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2.6.5 Returning to Giné et al. [29] . . . . . . . . . . . . . 49

2.7 Method Summary . . . . . . . . . . . . . . . . . . . . . . . . 50
2.8 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

III. Further Applications of the Peters-Belson with Prognostic
Heterogeneity Method . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.2.1 Standard Error Calculations and Hypothesis Testing 55
3.2.2 Confidence Intervals . . . . . . . . . . . . . . . . . . 56

3.3 Additional Complications . . . . . . . . . . . . . . . . . . . . 57
3.3.1 PBPH with GLM First Stage . . . . . . . . . . . . . 57
3.3.2 Clustered Standard Errors . . . . . . . . . . . . . . 58

3.4 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.4.1 PBPH with Linear First Stage . . . . . . . . . . . . 60
3.4.2 PBPH with Logistic Data . . . . . . . . . . . . . . . 62
3.4.3 Clustered Data . . . . . . . . . . . . . . . . . . . . 63

3.5 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
3.5.1 Logistic first stage . . . . . . . . . . . . . . . . . . . 65
3.5.2 Clusters . . . . . . . . . . . . . . . . . . . . . . . . 67
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CHAPTER I

Introduction

We consider two variations of two-stage regression used to fit models. Two-stage

least squares has seen a lot of usage in statistics and econometrics in the context of

instrumental variables. (Historically in e.g. Wright et al. [69] and Theil [65], more

recently in e.g. Angrist and Imbens [5] and Imbens [40], and seeing applied use in

e.g. Burgess [16], Auger, Farkas, Burchinal, Duncan, and Vandell [7], Asongu [6] and

many others.) We consider more general contexts.

When studying whether an intervention or other treatment has a significant effect

on the response, a researcher may be further interested in whether those higher at

risk of a negative response see more benefit from the intervention. For example, in

Giné et al. [29], the authors are studying biometric identification in rural Malawi, and

studying whether its use in the credit system will increase the rate of loan repayment.

Their results claim that the effect of biometric identification is the largest among those

who are least likely to repay the loan in the absence of the intervention. We discuss

this example further in Section 2.3.1.

The natural way of fitting such a model is a two-stage modification of the Peters-

Belson method (see Section 2.2.2). In the first stage, a prediction of the response in

the absence of treatment is obtained. The second stage uses this prediction as a mod-

ification to the treatment effect, allowing the discovery of both the overall treatment
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effect as well as the additional effect due the predicted risk. Useful in randomized

trials, or observational data which are similar to those produced from randomized

trials, this method has the additional benefit of separating the relationship between

the predictors and the response from the effect of treatment on the response. The

method requires a strong first stage model fit, and if such a fit cannot be obtained,

this method should not be applied. An alternative framework to consider this method

would be in measurement error literature.[18] This enhanced Peters-Belson method-

ology is discussed in Chapters II and III.

Consider instead a situation where the response is binary and we are examining

the effect of some intervention. If there is a treatment effect, we may be interested

whether the magnitude of the treatment effect on the probability of seeing a particular

response depends on the probability of seeing the response in the absence of treatment.

If the dependence is there, then logistic regression can fit the model. However, if

there is no dependence, linear regression may be preferred. Usually when a response

is binary, logistic regression is preferred over linear for a variety of valid reasons[22],

thus not allowing this model to be tested. By using a two-stage regression, we can

model the relationships between the response and the predictors and response and

the treatment effect separately, to enable a linear relationship between treatment and

response. This methodology is discussed in Chapter IV.
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CHAPTER II

Peters-Belson with Prognostic Heterogeneity in

Treatment Effect

2.1 Introduction

When considering the effectiveness of a treatment or intervention, a goal of interest

may be identifying those who would most benefit from the treatment or intervention,

known as effect modification.[58] One version of effect modification, subgroup analysis,

separates the population into subgroups and estimates treatment effects for each. To

be optimal, this assumes that the researcher knows and has access to the “correct”

sub-grouping variables.[49] Alternatively, an unstructured subgroup detection method

will lead to an inflated Type I error if corrected for multiplicity.[45]

One method to address subgroup analysis which has seen usage lately[24, 29, 30]

involves inverting the question of interest. Rather than looking for those who would

most benefit from a treatment, we can instead ask whether an individual’s predicted

outcome in the absence of treatment is related to the strength of the treatment effect.

In an ideal situation, it could be possible to show that those most at risk of a poor

response benefit greatest from the treatment. For example, in a study of classroom

performance, we might be able to claim that those students who are most at risk

of failing (e.g. those with the poorest predicted grades in the absence of treatment)
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would show the most benefit from some alternative instruction method. Surely a

result along these lines would be beneficial to an overburdened state government

looking to target a treatment, or a budget-strapped administrator looking to cut

costs by treating as few individuals as possible.

The methodology being used to address whether those highest at risk are most

benefitted by a treatment is a two-stage variation of the Peters-Belson method. In the

first stage, the predicted response in the absence of treatment is modeled using only

the control group. In the second stage, the sample is partitioned into quantiles based

upon predicted response to control, and the treatment effect is estimated in each

quantile, using the predicted response to control as an estimate for potential response

of the treatment group to the control. Alternatively, the second stage can include

an interaction between treatment and predicted response to control, representing the

additional effect. This continuous interpretation admits an easier analysis by avoiding

edge effects, and will be considered going forward.

When performing this analysis, there are two choices to calculating the standard

error for the interaction term, whether to account for the additional variation (i.e.

the measurement error) in the first stage. Not accounting for the additional variation

assumes all variables in the second stage regression model are measured without error.

Taking a hint from instrumental variables literature [68], we claim that it is necessary

to account for the first stage variability to obtain proper coverage and Type I error

rates.

To estimate the standard error in the second stage, we use a sandwich estimator

based on the estimating equations literature [19, 63], which has been shown to ac-

count for the measurement error in the second stage plug-in values.[50] Although we

find conventional Wald-type intervals not to maintain proper coverage, we find that

coverage is much better maintained in an elaboration of the conventional procedure

furnishing a confidence interval by explicitly inverting a family of hypothesis tests.

4



To standardize nomenclature, we will call the general methodology a Peters-Belson

method with Prognostic Heterogeneity, or PBPH method. We will refer to the imple-

mentation in existing literature as the uncorrected PBPH method, and our variation

where we correct the standard error in the second stage due to the measurement error

from the first stage as the corrected PBPH method. The corrected PBPH method

could be described as a generalized score procedure[14, 31, 59].

The structure of this chapter is as follows. We first review the literature surround-

ing the use of this method in Section 2.2. The method originates from work by Peters

[53] and Belson [11]. Finally, we discuss two approaches in the existing literature to

correct inference in this procedure; an in-sample computational approach [1] and an

out-of-sample first stage estimate [35].

Following this, we describe in Section 2.3 more detail and present the results from

Giné, Goldberg, and Yang [29] which we use as our motivating example. We will use

this paper to show how the method is used in literature, identify the issues we see in

the method, and ultimately offer our corrected approach.

After discussing the methodology that is needed in Section 2.4, we present the

corrected PBPH method that offers a proper level α hypothesis test and confidence

interval in Section 2.5. We show simulation results and re-examine the data from

Giné et al. [29] in Section 2.6. Finally, in Section 2.7 we give concise advice on

implementation of our method.

2.2 Background

A brief introduction into causal inference will benefit later understanding. Ad-

ditionally, the historical development of the Peters-Belson method allows us to un-

derstand the current motivation to use the PBPH method. Finally, we look at other

approaches to addressing the issues we raise.
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2.2.1 Causal Framework

The notion of causal inference and potential responses has a long history, but its

modern interpretation starts with Rubin [60]. At the heart of any causal problem is

the desire to answer the question “What response would we observe if the treatment

of interest were applied versus if the treatment of interest were not applied?”

Let Zi be a binary indicator of the intervention which individual i received, con-

vention being that Zi = 0 for those receiving the control and Zi = 1 for those receiving

the treatment. (For notation in this document, we will often use c and t instead of 0

and 1 respectively in indices for clarity.) Letting Yiz be the response that individual

i experienced upon receiving z, we want to gain insight into Yit − Yic for each indi-

vidual i, called the treatment effect. This would be the end of inquiry since, barring

idealized experimental designs, we only observe Yi = YitZi + Yic(1 − Zi). This is

the Fundamental Problem of Causal Inference.[37] Yit and Yic are known as potential

responses; formally, Yiz is the potential response of individual i had they received z.

There have been many methods proposed to bypass this issue, two of the most

common being the average treatment effect (ATE) and the effect of treatment on the

treated (ETT). Put simply, ATE is E(Yt − Yc), the population difference in mean re-

sponse of the treatment group vs the control group. ETT is E(Yt−Yc|Z = 1), restrict-

ing that difference to the treatment group. Note that the ATE requires estimating

both E(Yt) and E(Yc), whereas when we restrict attention to the treatment group in

the ETT, we have that E(Yt|Z = 1) = Y and only need to estimate E(Yc|Z = 1). The

Peters-Belson method described below upon which our we based our work is aiming

more towards the ETT than the ATE.

Causal inference enjoys a rich and deep literature, but this background should

be sufficient at the moment for the problems at hand. For further details, see for

example Pearl, Glymour, and Jewell [52] or Imbens and Rubin [41].
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2.2.2 Peters-Belson Method

A natural estimate of the ETT is Yt − Ŷc amongst the treatment group. If we

have confidence in Ŷc as an estimate for Yc, then we have confidence in the estimate

of the treatment effect. Peters and Belson introduced a technique, now known as

the Peters-Belson method, to obtain Ŷc in two independent papers. The goal of

Peters [53] was to introduce an alternative to pair matching that didn’t have data

loss to the same degree.1 To do so, he used the control group data to fit a predictive

model for the response, and then used that model to predict the responses of the

treatment group data (i.e. predict Yic, {i : Zi = 1} using a model fit upon observations

{i : Zi = 0}). His novel claim was that these predicted responses were the response

that the treatment group would have had were the treatment to have no effect, an

idea that no doubt informed Rubin’s later work. This can be followed by a trivial

(Peters even thought so, as “if one uses a calculating machine, it moves very rapidly.”

[53, pp. 609]) test of differences between the average predicted and average observed

response such as ANOVA.

Belson [11] had a similar goal as Peters, but his work included a bit more rigor.

Specifically, his concern was the correlation between treatment status, Zi, and co-

variates, Xi ∈ Rp. The paper spends considerable time finding “stable correlates” in

the data, covariates correlated to the response but unaffected by treatment status.

These stable correlates would offer a strong predictive model of the response, and it

is reasonable to assume they are balanced between the control and treatment groups.

Belson found these stable correlates manually, a task which is no longer necessary

due to increased computational power and continued work in the area of covariate

balance.

1This was prior to the introduction of full matching, which has improvements over pair matching,
including addressing the data loss.
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Cochran [20] examined the Peters-Belson method in to determine when to use it

over using some pooling method from the entire sample. Let β̂c ∈ Rp be the esti-

mate of the coefficients on X from a predictive model fit from only the control group

and β̂t ∈ Rp correspondingly from only the treatment group. Let β̂ ∈ Rp be the

estimate using the entire sample. (X should not include the treatment indicator Z.)

Cochran concludes that the only time it is not recommended to use β̂c over β̂ to

obtain Ŷc is when β̂c and β̂t are statistically indistinguishable and Xc and X t are sub-

stantively different. In all other settings, notably anytime β̂c and β̂t are statistically

significantly different which likely covers most data sets, the Peters-Belson estimate

is recommended.

Similar methods have been discussed in the economics literature and are known

as Oaxaca-Blinder methods, see Oaxaca [51] or Blinder [13].

2.2.3 Existing Approaches

There have been two general approaches in the literature to adjusting the PBPH

method to account for the variation introduced from the first stage. The first uses

computational methods and the second uses an out-of-sample alternative data set.

We review both methods here and explain their limitations.

2.2.3.1 Computational Approach

This approach was identified in Abadie et al. [1]. The authors acknowledge the

issues with current methods, and convincingly demonstrate their problems. After

discarding the treatment group data from their motivational data sets, they perform

a simulation by splitting the control group data into a faux treatment and faux control

group. In this setting, the true treatment effect is zero, and thus there should be no

ability to make any claim regarding the benefit of the treatment on those with the

lowest predicted response. However, after performing the analysis using terciles based
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upon the predicted outcome, the results show that the “treatment” is beneficial to

those at highest risk and harmful to those at the lowest risk.

The authors suggest using some variant of cross-validation to correctly obtain

proper coverage. Averaging over many repetitions, the authors find that either the

leave-one-out or sample splitting variations of cross-validation yield estimators which

obtain proper coverage.

However, these approaches introduce a computational complexity to a problem

where none previously exists. While in most moderate sample size settings, any

modern computer will be able to easily handle this approach, for larger samples, as

with any bootstrap-based method, the computation time can easily transform from

a minor nuisance into a major hindrance.

2.2.3.2 Out-of-Sample Approach

Another source of papers using this method are found in the medical literature.

Hayward et al. [35] show that this two-stage approach to subgroup analysis has higher

power as compared to traditional single variable sub-grouping. However, the authors

also recognize the potential for the issues we discuss in this chapter, and recommended

an out-of-sample solution, requiring that the first stage modeling of the predicted

response be based upon an external data set or historical information. This is similar

in concept to the sample splitting method of Abadie et al. [1] in that independent

stages corrects the coverage.

Of course, in most situations, no such other data set or historical data exists to

enable the independent modeling of the stages. If data do exist, it will require the

often strong assumption that both data sets are from the same population. This

assumption is a tempting one for researchers to make were this solution their only

possible course of action.
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2.3 Motivation and Initial Results

Here we present one of the papers which first brought this issue to our atten-

tion, and show via simulations that the issues we identify do exist. We follow this

by discussing an alternative framework which may appeal to some and examine an

additional concern, namely that the PBPH method, in addition to having an inflated

Type I error, is also biased.

2.3.1 Empirical Example

One of the papers which motivates this work is Giné et al. [29]. In it, the authors

are studying microloans, which are very small loans typically given to impoverished

individuals (for an example in action, see www.kiva.org). Banks in developing coun-

tries where infrastructures such as photographic ID cards or personal biometrics do

not exist can have trouble tracking individuals. Borrowers in default can visit different

banks or bank officers and give new names, receiving loans that would not be given

to someone with such a history of default. Some countries have started implementing

massive programs designed to track borrowers, using fingerprinting or iris scanning

or some similar method.

Honest brokers in both sides in the microloans transaction should benefit from the

addition of the identification. The bank benefits by lowering its default rate. Those

borrowers who are not prone to defaulting can more easily build a positive credit

history, leading to loans with more favorable terms.

However, the authors note that there is so far little empirical evidence of the

benefit of such a system. The authors performed a randomized experiment in rural

Malawi. Farmers received microloans from a bank (in the form of credit at a local

agricultural supply station, not cash) at the beginning of a growing season, and repaid

the loan after the season’s harvest was sold. The banks had the basics of a credit

history system, but it relied on bank officers personal knowledge of individuals - a
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farmer could easily go to another officer or bank as described above. The response of

interest we will focus on is fraction of loan repaid on time.

The authors randomized all farmers who applied at the beginning of the season

into two groups, a control group and a treatment group.2 After an explanation of

the benefits and punishments inherent in a proper credit history system, the bank

took fingerprints from those in the treatment group. Until this point we have de-

scribed a designed experiment rather than an observational study, thus minimizing

any concerns about treatment assignment and covariate or response bias. However,

the randomization is performed amongst farmers who apply for loans. After the ran-

domization and application of treatment, the loan officers decided whether to offer

loans, and then farmers decided whether to accept the terms. Roughly 1/6th of the

farmers (520 of 3,082) ended up accepting the loans and participating in both the

prior and post surveys.

First the authors fit a model predicting the response amongst the control group

only, similar to

Y = Xβ + ε, (2.1)

where X is a matrix of baseline covariates, including an intercept. Thus, Ŷc = Xβ̂ is

the predicted potential response to control, amongst the entire sample. Next, fit two

separate second stage models on the entire data. First,

Y = Zγ + Ŷcρ+ (ZŶc)τ + ε, (2.2)

where ZŶc is the interaction between treatment and predicted response. Secondly, for

interpretability, they split the sample into quintiles based upon the predicted response

2In the actual study, the unit of randomization was a “club,” a collection of farmers, who apply
collectively and share liability in exchange for favorable lending terms from the bank. This added
complication does not affect our general discussion or results, and thus is disregarded here. See the
following chapter, specifically Section 3.5.3, where we re-introduce the clubs.
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and fit

Y = Zγ +
5∑
i=1

[
Diρi + (ZDi)τi

]
+ ε. (2.3)

Here Di is an indicator of membership in quintile i. This has the same basic idea

of examining the interaction between treatment effect and predicted response, but

admits an easier interpretation.

The results for the terms which the authors attach causal interpretations to are

included in Table 2.1.

Coef (SE)

(Eq. 2.2) Fingerprint 0.719 (.108) ***
Fingerprint : Predicted Repayment -0.807 (.120) ***

(Eq. 2.3) Fingerprint : Quintile 1 0.506 (.125) ***
Fingerprint : Quintile 2 0.056 (.105)
Fingerprint : Quintile 3 -0.001 (.048)
Fingerprint : Quintile 4 -0.040 (.044)
Fingerprint : Quintile 5 -0.075 (.044) *

Table 2.1: Coefficient estimates for the two models taken from Giné et al. [29]. In the
second model, quintile 1 contains individuals with the lowest estimated repayment
rate, and quintile 5 contains those with the highest estimated repayment rate. The
stars follow R notation, such that one (*) and three stars (***) indicates significance
at the 10% and 1% level respectively.

The negative interaction effect from (2.2) and the pattern of interaction effects

from (2.3) show what the authors were hoping for, namely that it appears those who

are predicted to have the worst response are those whom the treatment helps most.

This agrees nicely with the intuition that farmers who already repay their loans

don’t need the extra incentive/threats, and that those who don’t repay their debt are

now forced to do so in order to continue obtaining loans. This knowledge could be

beneficial to policy decisions, in that it may be easier to get a treatment approved

which is most effective on those at the highest risk.
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2.3.2 Computational Evidence

We now show that by not considering the error associated with predicted re-

payment from the first stage, the standard errors in Table 2.1 are underestimated,

increasing Type I error. We can empirically show the existence of the issue by per-

forming the uncorrected PBPH method in a setting where we know the true treatment

effect and interaction.

If we take the control group from Giné et al. [29] and randomly split into a faux

treatment and faux control group, the true treatment effect in any subgroup is fixed

to zero. The true control group sample size is 563, noted to alleviate any concerns

about small sample issues.

When we now perform the uncorrected PBPH method on this faux treatment and

faux control groups, we know that the treatment effect in any sample subgroup should

be, on average, zero. We focus here, and beyond, on the version of the second stage

defined within Giné et al. [29] by (2.2), with a continuous interaction.

Performing the randomization into faux treatment and faux control groups 1,000

times, we reject the null hypothesis in 69.5% of the runs, much higher than the

expected 5%.

2.3.3 An Alternative Framework

If the appeal to a causal framework does not convince the reader, we can reframe

the PBPH method in terms of controlling for nuisance variables in a regression model.

Consider a setting with response y and two independent variables, x1 and x2, where

the former is the variable of interest and the latter is a nuisance parameter (e.g., x1 is

a treatment variable and x2 is some demographic variable; though in this framework

we need not assume that x1 is categorical). Assume without loss of generality that y,
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x1 and x2 are centered. The traditional least squares model for this setup would be

yi = β1x1i + β2x2i + εi, (2.4)

where we simultaneously consider both controlling the nuisance parameter and esti-

mating the effect of the variable of interest.

However, it may be beneficial to consider these two issues separately - firstly,

removing from y the variance associated with x2, and then following up by indepen-

dently investigating the effect of x1. To be more precise, in a first stage, we fit

yi = β2x2i + ε1i, (2.5)

to obtain β̂2, and then as a second stage, fit

yi − β̂2x2i = β1x1i + ε2i. (2.6)

The main benefit of this modular approach is that it allows us to perform model fit

diagnostics on the first stage, and to gain confidence in our modeling of the nuisance

parameters, before we approach analysis on the parameter of interest. We then have

two models which each perform their sole job to the best of their ability, rather than

a single model which attempts to satisfy two masters.

Cochran [20] considered the Peters-Belson method within this framework, and

as mentioned above in Section 2.2.2, showed that it is preferable to utilize only the

control group in (2.5) to obtain β̂2. To re-summarize Cochran’s results, his claim is,

except in cases where the β̂2 obtained from only the control group does not differ

from the β̂2 obtained only from the treatment group and where the sample means of

x2 in the control group and treatment group are different, then using the β̂2 from the

control group only is optimal.
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The benefit of this view of the method is that it directly shows that the standard

error calculations which consider only the variance in the second stage are incorrect.

In the basic least squares model in (2.4), the closed form solution for the standard

error of β̂1 is (with all the typical ordinary least squares assumptions)

s.e.(β̂1) =

√
1

n− 3

∑
x22
∑
r2∑

x21
∑
x22 − (

∑
x1x2)2

, (2.7)

where r are the observed residuals. This standard error for β̂1 depends on x2. How-

ever, if we disregard the measurement error on β̂2 while we look at the standard error

for β̂1 from (2.6), then

s.e.(β̂1) =

√
1

n− 2

∑
r2∑
x21
, (2.8)

and we lose this dependence (except through the residuals). This shows that the

typical least squares regression standard error calculations will not suffice in a PBPH

approach, thus further suggesting the need for a standard error calculation that will

include the variance from both (2.5) and (2.6).

2.3.4 Relationship Between Bias and Model Fit

Many well-known estimates are biased, such as the traditional standard error

estimate. However, the bias-variance trade-off often allows these biased estimates to

be very practical. The estimate of the interaction coefficient in a PBPH approach is

similar, in addition to having improper coverage, it is also biased.

The bias is not an issue in the final conclusion (see Appendix A.1). However,

it can be educational to look at what settings yield larger bias. This bias does not

affect all models equally. As might be suspected, models which correctly specify the

set of independent variables minimize the bias. Unobserved variables or included

noise variables increase the bias. Even in a correctly specified model, there is some

level of bias.
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First, consider when the first stage regression fit excludes informative unobserved

variables. Formally we represent this as a decrease in model fit, measured by the R2

statistic. The bias increases as the R2 decreases.

The second effect is from including noise variables in the model. Regardless of

the estimated coefficient on these variables (though perhaps not in the case where

the estimated coefficient is identically zero), the bias increases with the introduction

into the model of variables wholly unrelated to the response.

Of the two effects, the former, from unobserved informative variables, has a much

larger effect than the latter, from included noise variables.

We ran a simulation designed to observe these effects. Using a sample size of

100, we generated 40 independent variables, X1 through X40, and then generated a

response

Yi =
20∑
j=1

βjXij + εi, (2.9)

so that Y is a linear combination of the first 20 Xj but is independent of the remaining

20. εi in noise, drawn from N(0, 1). Additionally, we generate treatment indicator

z where zi = 0 for the first half of the units and zi = 1 for the remaining. Since

p(Y |z) = p(Y ), the true treatment effect is 0.

We repeated this data generation 1,000 times. In each iteration, we performed the

PBPH method 40 times, where method k includes in the first stage only {Xi : i ≤ k}.

Therefore, k = 20 is an oracle model which contains all informative variables and

no noise, k = 1 is the least informative model, containing only a single informative

variables, and k = 40 is the most over-saturated model, containing all informative

variables but also all the uninformative ones as well.

Figure 2.1 shows the results. As you can see, as the model fit increases (i.e. as

k approaches 20), the bias drastically drops to its minimum at k = 20. However, as

the noise variables begin entering the model (i.e. as k increases above 20), the bias

begins to increase, albeit slightly. And as mentioned before, even the perfect oracle
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Figure 2.1: Visualizing the relationship between bias and the model fit. The true
model includes only the first 20 variables, so the left side represents models with
unobserved covariates, and the right side represents models with additional noise.
Based upon 1,000 simulations at each number of variables.
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model (k = 20) does not eliminate the bias entirely.

2.4 Methodology

Due to the issues we have identified, traditional methods for testing the coefficient

on the interaction term in the PBPH method will not be sufficient. Specifically, the

standard regression estimates of the variance of the coefficient will underestimate

the truth, so we will turn instead to a robust sandwich estimator generated from

estimating equations.

When we consider hypothesis testing, we will need to create an estimator for the

covariance we have defined. There are several choices of such estimators, and we will

describe the choices.

Finally, Wald-type confidence intervals will obtain incorrect coverage for the esti-

mate of the interaction term. (See Appendix A.2 for details.) Generating a confidence

region by test inversion instead allows us to obtain proper coverage.

2.4.1 M-estimators

M-estimators are a wide class of estimators which are useful in derivations of

robust statistics. Each M-estimator is the solution to an estimating equation, namely

θ̂ is an M-estimator for θ if θ̂ solves

0 =
n∑
i=1

φi(Xi, θ), (2.10)

where X are some independent data and φ are known functions. Commonly, the right

hand side is scaled by n to direct the conversation towards a mean and to ease some

derivations, though consideration of sums helps our derivation.

We can place many common estimators into the M-estimation framework. For

example, setting φi(Xi, µ) = Xi − µ, it is easy to see that X solves
∑

i φi(Xi, µ) = 0,
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and thus the sample mean is an M-estimator. The benefit of reframing estimators

in this fashion is that it allows for more general asymptotic methods, as it can be

shown under regularity conditions that M-estimators are asymptotically normal and

consistent (when the error distribution is symmetric).[63]

We sketch a brief outline of the derivation of the asymptotic distribution of an

M-estimator. There are many sources include the full derivation and proof such as

Stefanski and Boos [63].

By Taylor expansion, the estimating equation (2.10) can be rewritten as

0 ≈
∑
i

φi(Xi, θ) +

(∑
i

∂

∂θ
φi(Xi, θ)

)
(θ̂ − θ). (2.11)

In the limit, the remaining terms go to zero, provided certain conditions are

satisfied. Stefanski and Boos [63] suggest a non-rigid version of these conditions:

φi must be smooth and as n → ∞, θ 6→ ∞. For a more rigorous treatment of the

conditions, see Huber [39] or Serfling [62].

Rearranging and in the limit,

√
n(θ̂ − θ) =

(∑
i

∂

∂θ
φi(Xi, θ)

)
︸ ︷︷ ︸

(∗)

−1
√
n
∑
i

φi(Xi, θ)︸ ︷︷ ︸
(∗∗)

. (2.12)

When θ = θ0, where θ0 is the true population parameter, (∗∗) converges to normal-

ity with mean 0 and variance E [φ(Xi, θ0)φ(Xi, θ0)
′]. Call that variance the “meat,”

M(θ0), which is the second non-central moment of the estimating equation, and is

equivalent to the variance because the first moment is zero when θ = θ0 by definition.

Call (∗) the “bread,” B(θ0), which is the derivative of the estimating equation. Then,

it follows from Slutsky’s theorem that θ̂ is normal with expectation θ0 and variance

B(θ0)
−1M(θ0)B(θ0)

−T .[18, 63]

19



The bread is estimated by

Bn(θ̂) = n−1
∑
i

∂

∂θ
φi(Xi, θ̂), (2.13)

and the meat by

Mn(θ̂) = n−1
∑
i

φ(Xi, θ̂)φ(Xi, θ̂)
′, (2.14)

where Bn(θ̂)−1Mn(θ̂)Bn(θ̂)−T converges in probability to B(θ0)
−1M(θ0)B(θ0)

−T under

regularity conditions.[42]

The sandwich estimator is a robust estimator, in the sense that consistency holds

without any assumptions of distributions and even when the model is misspecified.

However, when the model is correctly specified, the sandwich estimate is a very inef-

ficient estimator.[19]

2.4.1.1 Stacked Estimating Equations

One limitation of classic sandwich estimators is the assumption that each φi has

the same form. By using stacked estimating equation, we can bypass that limitation.

This naturally arises in settings where an external data set estimates a parameter

used in a model on another data set. In this case, it is not appropriate to discard the

variation in the estimate of the parameter from the external data set.

To make the notion of stacked estimating equations concrete, let us assume that

our model of interest has data X with parameter θ, and that parameter β comes

from an external data set Y , so that our current model has dependencies on both

θ and β, but the model on the external data only depends on β. In addition to

φi(Xi, θ, β), we can define an additional set of estimating equations, ψj(Yj, β). Then,
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our M-estimators (θ̂, β̂) are the solutions to

 0

0

 =

 ∑
j ψj(Yj, β)∑
i φi(Xi, θ, β)

 . (2.15)

While the algebra becomes considerably more tedious, by setting up the bread and

meat as blocked matrices, the derivation of the sandwich estimator is straightforward.

2.4.2 Estimating Covariance in Hypothesis Tests

The covariance matrix generated from the use of M-estimators is complex and

careful consideration needs to be given to its estimation. Following the terminol-

ogy and descriptions from Lindsay and Qu [46], we will mention three variations.

Previously, in Section 2.4.1, we described (implicitly) two of these variations.

First, a model-based version of the covariance,

B(θ0)
−1M(θ0)B(θ0)

−T , (2.16)

under the null hypothesis. This of course is only valid if the null hypothesis is correct,

but minimizes additional sources of variation.[46]

Secondly, we have a fully empirical estimate, using (2.13) and (2.14), obtaining

Bn(θ̂)−1Mn(θ̂)Bn(θ̂)−T . (2.17)

As mentioned above, with regularity conditions, we have that (2.16) converges to

(2.17).[42]

Finally, we can use a hybrid of the model-based and empirical versions. In Lind-

say and Qu [46], the variation used is a linear combination of the model-based and

empirical estimators, e.g, if C0 is the model-based version and Ĉ the empirical, a class
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of hybrids Ĉ0 is defined as

Ĉ0 = (1− α)C0 + αĈ, (2.18)

for α ∈ (0, 1).

For sandwich estimators, an alternate form of the hybrid estimator can be defined

in a simpler manner, by independently allowing the estimation of the bread and the

meat by their respective model-based or empirical estimators. This leads to two

alternative estimators,

Bn(θ̂)−1M(θ0)Bn(θ̂)−T , (2.19)

B(θ0)
−1Mn(θ̂)B(θ0)

−T . (2.20)

We will seek guidance from simulations to compare the forms of the estimates.

2.4.3 Confidence Region by Test Inversion

The method is straightforward and based upon the duality of hypothesis testing

and confidence intervals. If there is some test statistic t(θ) which at level α tests

the hypothesis H0 : θ = θ0, rejecting when t(θ) > c∗ where c∗ is a critical value

corresponding to the limiting distribution of t(θ0), then a corresponding (1 − α)%

confidence region for θ is

{θ : t(θ) < c∗} . (2.21)

In general, the confidence region generated by test inversion need not be a con-

tinuous interval, but it often is.

Inverting a Wald test gives a Wald confidence interval. Let

tW (θ) =
θ̂ − θ0
σ(θ̂)

, (2.22)

where σ(θ̂) is the sample standard deviation. Rejecting when tW (θ) > z∗α, we can
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directly solve for θ0, obtaining the traditional confidence interval of

θ̂ ± z∗ασ(θ̂). (2.23)

However, consider a score test, with a test statistic of the form

tS(θ) =
θ̂0 − θ
σ(θ0)

, (2.24)

where the standard deviation is based upon θ0, instead of θ̂. For tests of this form,

it is not guaranteed that the test is invertible cleanly such that the confidence region

will have a closed form solution. If such a closed form solution exists, it may not

have the interpretability that (2.23) has. More generally, we can iterate over possible

values of θ0, and define the confidence region as all values of θ0 for which (2.24) fails

to reject.[3]

2.5 Calculations

Now that we have shown the issues in the PBPH method, and that the issues

stem from an uncorrected standard error estimate, it remains to derive the corrected

estimate. We will more rigorously define the problem before the derivation. Following

that, we will examine how to perform hypothesis test and create confidence intervals.

2.5.1 Problem Definition

We first define the PBPH method rigorously.

Consider some data X of dimension n × p including a column of 1’s for the in-

tercept, and a response Y . Let Z indicate group membership; call {i : Zi = 0} the

control group and likewise call {i : Zi = 1} the treatment group. Let
∑n

i=1 Zi = nt

and
∑n

i=1(1− Zi) = nc, with n = nc + nt.
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In the first stage, we need a model fitted to predict the outcomes amongst only

the control group. We derive this using a linear least squares model, but in principle,

any model which can be used for prediction should suffice.

Within only the control group, fit

Y = Xβc + δ, (2.25)

where δ is the error term. The subscript c on the βc coefficient is to remind that only

the control group is used to generate it.

From the data, we obtain β̂c as an estimator for βc, and in turn, can obtain

Ŷic = X ′iβ̂c, interpretable as an estimated potential response of observation i to the

control. In the control group, Yi = Yic, meaning the observed response is equivalent

to the potential response to control, and thus Yi − Ŷic is a residual. However, in the

treatment group Yi = Yit and therefore Yi − Ŷic may be interpreted as an estimated

treatment effect on individual i. The methodology suggested in Peters [53] and Belson

[11] uses n−1t
∑

nt
(Yi − Ŷic), {i : Zi = 1} to estimate the treatment effect. That

methodology assumes a homogeneous treatment effect.

To enable a heterogeneous treatment effect, introduce a second stage. To begin,

we will utilize the full sample. The goal is to be able to make some statement speaking

to the variation in the treatment effect with regards to the predicted response in the

absence of any treatment. The right-hand side will be the observed response less the

predicted response in the absence of treatment, Xβc. We will refer to this subtracted

quantity as an offset. On the right-hand side, we have both the main treatment

effect as well as the additional effect due to the predicted response in the absence of

treatment. This model can be expressed as

Y −Xβc = Zτ + (ZXβc)η + ε. (2.26)
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Y = YtZ + Yc(1− Z) and thus

[YtZ + Yc(1− Z)]−Xβc = Zτ + (ZXβc)η + ε, (2.27)

is the true population model of interest. The left hand side is nothing more than the

residuals left after (2.25).

When fitting this model on the entire data set, the control group will not affect

estimates of τ or η since Zi = 0 in the control group. We restrict attention to the

treatment group, Zi = 1, simplifying to

Y −Xβc = τ + (Xβc)η + ε. (2.28)

To remove the dependence between τ and η, we center Xβc on the right hand

side of (2.28) relative to the treatment group to induce orthogonality. Let (Xβc)1

represent the mean of Xβc amongst observations where Zi = 1. Now (2.28) can be

rewritten as

Y −Xβc = τ +
(
Xβc − (Xβc)1

)
η + (Xβc)1η + ε

=
(
τ + (Xβc)1η

)
+
(
Xβc − (Xβc)1

)
η + ε

= τ ′ +
(
Xβc − (Xβc)1

)
η + ε.

(2.29)

This gives us a more natural interpretation of the intercept. τ is the expected

treatment effect when X = 0, which may not be an interesting value of X. However,

τ ′ is the expected treatment effect when X is at its mean. The estimated treatment

effect is equivalent to estimate from the methodology in Peters [53] and Belson [11],

where τ̂ ′ = n−1t
∑

nt
(Yi − Xβ̂c), {i : Zi = 1}. The estimate and interpretation of η

does not change between (2.28) and (2.29).

To simplify notation forward, we will assume that Xβc is centered as described
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above such that τ = τ ′, and that τ is therefore interpreted as the same treatment

effect from Peters [53] and Belson [11].

2.5.1.1 Reasonable values for η

Since we will be fitting the second stage model only on the treatment group, (2.27)

becomes

Yt −Xβc = τ +Xβcη + ε, (2.30)

in the population of treated individuals. When η = 0, the treatment effect τ is

constant across all individuals.

Now, consider instead the case where η = −1. Then (2.30) becomes

Yt = τ + ε, (2.31)

implying that the response under treatment is constant across individuals, within

individual error.

If η < −1, the relationship between Yt and Yc is inverted, so that the covariates X

have directly opposite relationship on the response. For example, if age is positively

associated with Yc, for η < −1, age would be negatively associated with Yt.

On the positive side, while we do not have a nice boundary condition as −1, large

values of η are equally troublesome. Namely, for large values of η, the effect of the

coefficients is magnified several-fold.

All three of these cases, while plausible, would represent a treatment effect outside

the normal considerations, and outside the scope of this work. Therefore, we will

limit our investigation to η ∈ (−1, 2). The choice of an upper bound of 2 is somewhat

arbitrary, but we feel represents a natural cut-off point for “large” positive values.
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2.5.2 Standard Error Correction

2.5.2.1 Uncorrected Estimator

Before we derive the corrected standard error estimator, we can show the deriva-

tion of the uncorrected standard error estimator, both to provide a comparison point

and to demonstrate a straightforward application of a sandwich estimator. Obviously

this is not the only way (nor the simplest) to obtain this estimate, but as we show, it

produces a more general estimate for the standard error from ordinary least squares

that, with some assumptions, reduces to the form of the standard error calculated

directly from the linear model.

This approach is to discard the variance introduced from the first stage model in

(2.25) and focus solely on estimating the standard error of (τ, η) from (2.27). In this

uncorrected approach, in the second stage model, β̂c is considered fixed, so we start

with a slightly modified version of (2.28),

Y −Xβ̂c = τ +Xβ̂cη + e. (2.32)

Consider both Xi and β̂c as column vectors of height p, such that X ′iβ̂c is scalar.

Following along with the typical derivation of estimating equations to solve linear

regression, for example in Carroll et al. [18], we can define the estimating equation as

ψi(Yi; τ, η) = (Yi −X ′iβ̂c − τ − ηX ′iβ̂c)
(

1

X ′iβ̂c

)
, (2.33)

noting that ψi ∈ R2.

Therefore, our estimates of (τ, η) come from solving

(
0

0

)
=

∑
{i:Zi=1}

ψi(Yi; τ, η) = Ψ(Y ; τ, η). (2.34)
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The bread matrix is the expectation of partial derivative of the estimating equa-

tion, so

B(u)(τ, η) = B(u)
nt (τ̂ , η̂) =

∑
{i:Zi=1}

 1 X ′iβ̂c

X ′iβ̂c (X ′iβ̂c)
2

 . (2.35)

The equality of B(u)(τ, η) and B
(u)
nt (τ̂ , η̂) is immediately obvious since in the uncor-

rected derivation, we do not consider β̂c as random. The superscript (u) is to indicate

this is from the uncorrected approach.

Further, the meat matrix is the second non-central moment of Ψ, so

M (u)(τ, η) =
∑
{i:Zi=1}

E
(
Yi −X ′iβ̂c − τ − ηX ′iβ̂c

)2  1 X ′iβ̂c

X ′iβ̂c (X ′iβ̂c)
2


 . (2.36)

Since Yi − X ′iβ̂c − τ − ηX ′iβ̂c is an error term, it is centered, and thus we can

estimate as

M (u)
nt (τ̂ , η̂) =

∑
{i:Zi=1}

(Yi −X ′iβ̂c − τ̂ − η̂X ′iβ̂c)2

 1 X ′iβ̂c

X ′iβ̂c (X ′iβ̂c)
2


 , (2.37)

The estimate of the covariance matrix is thus

B(u)
nt (τ̂ , η̂)−1M (u)

nt (τ̂ , η̂)B(u)
nt (τ̂ , η̂)−T . (2.38)

If we make the assumption that errors εi are homoscedastic with common mean

0 and common variance σ2 and that we have some σ̂2 as an unbiased estimator for

σ2, then since Yi −X ′iβ̂c − τ − ηX ′iβ̂c = εi, we have that its variance is σ2. Then the

meat matrix is nothing more than

M (u)(τ, η) = σ2B(u)(τ, η), (2.39)
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with a corresponding equality for the estimated version, so that (2.38) simplifies to

σ̂2B(u)
nt (τ̂ , η̂)−1, (2.40)

which is the covariance estimate derived directly from ordinary least squares.

2.5.2.2 Corrected Estimator

We can use stacked estimating equations to account for the additional variabil-

ity introduced from the first stage model. We now have two different forms of the

estimating equations,

φi(Yi; βc) = (Yi −X ′iβc)Xi, (2.41)

ψi(Yi, βc; τ, η) = (Yi −X ′iβc − τ − ηX ′iβc)
(

1

X ′iβc

)
, (2.42)

where φi(Yi; βc) ∈ Rp and ψi(Yi, βc; τ, η) ∈ R2. φ represents the contribution to the

variance from the first stage, while ψ represents the contribution from the second

stage.

Therefore, estimators for the all parameters of interest, (βc, τ, η), are solutions

from

0

=


∑
{i:Zi=0}

φi(Yi; βc)∑
{i:Zi=1}

ψi(Yi, βc; τ, η)

=

 Φ(Y ; βc)

Ψ(Y, βc; τ, η)

 . (2.43)

Since there is a natural demarcation between the two forms of the estimating

equations, we can approach this derivation in a blocked matrix format. The bread
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matrix has the form

B(βc, τ, η) =

 B11 B12

B21 B22

 =

 E ∂
∂βc

Φ(Y ; βc) E ∂
∂(τ,η)

Φ(Y ; βc)

E ∂
∂βc

Ψ(Y, βc; τ, η) E ∂
∂(τ,η)

Ψ(Y, βc; τ, η)

 , (2.44)

where B11 ∈ Rp×p, B12 ∈ Rp×2, B21 ∈ R2×p and B22 ∈ R2×2. To simplify notation

going forward, the submatrices of the bread and meat are written succinctly. For ex-

ample, B11 is shorthand for B11(βc, τ, η) and that B̂11 is shorthand for Bnc,11(β̂c, τ̂ , η̂).

B11 is straightforward since it involves only the first stage, so

B11 = B̂11 =
∑
{i:Zi=0}

XiX
′
i. (2.45)

Since the first stage does not include (τ, η),

B12 = B̂12 = 0. (2.46)

B21 is slightly more complicated, since βc exists in both stages,

B21 =
∑
{i:Zi=1}

E

 −(1 + η)X ′i

(Yi − τ − 2(1 + η)X ′iβc)X
′
i

 , (2.47)

and is estimated by

B̂21 =
∑
{i:Zi=1}

 −(1 + η̂)X ′i

(Yi − τ̂ − 2(1 + η̂)X ′iβ̂c)X
′
i

 . (2.48)

Finally,

B22 =
∑
{i:Zi=1}

E

 1 X ′iβc

X ′iβc (X ′iβc)
2

 , (2.49)
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and is estimated by

B̂22 =
∑
{i:Zi=1}

 1 X ′iβ̂c

X ′iβ̂c (X ′iβ̂c)
2

 , (2.50)

The meat matrix M(βc, τ, η) will be similarly blocked. The diagonal blocks, M11

and M22, will be the variance of Φ and Ψ respectively. The off-diagonal blocks are

unfortunately much more complicated, if for no other reason than issues of dimen-

sionality. However, if we assume that the treatment and control samples are random

samples drawn from an infinite population, the samples can be considered to be in-

dependent, implying a covariance of zero between them. Therefore M12 = M21 = 0.

M11, being the variance of Φ, is

M11 =
∑
{i:Zi=0}

Var (Yi −X ′iβc)XiX
′
i. (2.51)

Again, Yi − X ′iβc is simply the error, which has a zero expectation, so we can

estimate this with

M̂11 =
∑
{i:Zi=0}

(Yi −X ′iβ̂c)2XiX
′
i. (2.52)

The bottom right piece involves all three parameters of interest

M22 =
∑
{i:Zi=1}

Var

(
(Yi −X ′iβc − τ − ηX ′iβc)

(
1

X ′iβc

))
, (2.53)

with corresponding estimate

M̂22 =
∑
{i:Zi=1}

(Yi −X ′iβ̂c − τ̂ − η̂X ′iβ̂c)2

 1 X ′iβ̂c

X ′iβ̂c (X ′iβ̂c)
2

 , (2.54)

The covariance of (τ, η) is therefore the lower right 2× 2 sub-matrix of

B(βc, τ, η)−1M(βc, τ, η)B(βc, τ, η)−T . (2.55)
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Rewriting each matrix in its blocked form, we can simplify to

Var
(
τ, η
)

= B−122

(
M22 +B21B

−1
11 M11B

−T
11 B

T
21

)
B−T22 . (2.56)

This derivation in based on a more general derivation in Carroll et al. [18, pp.

373]. That derivation has two additional terms, each of which includes B12. In the

specifics of our method, B12 = 0, so those terms vanish.

Since B22(βc, τ, η) = B(u)(τ, η) and M22(βc, τ, η) = M (u)(τ, η), this corrected vari-

ance is equivalent to the uncorrected variance plus an additional component relating

to the first stage. This corresponds with intuition that the uncorrected standard error

estimate is underestimating because it does not account for the measurement error

of β̂c.
3

The simplifying homoscedastic assumptions for this model are that errors d from

the first stage have mean 0 and variance σ2
1 and the errors e from the second stage have

mean 0 and variance σ2
2, and all are centered and each have appropriate estimators.

Then,

M̂11 = σ̂2
1B̂11, (2.57)

M̂22 = σ̂2
2B̂22, (2.58)

and (2.56) simplifies to

σ̂2
2B̂−122 + σ̂1

2B̂−122 B̂21B̂
−1
11 B̂

T
21B̂

−T
22 . (2.59)

3On the topic of measurement error, we explored a variation of this method using regression
calibration from the measurement error literature[18, Ch. 4] which would account for the measure-

ment error on Xβ̂c from the first stage model by way of a shrinkage factor. In simulation studies
(similar to those described throughout Section 2.6) compared to the confidence intervals generated
by the methodology we ultimately recommend, the confidence intervals generated by the regression
calibration approach undercovered (providing only 80% coverage on average) and were 20% wider.
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As in the unsimplified version, this is equivalent to the uncorrected variance in

(2.40) with an additional linear term.

2.5.3 Hypothesis Testing

Before turning to a confidence interval generated by test inversion, we need to

define hypothesis testing in this setting. We need nothing beyond the use of the

corrected covariance calculations.

Define H0 : η = η0 for some η0 ∈ Ωη where Ωη is the set of all possible values of

η. We limit ourselves to Ωη = (−1, 2) here. Let the set of unconstrained estimates of

the parameters be λ̂ = (β̂c, τ̂ , η̂). Let the set of estimates of the parameters under the

constraint imposed by H0 be λ̃0 = (β̂c, τ̃0, η0), where τ̃0 is the least squares estimate

of τ under H0. Estimates for βc are not affected by constraints on η.

We need to consider the choice of which covariance estimate from Section 2.4.2.

We will show below in Section 2.6.2.1 that the hybrid estimate in (2.20) is the simplest

form which obtains proper coverage, so

σ2
λ̃0

(η̂) = B(λ̃0)
−1Mn(λ̂)B(λ̃0)

−T . (2.60)

Note that, considering the piece-wise definition of the bread and meat matrices in

(2.45)-(2.53), η only enters into B21 and M22. Therefore, σ2
λ̃0

(η̂) depends on η0 only

through the contributions from B21.

We obtain the test that rejects H0 if

|η̂ − η0|
σλ̃0(η̂)

≥ z∗(1−α/2). (2.61)
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2.5.4 Test Inversion

We can invert the test defined in (2.61). Using the hypothesis of interest defined

above, H0 : η = η0, we can perform a search over the space of possible values of η0

and the confidence region would be all η0 for which we do not reject H0. As in the

hypothesis test, the version of the covariance estimate matters, and we will use the

same as the hypothesis test, (2.60).

Beginning with (2.61) and rearranging,

|η̂ − η0| ≥ z∗(1−α/2)σλ̃0(η̂). (2.62)

To ensure the resulting equation is nicely quadratic and to eliminate the trouble-

some L1 norm, we square both sides to obtain

wα(η0) := (η̂ − η0)2 −
(
χ2
(1−α)(1)

)∗
σ2
λ̃0

(η̂) ≥ 0. (2.63)

Inverting the inequality, we obtain as a confidence region

rα(η0) := (η0 : wα(η0) ≤ 0) . (2.64)

As mentioned, in general a confidence region generated by test inversion need not

be a continuous interval. wα(η0) is quadratic in η0. To see this, note that by using

(2.60), η0 enters the corrected standard error only through the bread, specifically lin-

early in B21. Combining this with (2.47) and (2.56), we have that σ2
λ̃0

(η̂) is quadratic

is η0, implying wα(η0) is as well.

This leaves us with four potential shapes of confidence regions. Letting c1 < c2 be

constant, we can have confidence regions of the form (c1, c2), (−∞,∞), (−∞, c1) ∪

(c2,∞) or (∅). The finite continuous confidence interval is desired, and we will show

during simulations that it is the most likely result.
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An empty confidence set (rejecting η0 for all possible values) is not possible. This

should be clear considering (2.61), as when η0 = η̂, the left hand side is 0, which can

never be rejected for any reasonable value of α < 1.

The infinite confidence interval may appear daunting, but in practice has little

difference than a very wide confidence interval. Two-stage least squares methods

having “wide” confidence intervals is a known problem in the instrumental variables

literature. When the instrumental variable is “weak” (a notion akin to the first stage

model fit being poor), the standard errors in the second stage tend to be very large.[68]

If the first stage model fit is poor, we do not have a model which can predict the

response the treated group would have seen in the absence of any treatment. Given

this, any claim to a traditional treatment effect is weak, and further claiming to be

able to identify a secondary treatment effect would be even weaker. It is intuitive

that in order to identify any information about an ETT effect, we must be able to

estimate Yc|Z = 1 well.

Disjointly infinite confidence regions appearing are an undesirable curiosity. How-

ever, such regions are infrequent in our simulation results (see Section 2.6.3).

Expressing wα(η0) in quadratic form is a non-trivial task.4 However, since we know

wα(η0) is quadratic, by solving wα(η0) for three values of η0, we can fit a regression

line with a quadratic term to obtain the numeric coefficients. This does not allow

interpretation of the coefficients (to be able to firmly determine situations that cause

each of the three shapes of confidence regions) but it does simplify computation by

avoiding the need to iterate over all values of η0.

4When deriving the coefficient on the quadratic term with the use of symbolic software, the
resulting coefficient was half a page and interpretation was utterly hopeless.
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2.6 Simulations

We first show that our approaches to hypothesis testing and confidence interval

by test inversion produce proper coverage. We examine the existence of infinite

confidence regions and suggest some guidelines for avoiding them. We then return to

the Giné et al. [29] and compare uncorrected PBPH vs corrected PBPH results.

2.6.1 Data Generation

For all simulations in this section, we use a generalized data generation method

which is described here. This methods allows us to specify parameters of interest,

such as η, and also incidental parameters like τ and nuisance parameters like σ2.

The covariates X are generated randomly from a Normal distribution, generally

N(0, 1), and X ∈ Rn×q. n represents the total number of observations, and we will

typically use n = 100 and n = 1,000 to represent a “small sample size” and “large

sample size” respectively. q represents the number of covariates. Note that the q here

describes merely the dimensions of the generated X, and it can (and often will be

the case) that the response Y is generated by a data generating matrix of dimension

n × p, which is a subset of X, such that p < q. This distinction is why we use q to

represent the dimension of X and p to represent the dimension of the data generating

matrix.

Asymptotic theory for sandwich estimators allows q to grow along with n, estab-

lishing consistency results paralleling those of the classical fixed-p development under

the assumption that q2 log(q) is o(n), i.e. q2 log(q) is small in relation to n.[36, 54]

We generate a finite sample rule of thumb in Section 2.6.2.2, which translates into

choices of q = 7 and q = 17 for n = 100 and n = 1,000 respectively.

The treatment variable, Z ∈ {0, 1}, is randomly assigned with some probability

pZ of being assigned to treatment (Z = 1).

To generate responses, we need to specify four parameters, βc, τ, η and σ2.
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βc represent the coefficients on the data generating matrix used to generate the

response. As before, typically p of these βc will be non-zero, while the remaining q−p

are 0. We use this sparsity specifically to examine under-fitting and over-fitting, but

more generally to avoid accusations of using only oracle models. Non-zero βc’s are

randomly drawn from N(0, 1).

τ , representing the additive treatment effect, is in theory allowed to take any

value, but in practice we restrict it. Due to X being N(0, 1), we chose τ on the same

scale, either manually fixed or drawn randomly N(0, 1). In real-world data situations

where τ is on a larger scale than X, this method may not be the best approach, as

either there is a clean separation between Yc and Yt, in which case this method isn’t

necessary, or the data is extremely noisy, so that it’s unlikely to be able to tease out

the subtle effect the method is looking at.

η, our main parameter of interest, is restricted to (−1, 2) as described in Section

2.5.1.1. We either iterate over a grid on that range, to examine coverage as η varies,

or we draw it randomly from U(−1, 2). We also force η = 0 occasionally to remove it

from the model entirely.

Finally, σ2, the variance of the error on the relationship between X and Y . We

assumed standardization of X and Y such that σ2 is 1.

With the parameters specified, we can generate the response. Akin to the method,

we do this in two stages.

First, we generate Yc in the entire population, using

Yc = Xβc. (2.65)

Recall again that βc ∈ Rq, but some subset of those βc can be zero, so that Yc is

truly generated by p ≤ q subset of X.
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Next, we generate Yt,

Yt = Yc + τZ + ηZYc. (2.66)

Finally, we set Y = Yobs by

Yobs = YtZ + Yc(1− Z) + ε, (2.67)

where ε ∼ N(0, σ2). Z defines treatment status, specifically that Zi = 1 implies

membership in the treatment group and Zi = 0 the control group.

If η = 0, then (2.66) is simplified to

Yt = Yc + τZ (2.68)

so that there is only an additive treatment effect.

If τ is also set to 0, then Yt = Yc and the treatment is completely ineffective.

We add the error to Yobs instead of Yc and Yt to ensure homogeneity of the error;

it should be easy to see that if we added the error to Yc or both Yc and Yt, the error

variance could differ drastically in the treatment and control groups.

Of course, Yt and Yc are discarded, and Yobs is treated as the only observable

response.

2.6.2 General Results

2.6.2.1 Choice of Covariance Estimate

In Section 2.5.3, we choose to use an estimator of η’s standard deviation, (2.60),

based upon a hybrid estimator (2.20). We justify that choice now. Recall that

λ̃0 = (β̂c, τ̃0, η0) is under the constraint H0 : η = η0 with τ̃0 being the least squares

estimate of τ under that hypothesis, and that λ̂ = (β̂c, τ̂ , η̂) is unconstrained. We

have the choice between using λ̃0 over λ̂ in both bread and meat (2.16); neither bread
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Figure 2.2: Choosing the version of the covariance estimator. Model-based refers
to (2.16), empirical to (2.17) and the two hybrids are (2.19) and (2.20) respectively.
Estimator Hybrid 2 obtains 95% proper coverage.

nor meat (2.17); or only meat (2.19) or only bread (2.20). We utilize the confidence

interval instead of the hypothesis test to make this decision as the confidence interval

by inversion contains, the hypothesis test of H0 : η = 0. We perform simulations

using each variation of estimate to examine coverage. The results are presented in

Figure 2.2.

Neither the empirical version nor the first hybrid obtain proper coverage, which are

the variations using λ̂ in the bread. The model-based version and the second hybrid,

which use λ̃0 in the bread, obtain proper coverage, although the fully model-based

version shows overcoverage. Using λ̃0 in the bread adds stability to the covariance
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Figure 2.3: Median width of confidence intervals generated using model-based, (2.16),
and the second hybrid, (2.20), which both obtained proper coverage. The model-based
version averages 20% wider confidence intervals.

estimates, which is important because the bread is inverted.

The second hybrid is the best choice for three reasons. First, it obtains proper

coverage without overcoverage. Second, the second hybrid estimator allows the co-

variance estimate to be quadratic in η0, ensuring with simplicity that (2.64) defines

a confidence interval. Finally, in lieu of power analysis we compare the two versions

in terms of the width of the generated confidence interval. Figure 2.3 shows that the

confidence intervals generated by the model-based version are 20% wider on average.
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Therefore we have justified our choice in Section 2.5.3 of using

σ2
λ̃0

(η̂) = B(λ̃0)
−1Mn(λ̂)B(λ̃0)

−T . (2.69)

2.6.2.2 Finite Sample Rule of Thumb for q

We describe this as a rule of thumb to indicate that there is a certain amount of

judgment behind the choice of the threshold; a more rigorous review of the topic may

reveal a tighter rule. For our simulation results, this casual result is sufficient.

The asymptotic rule in He and Shao [36] is that q2 log(q) = o(n). We consider

a slower growth rate, q2 log(q)2

n
< C and choose some C such that the rule holds. To

determine the choice of C, we iterate over choices of n and C, and perform equivalence

testing. Equivalence testing is used in clinical trials to test whether a new drug is not

appreciably worse than an existing drug, as opposed to traditional superior hypothesis

testing which considers whether the new drug is better than the existing.[67] Similar

to that design, we wish to choose the largest C for which coverage is not significantly

lower than 1− α.

For our simulation, we run 10,000 repetitions of each (n,C) pair. We set a thresh-

old of .1% as an equivalence region. This yields a rejection value of 94.7%.

The results of this simulation are displayed in Figure 2.4. The green squares have

coverage above .947, and red below. Therefore, we choose C = 2.5, resulting in the

aforementioned q = 7 and q = 17 for n = 100 and n = 1,000 respectively. It is likely

there is another rule which is less strict as n increases, shown by the lack of failures

for n = 500 or 1,000.

2.6.2.3 Hypothesis Test

We perform a level α = .95 hypothesis test against H0 : η = 0 by first generating

data as described above, forcing η = 0, to ensure proper Type 1 error. The results for
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Figure 2.4: Simulation testing choices of C to establish the largest values of q. Each
box represents 10,000 repetitions using the n and C combination. Red boxes reject
the non-inferiority null that coverage with the (n,C) pair is no worse than 94.7%.

1,000 runs at n = 100 and n = 1,000 are in Table 2.2. The corrected PBPH method

obtains proper coverage levels.

n = 100 n = 1,000
Percentage Rejection 5.2% 4.7%

Table 2.2: Percentage of tests rejecting over 1,000 iterations.

2.6.2.4 Coverage Results

We’ve shown that the corrected PBPH method provides proper coverage on a level

α test of the null that η = 0. The next step is to examine confidence interval coverage

when η is not zero.

Table 2.3 shows coverage percentages across different values of true η. We obtain

proper approximate 95% coverage across all reasonable values of η (again, see Section

2.5.1.1 for the rationale for the reasonable values) for both sample sizes. The negative

bias discussed in Section 2.3.4 appears, though muted in the larger sample size.

Note that the overall coverage is for both desirable (continuous) and undesirable
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(disjointly infinite) shapes of confidence regions combined. Table 2.4 shows coverage

in each shape of the region. Amongst continuous confidence intervals, proper coverage

is maintained. Amongst disjointly infinite confidence regions, we see over-coverage.

Overall, in only a handful of the 7,000 total runs did we observe the situation where

a disjointly infinite confidence region failed to cover the true value of η.

Table 2.4 does not include an entry corresponding to n = 1,000 because in the

larger sample size setting, we did not encounter a single disjointly infinite confidence

region in our simulations.

n = 100 n = 1,000
η η̂ Coverage η̂ Coverage

-1.0 -1.00 96.9% -1.00 95.9%
-0.5 -0.55 94.8% -0.50 95.1%
0.0 -0.10 95.6% -0.01 94.2%
0.5 0.35 94.5% 0.49 95.3%
1.0 0.77 93.1% 0.98 94.1%
1.5 1.25 94.9% 1.48 95.1%
2.0 1.72 95.0% 1.97 94.5%

Table 2.3: Coverage of η, combined all shapes of confidence regions. For data gener-
ation, when n = 100 there are q = 7 parameters and p = 3, and for n = 1,000, q =
17 and p = 6.

Continuous Disjointly Infinite
η Count Coverage Count Coverage

-1.0 992 97% 8 75%
-0.5 983 95% 17 100%
0.0 975 95% 25 100%
0.5 969 94% 31 100%
1.0 958 93% 42 100%
1.5 966 95% 34 100%
2.0 950 95% 50 100%

Table 2.4: Coverage of η over several values, separated by shape of confidence regions.
n = 100 with q = 7 parameters and p = 3 used in data generation.
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2.6.3 Infinite Confidence Regions

While in the previous section we considered both finite and infinite confidence

intervals as similar, we separate them here to examine the relationship between first

stage model fit and the shape of the confidence region. We restrict ourselves to smaller

sample sizes as we never observed the disjointly infinite confidence regions in the n

= 1,000 setting. We simulate data as described above with n = 100, but allow η to

be drawn randomly from U(−1, 2).

To measure model fit, we will consider the ANOVA associated with the first stage

regression, and specifically its F -statistic. We base our choice on model fit measure

due to guidance from the instrumental variables literature, particularly the deter-

mination of a weak instrument in the two-stage least squares instrumental variables

procedure. For example, Stock and Yogo [64] derives a critical value to test directly

against the first-stage F -statistic.

To ease interpretation, we’ll look at the F -statistic on the log-scale. The results

are presented in Figure 2.5. We can see that significance in the F -test is strongly

associated with a finite confidence interval. Infinite confidence regions are almost

entirely associated with a failure to reject the F -test. This corresponds to intuition,

as if the first stage model fit is weak, we have little confidence in any second stage

results.

Unfortunately, disjoint confidence regions are often associated with significant p-

values, although not as significant as the finite confidence intervals. It would be

convenient if the disjoint confidence regions were associated with poor first stage

model fit, but since we are able to reject some values in the second stage, we must

have some power at that stage. It follows that for the second stage to have power,

the first stage must have had some power as well.

We looked at the additional measure of fit, R2, and found an extremely similar

pattern.
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Finally, and perhaps not surprisingly given the results thus far, if the first-stage

model does not identify any non-zero predictors, obtaining a finite confidence interval

is extremely unlikely.

2.6.3.1 An Attempt at Narrowing Infinite Confidence Intervals

As defined in Section 2.5.3, for each H0 : η = η0 which is tested, the parameters

under the null hypothesis are λ̃0 = (β̂c, τ̃0, η0), where τ̃0 is the least squares estimate

of τ under H0. Consider the model for obtaining τ̃0, fit only on the treated group,

Y −Xβc = τ0 + η0Xβc + ε.

Y − (1 + η0)Xβc = τ0 + ε.

(2.70)

In other words, τ̃0 is the expected value of Y − (1 + η0)Xβc among the treated. In

the limits, we have that limη0→∞ τ̃0 = −∞ and limη0→−∞ τ̃0 =∞. If we consider τ as

a nuisance parameter when testing hypotheses about η, then an approach introduced

in Berger and Boos [12] suggests bounding τ̃0 by a wide confidence interval and appro-

priately adjusting the subsequent p-values. Assume that this approach would work,

that is, that bounding τ̃0 by a wide (finite) confidence interval results in confidence

intervals being finite. Because we are in theory (though not in practice) generating

hypothesis tests over all values of η0, and the asymptotic relationship between η0 and

τ̃0 is as described, bounding τ̃0 at any finite limits will equally result in finite confi-

dence intervals for η̂, and we need not restrict the bounds to the confidence interval

of τ̃0.

Assume we bound τ̃0 ∈ [u, l], that ηl and ηu solve τ̃0 = l and τ̃0 = u respectively,

and that ηu ≤ ηl without loss of generality. With this modification, wα(η0) is no

longer necessarily continuous, as it may be different in the three ranges (−∞, ηu),

(ηu, ηl) and (ηl,∞). However, the shape of wα(η0) is still quadratic in η0 in each

range.
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The conjecture is that bounding τ̃0 would reduce the incidence of infinite confi-

dence regions. If we rewrite wα(η0) as aη20 +bη0 +c where a, b and c are some function

of the data, the critical value of the χ2 distribution, β̂c, τ̃0 and η̂, then if a > 0,

we must have a finite confidence region (because empty confidence regions are not

possible, see the argument in the Section 2.5.4). However, we can easily find counter-

examples. Table 2.5 shows a few. In each case, n = 100 and the data is generated

as described in Section 2.6.1. Each simulation run resulted in an infinite confidence

region and should be eligible to be adjusted by this approach. In each counterexample

case, we see the coefficient on η20 remain negative even as τ̃0 is bound.

Left-asymptotic region Center region; unbound τ̃ Right-asymptotic region
1 -0.8η20 - 7.2η0 - 15.5 -0.4η20 - 0.7η0 - 0.4 -0.8η20 + 2.7η0 - 2.5
2 -0.4η20 - 3.2η0 - 5.5 -0.3η20 - 0.9η0 - 0.6 -0.4η20 + 0.4η0 - 1.1
3 -12.9η20 - 117.8η0 - 415.9 -8.7η20 - 14.5η0 - 8 -12.9η20 + 49η0 - 134.8

Table 2.5: Showing counterexamples to bounding τ̃0. Each equation is wα(η0), and
the middle column represents both the unbounded version and the center region while
bounding. The left- and the right-asymptotics are with the bounding. Bounding does
not induce the coefficient on the squared term to be positive, and thus does not stop
infinite confidence regions.

2.6.4 Underfitting and Overfitting in the First Stage

We’ve shown that fitting the first stage model well is important to being able to

identify the additional treatment effect of the predicted response to control, if any.

We now examine the effects of over-fitting on the first stage.

To start, we fix n = 100 and q = 7. However, when generating Y , we allow only

the first four coefficients to be non-zero, hence p = 4. This allows us to compare three
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difference models,

Y = β1X1, (2.71)

Y =
4∑
j=1

βjXj, (2.72)

Y =
7∑
j=1

βjXj. (2.73)

Clearly, the first model is underfit and the last model is overfit, while the middle

model is an oracle model. We draw τ and η randomly, to disallow coverage being

affected by the specific choices of τ and η. We repeated the above 1,000 times. In

Table 2.6 we show overall coverage in each model and Table 2.7 shows the distribution

of the shapes of the confidence region by model.

Underfit Oracle Overfit
Coverage 97% 96% 95%

Table 2.6: Coverage of confidence regions based upon (2.71), (2.72) and (2.73) re-
spectively, regardless of the shape of the confidence region.

Underfit Oracle Overfit
Continuous 80% 98% 99%

Disjoint 20% 2% 1%

Table 2.7: Percentage of each type of confidence region found in simulation with each
version of the model.

There are two notable conclusions to draw from this simulation.

First, underfit models in the first stage yield a slightly conservative coverage com-

pared to oracle and overfit models. This is likely related to the extremely large

percentage of infinite confidence intervals, which have no chance of rejecting the null

hypothesis.

Secondly, within the restrictions on the dimension of q in Section 2.6.2.2, there

is no penalty for overfitting, with equivalent coverage and very slightly less common
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infinite confidence regions. When overfitting beyond the limits of those restrictions,

we did see a lack of proper coverage on other simulations.

2.6.5 Returning to Giné et al. [29]

We return now to our motivating example, the microlending paper Giné et al.

[29]. Recall that in this paper, the authors used an uncorrected PBPH method to

estimate the effect of fingerprinting after stratifying the subjects into quintiles based

upon their predicted loan repayment.

First, we repeat the simulation described in Section 2.3.2, where we split the con-

trol group into faux treatment and control groups. Then, knowing that all treatments

effects are zero on average, we repeated the uncorrected PBPH method and rejected

the null in 69.5% of the runs. In those same runs, utilizing the corrected PBPH

method, we rejected the null in only 11.5% of all runs

Moving away from simulations, we compare the published results with the results

from a corrected PBPH method.

As Table 2.1 cited, the reported coefficient for an interaction term between fin-

gerprinting and a continuous predicted repayment was -0.807 with a standard error

of 0.120. This standard error was the result of a bootstrap estimation procedure,

and involved a model which included club effects (a club being a group of individual

participants who assume joint risk for the loans in exchange for improved rates). Our

results, contained in Table 2.8, directly estimate the standard error, and discards the

club level effect for simplicity, so our results are slightly different than those published.

Estimate S.E. Confidence Interval
Uncorrected -0.896 0.043 (-0.980, -0.812)
Corrected -0.896 0.054 (-0.998, -0.781)

Table 2.8: Comparison of uncorrected and corrected confidence intervals. Results
differ from published results in Giné et al. [29] in Table 2.1 due to simplifying model.

This does not change the results of the paper; with the corrected PBPH we still
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reject the null hypothesis H0 : η = 0.

Notice that the standard error from the corrected method is larger and the con-

fidence interval wider, and the corrected confidence interval is not centered around

the point estimate. Theses are all behaviors predictable by our method; the first two

due to considering the measurement error on the predicted response to control, and

the last due to the creation of a non-Wald-style confidence interval.

2.7 Method Summary

Based upon the proceeding results, we summarize and recommend the following

approach.

The first stage model should predict response amongst the control group only. The

practitioner should strive to fit the first stage model as well as possible. Overfitting,

up to the limits of the rate in Section 2.6.1, is not a concern. If good first stage

model fit cannot be obtained, the conclusion should be that the data is inadequate to

examine any additional treatment effect beyond the average treatment effect or effect

of treatment on the treated.

Once a suitable first stage model is found, use its coefficients to predict the re-

sponse in the absence of control amongst the treatment group members. This Ŷc

can be differenced from Y = Yt, and regressed against Ŷc. After performing this

regression, give proper consideration to the standard error and hypothesis test. Both

should be computed as described earlier in the chapter.

The constant in the resultant second stage model can be interpreted as the main

treatment effect. The coefficient on Ŷc can be interpreted as an additional effect due

to predicted response in the absence of treatment.

Due to the rarity of the disjointly infinite confidence region and the difficulty in

interpretation of such a region, we recommend considering such a result as equivalent

to a continuous infinite confidence interval. This will make coverage very slightly more
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conservative (for example, in one run, coverage increased from 95.4% to 95.7%). We

recommend not generating confidence intervals if the hypothesis test fails to reject,

to help minimize the complications here.

If this recommendation is accepted, the confidence interval can always be consid-

ered continuous. If the confidence interval is wide, a next step should be to strengthen

the first stage. Failing that, the conclusion should be that we can find no significant

evidence of a interaction between treatment effect and predicted response in the ab-

sence of treatment.

We have implemented this suggested methodology in an R package pbph. All

simulations were performed using the pbph function in this package.

2.8 Conclusion

We have introduced an analysis to answer a question which is popular in applied

literature; are those more at risk benefited most by a treatment? After correcting the

standard error calculations, we found that an ordinary Wald-style confidence interval

was not sufficient. Our method considers multiple hypotheses about the parameter of

interest by performing a test inversion, which does lead to a slightly more complicated

approach.

On the other hand, following our generalized score procedure includes several

advantages. First, by not having to resort to a profile likelihood style approach, we

have only a single parameter of interest (η) to consider, instead of a parameter of

interest which is dependent on the nuisance parameter (τ).

Secondly, and related to this, we are not required to fit multiple second stage

regression models, saving substantial computational complexity.

Finally, because we have shown that our test statistic is quadratic (Section 2.6.2.1),

we avoid an exhaustive search over the parameter space as is common in test inversion

settings.
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CHAPTER III

Further Applications of the Peters-Belson with

Prognostic Heterogeneity Method

3.1 Introduction

In Chapter II, we introduced the Peters-Belson with Prognostic Heterogeneity

method. The PBPH method addresses whether an intervention is most effective

amongst those who are most likely to have a negative response in the absence of the

intervention. The PBPH method is a two-stage modification of the Peters-Belson

method. The first stage predicts the response in the absence of treatment using only

control group members; the second stage models the treatment effect as the sum of a

main effect and an additional effect due to the interaction of the treatment indicator

and the predicted response from the first stage. As is common with two-stage regres-

sion procedures, the standard error associated with the estimated coefficients in the

second stage has to account for the measurement error inherent in using a predicted

response from the first stage, which we addressed with the use of a sandwich estima-

tor based upon estimating equations. Following this, we showed the need to generate

a confidence region via test inversion, as a Wald-style confidence interval produced

undercoverage.

We introduce the pbph package implemented in R[55]. The package focuses on
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implementing the second stage, allowing users freedom to create the first stage as de-

sired. We extend the implementation of Sandwich estimators found in the sandwich

package[70] to easily generate correct standard errors. Additionally, we efficiently

implement the generation of the confidence region by test inversion, not requiring

iterating over all possible values of the null hypothesis.

We allow two further complications to the method which the practicing statistician

is likely to encounter.

First, in the previous chapter, the relationship between the response variable Y

and its predictors was considered to be linear, and the error in the model assumed

normal. This led to both stages being fit with linear regression. If Y were for example

binary, we would prefer the first stage to be logistic. We extend our method to allow

this modification by allowing the first stage to be fit with a generalized linear model.

The sandwich package which we extend is generalized to many variations of model,

simplifying this stage.[71]

Secondly, clustered random trials can be used in place of simple random assign-

ment. For example, consider a population of students at a particular school; each

class could be a cluster. Common clusters amongst larger populations include census

tracts or congressional districts. In clustered random sampling, treatment is assigned

at the cluster level instead of the individual level. However, this form of clustering

introduces correlation amongst observations, as units within a cluster are typically

more alike than units across clusters.[28] The traditional method of dealing with clus-

tered standard errors is sandwich estimators.[17] We overload the meat and sandwich

functions from the sandwich package to accept an argument identifying clusters.

3.2 Implementation

To call the main function of the pbph package, pbph, the first stage model must

be fit by the user. This is fit using built-in R functionality, usually the lm function
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(see Section 3.3.1 for the ability to fit the first stage via glm) and should only be fit

on control group members. One of the benefits of the PBPH method is separating

the goal of predicting the response in the absence of treatment from the goal of

estimating any treatment effects. By enabling users to generate their first stage

model fit externally, we allow them to create a model with a sole goal, rather than

attempting to simultaneously also capture the treatment effect. Time and care should

be taken at this step, as the stronger the first stage model fit, the more likely that

the second stage model will be informative. See Section 2.6.3 which examines the

existence of infinite confidence intervals in the presence of poor first stage model fit.

The function pbph takes in three arguments. The first is the first stage model

fit as described. The additional arguments are a data.frame containing the data,

and a treatment indicator (either a variable name inside the data or a vector of the

same number of rows as the data) which assigns a 1 to each member of the treatment

group and a 0 to each member of the control group. pbph follows other methodology

which are elaborations on ordinary least squares, as implemented via lm. Some of

these elaborations use lm explicitly by extending the lm class, such as glm from stats

for generalized linear models [55] or ols from rms for saving design elements from

a linear model [33]. Others could be called spiritual successors to lm as while they

don’t extend lm, their input and output function similar to lm, such as lmer from

lme4 for mixed models [10], coxph from survival for Cox regression [66] or tsls for

two-stage instrumental variable regression from sem [26].

pbph itself is a very simple function. It generates the second stage model and

saves it as an object of class pbph, which contains lm as described above. It returns

the pbph object which contains a few additional pieces of information which are used

in calculating standard errors, performing hypothesis tests and generating confidence

intervals.

Further following along with lm, we do not generate the standard error yet. In-
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stead,it is generated on demand, either when the user wishes to view it via vcov or

when it is needed for calculations, for example in summary (which also performs a

hypothesis test on each parameter) or conf.int to generate confidence intervals.

3.2.1 Standard Error Calculations and Hypothesis Testing

The standard error calculations utilize the existing bread and meat functionality

from the sandwich package. Recall that we treat the bread and meat matrices as

block matrices, each with four blocks. However, the off-diagonal blocks of the meat

and the top right block of the bread were 0, leaving us with five pieces of bread and

meat to calculate.

Both diagonal pieces of the bread are very straightforward, merely the matrix

multiplication of the transpose of the design matrix by itself. In R, this is represented

by

crossprod(x)

For B11, the bread corresponding to the first stage model, x is X, the covariates,

with the first column of 1. In B22, the bread corresponding to the second stage, x is

(1 Xβc), a column for intercepts and a column for the predicted response to control.

Similarly, the blocks of the meat are straightforward, requiring only the extra

step of first generating the estimating function for the data, which is done using the

estfun function of sandwich, prior to performing the matrix multiplication,

crossprod(estfun(x))

The remaining off-diagonal block of the bread requires more attention, both be-

cause its calculation is not as clean and because it has a dependency on η. As a

result, the diagonal blocks need be computed only once, but the off-diagonal bread

block varies with η0. To calculate the hypothesis test of H0 : η = 0, only that null
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needs to be tested, but as seen below, multiple versions of this bread block will be

created when generating a confidence interval.

For the hypothesis test of H0 : η = 0, it is sufficient to generate a test statistic

η̂

σ(η̂)
(3.1)

by the ratio of η̂ and its standard error. As in typical OLS settings, it will be a

t-statistic, using the degrees of freedom from the first stage model.

The same procedure is used for the intercept, interpretable as the average treat-

ment effect when X is at its mean.

3.2.2 Confidence Intervals

The confidence region will be generated by test inversion, where we iterate over

a range of H0 : η = η0, and the confidence region is the set of all η0 such that the

hypothesis fails to reject. The test statistic used is

t(η̂) =
|η̂ − η0|
σ(η̂)

, (3.2)

rejecting H0 when

t(η̂) ≥ t∗1−α/2. (3.3)

By squaring both sides and re-arranging, we obtain an expression which is quadratic

in η̂.

This gives us two benefits. First, rather than iterating over a range of hypothe-

ses, we can test three arbitrary hypotheses, use them to generate the coefficients of

the quadratic curve, and solve the quadratic equation to obtain the bounds of the

confidence region.

Secondly, once we obtain the coefficients of the quadratic, we can easily determine
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the shape and minimum/maximum of the curve. If the curve is convex, we know

the confidence interval must be finite. If the curve is concave and its maximum is

positive, the confidence region is disjointly infinite. If the curve is concave and its

maximum negative, the confidence region is infinite.1

Confidence intervals are obtained by passing a pbph object (the result of a call to

pbph) to confint. It extends confint.lm in input and output.

In Section 2.7, we recommend only considering the confidence interval if the hy-

pothesis test rejects the null. If the hypothesis test in the pbph failed to reject,

confint returns (NA, NA). This can be overridden by passing forceDisplayConfInt

= TRUE. If the confidence interval is disjoint, or if returnShape = TRUE is passed as

an argument, than an additional attribute, shape, is returned taking values of either

finite, infinite or disjoint.

3.3 Additional Complications

We now show the implementation of two additional complications. First, we will

allow the first stage to be a generalized linear model. Secondly, we will allow handling

clustered random trials.

3.3.1 PBPH with GLM First Stage

If we do not assume that the error on a response variable is normally distributed, a

linear model may not be appropriate. Generalized linear models (GLM), which allow

the error to have any exponential family distribution, may be more appropriate. If

the user specifies that the first stage model is a GLM, the second stage remains linear.

If Y is drawn from a particular distribution, there is no reason to assume that Y − Ŷc

needs to also follow the same distribution. By using a linear second stage, we are

1We showed in Section 2.5.4 that a convex curve with positive minimum, corresponding to an
empty rejection region, is not obtainable.
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examining whether the treatment effect is additive. Additionally, there is a practical

consideration. Consider the situation where Y is binary. Despite Y being binary, Ŷc

would almost surely not be, so Y − Ŷc would no longer even be discrete.

For the full derivation, see Appendix B.1. While the derivation should hold for

any GLM with a canonical link, the implementation only allows for a binomial or

Poisson first stage model at this time.

The general implementation does not differ; the calculation of the bread includes

a term for the estimated variance of each observation, so that the calculation of the

bread is

crossprod(x, x * vhat)

where vhat is a vector of estimated variances.

3.3.2 Clustered Standard Errors

Randomization can be performed across clusters instead of individuals. When

individual randomizing is infeasible, it may be more useful to randomize by group

instead. The target population is divided into mutually exclusive groups. Typically,

these groups have some natural definition, such as blocks, schools, cities, etc.[47]

The convenience of clustered random trials is balanced with a loss in precision

and power in a cluster experiment compared to simple random assignment with the

same number of individuals.[21] Members within clusters are likely to be more homo-

geneous than those across clusters, introducing an intracluster correlation. Because

of this intracluster correlation, the effective sample size of a set of clustered data is

diminished, yielding underestimated standard errors.[28]

We do not consider any cluster-level effects, only allowing for the adjustment

needed for intracluster correlation.

Sandwich estimators are a common tool to handle the standard errors in clustered
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data situations. The calculations of the meat are modified to first sum the estimating

functions within each cluster before taking across-cluster variation.[17] To see the full

derivation, see Appendix B.2.

We implement this by overloading the meat function from the sandwich to allow

a cluster argument. The relevant modifications2 are

psi <- sandwich::estfun(x)

if (!is.null(cluster)) {

psi <- aggregate(psi, by = list(cluster), FUN = sum)

}

Additionally, there is need for a finite sample adjustment of the form

S

S − 1
· n− 1

n− p
, (3.4)

where S is the number of clusters, n is the number of observations and p is the number

of parameters in the model.[17] If S = n, where each observation is its own cluster,

this is equivalent to not using a clustered sampling method. Then (3.4) collapses to

n
n−p , which is a common degree of freedom adjustment in regression settings [48] and

the default in sandwich [71].

3.4 Examples

Here we give several examples of implementation of the methodology. Each ex-

ample uses a data set included in the pbph package.

2sandwich is also modified to pass the cluster argument down to meat.
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3.4.1 PBPH with Linear First Stage

The eottest data contains student performance on an exam (“test”), the stu-

dent’s class (“class”, which will be used later in clustering), demographics (“male”,

“gpa”), and participation in an after school program (“afterschool”). We wish to

see whether the after school program is effective, and whether it is more effective on

those who are most likely to fail the test in the absence of any intervention.

data(eottest)

mod1 <- lm(test ~ gpa + male, data = eottest,

subset = (afterschool == 0))

We fit the first stage model on only the control group, which is defined as a 0 in

“afterschool”. The first stage fits very well, which should always be a goal.

Now, we fit the second stage model using pbph.

mod2 <- pbph(mod1, treatment = afterschool, data = eottest)

summary(mod2)

##

## Call:

## lm(formula = test - pred ~ treatment + pred, data = newdata,

## subset = (treatment == 1))

##

## Residuals:

## Min 1Q Median 3Q Max

## -3.2983 -0.9854 -0.2190 0.9647 3.4119

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)
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## treatment 3.3085 0.2592 12.765 <2e-16 ***

## pred -0.4885 0.1137 -2.265 0.0295 *

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.61 on 38 degrees of freedom

## Multiple R-squared: 0.91,Adjusted R-squared: 0.9053

## F-statistic: 192.1 on 2 and 38 DF, p-value: < 2.2e-16

The standard error and associated p-value are computed using the PBPH method.

We can also obtain a confidence interval,

confint(mod2)

## 2.5 % 97.5 %

## treatment 2.7838090 3.83316671

## pred -0.6528415 -0.08992958

confint(mod2, returnShape = TRUE)

## 2.5 % 97.5 %

## treatment 2.7838090 3.83316671

## pred -0.6528415 -0.08992958

## attr(,"shape")

## [1] "finite"

and optionally return the shape of the confidence interval for reassurance.
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3.4.2 PBPH with Logistic Data

Data salesdata can be used to test whether a new sales technique is effective

in increasing sales. The data contains indicators of successful sales (“sale”) and

whether the new technique was randomly chosen to be used (“newtechnique”), and

some information about the salesperson (“experience” and “previousales”).

Since the response in binary, the first stage model is a logistic regression model.

data(salesdata)

mod1 <- glm(sale ~ experience + previoussales, data = salesdata,

subset = (newtechnique == 0), family = binomial)

Regardless, the second stage is fit the same

mod2 <- pbph(mod1, treatment = newtechnique, data = salesdata)

summary(mod2)

##

## Call:

## lm(formula = sale - pred ~ treatment + pred, data = newdata,

## subset = (treatment == 1))

##

## Residuals:

## Min 1Q Median 3Q Max

## -0.3167 -0.2551 -0.1908 -0.1570 0.8309

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## treatment -0.20296 0.03878 -5.234 1.66e-07 ***

## pred -0.82498 0.15642 -2.292 0.0237 *
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## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 0.4196 on 117 degrees of freedom

## Multiple R-squared: 0.3477,Adjusted R-squared: 0.3365

## F-statistic: 31.18 on 2 and 117 DF, p-value: 1.402e-11

The conclusion is that the new sales technique lowers the odds of a resultant sale,

but that effect is strongest (most negative) on those most likely to have made the

sale using the old technique. In other words, the new technique may assist poor

performing or newer salespeople, but those with a proven track record are unlikely to

be assisted.

3.4.3 Clustered Data

We return to the student test data. The data can be thought of a clustered

random trial, where classrooms were assigned to the after school program instead of

individual students. Very little modification is needed to enable this.

mod1 <- lm(test ~ gpa + male, data = eottest,

subset = (afterschool == 0))

mod2 <- pbph(mod1, treatment = afterschool, data = eottest,

cluster = class)

summary(mod2)

##

## Call:

## lm(formula = test - pred ~ treatment + pred, data = newdata,

## subset = (treatment == 1))
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##

## Residuals:

## Min 1Q Median 3Q Max

## -3.2983 -0.9854 -0.2190 0.9647 3.4119

##

## Coefficients:

## Estimate Std. Error t value Pr(>|t|)

## treatment 3.3085 0.1325 24.979 < 2e-16 ***

## pred -0.4885 0.0777 -4.446 7.7e-05 ***

## ---

## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

##

## Residual standard error: 1.61 on 38 degrees of freedom

## Multiple R-squared: 0.91,Adjusted R-squared: 0.9053

## F-statistic: 192.1 on 2 and 38 DF, p-value: < 2.2e-16

confint(mod2)

## 2.5 % 97.5 %

## treatment 3.0403521 3.5766236

## pred -0.6302728 -0.3086221

Note that the estimate of the interaction coefficient does not change, but we

properly compute the standard error.

3.5 Simulations

We include some simulation results to show the validity of these extensions.
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3.5.1 Logistic first stage

To examine the generalized linear model first stage extension, we focus on a com-

mon variation, that of a logistic first stage.

3.5.1.1 Data Generation

The covariates X are generated randomly from N(0, 1), X ∈ Rn×q. We use n =

100 and n = 1,000 for smaller and larger sample situations. We use q = 7 and q =

17 for n = 100 and n = 1,000 respectively, due to the rule of thumb we developed

in Section 2.6.2.2. q describes merely the dimensions of the generated X, and it can

(and often will be the case) that the response Y is generated by a data generating

matrix of dimension n× p, which is a subset of X, such that p < q. This distinction

is why we use q to represent the dimension of X and p to represent the dimension of

the data generating matrix.

βc in the first stage model are drawn from N(0, 1), with some q−p of the βc forced

to 0 to add some noise.

The choice of second stage model parameters τ and η require a bit more finesse

than in the linear first stage case. In those cases, the only restriction on these pa-

rameters in a simulation was that η ∈ (−1, 2), those values being chosen to restrict

attention to models where the relationship between X and Yc and between X and Yt

are similar.

However, in the cases where the response in the not normally distributed and

the first stage is a generalized linear model, there are additional restrictions upon η

and τ . Unlike the linear-linear restrictions (where an estimate of η outside of (−1, 2)

might indicate that there are additional model complexities that the method does not

address), these restrictions are purely mathematical.

Consider the case where Y is binary and the first stage model is logistic. In this

setting, Ŷc = logit−1(Xβ̂c) and the left hand side of the second stage model, Yt − Ŷc,
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Figure 3.1: Possible values of η and τ . The light green and light blue represent
the two regions described in the text whose union covers mapping of some values
of logit−1(Xβ̂c) to [−1, 1], and the red represents their intersection which maps all
values of logit−1(Xβ̂c) to [−1, 1] .

is restricted to [−1, 1]. For example, we cannot have that τ = 1.5 and η > 0, as then

for all values of Ŷc ∈ [0, 1], the right hand side never maps to [−1, 1]. If τ = 0.5

and η = −0.4, then all values of Ŷc ∈ [0, 1] maps the right hand side into [−1, 1].

There are some cases with partial successful matching, for example, if τ = −0.25 and

η = 0.5, then Ŷc ∈ [0, 0.5) does not map into [−1, 1] while Ŷc ∈ [0.5, 1] does.

There are two regions of interest in defining, in the logistic case, feasible values

of the parameters, {τ ≥ 0, η ≤ −τ} and {τ ≤ 1, η ≥ −1 − τ}. The union of those

two regions corresponds to values of η and τ where some values of Ŷc ∈ [0, 1] map to

[−1, 1]. The intersection of those regions corresponds to values of η and τ where all

values of Ŷc ∈ [0, 1] map to [−1, 1]. This is visually represented in Figure 3.1.
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Finally, we generate success probabilities for each individual using

ρi = logit−1(−Xiβc) + τ × Z + η × Z × logit−1(−Xiβc). (3.5)

In the control group, Z = 0 and ρi = logit−1(Xiβc). When Z = 1 in the treatment

group, we have the additional additive effects. We truncate values of ρi above 1 or

below 0. From this, we generate Yi from Bern(ρi).

3.5.1.2 Simulation Results

We generate values of η and τ which fall within the regions described above,

and run 1,000 repetitions each, generating a coverage percentage. These coverage

percentages are plotted in Figure 3.2 for n = 100 and Figure 3.3 for n = 1,000.

The red area, where values of τ and η map all values of logit−1(Xβc) into [−1, 1],

shows proper coverage which is slightly conservative. However, the blue and green

areas, where values of the parameters map some values of logit−1(Xβc) into [−1, 1],

shows poor coverage, a problem which is exacerbated with the larger n. This suggests

the need to be very careful if η̂ and τ̂ fall outside of the red area, as the type I error

will be large.

3.5.2 Clusters

Data generation follows Section 3.5.1.1 with a few modifications. Following the

notation of Section B.2, let each of n observations belong to exactly one of S clusters

and ns observations belong to cluster s. Due to the intracluster correlation discussed

in Section B.2, we require a larger sample size to obtain similar power to the non-

cluster version.[31] In practice, we will use S = 10 and 100 and n = 1,000 and 4,000,

examining all four pairings, to see the difference in effect of the size of S versus

the effect of the size of n. We randomly assign observations to a cluster with equal
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probability, so that E(ns) = n/S. With equal probability of assigning each cluster to

treatment or control, we have E (
∑
Zi) = n/2, so we use q = 13 and 22 for n = 1,000

and 4,000 respectively, again following the rule of thumb from Section 2.6.2.2. We do

not include any cluster-level effects.

For choices of η and τ , the addition of clusters does not affect results from the

most basic case, so we merely limit η to (−1, 2).

3.5.2.1 Cluster Simulation Results

For each combination of (S, n) ∈ {(10, 100)× (1000, 4000)}, we run 1,000 replica-

tions as described above and examine coverage. The results are plotted in Figure 3.4.

With the largest configuration, we see proper 95% coverage. As S or n decrease, the

coverage drops. The effect of S decreasing is much more substantial. Since shrinking

n has a very minor impact, we can interpolate implying that the size of E(ns) also

plays a small role.

An additional note is that because n is so large in these simulations, the bias we

observed in the linear variation of the corrected PBPH vanished.

3.5.3 Revisiting Giné et al. [29] with Clusters

We revisit Giné et al. [29], the paper which motivated this work (see Section

2.3). The authors performed an uncorrected PBPH method to determine whether

fingerprinting farmers applying for loans in rural Malawi improved repayment rates,

and whether the improved repayment was greatest for those most likely to default.

The paper found affirmative answers to both questions.

In Section 2.6.5, we re-analyzed their results using the corrected PBPH and con-

firmed their results, with the caveat that the confidence interval we generated almost

covered -1. An interaction coefficient of -1 would indicate that there is no relationship

between the potential responses.
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In Giné et al. [29], the unit of randomization was not farmer but “club”, a col-

lection of farmers who share risk. We ignored this complication in Section 2.6.5, but

with the addition of allowing clustered randomized trials, we can include the clubs.

The results are shown in Table 3.1.

Estimate S.E. Confidence Interval
Uncorrected -0.896 0.043 (-0.980, -0.812)
Corrected -0.896 0.054 (-0.998, -0.781)

Corrected w/ Clusters -0.896 0.109 (-1.110, -0.635)

Table 3.1: Comparison of uncorrected and corrected confidence intervals, adjusting
for clustered randomized trials.

With proper handling of the clubs, we now see a confidence interval that does

cover -1. This suggests the need to revisit results, as no relationship between potential

responses is a negative result.

3.6 Conclusion

We demonstrate the implementation of the PBPH methodology by introducing

the pbph package. The package enables users to easily fit the second stage model

which will correct the standard error to account for the two-stage modeling setting.

Following this, we demonstrated two embellishments on the methodology which

the working statistician may encounter. First, we generalize the method to account

for non-normal residuals by allowing the first stage model to be a generalized linear

model, for example logistic regression for binary data. Additionally, we allow the

analysis of data generated via clustered random trials, by correctly computing the

standard errors accounting for the clusters.

Simulations allowed the exploration of nuances of these methods. We showed the

restrictions on the coefficients that exist with a logistic first stage, as well as discussed

some heuristics for the sample sizes needed to obtain adequate coverage with clustered
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data. Finally, we showed the implementation of both these embellishments on Giné

et al. [29].

Together, these enhancements to the PBPH methodology offer a nice set of flexi-

bility to the working statistician which shows the strength of our methodology, though

of course, further enhancements are possible.
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CHAPTER IV

Enabling Linear Treatment Effects with a Binary

Response

4.1 Introduction

When examining the treatment effect with a binary response, typically used mod-

els are general linear models with a logistic link function or conditional logistic re-

gression. While there are several reasons to prefer these models over linear regression

models [22], one side effect is that the treatment effect is forced to be linear on the

logit scale. In other words, the treatment effect is multiplicative on the probability

scale - the scale which usually has the easiest interpretation.

We examine methods to test whether a treatment effect on a binary response

is linear on the logit scale or linear on the probability scale. Rather than fitting a

single linear model, which would additionally force all predictors to be linear on the

probability scale, we use a two stage least squares procedure, where the first stage

is logistic and the second is linear. The second stage contains only the effect of

treatment, while the first contains all other predictors.

We further show that by comparing the linear second stage vs a logistic second

stage, choosing the model which minimize the expected risk function based upon logis-

tic loss can help determine which linearity scale more closely captures the treatment
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effect.

Another common feature of treatment effect analysis is stratification of the obser-

vations, for example through matching. In these settings, conditional logistic regres-

sion is a common approach (given the inconsistency of ordinary logistic regression

with stratum fixed effects [2]). We first show how by fitting two slightly different

two-stage logistic regression models, we can examine whether there is evidence that

the treatment effect may be linear on the probability scale. If that evidence exists

– and in some cases even if it does not – then a similar two-stage approach can be

taken with a logistic first stage and a linear second stage. We ultimately recommend

using weighting in the second stage to account for the strata as opposed to conditional

logistic regression or fixed effects.

Section 4.2 will examine the setting with no strata, examining the difference be-

tween the scales in detail in Section 4.2.3 and choosing the model in Section 4.2.4.

Section 4.3 shows simulation results.

In Section 4.4 we turn to the setting with strata, showing both using conditional

logistic regression to gain evidence towards what scale the treatment effect is linear

on in Section 4.4.2, and the modifications to the two-stage procedure to account for

the strata in Section 4.4.3.

Finally, we apply our results to Gurm, Hosman, Share, Moscucci, and Hansen [32]

in Section 4.5.

4.2 Linear vs Logistic

4.2.1 Logistic Regression

In general, there are numerous valid reasons to prefer a logistic regression model

over a linear model when Y is binary. For example, in linear regression, the restriction

that Ŷ ∈ [0, 1] is not enforced, extrapolation is more hazardous than usual, and we
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know the response distribution is non-normal so the residuals will be incorrectly

modeled. These restrictions are discussed in length in numerous sources, for example

Agresti [2] or Cox and Snell [22].

Logistic regression models address these concerns and enable a more robust anal-

ysis of the data. It is important to note that the methods we are proposing are not a

framework for considering a logistic vs linear model in a general setting; rather we are

restricting ourselves to the setting where the predictor of interest is Z, the treatment

indicator. There can be other predictors X, but they must be modeled in a first stage

to that the relationship between Y and X remains firmly in the logistic framework.

A second benefit of the two-stage approach is separating the tasks of modeling

the relationship between the response and its predictors from the task of modeling

the treatment effect. A one-stage model which includes both X and Z must address

both issues simultaneously.

4.2.2 Loss and Risk Functions

Regression can be thought of as a process to find a function f(X) which minimizes

some risk function for the prediction error from predicting Y with Ŷ = f(X). For

example, in linear regression, f(X) = Xβ. The risk function is the expected value of

a loss function, which is any function L(Y, f(X)) which has properties

L(Y, Y ) = 0,

L(Y, f(X)) ≥ 0.

(4.1)

Our treatment of loss and risk is somewhat informal; more formal discussion

appear in literature such as statistical decision theory (e.g., Keener [43, Ch. 11],

Hastie, Tibshirani, and Friedman [34, Ch. 2, 7]) and classification problems (e.g.,

Bartlett, Jordan, and McAuliffe [8], Freund, Schapire, Singer, and Warmuth [27]).

There are different choices for the loss function over which to optimize the choices
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of f(x). Linear regression is usually solved with the least squares method which uses

the quadratic loss function,

(Yi − f(Xi))
2, (4.2)

whose risk (expected loss) can be estimated by

1

n

∑
i

(Yi − f(Xi))
2. (4.3)

It is possible to fit linear regression with other loss functions; another common

example is least absolute difference, which can be more robust than least squares, but

admits multiple solutions.[43, 44]

For binary outcomes, there are many choices of loss functions motivated by classi-

fication problems such as 0/1 loss, hinge loss, or boosting loss.[15] Logistic regression

performs by minimizing the logistic loss function,

− Yi log(f(Xi))− (1− Yi) log(1− f(Xi)), (4.4)

with a similarly defined estimated risk.

In addition to minimizing these loss functions to fit the regression models, the loss

functions can be used for model selection. Consider two competing regression model,

the first with predictors X(1) and the second with predictors X(2). Then we choose

the first model only if

∑
i

(Yi −X(1)
i β̂(1))2 <

∑
i

(Yi −X(2)
i β̂(2))2. (4.5)

However, if Y is binary and we are comparing a linear and logistic model, the

decision criterion is not as clear, as the loss function fitting each model is different.

As we stated earlier, we are not offering a general solution. However, in the limited

setting where our goal is to determine whether a treatment effect is linear on the logit
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scale or linear on the probability scale, we will present evidence from simulations that

using the logistic loss function, (4.4), is superior to the quadratic loss function in

the sense that it more commonly chooses the model which is based upon the data-

generating model.

4.2.3 Treatment on Probability or Logit Scale

To see the difference of a treatment effect on the two scales, lets take a simple

example. This toy example will be represented in a one-stage model for ease of

understanding, while our method relies on the two-stage variation.

Let there be binary response Y , treatment indicator Z and some grouping variable

G with two categories. Say the true conditional probabilities are

P (Y = 1|Z = 0, G = 1) = .05, (4.6)

P (Y = 1|Z = 0, G = 2) = .50, (4.7)

P (Y = 1|Z = 1, G = 1) = .15. (4.8)

The remaining true conditional probability, P (Y = 1|Z = 1, G = 2), will obviously

have different values depending on the true model. If the true model is linear,

P (Y |Z,G) = α11G=1 + α21G=2 + Zτ, (4.9)

then we have that

τ = P (Y = 1|Z = 1, G = 1)− P (Y = 1|Z = 0, G = 1) =

P (Y = 1|Z = 1, G = 2)− P (Y = 1|Z = 0, G = 2).

(4.10)

In other words, the effect of the treatment on the probability scale is constant
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across the groups of G. Therefore,

P (Y = 1|Z = 1, G = 2) = .60. (4.11)

On the other hand, if the true model is linear on the logit scale (i.e. a logistic

regression model),

logit (P (Y |Z,G)) = α11G=1 + α21G=2 + Zτ, (4.12)

then (4.10) no longer holds as linearity of the treatment effect exists only on the logit

scale. In this setting, the remaining conditional probability would be

P (Y = 1|Z = 1, G = 2) ≈ .77. (4.13)

A visual representation of this is included in Figure 4.1.

4.2.4 Model comparison

In the simple set-up discussed in Section 4.2.3 where the only additional predictor

is binary, we can choose between (4.9) and (4.12) simply by comparing the slope

defined by the observed responses to treatment versus the observed responses to

controls. If there is a significant difference between them, that can be considered

evidence that linear model on the probability scale, (4.9), is unlikely. However, if the

predictors are of higher dimension, the analysis gets much more complex. We will

address this comparison by minimizing an expected risk function.

The use of risk functions in model selection is not novel, for example using the

mean-squared error in cross-validation.[56] Let Y be the observed response that we

are attempting to predict, and let Ŷ = f(X,Z) be some prediction obtained by a

regression model. In our framework, this model can be logistic or linear; if it is linear,
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replace values of Ŷ outside of [0, 1] with the closer of {0, 1}, to mimic the general

understanding of out-of-range predictions. We can estimate the overall risk by the

average risk in the sample, for example using the quadratic loss function (4.2),

R̂quad(Y, Ŷ ) =
1

n

n∑
i=1

(Y − Ŷ )2. (4.14)

This is known as the predictive risk.[25] Because we are restricting the response

Y ∈ {0, 1}, the quadratic loss simplifies to

Y (1− Ŷ )2 + (1− Y )Ŷ 2. (4.15)

The risk using the logistic loss function, (4.4), can be similarly defined as

R̂log(Y, Ŷ ) =
1

n

n∑
i=1

(
−Y log(Ŷ )− (1− Y ) log(1− Ŷ )

)
. (4.16)

As we show below in Section 4.3.2, if we choose between a linear or logistic second

stage model which minimizes R̂log(Y, Ŷ ), we can gain evidence as to on which scale

the linearity of the treatment effect is more closely aligned.

4.3 Simulations

4.3.1 Data Generation

Let there be some predictor X of response Y ∈ {0, 1}. We have Z ∈ {0, 1}

representing membership in a control and treatment group respectively. The goal is

to fit a two step model, where the first step is a logistic model fit only on the control

group,

logit
(
E(Yc|X)

)
= α0 + β0X. (4.17)

Then Ŷc is the predicted response to control. In the second stage, we wish to
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determine whether the effect of treatment is additive (on the probability scale) or

multiplicative (additive on the logit scale). The two comparison models are

E(Y |Z, Ŷc) = β1Z + Ŷc, (4.18)

for additive in the probability scale, and

logit
(
E(Y |Z, Ŷc)

)
= β2Z + logit

(
Ŷc

)
, (4.19)

for additive on the logit scale.

We will draw X ∼ N(0, 1). If β0 is close to 0, then Ŷc will have little variation,

and differentiating between (4.18) and (4.19) is difficult. Additionally, differentiating

between models will be difficult if the treatment effect (β1 or β2) is small. To visualize

this, see Figure 4.2. As β2 decreases, the logistic model fit becomes closer to linear,

and differentiating the two models is difficult. However, as β2 increases, the difference

between the models is easier to detect.

4.3.2 Results

We compare the two risk functions, (4.14) using the quadratic loss function and

(4.16) using the logistic loss. We then define the decision criterion to choose (4.18) if

the risk associated with (4.18) is smaller than (4.19).

The results across varying values of β1 and β2 are in Figure 4.3.

As we can see from the results, the logistic risk function outperforms the quadratic

risk function in choosing the correct scale for the treatment effect. Therefore we

recommend using a risk function with logistic loss.
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4.4 Linear vs Logistic, with Stratification

4.4.1 Conditional Logistic Regression

Conditional logistic regression is a modification to logistic regression which enables

controlling for parameters in the model without needing to estimate coefficients for

them. The likelihood is evaluated conditional on realized values of sufficient statis-

tics corresponding to these unwanted parameters, and the resulting quasi-likelihood

function is then maximized to find estimates for the remaining parameters.

Let our response be Y ∈ {0, 1}n. Let X ∈ Rn×p be a set of predictors including a

constant column for the intercept, and let U ∈ Rn×q be a set of unwanted predictors

that need to still be controlled for. These U can generally be any set of predictors,

but in this context we will consider them to be fixed effects for strata or matched

sets. The logistic model would be

logit
(
E(Y |X,U)

)
= Xβ + Uγ, (4.20)

with β ∈ Rp and γ ∈ Rq.

If n >> p + q, this model is sufficient; and we can maximize the likelihood of

(β, γ) to obtain (β̂, γ̂).

However, if q is large, we run into issues. If n ≤ p+q, the model is under-specified.

In general, as p+q increases relative to n, the performance of the maximum likelihood

solution is poor.[2, Ch. 6]

If γ is not of interest, we can condition the likelihood of (β, γ) on the sufficient

statistics for U . The conditional likelihood lacks dependence on γ, but can otherwise

be maximized in the same fashion to obtain β̂′. See Agresti [2] or Hosmer and

Lemeshow [38], amongst others, for a fuller discussion of conditional logistic models.
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4.4.2 Evidence for Linear in Probability

The model for a conditional logistic regression approach where matched sets pro-

vide the strata can be expressed by

logit
(
E(Y |X,Z,C)

)
= Xβ + Zτ + Cγ, (4.21)

where Y is a binary response, X is some design matrix of dimension n× p including

a column of 1’s for the intercept, C is the set of indicators for strata membership and

Z is treatment status. As described in the previous section, by conditioning on the

sufficient statistics for the strata membership, we obtain estimates for (β, τ) without

estimating γ.

In this setting, the effect of Z is linear only in the logit scale, and multiplicative

in the probability scale. To visualize this, consider Figure 4.4, which plots the rela-

tionship between θ and its inverse logit, F (θ). If θ is near 0, an increase of 1 on the

logit scale is equivalent to a shift about 0.23. If θ is near 3, an increase of 1 on the

logit scale is equivalent to only a shift of about 0.03.
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If the treatment effect is multiplicative in the probability scale (additive on the

logit scale), then this is acceptable. However, we may ask whether the treatment

effect may be additive on the probability scale. To attempt to gain some evidence

towards this end, we begin with conditional logistic model, under the assumption

that researchers faced with stratified data and binary response will be very likely to

use it for their first analysis.

Let Ȳs be the average response (or proportion of 1 responses) in strata s. Ȳs is

a natural estimate of P(Y = 1|S = s). We have that F ′(θ) = F (θ) (1− F (θ)). For

observation i in strata s, let

λis = 1/
(
Ȳs(1− Ȳs)

)
, (4.22)

so that λis decreases as Ȳs moves towards .5. Multiplying Z with λ up-weights the

treatment effect in strata with Ȳs closer to 0 or 1, roughly rendering the effect from

linear on the logit scale to linear on the probability scale. (Note that λis = λjt if

s = t, e.g. that i and j belong to the same strata.) Let λis = 0 if Ȳs ∈ {0, 1} as these

strata offer no within strata information. We define a new conditional logistic model,

logit
(
E(Y |X,Zλ,C)

)
= Xβ + (Zλ)τ ′ + Cγ. (4.23)

However, we have entered circular logic, as Ȳs is what we are trying to avoid

estimating by using conditional logistic regression. Because we are assuming the

strata are created via matched samples (as opposed to another common use of strata,

with a stratifying variable such as gender), the number of strata increases with the

sample size, so we gain no further information about any individual Ȳs as the sample

size increases.

If instead of conditional logistic regression, we used two logistic stages, we could

introduce the (Zλ) term and compare. Assume for the moment that no adjustment
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for the strata were required (we will relax this assumption in the following section).

We fit a first stage on only the control group members where Zi = 0 of

logit
(
E(Yc|X)

)
= Xβ, (4.24)

and then two different second stage models on the entire data set, after getting the

predicted response in the absence of treatment on the logit scale, logit(Ŷc),

logit
(
E(Y |Z, Ŷc)

)
= Zτ + logit(Ŷc), (4.25)

logit
(
E(Y |Zλ, Ŷc)

)
= (Zλ)τ + logit(Ŷc). (4.26)

Note that there is no coefficient on the predicted response in the absence of treat-

ment, which we will refer to as an offset.

The treatment effect is up-weighted as Ȳs moves away from .5. Therefore, equal

increases on the probability scale will be more closely equivalent on the logit scale

as well. If (4.25) outperform (4.26) in some sense (for example, minimizing the

risk function associated with logistic loss as discussed in Section 4.3.2), then this is

evidence that the treatment effect is linear on the logit scale, and the conditional

logistic model is sufficient.

On the other hand, if (4.26) outperforms (4.25), then the treatment effect may be

linear on the probability scale, and our two-stage approach can address that.

4.4.3 Modeling Linear Treatment Effect with Stratification

If, after following the recommendation in the previous section, there is evidence

that the treatment effect is linear on the probability scale, we can examine the treat-

ment effect more precisely using a linear second stage model. The first stage remains

logistic, as it would be preferable to model the relationship between the binary re-

sponse and the predictors X on the logit scale, regardless of the effect of treatment.
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In the first model, as we have been doing, we fit

logit
(
E(Yc|X)

)
= Xβ (4.27)

amongst the control group only where Zi = 0, to predict response in the absence of

treatment. The second stage model is now linear, using the predicted values Ŷc =

logit−1
(
β̂X
)

as an offset.

E
(
Y
∣∣∣Z, Ŷc) = Zτ + Ŷc. (4.28)

τ is the estimated effect of treatment on the probability scale.

We now consider adjustments to the model to account for the stratification. To

start, we can include fixed strata effects,

E
(
Y
∣∣∣Z, S, Ŷc) = Zτf + Sκf + Ŷc, (4.29)

where S is a matrix of indicators of strata membership. This is a very straightforward

model to fit, and enables discussion of strata level effects.

As an alternative, consider weighting. Let Si be the strata membership of obser-

vation i. Define δ,

δi =


∑
j:Sj=Si

Zj∑
j:Sj=Si

1
, Zi = 1,∑

j:Sj=Si
(1−Zj)∑

j:Sj=Si
1

, Zi = 0.

(4.30)

That is, δi is the proportion of observations in the strata which observation i

belongs to which have the same treatment status. Note that if observations i and j

have Si = Sj and Zi = Zj, then δi = δj. When strata are sets created via matching,

Rosenbaum [57] argues that the unconditional probability of Zi = 1 within strata is

constant, and extends this to the probability conditional on the size and structure of

the matches, a claim which requires strong ignorability.[57]
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In other words, δi is an estimate for the probability that an observation was

assigned to treatment status Zi in strata Si.

Now, let wi = δ−1i /
∑

j δ
−1
j be the normalized inverse and treated as weights, then

(4.28) (adding a subscript of w to τ to distinguish) becomes a weighted least square

model. The estimate for τw is a Hajek-style estimate of the treatment effect (see

Appendix C.1 for derivation),

τ̂w =

∑
iwiZi(Yi − Yci)∑

iwiZi
. (4.31)

In a true Hajek-style estimate, wi would represent estimated probability of inclu-

sion in the sample.[9]

If the effect of treatment is constant across strata, then τ̂f and τ̂w are both es-

timates of that constant treatment effect. However, if the treatment effect is not

constant across strata, then τ̂f from the fixed effects model will instead of estimat-

ing some weighted average of the strata-specific treatment effects. A benefit of the

weighted approach is that τ̂w remains a consistent estimate of an average treatment

effect regardless of whether the treatment effect is constant.

As is common in two-stage least squares procedures, special consideration must be

given to standard error attached to τ̂w. If the two stage least squares is done manually,

the standard error associated with the second stage which utilizes traditional one-

stage fitting procedures with Ŷc in place of Yc will be negatively biased, as they do

not consider the measurement error on Ŷc introduced by the first stage.[68] This can

be addressed with sandwich estimators.

We can reframe (4.28) slightly to ease calculations. Since we are estimating the

effect of the treatment on the treated, we can restrict our attention to the cases where

Zi = 1. Then (4.28) simplifies to

E
(
Y
∣∣∣Ŷc) = τw + Ŷc. (4.32)
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The τw from this this model has the same value and interpretation as τw from

(4.28). By default, the standard error associated with it will differ, but in either case

we will use sandwich estimators to correctly compute it.

Following the derivation in Appendix C.2 and replacing Yc with logit−1(Xβc), the

second stage model has estimating equations

ψ(Yi, βc; τw) = wi(Yi − logit−1(Xiβc)− τw). (4.33)

Following the derivations in Appendix B.1.2, we have that the bread are defined

as

B11 = E
∑
i:Zi=0

XiX
′
i

exp(Xiβc)

(1 + exp(Xiβc))2
, (4.34)

B12 = 0, (4.35)

B21 = E
∑
i:Zi=1

wiX
′
i

exp(Xiβc)

(1 + exp(Xiβc))2
, (4.36)

and

B22 = E
∑
i:Zi=1

wi =
1

2
. (4.37)

To see why B22 simplifies, let ns be the number of observations and nzs be the

number of treated members in strata s. We can rewrite δi as nzs/ns and (1−nzs)/ns

(for observation i in strata s) when Zi = 1 and 0 respectively. If we consider δ−1 and

sum over all treated members, each strata will contribute nzs identical additive com-

ponents, so that
∑

i:Zi=1 δ
−1 =

∑
s
ns
nzs
nzs = n. A similar calculation when summing

over control members yields
∑

i:Zi=0 δ
−1 = n. Hence the sums of w over control and

treatment are identical (and sum to 1 by definition).
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The meat is

M11 =
∑
i:Zi=0

Var
(
Yi − logit−1(−Xiβc)

)
XiX

′
i (4.38)

which is estimated by

M̂11 =
∑
i:Zi=0

(
Yi − logit−1(−Xiβc)

)2
XiX

′
i, (4.39)

and

M22 =
∑
i:Zi=1

Var
(
wi
(
Yi − logit−1(Xiβc)− τw

))
(4.40)

estimated by

M̂22 =
∑
i:Zi=1

w2
i

(
Yi − logit−1(Xiβc)− τw

)2
. (4.41)

To see why M̂22 drops the expectation squared, note that in weighted least squares,

the expected value of weights times residuals is zero. We obtain a final estimate of

σ̂2
wls = 4

(
M̂22 + B̂21B̂

−1
11 M̂11B̂

−T
11 B̂

T
21

)
. (4.42)

4.4.4 Ignoring the Decision Criterion

There are situations where the choice of a linear or logistic model may be based

upon desired properties of the treatment effect estimate rather than the decision

criterion we describe in Section 4.4.2.

When the second stage is a linear model, the coefficient on treatment status Z

is a consistent estimate of the average treatment effect, and if the second stage is

weighted (as we recommend in Section 4.4.3), then it is a consistent estimate of the

weighted average treatment effect.[5] This holds regardless of whether the treatment

effects are linear on the probability scale. This same property does not hold for the

logistic second stage model.

On the other hand, if the second stage is logistic, we can benefit from the re-
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versibility of an odds ratio. If, for example, data are collected from a case-control

study, disease rates given exposure cannot be estimated. However, since we do obtain

estimates of exposure given disease rates, and the odds ratios for those two condi-

tional odds are equivalent.[61, Ch. 2] A similar property does not exist for a linear

second stage model.

4.5 Applied Example

We now re-examine the results of Gurm et al. [32]. In the paper, the authors are

examining whether vascular closure devices (VCDs) can reduce the risk of vascular

complications after arterial access. After matching those with VCDs and those with-

out, the authors estimate the effect of the usage of VCDs on the existence of vascular

complications by way of a conditional logistic regression model, conditioning on the

matched sets. The results show a statistically significant reduction of the odds of a

vascular complication, with an odds ratio of 0.78.

4.5.1 Detecting Treatment Effect on Linear Scale

The published results show that the effect of VCD usage is linear on the logit

scale. The authors, not being aware of our recommendations in this work, do not ask

whether the treatment effect might be better modeled by linear on the probability

scale.

We first implement our recommendations in Section 4.4.2, comparing second-stage

models based upon (4.26) and (4.25). Let Y be the binary response of a vascular

complication, let X be an n× p matrix of covariates (such as a constant column for

the intercept, prior congestive heart failure and the hospital in which the procedure

was performed), and let Z be the treatment indicator, the use of a VCD. The first-

stage model is

logit
(
E(Y |X)

)
= Xβ. (4.43)

93



The second stage models introduce λ from (4.22). Then, the new models are

logit
(
E(Y |Z, Ŷc)

)
= Zτ + logit(Ŷc), (4.44)

logit
(
E(Y |Zλ, Ŷc)

)
= (Zλ)τ + logit(Ŷc). (4.45)

We compare model fits, following our advice from Section 4.3.2 and using the

estimated risk function based on logistic loss as the selection criteria. The results

are shown in Table 4.1. Therefore there is evidence that the treatment effect may be

better served by linearity on the probability scale.

(4.44) (4.45)
Estimated Risk 0.0917 0.0808

Table 4.1: Estimated risk based upon logistic loss for model (4.44) versus (4.45). The
estimated risk is lower for the second model, suggesting that the treatment effect
might be better modeled with a linear effect in probability.

4.5.2 Two-stage model

Now that we have evidence that the effect of treatment may be well fit as linear

on the probability scale, we will use the suggestions of Section 4.4.3.

Continuing with the first stage model (4.43), we fit a linear second stage model,

E
(
Y
∣∣∣Z, Ŷc) = Zτ + Ŷc, (4.46)

computing the standard error as described in (4.42). We have that τ̂ = −0.002 with

standard error 0.0019. This is no longer significant. Further study could examine

whether this approach lacks power compared to the conditional logistic model.
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4.6 Conclusion

When dealing a binary response and studying treatment effect, typical analysis

methods will force the treatment effect to be linear on the logit scale, or multiplicative

on the probability scale. Using two-stage regression models, we introduce methodol-

ogy to enable fitting the treatment effect linearly on the probability scale, while the

relationship between response and other predictors remains on the logit scale. We

showed that using the estimated risk based on logistic loss can yield a decision criteria

to determine upon which scale the treatment effect is linear.

For stratified data, specifically matched sets, accounting for the stratification with

binary response is typically handled with conditional logistic regression. We offer a

two-stage alternative, which accounts for the strata via inverse probability weight-

ing in the second stage. This two-stage approach enables an easier interpretation of

interaction terms. Additionally, we gain the benefits discussed above, namely test-

ing which scale the treatment effect is linear on. By using a sandwich approach to

estimating the standard errors in the various second stage models, we open up the

opportunity to expand the possible forms of both stage models.
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APPENDIX A

Appendix for Chapter II

A.1 Bias Correction

Although bias correction does not play a role in our method, we show here an

attempt at bias correction, though we will ultimately show in Appendix A.2.1 that it

does not improve coverage with the Wald confidence interval.

Consider again (2.38),

Y −Xβc = τ +Xβcη + e. (A.1)

The form of the estimate for η is not affected by the peculiarities of the PBPH

method and thus the typical least squares parameter estimate suffices,

η̂ =
Cov(Y −Xβ̂c, Xβ̂c)

Var(Xβ̂c)
, (A.2)

which is estimating the population η, defined by

η =
Cov(Y −Xβc, Xβc)

Var(Xβc)
. (A.3)
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Deriving the overall bias is quite difficult. Therefore we attempt only to minimize

the bias. Specifically, we will bias correct the numerator and denominator of (A.2)

separately, which leaves η̂ biased (because the numerator and denominator are not

independent), but reduces the overall bias.

Assume for simplicity and without loss of generality that X is centered overall,

which allows us to further assume that the treatment group means of X converges

in probability to 0. Thus we can claim that for any β̂,
∑

k

∑
iXkiβ̂k = 0. Therefore,

simple calculation shows us that, in the treatment group, the sample covariance (the

numerator of (A.2)) can be expressed as

1

nt

(
Y −Xβ̂

)′ (
Xβ̂
)
. (A.4)

Since we are working solely in the treatment group, Y = Yt, and trivially Y =

Yt − Yc + Yc, so that (A.4) becomes

1

nt

(Yt − Yc)′(Xβ̂)︸ ︷︷ ︸
(∗)

+(Yc −Xβ̂)′(Xβ̂)

 . (A.5)

When we eventually take expectations, (∗) will contribute (Yt − Yc)′(Xβ) by lin-

earity and thus will not directly introduce any bias. There may be additional compli-

cations to the variance or for central limit theorem approximations, but we relegate

that to further study.

Writing Xβ̂ as X(β − β + β̂) = Xβ −X(β − β̂), we have that

(Yc −Xβ̂)′(Xβ̂) =

(Yc −Xβ)′(Xβ) + (β − β̂)′X ′Xβ − (Yc −Xβ)′X(β − β̂)︸ ︷︷ ︸
(∗∗)

−(β − β̂)′X ′X(β − β̂).

(A.6)
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Again when we take expectations, (∗∗) will vanish since it is linear in (β− β̂) and

E(β − β̂) = 0. Therefore, taking expectations of both sides, we have

1

nt
E
(

(Yc −Xβ̂)′(Xβ̂)
)

=
1

nt
(Yc −Xβ)′(Xβ)− 1

nt
E
[
(β − β̂)′X ′X(β − β̂)

]
. (A.7)

Thus, as an estimate for the covariance between Y −Xβ and Xβ, the treatment-

group covariance between Y −Xβ̂ and Xβ̂ is negatively biased with magnitude

E
[
(β − β̂)′ΣX(β − β̂)

]
(A.8)

(where ΣX = X′X
Nt

is the empirical covariance of the baseline covariates amongst

the treatment group members), which is nothing more than the sum over i, j of all

element-wise products of Cov(β − β̂) and ΣX from the treatment group. If we have

an unbiased estimate of this, we will have an unbiased estimate of the magnitude of

the bias.

Consider the denominator, which is the sample variance of Xβ̂, with the centering

assumptions above, can be written as

1

nt

(
Xβ̂
)′ (

Xβ̂
)
. (A.9)

Following the derivation of (A.6), we expand and drop terms which will vanish in

expectation, leaving

(Xβ̂)′(Xβ̂) = (Xβ)′(Xβ)− (β − β̂)′X ′X(β − β̂), (A.10)

so that

1

nt
E
(

(Xβ̂)′(Xβ̂)
)

=
1

nt
(Xβ)′(Xβ)− 1

nt
E
[
(β − β̂)′X ′X(β − β̂)

]
. (A.11)
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We are left with the same bias as in the numerator, yielding

η̂∗ =
Cov(Y −Xβ̂c, Xβ̂c) + Ê

[
(β − β̂)′ΣX(β − β̂)

]
Var(Xβ̂c) + Ê

[
(β − β̂)′ΣX(β − β̂)

] , (A.12)

as an estimator for η with less bias than η̂, that is, E(η̂ − η) > E(η̂∗ − η).

It would be convenient to be able to express the bias as a linear correction to η̂.

While in general there is no way to rewrite η̂∗ as linear in η̂, we can approximate it

with a first order Taylor expansion, so that we have

η̂∗ ≈ η̂ − η̂ − 1

Var(Xβ̂c)
Ê
[
(β − β̂)′ΣX(β − β̂)

]
. (A.13)

When combined with the standard error correction, we ultimately have a method

for obtaining an estimator for η which provides good coverage in the confidence in-

terval setting.

A.1.1 A Simplifying Example

To consider a concrete example, let’s consider β̂ to come from a linear regression

model between Y and X where X ∈ Rn×p. For notation, let ΣXt and ΣXc to be

the empirical covariances of baseline covariates amongst treatment and control group

members respectively. Then, we can simplify,

Cov(β − β̂) = Cov(β̂) = σ2(X ′X)−1 = σ2 Σ−1Xc
nc − 1

. (A.14)

To simplify notation (although likely not calculation), note that the element-wise

product of two matrices is equivalent to the trace of their product. Assume σ̂2 is

any unbiased estimator for σ2, we therefore have that the bias existing in both the
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numerator and denominator can be expressed as

E(β − β̂)ΣXt(β − β̂) = σ̂2 tr(Σ−1XcΣXt)

nc − 1
. (A.15)

Notice that this goes to 0 as nc →∞ (provided of course that if p→∞, it does at

a slower rate that nc - not an unreasonable assumption in practice). Further, consider

the trace term. If ΣXt is generally “larger” than ΣXc (rather than define “larger”, just

consider it in the hand-wavy sense of to have more extreme empirical covariances),

then for a fixed σ2, the bias will be higher, and when ΣXt is generally “smaller” than

ΣXc , the bias will be lower. This follows intuition, namely that the bias grows as the

treatment group becomes the dominant source of the sampling variability. We have

less concern if the treatment group has lower sampling variability.

A.2 Failure of Wald-Style Confidence Intervals

We justify our claim that a Wald-style confidence interval is insufficient.

Generate a data set of size n = 100 using (2.25) and (2.27), for some value of

η ∈ (−1, 2). Perform the analysis using both uncorrected and corrected versions of

the standard error, and check coverage of a Wald-type confidence interval using each

version. (Note that a Wald-type uses the fully empirical estimator of the covariance,

(2.17), as described in Section 2.4.2.) Repeat this 1,000 times for each choice of η, then

repeat the entire procedure with n = 1,000 to check for sample size considerations.

The resulting coverage percentages are plotted in Figure A.1.

The corrected standard error outperforms the uncorrected estimate, however cov-

erage is still lacking.
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Figure A.1: Simulation results comparing coverage of confidence intervals built with
the uncorrected and corrected standard error estimates, using samples sizes n = 100
and n = 1000.
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A.2.1 Adding in bias correction

Adding the bias correction above, we still do not see proper Wald coverage. Results

using the same simulation settings as above, we obtain the coverage percentages

plotted in Figure A.2.

Once again, we have improved on the coverage over the standard error correction

alone (barring the oddity of poor performance as η approaches −1, which is likely

due to the unique properties of η = −1; see Section 2.5.1.1) we still do not have

acceptable coverage.
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Figure A.2: Simulation results comparing coverage of confidence intervals built with
the corrected standard error estimates, with and without bias correction, at the dif-
ferent sample sizes.
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APPENDIX B

Appendix for Chapter III

B.1 Derivation of Sandwich Components with GLM First

Stage

Assume that the responses Y share some distribution from the exponential family

and

E(Yi) = µi (B.1)

g(µi) = Xβc, (B.2)

where X ∈ Rn×p is the design matrix, including a first constant column for an inter-

cept, and g is some monotone and twice-differential canonical link function. For exam-

ple, if Y is logistically distributed, g(t) = log
(

t
1−t

)
. If Y is Poisson then g(t) = log(t).

Let h(t) = g−1(t) to simplify notation. Then the second stage is now

Y − h(Xβc) = τ + ηh(Xβc). (B.3)

To define the estimating equations, we return to first principles. The estimating
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equation for the first stage model will be derived as the derivative of the log likelihood

of βc|Yi. All members of the exponential family can have their distribution described

as

f(yi|βc) = s(yi)t(βc) exp

[
K∑
k=1

ak(yi)bk(βc)

]
(B.4)

= exp

[(
K∑
k=1

ak(yi)bk(βc)

)
+ c(yi) + d(βc)

]
, (B.5)

where c(yi) = log s(yi) and d(βc) = log t(βc).[23]

The corresponding log likelihood is

l(βc|yi) =

(
K∑
k=1

ak(yi)bk(βc)

)
+ c(yi) + d(βc), (B.6)

and the first stage estimating equation is the derivative with respect to βc,

φ(Yi; βc) =
∂

∂βc
l(βc|yi) =

(
K∑
k=1

ak(yi)

(
∂

∂βc
bk(βc)

))
+

∂

∂βc
d(βc). (B.7)

The second stage, remaining linear, is similar to that developed in Section 2.5.2.2,

ψi(Yi, βc; τ, η) =
(
Yi − h(Xiβc)− τ − ηh(Xiβc)

) 1

h(Xiβc)

 . (B.8)

Estimators for the all parameters of interest, (βc, τ, η), are solutions from

0

=


∑
{i:Zi=0}

φi(Yi; βc)∑
{i:Zi=1}

ψi(Yi, βc; τ, η)

=


Φ(Y ; βc)

Ψ(Y, βc; τ, η)

 . (B.9)

As with the linear version, we approach this derivation using a blocked matrix.
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The bread matrix has the form

B(βc, τ, η) =

 B11 B12

B21 B22

 =

 E ∂
∂βc

Φ(Y ; βc) E ∂
∂(τ,η)

Φ(Y ; βc)

E ∂
∂βc

Ψ(Y, βc; τ, η) E ∂
∂(τ,η)

Ψ(Y, βc; τ, η)

 , (B.10)

where B11 ∈ Rp×p, B12 ∈ Rp×2, B21 ∈ R2×p and B22 ∈ R2×2. To simplify notation,

the submatrices and their estimates of the bread and meat are written succinctly. For

example, B11 is shorthand for B11(βc, τ, η) and B̂11 is shorthand for Bnt,11(β̂c, τ̂ , η̂).

B11 involves only the first stage, and is

B11 = E
∑
{i:Zi=0}

[(
K∑
k=1

ak(yi)

(
∂2

∂β2
c

bk(βc)

))
+

∂2

∂β2
c

d(βc)

]
. (B.11)

Since the first stage does not include (τ, η),

B12 = 0. (B.12)

B21 is slightly more complicated, since βc exists in both stages,

B21 = E
∑
{i:Zi=1}

 −(1 + η)ḣ(Xiβc)(
Yi − τ − 2(1 + η)h(Xiβc)

)
ḣ(Xiβc)

 . (B.13)

Finally,

B22 = E
∑
{i:Zi=1}

 1 h(Xiβc)

h(Xiβc) h(Xiβc)
2

 . (B.14)

The meat matrix M (c)(βc, τ, η) will be similarly blocked. The diagonal blocks,

M11 and M22, will be the variance of Φ and Ψ respectively. The off-diagonal blocks

remain 0 as in the linear case, see Section 2.5.2.2.
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M11, being the variance of Φ, is simply

M11 = Var

 ∑
{i:Zi=0}

(
K∑
k=1

ak(yi)

(
∂

∂βc
bk(βc)

))
+

∂

∂βc
d(βc)

 . (B.15)

The bottom right piece involves all three parameters of interest

M22 = Var

 ∑
{i:Zi=1}

(
Yi − h(Xiβc)− τ − ηh(Xiβc)

) 1

h(Xiβc)


 . (B.16)

Simplifying the meat without specifying the link function is quite difficult; we

leave that task to after specifying a distribution for Y .

The covariance of (τ, η) is the lower right 2× 2 sub-matrix of

B(c)
nt (β̂c, τ̂ , η̂)−1M (c)

nt (β̂c, τ̂ , η̂)B(c)
nt (β̂c, τ̂ , η̂)−T . (B.17)

After some tedious but simple algebra, we arrive at

Var
(
τ, η
)

= B−122

(
M22 +B21B

−1
11 M11B

−T
11 B

T
21

)
B−T22 . (B.18)

B.1.1 Example: Ordinary Linear Model

When Y |βc is normal, the first stage model is the normal linear model. Therefore

we can confirm the results in Chapter II. In this setting, g is the identity function

(and similarly h), therefore, Y |βc has mean Xβc and variance σ2, though we consider

σ2 a nuisance parameter.

We have that

f(yi|βc) ∝ exp

(
−(yi − xiβc)2

2σ2

)
(B.19)

∝ exp

(
− y2i

2σ2
+
yixiβc
σ2

− (xiβc)
2

σ2

)
, (B.20)
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so that k = 1 and a1(yi) = yi, b1(βc) = xiβc
σ2 , and c(yi) = − y2i

2σ2 and d(βc) = − (xiβc)
2

σ2 .

The first stage estimating equation is therefore

φ(Yi; βc) = Yi
Xi

σ2
− (Xiβc)Xi

σ2
= (Yi −Xiβc)Xi. (B.21)

The second equality holds due to the estimating equation equaling 0. The second

stage is clearly

ψi(Yi, βc; τ, η) =
(
Yi −Xiβc − τ − ηXiβc

) 1

Xiβc

 , (B.22)

agreeing with the results in Section 2.5.2.2.

B.1.2 Example: Logistic Regression

Let Yi|βC be distributed as a Bernoulli trial with success probability ρi where

ρi =
1

1 + exp(−Xiβc)
. (B.23)

The link function g is logit, so that its inverse is

h(Xiβc) =
1

1 + exp(−Xiβc)
= logit−1(Xiβc). (B.24)

Therefore we have

f(yi|βc) = ρyii (1− ρi)1−yi (B.25)

= exp

(
yi log

(
ρi

1− ρi

)
+ log(1− ρi)

)
, (B.26)

with k = 1, a1(yi) = yi, b1(ρi) = log
(

ρi
1−ρi

)
, c(yi) = 0 and d(ρi) = log(1−ρi). Substi-

tuting (B.23) into b1 and d, we get that b1(βc) = Xiβc and d(βc) = log
(

1
1+exp(Xiβ)

)
.
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The corresponding first stage estimating equation is

φ(Yi; βc) = −YiXi + logit−1(Xiβc)Xi (B.27)

=
(
Yi − logit−1(Xiβc)

)
Xi, (B.28)

where the sign switch is due to φ(Yi; βc) = 0, and the second stage estimating equation

is

ψi(Yi,βc; τ, η) =

(
Yi − logit−1(Xiβc)− τ − η logit−1(−Xiβc)

) 1

logit−1(−Xiβc)

 (B.29)

Looking at the bread and meat, we see some complications. First, B11 is no longer

independent of βc,

B11 = E
∑
{i:Zi=0}

XiX
′
i

exp(Xiβc)

(1 + exp(Xiβc))2
. (B.30)

Note that the fraction is scalar, while XiX
′
i is p× p.

For the off-diagonals, B12 is still 0, and

B21 =

E
∑
{i:Zi=1}

 −(1 + η)Xi(
Yi − τ − 2(1 + η) logit−1(−Xiβc)

)
Xi

 exp(Xiβc)

(1 + exp(Xiβc))2
.

(B.31)

Both B11 and B21 have scaling terms of the same form, but are summed over the

control and treatment groups respectively.

Finally, B22 is straightforward,

B22 = E
∑
{i:Zi=1}

 1 logit−1(Xiβc)

logit−1(Xiβc)
(
logit−1(Xiβc)

)2
 . (B.32)
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Moving to the meat, we have that

M11 =
∑
{i:Zi=0}

Var
(
Yi − logit−1(−Xiβc)

)
XiX

′
i, (B.33)

and

M22 =

∑
{i:Zi=1}

Var

(Yi − logit−1(−Xiβc)− τ − η logit−1(−Xiβc)
) 1

logit−1(−Xiβc)


 .

(B.34)

Since Yc = logit−1(−Xiβc), both pieces of the meat and B22 have forms that

are similar to the linear case. However, the other two pieces of the bread have the

additional multiplicative term, exp(Xiβc)
(1+exp(Xiβc))2

. This is simply the variance, so can be

represented by ρi(1− ρi) to ease computation.

B.1.3 Example: Poisson Regression

Next, let Yi|βC be Poisson with expected value λi where

λi = eXiβc . (B.35)

The link function is a log, so its inverse is

h(µi) = eXiβc . (B.36)
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We have

f(yi|βc) = eYiXiβce−ei
βc
Y !−1 (B.37)

= exp
(
YiXiβc − eXiβc − log Y !

)
, (B.38)

with k = 1, a1(Yi) = Yi, b1(βc) = Xiβc, c(Yi) = − log Y ! and d(βc) = − exp(Xiβc)

The estimating equations are

φ(Yi; βc) = YiXi −Xie
Xiβc (B.39)

= (Yi − eXiβc)Xi, (B.40)

and

ψi(Yi, βc; τ, η) =
(
Yi − eXiβc − τ − ηeXiβc

) 1

eXiβc

 . (B.41)

B11 is still no longer independent of βc,

B11 = E
∑
{i:Zi=0}

XiX
′
ie
Xiβc . (B.42)

B12 is still 0, and

B21 = E
∑
{i:Zi=1}

 −(1 + η)Xi(
Yi − τ − 2(1 + η)eXiβc)

)
Xi

 eXiβc , (B.43)

and

B22 = E
∑
{i:Zi=1}

 1 eXiβc

eXiβc (eXiβc)2

 . (B.44)
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The meat diagonals are

M11 =
∑
{i:Zi=0}

Var
(
Yi − eXiβc

)
XiX

′
i, (B.45)

and

M22 =
∑
{i:Zi=1}

Var

(Yi − eXiβc − τ − ηeXiβc)
 1

eXiβc


 . (B.46)

As with the logistic case, we have a result similar in form to the linear case, with

an additional component on B11 and B12, e
Xiβc which is the variance, λi.

B.2 Derivation of Sandwich Components for Clustered Data

B.2.1 Clustered Standard Errors

We extend the estimating equation and M-estimator framework into the clustered

setting. Each M-estimator is the solution to an estimating equation, namely θ̂ is an

M-estimator for θ if θ̂ solves

0 =
n∑
i=1

φi(Di, θ), (B.47)

where Di are some independent data and φi are known functions. Now consider a

set of n observations, where there are S clusters and ns observations in cluster s. We

can re-write the estimating equation (B.47) as

0 =
S∑
s=1

(
ns∑
i=1

φsi(Dsi; θ)

)
. (B.48)

If we consider a least squares regression setting, where Ysi = Xsiβ + εsi, then we

have that

φsi(Ysi, Xsi; β) = (Ysi −Xsiβ)Xsi. (B.49)
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The bread will be the derivative of this with respect to the parameter, so

B(β) =
S∑
s=1

(
ns∑
i=1

Xsi

)
=

n∑
i=1

Xi, (B.50)

which is identical to the non-clustered version. Clustering has no effect on the bread.

However, in the meat, we do see an effect as

M(β) =
S∑
s=1

(
ns∑
i=1

(Ysi −Xsiβ)Xsi

)′( ns∑
i=1

(Ysi −Xsiβ)Xsi

)
. (B.51)

Computationally, we are able to compute the meat easily by first summing the

estimating equation over each cluster.

Finally, the above is asymptotically correct but often uses a finite sample adjust-

ment. One often used adjustment is

S

S − 1
· n− 1

n− p
, (B.52)

where p is the number of parameters, including intercept. This should be equivalent to

the rank of the design matrix, assuming the design matrix is of full rank (equivalently

that we can obtain estimates for all coefficients).[17]

B.2.2 PBPH with Clustering

We can extend the PBPH method to allow clustering. As above, assume we have n

observations, each belonging to one of S clusters, with ns observations is cluster s. Let

S0 and S1 represent the set of clusters which were randomly assigned to control and

treatment respectively. Otherwise, notation remains identical to the non-clustered

variation.
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With these clusters, the stacked estimating equations to solve now become

0

=


S0∑
s=1

(
ns∑
i=1

φi(Yi; βc)

)
S1∑
s=1

(
ns∑
i=1

ψi(Yi, βc; τ, η)

)
 , (B.53)

where as before, we have

φi(Yi; βc) = (Yi −X ′iβc)Xi, (B.54)

ψi(Yi, βc; τ, η) = (Yi −X ′iβc − τ − ηX ′iβc)
(

1

X ′iβc

)
. (B.55)

As mentioned in Appendix B.2.1, the bread matrix B will not be affected by this

shift.

For the meat, M , we have that

M11 = Var

(
S0∑
s=1

(
ns∑
i=1

φi(Yi; βc)

))
(B.56)

=

S0∑
s=1

(
Var

ns∑
i=1

φi(Yi; βc)

)
(B.57)

=

S0∑
s=1

(
ns∑
i=1

φi(Yi; βc)

)′( ns∑
i=1

φi(Yi; βc)

)
. (B.58)

The equality of (B.56) to (B.57) is due to observations being independent across

clusters. The final equality to (B.58) is due to the estimating equation having mean

0. A very similar form exists for M22,

M22 =

S1∑
s=1

(
ns∑
i=1

ψi(Yi, βc; τ, η)

)′( ns∑
i=1

ψi(Yi, βc; τ, η)

)
. (B.59)
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We tweak the finite sample adjustment in (3.4), yielding

S0

S0 − 1
· nc − 1

nc − p
, (B.60)

for M11 and

S1

S1 − 1
· nt − 1

nt − 2
, (B.61)

for M22. Here, nt =
∑

(1− Zi) =
∑S0

s=1 ns and nt =
∑
Zi =

∑S1

s=1 ns. Recall that in

the second stage model, p = 2, hence the denominator in the second term of (B.61).

In terms of implementation, in the single stage version, the adjustment is multiplied

to the final form of the covariance, B−1MB−T . However, in our two stage version,

we can rewrite (B.18) with the scaling factors as as

S1

S1 − 1
· nt − 1

nt − 2
B−122 M22B

−T
22 +

S0

S0 − 1
· nc − 1

nc − p
B−122 B21B

−1
11 M11B

−T
11 B

T
21B

−T
22 . (B.62)
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APPENDIX C

Appendix for Chapter IV

C.1 Derivation of regression coefficients

C.1.1 Unweighted

Let Yi ∈ R and Zi ∈ {0, 1} be the observed response and treatment status of

individual i. Let Yic be the potential response of individual i under control.

The model of interest, without weights, is

E(Y |Z, Yc) = βZ + Yc. (C.1)

We have that

β̂ =

∑
i Zi(Yi − Yic)− n−1

∑
i Zi
∑

i(Yi − Yic)∑
i Z

2
i − n−1

∑
i Zi
∑

i Zi
. (C.2)

Now Z2
i = Zi and

∑
i(Yi − Yic) =

∑
i Zi(Yi − Yic) +

∑
i(1 − Zi)(Yi − Yic). In

the control group, the observed response is the potential response to control, so
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∑
i(1− Zi)(Yi − Yic) = 0. Therefore,

=

∑
i Z(Yi − Yic) − n−1

∑
i Zi
∑

i Zi(Yi − Yic)∑
i Zi (1− n−1

∑
i Zi)

(C.3)

=

∑
i Zi(Yi − Yic)(1− n−1

∑
i Zi)∑

i Zi(1− n−1
∑

i Zi)
(C.4)

=

∑
i Zi(Yi − Yic)∑

i Zi
. (C.5)

β̂ is the average of Y − Yc amongst the treatment group, or the estimated effect

of the treatment on the treated.

C.1.2 Weights

Now, let wi be the weight applied to individual i. Many of the same calculations

and maneuvers carry over. The end result is that

β̂w =

∑
iwiZi(Yi − Yic)∑

i Ziwi
. (C.6)

β̂w is the weighted average of Y − Yc amongst the treated.

C.2 Estimating Equation for Weighted Least Squares

In OLS, we assume the variance is homoscedastic, that is, Varols(ε) = σ2I. Gen-

eralized least squares extends this to allow Vargls(ε) = Σ, with the only restrictions

being that Σii > 0 and Σij = Σji.[4] Weighted least squares is a special case of GLS

where off-diagonals of Σ are 0, that is, Varwls = ~σ2I where ~σ = (σ1, σ2, ..., σn).

Let wi = σ−2i so that log likelihood to minimize for weighted least squares can be

rewritten as

l(β|yi) ∝
∑
i

wi(yi − xiβ)2, (C.7)
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yielding estimating equations of

φ(yi; β) = wi(yi − xiβ)xi (C.8)

for observation i.
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