulation pertaining to genetic modification (discussed below), 

which has been used to cover synthetic biology development. 
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 European regulatory attitudes within chemical regulation came to influence 

biotechnology and genetic modification by fostering an increasingly centralized approach to 

premarket approval and information sharing by various relevant stakeholders (Vogel and Lynch 

2001). Specifically, the Directorate General on the Environment, Consumer Protection, and 

Nuclear Safety’s Biotechnology Steering Committee established in 1985 the Biotechnology 

Regulations Interservice Committee (BRIC), which served as a composite committee with 

representation from various European regulatory bodies tasked with the responsibility to 

develop biotechnology regulatory policy for the European Commission (Vogel and Lynch 2001). 

The policy recommendations related to the premarket approval of biotechnologies was far 

more precautionary than with previous regulatory discussions in Europe (Vogel and Lynch 2001; 

Vogel 1986), and eventually fostered Directive 90/220/EEC (discussed above in Section 5.2.2) 

on the Deliberate Release of Genetically Modified Organisms (Buhk 2014).  

This Directive was inherently driven by the precautionary principle, which had been 

discussed as a regulatory concept since at least the World Charter on Nature in 1982 (see the 

history and adoption of the precautionary principle in the European Union in Section 5.2.2.2 

below). Specifically, the Directive required biotechnology researchers to submit environmental 

reports and premarket risk assessment documents to the relevant regulatory authorities in the 

given country or countries where testing was to take place – where this approval process for 

product commercialization was eventually extended to genetically modified organisms, and 

granted each country the ability of a European Member State to prohibit such products from 

entering the market due to perceptions of risk to human and environmental health (Adler 2000; 

Vogel and Lynch 2001).  

 The first major tests of Directive 90/220/EEC included the regulatory review of 

genetically modified soybeans and corn in 1996-1998 (Vogel and Lynch 2001). Challenges by the 

trade association EuroCommerce and companies like Unilever included demands that 

genetically-modified soybeans imported from the United States be fully separated from 

naturally-occurring beans. These growing demands spurred the European Parliament and the 

Council of Ministers to argue that genetically modified foods should be labeled if the modified 

crops contain any changes to their phenotypic characteristics or food properties as with those 
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crops produced naturally (Skogstad 2003; Haslberger 2000). By 2000, the European Union 

constructed a new standard using an interpretation of the Cartagena Protocol on the need to 

protect biodiversity and human health from unknown risks from emerging biotechnologies 

(Strauss 2008). Specifically, the standard included where any food products containing at least 

1% of their composite materials with genetic modification must be labelled as such (Vogel and 

Lynch 2001). Further, Member States were empowered with the ability to ban certain 

genetically modified organisms if there were ‘justifiable reasons’ that the organism could cause 

harms to humans or the environment (Strauss 2008). 

 In 2003, the United States and 12 other countries filed a complaint with the World Trade 

Organization (WTO) that the European Union, via its actions on imported genetically modified 

products, was violating international trade agreements (Isaac and Kerr 2003; Pollack 2013). In 

2006, the WTO ruled that Europe’s de facto ban of genetically modified agricultural products 

violated international trade agreements, yet Wirth (2013) and Young (2012) note that the ruling 

had little effect on the ability of individual member states to refuse the importation of such 

products. 

 Carter et al (2014), Buhk (2014), and Bar-Yam et al (2012) all contend that the growing 

calls for precaution driven by the regulation of genetically modified organisms fed into a similar 

attitude of precaution for synthetic biology products in the 2000s-2010s. In particular, Buhk 

(2014) argues that regulations related to genetically modified organisms 90/219/EEC (the 

contained use of genetically modified microorganisms) and 90/220/EEC (the intentional release 

of such products) set the stage for the eventual regulation of synthetic biology. Bar-Yam et al 

(2012) notes that 90/219/EEC has been explicitly used to drive regulation of synthetic biology in 

the late 2000s, where the regulation has been amended several times to keep pace with 

evolutions in genetic modification research. Specifically, the 90/219/EEC regulation contains 

four components that drive the regulation of covered biological materials, including (i) the 

identification of potential harmful effects posed by the modified genetic material, (ii) the 

characteristics by which the modified genetic material will be used for, (iii) the severity of 

consequences of identified harmful effects, and (iv) the general probability that such risks could 

occur. Bukh (2014) argues that these early directives served as a focus for the debate of 
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synthetic biology regulation, where in 2008 the European Commission chartered a Working 

Group to review new biological research techniques and offer insight into how they should be 

covered by existing regulation. These techniques include (Buhk 2014; Bar-Yam et al 2012): 

1) Synthetic Biology 

2) Zinc Finger Nuclease Technology  

3) Olignonucleotide Directed Mutagenesis 

4) Cisgenesis 

5) RNA-dependent DNA methylation 

6) Grafting 

7) Reverse Breeding, and  

8) Agro-infiltration. 

The findings of this meeting were used to inform the development of several directives 

related to emerging biological technologies in general, and synthetic biology in particular. For 

the former, this included Directive 2001/18/EC on the Deliberate Release into the Environment 

of Genetically-Modified Microorganisms (see more info in Section 5.2.2 above), where 

researchers engaging with genetic modification were required to conduct a risk assessment and 

gain a Member State’s approval prior to bring goods to market (with particular emphasis on 

effects on ecosystem health, biodiversity, mutative/evolutionary impacts, and considerations of 

gene transfer – Bar-Yam et al 2012). Another general regulation included Regulation 428/2009, 

which laid out regulatory practices for dual-use goods and placed oversight mechanisms which 

granted Member State authorization over the export of such goods (including considerations of 

laboratory and worker safety – Bar-Yam et al 2012). Further, the European Commission laid out 

in 726/2004 the explicit regulation of pharmaceuticals and medicinal practices the approval 

procedures for those medicines which include novel genetic material, overseen by the newly 

established European Medicines Agency of the European Parliament (European Commission 

Scientific Committees 2014).  

Overall, while certain European Union-wide agencies such as the European Medicines 

Agency offer guidance for all European Union Member States, the execution of synthetic 

biology regulation and laws is carried out by domestic Member State regulatory bodies such as 

with Health and Safety Executive or the Department of Environment, Food and Rural Affairs in 
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the UK (Parliamentary Office of Science and Technology 2015; Bar-Yam et al 2012). General 

guidance and general best practice, however, is issued by the European Union to Member 

States, and includes such calls to action as implementing guidelines for genetically modified 

organism and synthetic biology biosafety through the promotion of adequately robust physical 

barriers in Directives 2009/41/EC and 2000/54/EC.  

These legislative instruments compel premarket approval of various genetic 

modification efforts by a European Member State’s regulatory authority as well as European 

Union agencies such as with the European Medicines Agency of the European Parliament, and 

were applied to synthetic biology regulation through a series of meetings known as the ‘Final 

Opinion on Synthetic Biology’, where three meetings (June 2014, June 2015, and December 

2015) were conducted related to formally defining the field, identifying potential risks that 

synthetic biology as a field may pose to humans, and specific discussion on risks to biodiversity 

and the environment (European Union Health and Food Safety Scientific Committees 2014, 

2015a, 2015b). This guidance signaled to Member States the risk assessment protocols needed 

for innovators to use for preassessment approval as well as indicating how synthetic biology 

products should be regulated using extensions of existing hard and soft law (European Union 

Health and Food Safety Scientific Committees 2014; 2015a; 2015b).  

 Within the European Union, the sui generis framework on the regulation of 

biotechnology has influenced the regulation and governance of synthetic biology, where the 

Directives and Regulations within this framework have captured the process and products of 

synthetic biology development. Hard law regulation, specifically Directive 2001/18/EC (on the 

Deliberate Release into the Environment of Genetically-Modified Microorganisms), 726/2004 

(the regulation of pharmaceuticals containing artificial genetic material, 2009/41/EC (contained 

genetic modification experiments in laboratories) have all been built upon the legacy of 

previous regulatory efforts on genetic modification such as with 90/220/EEC (the deliberate 

release of engineered microorganisms), and within the spirit of the precautionary principle 

(Parliamentary Office of Science and Technology 2015; Bar-Yam et al 2012; Buhk 2014). 

Similarly, soft law regulation as with the pronouncements of the European Union Scientific 
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Committees (2014; 2015a; 2015b) also signals to European Member States certain best 

practices and general guidance that each Member should follow.  

 

5.2.1.2 Assessment of the Risk Culture influencing regulation of novel compounds and scientific 

processes like synthetic biology 

 One of the more common considerations noted about European Union risk culture 

centers on its ‘cooperative’ approach to resolve regulatory disputes (Kelemen 2011; Kagan 

1997; Guehlstorf and Hallstrom 2005). By this, Kelemen (2011) and Kagan (1997) generally 

describe European cooperativism as being “more informal, […] and relied less on the 

involvement of lawyers, courts, and private enforcement actions.” Relative to the reliance upon 

informal measures to build technology regulation, Wallace et al (2015) and Luedtke et al (2010) 

argue that technology regulation is an informal process where government stakeholders seek 

to include stakeholders within industry and non-governmental organizations in the regulation-

building process. This differs from the American risk culture described in Chapter 4, which is 

more adversarial in nature and where such collaboration between government and lay 

stakeholders is less common (Kelemen 2011).  

 Specific to the inclusion of judicial dispute resolution in the regulation-building process, 

Kelemen (2011), Luedtke et al (2010), and Kagan (2008) note that European technology 

regulation relies less upon formal dispute resolution via court decisions, and instead seeks to 

resolve disagreements via guidelines, best practices, and collaborative agreements with various 

stakeholders before disputes become irreconcilable. Kagan (2008) and Lindseth (2011) argue 

that this is due to the institutional nature of the European Union – particularly via the use of 

Directives that allow for member states to meet Union-derived regulatory goals using their own 

domestic regulatory agencies and frameworks. Such an approach is particularly applicable to 

the various Directives used to regulate genetically-modified organisms (Guehlstorf and 

Hallstrom 2005), although growing pressures by technology developers, the lay public, and 

academic researchers are beginning to push European dispute resolution towards a more 

judicial model similar to the United States (Pollack and Shaffer; Kelemen 2011; Kagan 2008). 

Specifically, the European Scientific Committees have served as an avenue where independent 
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advice from bodies of experts on various topics of health and safety have been used to drive 

formal regulation of potentially hazardous substances by the European Commission and its 

Member States (Walker 2012; Rocks et al 2014). 

Garben (2013, Lindseth (2011), and Kelemen (2011) argue that this growing contention 

and pressure towards incorporating legal institutions within dispute resolution for technology 

regulation is driven by growing calls for full transparency in the regulatory process as well as 

the creation of a ‘level playing field’ with more active enforcement and adjudication of 

regulatory law. This is not to say that European technology regulation is not transparent – the 

political system is one that is responsive to public demand and clearly indicates how policy is 

created and upheld – but instead that the technology regulatory deliberation process should be 

‘fair’ for all players and rely less on informal conventions and meetings to resolve differences 

(Kelemen 2011; Kagan 2008).  

 Given this and in spite of a generally cooperative nature in the technology regulatory 

process, Kelemen (2011), Pollack and Shaffer (2009), Kelemen (2006), and Kagan (1997) all 

describe the slow yet noticeable movement towards more adversarial legalism more commonly 

found in the United States. Kelemen (2011) describes this development as ‘Eurolegalism’, 

where a fragmented institutional structure within the European Commission and European 

Parliament along with the relative strength in retained powers by member states drives new 

Union-level attempts at technology regulation to be more transparent, formally defined, and 

applicable to a diversity of players across the 28-member Union. Kagan (1997) and Lindseth 

(2011) agree with this sentiment by noting that the need to resolve differences in opinion 

related to the appropriate level of technology regulation as well as the relative fragmentation 

of vertical regulation between the European Union proper and its member states individually all 

produce an environment that encourages private litigants to bring their complaints and 

disputes to formal courts. Pollack and Shaffer (2009) note that this may be particularly applied 

to genetically-modified organisms (with applicability to synthetic biology as described in Bar-

Yam et al 2012), where cooperative regulation is ‘failing’ to resolve various disputes and 

concerns held by various players in the European Union government related to the domestic 

research and development of genetic research as well as the importation of genetically 
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modified foods and materials. While Kelemen (2011) and Lindseth (2011) do not yet contend 

that the European Union has fully moved to an adversarial model of legalism identical to the 

United States, they do note that such a change from cooperative regulation is noticeable and 

may continue to grow with more calls for increasingly transparent dispute resolution via formal 

court decisions on technology regulation. 

 An additional consideration within technology regulation of the European Union 

includes a general reliance upon the precautionary principle, which had been discussed since 

1982 and subsequently applied to European Union policy and law by 2007 (Carter et al 2014; 

Levidow et al 2000). An important precursor to the precautionary principle in Europe included 

the Rio Declaration of 1992. Building from discussion in Chapter 1, Principle #15 of the Rio 

Declaration stated that: 

 “In order to protect the environment, the precautionary approach shall be widely 

applied by States according to their capabilities. Where there are threats of serious or 

irreversible damage, lack of full scientific certainty shall not be used as a reason for 

postponing cost-effective measures to prevent environmental degradation.” 

The Rio Declaration was subsequently enacted in June 1992, and included follow-up 

meetings in 1997 and 2002 to assess the Declaration’s application within its signatories. Such 

discussion was further applied in the 2000 Cartagena Protocol on Biosafety to the Convention 

on Biological Diversity, which was an international agreement that sought to protect biological 

diversity from the potential risks posed by genetically modified organisms. Discussed in January 

2000, passed in May 2000, and enacted in September 2003, the Cartagena Protocol sought to 

reaffirm in its Preamble: 

“the precautionary approach contained in Principle 15 of the Rio Declaration on 

environment and Development.” 

More specifically, Article 10 of the Cartagena Protocol further specified the application 

of the precautionary principle to genetic modification and emerging biotechnologies, where it 

states that: 

"Lack of scientific certainty due to insufficient relevant scientific information and 

knowledge regarding the extent of the potential adverse effects of an LMO on 

biodiversity, taking into account risks to human health, shall not prevent a Party of 
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import from taking a decision, as appropriate, with regard to the import of the LMO in 

question, in order to avoid or minimize such potential adverse effects.” 

Such international discussion was adopted in by the European Commission, which in a 

February 2000 Communication called for the application of the precautionary principle in its 

regulatory activities (European Commission 2000). Specifically, Sections 4 – 6 of this 

Communication sought to outline the required use and deployment of the principle by noting: 

“4.  The precautionary principle should be considered within a structured approach to 
the analysis of risk which comprises three elements: risk assessment, risk management, 
risk communication. The precautionary principle is particularly relevant to the 
management of risk. 
The precautionary principle, which is essentially used by decision-makers in the 
management of risk, should not be confused with the element of caution that scientists 
apply in their assessment of scientific data. 
 
Recourse to the precautionary principle presupposes that potentially dangerous effects 
deriving from a phenomenon, product or process have been identified, and that scientific 
evaluation does not allow the risk to be determined with sufficient certainty. 
The implementation of an approach based on the precautionary principle should start 
with a scientific evaluation, as complete as possible, and where possible, identifying at 
each stage the degree of scientific uncertainty. 
 
5.  Decision-makers need to be aware of the degree of uncertainty attached to the 
results of the evaluation of the available scientific information. Judging what is an 
"acceptable" level of risk for society is an eminently political responsibility. Decision-
makers faced with an unacceptable risk, scientific uncertainty and public concerns have 
a duty to find answers. Therefore, all these factors have to be taken into consideration. 
 
In some cases, the right answer may be not to act or at least not to introduce a binding 
legal measure. A wide range of initiatives is available in the case of action, going from a 
legally binding measure to a research project or a recommendation. 
The decision-making procedure should be transparent and should involve as early as 
possible and to the extent reasonably possible all interested parties. 
 
6.  Where action is deemed necessary, measures based on the precautionary principle 
should be, inter alia: 

 proportional to the chosen level of protection, 
 non-discriminatory in their application, 
 consistent with similar measures already taken, 
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 based on an examination of the potential benefits and costs of action or 
lack of action (including, where appropriate and feasible, an economic 
cost/benefit analysis), 

 subject to review, in the light of new scientific data, and 
 capable of assigning responsibility for producing the scientific 

evidence necessary for a more comprehensive risk assessment.” 

Eventually, the lessons learned within international conventions and the 2000 

Communication were adopted in the 2007 Lisbon Treaty. This formally entrenched the 

precautionary principle in regulatory decisions and policymaking within the European Union 

and its Member States. Specifically, Article 191 of the Treaty notes that: 

“Union policy on the environment shall aim at a high level of protection taking into 
account the diversity of situations in the various regions of the Union. It shall be based 
on the precautionary principle and on the principles that preventive action should be 
taken, that environmental damage should as a priority be rectified at source and that 
the polluter should pay.” 

With this history in mind, Carter et al (2014) notes that European regulation of genetic 

engineering in general and synthetic biology in particular has taken a precautionary angle, 

where oversight is required to review the potentially novel risk characteristics of synthetic 

biology products and made assessments related to whether such risks are likely or worrisome 

enough to prevent their expanded research or entrance into the market. This is not to say that 

a precautionary approach to synthetic biology regulation completely prohibits innovation, but 

instead slows the pace of innovation in order to gain more information related to novel health 

risks and approve those products that are demonstrated to contain minimal harms 

(Antonopoulou and van Meurs 2003; Kelle 2013; Kaiser 2012). Overall, however, general 

adherence to the precautionary principle serves as a central, codified principle in approaching 

and working through regulation and decision-making in the European Union and will likely 

shape the types of regulatory activity that European policymakers are willing to entertain over 

the course of synthetic biology regulation in the near future.  

 

5.2.2 Applications to Interview Data 

 The risk culture and regulatory history surrounding technology regulation in the 

European Union are crucial factors to consider when reviewing European interviewee 
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comments for synthetic biology regulation below. European interviewees noted several 

comments on the importance of working within the European regulatory environment and 

cooperative culture by noting (i) the cooperative nature of regulation-building process within 

the European Union, and (ii) an adherence to the precautionary principle for research related to 

synthetic biology (see also Carter et al 2014; Bar-Yam et al 2012). Such concerns are in line with 

discussion raised by Kelemen (2011), Kelemen (2012), Kagan (1997), and Lindseth (2011), which 

collective argue that the cooperative, informal, and devolutionary nature of European 

technology policy and regulation are intrinsic values that shape such regulation-building 

activities in the European Union in a unique manner that differs from other developed political 

entities such as with the United States. 

 A recurring theme implied within European interviews is that European regulatory policy 

is a process that is cooperative in nature, where regulators, private researchers, academics, and 

other stakeholders often engage informally to collectively establish best practice and guidance 

for regulatory policy of genetically modified organisms (see Kelemen 2011 or Pollack and 

Shaffer 2009 for similar discussion). One such example of such sentiment includes comments 

made by EU Respondent 1 (Social Scientist), who argued that “New governance for synthetic 

biology should include inputs from industry and academics, who have also been active in 

discussion for GMOs for decades.” Further, EU Respondent 2 (Lab Researcher) stated that 

“gaining input from stakeholders outside of government in a top-down manner would be 

important for future synthetic biology regulation […] and will help balance the technology’s 

risks and benefits.” These sentiments reflect a historical and current ability to cooperatively 

work with various private and academic stakeholders to identify guidance and best practices to 

shape regulation for genetically-modified organisms in the European Union – something that 

has been discussed as a precursor to contemporary regulation of synthetic biology in Europe 

(Bar-Yam et al 2012). Further, the need for government stakeholders to operate outside of a 

“top-down” manner and instead take into account the views of various researchers in the field 

is a further point consistent with Kelemen (2011), where such decision making is difficult to 

occur outside of a cooperative environment.  
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 Despite this general perception that technology regulation in the European Union is a 

collaborative and cooperative affair, respondents did note some apprehension regarding the 

ability of genetic engineering (and synthetic biology by relation) to complicate regulatory 

decision making and reduce the potential for collaborative decision making (consistent with 

Pollack and Shaffer 2009, and Kelemen’s discussion of the European Union’s movement 

towards ‘Eurolegalism’). EU Respondent 3 (Social Scientist) stated that “[the technology’s] 

uncertainty complicates the regulatory environment, and will likely hinder the government’s 

ability to allow products to enter the market without judicial support.” Such sentiments raise 

concerns that, at least for the case of synthetic biology and genetically-modified organisms, 

there may be an increased desire to adopt formal dispute resolution via lawyers and courts 

within and across the European Union member states (see Kelemen 2011; Kagan 1997). 

However, the European regulatory environment cannot be deemed entirely adversarial, with 

EU Respondent 4 (Social Scientist) noting that “academics and industry professionals will play a 

significant role with synthetic biology governance” – indicating at least some appetite for 

cooperationalism amidst the technological uncertainty. 

 Lastly, EU-based respondents noted the importance of the precautionary principle as 

applied within European technology regulation via the Treaty of Lisbon in developing regulatory 

guidance for synthetic biology products (see also Kelle 2013; Carter et al 2014). This ideal is 

reinforced by Bubela et al (2012), Bar-Yam et al (2012), and Kaebnick  et al (2014), which argue 

that the European regulatory environment favors an approach that allows synthetic biology 

products to move towards commercialization only when they have been demonstrated to have 

minimal hazardous effects and established safe use best practices. Such a framework would 

mimic the process of conventional chemical regulation laid out by REACH, yet contains the 

further complication of greater uncertainty pertaining to threats to biodiversity and human 

health related to the exposure of novel genetic information into the natural environment 

(Wareham and Nardini 2015; Moe-Behrens et al 2014). EU Respondent 3 (Social Scientist) 

noted the importance of precaution in Europe where they argued that “a recent history of GMO 

regulation will keep Europe on a path to entrench the precautionary principle for synthetic 

biology research.” Where the precautionary principle has already been established into law 
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even before the rise of genetically modified organisms, White and Vemulpad (2015) and 

Oldham et al (2012) would agree with the above respondent by noting that future European 

discussion of synthetic biology will be squarely framed within the lens of the precautionary 

principle. Further, EU Respondent 1 (Social Scientist) stated that “the appetite for uncertainty 

and risk for synthetic biology is likely lower than the US or other areas of the world”, indicating 

a tendency by European regulators to favor a more cautious approach to relevant product 

regulation where such products’ risks remain uncertain in nature (see Bubela et al 2012; Vogel 

and Lynch 2001; Bar-Yam et al 2012).  

 Overall, interview data suggests some consistency with discussion in published literature 

that the European approach to technology regulation remains cooperative, informal, and 

precautionary in nature (consistent with Kelemen 2011; Kagan 1997; Kelemen 2012). Such an 

environment would enable collaboration between government regulators along with industry 

professionals and academic researchers to fashion policy and adapt regulations in a manner 

that both limits the potential for adversarial legalism while also constructing soft law to guide 

synthetic biology regulation in an anticipatory and adaptive manner (see Allan 2015; Howlett 

and Migone 2013; and Douglas and Stemerding 2014). However, the interviewers did suggest 

that this environment could change in the future, where challenges related to limitations of 

synthetic biology research and commercialization may be legally contested as with genetically 

modified organisms at the WTO (see also Garben 2013, Volcansek 2014, and Kelemen 2011). 

Volcansek (2014), Garben (2013), Sabino (2014) describe this change in European regulatory 

attitudes through the lens of Kelemen’s (2011) concept of ‘Eurolegalism’, where European 

technology regulation may become more legally and formally derived and adversarial as with 

the case of the United States. 

 

5.3 Synthetic Biology Research in the European Union 

 Looking next at synthetic biology research within the European Union, European 

companies have spent over $900 million on synthetic biology research from 2009-2015 on fields 

ranging from biofuels to pest control to pharmaceuticals (SynBioBeta 2016; Serrano 2007; 

Peralta-Yahya et al 2012; Weber and Fussenegger 2012; Oldham et al 2012). International 
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research consortiums such as the European Research Area Network in Synthetic Biology 

(ERASynBio) have formed to particularly coordinate and fund research related to synthetic 

biology innovation within the European Union (up to over $100 million annually as of 2014), 

while international meetings such as with the BioBricks Foundation and SynBioBeta have 

brought together an international collection of synthetic biology scholars and researchers to 

discuss the risks and benefits of various iterations of synthetic biology products now and 

moving forward.  

 From a research perspective, funding for synthetic biology research has grown each year 

since 2005. Kuiken (2010) and Kuiken (2015) discuss that where synthetic biology research had 

been funded less than $20 million each year up until 2010, by 2015 total funding across the 

Commission had eclipsed $100 million in 2014 alone. Important players within such research 

include the United Kingdom ($175 million from 2005-2014), Germany, and the Netherlands 

($90 million from 2008 to roughly 2013), although every country within the European Union is 

eligible for funding and universities within each of the member states receive funding for 

various projects (Kuiken 2015). The primary funding mechanism by the European Commission 

for synthetic biology projects includes the Framework Programmes for Research and 

Technological Development, where synthetic biology was names a targeted area for such 

research in 2003 by the Sixth Framework. Likewise, the United Kingdom’s funding bodies 

include the Biotechnology and Biological Sciences Research Council, the Engineering and 

Physical Sciences Research Council, and the Wellcome Trust (Kuiken 2010). While Kuiken (2015) 

does note that gaining specific details of the specific projects funded by these bodies is a 

difficult task due to proprietary and/or confidentiality agreements with research companies 

engaged with synthetic biology innovation, he does note that the European Commission began 

funding inquiries into synthetic biology implications research as early as 2007, when $2 million 

was explicitly earmarked for ethical and social discussion of the risks and benefits of synthetic 

biology research. 

 Where European universities, government agencies, and research companies have 

begun to conduct synthetic biology research for a variety of topics, regulators and policymakers 

have also begun to engage with the task of how synthetic biology should be defined and 
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regulated from the perspective of hard and/or soft law (European Union Health and Food 

Safety Scientific Committees 2014). According to Carter et al (2014), Europe’s approach to 

synthetic biology regulation since the early 1990s has taken on a precautionary approach, a 

notion further asserted by Kelle (2013) and Oldham et al (2012). European regulators have 

directly discussed synthetic biology in emerging hard and soft law regulation (Buhk 2014; Konig 

et al 2016) – the results of which will be discussed below in ‘Regulation Mechanisms of the 

European Union’. For now, however, it is important to note that synthetic biology is a research 

topic that has been discussed by regulators and policymakers within Europe as a technology 

that incurs both potential benefits as well as possible risks to human and environmental health 

– including for pharmaceutical research (Buhk 2014; Kelle 2013).  

 For the remainder of this chapter, discussion will center on findings from the collective 

literature review and interview discourse analysis for the topics of synthetic biology risk and 

regulation, respectively. As with Chapters 4 and 6, discourse findings will be elicited solely from 

experts within the specific case identified here, with this particular case focusing on the 

European Union.  

 

5.4 Perceptions of Health Risk for Synthetic Biology Pharmaceutical Products by European 

Respondents 

 Like their counterparts in the United States, respondents (n=9) from the European 

Union were asked to provide their perceptions and beliefs about whether they believed that 

novel risks related to the exposure of synthetic DNA to humans and the environment, the 

mechanisms that drive such novel risks to occur, and where along the life cycle of a synthetic 

biology pharmaceutical such risks might materialize. Likewise, discussion within literature was 

used to derive interview questions and guide discussion in a manner that reflects (i) expert 

perception of synthetic biology biosafety and biosecurity risks, (ii) how and where do such risks 

occur along a pharmaceutical’s life cycle, (iii) what hard and soft law regulatory structures 

currently cover these products and their development, and (iv) what limitations and 

weaknesses, if any, exist within these existing structures? A breakdown of respondent types is 

noted below in Table 7.  
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 As with Chapter 4, interview respondents in this chapter have a PhD-level education in 

biology, chemistry, or similar field in science, or have a PhD in a social science background 

pertinent to the risk analysis and regulation of emerging technologies. Such interviewees also 

had a formal position of employment at a European Union institution at the time of interview, 

such as with a post doctorate or research professorship at a European Union university or a 

position at a European Union company.  

 

Table 7. Breakdown of Research Backgrounds of Europe 
Respondents 

 Lab 
Research 

Social 
Science/Implications 

Total 

Academia 1 1 2 

Government 1 1 2 

Industry 2 1 3 

NGO 1 1 2 

Total 5 4 9 

Table 7. Breakdown of Research Backgrounds of Europe Respondents. ‘Lab Research’ includes those 

respondents who work primarily in an experimental, laboratory-driven setting. ‘Social 

Science/Implications’ includes those respondents who work outside the lab and comment upon risk and 

regulatory needs for synthetic biology. 

 

5.4.1 General Perceptions of Novel Health Risk 

 Looking first at general opinions of the likelihood of novel health risk to occur, EU-based 

respondents all indicated that such risks were possible, albeit with varying degrees of 

probability. The largest contingent of responses included those experts who argued that there 

exists more than a limited possibility that novel health risk could occur, yet such events may not 

be common or occur frequently outside of uncommon events. EU Respondent 5 (Social 

Scientist) argued that “while it’s hard to say definitively that there will be novel concerns, it’s 

pretty plausible that human, animal, and environmental organisms […] could be at risk of acute 

health harms.” EU Respondent 6 (Lab Researcher) stated that “There are a variety of scenarios 

where these genetically engineered compounds could create risky exposure scenarios […] 

although the consequences of these events may not be as severe as one could imagine at 

present.” When asked why they held such an opinion, the EU Respondent 6 (Lab Researcher) 
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replied by saying “we just can’t rule these risks out yet, either in the form of accidents or 

deliberate attempts to use the technology in a harmful manner […]. If synthetic biology takes 

off and becomes widespread in use, so too do the chances that we’ll see reports of risky events 

with exposure pathways and health consequences that we haven’t really seen before.” 

 One respondent expressed a similar view, yet generally noted how the chances of such 

risky events to occur would become far more common due to concerns of containing novel 

biological material inside an area that it will not proliferate unintentionally within the natural 

environment. EU Respondent 7 (Lab Researcher) stated that “particularly within the 

environment, there’s a strong chance we’ll see these organisms multiplying in various 

environments unless oversight is particularly strict with controlling their release and disposing 

of waste materials.” While the EU Respondent 7 (Lab Researcher) did argue that “there are 

technological improvements that could limit or eliminate the potential for such risks to occur” 

for the technology’s current development, “these control technologies are in their early stages 

and aren’t too useful yet.”  

Respondents who scored ‘2’ and ‘3’ were less certain about the potential consequences 

of such risks should they arise, with some arguing that “the consequences could be 

environmentally significant or damaging on a cellular level”, while others noted that “highly 

consequential events may be rare […] and depend highly on the type of pharmaceutical you’re 

proposing.” This degree of uncertainty is consistent with discussion in Bates et al (2015), which 

found that respondents were generally uncertain of the health consequences of such risk 

events, with respondents noting a wide range of possibilities. Further, respondents in this and 

the other two cases discussed in this dissertation noted the importance of the type of 

pharmaceutical proposed relative to the degree of risk consequences that may be observed, 

where pharmaceuticals with novel genetic material in the commercial product (as with an 

engineered probiotic) or an engineered vaccine with live and genetically altered virus material 

would be significantly riskier than products undergoing research today (the production of 

artificial artemisinic acid or using yeast to facilitate the growth of influenza vaccine material). 

 A third contingent of respondents (3) did differ slightly from other interviewees by 

arguing that while such novel risk is possible, such events will be rare and may be eliminated 
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through various improvements to circuit and metabolic engineering in the years to come. EU 

Respondent 8 (Lab Researcher) likened such a scenario to “a red herring in the midst of 

valuable research”, where although it is impossible to entirely rule out the potential for such 

risks to arise, “the odds are implausibly small that novel risk events should happen.” EU 

Respondent 9 (Lab Researcher) articulated their belief from a different angle, arguing that “we 

have not really experienced any serious and recurring [novel] risk to human health from similar 

research related to GMO, and it would be unfair to negatively hype up such risks until there’s a 

proven scientific reason to be worried about them.” However, EU Respondent 9 (Lab 

Researcher) did note that such hype “is likely to develop, and somewhat already has on 

elements of the blogosphere.” The collective opinion amongst respondents here is that, while 

such risks are plausible, there are no good reasons to think that their probability is likely. 

Similarly, respondents here were skeptical of the potential consequences of such risk events, 

where “those exposed to such materials may not even experience noticeable side effects […] 

and the engineered cells may die off too quickly for something like gene transfer to occur.” 

 

Figure 10. European Perceptions of Synthetic Biology Pharmaceutical Health Risks. Responses are coded 

on a scale from 0-3, where increasing values indicate greater likelihood of novel health risk. 0 = no novel 

health risk; 1 = possible but proportionally limited novel health risk; 2 = moderate chance of novel 

health risk across large populations; 3 = guaranteed novel health risk (n=9) 
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 After offering their general perceptions of the probability that novel risk events would 

occur within the scope of synthetic biology pharmaceutical development, respondents were 

next asked to describe the mechanisms by which such novel risks could arise and cause 

potential harms to human and environmental health. A recurring mode of discussion included 

horizontal gene transfer, with respondents noting various opinions on the probability that such 

an event could occur where artificial genetic material from the engineered pharmaceutical 

could transfer artificial DNA into human, animal, or natural environmental cells (described in 

Keese 2008; Dröge  et al 1998).  

While all respondents did note that the probabilities of such an event occurring are 

difficult to track and generally rare events (also described in Heinemann and Traavik 2004), 

seven of nine respondents noted that these risks cannot be dismissed just because they are 

unlikely to occur. EU Respondent 5 (Social Scientist) argued that “the probabilities may be 

small, but horizontal gene transfer could produce dramatic effects to humans and the 

environment, […] and should be considered for mass produced products like pharmaceuticals.” 

On the other side of the argument, EU Respondent 9 (Lab Researcher) stated that “the risks of a 

horizontal gene transfer event happening are quite low, and made essentially improbable by 

certain genetic controls within engineered cells.”  

Other respondents noted that engineering capabilities to prevent the potential of 

horizontal gene transfer by (a) preventing engineered cell colonies from growing beyond 

certain population counts, or (b) self-destructing if the cell moves outside of a contained filed 

can reduce the potential for horizontal gene transfer even further, although EU Respondent 2 

(Lab Researcher) argued that “it’s uncertain whether existing scientific capabilities are 

developed enough to control horizontal gene transfer with efficiency, or whether mutations 

within engineered cells could become problematic within the pharmaceutical’s life cycle.” 

Overall, respondents agreed that the potential for gene transfer is low and could be further 

mitigated through engineering controls, yet disagreed on the capability of such controls to 

allow regulators to entirely rule of gene transfer from engineered cells to human hosts and the 

environment. 
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 Other discussed risk considerations included the potential for unintentional 

environmental releases of artificial organisms into the natural environment, as well as the 

potential for synthetic biology research to be used in a manner that could directly or indirectly 

produce harmful diseases or viruses to humans and animals. For the former, respondents noted 

the potential for pharmaceutical material with novel genetic information to proliferate within 

the environment via improper containment and disposal of such materials by medical 

professionals or consumers. Further discussed in Konig (2016), Redford et al (2013), and 

Jeschke et al (2013), the concern of such proliferation is that engineered microorganisms could 

upset local ecosystems and negatively impact biodiversity in a given area by competing for 

resources with naturally-derived competitors, which could cause permanent changes in 

ecosystem health. For the latter, respondents discussed the potential for dual-use synthetic 

biology research to potentially enable nefarious groups or individuals to make use of 

developing knowledge of synthetic biology processes to manipulate viruses or bacteria to 

produce harmful mutations in such organisms with the intention of delivering negative health 

consequences to humans, animals, or the environment (see also Konig et al 2016 and Kelle 

2013). Such dual-use concerns are discussed further below as a ‘biosecurity’ risk concern. 

 

5.4.2  Discussion of Biosafety and Biosecurity Risk 

 With these general perceptions of synthetic biology pharmaceutical novel health risk, 

respondents were next asked to offer their opinions on two important considerations within 

European and international regulation of synthetic biology, including (i) biosafety and (ii) 

biosecurity (Schmidt 2008; Serrano 2007; Kelle 2009 Starkbaum et al 2015). Below, Figure 11 

includes responses from the nine experts interviewed solely for this dissertation research.  
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Figure 11 European Perceptions of Synthetic Biology Pharmaceutical Risks Associated with Biosafety and 

Biosecurity. Responses are coded on a scale from 0-3, where increasing values indicate greater 

likelihood of novel health risk. 0 = no novel health risk; 1 = possible but proportionally limited novel 

health risk; 2 = likely health risk; 3 = guaranteed novel health risk (n=9) 

 Looking first at biosafety, 8 of 9 respondents viewed the potential for accidental release 

and exposure scenarios to be the primary umbrella of risk events that could generate novel 

health hazards to human and natural environmental organisms.  In this way, eight of nine 

surveyed respondents articulated a belief that somewhere along the life cycle of a synthetic 

biology pharmaceutical, there exists a somewhat likely potential for a novel risk event to occur, 

with such scenarios including failures in lab safety and exposure to scientists and staff within 

early stage research, a potential for novel genetic material to accidentally be released from the 

lab to proliferate in the environment, and improper storage and disposal of relevant 

pharmaceutical materials, among others.  

 Within this topic, respondents noted that while laboratory safety standards are 

generally robust in their ability to prevent the release of novel genetic material, although they 

did note that accidental release events are still plausible – particularly as the technology 

becomes more commercially available for pharmaceutical companies and for other uses as well 

(Schmidt and de Lorenzo 2012). EU Respondent 5 (Social Scientist) stated that “a lot of this risk 

potential is going to stem from the restrictions placed upon syn bio research […] like with how it 

must be stored, who has access, and whether materials will be used outside a secure lab. Right 
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now, it’s probably too soon to tell how this will end up, making biosafety risk tricky to ignore or 

dismiss outright.” In a similar vein, EU Respondent 4 (Social Scientist) argued that “there are 

lots of limiting factors to prevent biosafety risk […] such as with reporting and oversight by 

regulatory authorities, […] but the potential for accidents and release scenarios makes synthetic 

biology a potential driver of novel biosafety risk, particularly to the environment.” Overall, EU-

based respondents collectively argued that novel synthetic biology pharmaceutical biosafety 

risks have a significant probability of occurrence due to “the high potential for accidental 

exposure, lax lab safety, and poor packaging and disposal of synthetic biology drugs and 

vaccines.” 

 With respect to the target of potential novel health risks, respondents expressed a 

greater degree of general concern for environmental rather than human biosafety hazards. 

Such concerns are regulated Union-wide by the European Medicines Agency (EMA), which can 

provide guidance for the protection of animal and human health from pharmaceutical products 

while also harmonizing the differing medicinal regulatory authorities in Member States 

(Gøtzsche  and Jørgensen 2011; Trotta et al 2011). However, the EMA lacks centralized 

authority over the medicinal regulatory process, where such abilities are reserved to Member 

State regulatory bodies (Trotta et al 2011). As such, the EMA can offer advice and review 

emerging medicinal products for quality, safety, and efficacy, yet lacks the authority such as 

with the United States’ Food and Drug Administration to establish hard law that is legally 

binding for Member States to follow (Regnstrom et al 2010; Isaac et al 2011). 

Speaking to perceptions of environmental health risk, EU Respondent 3 (Social Scientist) 

explained this position where “it is likely that these [synthetic biology] drugs will be improperly 

disposed of, making it possible for artificial genetic material to reach the environment.” 

Agreeing with this position, EU Respondent 7 (Lab Researcher) discussed how “we’re already 

seeing harmful levels of conventional drugs in waterways and in the environment, generating 

harms to plant and animal life. […] I don’t think we can rule out synthetic biology drugs and 

vaccines from such scenarios yet.” When polled about potential human health concerns, 

respondents were less concerned, with EU Respondent 6 (Lab Researcher) arguing that “clinical 

trials and testing for premarket approval is pretty robust [across the European Union], and the 



 

160 
 

only real concern for humans would be off-label and improper use as well as pre-clinical trial 

testing early on.” EU Respondent 8 (Lab Researcher) stated even more plainly that “clinical 

trials and drug testing is sort of a black box for pharmaceuticals, […] we only have to be 

particularly concerned with potential health risks before and during the testing.” Most 

respondents (7 of 9) agreed, yet 6 of 9 did note that it is important to review the potential for 

harmful side effects associated with vaccine or pharmaceutical use (discussed further in the 

discussion of pharmaceutical life cycle risk below).  

In general, however, EU-based respondents argued that opportunities for novel genetic 

material to enter the environment (where such concerns require oversight by Directorate-

General for Health and Food Safety and its Scientific Committees) may pose as a more likely risk 

in the immediate term, the mechanisms of which include concerns of horizontal gene transfer, 

biopersistence as an invasive species, and the potential for health consequences of the novel 

genetic material upon a non-target organism (concerns consistent with those general items 

raised by the European Commission Scientific Committees in May 2015). Of these, horizontal 

gene transfer was seen as the least likely, with EU Respondent 5 (Social Scientist) indicating that 

“we can already program cells to prevent gene transfer, which will become more efficient and 

sophisticated as the science evolves.” Likewise, EU Respondent 9 (Lab Researcher) argued that 

“the chances of horizontal gene transfer occurring in a manner that generates serious health 

complications is incredibly minute.” However, several respondents did argue that horizontal 

gene transfer had the potential for particularly harmful risk outcomes, with EU Respondent 2 

(Lab Researcher) noting that “while unlikely, horizontal gene transfer could trigger harmful and 

uncontrollable genetic mutations in a non-target organism that might have the potential to 

negatively affect animal and plant life by subjecting them to harmful mutation and other side 

effects.”  

For biopersistence, respondents noted that the probability of novel genetic material 

proliferating in the environment is currently unlikely given the current state of the technology, 

yet is a future concern that is likely to challenge regulators in their attempts to protect the 

natural environment. EU Respondent 2 (Lab Researcher) argued that “while cells with artificial 

DNA aren’t likely to multiply in the natural environment without a lot of help in their current 
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state, as these cells become more biologically resilient and are able to survive outside of a 

contained environment, the issue of persistence is one that we’ll have to be worried about.” 

The main concern of biopersistence was noted by EU Respondent 4 (Social Scientist) as 

“synthetic biology materials becoming an invasive species”, where such materials could disrupt 

the local ecosystem (European Commission Scientific Committees 2015). Such concerns are 

described by respondents as unlikely to materialize soon due to the inability of synthetic 

biology cells to survive independent of a controlled environment, yet would become a greater 

issue as the cells become more capable of surviving outside of a laboratory setting. 

Lastly, non-target exposure and the harmful consequences thereof were viewed as the 

most likely biosafety concern at present, where substances containing novel genetic material 

have multiple avenues of exposure to the natural environment. EU Respondent 5 (Social 

Scientist) noted that “we could see cases of unintended exposure before and after clinical trials 

– but particularly in cases of by-product waste and disposal – making exposure scenarios likely 

as the technology comes to market.” Unintended exposure was argued by EU Respondent 2 

(Lab Researcher) as “causing various potential health problems with plant or animal life that 

could impair quality of life and potentially cause death.” When asked to explain this point, EU 

Respondent 2 (Lab Researcher) further discussed that “exposure of pharmaceuticals with novel 

genetic material to an unintended plant or animal host could cause acute reactions that could 

range from relatively unnoticeable and maybe mildly irritating to quite painful in manner […], a 

similar process as with traditional chemical exposure.”  

Related to this point, The European Commissions’ Scientific Committees used their 

authority to provide the European Commission with independent scientific advice on emerging 

scientific concerns to discuss potential biosafety concerns pertaining to synthetic biology. 

Specifically, the Committees noted in their 2015 report that such risks are of particular concern 

to European regulators, with a major issue centering on the ability of scientists to contain novel 

genetic material via a variety of physical barriers (European Commission Scientific Committees 

2015). However, EU Respondent 2 (Lab Researcher) argued that “barriers and control 

mechanisms for lab safety will likely eventually fail to prevent an exposure scenario – the only 

question is how bad the health consequences will be.” For now, the Scientific Committees 
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argued similarly to these interview respondents that the consequences of such risks are difficult 

to estimate at present, yet direct field and laboratory trials would be necessary to accurately 

gauge the risk consequences of such novel genetic material on specific plant and animal species 

(European Commission Scientific Committees 2015). 

 Looking next at biosecurity risks, most respondents (7 of 9) argued that the potential for 

synthetic biology research capabilities to be used for a deliberately harmful product are 

unlikely, although 8 of 9 did note that the concerns raised via the ‘dual-use’ dilemma noted in 

White et al (2015), Edwards (2014), and Marris et al (2014). Of particular concern here includes 

both the maturation and development of the ‘do-it-yourself’ synthetic biology movement such 

as with the International Genetically Engineered Machine (iGEM) competition, as well as the 

spread of genetic engineering research and technological processes outside of secure 

laboratories and stringent government oversight that, in some instances, may enable a 

nefarious actor to deliberately construct and engineer an organism to deliver harms to human, 

animal, or environmental health (Vogel 2014; Jefferson et al 2015; Perkins and Nordmann 

2012). While most respondents (8 of 9) did note that biosecurity risks are probabilistically 

plausible, 7 of 9 argued that such risks are highly unlikely due to the difficulties and 

technological limitations such a nefarious actor would face in their attempt to foster harmful 

material with novel genetic information. EU Respondent 8 (Lab Researcher) in particular argued 

that such risks were highly unlikely, where they stated that “accidental release is far more 

likely, because there are too many oversight checks, resource requirements, and scientific 

capabilities needed to build an organism that could do real damage.”  

The general sentiment of oversight, resource requirements, and technological 

limitations serving as a barrier to biosecurity risk arose in 7 of 9 European interviews. For 

oversight, EU Respondent 3 (Social Scientist) stated that “various governmental and lab-based 

oversight mechanisms would prevent someone from abusing resources to make a harmful 

organism. […] This task would take a considerable amount of time, increasing the likelihood for 

the perpetrator to get caught.” Likewise for resource requirements, EU Respondent 1 (Social 

Scientist) argued that “it’d be difficult for someone to pull this off [a biosecurity threat] without 

a well-stocked lab and the participation and help of knowledgeable scientists”, where the 
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hypothetical researcher would generally be hard-pressed to engineer a virus or construct a 

harmful pathogen in a limited amount of time and in a manner that would yield actual health 

hazards. Lastly, respondents argued that synthetic biology capabilities at current were limited 

in their ability to allow scientists to engineer and control virus and bacteria information in a 

manner necessary to generate a biosecurity threat. EU Respondent 9 (Lab Researcher) stated 

that “This will become more plausible in the future, but for now it’s currently difficult to get a 

cell to behave in a specific manner in a general sense, let alone for a virus or engineered 

disease.” Overall, while biosafety risks were viewed as plausible yet generally unlikely, 

biosecurity was generally viewed with skepticism in the field’s existing state given the various 

limitations an actor would have to overcome to make such a threat possible. However, 8 of 9 

respondents did note that such risks will be more concerning in the future, and require the 

consideration of regulators in order to ensure that existing regulation is capable of reviewing 

research material for comparison with known pathogens as well as monitor various ‘do-it-

yourself’ activities as with iGEM and Kickstarter for unlikely yet plausible biosecurity threats 

(Bar-Yam et al 2012). 

 

5.4.3 Pharmaceutical Product Risk Across Life Cycle 

 After general discussion of biosafety and biosecurity risks for synthetic biology 

pharmaceutical products, respondents were next asked to describe the probabilities of novel 

biosafety risks to occur at various stages of the pharmaceutical’s life cycle. Figure 12 (below) 

indicates the different viewpoints of such risks from the nine experts targeted for interview. 

Overall, respondents tended to argue a greater concern for the probability of novel risk in the 

‘End-of-Life’ and ‘Research’ life cycle stages, respectively. Likewise, respondents offered a 

mixed opinion on the perception of health risk for the ‘Manufacturing’ and ‘Commercialization’ 

life cycle stages, with some respondents (n=5 and n=4, respectively) describing the plausibility 

of novel risk events happening at these stages while others noted that such events are rare or 

are preventable with existing technological and oversight mechanisms. Discussion for each of 

these life cycle stages are covered further below. 
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Figure 12. European Perceptions of Synthetic Biology Pharmaceutical Biosafety Risks Across Product Life 

Cycle. Blue = No Risk; Orange = Unlikely yet Possible Risk; Gray = Moderately Possible Risk; Yellow = 

Likely Risk (n=9) 

 For the End-of-Life life cycle stage, all respondents noted the potential for novel risk 

events to occur upon the disposal and containment of synthetic biology pharmaceuticals. A 

significant point raised at the onset of most conversations included the differentiation between 

those products that contain novel genetic material  as opposed to those without novel genetic 

material in the end product, where respondents argued that only those products containing 

novel genetic material within their end-product can produce novel health risks at the End-of-

Life life cycle stage to humans and the environment. However, for those pharmaceutical 

products which do contain novel genetic material in their end-product, most respondents (8 of 

9) noted the potential for improperly disposed or contained to reach natural environmental 

sources, with particular emphasis on such novel biological material entering into the water 

table. Where conventional pharmaceuticals such as with ibuprofen, ciproflaxin, or warfarin 

have already been noted as contaminating rivers, lakes, and other drinking water sources (see 

Mompelat et al 2009), a concern amongst several respondents is that novel genetic material 

may also persist within public water sources and be carried into the natural environment and 

gain exposure to various plant and animal life – and potentially yield harmful health 

consequences as a result. EU Respondent 7 (Lab Researcher) argued that “particularly for areas 

with unreliable or outdated treatment plants […] it’s likely that synthetic DNA and similar 
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genetic material will enter into the natural environment as such pharmaceuticals become more 

widely available.” EU Respondent 6 (Lab Researcher) credited this relatively high likelihood due 

to “improper use and disposal of pharmaceuticals and pharma-byproducts”, where consumers 

are likely to misuse or dispose of various pharmaceuticals for a variety of applications 

(Mompelat et al 2009). Overall, EU Respondent 4 (Social Scientist) summed up this discussion 

where they argued that such a risk scenario is “an inevitability”, where “novel DNA is going to 

gain exposure to the environment and outside of the oversight of regulatory authorities and 

clean-up crews.” 

 While these respondents argued that risks at the End-of-Life life cycle stage are fairly 

likely to occur, they disagreed on the health endpoints that could arise from such exposure 

events. As noted in the discussion of general biosafety risk above, respondents argued that 

biosafety concerns such as with horizontal gene transfer or biopersistence were unlikely given 

the limited probability of these events occurring, yet also argued the health risks of such events 

were potentially significant and could yield acute health concerns to humans, animals, and 

plant life (European Commission Scientific Committees 2015). On the other hand, EU 

Respondent 8 (Lab Researcher) contended that “even if such events do occur, there’s no 

guarantee that a novel hazard would arise, or that the novel genetic information would have 

anything to do with the incurred health hazard.” EU Respondent 4 (Social Scientist) addressed 

this point by noting that “the consequences of end-of-life health hazards are case dependent, 

where some products would have a significantly greater chance of yielding harms than others.”  

 Similar to the End-of-Life life cycle stage, 7 of 9 European Union-based respondents 

viewed the ‘Research’ stage as being an area of particular concern relative to the probability of 

occurrence for synthetic biology novel health risks. EU Respondent 9 (Lab Researcher) argued 

that “At the research stage, we have to be concerned with opportunities of exposure of novel 

genetic material with laboratory researchers and their assistants, particularly when oversight is 

limited and high risk material is involved.” Asked to explain their meaning behind ‘high risk 

material’, EU Respondent 9 (Lab Researcher) further stated that “experiments involving viral 

components or other microorganisms with a known potential to harm human or environmental 

health will likely pose significant concerns to synthetic biology regulators [in the respective 
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Member States].” EU Respondent 2 (Lab Researcher) further stated that “there’s greater 

uncertainty at the research stage, because a lot of this experimental material is untested, and a 

more synthetic organism would have little to draw comparisons with from a biosafety 

perspective.”  

This is consistent with claims levied by Konig et al (2016), Tucker (2011), and Carter et al 

(2014), which indicate that particularly for instances where researchers seek to manipulate 

increasingly artificial genetic material, researchers have the potential to exposure themselves 

to novel genetic material that could cause acute health hazards as well as the potential for 

horizontal gene transfer. EU Respondent 9 (Lab Researcher) further argued that “the 

consequences of such events are serious enough that we’ll need to monitor whether existing 

regulation covers synthetic biology, but I doubt the probabilities of novel risk events are high 

given existing biosafety protocols for GMOs and the physical barriers required to contain such 

material.” For human health risk, respondents generally agreed with the points raised here that 

the potential consequences of novel health risks at the Research stage are quite high, they also 

generally argued that the probability for such events to occur are quite low due to existing 

oversight and conventional containment procedures that have already been used for GMO 

research in Europe. EU Respondent 5 (Social Scientist) summed up this argument by noting that 

“Novel risk here [in the Research stage] is possible, but generally unlikely with proper biosafety 

protocol. However, as the technology becomes more widely available and these protections are 

less available, these risks may become more likely and problematic.” 

 A further point of discussion raised for the Research life cycle phase includes concerns 

related to environmental health risks, with particular emphasis on the potential for genetically 

engineered microorganisms escaping containment in a research lab and proliferating in the 

environment. The focus here was particularly on laboratory accidents with increasingly 

synthetic bacteria cells, described by Moe-Behrens et al (2014) and Pei et al (2012) as biosafety 

risk situations with potentially challenging outcomes for ecosystem health and biodiversity. EU 

Respondent 1 (Social Scientist) articulated that “Europe has been concerned with 

environmental effects of accidental releases of GMOs, and synthetic biology could be the latest, 

albeit potentially more dangerous, manifestation of this.” When asked to explain this point, EU 
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Respondent 1 (Social Scientist) replied “Engineered microorganisms would enter the 

environment and potentially impact the ecosystem by competing with natural organisms for 

sustenance and the ability to procreate […], which could have harmful effects for an area’s 

biodiversity.”  

Other respondents noted the potential risks associated with horizontal gene transfer 

during breaches in containment by early-stage research material as having potentially harmful 

consequences, but also argued that “the chances of gene transfer are pretty slim to occur with 

existing technology.” For now, the greater concern raised by these respondents centered on 

whether or not a microorganism with a significant degree of artificial DNA could proliferate in 

the environment and upset the local ecosystem via acute health risk and chronic effects for 

biodiversity (see also Marliere 2009). EU Respondent 5 (Social Scientist) noted that “as these 

cells become more robust and capable of surviving outside of a contained environment, these 

scenarios become more plausible, and make proper containment even more important.” 

 While not viewed collectively as problematic as the End-of-Life and Research life cycle 

stages, European Union-based respondents did note the potential for novel health risk at the 

‘Manufacturing’ stage. Konig et al (2016), Giese and von Gleich (2015), and de Lorenzo (2010) 

all indicate that the novel health risk scenarios at the mass production stage of synthetic 

biology development are generally limited and currently conventional in scope due to the 

limited degree of ‘synthetic-ness’ associated with engineered cells – a sentiment held by most 

respondents (5 of 9) here. In general, interview discussion indicated that while there exists 

some potential for manufacturers (those working in biological production plants) to be exposed 

to novel genetic material and/or such genetic material is able to escape containment and gain 

exposure to the environment, respondents generally argued that the potential for novel health 

risk was limited. EU Respondent 8 (Lab Researcher) noted that “the risk here is more of a 

conventional nature in terms of proper production and containment of biological material, and 

where the novel risk scenario would be something like gene transfer from a breach in 

containment, which is generally unlikely given the state of the science.” EU Respondent 8 (Lab 

Researcher) further stated that “oversight and containment regulation for manufacturers in 

Europe are pretty robust when it comes to GMOs, and I don’t see synthetic biology being much 
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different or challenging biosafety regulations [2009/41/EC] in a manner that makes new risk 

likely […] particularly when the pharma products under production have been engineered to 

limit their potential for gene transfer and exposure effects.”  

Of greater concern to respondents included the potential for environmental health risk 

in a manner similar to that described in the Research life cycle stage, EU Respondent 4 (Social 

Scientist) argued that “the proper handling of biomaterial with novel DNA and containment of 

by-product waste during manufacturing could contribute to an environmental release scenario 

with potentially damaging effects to biodiversity.” While respondents further argued that such 

risks scenarios are currently unlikely, they are likely to increase in probability as the technology 

spreads beyond sophisticated laboratories and well-resourced corporate research facilities in 

favor of those organizations with less history and familiarity with GMO biosafety protocol. In a 

statement consistent with Marliere (2009), EU Respondent 3 (Social Scientist) noted that “the 

potential for accidents or improper storage and disposal of manufacturing waste and novel 

genetic material increases as new players for genetic engineering emerge, with my concern 

leaning towards those organizations with limited premarket oversight in their product 

development.” However, EU Respondent 3 (Social Scientist) concluded their statement on 

manufacturing risk by indicating that “current governance gives the European Union enough 

premarket approval over drug development that these risks should be mitigated, although this 

may change as synthetic biology research allows researchers to make cells with increasingly 

artificial DNA.” 

 Lastly, respondents argued that the ‘Commercial’ life cycle stage was the area with the 

least probability of novel health risk to arise to human and environmental health. As EU 

Respondent 8 (Lab Researcher) argues, this is due to the fact that “there isn’t any novel genetic 

material that goes into the consumed drug, where synthetic biology is primarily the production 

process to make conventional parts to pharmaceuticals like with artemisinic acid for malaria 

treatments.” EU Respondent 6 (Lab Researcher) argued that “as new syn bio pharmaceuticals 

enter the market, they’ll have been engineered in a manner that controls for novel health risks, 

and tested within clinical trials to view the odds that these events arise – so it’s unlikely to see 

such events occur very often.”  
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When asked to think of more futuristic products such as with an engineered probiotic 

with fully synthetic DNA intended for use in the human gut, respondents became a bit more 

concerned at the risk potential, where “novel DNA would then have a route of exposure to 

humans in vivo.” For such cases, respondents argued that novel health risk would be more 

uncertain, where high risk, low probability events such as horizontal gene transfer may arise at 

the commercial stage that had not previously been viewed in clinical trials (see also Heinemann 

and Traavik 2004). On this subject, EU Respondent 6 (Lab Researcher) noted that “for drugs 

that actually contain synthetic DNA like with viral material in vaccines, the potential for side 

effects is likely greater, although whether this contributes to novel health risk in the manner of 

horizontal gene transfer is less certain. Possible, but hard to tell currently.”  

 

5.5 Regulatory Mechanisms within the European Union 

 After discussing perceptions of synthetic biology pharmaceutical risks and benefits, 

respondents were next asked to offer their views and expertise regarding (i) the hard and soft 

law regulatory authorities applicable to synthetic biology research, and (ii) discussion of 

weakness and limitations of such regulation as they apply to pharmaceutical research. This 

exercise is important in order to determine existing capabilities to cover synthetic biology 

research and development while also indicating potential loopholes or areas of concern where 

regulatory guidance and best practices are unable to appropriately govern synthetic biology 

research.  

 

5.5.1   Respondent Discussion of European Regulation of Synthetic Biology Products 

 After reviewing the regulatory authorities pertinent to European regulation of synthetic 

biology products (see Section 5.2.2 for more information), respondents were asked to identify 

the laws and regulatory bodies in a manner similar to Kelle (2009). As noted in Chapter 4.2, 

each of the 9 interviewed respondents were able to identify, without prompting, either a 

regulation or regulatory body involved within synthetic biology regulation, with three 

respondents noting able to identify and both. Figure 13 below indicates that such identification 

was greatest with the ability of respondents to identify a regulatory body within their given 
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state or within the European Union proper, with 7 of 9 being able to do so. These respondents 

were able to provide specific descriptions regarding the responsibilities and powers held by 

such authorities relative to the process of synthetic biology development. Likewise, 5 of 9 were 

able to identify and describe the major statutes, regulations, and guidance noted in Bar-Yam et 

al (2012) as issued by the European Commission. 

 A significant point raised within the course of European interviews included the notion 

that “it is important to account for regulation in the European Union, and within the individual 

Member States.” In this way, Directives are discussed and voted on by the European 

Commission proper, which are then often implemented by individual Member States (Buhk 

2014; Bar-Yam et al 2012). Pan-European Bodies such as the European Medicines Agency can 

review concerns and call for shifts in regulatory policy, yet the responsibility of carrying out 

such regulation generally remains with relevant domestic authorities for each Member State 

(European Commission Scientific Committees 2014). As such, respondents often identified their 

own domestic regulatory authorities yet also discussed awareness of pan-European synthetic 

biology regulation (where possible). 

 

Figure 13. Familiarity and Recognition of Synthetic Biology Regulation by European Respondents. 0 = no 

recognition, 1 = recognition of a piece of hard/soft law regulation but not an agency, 2 = vice versa, 3 = 

recognition of both hard/soft law regulation and relevant agencies (n=9_ 

 A tangential yet important inquiry asked of each interview respondent included 

respondent perceptions of when synthetic biology pharmaceutical products would reach 

n=2

n=4

n=3

EUROPEAN IDENTIFICATION OF LOCAL 
SYNTHETIC BIOLOGY 

REGULATION/STAKEHOLDERS

0 1 2 3



 

171 
 

commercialization. As noted in Chapter 4.2, such responses serve only as ‘best guesses’ by 

respondents, and should not be taken for more than an academic exercise to gain a general 

idea of what we may expect relative to the development of synthetic biology products in the 

European Union in the future. As such, the responses provided below should not be taken as an 

assessment of a concrete timeline for commercialization. 

Figure 14 below includes a summary of such responses, with European Union-based 

respondents being divided with respect to when products containing novel genetic material as 

with engineered vaccines or advanced therapeutics would enter the market, with equal 

proportions arguing for greater than ten years and between five and ten years, respectively. For 

the former, EU Respondent 7 (Lab Researcher) noted that “we’re making strides towards early 

syn-bio drugs, but more advanced pharmaceuticals or even vaccines using genetically altered 

DNA are currently beyond the scope of most research trials that I know of.” Similarly, EU 

Respondent 1 (Social Scientist) argued that “no heavily engineered syn-bio drugs are currently 

undergoing clinical trials […] so you have to account for the time delay for regulatory approval 

prior to commercialization.”  

 For the latter, four respondents argued that emerging pharmaceutical applications of 

synthetic biology research will push companies and universities to derive increasingly synthetic 

genetic information for use in drugs and vaccines for various purposes, but particularly for 

those diseases with limited options for treatment or vaccination. EU Respondent 4 (Social 

Scientist) noted that “there are a variety of medical challenges to public health that synthetic 

biology may be uniquely able to address […] like Ebola, malaria, or dengue fever.” Synthetic 

biology has also been described in literature as a tool to address neglected diseases with no 

known cure, treatment, or vaccine, and are scientifically difficult to resolve (Van Den Belt 2013; 

Tucker and Zilinskas 2006). In this vein, EU Respondent 4 (Social Scientist) further argued that 

“the breakthroughs that synthetic biology could offer will cause research to accelerate within 

the next few years […] making commercialization a lot sooner than you’d think.” 
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Figure 14. European Perceptions of Distance in Time for Synthetic Biology Products to Enter Marketplace 

(from December 2014; n = 9) 

 

5.5.3 Evaluating Existing Regulatory Capabilities within the European Union 

 After gaining an understanding of both the regulations and regulatory bodies 

responsible for synthetic biology regulation in Europe, this section includes those comments 

made by European interview respondents on the subject of whether or not such regulation is 

capable of covering synthetic biology research and development, and if not, where further 

improvements or extensions of regulation are needed in order to mitigate novel health risk 

while also allowing the technology to develop in an efficient and helpful manner (Mandel et al 

2014). Discussion was framed around concerns for biosafety and biosecurity concerns 

stemming from research around synthetic biology pharmaceuticals. 

 The concern over the future direction of synthetic biology research and the capability to 

foster fully synthetic organisms served as the greatest concern raised by interviewees relative 

to the ability of existing regulatory instruments to capture the technology’s potential novel 

risks. EU Respondent 3 (Social Scientist) argued that “[European] governance of immediate 

future technologies is robust, but future developments may challenge regulation. […] This is 

because of the current dependencies of comparative risk analysis with similar non-GMO 

alternatives to the proposed product.” This sentiment is further established in Pauwels et al 
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(2013), which indicated that existing biosafety regulation geared towards synthetic biology 

product testing and preapproval is centered on a comparative risk analysis with a known history 

of safe use with proper production, management, and disposal protocols.  

Given this general requirement as within Directive 90/220/EEC, EU Respondent 3 (Social 

Scientist) further argued that “we will need a risk assessment protocol to review synthetic 

organisms with few parallels to conventional organisms […], something that we currently lack 

and may find difficult to accomplish.” Likewise, EU Respondent 8 (Lab Researcher) stated that 

“existing technological capabilities generally use well-known cellular inputs and components 

similar to natural cells, which would not be the case for a more fully synthetic cell.” EU 

Respondent 8 (Lab Researcher) continued by concluding that “biosafety governance will run 

into trouble here [for cases of increasingly synthetic cells], as it will be difficult to conduct a risk 

analysis for a product that we have little information about or by which to compare it to.”  

While most respondents (8 of 9) and noted literature generally concurred that the 

production of fully synthetic cells as being several years off (Blain and Szostak 2014; Stano and 

Luisi 2013), European regulation will eventually have to grapple with the question of how to 

govern fully synthetic cells which lack clear comparisons with products derived from naturally-

occurring components – including offering a definition of what is and is not an organism and 

thereby classified as a regulated product under specific EU Directives (Konig et al 2016). 

Without such an alternative to quantitative and comparative risk analysis between such 

products on a case by case basis (Pauwels et al 2013), European regulatory protocols and 

requirements may hinder the further development and commercialization of potentially 

beneficial products as with new pharmaceuticals and vaccine components (Konig et al 2016). 

 An additional tangential concern raised by European interview respondents relative to 

biosafety includes concerns relative to controlling unintended releases of artificial genetic 

material, with particular emphasis on tracking the spread and effects of such materials. EU 

Respondent 5 (Social Scientist) noted the need for genetic ‘watermarks’, where they stated that 

“placing some identifying barcode or watermark inside the genetic code of an engineered cell 

may help us track the movement and consequences of biosafety events […] as well as potential 

cases of theft or negligent containment.”  
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Such statements are consistent with Gibson et al (2010) and Liss et al (2012), who 

argued that such watermarks may collectively (i) allow investigators to quickly identify where a 

novel genetic organism was produced and stored, (ii) better track the spread and potential 

proliferation of such organisms, and (iii) provide evidence of theft of proprietary information 

via the watermark’s identifying information. EU Respondent 4 (Social Scientist) also described 

the benefits of such watermarks as “reducing the potential burden of risks that we aren’t as 

focused on currently, like with economic losses from the theft of company property and 

ensuring biosafety violators are accountable for their actions.” While a small addition to 

synthetic biology regulation, Liss et al (2012) and Konig et al (2016) argue that such watermarks 

would be particularly helpful for high risk organisms, and would serve as another layer of 

containing such material and tracking its environmental proliferation in the case of 

containment breaches. 

 While European Union-based respondents only expressed particular biosafety concern 

over long-term technological development issues, they did note more short-term concern over 

biosecurity concerns related to dual-use synthetic biology innovation that could be used for 

deliberate harm. This is in contrast to statements by respondents that biosecurity events are 

unlikely, where most agreed that despite the unlikely chance of such a hazardous event, its 

plausibility and potentially widespread harmful consequences is enough to warrant a 

strengthening of regulation to protect against both ‘lone-wolf’ and ‘group-supported’ efforts at 

constructing harmful engineered microorganisms (Konig et al 2016; Konig et al 2014; Jefferson 

et al 2014; Tucker 2011). Explaining this position, EU Respondent 9 (Lab Researcher) noted that 

“the potential for such events are quite small, and the resource requirements for an event quite 

high, yet we still need to adequately protect against biosecurity events.”  

 To address these concerns, several interview respondents noted that little compliance 

or control mechanisms exist to prevent the production of biological weapons using synthetic 

biology innovation. EU Respondent 1 (Social Scientist) stated that “International agreements 

like the Biological and Toxin Weapons Convention don’t really have stiff control over the 

production and sale of bioweapons, so a separate body geared to the control of such 

biomaterial may be necessary in Europe.” EU Respondent 5 (Social Scientist) noted that 
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“biosecurity is a particularly complex issue for medical applications like with pharma, and its 

governance needs to be relatively tight to ensure that the wrong people don’t get access to 

synthetic biology technologies and information.” EU Respondent 5 (Social Scientist) further 

continued agreeing with the above statement that “a separate body related to reviewing 

biosecurity issues is needed for certain categories of synthetic biology research, including with 

pharmaceuticals and drug development.” 

 The issues raised here are consistent with discussion noted by Garfinkel et al (2007) and 

Tucker (2010), among others. The explicit concern for such cases was described by EU 

Respondent 2 (Lab Researcher) as “the possibility of a terrorist or a group to direct evolution of 

viruses in bacteria to harm humans or the environment in a particularly harmful and unnatural 

manner”, where synthetic biology’s ‘dual-use’ capabilities of advancing helpful properties of 

science while also allowing for the potential for weaponization or malicious use of genetically 

engineered material remains possible (Konig et al 2016). Specific dual-use examples include the 

potential modification of viruses for predetermined purposes such as with promoting the 

airborne transmission of bird-flu viruses in ferrets to study similar influenza transmission in 

human populations (Imai et al 2012; Herfst et al 2012). To combat the potential misuse of dual-

use synthetic biology techniques and research, the respondents above noted the need for a 

pan-European regulatory body to review biosecurity concerns, including duties such as with 

classifying various research topics into various bins, where certain bins will encounter a more 

thorough review prior to receiving funding from the European Commission while also having 

greater controls over information that may and may not be published or publically 

disseminated. Malakoff (2013) and Konig et al (2016) contend that such an approval process 

would identify those projects with dual-use applications and require data control and 

publication limitations in order to prevent the public dissemination of such material.  

 While several respondents (5 of 9) noted the need to consider improvements to 

European regulation related to long-term biosafety concerns and dual-use biosecurity risks 

noted above, there were disagreements related to how that should be accomplished (detailed 

in Figure 15 below). Specific disagreement centered on whether changes to national regulatory 

capabilities are currently necessary to govern such risks, with 2 of 9 respondents stating that 
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the European Union should move towards EU-wide regulatory changes to address synthetic 

biology regulation directly. Likewise, 3 of 9 argued that it would be premature to make such 

changes, where regulators instead should rely on existing Directives (such as Directive 

2001/18/EC and Directive 2009/41/EC) to cover synthetic biology risks while also allowing for 

the research community to establish its own standards and risk management protocols for 

general synthetic biology research.  

Within such self-governance, Douglas and Stemerding (2014) and Hilgartner et al (2015) 

note that public-private partnerships as well as multi-stakeholder guidance committees serve 

as more common sources of soft law development for the European Union. Wendler (2005) 

describes one such option as the European Food Safety Authority (EFSA) as a public-private soft 

law approach. Specifically, Wendler (2005) notes that the EFSA’s industry partnerships allow it 

to (i) acquire information about emerging risks to food within the European Union from 

industry stakeholders, (ii) communicate priorities and best practices to such industry 

stakeholders, and (iii) communicate to the European Commission findings and opinions 

regarding such food-based risks and threats – genetically modified organisms included. Further, 

Van Broekhuizen and Schwarz (2010) note the rise of multi-stakeholder committees for 

emerging technology soft law development, where they explicitly reference the ‘Nanocap’ 

consortium. In further detail, Nanocap serves as a multi-stakeholder meeting of industry 

professionals, NGOs, and academic researchers to discuss and debate risks posed by 

nanotechnology (Van Broekhuizen and Schwarz (2010). The consortium reinforced the ‘no data, 

no market’ rule, which sought to reinforce best practices where developers demonstrated safe 

use and best practices of nano-based products.  

While not legally binding, Van Broekhuizen and Schwarz (2010) and Wendler (2005) 

note that such codes of conduct can have a strong effect to influence industry behavior and 

inform government stakeholders of potential risks posed my emerging technologies. This drive 

for self-governance and soft law (such as with the W3C approach noted by Maurer 2012 as 

deriving consumer driven-standards and consensus-driven best practices by a collection of 

subject experts) operates under the notion that existing governmental controls are sufficient to 

control for potential biosafety and biosecurity risks, where one EU Respondent 6 (Lab 
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Researcher) noted that “the research community may help indicate to government 

stakeholders where novel risk is realistic, and where it’s improbable.” Lastly, 4 of 9 respondents 

argued that no new regulation of any form was appropriate at this time, with EU Respondent 8 

(Lab Researcher) contending that “Europe has already addressed synthetic biology directly via 

the precautionary principle and clear directives, and more law now will probably be 

unnecessary and might hinder research.” The sentiment held by these four respondents was 

not that hard or soft law changes to synthetic biology regulation would never be needed, but 

that no new regulation should be established until warranted by new research conducted under 

existing law. 

 

 

Figure 15. Perceptions Amongst European Experts Regarding the Regulatory Needs for Synthetic Biology 

Research and Development 

 

5.6 Discussion 

 Overall, European respondents raised several points related to where they perceived 

novel health risk as being possible as well as whether existing hard and soft law within Europe 

were capable of covering such risks in the immediate and long-term future. For the former, this 

included considerations of general perceptions of risk as well as where along a pharmaceutical 

product’s life cycle such novel risk was likely to arise. Generally speaking, respondents indicated 
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that both biosafety and biosecurity risk scenarios are plausible to occur, with biosafety events 

related to laboratory accidents, accidental exposure, and environmental release scenarios 

being some of the common avenues when harmful events may arise. Risks here include the 

potential for horizontal gene transfer (viewed as plausible but unlikely), environmental 

proliferation (plausible but unlikely given the current state of the science), and exposure effects 

where the engineered microorganism could negatively impact local ecosystems and biodiversity 

(highest probability of the three). 

 For the latter, respondents viewed European regulation as generally being capable of 

covering synthetic biology product development in the near future, where they argued that 

these Regulations, Directives, and Recommendations with historical applications to genetically 

modified microorganisms capture the process of synthetic biology development. Such 

statements are consistent with Konig et al (2016) and de Lorenzo (2010), which noted that early 

iterations of synthetic biology research are likely to be covered within European hard law 

directives and soft law synthetic biology-specific guidance to university, government, and 

industry researchers alike. 

Overall, the respondents did note some potential challenges to the effectiveness of such 

Directives and Regulations, including (i) the ability of these regulatory structures to prevent an 

unlikely biosecurity threat via the promotion of dual-use synthetic biology products as with viral 

material for vaccines, and (ii) the ability of regulators to conduct quantitative risk assessments 

on microorganisms with increasingly artificial DNA. For biosecurity, respondents noted that 

despite the unlikely probability that such risks would materialize into a tangible threat via 

bioterrorism or weaponized products, further pan-European regulation was needed in order to 

screen research proposals for those that may produce dual-use material that, if disseminated 

and published widely, could empower a nefarious actor to pursue harmful research.  

For biosafety, respondents argued that risk assessment protocols using the comparative 

method to review the potential for novel risk between a synthetic biology product and a 

naturally-derived, safe product (see Pauwels et al 2013) will become difficult to reliably conduct 

as synthetic biology microorganisms become increasingly synthetic. In this way, European 

regulators will need to adopt new measures of reviewing the potential for harmful health risks 
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associated with these products, including considerations of human and environmental health 

(Konig et al 2016). Overall, however, European respondents articulated that the precautionary 

principle that has encompassed discussion around genetically engineered microorganisms and 

synthetic biology alike will continue to play a significant role in the hard and soft law regulation 

of such research (see also Carter et al 2014; Vogel and Lynch 2001; Buhk 2014; Kelle 2013). 
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Chapter 6: 

Synthetic Biology and Risk Regulation – The Case of Singapore 

 

 

6.1 Introduction 

 Singapore’s health sciences research identity has centered on the need to advance 

treatments and therapeutics for conditions and diseases that are endemic and problematic for 

Southeast Asia such as malaria, dengue fever, and several others. Since its de jure 

independence in 1965, the Lion City’s leadership has actively advocated for an aggressive 

research agenda in virtually all scientific fields, leading to collaborative relationships with most 

developed nations such as the United States and European Union alongside the development of 

a number of industrial, governmental, and academic research ventures over the past several 

decades (Phan et al 2005; Lee and Win 2004). Over the past 50 years, Singapore has grown 

from one of the poorest nations in the world in the 1960s to become a fully developed and 

scientifically advanced country (Davis and Gonzalez 2003; Wee 2007; Olds 2007). Due largely to 

its business-friendly stances and substantial funding for research and development, this 

progress has given the city-state a reputation as a technological innovator, contributing to 

substantial funding for emerging technologies research in nanotechnology, biotechnology, 

information systems technology, and many other developing fields (NUS 2015; Olds 2007; Wee 

2007; Altbach and Salmi 2011). 

 Among these areas of interest includes synthetic biology, where two major universities 

(the National University of Singapore and Nanyang Technological University), research groups, a 

biologics plant (Novartis), and a growing cohort of private companies and for-profit research 

ventures individually investigate various elements of synthetic biology research. Discussed 

more explicitly below in Section 5.2, synthetic biology has emerged as a research venture in 

Singapore due to the potential for its scientists to engage with topical research questions and 
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policy problems related to Southeast Asia such as with biofuels and combating tropical diseases 

such as dengue fever and malaria (Liang et al 2011).  

This chapter adopts a similar structure as the US and European chapters by reviewing (i) 

the recent history and practice of synthetic biology within Singapore, (ii) perceptions of health 

risk produced by synthetic biology pharmaceuticals amongst interviewed subject experts, and 

(iii) perceptions and opinions of existing and future regulation of synthetic biology products 

within Singapore. As with Chapters 4 and 5, expert discussion and findings from discourse 

analysis within this chapter will be discussed and compared in Chapter 7. 

 As the last case chapter, Sections 6.2 and 6.3 seek to indicate how elements of risk 

culture can influence synthetic biology regulation in Singapore. Specifically, this includes 

discussion of how the country’s soft-authoritarianism yet cooperational and informal nature to 

facilitate regulatory reform applies to synthetic biology regulation and governance. Later 

sections build off of this discussion by reviewing expert perceptions of synthetic biology risk and 

regulation within Singapore. 

 

6.2 Regulatory Culture and Regulatory Decision Making in Singapore 

6.2.1 History and Background of the Political and Institutional Structure of Synthetic Biology 

Regulation in Singapore 

Singapore’s political and institutional identity centers on its status as a ‘soft-

authoritarian state’, which Turner (2015), Reilly (2016), Ortmann (2012), and Olds (2007) 

describes as where opposition parties are legally allowed to operate without significant fear of 

reprisal, but are generally too weak or ineffective to seriously challenge power. For Singapore, 

the People’s Action Party has served as the primary soft-authoritarian power, with effective 

control of the national government since 1959 (Hill and Lian 2013; Turnbull 1989). A Center-

Right Party by nature, the People’s Action Party has operated on the principles of pragmatism, 

meritocracy, multiracialism, and communitarianism, with the general motivation of the Party to 

improve Singapore’s economic position and the purchasing power of its citizenry through 

continual technological and economic investment within a racially and ethnically diverse 
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population while also leveraging Singapore’s historical advantages as a center for shipping and 

trade (Tremewan 1996). 

The People’s Action Party retains control over the three branches of government, 

including the Executive, Legislative, and Judicial branches. Governmental structure is defined by 

the Westminster constitutional model (driven by Singapore’s history prior to independence as a 

British colony), with a Prime Minister heading the national government and chosen amongst 

the body of Parliamentary members (Sheehy 2004) and a President exercising largely 

ceremonial power as Head of State (Sheehy 2004; Hill and Lian 2013). Lastly, an independent 

judiciary checks executive and legislative actions that may be interpreted as violating the 

Singaporean Constitution, although judicial authority is limited and defers by law to the 

executive for instances where court authority it limited or uncertain (Hill and Lian 2013; 

Turnbull 1989).  

Lawmaking in Singapore is held by Parliament, where ministers may propose bills (yet 

most legislative proposals are initiated by a member of the Prime Minister’s Cabinet) (Vasil 

2004; Tan 2013). However, Parliamentary lawmaking is limited in cases of (i) those bills that 

seek to impose, increase, or abolish a tax, (ii) those bills that seek to borrow money on behalf of 

the government, and (iii) deposits or changes to the Singaporean Consolidated Fund 

(Constitution of Singapore; Tan 2013). Further, bills are screened for potential harms to 

minority rights, where those deemed to be explicitly harmful to a particular subsection of 

Singaporean society are removed from further consideration in Parliament (Constitution of 

Singapore) (Tan 2013; Vasil 2004). Bills allowed to circumvent screening for minority rights 

considerations include both those bills that the Prime Minister certifies as affecting the defense 

or security of Singapore, or that relate to public safety, peace or good order in Singapore, and 

bills the Prime Minister certifies are so urgent that it is not in the public interest to delay 

enactment (Turnbull 1989; Sheehy 2004; Hill and Lian 2013). In this way, both the President and 

Prime Minister exert control over the lawmaking process and retain the ability to (i) guide the 

legislative process by instructing a Cabinet member to propose and defend a bill, or (ii) use their 

power to circumvent certain requirements of the deliberation of a bill in order to meet 

emerging public health and security concerns (Olds 2007; Tan 2013).  
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Specific to synthetic biology regulation and governance, Singapore captures the process 

of the technology’s development using existing hard and soft law previously crafted to govern 

genetically-modified organisms. Two such instruments include The Biological Agents and Toxins 

Act as well as The Singapore Biosafety Guidelines for Research on Genetically Modified 

Organisms. This is in lieu of using existing chemical regulation to capture elements of synthetic 

biology development such as within the United States, where such regulation has been used 

instead to cover biosecurity (The Strategic Goods (Control) Act) as well as product-driven 

regulation (The Medicines Act and The Health Products Act). Each of these will be discussed in 

turn below.  

The Biological Agents and Toxins Act (2005) represents Singapore’s key legislative 

instrument that shall most likely capture the process of synthetic biology development. Those 

with more knowledge of the law particularly referenced Chapter 24A, which was added as a 

revision to the original act in 2006. Chapter 24A is specifically geared to address regulatory 

policy to:  

“prohibit or otherwise regulate the possession, use, import, transhipment, transfer and 

transportation of biological agents, inactivated biological agents and toxins, to provide for safe 

practices in the handling of such biological agents and toxins” (Biological Agents and Toxins Act 

2006).  

Administered by the Singaporean Ministry of Health, the Act states that those facilities 

which handle biological agents and toxins deemed “high risk” are required by law to acquire 

certification as “containment facilities”, with inspection and recertification to occur on an 

annual basis. 

 This particular statue was directed at monitoring, reviewing, and assessing risk related 

to various elements of life sciences research, with several respondents in government and 

academia noting its coverage of synthetic biology research based upon the abilities of the 

Director of Medical Services and his or her appointed officers to monitor and review the 

possession, use, transportation, and production of biological agents. Biological agents are 

divided into a series of classes called ‘Schedules’, with Eight schedules referenced in Chapter 

24A of the Biological Agents and Toxins Act (Biological Agents and Toxins Act 2006). Synthetic 

biology is not explicitly referenced within any of these schedules, although government and 
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academic interviewees noted that such products would most likely fall in the First, Second, or 

Third Schedule based upon the type of product that synthetic biology research would be 

conducted on. These schedules include some of the more tightly controlled and vigorously 

monitored biological agents by Singaporean officials, with explicit requirements of permitting 

and certification for most activities related to large scale production, transport, possession, and 

use of such agents. Within the statute, these laws explicitly reference the Ministry of Health’s 

ability to protect and preserve Singapore’s biosafety with respect to biological agents and life 

sciences research (Biological Agents and Toxins Act 2006). 

 A further legislative instrument includes the Strategic Goods (Control) Act (Chapter 300) 

of 2002, which lists biological agents and toxins that are administered and reviewed by the 

Singaporean Customs Authority. This particular law addresses preserving both the nation’s 

security relative to monitoring the brokering and exchange of goods “capable of causing mass 

destruction”, along with the review of technologies moving in and out of the country that would 

otherwise be of interest to national security (Salerno & Gaudioso 2015). Geared more towards 

the biosecurity debates discussed since synthetic biology’s modern inception in the early 2000s, 

these statutes seek to control the import and export of various materials that are potential 

threats to national security.  

 Specific to the Strategic Goods (Control) Act, it is not explicitly clear how the 

Singaporean Customs Authority communicates with other bodies such as the Ministry of Health 

to identify and label certain technologies and products as being of concern for Customs agents 

at the nation’s borders (Strategic Goods (Control) Act 2003). However, the statute does offer 

the Director-General of Singapore’s Customs Authority the ability to, at their discretion:  

“prescribe any military or dual-use technology as strategic goods technology for the 

purposes of [the] ACT.”  

This allows the Customs Authority to update their schedules and guidance regarding 

those technologies deemed strategic and of interest to the Singaporean government (Strategic 

Goods (Control) Act, Section 4a, 2003). Where all Singaporean government interviewees noted 

that greater flexibility was needed with respect to applying regulatory oversight to synthetic 

biology products, this Act offers a relatively adaptive and flexible approach to identifying 

biosecurity threats now and in the future, and empowering Customs to regularly update their 
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schedule of strategic goods and technologies based upon notable threats and developments in 

areas ranging from energetics to life sciences. For purposes of synthetic biology and 

pharmaceuticals research, such flexibility would allow the Customs Authority’s leadership to 

apply principles of soft law to include specific synthetic biology products on their list of 

materials requiring permits and certification for travel and exchange.   

 Another important regulatory instrument related to synthetic biology development 

includes workplace safety considerations. Specifically, this includes The Ministry of Manpower 

(MOM) and The Workplace Safety and Health (WSH) Council. For the former, MOM includes 14 

divisions (with 1 centered on Occupational Health and Safety), and is empowered by The 

Workplace Safety and Health Act to ensure workplace safety. Specifically, Part 4 of the Act 

asserts that: 

“It shall be the duty of every occupier of any workplace to take, so far as is reasonably 

practicable, such measures to ensure that — 

(a) the workplace; 

(b) all means of access to or egress from the workplace; and 

(c) any machinery, equipment, plant, article or substance kept on the workplace, 

are safe and without risks to health to every person within those premises, whether or 

not the person is at work or is an employee of the occupier.” 

Further, the WSH works in tandem with The Ministry of Manpower to review workplace 

safety concerns as laid out in the Workplace Safety and Health Act. This relationship is codified 

in Part 8 of the Act, where the WSH Part 8 Section 40a notes: 

 40A.  The functions of the Council shall be — 

“(a) to develop or facilitate the development of acceptable practices relating to 

safety, health and welfare at work; 

(b) to promote the adoption of acceptable practices relating to safety, health and 

welfare at work; 

(c) to devise, organise and implement programmes and other activities for or 

related to providing support, assistance or advice to any person or organisation 

in preserving, improving and promoting safety, health and welfare at work; 
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(d) to facilitate and promote the development and upgrading of competencies, 

skills and expertise of the workforce relating to safety, health and welfare at 

work; 

(e) to research into any matter relating to safety, health and welfare at work; 

(f) to grant prizes and scholarships, and to establish and subsidise lectureships in 

universities and other educational institutions in subjects relating to safety, 

health and welfare at work; 

(g) to provide practical guidance with respect to the requirements of this Act 

relating to safety, health and welfare at work; and 

(h) to do all the things that it is authorised or required to do under this Act.” 

 Such legal jurisdictions apply to genetically modified substances via the Fifth Schedule of 

the Act (Machinery, Equipment or Hazardous Substances). Discussed further below, The 

Singapore Biosafety Guidelines for Research on Genetically Modified Organism also indicates 

how MOM and WSH interact with the Genetic Modification Advisory Council and other 

agencies to explicitly cover workplace safety for genetically modified substances, where the 

legal authority of the two agencies derives from The Workplace Safety and Health Act. 

With respect to soft law, various members of the academic, industry, and governmental 

axis referenced The Singapore Biosafety Guidelines for Research on Genetically Modified 

Organisms (GMOS) (2013), which serves as a more explicit connection to synthetic biology 

regulation than the hard law case of the Strategic Goods (Control) Act or the Biological Agents 

Control Act of 2005. While the term ‘synthetic biology’ does not appear in the 2013 iteration of 

the Guidelines, the focus on genetically modified organisms and the various products which 

make use of such organisms drove most stakeholders knowledgeable of the document to argue 

for synthetic biology being thoroughly covered under the Guidelines. Within its contents, the 

Guidelines offer instruction on (i) the types of products and activities to be governed, (ii) the 

various governmental institutions and agencies with authority to review practices, adaptively 

improve regulatory mechanisms over time, and mete out consequences associated with those 

who defy best practices, and (iii) clear structure regarding governmental authority and work 

flows related to protecting Singaporean biosafety and biosecurity within the context of 

genetically modified organisms and their related research. Overall, the Guidelines do not carry 
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the force of law as with The Biological Agents and Toxins Act, yet have been adopted by 

Singapore’s research universities and are required for research organizations that receive 

funding from the Singaporean government (Tun et al 2009; Asadulghani and Johnson 2015). 

Looking first at the types of activities and products explicitly covered by The Singapore 

Biosafety Guidelines for Research on Genetically Modified Organisms, Section 2.1 (Extent of 

Guidelines) references the Guidelines’ ability to offer guidance to:  

“experiments that involve the construction and/or propagation of all biological entities 

(cells, prions, viroids, viruses or organisms) which have been made by genetic 

manipulation and are of a novel genotype and which are unlikely to occur naturally, or 

which could cause public health or environmental hazards.”  

While it is important to note that the Guidelines “do not cover work involving human 

subjects”, the risk and hazard discussion centered on governing genetically modified organisms 

does consider both public health and environmental health outcomes as they arise from the 

research, manufacturing, use, and disposal of such materials (for regulation explicitly related to 

these materials and human subject testing, interview respondents noted that the Biological 

Agents Control Act was better equipped to address such issues). Further, the Guidelines note 

that they consider both the intentional and unintentional release of biological material deriving 

from genetically modified organisms, yet also state that certain work or research may be 

subject to additional hard or soft law regulation depending on whether such work was able to 

get an exemption from external oversight, or that such work falls under a specific class of 

genetic modification research that the Singaporean government has denoted as not possessing 

significant biosafety risks to humans or the environment (Section 2.3). 

 Next, the Guidelines address at length the governmental institutions empowered to 

govern and regulate activities outlined in Section 2. Specifically, the Guidelines name 8 agencies 

with some degree authority to regulate research related to the genetic modification of 

biological material for pre-defined purposes, including: 

 the Genetic Modification Advisory Committee of Singapore. 

• the Agri-Food and Veterinary Authority of Singapore 

• the Ministry of Health, Singapore 
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• the National Environment Agency, Singapore 

• the Ministry of Manpower, Singapore 

• the Institutional Biosafety Committee 

• the National Advisory Committee for Laboratory Animal Research 

• the Bioethics Advisory Committee 

 Using this guidance, the Guidelines divide the regulation of genetically modified 

products or technologies into four general categories, including (i) the regulation of laboratories 

dealing with GMO research, involving animal pathogens and plant pests, (ii) the importation of 

organisms including GMOs, (iii) the certification or Inspection of Laboratories handling 

biological agents or toxins regulated under the Biological Agents and Toxins Act, and (iv) the 

regulation of workplace safety and health. Government interviewees noted that synthetic 

biology biosafety guidance is likely to currently fall under parts (i) and (iii), where soft law best 

practices guidance alongside notions of hard law certification and monitoring requirements of 

laboratories conducting genetic modification research. For these biosafety provisions (parts i 

and iii), the Guidelines states that both the Agri-Food and Veterinary Authority of Singapore 

alongside the Ministry of Health respectively serve as the two regulatory organizations 

empowered to govern such activities. With respect to part ii, the Guidelines notes a collection 

of the Agri-Food and Veterinary Authority of Singapore, the MOH, and the National 

Environment Agency charged with the regulatory authority to oversee the importation of 

genetically modified organisms and products into Singapore, and includes a Risk Classification 

report regarding the proper shipping and assessment of such materials both as an import and 

with respect to internal transport within the country. Lastly, part iv is noted as being governed 

by the MOM, where occupational safety was discussed by interviewees as an element of 

regulation that was on the horizon of synthetic biology and pharmaceuticals research, yet 

greater consideration of imminent regulatory concerns remained both within the research and 

disposal stages of a generic pharmaceutical’s life cycle.  

 Under this four-tiered framework of regulation and activity, Genetic Modification 

Advisory Committee of Singapore is empowered to expand or add to such guidance where 

technologies emerge or research involving the genetic modification of biological material is 
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uncertain or emerging (Section 5). As noted above, the nature of this guidance is nonbinding in 

a manner similar to The Biological Agents and Toxins Act, yet are adopted within research 

universities and organizations receiving government funding in Singapore (Tun et al 2009). After 

describing the types of experiments covered by The Guidelines as well as characteristics which 

make certain experiments exempt, Section 4 indicates that the Genetic Modification Advisory 

Committee is empowered with the ability to include further developments with research and 

experimentation to effectively expand the ability of The Guidelines to cover such projects as 

with synthetic biology – an important element in fostering an adaptive regulatory framework 

via iterative improvements to soft law regulation for the technology moving forward.  Further, 

the Genetic Advisory Committee is empowered by The Biological Agents and Toxins Act to 

oversee, regulate, and approve of research related to genetic engineering.  

To accomplish this goal, The Guidelines note that that novel experimentation and 

genetic manipulation techniques may be reviewed by an Institutional Biosafety Council (IBC) 

relevant to the organization conducting synthetic biology research – the recommendations and 

observations of which may be submitted to the Genetic Modification Advisory Committee prior 

to the Committee’s determination of how that particular product or experimental technique 

may be regulated. Singapore Respondent 6 (Social Scientist) noted that “if [The Guidelines] can 

be clearly connected to synthetic biology, which they basically are, then this is going to be an 

important argument in favor of in-house governance of synthetic biology research.” 

 Third, the Guidelines offers transparent work flows regarding which agency is 

responsible for monitoring a given activity alongside guidance for researchers and developers 

regarding how to identify the agency and regulations relevant to their vein of work. This is 

described in detail in Sections 3 and 5, respectively, where prospective researchers would be 

able to determine the degree of oversight their research requires as well as the various 

agencies involved in such oversight throughout research and development.  

First, Section 3 indicates the ‘Summary of Procedures’, which is a decision chart 

describing the assessment protocol and notification timelines for researchers engaging with 

work related to genetically modifying biological organisms. This includes considerations of self 

(IBCs) and external regulation (the Genetic Modification Advisory Committee and private 
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government investigators). Next, Section 5 includes explicit notation of the roles and 

responsibilities held by the various government agencies throughout the regulatory process of 

genetic research. An important inclusion here is a notion from Singapore Respondent 6 (Social 

Scientist) that “IBCs are vital for executing these guidelines”, an indication that Singapore 

Respondent 1 (Lab Researcher) described as “evidence of a respect for the ability of institutions 

to conduct their own risk assessment activities, and report potential biosafety hazards to 

external government authorities.” Collectively, the information found in Sections 3 and 5 serves 

as a measure of reducing uncertainty regarding the structure and actions taken by government 

for cases of research as with synthetic biology, further described by Singapore Respondent 3 

(Lab Researcher) as “the rules that will probably be most important for synthetic biology 

research in the near future, […] particularly as it outlines how the Singaporean government will 

oversee research activities.” 

Generally speaking, Singapore’s Constitutional structure is an emulation of its colonial 

past under the British Empire, with modifications driven by paternalism and pragmatism that 

drives Singaporean regulation since the 1950s (Li-Ann 1993). The soft-authoritarian nature of 

regulation via the People’s Action Party is enhanced by a centralization of power under the 

Prime Minister, who together with the President retains significant control over the legislative 

process (Tan 2013; Li-Ann 1993).  

 

6.2.2 Risk Culture in Singapore 

With this general background on the functions of Singaporean government and the 

influence of the People’s Action Party on the country’s lawmaking process, it is important to 

next unpack considerations of Singapore’s risk culture, or the institutional and political factors 

that influence their approach to regulation more generally, and with a specific focus on of 

emerging science and technology. To cover this topic, this section begins by first discussing the 

historical path of synthetic biology regulation, or noting how the regulation of genetically 

modified organisms in Singapore developed over time as well as the legal and regulatory 

mechanisms to cover related research, production, commercialization, and disposal of such 

material. The section then builds upon this by reviewing how elements of risk culture may 
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influence Singaporean regulation of emerging technologies. In Section 6.2.3, this information 

will then be reviewed for its applications within interview data acquired by Singaporean subject 

experts. 

 

6.2.2.1 Historical path of synthetic biology regulation 

In a manner similar to the European Union, Singapore’s synthetic biology regulation is 

generally perceived to derive from the regulation of genetically-modified organisms, and 

includes a mixture of adherence to international regulation as well as domestic hard and soft 

law such as with the Biological Agents and Toxins Act (Chapter 24) as well as the Biosafety 

Guidelines for GMOs (Genetic Modification Advisory Committee, n.d.). Early regulation of such 

materials is driven by the need to govern food importation into Singapore, where genetically 

modified foods are viewed by the Government as one avenue to improve food security and 

local nutrition for a nation with 90% of its food supply being imported from neighboring 

countries (Genetic Modification Advisory Committee, n.d.; Tey et al 2009). However, such 

regulation also grew to cover other activities ranging from laboratory experimentation of 

genetically-modified organisms to pharmaceuticals and other research ventures (Oriola 2002a; 

Oriola 2002b).  

Prior to 2005, Singaporean regulatory authority over genetic modification was covered 

by formal legislation in specific research areas as with pharmaceutical development, 

agriculture, or food labelling) (Ho 2011). Regulation specifically directed at genetic modification 

and emerging biotechnology research remained limited and informal until 2005, when 

Singapore’s Parliament passed the Biological Agents and Toxins Act (Singapore Ministry of 

Health 2007: Ho 2011). This Act will be discussed in detail in Section 6.6 below, yet it is 

important to note here that Chapter 24A of the Act was designed to govern the research, 

production, sale, distribution, transport, and disposal of genetically modified material 

(Singapore Ministry of Health 2007). The Act also included a system of approvals for those 

laboratories that sought to conduct such research – the process of which included biosafety risk 

considerations that researchers were required to discuss with regulators prior to receiving a 

permit for research (Singapore Ministry of Health 2007). 
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Later, Singapore’s Genetic Modification Advisory Committee released the Singapore 

Biosafety Guidelines for Research on Genetically Modified Organisms in 2006, which served as a 

legally non-binding approach to the regulation of research involving genetic modification that 

offered recommendations to counter biosafety and biosecurity risks for research involving 

genetic modification (Ho 2011; GMAC 2016). The Guidelines were further modified in 2008 and 

2013, and included guidance on the biosafety and biosecurity concerns that researchers should 

work with their respective Internal Review Boards to address (GMAC 2016).  

Singapore’s regulatory history for genetically modified organisms that currently cover 

synthetic biology research is a relatively limited one, with most guidance coming from soft law 

recommendations and applications from specific product development prior to 2005 (Ho 2011). 

From 2008 to 2013, this was bolstered via hard law (Biological Agents and Toxins Act) and soft 

law (the Guidelines) geared explicitly to governing research related to genetic modification. 

Such guidance will likely continue to incorporate developments in domestic and international 

research pertaining to such modification, and the potential biosafety and biosecurity concerns 

therein (Ho 2011). 

 

6.2.2.2 Assessment of the Risk Culture influencing regulation of novel compounds and scientific 

processes like synthetic biology 

After reviewing the historical path of regulation for genetically-modified organisms and 

synthetic biology products in Singapore, the next review element to consider includes the 

institutional, social, and political values and behaviors that fashion Singaporean risk culture 

within the context of technology regulation. Specifically, risk culture considerations here 

include (i) the soft-authoritarianism and centralization of decision making authority practiced 

by government leaders, and how this relates to technology regulation, (ii) the cooperational yet 

informal approach to overcoming regulatory disputes and driving technology regulation, and 

(iii) the more ‘proactionary’ nature of Singaporean government leaders relative to innovation in 

order to strengthen the country’s economic prospects (Olds 2007; Tan 2013; Li et al 2009; Ho 

2011). These three characteristics will explain the factors that local regulators must consider 

when reviewing options to govern specific emerging technologies as with synthetic biology 
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pharmaceuticals, and will offer context regarding the viewpoints and perspectives of those 

Singaporean subject experts contacted for interview for the case of synthetic biology 

pharmaceutical regulation. 

 For the first item, the soft-authoritarian nature of the Singaporean government’s 

behavior serves as a pervasive characteristic that drives Singaporean lawmaking, regulatory 

behavior, and coordination of governmental and industry representatives (Olds 2007; Nasir and 

Turner 2013). Building off of the introductory discussion of soft-authoritarianism within 

Singapore in Section 6.2.1, further characteristics that arise from this political and institutional 

arrangement include a centralization of decision-making authority within government alongside 

a lesser degree of transparency in the regulatory reform process as would be expected in a 

liberal democracy (Nasir and Turner 2013). More specifically, soft-authoritarian governments 

act in a manner where decision making power is centralized amongst a powerful elite with 

limited checks on authority and little real competition in terms of election (Nasir and Turner 

2013; Turner 2015). Such centralization includes the ability for government subject experts to 

introduce and implement regulatory reform in an efficient manner in comparison to a state 

where power is shared amongst more players (as is the case within the United States and the 

European Union) (Nasir and Turner 2013; Neo and Chen 2007). An additional factor behind this 

includes Singapore’s relatively small size in comparison to the United States and European 

Union, which limits democratizing factors and preserve the country’s soft-authoritarian regime 

(Huat 2015; Lim and Lim 2016; Ufen 2015). Further, a limited tolerance alongside the ability for 

the Prime Minister as elected by the majority party in Parliament to also serve as the chief 

executive in a Westminster-style government further limits opportunities for regulatory reform 

to be hindered in passage (Tan 2013; Haque 2004).  

 However, even within an ‘imperfect democracy’ and limited transparency in 

government, another characteristic of Singapore’s soft-authoritarianism includes a general 

need to identify regulation that mitigates risk to the local population and the environment 

(Ortmann 2012; Turner 2015). Such behavior can differ from a ‘full authoritarian’ state that 

seeks to enrich elites and cadres often at the expense of the general public, where Roy (1994) 

and Olds (2007) argue instead that soft-authoritarian states like Singapore generally seek to 
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represent the best interests of the general citizenry by promoting public safety, public health, 

and improved economic status. This is accomplished by the controlling political party’s 

maneuvering within the Singaporean government and abiding by the Singaporean Constitution, 

although no serious challenge is raised by opposing political parties for those regulatory issues 

deemed higher priorities by elites in the People’s Action Party (Roy 1994; Nasir and Turner 

2013; Mauzy and Milne 2002). Within such a soft-authoritarian government, it is important to 

note that the Singaporean government is unlikely to use their controlling power to ‘force’ hard 

or soft law through a resistant public, but instead wait until international research 

developments or domestic necessity offers political and scientific reason to improve 

technological regulation in a specific manner (Mauzy and Milne 2002; Nasir and Turner 2013; 

Roy 1994). 

 For the second item, Singapore generally adopts a cooperational approach to resolve 

regulatory disputes and build regulation for emerging technologies like synthetic biology (Beng-

Huat 1985; Srivastava and Teo 2009; Lim 2005). Such behavior is similar to that of within the 

European Union, where government stakeholders collaborate with stakeholders in industry, 

academia, and non-governmental institutions to construct regulation in a manner that is 

responsive to industry needs of promoting responsible innovation while balancing government 

requirements of upholding public health and safety (Kelemen 2011). However, the motivations 

for such behavior strongly differ in Singapore, where soft-authoritarianism limits the potential 

for significant resistance, dissent, or adversarial legalism in the process of technology regulation 

(with similar operational and political structures existing in examples as Malaysia and Russia – 

Shevtsova 2014; Ufen 2015). Instead, the ‘socially-minded’ approach to furthering the welfare 

of Singaporean citizens as described in Roy (1994), Nasir and Turner (2013), and Olds (2007) 

drives governmental elites to procure information about regulatory needs and innovation 

potential from members of industry and other stakeholders and use such information to make 

decisions about furthering the public good. With no real challenges to their political authority 

or significant threats of having their regulatory agendas seriously challenged in court, the 

People’s Action Party can engage within informal regulation-building exercises with concerned 

stakeholders in a manner that (i) allows them to acquire information on emerging technologies 
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that allows them to balance risk and benefit in the regulatory process, and (ii) identify concerns 

and needs of industry researchers that would allow for a continued economic and technological 

pattern of growth within Singapore – a value central to the nation’s identity (Beng-Huat 1985; 

Lim 2005; Mauzy and Milne 2002). 

 Thirdly, Singapore’s drive to innovate and grow economically allows it to take on a more 

proactionary nature (Li and Fang 2004). Specifically, Singaporean government agencies seek to 

empower universities and companies to conduct research related to emerging technologies in a 

less restrictive regulatory environment, with oversight driven both by internal mechanisms such 

as with internal review boards as well as informal contact with regulatory agencies such as with 

the Economic Development Board or the Genetic Modification Advisory Committee (Hobday 

1995; Edquist and Hommen 2009; Peebles and Wilson 2002; Chieh 1999; Olds 2007). Such 

research is geared to commercialize as soon as safely possible and benefit the Singaporean 

economy and/or public health, with little government investment allocated without such 

intentions in mind (Williams and Narendran  1999). Overall, Singapore’s adherence to 

technological proaction is driven by the wishes of the government to further boost its economic 

and technological capabilities in order to achieve greater development and promote the 

welfare of its citizens (Williams and Narendran  1999; Olds 2007; Li et al 2009). 

  

6.2.3 Applications to Interview Data 

Given the discussion of Singaporean risk culture above, implied discussion by Singapore-

based respondents was consistent with the themes of cooperational decision making, an 

appetite for proaction in the technology innovation process, and accounting for a soft-

authoritarian governmental structure for regulatory reform. Discourse here indicated the 

unique regulatory reform process that Singapore maintains, where such reform seeks to 

balance the government’s desire to improve the nation’s economic status and quality of life in 

an environment of centralized authority and limited transparency in the reform process. 

Applications of these three general themes of Singaporean risk culture to interview data are 

discussed individually below. 
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Looking first at the cooperational approach to regulatory decision making, several (8 of 

23) Singapore-based respondents noted how government agencies frequently reach out 

informally to innovators and other technology stakeholders when reviewing options for 

technology regulation reform. Singapore Respondent 1 (Lab Researcher) noted that “Lots of 

[Singaporean] agencies interface with companies engaging with technology research. For 

synthetic biology, this includes some like the GMAC [the Genetic Modification Advisory 

Committee] or the Economic Development Board, which tries to get developers to come to 

Singapore […] and meet to identify what regulation can balance innovation against risk.” 

Singapore Respondent 2 (Social Scientist) argued that “there’s very frequent discussion 

between developers and government officials on technology development and possible risks, 

and the two work together to identify needs for reform.” Such sentiments are consistent with 

Roy (1994), Nasir and Turner (2013), and Phillips and Yeung (2003) which discuss how actors 

within government and innovators interact collaboratively to resolve potential concerns or 

uncertainties regarding technological best practices, project funding, and the ability of 

innovations to enter the market.  

Next, many respondents inferred the importance of accounting for a soft-authoritarian 

governmental structure in the regulatory reform process for new technologies like synthetic 

biology. Specifically, discussion was noted about the ability of government officials to generate 

speedy regulatory reform to keep up with emerging technology development or developments 

within other countries relative to best practices or regulatory guidance for such technologies. 

Singapore Respondent 3 (Lab Researcher) argued that “there isn’t really a need to push 

regulation for synthetic biology just yet, because regulators can institute reform pretty quickly 

once we have better information about hazards.” Further, Singapore Respondent 4 (Social 

Scientist) stated that “when reform is needed for The Guidelines [The Singapore Biosafety 

Guidelines for Research on Genetically Modified Organisms] or The Biological Agents and Toxins 

Act, government ministers can initiate reform quickly with Parliament to protect public health, 

so pre-emptive reform isn’t always necessary.” The inferred discussion amongst these and 

other interviews was that there were few serious limitations on the ability of government 

officials to institute regulatory reform for synthetic biology in an expedient manner and without 
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political contestation that would be found in a more democratic and multipolar government 

like the United States or European Union – consistent with arguments presented in Olds (2007), 

Means (1996), and Sim (2007), among others.  

Lastly, many respondents noted the capability for Singaporean researchers and 

government officials to have a slightly higher appetite for risk in pursuit of scientific innovation 

than Western governments like the European Union or the United States. Similar to Li et al 

(2009) and Li and Fang (2004), Singapore Respondent 5 (Lab Researcher) argued that “we 

[Singaporeans] aren’t as precautionary as the West, and promote technology research like 

SynBio in ways that might not be possible in a more strict set of regulations.” Further, 

Singapore Respondent 1 (Lab Researcher) indicated “there’s a general feeling that we don’t 

want to prohibit research because it’s risky, at least until we understand these risks to be 

serious threats.” Li et al (2009) and Li and Fang (2004) identify a slightly higher mentality for risk 

acceptance for research in many Asian nations such as with Singapore, often where such actors 

believe that a technology’s risks may be overstated or otherwise controlled with proper 

regulation. Such sentiments were discussed or inferred within this body of interview subjects, 

and should be accounted for when reviewing feedback from such interviews. 

 

6.3 Synthetic Biology in Singapore 

 Synthetic biology research has been directly explored and discussed in Singaporean 

Universities since at least 2011 (Dhar Lab 2011). However, Singaporean researchers and 

laboratories had connections with Western partners pertaining to synthetic biology research 

such as with the Massachusetts Institute of Technology since 2001. Singaporean students had 

begun to participate in the international iGEM competition by 2008, with specific participation 

centered on the health track of the competition (NTU 2015).  

By the end of 2011, Singaporean researchers at A*Star had begun to conduct research 

on DNA sequencing and metabolic engineering (Mitchell 2011), while by 2012 the National 

University of Singapore and Nanyang Technological University began to receive government 

grants to pursue metabolic and circuit engineering research (Oldham et al 2012). Between 2012 

and 2015, the Singaporean government funded various projects at the two universities, with 
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the latest development on September 2015 including approximately $18 million in funding for 

the National University of Singapore’s Synthetic Biology for Clinical and Technological 

Innovation, with funding specifically originating from the Singaporean National Research 

Foundation as well as the Singaporean Economic Development Board (NUS 2015). 

Comparatively, governmental synthetic biology funding in Europe total just over $100 million 

and in the United States to over $200 million in 2014.  Related to recent funding and regulatory 

support for research ventures setting up within Singapore’s borders, Singapore Respondent 6 

(Social Scientist) stated that “the Singaporean government has been interested in developing 

this technology that may yield health benefits to its citizens and residents […] with the 

Economic Development Board serving as a guide for foreign organizations seeking to break into 

the Singaporean market.” 

 As of this writing, synthetic biology research is conducted within two universities 

(Nanyang Technological University and the National University of Singapore) and a large 

government-funded research institution at Biopolis (A*STAR). One of the primary pursuits of 

such research is geared towards clinical and medical innovation, with pharmaceutical 

development serving as one strain of inquiry within that regard. This trend is likely to continue 

(NUS 2015), where Singapore Respondent 6 (Social Scientist) noted that “the Government is 

well aware of the potential to generate health benefits through synthetic biology, and we 

believe that funding and a supportive environment are necessary to develop such benefits 

within Singapore.” 

 

6.4 Synthetic Biology: Perceptions of Health Risk and Benefit amongst Singaporean 

Stakeholders 

 This chapter centers on a specific country’s synthetic biology stakeholders and experts, 

with specific emphasis on their opinions and beliefs regarding synthetic biology pharmaceutical 

risks and regulatory options. This section includes discussion of the former, where Singaporean 

subject experts were asked to give their views on synthetic biology pharmaceutical risks to 

human and environmental health. These risks were reviewed based upon whether such novel 

health risks may arise as well as where experts perceived novel risk could arise at different 
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stages of a pharmaceutical product’s life cycle. A breakdown of the type of interview 

respondents included is noted in Table 8 below. 

As noted in Chapters 4 and 5, interview respondents in this chapter have a PhD-level 

education in biology, chemistry, or similar field in science, or have a PhD in a social science 

background pertinent to the risk analysis and regulation of emerging technologies. Such 

interviewees also had a formal position of employment at a Singaporean institution at the time 

of interview, such as with a post doctorate or research professorship at a Singaporean 

university or a position at a Singaporean company based within Singaporean borders. As noted 

in Chapter 2, these respondents were selected based upon their history of publications or 

conference presentations on relevant to synthetic biology experimental research or risk 

regulation. 

 

Table 8. Breakdown of Research Backgrounds of Singapore 
Respondents 

 Lab 
Research 

Social 
Science/Implications 

Total 

Academia 11 5 16 

Government 1 1 2 

Industry 3 1 4 

NGO 0 1 1 

Total 15 8 23 

Table 8. Breakdown of Research Backgrounds of Singapore-based Respondents. ‘Lab Research’ includes 

those respondents who work primarily in an experimental, laboratory-driven setting. ‘Social 

Science/Implications’ includes those respondents who work outside the lab and comment upon risk and 

regulatory needs for synthetic biology. 

  

6.4.1 Conventional and Novel Risks from Synthetic Biology Pharmaceuticals  

 Consistent with interview protocols outlined for all interviews for this research project, 

Singaporean subject experts within academia, industry, government, and non-governmental 

organizations were asked about their perceptions of whether synthetic biology could yield 

novel health risk that, if exposed to humans and/or the environment, could generate health 

concerns that are not currently fully governed under existing measures and methods of 

chemical risk assessment.  
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 Specific to discussion of novel risks associated with synthetic biology pharmaceuticals, 

Singapore-based respondents were less inclined to state that novel health risks associated with 

such products were likely to arise at any stage of their life cycle. In comparison to United States 

(1.59) and Europe (1.78), Singapore-based respondents collectively indicated a novel risk 

likelihood score of 1.13, indicating a belief in possible yet highly unlikely novel health risk 

occurring throughout a synthetic biology pharmaceutical product’s life cycle. Figure 16 below 

indicates a breakdown in proportional responses regarding general perceptions of such novel 

risk likelihood, with 9% arguing for no novel risk, 69% stating that minimal yet unlikely novel 

health risk, and 22% indicating likely novel health risk with moderate health consequences. 

Within this dissertation’s interview responses, no Singapore-based respondent (out of 23) 

stated that novel health risk from synthetic biology pharmaceuticals was essentially guaranteed 

to materialize (indicated by a score of ‘3’). 

 

Figure 16. Singaporean Perceptions of Synthetic Biology Pharmaceutical Health Risks (n=23). Responses 

are coded on a scale from 0-3, where increasing values indicate greater likelihood of novel health risk. 0 

= no novel health risk; 1 = possible but proportionally limited novel health risk; 2 = moderate chance of 

novel health risk across large populations; 3 = guaranteed novel health risk 

 Turning to interview discourse, the explanations offered by experts regarding their 

belief in the limited potential for novel health risk are varied. Three Singaporean academics 

noted in separate interviews that the ability to engineer a kill switch within engineered cells 

allows for greater control to prevent such cells from breaking containment or growing beyond 

certain population limits. Singapore Respondent 7 (Lab Researcher) explicitly noted that 
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“…novel risk might occur, but the exposure potential would be limited by cellular controls that 

scientists could use to keep synthetic cells from engaging in unintended behavior or reaching 

unintended exposure points.” In other words, these respondents noted that biosafety risks in 

particular were unlikely as the probability of unintended exposure is limited and such cells 

would be controlled using built-in genetic manipulations to prevent the uninhibited growth of 

synthetic cell populations while also keeping them from proliferating outside of a controlled 

environment.  

Specific to pharmaceutical products, respondents noted that the ‘kill switch’ mechanism 

to terminate cell growth and proliferation in vivo would prevent active biological as therapeutic 

agents from proliferating and engaging with harmful activity within the human body, and would 

be quickly and efficiently removed from the bloodstream via preprogrammed cellular controls 

after delivering medicine or performing its intended function.  

Similar responses were derived when respondents were asked about their perceptions 

of biosafety and biosecurity risks from pharmaceutical products, respectively. Using the same 

scale noted in Figure 16, Figure 17 indicates that 74% of respondents believed that there exists 

little to no novel biosecurity risk associated with synthetic biology research, with 83% of such 

respondents indicating that there exists little to no realistic biosafety threat from synthetic 

biology research. Likewise, only 6 respondents (26%) articulated a belief of a moderate concern 

of synthetic biology biosafety risks, with 4 respondents stating a moderate concern of 

biosecurity risks (17%). Singapore Respondent 8 (Lab Researcher) noted that “dual-use 

concerns are possible, but not easily to accomplish at present because of the difficulties that a 

researcher would face in using their research for deliberate harm.”  
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Figure 17. Singaporean Perceptions of Synthetic Biology Pharmaceutical Risks Associated with Biosafety 

and Biosecurity. Responses are coded on a scale from 0-3, where increasing values indicate greater 

likelihood of novel health risk. 0 = no novel health risk; 1 = possible but proportionally limited novel 

health risk; 2 = likely health risk; 3 = guaranteed novel health risk 

 Contextually, Singapore-based respondents generally stated (with strong exceptions) a 

belief that biosecurity and biosafety risks were generally not a significant concern and are 

unlikely to accrue for a variety of reasons. Specific to biosecurity, 83% of respondents noted 

that the potential for a nefarious agent to produce a virulent virus or pathogen and successfully 

release such materials into the environment is a highly unlikely scenario, where Singapore 

Respondent 4 (Social Scientist) noted that “even within internal governance, there exists 

enough oversight mechanisms to prevent someone from stealing or misusing biological 

material and engaging with involved research to produce harmful agents.” Likewise, the four 

respondents (17% of the total Singaporean response pool) who stated that there was 

essentially no biosecurity threat pertaining to synthetic biology research all stated that both the 

scientific knowledge and capabilities alongside the resource requirements to synthesize and 

engineer harmful agents would make deliberative work towards producing harmful and 

infectious agents almost prohibitively difficult.  

Of the 23 completed interviews within Singapore, four (17%) did note that biosecurity 

threats were possible due to the relative open source nature of much academic synthetic 

biology research, although each respondent here did note the technical and scientific 
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difficulties that nefarious agents would face to achieve such ends. Responses here were varied, 

but included opinions such as “synthetic biology as bioterror would be difficult for the terrorist 

to control and deliver to a specific target”, “resource limitations would restrict such research to 

well-resourced labs”, and “one would need to possess a scientifically adept and resource rich 

scientific network in order to pull off such a scheme.” Overall, respondents were skeptical of a 

deliberate biosecurity threat posed by synthetic biology pharmaceutical research, with only a 

small number (4) noting potential concerns where a “lone wolf attacker” may be able to 

deliberately engineer a virus or pathogen to harm society. Within this context, it is important to 

understand that biosecurity was understood as a ‘deliberate attempt to use synthetic biology 

research methods to derive harmful infectious substances and materials’, where virtually all 

respondents (22 of 23) noting that an accidental release of such a substance would be a much 

more likely risk scenario.  

 Looking at such an accidental release scenario, biosafety risks were assessed as those 

that potentially harm workers, non-laboratory organisms, and/or the environment in the 

process of conducting biological research. Singaporean interviewees noted a similar level of 

doubt as with biosecurity risks related to the potential for novel biosafety risks to arise via 

synthetic biology pharmaceutical production, yet responses were more varied in contextual 

response. Overall, while 17 of 23 respondents noted that novel biosafety risks are unlikely 

within synthetic biology research and development, 16 of those 17 did admit that some 

potential for unintentional exposure of novel genetic material to human and environmental 

health. The mechanism that was described as the vehicle for such risk to arise included both 

horizontal gene transfer and efficacy concerns.  

For the former, respondents noted that, while highly unlikely, the transfer of novel 

genetic material from an engineered pharmaceutical to natural human or environmental cells 

had the potential to cause synthetic genetic information to transfer to the natural cells in 

question, which could contribute to substantial negative health harms (further discussed in 

Wright et al 2013; Endy 2005). For the latter, efficacy was determined to be an issue where the 

synthetic biology pharmaceutical product fails or does not perform in its intended manner, 

contributing to a loss of resources and potential negative health consequences for patients. 
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Overall, 22 of 23 respondents noted the potential for biosafety risk resultant from synthetic 

biology pharmaceutical development, where such risk could occur at various stages of the given 

product’s life cycle. Further discussion of these risks are described in the section below.  

 

6.4.2 Pharmaceutical Product Risk Across Life Cycle 

 Given that 22 of 23 Singapore-based respondents noted the potential for biosafety risks 

associated with synthetic biology pharmaceutical development, a natural extension of such 

narrative analysis included discussion of where along a pharmaceutical product’s life cycle such 

risks may materialize. Figure 18 below serves as a visualization of interviewee responses of 

where health risks are perceived to occur across a generic pharmaceutical product’s life cycle, 

while Table 9 indicates aggregated responses relative to pharmaceutical biosecurity risk along 

each life cycle stage, with further discussion regarding risk perception within each life cycle 

stage noted further below.  

 

Figure 18. Singaporean Perceptions of Synthetic Biology Pharmaceutical Biosafety Risks Across Product 

Life Cycle. Blue = No Risk; Orange = Unlikely yet Possible Risk; Gray = Moderately Possible Risk; Yellow = 

Likely Risk (n=23) 
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 From a life cycle perspective, respondents collectively noted greater probabilities of 

novel biosafety risks at the ‘Research’ and ‘End-of-Life’ stages within pharmaceutical 

development and use. The six respondents who stated a moderate fear of novel biosafety risk 

from synthetic biology pharmaceuticals were particularly concerned with the ‘Research’ life 

cycle stage, where researchers and scientists could be accidentally or inadvertently exposed to 

novel genetic material and risk the potential for horizontal gene transfer or negative interaction 

effects with such novel biologic materials in vivo. Singapore Respondent 9 (Lab Researcher) 

noted that “where in early research synthetic biology cells lack the engineered controls to 

prevent proliferation or spread outside of containment […], if scientists get exposed to this 

material, it could have really harmful effects.” Singapore Respondent 10 (Social Scientist) went 

a bit further by arguing that “we have to assume, despite all of our planning, that there will be a 

breach in containment […] it’s happened before with terrible viruses, and it may likely happen 

for synthetic biology.”  

These sentiments focused upon the potential for the improper containment and/or 

unintentional exposure of genetically modified material that results in their exposure to lab 

scientists, where built-in genetic controls such as with a ‘kill switch’ are not yet fully developed 

and utilized to prevent the proliferation of such novel genetic material outside of an area of 

intended use. All responses (n=23) noted that while the probability of containment and 

exposure issues is moderately worrisome, the probability that such exposure results in 

significant novel health risks and harms for researchers is very unlikely. Singapore Respondent 6 

(Social Scientist) described this notion by saying “we have to worry about research exposure 

scenarios because there is a small chance […] like one lab experiment in a year […] where 

exposure could produce health hazards, but by and large most exposure scenarios would result 

in the novel genetic material harmlessly dying off without producing gene transfer or harming 

the health of the scientist.”  

This sentiment was echoed by virtually all respondents who noted some biosafety 

concern at the ‘Research’ life cycle phase (n=22), where even though risk is possible, they argue 

that synthetic biology-derived pharmaceuticals either would not possess harmful characteristics 

that would yield acute novel biosafety hazards (such as with artemisinic acid produced via 
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Keasling’s anti-malarial drug) or would be unlikely to survive and reproduce outside of a 

contained and controlled environment (such as with a potential synthetic biology-derived 

probiotic). Such discussion did not dismiss the potential for ‘conventional’ biosafety health 

risks, although Singapore Respondent 3 (Lab Researcher) noted that “the risk and exposure 

profiles for such scenarios are more well-known […] and probably don’t require new regulation 

to control.”  

 Ultimately, a point raised within all interviews included the notion that “some synthetic 

biology processes do not generate synthetic genetic material, but instead serve as a vehicle to 

more easily produce conventional therapeutics and vaccines.” In other words, ongoing research 

activities such as with Keasling’s method of producing artificial artemisinic acid do not yield 

novel biological compounds in their own right, but instead use yeast to grow biological 

compounds that can be used in lieu of naturally produced alternatives. In such scenarios, 

multiple respondents noted that if no novel biological material exists within the eventual 

pharmaceutical, then it is unlikely for novel risk to arise from such novel genetic material. One 

respondent noted that scientists may be at risk of exposure to novel compounds within the 

‘Research’ life cycle phase, yet the route of such exposure is conventional in nature and is 

combatted using traditional measures of lab safety. 

 Another life cycle stage with higher levels of biosafety concern by interviewed experts 

includes the End-of-Life disposal of synthetic biology pharmaceuticals and therapeutics. Where 

discussion of biosafety risks within the ‘Research’ life cycle stage focused upon laboratory 

accidents and containment errors, this life cycle stage instead was discussed from the 

perspective of improper disposal and release of novel biological materials in a manner that 

allows for the exposure of such material to the natural environment. On one hand, three 

respondents noted that the risks within the End-of-Life stage were essentially nil, where 

Singapore Respondent 11 (Lab Researcher) argued that “such materials will not be able to 

survive and proliferate in nature for more than a few hours at most, […] and the risk of truly 

harmful gene transfer is so remote that it will eventually be dismissed outright.”  

On the other hand, nine respondents (39%) noted that where conventional 

pharmaceuticals are already disposed of in a manner that allows certain pharmaceutical 
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compounds to enter into the water table (Westerhoff et al 2005), there exists the potential for 

synthetic biology-derived pharmaceuticals to be improperly disposed of and eventually 

proliferate in the environment. Singapore Respondent 12 (Lab Researcher) noted that “while 

the case-by-case chances are slim of [contamination and exposure] happening after drug 

disposal, our current experience with other pharmaceutical drugs and their improper disposal 

forces us to consider the likely possibility that these novel drugs may reach the environment 

unintentionally.”  

Each of the nine respondents that noted the End-of-Life phase as containing likely novel 

health risk noted that both the risk of potential horizontal gene transfer as described by 

Heinemann and Traavik (2004) as well as the potential for engineered bacteria cells to compete 

with natural cells for resources and survival in a post-release scenario is a problematic scenario 

that scientists and regulators must consider when engaging with the production and 

distribution of synthetic biology pharmaceutical products. In a group interview, Singapore 

Respondent 10 (Social Scientist) and Singapore Respondent 13 (Lab Researcher) discussed that 

“while the controlled use of synthetic biology drugs within secure labs heavily reduces the risk 

of environmental exposure concerns at the disposal stage of a pharmaceutical’s lifespan, we 

have to consider whether issues such as gene transfer and environmental competition may be 

issues that arise from improper disposal if we agree to distribute these drugs to the lay public.”  

 An important vein of discussion included those pharmaceutical products created via 

synthetic biology processes yet do not inherently contain novel or artificial genetic information 

in the end product. As noted above, two discussed cases that fell into this category include 

Keasling’s antimalarial precursors as well as Novartis’ described method to more rapidly 

produce vaccine components for various strains of influenza. Rather than yield novel health 

risks, 21 of 23 Singapore-based respondents stated that these innovations would not yield 

novel health risk such as with horizontal gene transfer or threats to biodiversity at the End-of-

Life phase, with two respondents stating that it was too soon to tell. Instead, respondents 

noted that novel health risk would likely arise from only those products which contain novel 

genetic material within the pharmaceutical proper, which would then serve as a potential 
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vehicle of exposure for such novel biological material to gain exposure to humans and the 

natural environment. 

 Aside from the ‘Research’ and ‘End-of-Life’ life cycle stages, Singapore-based 

respondents were skeptical of novel risk occurring within the ‘Manufacturing’ and 

‘Commercialization’ stages due to rigorous testing of pharmaceutical safety and efficacy prior 

to mass pharmaceutical production and commercial release. Respondents were slightly more 

concerned with risks at the ‘Manufacturing’ life cycle stage, with 19 respondents (83%) noting 

the potential for improper containment of engineered biological material breaking containment 

and gaining exposure to workers. Singapore Respondent 1 (Lab Researcher) described this as 

“an inherently conventional risk profile”, where “the novel risk is not the vector of exposure, 

but instead that the material workers could be exposed to is novel and unpredictable in 

nature.”   

While 19 of 23 respondents did note some concern over the potential of workers being 

exposed to such biological material and experiencing either gene transfer or acute and harmful 

health consequences, 20 of 23 stated that these risks “may be easily mitigated through existing 

governance and safety practices”, where “safety protocols and clothing will make exposure 

scenarios probabilistically highly unlikely.” Likewise, general perceptions of novel health risk at 

the ‘Commercial’ stage generally included beliefs that such risks were highly unlikely, and 

would only arise for cases where the pharmaceutical in question contains novel genetic 

material and is not simply the result of a synthetic biology production process. Singapore 

Respondent 6 (Social Scientist) noted that “the likely risk profile here would be for vaccine 

synthesis and engineering, where interaction effects in vivo could result in unintended health 

consequences to the patient.” All 23 respondents noted that such cases were highly unlikely 

and may never occur, Singapore Respondent 13 (Lab Researcher) did state that “we have to be 

wary of side-effects […], there could be something new here that produces harms to humans in 

a manner that is very debilitating or even fatal in very small numbers of cases.” 

 From a life cycle perspective, 18 of 23 Singapore-based respondents regardless of 

vocation expressed skepticism that synthetic biology pharmaceuticals may generate novel 

health concerns, although most did note that further research was needed to clarify this point 



 

209 
 

and that the potential for harmful risk scenarios were scientifically plausible, if probabilistically 

unlikely. Most argued that the same conventional exposure scenarios and health risks as with 

traditional pharmaceuticals, therapeutics, and vaccines would apply to synthetic biology-

derived alternatives, yet “the risk and exposure profiles for such scenarios are more well-known 

[…] and probably don’t require new regulation to control.” Given the general belief within 18 of 

23 interviewed participants regarding the unlikely yet plausible potential for novel health risk to 

arise, the section below discusses perceptions of how these various experts understood existing 

regulation to cover synthetic biology research and development alongside discussion of how, if 

at all, such regulation must shift in order to provide optimal guidance and best practice for 

synthetic biology researchers moving forward. 

 

6.5 Synthetic Biology: Hard and Soft Law Regulation Within Singapore 

6.5.1 Existing Regulations and Law to Govern Synthetic Biology 

Singapore’s status as a growing economic power via capitalism and its subsequent 

ability to drive forward technological research in various areas as synthetic biology is often 

viewed as a paradox based on the common scholarly discussion described by Rodan (2004) and 

Bhasin (2007), which note that such regulatory regimes rarely succeed in advancing successful 

capitalistic markets or a robust research base to drive innovation. Instead, the ‘soft-

authoritarianism’ in Singapore described by Olds (2007) has driven it to be a state that pursues 

global research and education opportunities in the spirit of forging new scientific opportunities 

beneficial to the Singaporean people and state. Synthetic biology includes one of these 

opportunities, with particular academic attention and governmental resources paid to 

pharmaceutical and therapeutic product development.  

 Of the three cases discussed within this dissertation, Singapore differs in political 

structure and smaller economic size from the European Union and United States. This is driven 

by Singapore’s status as a soft-authoritarian state yet continued economic success and 

capitalistic tendencies with respect to advancing technological innovation and development, 

making it difficult to ascertain the regulatory mechanisms in place to guide synthetic biology 

regulation or whether such mechanisms are de facto effective and valid (Ortmann 2011; Lingle 
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1996; Rodan 2004). With respect to synthetic biology, Singapore Respondent 14 (Social 

Scientist) described regulation of the technology’s products as “generally emerging, but the 

attitude we take away is that our research is important and risk is handled internally though 

internal review boards and other university governance regimes.” Singapore Respondent 5 (Lab 

Researcher) stated that “No one is 100% sure what laws and regulations apply to synthetic 

biology, but government involvement with issuing our grants and advocating for synthetic 

biology research signals their general approval of our work.” Such sentiments were widespread, 

where all respondents (n=23) noted some uncertainty regarding where governmental oversight 

and regulation factored in to synthetic biology research, both from a hard and soft law 

perspective.  

 Such uncertainty was particularly high with respect to identifying a specific regulatory 

statue or authority that governs risk related to synthetic biology research and development. 

From the perspective of external regulation, no respondent stated a particular law or regulation 

explicitly dedicated to external synthetic biology regulation. Instead, most respondents (14 of 

23) pointed to existing laws and regulations related to biological agent development and 

biosafety as sufficient cover for synthetic biology products. Specifically, these included The 

Biological Agents and Toxins Act (2005) and The Singapore Biosafety Guidelines for Research on 

Genetically Modified Organisms (2013). 

 As with respondents from the United States (Chapter 4) and the European Union 

(Chapter 5), this dissertation sought to acquire information relative to such familiarity amongst 

Singaporean stakeholders. A further extension of this included discussion of whether such 

regulatory authorities were actually utilized and were functionally valid from a regulatory 

practice perspective, where early Phase 1 interviews indicated that such regulation may not 

actually be useful in its current state and may be less structurally derived in favor of general 

administrative authority by governmental regulators within agencies such as the Singaporean 

Economic Development Board along with the Customs Authority (information here is included 

in the ‘Limitations of Existing Regulation’ section below). 

 Looking first at general awareness of reach respondent regarding the hard and soft law 

pertinent to synthetic biology research, Singapore-based respondents were generally able to 
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identify and describe those regulatory authorities that had oversight to their work. Figure 19 

below indicates the ability of Singaporean respondents to name and describe the regulation 

applicable to synthetic biology research as well as the government agencies charged with 

executing such regulation. Every respondent was able to name either an agency or regulation 

previously discussed above, with six respondents expressing intimate familiarity with all of the 

discussed regulatory items above along with the various government agencies empowered by 

such regulation to govern synthetic biology research and development. This level of response is 

generally consistent with findings from Chapters 4 and 5. 

  

Figure 19. Identification of Synthetic Biology Regulation by Singapore-based Respondents. 0 = no 

recognition, 1 = recognition of a piece of hard/soft law regulation but not an agency, 2 = vice versa, 3 = 

recognition of both hard/soft law regulation and relevant agencies 

 An additional line of questioning conducted alongside perceptions of local hard and soft 

law regulation included discussion around collective opinion of roughly when synthetic biology 

pharmaceuticals would commercialize and enter the marketplace. As noted in Chapter 4.2, such 

responses serve only as ‘best guesses’ by respondents, and should not be taken for more than 

an academic exercise to gain a general idea of what we may expect relative to the development 

of synthetic biology products in the European Union in the future. As such, the responses 

provided below should not be taken as an assessment of a concrete timeline for 

commercialization. 
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For Singaporean respondents (Figure 20 below), general discussion here elicited a 

common belief that such products, both for vaccine and therapeutic development, have a 

strong likelihood to commercialize in the near future, with 10 respondents indicating a belief in 

early commercialization within 5 years, and 11 arguing for commercialization within 5-10 years. 

Only two respondents noted that such commercialization was unlikely to occur within a 10-year 

timeframe from 2014. The reasons noted for this general level of optimism are varied, but 

include responses from Singapore Respondent 15 (Social Scientist) such as “the ability of 

synthetic biology to produce drugs and vaccines for neglected tropical diseases will pressure 

innovators to move quickly” by Singapore Respondent 15 (Social Scientist). However, as will be 

discussed in this section below, such perceptions that synthetic biology pharmaceuticals will 

develop relatively soon did not translate into a strong belief in the need for novel hard or soft 

law regulation, where many respondents noted that existing regulation such as with The 

Guidelines was sufficient, or extensions of self-regulation within existing soft law regulation 

were all that was necessary to review uncertain or currently unregulated risk factors for the 

immediate future. 

 

Figure 20. Singaporean Perceptions of Distance in Time for Synthetic Biology Products to Enter 

Marketplace (from December 2014) 
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 Overall, Singapore-based respondents argued that extensions or improvements of 

national hard and soft law were largely unnecessary in the technology’s current state of 

development. Figure 21 below indicates that of the 23 interviewed experts, 9 argued that no 

new regulation of synthetic biology research was needed or helpful. Likewise, 7 argued that 

extensions and improvement to national regulation were unnecessary and all concerns that the 

novelties posed by synthetic biology from a risk perspective could be resolved via internal self-

regulation, where internal oversight in the form of review boards and other research groups 

would be adequate to review the risks and hazards of the technology’s development (where 

existing national hard and soft law would supplement such review boards as with The Biosafety 

Guidelines and the Biological Agents and Toxins Act). Finally, 7 respondents argued that explicit 

improvements and additions to existing national hard and soft law were required to adequately 

cover synthetic biology risks throughout product development, where existing hard and soft 

law were not directly tied to synthetic biology and new regulation would clearly outline 

government responsibilities and capabilities for synthetic biology product research.  

 

Figure 21. Perceptions Amongst Singaporean Experts Regarding the Regulatory Needs for Synthetic 

Biology Research and Development 

 Those against any new regulation focused on the idea that the technology was simply 

not mature enough to pass regulation without either (i) leaving open the potential for 

unanticipated health risk, or (ii) unnecessarily and prohibitively preventing research that may 
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not be risky or hazardous at all. This is consistent with discussion presented by Mandel and 

Marchant (2014), who described this tradeoff as one that regulators within a given country 

must grapple with when deciding how to govern the technology in its various iterations now 

and in the future. Relevant statements here include notions that “synthetic biology may not 

need new regulation aside from existing law related to genetically modified organisms”, where 

“these regulations as with The Biosafety Guidelines are de facto used to govern the technology 

already.” Similarly, Singapore Respondent 3 (Lab Researcher) and Singapore Respondent 4 

(Social Scientist) described how “it would be better to wait for the technology to mature and 

demonstrate true scientific capabilities rather than regulate based upon what we think may 

happen”, with many describing a fear that preemptive regulation would only stymie research.  

These beliefs were generally shared by those who argued for self-regulation to cover 

any novel risks associated with synthetic biology research, with Singapore Respondent 16 

(Social Scientist) stating that “these review boards are scientifically competent and can more 

directly review health risk of this developing technology.” Similarly, Singapore Respondent 15 

(Social Scientist) stated that “such review boards and self-governance would help us air on the 

side of caution by looking for potential concerns, while avoiding burdensome and potentially 

unnecessary regulation.” Throughout both groups, the shared belief centered on the ideal that 

science should continue to refine and improve synthetic biology capabilities, where further 

national regulation would only be needed in the future when synthetic biology research is close 

to producing commercial goods. 

 Out of 23 respondents, 7 contended that new regulation would be necessary and 

helpful to demonstrate best practices and safety guidelines with producing, consuming, and 

disposing of genetically modified material resultant from synthetic biology research. Singapore 

Respondent 6 (Social Scientist) stated that “commercialization of early stage Synthetic Biology 

products is not far away, and it is important to head off health risk before such 

commercialization becomes widespread.” Even amongst these respondents, however, it is 

important to note that none argued for creation of a sui generis legislative instrument that 

would pertain explicitly to synthetic biology, but instead argued that regulation and guidance as 

attachments to soft law like The Biosafety Guidelines would better demonstrate best practices 



 

215 
 

and safety measures that companies and researchers could emulate during their research. 

Singapore Respondent 9 (Lab Researcher) stated that “having best practices like The Biosafety 

Guidelines, but more specific to synthetic biology, can both make the public feel safer about 

purchasing such products, and offer companies certain benchmarks to meet in order to 

demonstrate safe research and production practices.” In this way, these 7 respondents sought 

to add extensions of synthetic biology to relevant soft law and regulatory guidance as with The 

Biosafety Guidelines – something that “can easily be revised and changed as new information 

on risk and exposure becomes available.” Given the soft-authoritarian nature of the country 

and the involvement of government within many stages of the funding and oversight of 

academic research, Tan (2009) denotes that such soft law would be derived via public-private 

partnerships. In such an arrangement, government agencies such as with the Economic 

Development Board or GMAC would work with developers in industry to engage with 

information-sharing and guidance exercises designed to improve the governance of synthetic 

biology in an iterative an adaptive manner. 

 

6.5.3   The Role of the International Community in Informing Future Regulation 

 Across the vocational respondents from Singapore, a recurring theme brought up on the 

subject of synthetic biology regulation includes the need for Singapore to continue to monitor 

legislative responses to synthetic biology within governments as with the European Union or 

the United States. Academic respondents particularly focused on the need to remain active 

within scholarly discussions, peer-reviewed journal submissions, and international conferences 

specific to synthetic biology research and development. Singapore Respondent 14 (Social 

Scientist) noted that “there is a belief here that we can learn much from the West’s experience 

in regulating synthetic biology”, a sentiment that was stated in at least six other Singaporean 

interviews. Further from Singapore Respondent 14 (Social Scientist), paying attention to 

scientific developments in the field can allow Singaporean universities and research agencies to 

“understand the possibilities that the technology may yield, and recruit talent to pursue such 

goals.”  
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 Likewise, government respondents spoke more on the need to follow emerging debates 

and developments taken by the United States and the European Union, respectively, to govern 

and regulate synthetic biology products such as with pharmaceuticals. Such attention to 

external regulatory mechanisms included a review by Singaporean government stakeholders of 

the guidelines, regulations, and publications related to the regulation of genetically modified 

organisms by Australia, the United States of America, the European Union, the World Health 

Organization, and the United Nations Environment Programme. The subsequent results and 

collective opinion of this review was utilized to form The Singapore Biosafety Guidelines for 

Research on Genetically Modified Organisms (the soft law guidelines discussed above), and 

empowered the Genetic Modification Advisory Committee of Singapore to adaptively and 

flexibly modify such Guidance as new technologies related to genetic modification arise (driving 

all government interviewees to state the relevance of such soft law as a governing authority of 

synthetic biology).   

 Overall, many respondents noted that while national hard or soft law shifts in regulation 

may currently be inappropriate, indications of weakness or concerns within existing regulatory 

paradigms within Western hard and soft law may incent regulators and stakeholders within 

Singapore to shift their regulatory capabilities and follow suit. Such discussions of regulatory 

limitations offer evidence of where such legal bodies or regulatory best practices may not apply 

to synthetic biology research, and would indicate where Singaporean regulatory authority does 

not sufficiently cover related research on pharmaceuticals as well as other products. For now, 

the current belief held by many respondents is to “wait and see […] and find out if change to 

national regulation is really needed.” 

 

6.6 Discussion 

 Within this case, 23 respondents engaged within one or more interviews to discuss the 

novel risks associated with synthetic biology pharmaceutical products alongside existing 

regulatory capabilities and limitations (where perceived) to properly govern this emerging 

technology. As with Chapters 5 and 6, interview responses were coded based upon general 

perceptions of biosecurity risks as well as biosafety risks across a generic pharmaceutical 
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product’s life cycle, offering a notion of where novel health risk may occur, the probability of 

such risks occurring, and the mechanisms that may cause such risks to arise. Likewise, 

contextual discourse facilitated feedback regarding the regulation of such risks under existing 

hard and soft law paradigms, where each respondent was asked to offer feedback regarding 

whether such hard and soft law was robust in terms of governing synthetic biology research 

and development, or whether novel soft law regulation was needed in the short term to 

protect against potential novel health risks. 

 Unique from results found within Chapters 5 and 6, Singaporean interview respondents 

were less concerned with the potential for novel health risk associated with synthetic biology 

pharmaceutical products. The reasons for this are varied and are discussed in the sections 

above, but are generally centered on (i) the various resource requirements and scientific 

education needed to synthesize and engineer a harmful virus or pathogen, (ii) the highly 

unlikely possibility of horizontal gene transfer resulting in harmful health consequences, and 

(iii) the general inability of novel biological material resultant from synthetic biology product 

research to proliferate outside of containment and above certain population thresholds due to 

various controls engineered into the cell’s DNA. This contributed to a belief by 70% of all 

respondents that either no new regulation or self-regulation alone was needed to properly 

guard against potential risks associated with synthetic biology pharmaceuticals across a 

product’s life cycle, leaving most to argue that existing hard and soft law was sufficient to 

govern this research activity. However, respondents equally indicated that future efforts of 

reform would be facilitated by a centralized governmental structure and an adaptive history of 

regulatory reform related to genetically modified organisms. 
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Chapter 7: 

Synthesis 

 

 

7.1 Introduction 

 The overall focus of this dissertation was to review whether variations in synthetic 

biology regulation existed across the United States, the European Union, and Singapore. 

Further, elements of risk culture were used as hypotheses to test why such variations may 

occur, if they do at all. Where Chapters 5-7 reviewed such information for each of the three 

case governments, this chapter seeks to comparatively address the effect of risk culture on 

synthetic biology regulation across the collective cases.  

 This dissertation reviewed three separate cases to review such variations in synthetic 

biology regulation due to components of risk culture. The United States, European Union, and 

Singapore all individually contain their own unique political, technological, and institutional 

characteristics which drive their regulation and subsequent perception of risk – a phenomenon 

described by Jasanoff (1986), Parthasarathy (2012), Kelemen (2011), and many others. 

However, certain elements of risk culture may have had a greater influence upon regulatory 

decision making within specific governments (Kagan 2009; Kelemen 2011; MacKenzie 2000; 

Vogel and Lynch 2001). To recall such elements from Chapter 3, these include: 

i) The degree of centralization in government power 

 ii) The degree of formality in regulatory dispute resolution 

 iii) The general appetite by local stakeholders for risk acceptance 

 iv) The historical path of regulatory reform within a given government 

 v) The perceived domestic benefit of a particular innovation 

 Below, information from the three cases are discussed to review whether or not how 

each of these items have come to influence regulatory decision making within each case. 
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7.2 Comparative Assessment: Three Cases  

7.2.1 Common Themes Presented Across Cases 

 Within each case, respondents were asked to discuss their opinions and beliefs related 

to novel synthetic biology health risks that could arise throughout the life cycle of a synthetic 

biology product, with particular focus levied to pharmaceuticals. Below, Table 10 includes the 

number of respondents that discussed each theme without prompting, where the respondent 

discussed the given item as a measure of potential novel risk that a synthetic biology 

pharmaceutical would provide (later in the interview, specific questions were asked about 

biosafety and biosecurity risks – the responses of which are detailed in Chapters 5-7). It is 

important to note that the sample size for each case is small and must be viewed based upon 

the fact that such data should be expanded upon as more synthetic biologists arise in the field 

over the next few years. 

 

Risk USA 
(n=17) 

Europe 
(n=9) 

Singapore 
(n=23) 

Horizontal Gene 
Transfer 

13 7 12 

Biodiversity 15 8 15 

Exposure (Human or 
Environmental) 

14 8 17 

Dual-Use/Biosafety 13 6 11 

Accidental Release 16 8 19 

Long-term Effects 5 4 7 

Proper Disposal 15 8 19 

Table 10. Common themes raised by interview respondents across all cases  

 Of the general risk themes raised by interview respondents, the issues most commonly 

raised as potential issues of concern included Accidental Release and Proper Disposal. For the 

former, respondents noted to varying degrees that the potential for an event such as a breach 

in laboratory containment or manufacturing center could generate potential risks to humans 

and the environment. Most respondents went on to state more specifically that such risks 

contribute to a Biodiversity (n=38) or Exposure (n=39) threat, making Accidental Release an 
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umbrella theme of concern related to an unintentional release of novel genetic material 

outside of a controlled environment. Proper Disposal was treated as an independent theme 

where concerns raised about the potential for novel genetic material within synthetic biology 

pharmaceuticals were noted explicitly here and not double counted as Accidental Release. In 

this manner, both Biodiversity and Exposure received similar levels of attention by interview 

respondents when asked to raise their perceptions of potential issues that synthetic biology 

pharmaceuticals could generate. 

 A notable point of discussion includes the relatively lower levels of attention paid to 

Horizontal Gene Transfer or Long-term Effects, with no case breaking an 80% discussion rate for 

either theme prior to specific questions pertaining to such risks later on in the interviews. Such 

results are in contrast with the degree of attention that these issues receive within published 

literature such as within Endy (2005), Wright et al (2013), Cardinale and Arkin (2012), and 

several others for horizontal gene transfer or Andrianantoandro et al (2006), Elowitz and Lim 

(2010) and Tucker and Zilinskas (2006). However, Horizontal Gene Transfer still was raised as a 

potential risk consideration at the onset of such interviews by a majority of respondents in all 

three cases, and was further unpacked by all respondents as a potential measure of health risk 

for synthetic biology pharmaceuticals when such gene transfer was explicitly discussed later in 

the interview.  

The same could not be said for Long-term Effects, where no majority was reached across 

any of the three country cases. When asked explicitly about considerations for long-term 

and/or chronic risks that such products may yield (such as with extended harm to human or 

environmental health over time), a Singaporean academic social scientist 3 noted that “these 

[long-term risks] should be considered, but most concern is for acute issues that can be clearly 

linked as being caused by the drug with engineered genetic material.” Likewise, US Respondent 

12 (Lab Researcher) argued that “acute health risks are more troublesome for a product to get 

past regulation, particularly pharmaceuticals […] so this is likely the first thing that comes to 

mind.” Some respondents (n=32) who noted Biodiversity concerns also discussed the potential 

for permanent or otherwise long-lasting harms to animals or the natural environment, although 
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such responses were not double counted as Long-term Effects unless a time horizon was 

explicitly stated in such comments. 

 

7.2.2 Discussion of Probability of Novel Risk and Mechanism of Such Risk Across Cases 

 Within the sample size covered by Interview Phases I-III (n=49), several trends emerged 

when reviewing aggregate responses comparatively across each of the three country cases. 

These may be divided into two general veins of discussion, including (i) discussion of where on a 

pharmaceutical product’s life cycle risk may arise, and (ii) the probability of individual types of 

risk that may arise to human or environmental health. This information is comparatively 

discussed across each of the three cases below. 

 For the first item (Table 11 below), respondents typically viewed the Research and End-

of-Life life cycle stages as having the greatest potential for novel health risk from a synthetic 

biology pharmaceutical product. Such responses are consistent with concerns raised by Carter 

et al (2014), Bates et al (2015), and Dana et al (2012), where preclinical and disposal scenarios 

for pharmaceuticals containing engineered biological material could generate hazards to 

humans, animals, and/or the environment. As noted in Chapters 5-7, common explanations 

here include the potential for laboratory accidents and exposure scenarios to humans in a 

laboratory environment (see also Schmidt 2008; Moe-Behrens et al 2014), the unlikely yet 

possible threat of horizontal gene transfer, and threats to biodiversity and risk of exposure of 

novel genetic material to the environment via improper containment and storage upon 

material disposal (Schmidt and de Lorenzo 2012; Oldham et al 2012). Respondents argued that 

such risks were elevated for a variety of reasons, including the propensity for breaches in 

biosafety protocol to occur once synthetic biology pharmaceutical research becomes more 

commercialized, the uncertainty surrounding horizontal gene transfer and threats to 

biodiversity, limitations in the ability to control novel genetic material in accidental release 

scenarios, and limited existing oversight to mitigate or effectively control such risks in 

preclinical research or end-of-life disposal.  

 While Research and End-of-Life were viewed by respondents as being areas with 

enhanced potential for novel risk events, the Manufacturing and Commercialization life cycle 
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stages were generally viewed as areas with less likelihood for such events. Among other points 

of discussion, general reasons for this were expressed as less uncertainty and improved 

oversight within these life cycle stages, such as the need for pharmaceutical products to pass 

preclinical trials prior to Commercialization as well as the engineering of cellular controls within 

engineered cells to prevent cell populations from growing beyond certain cell counts and/or 

reducing the probability that such cells would engage in gene transfer or survive outside of a 

contained field (Moe-Behrens et al 2014; Oye et al 2014; Schmidt and de Lorenzo 2016).  

Not all respondents agreed with this point of view, yet generally these stages were 

viewed as areas with somewhat less uncertainty relative to health risk along with oversight 

controls within each of the three cases that reduce the potential for widespread hazard. Such 

comments were not designed to indicate that regulators should not be concerned at all with 

risk in these life cycle stages, but instead to indicate general feelings that novel risk is 

probabilistically less likely than in preclinical research or product disposal where oversight is 

limited and uncertainty is greater (Carter et al 2014).  

 From a comparative perspective, Table 11 further indicates that European and American 

respondents generally voiced greater levels of concern for the potential of health risks to arise 

at various life cycle stages as opposed to their Singaporean counterparts. Where Table 11 is 

addressed on a scale from 0-3 (0 indicating a perception of no risk, and 3 indicating substantial 

risk), Singaporean respondents generally viewed risks across the life cycle of a synthetic biology 

pharmaceutical as being relatively limited in nature, while US and Europe-based respondents 

expressed more heightened levels of concern. As noted above, this is particularly true for the 

Research and End-of-Life stages, where all three cases expressed more heightened levels of 

concern as opposed to the Manufacturing and Commercialization life cycle stages. 

 

Life Cycle Stage USA Europe Singapore 

Research 1.8 2.1 1.5 

Manufacturing 1.3 1.6 0.9 

Commercialization 1.4 1.3 0.9 

End-of-Life 2.1 2.0 1.3 

Table 11. Life Cycle Perceptions of Novel Risk Probability Across Cases 
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 For the second item, general discussion of biosafety and biosecurity risks revealed a 

general trend across all three cases to view novel Biosafety risks as probabilistically more likely 

to occur (see Table 12 below, with the same scale as Table 11). Such discussion was relatively 

mild amongst Singaporean respondents, where experts across academia, government, and 

industry noted that while biosafety risks are plausible, they are generally unlikely for 

pharmaceutical products. Such sentiment was due to a belief that harmful horizontal gene 

transfer is extremely unlikely to occur, while threats to biodiversity or exposure-driven risks to 

humans, animals, or the environment are minimal and mitigated by various engineering 

controls such as with killswitches that limit engineered cell population count or the movement 

of such cells outside of a predesigned area. Respondents from the United States and Europe 

were more concerned with biosafety risks, where they viewed pharmaceuticals which contain 

novel genetic material in the commercialized product (i.e. live-attenuated viral material for 

vaccines or engineered bacteria for probiotics) as having a plausible chance of producing 

biosafety events via laboratory accidents, improper containment and disposal of 

pharmaceutical materials, and unintentional exposure of such materials by laboratory 

researchers or workers.  

 

 

 

 

Table 12. Expert Views on the Probability of Novel Health Risk by General Category 

Unlike biosafety risks, respondents across the three cases generally viewed biosecurity 

risks as generally improbable (though not entirely impossible) due to constraints pertaining to 

existing oversight preventing such behavior, extensive resource requirements to produce 

reliable and effective agents that produce deliberate harms to humans or the environment, and 

the current limitations in the field to successfully engage in such work even if resource barriers 

were overcome. A frequent point of discussion here included the promotion of dual use 

technologies, where synthetic biology pharmaceutical research for helpful purposes could also 

be repurposed for nefarious means by certain individuals or groups (see also Kelle 2009; 

Risk 
Category 

USA Europe Singapore 

Biosafety 1.8 1.9 1.2 

Biosecurity 1.3 1.2 1.0 
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Mukunda et al 2009). To varying degrees, respondents from each of the three cases described 

such scenarios as unlikely, although they did articulate a need to continue to bolster 

international oversight for such cases and potentially limit the dissemination of small amounts 

of material that could directly facilitate the production of a harmful virus or infectious agent 

outside of laboratories with clear oversight and regulation (see Kelle 2009; Mukunda et al 

2009). Despite such precaution, however, most respondents throughout each of the cases 

expressed doubt that synthetic biology pharmaceutical innovation could be successfully utilized 

to produce a virulent and efficient method of health hazard for biological organisms. 

Where each individual case had responses that addressed particular concern of novel 

health risk from synthetic biology pharmaceutical research and development, the general 

trends noted above may triangulate discussion of the technology’s novel health risks while also 

providing further insight into the regulatory concerns that various countries may have related 

to synthetic biology regulation. In Section 7.2.3 below, such feedback is further reviewed 

against the various elements of risk culture that may have a hand in influencing individual 

government regulation of synthetic biology, where such political and institutional factors may 

drive government regulators and policymakers to act in unique ways to regulate the technology 

and its subsequent products. 

 

7.2.3 The Effect of Risk Culture Upon Variations in Synthetic Biology Regulation 

 Given the assessment and discussion within literature and interviewed experts within 

Chapters 4-6, this section comparatively reviews the three cases to determine to what extent 

and why local variations of synthetic biology regulation have arisen. Specifically, feedback from 

each of the three cases are reviewed to determine whether and to what extent the elements of 

risk culture listed in Section 7.1 have influenced such synthetic biology regulation. 

 Table 13 below comparatively reviews key components of regulatory risk culture within 

the three cases discussed within this dissertation. Comparisons between the risk cultures and 

institutional frameworks of the United States and European Union have been well documented 

in works such as Kelemen (2011), Kagan (2009), Parthasarathy (2012), Jasanoff (2002), and 

Jasanoff (1986). Such authors generally note the divide between the environment in which 
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regulatory proposals are discussed and disputed as well as the options for dispute resolution 

taken by each government as being among the primary differences in regulation of new 

technologies between the United States and the European Union (Kelemen 2011; Kagan 2009).  

As described within Chapter 4, the United States generally expresses an adversarial form 

of regulatory discussion as well as a reliance upon formal institutions to resolve disputes 

around differences of opinion related to technology regulation (Kelemen 2011; Kagan 

2009).The United States’ risk culture and values pertaining to government regulation cause it to 

differ from its European and Singaporean counterparts by relying on formal mechanisms of 

regulatory dispute resolution, allowing for several actors and potential veto-points within the 

policymaking process, and generally containing an adversarial nature where disputes frequently 

require legal adjudication and require substantial financial and political resources in order to 

overcome (Kelemen 2011; Volcansek 2014). Within this framework of institutional rigidity and 

adversarial legalism amidst an environment of high transparency, American regulators and 

policymakers must be mindful of the limitations and problems they may experience in the 

effort to initiative and implement regulatory reform for new technologies. While such concerns 

are shared by other democratic governments, a risk culture grounded in adversarial legalism 

and frequent gridlock is noted by Fisher (2007) and Coleman (1999) as making it difficult to 

enact hard law legislation and reform. A notable concern here described by Epstein and 

O’Halloran (1999) and North (1992) includes the high transaction costs associated with 

triggering such reform, where Coleman (1999) asserts that such transaction costs are generally 

prohibitively difficult to overcome for regulatory reform. 

 Given such considerations, the aggregate response by American respondents indicates 

that the historical path of regulatory reform plays a role in influencing local synthetic biology 

regulation. US Respondent 15 (Social Scientist) noted that “even if regulatory reform were 

necessary, policymakers have to deal with entrenched laws and old political fights that can’t be 

ignored”. Further, US Respondent 11 (Lab Researcher) argued that “it’d be difficult to reform 

SynBio regulation [in the United States] unless there was some damning study or significant 

accident [..] because otherwise policymakers will just fall back on existing policies even if 

they’re outdated.” Overall 13 of 17 respondents argued similar points of view, and generally 
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indicated that the historical path of regulatory development in the United States has limited the 

potential for and shape of regulatory reform for synthetic biology. 

A further consideration includes the formal style of adversarial legalism within the 

United States government, where regulatory reform is often hindered by a confrontational and 

politically-costly court-driven process of regulatory dispute resolution. US Respondent 2 (Social 

Scientist) argued this point directly by stating “[American] regulatory reform moves slowly and 

can easily be held up in court. […] Governance for synthetic biology should navigate these 

issues by making use of existing regulations than fashioning brand new ones.” Such sentiments 

were expressed by 9 of 17 respondents regardless of whether they perceived regulatory reform 

as necessary, where such individuals argued that reform can take years to even decades to 

achieve. 

A factor that was not determined as having a significant effect in American variations of 

synthetic biology regulation included an acceptance of risk or perception of benefit. US 

Respondent 1 (Social Scientist) indicated that “commercial benefit from SynBio drugs won’t 

ease the passage of regulatory reform or break policy logjams”. Likewise, US Respondent 2 

(Social Scientist) noted that “Even though [the United States] might be more open to exploring 

SynBio and dealing with its risks, reform is complicated more so by the courts and reliance upon 

the status quo.”  

The European Union, however, generally experiences a more cooperative risk culture 

that often turns to more informal means of dispute resolution – a process that often involves 

the collective input of government regulators, industry professionals, academics, and non-

governmental researchers to discuss technology risk as well as the regulatory options required 

to resolve or mitigate such risks (Kagan 2009; Kelemen 2011). Such cooperation is not 

universally true, however, where Kelemen (2011) notes in his concept of ‘Eurolegalism’ that the 

European Union may be trending slowly towards a more adversarial nature that utilizes legal 

rulings and court decisions to resolve regulatory disputes – although Kelemen (2011) and Kagan 

(2009) do generally argue that this has not yet advanced to a degree similar to the experience 

of within the United States. 
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Similar to their American counterparts, most European Respondents (8 of 9) articulated 

points that the historical path of biotechnology regulation has played an important role for local 

synthetic biology governance. EU Respondent 1 (Social Scientist) argued that “past efforts at 

biotechnology regulation have made the Commission and Member States more reactive to 

GMO risks like with synthetic biology.” Generally speaking, 8 of 9 respondents indicated similar 

points of view, where European regulatory authorities have adopted a more adaptive and 

anticipatory view to synthetic biology hazards (see Bar-Yam et al 2012). 

However, other elements of risk culture were not viewed as substantial drivers on 

European Union variations of synthetic biology regulation. Specifically, respondents generally 

rejected the notion that risk appetite or perception of benefits influenced such regulation, with 

EU Respondent 8 (Lab Researcher) going so far to say as that these were “non-factors in 

shaping local regulatory policy.” Most (6 of 9) indicated that government centralization was an 

important consideration, but such insight was grounded in the belief that historical path 

dependency was by far a more important variable to account for. EU Respondent 9 (Lab 

Researcher) reflected upon this point where they stated that “the most important factor to deal 

with for future SynBio reform is past regulation of local biotechnology” and that “Union-wide 

and Member State regulators will abide by such past efforts.” 

 

Case Adversarial/ 
Cooperative 

Degree of 
Transparency 
in Regulatory 

Process 

Formal/Informal 
Reliance on 

Dispute 
Resolution 

Multiple Veto 
Points in 

Regulation 
Development 

Concentration 
of Regulation 

USA Adversarial High Formal Yes Centralized 

European 
Union 

Cooperative High Informal Yes Decentralized 

Singapore Cooperative Low Informal No Centralized 

Table 13. Cross-comparison of Regulatory Risk Culture of Three Cases 

 Lastly for Singapore, unique considerations to keep in mind include the island nation’s 

‘soft-authoritarianism’ and ability to utilize input from international players like the United 

States or the European Union to guide elements of its regulatory best practices (Roy 1994; 

Haque 2004; Tan 2000; Sheehy 2004). For the former, Singapore’s status as a soft-authoritarian 

(Roy 1994) or non-liberal democratic regime (Thio 2010) serves multiple functions with respect 
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to technology regulation, including (i) facilitating a cooperational atmosphere where a generally 

benevolent regime interacts with private and academic stakeholders to develop technological 

guidance and best practices via soft law (Thio 2010), (ii) promoting the relatively rapid 

imposition of regulatory change (often via soft law reform, see Thio 2010) via a less transparent 

approach to regulatory reform, and (iii) the reduction of potential veto points in the regulatory 

approval process through a concentration of legislative and executive authority in the ruling 

government (Tan 2000; Roy 1994). For the latter, Singapore observes the regulatory 

development process of Western partners such as the European Union and United States, 

where they emulate technological guidance and soft law in many cases where such 

technological risk is uncertain or limited in development (Rajah 2012; Sheehy 2004; Haque 

2004). In this way, Singapore’s risk culture is one that must account for both a regulatory 

system with limited transparency yet also contains a historical tendency towards promoting 

effective technological regulation where such hard and/or soft law becomes more well-known 

(Roy 1994; Rajah 2012; Sheehy 2004). As such, while Singapore is not likely to export its 

regulatory guidance or values to their Western partners, they will review developments in the 

Western world for such guidance that they will be able to adopt and implement on a relatively 

rapid timeline – particularly via soft law (Thio 2010; Sheehy 2004; Haque 2004).  

 Singaporean respondents generally (16 of 23) indicated that regulatory path 

dependency was an important factor to consider relative to local synthetic biology regulation, 

where Singapore Respondent 3 (Lab Researcher) indicated that “a major consideration for 

future reform will center on The [Biological Agents and Toxins] Act].” However, unlike the 

United States and the European Union, many respondents (19 of 23) argued that the high 

centralization of government power was an important driver in the Singaporean regulatory 

process for synthetic biology. Singapore Respondent 2 (Social Scientist) stated that “Specific 

[Singaporean] agencies wield a lot of power in the policy process, and can make or break efforts 

at regulatory reform.” Specifically, such respondents indicated that the ability of a small 

number of government regulators to exhibit substantial power in the reform process was a key 

consideration to explain Singaporean regulation of synthetic biology pharmaceuticals, although 
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Singapore Respondent 2 added a caveat that “such agents are unlikely to abuse their power 

and only act when there is enough information to justify reform.” 

 A smaller number of respondents indicated that a greater appetite for risk (13 of 23) 

and perceived local benefits (14 of 23) served as influencing factors for Singaporean synthetic 

biology regulation. However, many argued that the effects of such factors were explained by 

government attitudes and centralization of power, where Singapore Respondent 8 (Lab 

Scientist) indicated that “Government elites set research priorities based upon the benefits that 

the technology might bring, and regulate accordingly.” Similarly, only 9 of 23 respondents 

indicated that the local style of legalism served as an important measure of influencing local 

synthetic biology regulation, where several respondents indicated that public regulatory 

disputes were generally uncommon in Singapore due to a centralized governmental authority.  

 The differences in these risk cultures and the political and institutional values that guide 

regulatory decision making within a given governmental unit can explain both the discussion 

noted by respondents relative to improvements for synthetic biology regulation. Specifically, 

respondents in each of the three cases indicated that the historical path of local regulatory 

reform as being a strong influence in synthetic biology risk perception and regulation – 

something that is further validated in literature as with Jasanoff (1986), Parthasarathy (2012), 

Douglas and Wildavsky (1983), and Lash (2000). Respondents in the United States and 

European Union both also indicated that the local style of legalism and reliance upon formal or 

informal institutions to resolve regulatory disputes as playing an important role in influencing 

regulatory reform, although this notion was generally rejected by Singaporean respondents. 

Third, centralization of government authority was found to be a strong influence upon 

variations in synthetic biology in Singapore, but less so in the United States and the European 

Union where the historical path of regulatory reform had more bounded and shaped available 

options of regulatory discussion and movement. Lastly, respondents within each of the three 

cases generally dismissed the importance of local risk appetites and perceived benefits as 

influencing synthetic biology regulation, where such factors were viewed as secondary to 

historical path dependency and (in the case of Singapore) government centralization of 

authority.  
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7.3 Towards Anticipatory and Adaptive Regulation 

 Both within literature as well as within interview discussion, a recurring theme emerged 

related to the need for an adaptive regulatory paradigm for synthetic biology research, where 

scholars indicated that a central goal within all countries should be to adopt adaptive governing 

strategies that would allow regulators and policymakers to shift guidelines and policies 

pertaining to synthetic biology governance as the technology continues to mature and develop 

(Mandel et al 2014). This sentiment is driven by the evolutionary nature of the technology’s 

development that may continue to stretch the capabilities of existing regulatory paradigms and 

expose regulatory gaps related to a nation’s ability to govern the latest iteration of synthetic 

biology research. Such sentiments are stated by Kuzma and Tanji (2010), Tait (2012), Garfinkel 

et al (2007), and Wiek et al (2012), among others, which collectively argue that a more 

anticipatory and adaptive approach to synthetic biology regulation is required to eliminate any 

gaps in coverage that governmental regulation and oversight have within various iterations of 

synthetic biology research and commercial development.  

Likewise, Mandel et al (2014) take this belief a step further where they argue that a 

focus on soft law regulation is necessary to further anticipatory regulation for synthetic biology, 

where the ultimate goal of synthetic biology regulation is to balance the potential benefits that 

may accrue as synthetic biology research matures against the potential for novel health risk 

that could damage human and environmental health. Specifically, Mandel et al’s (2014) 

argument indicates that where soft law regulation is politically and bureaucratically easier to 

fashion, implement, and revise at regular intervals, the formation and regular revision of soft 

regulation as with regulatory best practices and guidelines is likely the optimal path forward to 

establish regulatory traditions of anticipatory and adaptive regulation. 

 While these and other authors have begun to address the concern of ‘what style of 

regulation should we adopt with synthetic biology’, the question that this dissertation seeks to 

contribute to centers on ‘are there variations in the manner of how governments regulate 

synthetic biology, and why’? In this spirit of this dialogue, political and institutional factors may 
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influence the ability of individual governments to achieve an adaptive form of synthetic biology 

governance.  

Specifically, the historical pathway of synthetic biology regulation within a given 

government is shown in this dissertation as having an effect upon such regulatory variation, 

where such regulatory history instills a path dependency that limits how and to what extent 

regulation is updated or replaced (see also Parthasarathy 2012). Further factors such as the 

style of local legalism (specifically the degree of formality in the regulatory dispute resolution 

process) may also have such an effect, where a more formal and judicially-driven approach to 

dispute resolution may disincentivize regulatory revisions and updating by making the political 

transaction costs for doing so excessively high (see also Kelemen 2011 and Volcansek 2014). 

Given such assessments, adaptive regulation is easier for certain governments to achieve than 

others, where Kelemen (2011) and Mandel et al (2014) indicate that a less formal dispute 

resolution framework alongside a history of collaborative regulatory decision making may ease 

the process of regulatory reform. 

 

7.4 Study Limitations and Opportunities for Future Research 

 Over the course of research, several limitations became apparent that, with enough 

resources and time, would be addressed via methodological adjustment. Given the importance 

of noting a study’s limitations in any style of research, such issues across each of the three 

cases are noted below. 

 One of the first limitations of note includes the use of a more rigid interview structure as 

outlined in Chapter 3. Specifically, interview discussion centered on considerations of biosafety 

and biosecurity risk as defined in papers such as Carter et al (2014), Kelle (2013), and Schmidt et 

al (2011), where other considerations of novel health risk and challenges to existing regulatory 

structures may have arisen in interview discussion if each interview’s format was more open-

ended in structure and questioning (Wengraf 2001; Low 2012). This option was not selected at 

the onset of formal interview acquisition in 2014 in order to structure responses around 

significant topics introduced in published literature, yet would be useful for future synthetic 

biology research to gain considerations outside of high visibility publications on the subject for 
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areas such as with implications research and the public perception of synthetic biology (Kuiken 

2015; Pauwels 2009). In order to generate such feedback via subject expert interviews, a less 

rigid interview structure would be needed in order to allow respondents to discuss various 

subjects, including those that may not be discussed in published literature very often. 

 Where a rigid interview structure may have limited the richness and diversity of 

responses on synthetic biology novel health risk, the lack of inclusion of a more postpositivist 

survey design may have offered more comparable responses across all interviewees in the 

study. A similar approach within synthetic biology research includes Bates et al (2015), who 

used quantitative surveys to indicate, based upon the perceptions of identified subject experts, 

how each respondent viewed risk associated with synthetic biology’s potential as an agent of 

bioremediation in comparison with a conventionally-derived bioremediation process. While 

Bates et al (2015) note that limitations regarding the robustness of such a rank-ordered 

survey’s results may have their own limitations due to the relative uncertainty in the field and 

the ability of such experts to offer confident estimations of risk probability and consequence 

without tangible products to review, yet the upside of such research is to derive quantitative 

and directly comparable feedback across respondents without the need for qualitative 

interpretation. Such an approach may also lack the ability of more interpretive methods of 

narrative analysis to acquire greater context into a given risk evaluation, yet such an 

interpretative approach may be used in tandem with surveys to generate both textual and 

numerical assessments from each subject expert regarding the risks and benefits of synthetic 

biology products (see Creswell 2012 for discussion on a mixed survey-interview approach using 

qualitative methods). 

 Another limitation centers on the sample size for each case included for discussion. For 

narrative research, larger sample sizes often contribute both additional context and feedback 

by which to understand a given research problem while also serving as additional points of 

triangulation to verify claims and better indicate robustness in any research findings from such 

interviews or surveys. At the onset of this research project (early 2014), few subject experts 

were available to discuss synthetic biology risks and benefits in general and for pharmaceutical 

research in particular, an issue also discussed by Bates et al (2015) and Roberts et al (2015) in 
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their own respective searches for relevant interview contacts. However, this is likely to change 

in the coming years as more companies and academic researchers become involved with 

synthetic biology research (Kuiken 2015; Carter et al 2014). With additional time and funding, 

further contacts would be derived using purposeful sampling across academia, industry, 

government, and non-governmental organizations in order to strengthen findings and 

discussion of regulation for synthetic biology pharmaceuticals.  

 A further topic-based limitation of this study includes the need to consider the potential 

efficacy of soft law approaches to synthetic biology regulation. Kelemen (2011) and Idema and 

Kelemen (2006) note that such soft law may be a ‘red herring’ in the search to resolve 

regulatory challenges for systems of high transparency, high rigidity, and contain elements of 

adversarial legalism, where soft law reforms would still be delayed and mitigated via legal 

disputes and political and institutional roadblocks in a manner similar as the passage of hard 

law within a given government. However, others such as Mandel et al (2014), Marchant et al 

(2013), and Douglas and Stemerding (2014) have noted that such soft law approaches may be 

beneficial specifically for synthetic biology regulation, where such approaches can enable a 

more anticipatory approach to shift regulation and guidance of synthetic biology products as 

new information about risk emerges and the field becomes less uncertain. While this 

dissertation cannot and does not seek to dismiss those arguments raised by Kelemen (2011) 

and Idema and Kelemen (2006), it does acknowledge amongst other published literature that 

soft law approaches to synthetic biology regulation may be beneficial to many countries dealing 

with the concern of how best to regulate synthetic biology in an efficient and robust manner. 

 Lastly, a significant limitation inherent within this research topic includes the high 

uncertainty surrounding synthetic biology, and the fact that few synthetic biology products 

have materialized in at least early prototypes of proofs of design. The complication here is that 

while subject experts may offer beliefs, opinions, and projections of where they think novel 

health risk may occur, its consequences, and general likelihood of occurrence, there remains an 

undertone of uncertainty in their responses that is very difficult to remove within the context of 

regulation (also discussed in Bates et al 2015). Such uncertainty ultimately makes it difficult for 

interview respondents to give definitive answers to questions related to the probabilities and 
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consequences of novel health risks, leaving them to offer ‘best guesses’ and ‘general beliefs’ of 

what they believe on these matters (see Roberts et al 2015). This situation will likely change as 

the technology matures and becomes more widely used, yet for now researchers within the 

subject of synthetic biology regulation must contend with the field’s uncertainty in an effort to 

better understand the technology’s risks alongside the political and cultural factors that 

influence the perception and regulation of such risks. 

 

7.5 Risk Culture and Comparative Variations in Synthetic Biology Regulation 

 As noted within several Chapters, the purpose of this dissertation was to review to what 

extent and why variations in synthetic biology have arisen in the United States, European 

Union, and Singapore. Policymakers and regulators within these governments are already 

facing the task of producing robust regulatory guidance in the form of hard and/or soft law to 

govern the creation of synthetic biology products such as with pharmaceuticals (Marchant et al 

2014; Kelle 2009; Kelle 2013; Oldham et al 2012). The pressure to produce such guidance and 

best practices in the face of uncertainty and novel risk to human and environmental health will 

only grow as such research expands both in terms of financial investment into synthetic biology 

innovation as well as the number of projects worldwide seeking to use synthetic biology as an 

approach to foster technological development in fields ranging from pharmaceuticals to 

biofuels to environmental remediation (Kuiken 2010; Kuiken 2015).  

Coupled with this uncertainty includes the unique political and institutional factors that 

influence the regulatory decision making process, and can cause governments to vary in their 

regulation of emerging technologies like synthetic biology (Carter et al 2014; Bar-Yam et al 

2012).  This dissertation sought to review how elements of such risk culture generated 

variations of synthetic biology regulation in the United States, European Union, and Singapore. 

Ultimately, this dissertation’s three-system comparative approach found some evidence to 

indicate that the historical path of regulatory reform within a given government fosters 

regulatory path dependency and limits the feasible options open to synthetic biology regulation 

within a given government – consistent with discussion in Parthasarathy (2012), and Jasanoff 

(1986). To a lesser extent, this dissertation found that the degree of formality in regulatory 
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decision making also influenced local risk culture and generated variations for synthetic biology 

regulation – also consistent with findings by Kelemen (2011), Volcansek (2014), and Kagan 

(1991).  

The approach utilized within this dissertation included a two-stage narrative analysis via 

(i) a literature review on the subject of synthetic biology development, risk, and regulation, and 

(ii) a multi-stage effort to acquire subject expert interviews on the same subjects This two-stage 

process is effective due to its ability to build understanding regarding the existing consensus on 

the novel risks imposed by synthetic biology products, the existing regulatory structures that 

may cover such risks, and potential weaknesses and limitations within such structures. Such 

insight allows for a firsthand account of both the perception of risk as well as the perception of 

regulatory needs by local experts, and facilitates an assessment of how elements of local risk 

culture influence variations in emerging technology regulation like with the case of synthetic 

biology pharmaceuticals. 
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Appendix 1 

Coding Information and Quotations Used for Subject Experts 

Respondents – United States 

US Respondent 1 – Government Social Scientist 1 

 “a big concern that we have to keep in mind includes how easy new regulations would be 

adopted, and sweeping reform is unlikely without a lot of evidence to back it up.” 

 “history isn’t on our side here […] we need to be very cautious about advancing [syn bio] 

research moving forward, because the potential for biosafety risks and the unique health 

consequences coming from such risks may negatively harm the lives of many.” 

 “We can impose rigorous biosafety protocols” 

 “yet there’s always going to be a chance for mistakes or downright failures in safety to prevent 

some of these synthetic organisms from breaking containment.” 

 “this [synthetic biology] research is going to go global, and won’t be conducted only at BSL-4 

(Biosafety Level 4) facilities. Carelessness, ineffective containment measures, simple accidents 

that occur one out of a thousand times a veteran bench scientist conducts research […], these 

biosafety risk incidents are bound to occur.” 

 “when these engineered products become available, we’ll have to consider whether our 

governance capabilities are adequate to cover the potential for gene transfer or harmful side 

effects in vivo.” 

 “While EPA under TSCA and APHIS under the PPA [Plant Pest Act] have post-market review 

capabilities for some synthetic biology products […], their ability to conduct post-market 

assessment and approval of pharmaceuticals over environmental risk concerns remains 

uncertain and potentially nonexistent with current governance.” 

 “without a regulation or law clearly referencing ‘synthetic biology’, there exists potential 

loopholes or gaps in coverage where best practices aren’t enforced and these novel risks could 

arise.” 

US Respondent 2 – Academia Social Scientist 1 

 “[American] regulatory reform moves slowly and can easily be held up in court. […] Governance 

for synthetic biology should navigate these issues by making use of existing regulations than 

fashioning brand new ones.” 

 “particularly in less secure or modern labs, it is almost guaranteed that novel genetic material 

will unintentionally reach the environment as more and more countries conduct such research 

for drugs and other applications.” 

 “post-market assessments for environmental health are absolutely necessary for syn-bio 

pharmaceuticals, but aren’t rigorously defined.” 



 

237 
 

 “we [government regulators] need to be able to monitor for potential environmental risks such 

as environmental gene transfer, however unlikely these risks are, […] because we just don’t 

know enough about how these risks could impact environmental health.” 

US Respondent 3 – Academia Social Scientist 2 

 “it’s probably not a good time to advocate for significant regulatory change for synthetic 

biology, because it’ll be difficult to prove to lawmakers that it’s worth it to change existing laws 

like TSCA until there’s a clear reason to make such changes happen.” 

 “The FDA is going to be the organization in power to regulate syn-bio pharmaceuticals […] and 

they’ll need the capability to adapt to technological capabilities as we’re better able to engineer 

cells and viruses for medical purposes.” 

US Respondent 4 – Non-Governmental Organizational Social Scientist 1 

 “synthetic biology governance reforms will have to account for what is required by law for 

technological risk management […] and anything outside of these requirements would be 

difficult to implement .” 

 “The FDA is currently the major pre-market approval authority for synthetic biology-derived 

drugs, and regulatory guidance is needed to close loopholes about what types of trials they can 

and cannot review […] because they should be involved in all early stage medical trials.” 

US Respondent 5 – Academia Social Scientist 3 

 “improvements to synthetic biology governance will probably be stepwise and incremental, 

because it’ll probably be unrealistic to replace established regulation quickly.” 

 “existing oversight capabilities are fairly thorough to prevent something like bioterrorism in the 

United States […] where all biological material acquired by a lab is screened to make sure you 

aren’t weaponing smallpox, or something like that.” 

 “The President’s Commission of the Study of Bioethics in 2010 (PCSB 2010) was quite clear that 

preemptive regulation may be unnecessary and unhelpful, and I personally believe that working 

with scientists in the field to establish best practices may be a better path forward than new 

regulation or law.” 

US Respondent 6 – Academia Lab Researcher 1 

 “we’re already starting to see early commercialization, and I think this will only speed up the 

process for more synthetically-derived drugs.” 

 “the horizontal exchange of genetic information is a known concept that, however unlikely, we 

should be concerned with.” 

 “the minute probability for artificial genetic material to interact with human or animal DNA is 

troubling, because the consequences of this could be troublesome […] because we would in 

effect be manipulating the natural environment and natural cellular interactions without an idea 

of what the harms could be.” 

 “the big issue here is that engineered cells may not be as reliable as conventional 

pharmaceuticals, and would contribute to economic losses and maybe even health concerns.” 

 “There are a few avenues for these products to generate risk upon disposal” 
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 “with the two most likely including aqueous disposal […] or the typical disposal of these 

products into a landfill.” 

US Respondent 7 – Academia Lab Researcher 2 

 “despite recent progress, we’re still technologically very far away from building a fully synthetic 

cell that can perform reliably and efficiently, and it’ll take many millions of dollars and years of 

research across the globe to develop technology to a point where these issues evaporate.” 

 “once we are able to develop a more robust and reliable library of cellular inputs […] and gain 

greater control over cellular activity and behavior, we’ll make engineered cells more robust and 

reliable for purposes like with pharmaceuticals.” 

 “risks occurring post-disposal are those we’ll have the greatest difficult monitoring, and while it 

is unclear the consequences these risks may have, we have to bank on harmful scenarios 

happening fairly soon after some of these drugs reach the market.” 

 “in the United States and Europe, facilities are generally well equipped to protect workers 

during the pharmaceutical production process, and I don’t think that synthetic biology products 

will be much different.” 

US Respondent 8 – Government Social Scientist 2 

 “while commercialization may be years off, regulatory reviews may occur sooner than we think 

[…] maybe in two or three years, and we’ll need to have proper guidance to regulate these 

products before then.” 

 “the inclusion of novel genetic material within end-product pharmaceuticals is what would 

trigger the need for stronger governance  – otherwise it probably isn’t necessary.” 

 “the precautionary principle likely applies to synthetic biology […], particularly given all of the 

unknowns surrounding how it may affect humans, animals, and nature.” 

US Respondent 9 – Industry Lab Researcher 1 

 “I guess you can’t totally rule such a scenario out because it’s possible, but I can’t imagine such a 

situation being likely to occur across globe’s biological research capabilities, let alone within the 

United States.” 

US Respondent 10 – Government Lab Researcher 1 

 “we can’t ignore these threats on a policy level, but at the same time, truly malicious biosecurity 

threats via synthetic biology are a bit unlikely.” 

 “do-it-yourself synthetic biology has opened up the potential for anyone to get involved with 

biological experimentation, but the synthesis and programming of biological material into a 

harmful and virulent pathogen is more complex than simple experimentation.” 

 “as cells become increasingly synthetic, they’ll likely be less able to proliferate outside of ideal 

circumstances and without supervision […], meaning the consequences of biosafety incidents 

may be minimal in the rare event that they occur.” 

 “without novel genetic material, novel health risk is essentially impossible” 

 “at that point, we’re only concerned with conventional risks that are well covered by the FDA.” 
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 “the exposure scenarios are possible, but biosafety protocols are fairly robust here and various 

pieces of automation and redundancy limit the potential for human error in the manufacturing 

process for drugs.” 

US Respondent 11 – Academia Lab Researcher 3 

 “you’d need extensive resources to accomplish something like that […] like an extensive lab, 

biological samples, and lots of human assistance that just would not be easy to come by for a 

deliberately harmful exercise.” 

 “right now, synthetic biology is more of a production process, meaning that it allows us to better 

produce drugs, rather than make entirely synthetic ones. This will come later, but with no novel 

gene sequences in a drug candidate, it’s hard to argue that something like horizontal gene 

transfer or novel health risks could occur.” 

US Respondent 12 – Government Lab Researcher 2 

 “even with secure labs, you can’t rule out the human element […] and the potential for human 

error” 

 “as pharmaceuticals become more ‘synthetic’ in nature, there may be a greater risk for novel 

health consequences in terms of exposure to genetic material like with horizontal gene transfer 

[…] but not likely with existing pharmaceutical candidates.” 

 “you’d be exposing living organisms (human, plant, and animal) to novel genetic material that, 

through horizontal gene transfer, has a tiny probability of allowing synthetic DNA to spread into 

their natural host.” 

 “while the risk to any one person, plant, or animal is fairly unlikely, when you commercialize 

these drugs and make them available in millions of doses, side effects and exposure hazards are 

going to arise.” 

 “generally speaking, biosafety is taken very seriously, but I think there might be more potential 

for human error at the Research phase than in Manufacturing, because there’s less direct 

human interaction with novel and potentially unstable and harmful biological material” 

 “by the Manufacturing stage, a lot of uncertainty related to novel risk of these products will be 

reduced by testing and trials […], which would allow for more redundancy and safety 

precautions to be taken prior to production.” 

US Respondent 13 – Academia Lab Researcher 4 

 “all it takes is one lapse of caution […] to generate a biosafety hazard event” 

US Respondent 14 – Academia Lab Researcher 5 

 “aside from early stage research, it’s unlikely that there are any serious novel biosafety threats 

from these products, […] conventional risk sure, like with adverse effects and side effects that 

you’d already see on labels of commercials, but probably no novel risks from exposure to 

genetically engineered cells.” 

US Respondent 15 – Non-Governmental Organizational Social Scientist 2 
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 “we already have concerns of certain drugs proliferating within the water table by being flushed 

down the toilet or excreted […], and I think it’s premature to rule out the possibility that there 

isn’t a risk of this happening for synthetic biology drugs.” 

 “conventional authorities seem to be working thus far, and self-governance activities like IRBs 

[internal review boards] and other non-governmental groups would be able to adequately 

review technological risk and understand the actual implications of such risk.” 

US Respondent 16 – Industry Lab Researcher 2 

 “honestly, while I think biosafety risks may arise within the Research phase of product 

development, it’s far more likely that the synthetic organism would die off fairly quickly.” 

Europe 

EU Respondent 1 – Industry Social Scientist 1 

 “New governance for synthetic biology should include inputs from industry and academics, who 

have also been active in discussion for GMOs for decades.” 

 “the appetite for uncertainty and risk for synthetic biology is likely lower than the US or other 

areas of the world” 

 “it’d be difficult for someone to pull this off [a biosecurity threat] without a well-stocked lab and 

the participation and help of knowledgeable scientists” 

 “Europe has been concerned with environmental effects of accidental releases of GMOs, and 

synthetic biology could be the latest, albeit potentially more dangerous, manifestation of this.” 

 “Engineered microorganisms would enter the environment and potentially impact the 

ecosystem by competing with natural organisms for sustenance and the ability to procreate […], 

which could have harmful effects for an area’s biodiversity.” 

 “no heavily engineered syn-bio drugs are currently undergoing clinical trials […] so you have to 

account for the time delay for regulatory approval prior to commercialization.” 

 “International agreements like the Biological and Toxin Weapons Convention don’t really have 

stiff control over the production and sale of bioweapons, so a separate body geared to the 

control of such biomaterial may be necessary in Europe.” 

EU Respondent 2 – Academia Lab Researcher 1 

 “gaining input from stakeholders outside of government in a top-down manner would be 

important for future synthetic biology regulation […] and will help balance the technology’s risks 

and benefits.” 

 “it’s uncertain whether existing scientific capabilities are developed enough to control 

horizontal gene transfer with efficiency, or whether mutations within engineered cells could 

become problematic within the pharmaceutical’s life cycle.” 

 “while unlikely, horizontal gene transfer could trigger harmful and uncontrollable genetic 

mutations in a non-target organism that might have the potential to negatively affect animal 

and plant life by subjecting them to harmful mutation and other side effects.” 

 “while cells with artificial DNA aren’t likely to multiply in the natural environment without a lot 

of help in their current state, as these cells become more biologically resilient and are able to 
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survive outside of a contained environment, the issue of persistence is one that we’ll have to be 

worried about.” 

 “causing various potential health problems with plant or animal life that could impair quality of 

life and potentially cause death.” 

 “exposure of pharmaceuticals with novel genetic material to an unintended plant or animal host 

could cause acute reactions that could range from relatively unnoticeable and maybe mildly 

irritating to quite painful in manner […], a similar process as with traditional chemical exposure.” 

 “barriers and control mechanisms for lab safety will likely eventually fail to prevent an exposure 

scenario – the only question is how bad the health consequences will be.” 

 “there’s greater uncertainty at the research stage, because a lot of this experimental material is 

untested, and a more synthetic organism would have little to draw comparisons with from a 

biosafety perspective.” 

 “the possibility of a terrorist or a group to direct evolution of viruses in bacteria to harm humans 

or the environment in a particularly harmful and unnatural manner” 

EU Respondent 3 – Academia Social Scientist 1 

 “[the technology’s] uncertainty complicates the regulatory environment, and will likely hinder 

the government’s ability to allow products to enter the market without judicial support.” 

 “a recent history of GMO regulation will keep Europe on a path to entrench the precautionary 

principle for synthetic biology research.”   

 “it is likely that these [synthetic biology] drugs will be improperly disposed of, making it possible 

for artificial genetic material to reach the environment.” 

 “various governmental and lab-based oversight mechanisms would prevent someone from 

abusing resources to make a harmful organism. […] This task would take a considerable amount 

of time, increasing the likelihood for the perpetrator to get caught.” 

 “the potential for accidents or improper storage and disposal of manufacturing waste and novel 

genetic material increases as new players for genetic engineering emerge, with my concern 

leaning towards those organizations with limited premarket oversight in their product 

development.” 

 “current governance gives the European Union enough premarket approval over drug 

development that these risks should be mitigated, although this may change as synthetic 

biology research allows researchers to make cells with increasingly artificial DNA.” 

 “[European] governance of immediate future technologies is robust, but future developments 

may challenge regulation. […] This  is because of the current dependencies of comparative risk 

analysis with similar non-GMO alternatives to the proposed product.” 

 “we will need a risk assessment protocol to review synthetic organisms with few parallels to 

conventional organisms […], something that we currently lack and may find difficult to 

accomplish.” 

EU Respondent 4 – Government Social Scientist 1 

 “academics and industry professionals will play a significant role with synthetic biology 

governance” 
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 “there are lots of limiting factors to prevent biosafety risk […] such as with reporting and 

oversight by regulatory authorities, […] but the potential for accidents and release scenarios 

makes synthetic biology a potential driver of novel biosafety risk, particularly to the 

environment.” 

 “synthetic biology materials becoming an invasive species” 

 “an inevitability” 

 “novel DNA is going to gain exposure to the environment and outside of the oversight of 

regulatory authorities and clean-up crews.” 

 “the consequences of end-of-life health hazards are case dependent, where some products 

would have a significantly greater chance of yielding harms than others.” 

 “the proper handling of biomaterial with novel DNA and containment of by-product waste 

during manufacturing could contribute to an environmental release scenario with potentially 

damaging effects to biodiversity.” 

 “there are a variety of medical challenges to public health that synthetic biology may be 

uniquely able to address […] like Ebola, malaria, or dengue fever.” 

 “the breakthroughs that synthetic biology could offer will cause research to accelerate within 

the next few years […] making commercialization a lot sooner than you’d think.” 

 “reducing the potential burden of risks that we aren’t as focused on currently, like with 

economic losses from the theft of company property and ensuring biosafety violators are 

accountable for their actions.” 

EU Respondent 5 – Non-Governmental Organizational Social Scientist 1 

 “while it’s hard to say definitively that there will be novel concerns, it’s pretty plausible that 

human, animal, and environmental organisms […] could be at risk of acute health harms.” 

 “the probabilities may be small, but horizontal gene transfer could produce dramatic effects to 

humans and the environment, […] and should be considered for mass produced products like 

pharmaceuticals.” 

 “a lot of this risk potential is going to stem from the restrictions placed upon syn bio research 

[…] like with how it must be stored, who has access, and whether materials will be used outside 

a secure lab. Right now, it’s probably too soon to tell how this will end up, making biosafety risk 

tricky to ignore or dismiss outright.” 

 “we can already program cells to prevent gene transfer, which will become more efficient and 

sophisticated as the science evolves.” 

 “we could see cases of unintended exposure before and after clinical trials – but particularly in 

cases of by-product waste and disposal – making exposure scenarios likely as the technology 

comes to market.” 

 “Novel risk here [in the Research stage] is possible, but generally unlikely with proper biosafety 

protocol. However, as the technology becomes more widely available and these protections are 

less available, these risks may become more likely and problematic.” 

 “as these cells become more robust and capable of surviving outside of a contained 

environment, these scenarios become more plausible, and make proper containment even more 

important.” 



 

243 
 

 “placing some identifying barcode or watermark inside the genetic code of an engineered cell 

may help us track the movement and consequences of biosafety events […] as well as potential 

cases of theft or negligent containment.” 

 “biosecurity is a particularly complex issue for medical applications like with pharma, and its 

governance needs to be relatively tight to ensure that the wrong people don’t get access to 

synthetic biology technologies and information.” 

 “a separate body related to reviewing biosecurity issues is needed for certain categories of 

synthetic biology research, including with pharmaceuticals and drug development.” 

EU Respondent 6 – Industry Lab Researcher 2 

 “There are a variety of scenarios where these genetically engineered compounds could create 

risky exposure scenarios […] although the consequences of these events may not be as severe as 

one could imagine at present.” 

 “we just can’t rule these risks out yet, either in the form of accidents or deliberate attempts to 

use the technology in a harmful manner […]. If synthetic biology takes off and becomes 

widespread in use, so too do the chances that we’ll see reports of risky events with exposure 

pathways and health consequences that we haven’t really seen before.” 

 “clinical trials and testing for premarket  approval is pretty robust, and the only real concern for 

humans would be off-label and improper use as well as pre-clinical trial testing early on.” 

 “improper use and disposal of pharmaceuticals and pharma-byproducts” 

 “as new syn bio pharmaceuticals enter the market, they’ll have been engineered in a manner 

that controls for novel health risks, and tested within clinical trials to view the odds that these 

events arise – so it’s unlikely to see such events occur very often.” 

 “the research community may help indicate to government stakeholders where novel risk is 

realistic, and where it’s improbable.” 

EU Respondent 7 – Industry Lab Researcher 1 

 “particularly within the environment, there’s a strong chance we’ll see these organisms 

multiplying in various environments unless oversight is particularly strict with controlling their 

release and disposing of waste materials.” 

 “there are technological improvements that could limit or eliminate the potential for such risks 

to occur” 

 “these control technologies are in their early stages and aren’t too useful yet.” 

 “we’re already seeing harmful levels of conventional drugs in waterways and in the 

environment, generating harms to plant and animal life. […] I don’t think we can rule out 

synthetic biology drugs and vaccines from such scenarios yet.” 

 “particularly for areas with unreliable or outdated treatment plants […] it’s likely that synthetic 

DNA and similar genetic material will enter into the natural environment as such 

pharmaceuticals become more widely available.” 

 “we’re making strides towards early syn-bio drugs, but more advanced pharmaceuticals or even 

vaccines using genetically altered DNA are currently beyond the scope of most research trials 

that I know of.” 

EU Respondent 8 – Non-Governmental Organizational Lab Researcher 1 
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 “a red herring in the midst of valuable research”, 

 “the odds are implausibly small that novel risk events should happen.” 

 “clinical trials and drug testing is sort of a black box for pharmaceuticals, […] we only have to be 

particularly concerned with potential health risks before and during the testing.” 

 “accidental release is far more likely, because there are too many oversight checks, resource 

requirements, and scientific capabilities needed to build an organism that could do real 

damage.” 

 “even if such events do occur, there’s no guarantee that a novel hazard would arise, or that the 

novel genetic information would have anything to do with the incurred health hazard.” 

 “the risk here is more of a conventional nature in terms of proper production and containment 

of biological material, and where the novel risk scenario would be something like gene transfer 

from a breach in containment, which is generally unlikely given the state of the science.” 

 “oversight and containment regulation for manufacturers in Europe are pretty robust when it 

comes to GMOs, and I don’t see synthetic biology being much different or challenging biosafety 

regulations [2009/41/EC] in a manner that makes new risk likely […] particularly when the 

pharma products under production have been engineered to limit their potential for gene 

transfer and exposure effects.” 

 “there isn’t any novel genetic material that goes into the consumed drug, where synthetic 

biology is primarily the production process to make conventional parts to pharmaceuticals like 

with artemisinic acid for malaria treatments.” 

 “existing technological capabilities generally use well-known cellular inputs and components 

similar to natural cells, which would not be the case for a more fully synthetic cell.” 

 “biosafety governance will run into trouble here [for cases of increasingly synthetic cells], as it 

will be difficult to conduct a risk analysis for a product that we have little information about or 

by which to compare it to.” 

 “Europe has already addressed synthetic biology directly via the precautionary principle and 

clear directives, and more law now will probably be unnecessary and might hinder research.” 

EU Respondent 9 – Government Lab Researcher 1 

 “we have not really experienced any serious and recurring [novel] risk to human health from 

similar research related to GMO, and it would be unfair to negatively hype up such risks until 

there’s a proven scientific reason to be worried about them.” 

 “is likely to develop, and somewhat already has on elements of the blogosphere.” 

 “the risks of a horizontal gene transfer event happening are quite low, and made essentially 

improbable by certain genetic controls within engineered cells.” 

 “the chances of horizontal gene transfer occurring in a manner that generates serious health 

complications is incredibly minute.” 

 “This will become more plausible in the future, but for now it’s currently difficult to get a cell to 

behave in a specific manner in a general sense, let alone for a virus or engineered disease.” 

 “At the research stage, we have to be concerned with opportunities of exposure of novel 

genetic material with laboratory researchers and their assistants, particularly when oversight is 

limited and high risk material is involved.” 
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 “experiments involving viral components or other microorganisms with a known potential to 

harm human or environmental health will likely pose significant concerns to synthetic biology 

regulators.” 

 “the consequences of such events are serious enough that we’ll need to monitor whether 

existing regulation covers synthetic biology, but I doubt the probabilities of novel risk events are 

high given existing biosafety protocols for GMOs and the physical barriers required to contain 

such material.” 

 “the potential for such events are quite small, and the resource requirements for an event quite 

high, yet we still need to adequately protect against biosecurity events.” 

Singapore 

Singapore Respondent 1 – Government Lab Researcher 1 

 “Lots of [Singaporean] agencies interface with companies engaging with technology research. 

For synthetic biology, this includes some like the GMAC [the Genetic Modification Advisory 

Committee] or the Economic Development Board, which tries to get developers to come to 

Singapore […] and meet to identify what regulation can balance innovation against risk.” 

 “there’s a general feeling that we don’t want to prohibit research because it’s risky, at least until 

we understand these risks to be serious threats.” 

 “an inherently conventional risk profile” 

 “the novel risk is not the vector of exposure, but instead that the material workers could be 

exposed to is novel and unpredictable in nature.” 

 “evidence of a respect for the ability of institutions to conduct their own risk assessment 

activities, and report potential biosafety hazards to external government authorities.” 

Singapore Respondent 2 – Academia Social Scientist 1 

 “there’s very frequent discussion between developers and government officials on technology 

development and possible risks, and the two work together to identify needs for reform.” 

Singapore Respondent 3 – Academia Lab Researcher 1 

 “there isn’t really a need to push regulation for synthetic biology just yet, because regulators 

can institute reform pretty quickly once we have better information about hazards.” 

 “the risk and exposure profiles for such scenarios are more well-known […] and probably don’t 

require new regulation to control.” 

 “the rules that will probably be most important for synthetic biology research in the near future, 

[…] particularly as it outlines how the Singaporean government will oversee research activities.” 

Singapore Respondents 3 and 4 – Academia Lab Researcher 1 and Academia Social Scientist 2 

 “it would be better to wait for the technology to mature and demonstrate true scientific 

capabilities rather than regulate based upon what we think may happen” 

Singapore Respondent 4 – Academia Social Scientist 2 

 “when reform is needed for The Guidelines [The Singapore Biosafety Guidelines for Research on 

Genetically Modified Organisms] or The Biological Agents and Toxins Act, government ministers 
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can initiate reform quickly with Parliament to protect public health, so pre-emptive reform isn’t 

always necessary.” 

 “even within internal governance, there exists enough oversight mechanisms to prevent 

someone from stealing or misusing biological material and engaging with involved research to 

produce harmful agents.” 

Singapore Respondent 5 – Academia Lab Researcher 2 

 “we [Singaporeans] aren’t as precautionary as the West, and promote technology research like 

SynBio in ways that might not be possible in a more strict set of regulations.” 

 “No one is 100% sure what laws and regulations apply to synthetic biology, but government 

involvement with issuing our grants and advocating for synthetic biology research signals their 

general approval of our work.” 

Singapore Respondent 6 – Government Social Scientist 1 

 “the Singaporean government has been interested in developing this technology that may yield 

health benefits to its citizens and residents […] with the Economic Development Board serving 

as a guide for foreign organizations seeking to break into the Singaporean market.” 

 “the Government is well aware of the potential to generate health benefits through synthetic 

biology, and we believe that funding and a supportive environment are necessary to develop 

such benefits within Singapore.” 

 “we have to worry about research exposure scenarios because there is a small chance […] like 1 

lab experiment in a year […] where exposure could produce health hazards, but by and large 

most exposure scenarios would result in the novel genetic material harmlessly dying off without 

producing gene transfer or harming the health of the scientist.” 

 “the likely risk profile here would be for vaccine synthesis and engineering, where interaction 

effects in vivo could result in unintended health consequences to the patient.” 

 “if [The Guidelines] can be clearly connected to synthetic biology, which they basically are, then 

this is going to be an important argument in favor of in-house governance of synthetic biology 

research.” 

 “IBCs are vital for executing these guidelines” 

 “commercialization of early stage Synthetic Biology products is not far away, and it is important 

to head off health risk before such commercialization becomes widespread.” 

Singapore Respondent 7 – Academia Lab Researcher 3 

 “…novel risk might occur, but the exposure potential would be limited by cellular controls that 

scientists could use to keep synthetic cells from engaging in unintended behavior or reaching 

unintended exposure points.” 

Singapore Respondent 8 – Academia Lab Researcher 4 

 “dual-use concerns are possible, but not easily to accomplish at present because of the 

difficulties that a researcher would face in using their research for deliberate harm.” 

Singapore Respondent 9 – Industry Lab Researcher 1 
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 “where in early research synthetic biology cells lack the engineered controls to prevent 

proliferation or spread outside of containment […], if scientists get exposed to this material, it 

could have really harmful effects.” 

 “having best practices like The Biosafety Guidelines, but more specific to synthetic biology, can 

both make the public feel safer about purchasing such products, and offer companies certain 

benchmarks to meet in order to demonstrate safe research and production practices.” 

Singapore Respondent 10 – Academia Social Scientist 3 

 “we have to assume, despite all of our planning, that there will be a breach in containment […] 

it’s happened before with terrible viruses, and it may likely happen for synthetic biology.” 

Singapore Respondents 10  

 “while the controlled use of synthetic biology drugs within secure labs heavily reduces the risk 

of environmental exposure concerns at the disposal stage of a pharmaceutical’s lifespan, we 

have to consider whether issues such as gene transfer and environmental competition may be 

issues that arise from improper disposal if we agree to distribute these drugs to the lay public.” 

Singapore Respondent 11 – Academia Lab Researcher 5 

 “such materials will not be able to survive and proliferate in nature for more than a few hours at 

most, […] and the risk of truly harmful gene transfer is so remote that it will eventually be 

dismissed outright.” 

Singapore Respondent 12 – Industry Lab Researcher 2 

 “while the case-by-case chances are slim of [contamination and exposure] happening after drug 

disposal, our current experience with other pharmaceutical drugs and their improper disposal 

forces us to consider the likely possibility that these novel drugs may reach the environment 

unintentionally.” 

Singapore Respondent 13 – Academia Lab Researcher 6 

 “we have to be wary of side-effects […], there could be something new here that produces 

harms to humans in a manner that is very debilitating or even fatal in very small numbers of 

cases.” 

Singapore Respondent 14 – Academia Social Scientist 4 

 “generally emerging, but the attitude we take away is that our research is important and risk is 

handled internally though internal review boards and other university governance regimes.” 

 “there is a belief here that we can learn much from the West’s experience in regulating 

synthetic biology” 

 “understand the possibilities that the technology may yield, and recruit talent to pursue such 

goals.” 

Singapore Respondent 15 – Academia Social Scientist 5 
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 “the ability of synthetic biology to produce drugs and vaccines for neglected tropical diseases 

will pressure innovators to move quickly” 

 “such review boards and self-governance would help us air on the side of caution by looking for 

potential concerns, while avoiding burdensome and potentially unnecessary regulation.” 

Singapore Respondent 16 – Industry Social Scientist 1 

 “these review boards are scientifically competent and can more directly review health risk of 

this developing technology.” 
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Appendix 2 

Lexicon of Terms to Frame Quotations 

 
 
Synthetic biology novel health risk (generally speaking), 
 
 “technology uncertainty” 
 
 “Efficacy – ability to survive outside of containment” 
 
 “Efficacy – ability to be controlled” 
 
 “Horizontal gene transfer”  
 
 “Data limitations” 
 
 “Scientific capacity/capabilities” 
 
 “novel vs conventional risk” 
 
 
 Synthetic biology novel health risk (pharmaceuticals),  
 
 “probiotics” 
  
 “Biosafety” 
 
 “Biosecurity” 
 
 “Pharmaceuticals – General Comments” 
 
 “Mutation in vivo” 
 
 “Environmental fate/end-of-life risk” 
 
 “Pre-clinical trial risk/Lab Safety” 
 
 “General Development” 
 
 
Emerging technology regulation,  
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 “internal oversight”  
 
 “external oversight” 
 
 “Commercialization” 
 
 “Incremental/Hardening regulation” 
 
 “Adaptive regulation” 
 
 “Regulatory Reform” 
 
 “Precautionary Principle” 
 
 “Proaction” 
 
 
(iv) differences in cultural risk perception 
 
  
 “Risk Tolerance” 
 
 “Government Structures” 
 
 “Global Development/Risk Concerns” 
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Appendix 3 

Interview Protocol 

Instructions            

Thank you for your interest in my PhD dissertation research project entitled Synthetic Biology Risk 

Governance for Pharmaceuticals. Your assistance is extremely helpful in this research project, and your 

input will be kept anonymous at all times. 

Below are a list of questions regarding general synthetic biology/genetic engineering risk and 

governance methods to address those risks. Your opinions, judgment, and/or advice will be requested to 

answer these questions in any way you deem reasonable. As this is an ‘unstructured’ interview, you may 

add any information to each response you believe is helpful. The only request is that you focus your 

answers on emerging biotechnology risk, with synthetic biology or genetic engineering as a primary 

focus. A main point of interest in this project is the impact that synthetic biology research will have on 

new pharmaceuticals, particularly the novel risks that will emerge due to the use of this emerging 

technological method. As such, any discussion related to synthetic biology or genetic engineering and 

pharmaceuticals is particularly beneficial, although your opinion on synthetic biology/genetic 

engineering and risk generally speaking is quite welcome. 

Your interview timeframe is fluid, and may be conducted between 20 minutes and 3 hours based upon 

your availability. If you do not feel comfortable answering a question, you may ask to skip. If you have a 

question, you may ask for clarification at any point of the interview. 

 

Purpose & Confidentiality Statement         

The purpose of this study is to assess several elements of synthetic biology risk governance amongst 

subject experts. Specifically, information from these interviews will be used to acquire information 

regarding the types of risks imposed by the use of synthetic biology or genetic engineering in various 

technologies (particularly pharmaceuticals), the differences in risk perception of synthetic biology 

products across culture, and general discussion of risk management options and recommendations for 

synthetic biology and genetic engineering research and development going forward. For any questions 

or comments, please feel free to ask your interviewer or contact the primary investigator. 

If you agree, your interview will be recorded and notes will be taken throughout your discussion with 

the interviewer. These recordings and notes will remain with Benjamin Trump, and will not be 

disseminated to any other source. Any identifying information related to you will be removed, and you 

will be referenced to a randomly assigned code by which your interview will be referenced from in the 

future. No identifying information connecting you to your statements made in this interview will be 

made without your express and written permission. You may choose to terminate the interview at any 



 

252 
 

time, for any reason. In addition, you may ask for further information to follow-up with the progress of 

this study by emailing the primary investigator (bdtrump@umich.edu). 

Again, thank you for your participation in this project! 
 
   Best Regards, 
   Benjamin Trump 
   PhD Student, University of Michigan 
   Department of Health Management and Policy, School of Public Health 
 
 
 
Questions 
Demographic Questions: 

1) Can you state your background with genetic engineering or synthetic biology, or your general 
familiarity with the subject (emerging technology and biotechnology)? 
 

2) What is your general opinion of the subject? Where do you see the field going in the next year? 
Five-Ten years? Can scientists and engineers safely build and genetically reprogram bacteria 
cells for a biomedical purpose? 
 

3) Is there an application of genetic engineering or synthetic biology that particularly excites you? 
One that worries you? 
 

4) What do you see as being particularly beneficial about the technology? What do you see as 
being potentially risk-inducing? Is there anything unique about these considerations? 

 
Synthetic Biology General Risk Questions: 
 

1) When you think of synthetic biology, what is meant about risk? 
 
 2) Is there anything that makes risks within synthetic biology development unique? 
 

3) Looking at specific categories of synthetic biology risk discussed in literature, what concerns 
do you have related to the technology’s biosafety?  

 
4) Are there particular areas of concern relative to biosafety that may have more substantial or 
lasting risk? Who or what is particularly at risk of such negative consequences? 
 
5) Looking at synthetic biology biosecurity concerns as noted in the literature, what concerns do 
you have about the dual-use nature of the technology? 
 
6) What factors could increase the possibility of synthetic biology being deliberately used in a 
harmful manner? What factors may decrease that possibility? 
 
7) What other risk considerations do you have that should be noted as important to consider 
relative to synthetic biology and risk? 
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Synthetic Biology Pharmaceutical Risk Questions: 
 

1)  Based upon discussion above, what are your thoughts regarding the use of synthetic biology 
to facilitate pharmaceutical production? What types of products do you see as arising from such 
research? 

2) When do you think such products might enter clinical testing? What about eventual 
commercialization? 

3) What are the specific biosafety considerations that should be considered? What about 
biosecurity? 

4) Think about the life cycle of a pharmaceutical product (Research – Manufacturing – 
Consumption – End-of-Life Disposal). What types of risk might arise at each life cycle stage for a 
conventional pharmaceutical? What about with a synthetic biology-derived option? 

5) What is the effect that exposure to novel genetic information would have to lab researchers? 
Workers? Consumers? The environment? Think about considerations you noted above of 
biosafety and biosecurity here. 

6) Of the risks discussed, which are most consequential? Which are most likely to occur? 

 

 
How Should We Deal With These Risks: 

1) What are the regulatory capabilities currently available to govern synthetic biology? What 
are the regulatory agencies? What are the regulations or laws? Other options? 
 

2) Based on your answer above, should any new steps be taken to govern synthetic biology 
production? Formal regulation? What about self-governance? 

 
3) Would you have any concerns if genetically engineered, synthetic biology-derived 

pharmaceutical were produced in a country other than your own to be sold in your local 
markets? If so, what could alleviate these concerns? 

 
4) Any other thoughts about synthetic biology governance in your country? 
 

Outgoing Control: 

1) What is your general opinion of genetic engineering/synthetic biology? How about its 
applications to pharmaceuticals? 
 

2) Is there anything in particular that excites you about genetic engineering/synthetic biology? 
Worries you? 
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Any Outgoing Comments? 

 

Additional Information 
Definitions: 
Synthetic Biology – the design and construction of biological devices and systems for useful purposes. It 
combines biology and engineering, thus often overlapping with bioengineering and biomedical 
engineering. It encompasses a variety of different approaches, methodologies, and disciplines with a 
focus on engineering biology and biotechnology. 
Synthetic biologists approach the creation of new biological systems from different perspectives, 
focusing on finding how life works (the origin of life) or how to use it to benefit society. The former focus 
includes the approach of biology, inserting man-made DNA into a living cell; and chemistry, working on 
gene synthesis as an extension of synthetic chemistry. The latter focus includes engineering, building the 
new biological system as a platform for various technologies; and rewriting, rebuilding the natural 
systems to provide the engineered surrogates. 
Among other things, a primary difference between synthetic biology and genetic engineering is that 
synthetic biology is based on the intentional and total redesign of artificial biological systems, rather 
than on a replacement or modification of a single gene or collection of genes in an existing and living 
host cell. 

Synthetic biology is a maturing scientific discipline that combines science and engineering in 
order to design and build novel biological functions and systems. This includes the design and 
construction of new biological parts, devices, and systems (e.g., tumor-seeking microbes for cancer 
treatment), as well as the re-design of existing, natural biological systems for useful purposes (e.g., 
photosynthetic systems to produce energy). As envisioned by SynBERC, synthetic biology is perhaps best 
defined by some of its hallmark characteristics: predictable, off-the-shelf parts and devices with 
standard connections, robust biological chassis (such as yeast and E. coli) that readily accept those parts 
and devices, standards for assembling components into increasingly sophisticated and functional 
systems and open-source availability and development of parts, devices, and chassis (SynBerc 2013). 

 
Genetic Engineering: the direct manipulation of an organism's genome using biotechnology. New DNA 
may be inserted in the host genome by first isolating and copying the genetic material of interest using 
molecular cloning methods to generate a DNA sequence, or by synthesizing the DNA, and then inserting 
this construct into the host organism. Genes may be removed, or "knocked out", using a nuclease. Gene 
targeting is a different technique that uses homologous recombination to change an endogenous gene, 
and can be used to delete a gene, remove exons, add a gene, or introduce point mutations. 
An organism that is generated through genetic engineering is considered to be a genetically modified 
organism (GMO). 
 
Governance – all processes of governing, whether undertaken by a government, market, business, or 
network, whether over a family, tribe, formal or informal organization or territory and whether through 
laws, norms, power or language. It relates to processes and decisions that seek to define actions, grant 
power, execute and implement policy, and verify performance. 
 
Risk – the potential of losing something of value, weighed against the potential to gain something of 
value. Values (such as physical health, social status, emotional well-being or financial wealth) can be 
gained or lost when taking risk resulting from a given action, activity and/or inaction, foreseen or 
unforeseen. Risk can also be defined as the intentional interaction with uncertainty. 
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Biosafety- The prevention of large-scale loss of biological integrity in the form of potential risks to 
human and environmental health. For this context, such events are generally not intentionally caused. 
 
Biosecurity- The prevention of the deliberate misuse of synthetic biology capabilities by a nefarious 
agent as with a bioterrorist. Such concerns arise from the technology’s ‘dual use’ concerns, where it may 
be utilized either to drive scientific innovation as with medicine, or be used to deliberately cause harm 
in the form of an engineered virus or bacterial agent. 
 
Data Retention: 
Any raw information (information not coded for anonymity) will be send to the primary investigator – 
Benjamin Trump – and will remain in his sole possession, to not be distributed publically or privately. 
This data will be coded by the primary investigator for anonymity and aggregated with other responses, 
and kept for Benjamin’s research use for his dissertation. No identifying information of any kind will be 
retained or used for the publication of any research results without the express permission of the 
individual interview respondent.  
 

After you have responded to this interview, your views will be aggregated with the responses of other scientific 

experts.  Together, this expert interview will form the foundation for further risk assessment and will be 

summarized in a PhD dissertation and potential journal articles.  Your responses to this questionnaire will be 

treated confidentially at all times. Any notes or identifying information collected in the interview is for the 

interviewer’s coding only, and will not be distributed or made available to any other person than the primary 

investigator (Benjamin Trump – bdtrump@umich.edu). 
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Appendix 4:  

Qualitative Methods Available to Test Variations of Government Regulation of Emerging 

Technologies  

 

1.1 Introduction 

 Qualitative methods serve as tools to derive context-rich information from interviewed 

individuals, archived information, and various other sources (Denzin and Lincoln 1994; Creswell 

2012). Such methods may be used to amplify or contextualize findings from quantitative 

research, or work by themselves to offer insight into specific research problems (Creswell and 

Clark 2007; Berg et al 2004). Such context may include insight into complex social behaviors or 

activities as well as generating explanations for ongoing beliefs or actions that are not obvious 

or attainable within strictly quantitative research (Creswell 2012; Creswell and Clark 2007). In 

essence, the narratives and findings provided through activities like subject expert interviews 

and narrative analysis help interested parties approach research questions by answering the 

‘why’ or ‘how’ of a research topic that is not as easily covered via quantitative analysis (Berg et 

al 2004; Taylor et al 2015). 

 Such methods have been discussed by Linkov et al (2008) and Bates et al (2015) as an 

avenue to understand the potential risks and benefits of emerging technologies which lack 

quantitative data to measure such variables. A specific application of this includes synthetic 

biology, where Kelle (2009), Carter et al (2014), and Roberts et al (2015) represent some of the 

published literature that have used narrative analysis and expert interviews gain insight into the 

technology’s risks within an environment of high uncertainty. In this way, qualitative methods 

provide two key benefits to those looking to review the process of synthetic biology product 

development, including (i) serving as a source of information to overcome data limitations 

associated with these novel products, and (ii) providing approaches to gauge expertise and 
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intuition of subject experts, particularly for those areas that are difficult to quantify (Silverman 

2013; Lewis 2015; Gibson and Brown 2009; Daiute 2013).  

 Given that qualitative approaches may serve as helpful tools for researchers to assess 

technological risks and regulatory needs, this Chapter seeks to unpack the specific methods 

that might be used to drive such research. To accomplish this task, the following sections 

include a general introduction and overview to the most common methodological and 

theoretical frameworks (respectively) that are utilized by qualitative researchers.  

 Specific to emerging technology regulation in general and synthetic biology in particular, 

several reasons exist with respect to why interview-driven qualitative research methods are 

both necessary and useful for many research ventures. Among others, these include: 

 i) The lack of robust quantitative data for technologies such as synthetic biology with 

limited to no fully developed applications, as well as the need for more context-rich assessment 

to guide regulatory decision making (Bates et al 2015; Roberts et al 2015), 

 ii) Limited insight and understanding regarding the types of risk that may realistically 

arise through the life cycle of synthetic biology products (Kelle 2009; Roberts et al 2015; Bates 

et al 2015), 

 iii) Incomplete understanding and limited context regarding the ability and efficacy of 

various regulatory options to adequately resolve the risks associated with these technologies 

(Carter et al 2014; Allan et al 2015; Church et al 2014), and 

 iv) A need to engage in horizon scanning for future technologies and understand the 

challenges they may pose to regulatory structures moving forward (Bates et al 2015; Carter et 

al 2014; Roberts et al 2015). 

Given the context-rich and experientially-driven dataset derived from subject experts 

and other qualitative sources, qualitative methods may serve as one option to acquire, 

organize, and analyze risk-based information regarding synthetic biology research and 

development (Cannella and Lincoln 2015; Vincent et al 2015).  

The chapter begins in Section 1.2 by discussing the more commonly used qualitative 

methods as defined by Creswell (2012), Denzin and Lincoln (1994), Berg et al (2004), Giacomini 

(2010), and Taylor et al (2015), among others. Some of these approaches, particularly with 
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narrative analysis and expert interviews, have already been used in within literature pertaining 

to synthetic biology regulation (Carter et al 2014; Bates et al 2015; Kelle 2009; Roberts et al 

2015). Next in Section 1.3, the chapter discusses the collection of methods that may be 

applicable to such research, with the aim of indicating the various strengths and weaknesses 

the individual methods possess with respect to knowledge acquisition and information analysis 

for research centered on synthetic biology risk regulation.  Section 1.4 then builds from this 

discussion by reviewing the philosophies driving qualitative research and the use of the 

methods introduced in Section 1.3. Lastly, Section 1.5 offers extensions into mixed-methods 

research, where qualitative methods may be used to complement quantitative analysis. 

 

1.2 Overview: Qualitative Methods for Synthetic Biology Research 

While still limited in discussion, several scholars have already made use of qualitative 

methods to assess synthetic biology health risks (Starkbaum et al 2015; Breitling et al 2015; 

Kelle 2009; Bates et al 2015; Roberts et al 2015). These approaches range from open-ended and 

exploratory in nature where the researcher seeks to gain general feedback regarding synthetic 

biology risk and benefit to more focused and quantitative with respect to a particular 

application or group of anticipated synthetic biology products and their associated risks and 

benefits.  

Maurer et al (2006) serves as the earliest known example of interviews being used to 

guide discussion of risk and security issues related to the process of synthetic biology 

development. Specifically, their report sought to review the perceptions of biosafety and 

biosecurity risk amongst synthetic biologists (n=24) to identify where, if at all, synthetic biology 

affects traditional biosafety and biosecurity concerns within the process of product 

development. The overall goal of this research was to drive community-based policy options to 

govern synthetic biology research at the Synthetic Biology 2.0 Conference, where it was 

presented and discussed amongst participants and signaled areas that may require further 

regulation beyond existing regulatory capabilities.  

Kelle (2009) serves as one of the earliest deliberate pieces of published scholarship that 

utilized expert interviews directed towards reviewing national regulatory capabilities of 
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synthetic biology development. Specifically, Kelle (2009) sought to construct a narrative 

regarding the awareness of subject experts in Europe on the developing synthetic biology hard 

and soft law related to biosafety and biosecurity, respectively. Specifically, Kelle interviewed 20 

European subject experts via purposeful sampling between June and October 2007, and 

reviewed their perceptions and understanding of dual-use issues related to synthetic biology 

research as outlined by the Fink Committee (see Chapter 3). Information from these interviews 

was general in nature, where Kelle (2009) only indicated the general level of awareness that a 

given interview subject noted with specific laws, regulations, and guidance related to synthetic 

biology biosecurity and biosafety. Kelle (2009)’s approach is a relatively early case where 

qualitative information from semi-structured interviews is derived from a general perspective, 

where the interviewer used feedback from respondents to inform general perceptions of 

subject experts with respect to one element of synthetic biology regulation. A limitation here is 

that interview discussion focused primarily on biosecurity issues, yet Kelle’s example 

demonstrates how interview-driven research may yield expert insight on a topic with limited 

context and understanding. Kelle’s findings were further disseminated in a 2007 SynBioSafe 

Report and reviewed in SB 3.0 in Zurich, Switzerland (see more discussion on the SB Conference 

Series in Chapter 3). Further, Kelle’s approach was used to drive SynBioSafe’s regulatory 

assessment of synthetic biology in Europe, where such discussion was further included in the 

European Scientific Committees Opinions on Synthetic Biology (2014; 2015a;2015b). 

From a mixed-methods perspective, Roberts et al (2015) made use of 4 rounds of open-

ended subject expert interviews and surveys to gain insight into regulatory discussion of four 

synthetic biology products in particular, and general regulatory discussion of the technology in 

particular (research described in Roberts et al 2015 will be discussed in detail in the ‘Interview 

Protocol and Methodology’ section below). Round One was deliberately open-ended in nature, 

where the researchers listed by Roberts et al (2015) asked for general feedback and insight by 

45 experts in the United States and Europe regarding their opinions of synthetic biology 

regulation. Input from Round 1 was used to focus questions related to Rounds 2-4, where 

surveys were deployed to gain further perspective of synthetic biology regulation for a variety 

of technological applications. This specific example presented by Roberts et al (2015) indicates 
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the potential for multiple qualitative methods and information collection approaches (expert 

interviews and content analysis alongside ordinal survey design) to drive scholarship on 

synthetic biology regulatory research, although the project was not explicitly geared towards 

advancing qualitative methods for synthetic biology research. Roberts et al’s research was 

presented in the Society for Risk Analysis’ World Congress in 2015 (Singapore), with final 

dissemination intended for the Alfred P. Sloan Foundation and the Society for Risk Analysis in 

late 2016. 

Another example of synthetic biology literature that utilized qualitative methods to 

populate quantitative models includes Bates et al (2015). Specifically, Bates et al make use of 

semi-structured interviews and surveys to acquire information that informs their criteria 

weights and risk scores for their Multi-Criteria Decision Analysis (explained in detail below in 

‘Using Qualitative Methods to Populate Quantitative Models’). At the onset, Bates et al 

conducted a small number of semi-structured interviews (n=19), and asked each expert 

questions related to their perception of synthetic biology risks, benefits, and governance 

requirements for the case of environmental bioremediation. Overall, Bates et al demonstrates 

how qualitative approaches to acquire risk and benefit information related to synthetic biology 

can populate quantitative decision models related to regulate the process of synthetic biology 

product development, with this particular case focusing on comparing and evaluating the 

different conventional and emerging technologies geared towards environmental remediation. 

Starkbaum et al (2015) took a different approach by reviewing perceptions of risk and 

regulatory needs by members of the lay public. Focusing on citizens of Austria and Germany 

(n=69), the authors utilized focus group information from lay citizens to identify areas that 

respondents noted concern of. These areas include, among others, biosecurity and the 

potential for bioterror, biosafety concerns and unintentional exposure, and general harms to 

animals and the environment. Starkbaum et al (2015) complemented such discussion by asking 

focus groups about the potential benefits of synthetic biology. The three areas of discussion 

noted as being favorable to respondents include insect control, vaccine development and 

production, and the maturation of viable biofuel. Starkbaum et al’s example indicates how 

narrative analysis and interviews for synthetic biology risk regulation can branch out beyond 
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subject experts such as with lay perception of the technology, where such findings can inform 

particular areas of public concern that may not be readily known by regulators.  

 

2.3 Qualitative Methods Beneficial to Synthetic Biology Research 

The literature noted above serves as the major categories of qualitative methods applicable 

to synthetic biology research. Building off of such discussion, this section discusses the 

methodological options used by qualitative researchers to investigate and test theories. Among 

the various tools available, Hennink et al (2010), Creswell (2012), Creswell (2013), Denzin and 

Lincoln (1994), Taylor et al (2015), Giacomini (2010), and many others reference five 

approaches that are frequently used as both tools for information gathering as well as 

information assessment. These include: 

1) narrative research,  

2) phenomenology,  

3) grounded theory,  

4) ethnography, and 

5) case studies. 

 

1.3.1 Narrative Research 

 Narrative research and narrative analysis has a history of longstanding use in qualitative 

research since the early 20th Century (Riessman 1993; Taylor et al 2015). The term serves as an 

umbrella term for the acquisition, organization, and analysis of human knowledge and 

experience in a context-rich manner, and includes tools such as (Clandinin and Connelly 2000): 

individual and collective stories, journal entries and log statements, field notes and letters, 

interviews (both amongst subject experts and within general members of a population), 

photos, and various historical artifacts where written or oral communication is sparse.  Using 

the information gathered from these approaches, it must next be filtered, organized, and 

analyzed in order to make it useful for the purpose of addressing a research question from a 

qualitative perspective. 
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 Green and Thorogood (2013), Garner and Scott (2013), and Silverman (2013) state that 

narrative analysis offers the flexibility needed to conduct comparative research on subjects that 

are inherently difficult to quantify or lack context. Vincent et al (2015) further notes that such 

flexibility is helpful for technologies involving health risks that are uncertain or potentially novel 

in nature – something that may apply for synthetic biology (Engelhard 2016). This derives from 

the ability of a researcher to gain written and/or oral feedback from targeted respondents on 

subjects that may not be easily studied via quantitative approaches, or may have uncertain risks 

or implications (Tesch 2013; Garner and Scott 2013).  

For oral and written feedback, transcripts of discourse produced via discussions with 

interview subjects or within written logs, diaries, and field notes generally serve as the source 

of raw data for a narrative analysis approach (Coffey and Atkinson 1996; Tesch 2013). 

Subsequent analysis of these transcripts is performed to separate the information deemed 

‘useful’ for the predetermined research question from the ‘irrelevant’ or ‘unhelpful’ 

(Polkinghorne 1995; Tonkiss 2004). Once the ‘useful’ information is acquired, researchers must 

next utilize a tool to organize this information in a meaningful manner, keeping in mind that 

these organizational tools need to both be in line with the theoretical and philosophical 

framework adopted by the researcher (described further below) as well as the particular 

research question that the narrative information is intended to address (Kohlbacher 2006; 

Creswell 2013).  

Organizationally, such approaches include thematic organization (Labrov 1972; Braun 

and Clarke 2006), comparative subject assessment of a single narrative (Bruner 1991), 

chronological organization (Polkinghorne 1995), and discourse-driven organization (Riessman 

1993). For starters, thematic organization often seeks to understand the effect of specific 

events upon communities, where ‘useful’ interview information is organized around the Who, 

What, Where, and Why regarding the event’s impact upon individual and collective behavior 

and beliefs (Smith 2000; Labrov 1972). Next, comparative assessment of a single narrative seeks 

to understand how individuals both within and across social and professional groups 

understand a single idea, principle, or object (Bruner 1991), where the important takeaway 

from such analysis includes reviewing the different perceptions and discussions used by 
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interview subjects, and seeking to understand how and why these differences of interpretation 

occur. Chronological organization (Polkinghorne 1995; Merriam 2002) is similar to thematic 

organization, yet instead of organizing interview feedback into different ‘themes’, the 

qualitative analyst seeks to derive a chronological beginning, middle, and end of the collective 

narrative derived from texts and interviews, and is favorited by those conducting qualitative 

historical assessment (Feldman et al 2004; Cortazzi 2014). Lastly, discourse-driven organization 

places heavy importance upon the language that a speaker uses to frame and understand a 

given issue, leaving researchers to organize interview feedback into separate sections and 

reviewing those sections for unique pieces of discourse separately as well as describing how 

these different sections connect with one another in particular (Feldman et al 2004; Riessman 

1993). Regardless of the organizational and analytic approach chosen, the ultimate objective of 

these organizational tools within qualitative research is to group interview, textual, and artifact-

driven information into groups based upon their shared traits and draw inferences and 

conclusions regarding their similarities and differences (Cortazzi 2014; Polkinghorne 1995). 

With respect to individual and collective interviews, the consolidated criteria for 

reporting qualitative research (COREQ) checklist is one tool available to guide narrative analysis 

with live subject interviews (Tong et al 2007; Neale and West 2015). Dividing the checklist into 

three domains, COREQ requires researchers to (i) note the role of the researcher upon and 

within the research question and environment, (ii) address concerns of study design to note 

potential flaws within the interview process and help strengthen such areas of potential 

weakness, and (iii) offer suggestions for interview analysis and facilitate the ability to transform 

qualitative information derived from interviews and focus groups into useful information 

pertinent to the given research question (Tong et al 2007; Lasch et al 2010). The COREQ 

requirements as noted by Tong et al (2007) are included below in Table 14. 

Item Consideration 

Domain 1: Research team and reflexivity  

Personal Characteristics  

1. Interviewer/facilitator  Which author/s conducted the interview or focus group? 

2. Credentials  What were the researcher’s credentials?  

3. Occupation  What was their occupation at the time of the study? 

4. Gender  Was the researcher male or female? 
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5. Experience and training  What experience or training did the researcher have? 

Relationship with participants  

6. Relationship established  Was a relationship established prior to study commencement? 

7. Participant knowledge of the interviewer    What did the participants know about the researcher? 

8. Interviewer characteristics  What characteristics were reported about the interviewer/facilitator? 

  

Domain 2: study design  

Theoretical framework  

9. Methodological orientation and Theory What methodological orientation was stated to underpin the study? e.g. grounded 

theory, discourse analysis, ethnography, phenomenology, content analysis 

Participant selection  

10. Sampling  How were participants selected? e.g. purposive, convenience, consecutive, snowball 

11. Method of approach  How were participants approached? e.g. face-to-face, telephone, mail, email 

12. Sample size  How many participants were in the study? 

13. Non-participation  How many people refused to participate or dropped out?  

Setting  

14. Setting of data collection  Where was the data collected? 

15. Presence of non-participants  Was anyone else present besides the participants and researchers? 

16. Description of sample  What are the important characteristics of the sample?  

Data collection  

17. Interview guide  Were questions, prompts, guides provided by the authors? Was it pilot tested? 

18. Repeat interviews  Were repeat interviews carried out? If yes, how many? 

19. Audio/visual recording  Did the research use audio or visual recording to collect the data? 

20. Field notes  Were field notes made during and/or after the interview or focus group? 

21. Duration  What was the duration of the interviews or focus group? 

22. Data saturation  Was data saturation discussed? 

23. Transcripts returned Were transcripts returned to participants for comment and/or correction? 

  

Domain 3: analysis and findings  

Data analysis  

24. Number of data coders How many data coders coded the data? 

25. Description of the coding tree  Did authors provide a description of the coding tree? 

26. Derivation of themes  Were themes identified in advance or derived from the data? 

27. Software  What software, if applicable, was used to manage the data? 

28. Participant checking  Did participants provide feedback on the findings? 

Reporting  

29. Quotations presented  Were participant quotations presented to illustrate the themes / findings? 

30. Data and findings consistent  Was there consistency between the data presented and the findings? 

31. Clarity of major themes  Were major themes clearly presented in the findings? 

32. Clarity of minor themes  Is there a description of diverse cases or discussion of minor themes? 

Table 14. COREQ Requirements Discussed in Tong et al (2007) 
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Domain 1 serves as a ‘credentials check’ of the given researcher, where questions here 

force the researcher to consider their ability to conduct interviews on a given research area 

alongside the relationship they may have with interview subjects both before and during the 

research process. Domain 2 focuses more on evaluating the study design, where researchers 

are forced to consider their methodological theory and organizing principles, sampling 

techniques, and data collection methods used throughout the study. Lastly, Domain 3 helps the 

researcher take a systematic approach to classify and analyze their data, check for themes in 

discussion, and note potential biases or issues that may complicate or derail their research 

argument. Overall, the COREQ checklist can be a helpful launch point for practitioners of 

narrative analysis and for those making use of interviews and focus groups by helping them 

address potential concerns before, during, and after research, although it remains the 

responsibility of the researcher to honestly fill out the checklist and resolve concerns raised by 

checklist in a manner that reduces considerations of bias and strengthens information 

regarding how the research process was carried out (Tong et al 2007).  

Narrative analysis has also been used as an approach to gather and assess information 

for use within quantitative methods (Vaismoradi 2013; Snowden 2010; Teddlie and Tashakkori 

2009), such as with decision analysis (Linkov et al 2012; Bates et al 2015). For such cases, 

researchers seek to review transcripts, narratives, and textual evidence using content analysis 

(Castro et al 2010; Hesse-Biber and Leavy 2010; Mohan et al 2012; Linkov et al 2012; Bates et al 

2015) to derive quantitative trends or statistical markers pertaining to the interview subject’s 

perceptions of the given research questions, including indications of the general frequency that 

certain terms or phrases arise alongside discussion of the relative magnitude or importance of 

certain factors relative to decision assessment. Such use of qualitative methods for to drive 

qualitative assessment can use an amalgam of expert interviews, surveys, and textual analysis 

from literature, yet ultimately most research ventures in this vein seek to derive quantitative 

markers from such qualitative methods to drive tools such as with decision support systems 

and traditional methods of risk analysis (Snowden 2010; Linkov et al 2012; Linkov et al 2014). 

Methodologically, this often requires researchers to rely upon more quantitative content 

analysis and less qualitative discourse analysis, where content analysis enables researchers to 
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derive quantitative trends in interview transcripts while discourse analysis is better saved for 

situations where more context-rich sources of information are helpful for research projects 

with more uncertainty and fewer quantitative capabilities available to resolve such uncertainty 

(Sandelowsi 2000; Kohlbacher 2006). 

 As will be noted in Chapter 3, this dissertation made specific use of discourse analysis to 

review comments by subject experts from three case areas regarding the risks and regulatory 

requirements needed for synthetic biology development. Generally, speaking, discourse 

analysis as an approach to analyze written or verbal comments in order to better understand 

how interview subjects make knowledge claims (Wooffitt 2005). Rather than focusing on 

specific word choice within interview or written discussion, discourse analysis instead seeks to 

review how language is used to represent ideas. In other words, discourse analysts seek to 

understand the meaning behind language used by writers and speakers to communicate 

specific ideas (Wooffitt 2005; Potter 1996).  

 

1.3.2 Phenomenology 

As with narrative analysis, phenomenology is an approach with extensive use since the 

early 20th Century. According to Creswell (2009), phenomenology “is a strategy of inquiry in 

which the researcher identifies the essence of human experiences about a phenomenon as 

described by participants.” This framework drives practitioners of phenomenology to adopt 

particular methods towards information acquisition and analysis, with particular emphasis on 

individual and group interviews along with discourse analysis (Smith 2007; Giorgi 1997; Starks 

and Trinidad 2007). Specifically, phenomenological research tends to focus on small numbers of 

interview subjects over extended periods of time with the goal of understanding patterns of 

behavior along with perceptions of how such individuals come to understand, perceive, and 

make opinions of various facts, objects, or events (Moustakas 1994; Giorgi 1997). 

Philosophically, phenomenologists seek to distance themselves from their research, and instead 

seek to organize and analyze interview findings in a manner that reduces interpretive bias 

where possible (Nieswiadomy 1993; Groenewald 2004). Such interviews may be chronological 

or thematic in nature, although phenomenological approaches often utilize discourse-driven 
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approaches that seek to ‘construct a story’ regarding interviewee opinions, beliefs, and 

behaviors before, during, and after a triggering event (Giorgi 1997; Creswell 2009). 

Phenomenological research may also include secondary data in lieu of direct interviews such as 

the case of Latour (1993), which sought to understand why Louis Pasteur’s theories on 

microbes and bacterial behavior were accepted in an uneven and politically-driven manner. 

However, the challenge within such cases as with Latour (1993) is that it is difficult to gain an 

unbiased view via secondhand accounts of how an event was understood, interpreted, and 

acted upon by individuals and communities – making it difficult to ‘construct a story’ regarding 

how the triggering event as with Pasteur’s discoveries were absorbed in 19th Century France. 

 Phenomenological research is a mainstay for sociology, where it is used by researchers 

to gain insight into specific moments and experiences through multiple perspectives of affected 

individuals (Menon et al 2014). One example here includes Latour (1993), who utilized a 

phenomenological approach to investigate the scientific and social debates of Pasteur’s 

discoveries of the microbe in 19th Century France. Another example includes the work of Eric 

Voegelin, who sought to investigate interstate violence of the 20th Century from the perspective 

of societal interpretations of religion, politics, and history (Voegelin 1995). The method has 

been applied to various sociological and philosophical works, yet a common linkage here 

includes the investigation of differing social perceptions and accounts for certain events that 

are shaped and defined by collective social understanding (Creswell 2009). 

  

1.3.3 Grounded Theory 

 Practitioners of grounded theory seek to formulate new theories through an 

organization and analysis of data (Martin and Turner). Further, grounded theory differs strongly 

from other forms of research, which generally identify a theory at the onset of study and seek 

to use data and evidence to strengthen or weaken that theory (Glaser and Strauss 2009; Allan 

2003). In this way, grounded theory is more geared towards developing new theories rather 

than testing existing assumptions or opinions, making it more applicable for research upon less 

structured or certain topics (Creswell 2009). Relying less on literature and secondary analysis 

and more on interviews, grounded theory often involves a system approach to acquiring, 
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organizing, and analyzing interview transcripts and discourse (Corbin and Strauss 2008; Creswell 

2009). Specifically, these general steps include (i) generating categories of interview 

information, (ii) choosing one of these identified categories and describing it theoretically, and 

(iii) describe an analytical and/or causal story that links the various categories denoted in step 

1. Such a process may not be easily manipulated for use to inform or populate quantitative 

methods, but can be useful for advancing theory for areas of limited or incomplete 

understanding of human behavior or actions (Morse et al 2009). 

 Grounded theory has common use within sociology, psychology, and certain 

applications in business (Pettigrew 2000). For psychology, grounded theory is noted by Smith et 

al (1995) as an approach that can utilize the interpretive nature of psychological research on 

human cognition and assessment where existing theories are limited or not applicable. Further, 

Stray et al (2016) note applications of grounded theory in business studies, where the 

investigators researched organizational practices such as ‘stand up meetings’ in order to 

improve organizational cohesion and information-sharing by employees. Regardless of 

discipline, proponents of grounded theory seek to make use of available interpretive data to 

derive new theory, rather than test existing theory within various case studies (Pettigrew 2000). 

 

1.3.4 Ethnography 

 Ethnographic research centers on the study of cultural groups within their local and 

natural environments over one or more years (Berg et al 2004; Silverman 2010; Creswell 2009). 

The purpose of such research is for the researcher to use this extensive observational period to 

be able to discuss and reflect the opinions, beliefs, and actions of the observed society, 

indicating that field observation and research is almost a default necessity (Blomberg 1993; 

Denzin and Lincoln 2009). Data collected within an ethnographic research project is generally 

observational in nature, including a mixture of individual and collective group interviews over 

the period of several months to years (Silverman 2010; Creswell 2009; Creswell 2012). Due to 

the context-rich requirements of ethnographic research, methodological considerations here 

tend to favor discourse-driven approaches that are more subjective in nature and are generally 

not amenable to being transformed for use in a quantitative model (Creswell 2012; Riessman 



 

269 
 

1993). Further, ethnographic approaches, interview protocols, and research questions may 

evolve over time as a response to the researcher’s experiences in the field over an extended 

period (Lewis 2015; LeCompte and Schensul 1999). The main constant within this process is the 

reliance by ethnographers upon interview-driven research, where extensive interview 

responses over the course of several months are deemed necessary in order to made strong 

claims about the observed group’s behavior, beliefs, and actions (Lewis 2015; LeCompte and 

Schensul 1999; Creswell 2009).  

 Ethnography serves as a commonly-used approach for scholars in anthropology and 

science technology, and society (STS) studies who seek to better understand the customs and 

interactions of peoples and cultures (Wolf 2012). This is particularly true for anthropologists, 

who utilize ethnographic approaches to immerse themselves in different cultures over an 

extended period of time (generally, at least one year or more) (Bernard 2011). Within such 

research, anthropologists and sociologists seek to use direct subject interviews as well as 

secondary analysis of text to gain perspective on the values, thought processes, and beliefs of 

local people within a target society (Bernard 2011; Wolf 2012). One example of this includes 

David Maybury-Lewis’ The Savage and the Innocent (Maybury-Lewis 1988), who sought to apply 

ethnographic research to study the indigenous peoples of central Brazil. Another example 

includes Mary Douglas’ The World of Goods (Douglas 2002), which sought to gain perspective 

on consumers and consumption – specifically on why consumers save in certain situations, 

spend in others, and value quality when considering a purchase. 

 Relative to emerging technology regulation, ethnographic approaches may help 

describe cultural or social influences of a technology’s regulation that are inherently difficult to 

quantify (Anders 2005; Barry 2001). Such research may help explain cultural influences on 

technology regulation within one or multiple countries (Anders 2005; Barry 2001). In this 

regard, ethnographic research may provide helpful to understand elements of local risk cultures 

as described in Chapter 1, where such risk cultures are difficult to quantify and are driven by 

the political, social, and institutional factors unique to a given society (Kelemen 2011; Lash 

2000; Jasanoff 1986). 
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1.3.5 Case Studies 

 Case study research seeks to explore a contemporary phenomenon at a specific place 

and time (Travers 2001; Stake 1995; Creswell 2012). Within a given case study, explicitly 

outlining the geographic location of observation alongside the given time period of analysis is of 

paramount importance to researchers, where the ‘case’ is how the observed phenomenon 

occurs and impacts stakeholders within these dimensions (Travers 2001; Stake 1995). Such 

research is helpful to address research questions regarding how a new or little understood 

event occurs and impacts a community – particularly if the phenomenon in question is in its 

early stages or is otherwise ongoing (Baxter and Jack 2008; Creswell 2009). Specifically, Yin 

(2013) outlines that case study research is preferred in situations including: (i) When, how or 

why questions are being asked, (ii) When the researcher has little control over events, (iii) 

When the focus is on a contemporary phenomenon. Further, Yin (2013) stresses the 

importance for case study researchers to utilize multiple sources of information, including both 

primary and secondary data, in order to reinforce and triangulate conclusions derived from the 

case study (Dibb and Meadows 2001). While not a necessary precondition, Creswell (2009) 

argues that most case study research seeks to use findings from the case to be generalized to 

similar situations, where the primary and secondary data may be used to better understand 

how certain circumstances influence human behavior and beliefs. Case study research may also 

be longitudinal in nature (Leonard-Barton 1990), yet this may be financially or temporally 

prohibitive for the researcher (Travers 2001; Creswell 2009). Overall, case studies may include 

both individual and collective interviews, literature reviews, historiography and ethnography, 

and any other qualitative approaches deemed useful by the researcher, making this particular 

process more flexible and methodologically inclusive based upon the needs of a given research 

question and the types of information available for a particular evaluation context (Denzin and 

Lincoln 1994; Creswell 2009; Creswell 2012).  

 Case studies serve as a central method of choice for comparative politics and policy. 

Within such studies, cases allow comparative researchers to test proposed theories using 

applied examples in the real world – particularly the characteristics and behaviors of States. 

Further, findings from case study research allow comparative researchers to draw empirical 
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connections regarding how, for example, a State’s institutional and political structure 

contributes to differing characteristics in its domestic or foreign policies (Eckstein 2000). One 

example of such research includes Theda Skocpol’s States and Social Revolutions (Skocpol 

1979), which sought to explain how political revolutions with similar characteristics took place 

in the differing contexts of France, Russia, and China. 

 These five methodological approaches serve as some of the more popular techniques 

available for researchers to conduct qualitative research. Selection of a particular approach is 

dependent on both the type of information available to researchers along with the research 

questions that may or may not be addressed, leaving some options more capable of answering 

certain questions than others. A further point of consideration includes the methodological and 

philosophical opinions and beliefs held by researchers as they conduct their work, where 

certain methods are more favored than others (Giacomini 2010). Keeping these qualitative 

methods in mind, some of the more popular philosophical frameworks for qualitative research 

are discussed below. 

 

1.3.6 Philosophical Research Frameworks in Qualitative Methods 

 It is important to note here that each of the philosophical research theories and 

frameworks alongside the methods to elicit qualitative information all assume that its users 

follow a general research process that outlines research questions, develops theories, contains 

a general plan to acquire and subsequently analyze collected information, and interpreting 

findings to offer some insight into the research question at hand (Denzin and Lincoln 1994; 

Silverman 2010; Giacomini 2010; Creswell 2012). Philosophical frameworks are particularly 

important with respect to analyzing qualitative information (Silverman 2010; Creswell 2012; 

Giacomini 2010; Polkinghorne 1995), where the philosophical leanings of the researcher may 

cause them to use certain organizational tools and analytical techniques (described above) to 

answer their research questions based upon their expert judgment. Theory and philosophy 

directly influence how this research process is carried out (Lewis 2015; Giacomini 2010; 

Creswell 2012; Alvesson 2009), yet the following research stages are generally carried out 

regardless of the technique and philosophy utilized (Denzin and Lincoln 1994; Creswell 2012): 
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1) The researcher is required to understand their role and capabilities to collect 

information and robustly analyze said information for a targeted research question, 

2) The researcher applies theory to the research question, often deriving from 

philosophical underpinnings or expectations from experience or personal belief, 

3) The researcher identifies a research method to collect and analyze information to 

test the theory and hypothesis developed in Step 2, 

4) The researcher uses the research method and design to collect and analyze such 

information, and 

5) The researcher aggregates, discusses, and otherwise interprets findings from 

analysis to discuss the robustness and strength of their predefined theories to 

describe a pattern or behavior relevant to their research question and/or discuss 

causal implications related to the ability of one factor to influence a change in 

another. 

Below, Section 2.4 discusses the philosophical frameworks and subsequent 

methodologies that form and advance qualitative research through the general research 

process noted above and found within the work of Denzin and Lincoln (1994), Silverman (2010), 

Creswell (2012), Creswell (2013), Alvesson (2009), and others. These philosophical frameworks 

and methods are pulled from various sources in scholarly literature, with a shared basis in that 

they primarily discuss either how to conduct valuable qualitative research, or explain how such 

research may fit within the purview of quantitative or mixed-methods research processes. 

Though it is not the purpose of this dissertation to advocate for a particular method or research 

philosophy for research pertaining to synthetic biology risk regulation (or indeed any other 

emerging technology), the following sections do indicate the strong variety of methods 

available to conduct such research, and indicates the general types of research questions that 

may be best suited for one particular method or another. 

 

1.4 Theory and Philosophy Driving Qualitative Research 

 Given the discussion of specific qualitative methods above, a further consideration for 

prospective users of qualitative methods includes the methodological philosophies that 
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influence how and when such methods are used (Silverman 2010; Giacomini 2010; Creswell 

2012; Denzin and Lincoln 1994).  In other words, this section seeks to describe the common 

theoretical and philosophical options utilized by qualitative researchers to review the 

relationships between concepts.  

Huff (2008) asserts that developing and understanding philosophy and theory behind 

any research project is important due to the ability of such theory to drive the formulation and 

scope of research questions, to elucidate the types of information needed to answer such 

research questions, and to understand the biases and personal assumptions made by 

researchers that may skew findings towards one avenue or another. Such theories and 

philosophies are inherently embedded within qualitative research that influences researchers 

to use specific methodologies and seek to address particular types of research questions 

(Patton 2005; Denzin and Lincoln 2011), making understanding a researcher’s philosophical 

leanings an important task in order to understand their views of a given research question, the 

methods available to the researcher under such a mindset, and also the analytical tools and 

reasoning deployed by the researcher to utilize their acquired information to provide greater 

understanding to a particular research question (Bryman 2006; Silverman 2010; Giacomini 

2010; Creswell 2012).  

Giacomini (2010) outlines three general axes by which qualitative health research may 

be evaluated (see Figure 22 below), including: 

i. Ontological, the nature of reality, or the ability of research findings to be found 

empirically (Blackburn 1996), 

ii. Epistemological, what counts as knowledge, or concerns of how phenomena come to 

be understood and known (Guba and Lincoln 1994), and 

iii. Values, or a researcher’s position on whether morals and principles are present and 

reflected within scientific fact, alongside beliefs of how to control for bias from such 

values. 

Further unpacking Figure 22 below, Creswell (2012) and Lewis (2015) adopt a similar 

approach and understanding of research philosophy and theory, although differs from 

Giacomini (2010) by further defining the ‘Values’ axis as axiological (the role of values within 



 

274 
 

qualitative research), and adding a fourth axis dubbed ‘Methodological’ (the procedures of 

qualitative research). Specific to the ‘Methodological’ axis, Creswell (2012) states that 

qualitative research is an inherently inductive enterprise, such research is heavily shaped by “a 

researcher’s experience in collecting and analyzing […] data”, where research questions within 

a given venture may even change in the midst of a given research inquiry in an effort to better 

focus research questions in a manner more appropriate for a given series of questions or 

research problems. Further, when such changes occur, Snape and Spencer (2003), Hesse-Biber 

and Leavy (2010), and Creswell (2012) state that a qualitative researcher’s data collection 

strategy must also shift to match the change in scope.   

 

Figure 22. Health research traditions, by ontological & epistemological neighborhood (in Giacomini 

2010) 

 

As discussed by Guba and Lincoln (1994), Giacomini (2010), Denzin and Lincoln (2011), 

and Creswell (2012), the philosophical frameworks prescribed to by a given qualitative 

researcher influences their perspective and views upon conducting research, including their 

selection of methods to address a particular research question. Given this notion, this 

subsection denotes the various qualitative methods and approaches that may be useful and 
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applicable for research on synthetic biology regulation, where such methods are categorized 

based upon the philosophical and theoretical leanings and preferences of the given qualitative 

researcher.  

Collectively, Guba and Lincoln (1994), Snape and Spencer (2003), Giacomini (2010) and 

Creswell (2012) collectively claim that ontology, epistemology, values, and methodology 

comprise the major philosophical assumptions that are intrinsically used and adopted within 

qualitative research. These assumptions also drive the adoption of a particular interpretive 

framework (Silverman 2010; Snape and Spencer 2003; Creswell 2012), which more specifically 

drives a researcher’s selection of methodology and analysis. Specific to this point, Creswell 

(2012) and Lewis (2015) identify four such interpretive theories whose selection depends 

strongly upon the philosophical beliefs and approaches that a qualitative researcher takes, 

including: 

i. Postpositivism 

ii. Social Constructivism 

iii. Pragmatism 

iv. Critical Theories 

Below includes discussion of the first four philosophical frameworks presented by 

Creswell (2012), Lewis (2015), Silverman (2010) Alvesson (2009) and others, and describe the 

methodological selections often prescribed and carried out by practitioners in their given field. 

Where research pertaining to synthetic biology regulation is driven by a need to better 

understand the potential risks and uncertainties facing the technology’s developmental 

trajectory alongside the potential limitations of existing regulatory frameworks to resolve such 

novel risks for specific product categories (Carter et al 2014; Bates et al 2015; Mohan et al 

2012), the Critical Theories category is omitted for discussion, where Fay (1987) claims that 

such research is primarily concerned with “empowering human beings to transcend the 

constraints placed on them by race, class, and gender.” Instead, the first three frameworks 

denoted by Creswell (2012), Lewis (2015), and Silverman (2010) are more capable of answering 

qualitative research questions related to synthetic biology regulation due to their more general 

focus upon reviewing human perceptions and behavior for a variety of applications such as with 
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perceptions of risk amidst technology development. Within these four approaches, Denzin and 

Lincoln (1994), Snape and Spencer (2003), and Creswell (2012) do note that while qualitative 

scholarship does not necessarily need to directly describe the method and approach used, 

being transparent about the philosophical framework that underpins such qualitative research 

does help indicate the theoretical and methodological connections available for use by the 

research to address a given research question while also informing upon the type of 

information that a qualitative researcher may be able to generate using their arsenal of 

approaches. 

 

1.4.1 Postpositivism 

For a postpositivist researcher, qualitative research inherently embraces a reality where the 

opinions, beliefs, and experiences of a researcher can directly influence what is being observed 

within their frame of study, contributing to imperfect and probabilistically-defined perceptions 

of reality (Robson 2002). In this way, knowledge is neither universal nor unassailable, but 

instead tentative and subject to inquiry that may falsify or reject such knowledge in response to 

evidence to the contrary (Phillips and Burbules 2000). Giacomini (2010) contends that certain 

knowledge and claims are rendered true by trying yet failing to disprove the principles of such 

knowledge upon repeated inquiry, and that such postpositivist research is among the more 

deductive of the approaches chosen by qualitative researchers. Likewise, Guba and Lincoln 

(1994), Prasad (2005), and Creswell (2012) state that post-positivists in health research often 

come from backgrounds within quantitative research, where such researchers often make use 

of multiple techniques of data analysis and seek to refine their approaches with computer 

simulation and modeling to assist with rigorous analysis of qualitative inputs. 

Drawing upon the work of Robson (2002), Creswell (2012), and Phillips and Burbules (2000), 

it can be said that postpositivist methodologies are generally deductive and possess a general 

goal of creating new knowledge and rigorously testing such knowledge for potential avenues of 

falsification. Where the principle of ‘falsification’ is an important tenet within postpositivist 

research, Giacomini (2010) states that qualitative postpositivist research must do more than 

assert that a hypothesis is “not untrue”, but instead test the hypothesis as if it were true and 
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determine if any logical faults or challenges subsequently arise (Chalmers 1999). Under such 

conditions, Ryan (2006) claims that postpositivists are directly engaged with (i) the concept of 

discourse, (ii) the concern with power, (iii) the value of narrative, and (iv) the need to be 

reflexive. Methods within this framework tend to take on an experimental design framework 

with pre- and post-test measures of attitudes derived from surveys and interviews, where the 

researcher utilizes an instrument that measures such attitudes on a predefined scale (Chalmers 

1999; Prasad 2005). Such methods often use statistical analysis within the codification of 

discourse and/or content analysis with interview contacts, where discussant response is 

reviewed with computational software to test a hypothesis using a pre-post assessment to 

review the effect of a given treatment upon interviewee responses (Prasad 2005; Creswell 

2013; Alvesson 2009). Where possible, retesting and assessment should be conducted in an 

attempt to falsify the given hypothesis established for a particular research question (Taylor et 

al 2015; Creswell 2013; Ryan 2006). 

 

1.4.2 Social Constructivism 

Social constructivism is inherently focused upon the concept that where reality is not 

naturally given or objectively defined, it is instead derived based upon the subjective 

perceptions of humanity alongside the perceptions of an individual given their participation and 

interactions with a particular group (Crotty 1998; Lincoln and Guba 2000). Alvesson (2009) 

states that such research is rooted within older phenomenological studies, where information is 

derived as individuals describe their experiences (Moustakas 1994). Further for Taylor et al 

(2015) and Alvesson (2009), social constructivism is centered on the idea that “We create 

within our social relations all the time new habits and routines in our actions, as well as new 

categories in our observing of others and their actions.” Through social interaction, institutions 

arise out of shared habits and routines that, over time, become perceived as both external and 

objective objects (Berger and Luckmann 1966; Taylor et al 2015).  

Creswell (2012) states that research that utilizes social constructivism is generally 

inductive in nature, where researchers generate theories of action in the process of research 

rather than base initial research on a foundational theory. In this view, social constructivists 
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seek to gain an understanding of a research question’s complexity (as opposed to narrowing 

inquiry onto a small number of defined concepts or variables for measurement), and include as 

many experiences and views of individuals as possible to gain subjective perspective regarding 

the experiences of these individuals within a given situation of social activity and institutional 

development (Crotty 1998; Creswell 2012). Then, the researcher would generally acknowledge 

their own social constructions of the given research question, and ‘interpret’ their findings 

based upon their own social experiences and history (Taylor et al 2015; Lewis 2015; Alvesson 

2009; Creswell 2012; Creswell 2013). 

As a theory, social constructivism seeks to approach qualitative research in a manner 

that enables a broad and general focus so that those stakeholders and participants asked for 

their input for a particular research question can construct their own meaning of a given 

situation based upon their existing knowledge and experiences (Taylor et al 2015; Creswell 

2012; Alvesson 2009). Such frameworks often arise through the use of open-ended interviews, 

where a social constructivist researcher would review discourse from an interview for particular 

markers regarding what a given respondent would say or do within a given situation (Guba and 

Lincoln 1994; Creswell 2012; Creswell 2013). Methods commonly used to further such research 

include discourse analysis from interviews, ethnographic observation of individuals and 

communities to understand social dynamics and constructions for a given activity, and reviews 

of written and published material to analyze text for shared meanings and constructions by 

individuals within and across given social groups (Taylor et al 2015; Silverman 2010; Creswell 

2012; Creswell 2013). Overall, the social constructivist researcher seeks to deploy an “inductive 

method of emergent ideas through consensus”, where discourse from live interview subjects or 

texts would collectively inform knowledge on behaviors or beliefs regarding a given activity or 

institution (Attride-Stirling 2001; Creswell 2012; Alvesson 2009; Taylor et al 2015).  

 

1.4.3 Pragmatism 

 Of the various philosophical and theoretical approaches available to qualitative 

researchers, pragmatism may serve as the one example that is implicit within most qualitative 

research projects (Rossman and Wilson 1985; Patton 1990; Cherryholmes 1992). Specifically, 
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researchers within this category seek to utilize “what works” for a given research context, with 

a general goal of solving research problems that may not normally be defined by a specific 

method or approach (Patton 1990). In this way, pragmatism is inherently focused upon 

producing useful and valid research outcomes (Creswell 2012; Patton 1990; Cherryholmes 

1992), where “the important aspect of research is the problems being studied and questions 

asked about this problem” (Creswell 2012).  

 In this vein, Cherryholmes (1992) and Murphy (1990) conclude that pragmatist 

researchers are free to select any method that addresses the given research questions and 

needs of a particular situation. Ideally, a pragmatist researcher would likely use multiple 

qualitative methods for a given research application (Creswell 2012), with one such example 

including the use of quantitative surveys and content analysis alongside qualitative interviews 

and focus groups by ethnographers (LeCompte and Schensul 1999; Yin 2010). One of the few 

constants in this research stream is the need for researchers to acknowledge the impact of their 

own beliefs and values within the research design and information gathering process, where 

such views may inherently bias research analysis and eventual discussion (Creswell 2012). 

 Methodologically, pragmatist researchers utilize both inductive and deductive 

approaches to research based upon both the availability of information alongside the 

appropriateness of different tools to analyze and assess such information to address a given 

research question (Patton 1990; Cherryholmes 1992; Creswell 2012). Deductive tools may be 

similar to those utilized by postpositivist researchers, and include surveys and content analysis 

that would help populate quantitative assessment models for research. Similarly, inductive 

tools may be similar to those utilized by constructivists and postmodernists, with more open-

ended interviews and focus groups to gain greater understanding of individual and/or subject 

expert responses to given research questions (Creswell 2012). Overall, qualitative researchers 

utilizing a pragmatist approach are less bound to any particular approach or philosophy (Patton 

1990), and emphasize the practicality of tools within given situations instead of abiding by any 

singular approach to inform theory, philosophy, and general approach to qualitative methods.  

 

1.5. Using Qualitative Methods to Populate Quantitative Models 
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 Aside from the methodological options (2.3) and philosophical frameworks (2.4) noted 

above, the use of qualitative methods has also been demonstrated as useful tools to inform 

decision context (Bates et al 2015; Roberts et al 2015; Mohan et al 2012). Findings from 

qualitative research can be utilized within quantitative methods by (i) converting qualitative 

interview feedback along an ordinal scale to substitute for missing or unavailable quantitative 

data (Roberts et al 2015; Bates et al 2015), (ii) acquiring subject expert insight to offer 

generalized assessments of risk such as with surveys, questionnaires, or long-form responses 

(MacKay et al 2013; Linkov et al 2009; Linkov et al 2012), or (iii) developing qualitative scenarios 

to describe exposure scenarios for emerging materials (Zalk et al 2009; Brouwer 2009).  

Where such methods may traditionally utilize quantitative data to generate risk-driven 

analysis, qualitative information may also be used to populate these models. This is 

accomplished through a variety of means such as with ordinal survey design as an extension of 

expert interviews or with a quantification of recurring interview terms in content analysis in a 

manner in line with postpositivist research. This subsection includes two particular approaches 

which can process and utilize information from qualitative information acquisition exercises, 

including (i) Bayesian Approaches and (ii) Multi-Criteria Decision Methods. 

 

1.5.1 Bayesian Analysis 

 Experimental design is a central element of quantitative research methods, and helps 

yield quantitatively defensible research findings that are verified via statistical analysis 

(Chaloner and Verdinelli 1995). However, such experimental design is also resource intensive, 

and can be challenged from the perspective of experimental validity in the presence of 

uncertainty and limitations of available data to drive statistical inference (Chaloner and 

Verdinelli 1995; Ryan 2014). Within such situations, Bayesian experimental design includes an 

amalgam of existing knowledge related to the research experiment alongside considerations of 

the various uncertainties in of the experimental observations and inputs (Chaloner and 

Verdinelli 1995; Ryan 2014; DasGupta 1996). In this way, Bayesian experimental approaches are 

useful for decision making under uncertainty, where a single decision point may be used by 

which to drive statistical assessment, and prior distribution of available data points is used to 
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update and evaluate that single data point (Ryan 2014; Chaloner and Verdinelli 1995; Lindley 

1972). This is the principle of Bayesian inference, which drives Bayesian experimental design 

and seeks to make use of “posterior predictive distribution” to conduct predictive inference and 

ultimately predict the distribution of a new, uncertain, and previously unobserved data point 

for a given dataset (Ryan et al 2014).   

 Bayesian approaches are useful tools to drive quantitative assessment when certain 

factors within the experiment lack concrete information, where such situations would 

complicate more traditional experimental design (DasGupta 1996; Chaloner and Verdinelli 

1995). Such an approach has already been demonstrated for systems biology (Wilkinson 2007; 

Jha et al 2009), where Bayesian methods are helpful for addressing measurement error or 

‘noise’ within data related to computational systems biology, genetics, bioinformatics, and 

similar related fields. Within such a framework, qualitative information has been discussed as 

being helpful to “[inform the] distribution describing plausible potential values for parameters” 

(Voils et al 2009), particularly for cases where acquiring information about the parameter 

distribution is unethical or exceedingly troublesome (Roberts et al 2002). Such qualitative 

information may derive from literature reviews or interview information, yet must be robust 

and ideally may be triangulated from a variety of sources to improve distribution reliability 

(Voils et al 2009). 

 

1.5.2 Multi-Criteria Decision Methods 

 While many decision analytic methodologies are data intensive and require robust 

sources of objective information to conduct their analyses, one particular branch of such 

methods known as Multi-Criteria Decision Analysis (MCDA) has an extensive scholarly history of 

utilize qualitative and quantitative information alike to inform decision making (Linkov et al 

2009; Tervonen et al 2009; Belton and Stewart 1999; Paruccini 1994; Funtowicz et al 1990; 

Matos and Miranda 1989). Where cases of emerging technologies such as with nanotechnology 

and synthetic biology are generally lacking of substantial objective data, the use of qualitative 

opinion and subject expert beliefs regarding the potential risks and benefits is necessary and 

helpful in order to inform policy decisions related to how the technology should be regulated 
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and governed (Mohan et al 2012; Bates et al 2015; Linkov et al 2013). Transparent decision 

analytical tools such as MCDA make this task possible in the immediate term, where qualitative 

information is used in place of quantitative data to guide the decision analytic process. Using 

MCDA, expert opinion and judgment may be aggregated in a formal and quantitative manner, 

ultimately affording its user the potential to make value judgments and tradeoffs based upon 

the perceived risks and benefits of the technology. 

 Multi-Criteria Decision Methods have been applied in various ways to emerging 

technologies risk assessment and governance scholarship, specifically within the purview of 

utilizing qualitative methods (expert interviews, qualitative surveys, scorecards, literature 

reviews, and content and discourse analysis) to populate models that guide decision making. 

Specific examples include general nanomaterial risk assessment (Tervonen et al 2009; Linkov et 

al 2008), life cycle approaches to reviewing health risk and liability concerns of nanoparticles 

(Mohan et al 2012), assessing respective risk and benefit options of synthetic biology and 

nanoparticles for environmental remediation (Bates et al 2015), guiding synthetic biology 

regulation and policymaking for specific compounds (Roberts et al 2015), and advancing 

decision making for emerging technologies under high risk and uncertainty (Linkov et al 2013). 

The versatility afforded by MCDA derives from the ability of a decision analyst to quantify 

findings from interviews and surveys with experts to inform the criteria weights and/or 

alternative scores within a decision model, allowing for a transparent view regarding how 

certain decision factors such as risk, cost, and benefit influence regulatory outcomes related to 

technology development and eventual commercialization (Bates et al 2015; Roberts et al 2015). 

Such frameworks and decision aids have been adopted by the US Army Corps of Engineers for 

the environmental risk assessment of nanotechnology, and are currently being discussed as 

options to address risks of synthetic biology (Bates et al 2015; Bates et al 2015). 

 Methodologically, the qualitative methods used for MCDA applications tend to make 

use of ordinal surveys with Likert and Likert-like scales (Bates et al 2015), although semi-

structured interviews have been utilized to inform parameters of general technological risk 

across a product’s life cycle (Roberts et al 2015). Regardless of the information acquisition 

process, the overall goal is to transform qualitative information into quantitative input for the 
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decision model of choice (Linkov et al 2013; Mohan et al 2012), making this approach generally 

in line with postpositivist approaches that seek to quantify as much as possible qualitative 

information for risk-based output that can be processed by computer programs such as 

described by Yatsalo et al (2010) and Yatsalo et al (2016). Such a transformation requires the 

qualitative researcher to be able to acquire information that is amenable to numerical codes, 

limiting the qualitative methods available for such research limited to those that can be derived 

using ordinal scales or could be subject to some quantification of interview data as with content 

analysis. 

 

1.6 The General Strengths and Weaknesses of Such Methods 

 Given the various philosophical frameworks and methods available for qualitative 

research, selecting the proper approach for a given research venture requires the qualitative 

researcher to consider the various strengths and weaknesses that a given method possesses. 

With respect to both the collection and analysis of qualitative information, no single method is 

optimal in all situations and for all applications (Silverman 2010; Taylor et al 2015; Giacomini 

2010; Creswell 2009; Creswell 2012). Instead, the qualitative researcher must determine 

several factors, including (Taylor et al 2015; Alvesson 2009; Giacomini 2010; Yin 2010; Creswell 

2012): 

1) What purpose does the method serve for the research question at hand? To 

generate new knowledge and theory, to view individual and/or collective opinion on 

an event, or to test existing theory? 

2) Is there an expectation that my qualitative research will have to populate a 

quantitative metric or model? 

3) How can I acquire the information needed to address my research question? 

4) What limitations may I face within the information gathering process? 

The first two questions are inherently concerned with the researcher’s philosophical 

leanings alongside perceptions of how the qualitative findings derived from such work will be 

applied to a given research question. To help guide this effort, reviewing the COREQ checklist 

(Tong et al 2007) can help researchers break down their research questions into various inputs 
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and methodological considerations, although substantial consideration of what those methods 

are is important to ensure such research is successful (Lewis 2015; Giacomini 2010). Further, 

the researcher must consider their own philosophical leanings within the context of scholarly 

research (Ponterotto 2005; Creswell 2012; Giacomini 2010), and how those beliefs and opinions 

affect their ability to conduct research for the given question. These issues are not as easily 

resolved, and instead requires substantial inquiry by the researcher into their scholarly field to 

determine their intended role within a particular community. This community could advocate 

for qualitative methods as an ends by themselves (Alvesson 2009), or contend that such 

methods may best be used to facilitate quantitative methodologies where larger datasets are 

elusive or difficult to obtain (Neuman 2005; Creswell 2012; Giacomini 2010).  

Question 3 is a methodological consideration that may be assisted through the use of a 

checklist such as with COREQ (Tong et al 2007). Understanding the role and abilities of the 

researcher upon a given question can help indicate the tools and skills available to conduct 

research, particularly related to the gathering of information from interviews or focus groups. 

This may be further facilitated by a thorough understanding of published scholarly literature 

related to the research question at hand (Yin 2009; Bates et al 2015), where the researcher may 

identify past strategies for successful information gathering within their field or identify 

strategies to organize their interview protocols around important and unresolved research 

areas. A thorough literature review, alongside the assistance of an interview preparedness 

checklist as with COREQ, will likely help the researcher structure their qualitative search, 

organization, and assessment approaches, and reduce potential bias that could arise within the 

scope of such research (Tong et al 2007).  

Lastly, Question 4 requires an honest appraisal by the researcher regarding the 

limitations of the capabilities to conduct certain research and answer particular research 

questions.  As with assistance regarding the construction of interviews and the acquisition of 

qualitative information, a helpful first step here would be to consult a methodological checklist 

such as COREQ (if the qualitative approach includes interviews) may indicate potential 

methodological concerns that may arise during the research process (Tong et al 2007). 

However, such a checklist will not necessarily address all of the specific contextual and field-
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specific issues that may complicate qualitative research within the given field, forcing the 

researcher to determine the methodological constraints exhibited by their approach. This could 

include the need to account for concerns related to not receiving ideal feedback from interview 

subjects, having difficulties gaining access to such subjects, or concern that the interview 

subjects acquired do not offer a robust sample of contacts that can offer generalizable feedback 

the given research question. Rectifying these concerns may take considerable effort, but may 

be rectified through stratified sampling and use of professional networks to branch outwards to 

identify further contacts, conducting a thorough literature review to both identify potential 

research contacts and/or streams of discourse ripe for questioning, and thoroughly classifying 

interview contacts based upon their demographic, professional, intellectual, vocational, and 

other criteria (Bates et al 2015; Creswell 2007; Yin 2009). Such strategies that may allow a 

qualitative researcher and interviewer to compare responses across such criteria to compare 

and contrast responses, and offer descriptive information regarding the types of respondents 

available within the qualitative study (Bates et al 2015; Linkov et al 2012).  

Overall, qualitative methods can both offer valuable insight into a given research 

question individually or also by acquiring information to populate quantitative methods and 

analysis (Neuman 2005). Method selection depends largely upon the philosophical framework 

preferred by the researcher along with the researcher’s level of comfort and expertise with 

various qualitative approaches, ranging from narrative analysis to ethnography to case studies 

(Ponterotto 2005). For cases where quantitative information is limited due to ethical, financial, 

or technological reasons, qualitative methods (either within the context of information 

acquisition to populate such quantitative methods or individually as an approach to acquire 

context-rich input for a given research area) may help a researcher overcome such limitations 

by turning to individual and collective interviews, literature reviews, artifact analysis, and 

several other tools discussed above (Neuman 2005; Duffy 1987).  

 

1.6 Criticisms and Prejudices of Qualitative Methods 

 Despite the promise and flexibility that qualitative methods provide to researchers, such 

methods have been criticized due to the subjective nature of subsequent research findings 
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(Sandelowski 1986; Borman et al 1986). Specifically, some writers as Borman et al have argued 

that such methods produce results that do not rigorously and objectively test theoretical 

propositions given that measurement and analysis are undertaken using subjective schemes for 

the coding and interpretation of data. Other scholars such as with King et al (1994) insinuate 

that qualitative research may overcome such concerns, but only by mimicking quantitative 

methodological processes to test scientific inferences. Among others, such suggestions by King 

et al (1994) include an affinity for larger sample sizes, the need to stress study 

operationalization and repeatability, and concerns related to avoiding endogeneity and 

multicollinearity.  

 Researchers should be mindful of such arguments raised against qualitative methods, 

and take steps to protect against such concerns by seeking to remove bias in the selection of 

cases and interpretation of data (Creswell 2012; Giacomini 2010). However, such concerns 

should be countered with an understanding that qualitative methods have multiple potential 

benefits to facilitate research on synthetic biology development under high uncertainty and 

potential risk, including (i) the ability, where necessary and helpful, to utilize qualitative data 

within quantitative methods, and (ii) the improved context and understanding of perceived 

technological risks and benefits that are inherently difficult to quantify (Schultze and Avital 

2011).  

 

1.7 Discussion  

Qualitative research is a rich and robust field with various methods and approaches 

used by stakeholders to elicit and process information. These methods are diverse based upon 

their information needs and analytic capabilities, and have specific contexts that make certain 

methods more appropriate for a given research context than others, and are ultimately useful 

based upon whether the method can acquire information and derive findings from such 

information in a manner useful and relevant to stakeholders. In this way, qualitative methods 

seek to offer a richer assessment of a research question than currently exists, where common 

approaches such as with subject expert interviews, ethnographic research, historical/literature 

assessment, and content/discourse analysis can all help researchers better understand the 
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context where a research problem exists alongside the options available to alleviate, resolve, or 

simply better understand the context of that problem (Creswell 2010; Giacomini 2010).  

Synthetic biology research is no different, where a qualitative researcher must be mindful of 

the emerging nature of the technology (i.e. the uncertainty regarding the field’s potential for 

novel risk and benefit) alongside the given context that information is acquired in (i.e. what is 

the cultural or vocational background of the individual or group offering input into the 

qualitative research process).  
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