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ABSTRACT 

 During development, cell proliferation must be tightly controlled to ensure proper tissue 

and organ morphogenesis. During organogenesis, many cells undergo a process called terminal 

differentiation, where cells acquire their final fates and begin to perform essential physiological 

functions. Terminal differentiation is often accompanied by a transition to a non-dividing state, 

called cell cycle exit. As development proceeds, many cells exit the cell cycle, and most cells in 

mature organisms remain in a non-dividing, post-mitotic state. Despite its prevalence, how cells 

transition from a proliferative to a post-mitotic state is induced and maintained is not fully 

understood. In this thesis, I examine two aspects of cell cycle regulation that are essential for the 

proper transition of Drosophila epithelial cells from a proliferative to a post-mitotic state during 

development. In part 1, I describe a novel, critical role for the NuA4 chromatin remodeling and 

histone exchange complex in promoting the proper timing of cell cycle exit in vivo. Unlike other 

chromatin binding factors that repress cell cycle genes, NuA4 does not directly inhibit cell 

proliferation but instead suppresses a previously unknown intrinsic DNA damage response that 

occurs during late S-phase. My work revealed that suppression of this endogenous DNA damage 

response is required in vivo to properly coordinate S and G2 cell cycle progression with 

differentiation and cell cycle gene expression during tissue development.  

 In part 2, I examine how steroid hormone signaling plays a central role in coordinating 

the timing of cell cycle exit. Pulses of the steroid hormone ecdysone trigger a cascade of gene 

expression changes required to coordinate cell maturation with differentiation and cell cycle exit 



	 xi	

during metamorphosis in holometabolous insects. Ecdysone signaling is most similar to 

vertebrate retinoic acid signaling, which also acts as an essential modulator of cell differentiation 

and cell cycle exit during development in many cell types. Yet, it remained unknown how 

ecdysone signaling impinges upon the cell cycle machinery to coordinate differentiation with cell 

cycle exit. Here, I reveal that ecdysone signaling in the Drosophila wing indirectly regulates the 

expression of a key cell cycle gene. My work shows that ecdysone signaling strongly induces a 

transcription factor, Broad, which in turn represses the expression of an essential mitosis 

promoting gene, the cdc25c phosphatase, to cause a temporary G2-phase cell cycle arrest. After 

the ecdysone pulse, as Broad expression declines the cdc25c phosphatase becomes re-expressed, 

which in turn promotes rapid mitotic entry that leads to a synchronized final cell cycle and 

subsequent cell cycle exit in the wing. In this manner, a pulse of the steroid hormone ecdysone 

synchronizes the final cell cycle in the Drosophila wing, while acting on other direct and indirect 

targets to promote the expression of genes involved in wing terminal differentiation.  

 Altogether, my work has revealed two essential signaling pathways that impact cell cycle 

gene expression and cell cycle progression to properly coordinate cell cycle exit with terminal 

differentiation during development.  
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CHAPTER I  

GENERAL INTRODUCTION 

 As multicellular organisms develop, cell growth and division must be tightly orchestrated for 

proper tissue and organ morphogenesis. By a process called terminal differentiation, cells mature 

into their final fates during organogenesis and begin to perform essential physiological functions. 

Terminally differentiated cells often stop proliferating by transitioning to a non-dividing, post-

mitotic state called G0 in a process termed cell cycle exit. Many cells exit the cell cycle as 

development proceeds, with most cells in mature organisms remaining in a non-dividing, post-

mitotic state. Despite its prevalence, how the transition from a proliferative to a post-mitotic state 

is induced and maintained is not fully understood. To understand how cells stop proliferating, we 

must first consider the regulators that promote the cell cycle in actively proliferating cells. 

	
The cell cycle 

 The canonical cell cycle can be artificially divided into these sequential phases: Gap1 

(G1), DNA synthesis (S), Gap2 (G2), and Mitosis (M) (Fig. 1.1). During G1 cells grow, carry 

out differentiation associated physiological functions and respond to mitogenic factors. In late 

G1 they also license DNA replication origins by recruiting factors to the chromatin in 

preparation for DNA synthesis. Cells replicate their genome during S phase, as well as 

synthesize histones and duplicate centrioles. Cells continue to prepare for mitosis by 

accumulating the necessary proteins during G2. During mitosis, cells condense their genome into 

chromosomes (early prophase), break down the nuclear envelope (end of prophase), use the 
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mitotic spindles to centrally align chromosomes along the metaphase plate (metaphase), then 

they break the links between the sister chromatids of each chromosome so they can pulled to 

opposite poles of the spindle (anaphase). Once at opposing poles, nuclear envelopes re-form 

around the newly segregated chromosomes, which then de-condense (telophase). A cleavage 

furrow forms between the newly formed nuclei thereby contracting the plasma membrane and 

separating the nuclei into two daughter cells (cytokinesis). After mitosis, cells can either 

continue proliferating by initiating another cell cycle, or they can permanently stop proliferating 

and enter a non-cycling, post-mitotic state called cell cycle exit (Cooper, 2000). The transition to 

the post-mitotic state is accompanied by changes in gene expression, including increased 

expression of cell fate-specific factors and decreased expression of cell cycle-promoting genes 

(O’Keefe et al., 2012).  

 

Fig. 1.1 Canonical cell cycle (Resources, n.d.). Cells proliferate via the conserved cell cycle that 
can be broken into the sequential phases: Gap1 (G1), DNA synthesis (S), Gap2 (G2), and Mitosis 
(M) to produce two identical daughter cells. After mitosis, cells can exit the cell cycle (G0) 
permanently, as occurs in most instances of exit associated with terminal differentiation or 
senescence (orange arrow), or become quiescent which is easily reversible (blue arrow).    
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1.1 The regulation of Cyclins and Cdks  

 Transitions through cell cycle phases are controlled by the activities of Cyclin/Cyclin 

dependent kinase (Cdk) complexes that phosphorylate hundreds of targets to trigger and 

coordinate the cellular changes that occur throughout the cell cycle. As the name implies, these 

kinase complexes are only active when the Cyclin subunit is bound. Thus, regulation of Cyclins 

at both the transcriptional and protein levels are critical for controlling cell cycle dynamics.  

Cyclin protein levels oscillate during the cell cycle in such a way that they are high during the 

phase(s) that they need to bind to their Cdk partner and promote cell cycle progression (Fig. 1.2). 

Generally, Cyclin proteins impact cell cycle progression by binding to and causing a 

conformational change in the Cdk that allows for activating phosphorylation of the Cdk T-loop 

(performed by a Cdk-activating kinase, CAK) and removal of other inhibitory phosphates on the 

Cdk. A Cyc/Cdk pair's activity can also be regulated by the allosteric binding of cyclin-

dependent kinase inhibitor proteins (CKIs), such as the Cip/Kip type p21 (called Dacapo in flies) 

which impede the catalytic activity of the Cdk (Sherr & Roberts, 1999). In mammals there is an 

additional family of CKIs (inhibitors of Cdk4, INK4 type) that can also block activity of the G1 

Cyc/Cdk by binding with Cdk4/6 to impede their association with CycD (Vidal & Koff, 2000). 

Once Cyc/Cdk pairs are active, they phosphorylate numerous cell cycle proteins to trigger 

cascades of events including the initiation of DNA replication, centrosome duplication, and the 

mitotic reorganization of the tubulin cytoskeleton (Mazumder et al., 2004, Errico et al., 2010). 
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Fig. 1.2 Major cell cycle regulators. The activity of cyclin-dependent kinases (Cdk) are 
dependent upon their binding to Cyclins (Cyc). Cell cycle timing of Cyc/Cdk function is roughly 
shown by their placement. Though not shown here, phosphorylation of the Cdk T-loop (by the 
Cdk7 CAK) is required for Cdk activity and also stabilizes its interaction with Cyc. Dotted 
arrows show transcriptional effects, solid lines indicate the result of protein-protein interactions 
or post-translational modifications. 
 
 
1.2 Cyclins and Cdks in G1/S regulation 

 The transition from G1 to S phase is regulated by the activities of the well conserved 

CycD/Cdk and CycE/Cdk pairs. CycD protein levels increase as cells grow in response to 

mitogenic EGF/Ras signaling during the G1 phase of the cell cycle (Roovers & Assoian, 2000). 

Active CycD/Cdk4 (as well as Cdk6 in mammals) complexes initiate a series of events to 

promote DNA synthesis (S phase). In early G1, CycD/Cdk complexes mono-phosphorylate the 

tumor suppressor pocket-protein Retinoblastoma (Rb) or Rb family members that bind and 

repress the transcription factor E2F/DP complex (Narasimha et al., 2014). The E2F/DP complex 

transcriptionally regulates the expression of hundreds of cell cycle genes, with increases in 

transcription-promoting E2F/DP complexes able to accelerate the cell cycle whereas decreases 



	 5	

slow the cell cycle (Neufeld et al., 1998). As CycD protein levels accumulate in mammals, the 

increasing amount of CycD/Cdk complexes can sequester CKIs from binding to and inhibiting 

CycE/Cdk2 complexes (Sherr & McCormick, 2002). In flies however, CycD/Cdk4 does not 

detectably sequester the CKI, Dacapo (Meyer et al., 2000). The conserved CUL4 E3 ubiquitin 

ligase instead promotes degradation of Dacapo during G1, which enables CycE/Cdk2 complexes 

to be active and promote the G1/S transition (Higa et al., 2006). Attainment of a critical 

threshold of CycE/Cdk2 activity causes hyper-phosphorylation of E2F/DP-associated Rb, which 

releases E2F/DP from Rb-mediated repression to in turn promote the transcription of cycE and 

cdk2 in addition to several hundred other genes with critical roles in the cell cycle (described in 

detail later). Active CycE/Cdk2 complexes further phosphorylate Rb to cause its complete 

dissociation from the E2F1/DP complex, allowing full E2F1/DP activity (Foster et al., 2010). 

This signaling mechanism acts as a positive feedback loop between E2F1/DP and CycE/Cdk 

activities, where increased expression of cycE is promoted by E2F1/DP, and CycE/Cdk2 activity 

promotes E2F1/DP activity by phosphorylation of Rb. This feedback loop forms the basis of a 

bi-stable switch, which rapidly promotes progression from G1 into S phase once cells have 

committed to the cell cycle, by coordinating E2F activity with the triggering of DNA replication 

licensing through additional targets of CycE/Cdk2, such as Cdc6 and Cdc45 (Fisher, 2011). 

E2F1 and CycE proteins are respectively degraded during S phase via action of conserved E3 

ubiquitin ligase complexes of the Cullin-Ring-Ligase (CRL4cdt2) and Skp1-Cullin-F-box 

(SCFfbw7) families (Marti et al., 1999, Campanero & Flemington, 1997, Hériché et al., 2003, 

Davidson & Duronio, 2012). Upon reaching a critical threshold of CycE/Cdk2 activity, 

CycE/Cdk2 autophosphorylates CycE to promote SCFfbw7 binding and proteosomal degradation 

of CycE (Knoblich et al., 1994, Clurman et al., 1996, Koepp et al., 2001, Welcker et al., 2003). 
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Also during S phase SCFskp2 causes degradation of the replication licensing machinery, ensuring 

that aberrant relicensing of the replication does not occur during the remainder of the cell cycle 

(Rossi et al., 2013). 

 

1.3 Cyclins and Cdks in G2/M regulation 

  During S phase, the Cyc/Cdk complexes whose activities are needed for the G2/M 

transition also begin to accumulate. In mammals the CAK, Cdk7, catalyzes the activating T-loop 

phosphorylation of the free form of Cdk2 to preferentially stabilize Cdk2 (over Cdk1) binding to 

the accumulating CycA during early S phase, with CycA/Cdk1 complexes consequently forming 

during late S/G2 (Fisher, 2012). Active CycA/Cdk2 complexes phosphorylate and activate the 

Myb and FOXM1 transcription factors that promote cycB expression in G2 (described in more 

detail later). Flies however, have no known homolog of FOXM1 and there is no evidence of 

CycA/Cdk2 complexes, just CycA/Cdk1 (Knoblich et al., 1994, Sadasivam & DeCaprio, 2013).  

Although CycB/Cdk1 form a complex in G2, CycB concentration in the nucleus is below the 

threshold required to trigger entry into mitosis and Cdk1 activities are restrained by inhibitory 

phosphorylations catalyzed by the Wee (pY15) and Myt1 kinases (Cdk1 pY15 and pT14) 

(Lindqvist et al., 2009,  Ayeni et al., 2014). Upon centrosome maturation, CycB/Cdk1 complexes 

are recruited to the centrosome where the polo-like kinase 1 (PLK1) is localized and whose 

activity promotes nuclear accumulation of the Cdc25c phosphatase, String. String removes 

inhibitory phosphorylations from cyclin-bound Cdk1, thereby promoting CycB/Cdk1 and 

CycA/Cdk1 activity that acts as a bi-stable switch to amplify CycB/Cdk1 activity and cause 

mitotic entry. This switch is the result of a feedback loop where active CycB/Cdk1 complexes 
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phosphorylate Wee, Myt1, and String, to further activate String but repress Wee and Myt1 with 

the help of PLK1 (Lindqvist et al., 2009).  

 For the completion of anaphase, CycA, CycB, and other mitotic promoting factors must 

be degraded. These proteins are marked for degradation at the metaphase-anaphase transition by 

an E3 ubiquitin ligase complex called the anaphase promoting complex/cyclosome (APC/C) 

(Grosskortenhaus & Sprenger, 2002). For cells to continue proliferating, high levels of APC/C 

activity must persist into the G1 phase of the cell cycle so the pre-replication complexes (pre-

RCs) needed for DNA licensing can form (Fisher, 2011). RCA1 (regulator of CycA) inhibits 

APC/C activity after pre-RC formation, which allows the re-accumulation of Cyclins needed to 

form the Cyc/Cdk complexes whose activities initiate the next round of DNA replication (Zielke 

et al., 2006). Consequently, the levels of APC/C activity are not only important for cell cycle 

progression but also the decision of cells to permanently stop proliferating and exit the cell cycle 

(Buttitta et al., 2010). 

 

1.4 Transcriptional control of the cell cycle 

 A conserved eukaryotic transcriptional oscillator controls cell cycle gene expression in 

proliferating cells (Orlando et al., 2008, Oikonomou & Cross, 2010). The oscillation is 

dependent upon changes in the activity or protein levels of master cell cycle regulatory E2F/DP 

complexes. E2Fs are a highly conserved family of transcription factors that have only two 

members in flies (E2F1 and E2F2) that must individually bind with DP for activity (van den 

Heuvel & Dyson, 2008). The two Drosophila melanogaster members of the tumor suppressor 

retinoblastoma protein family (Rbf1 and Rbf2) (Harrington et al., 1998) bind to E2F/DP 

complexes to negatively regulate E2F/DP activity. Drosophila E2F1/DP acts as a transcriptional 
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activator when not associated with Rbf1, whereas E2F2/DP antagonizes E2F1/DP activity to 

transcriptionally repress target genes regardless of Rbf1 or Rbf2 binding. When Rbf1 associates 

with E2F1, it physically blocks the function of E2F1's transactivation domain and is thought to 

recruit histone deacetylases that compact chromatin and make E2F targets less accessible to the 

transcriptional machinery (Dimova & Dyson, 2005, Harbour & Dean, 2000). As previously 

mentioned, Rbf association with E2F/DP is regulated by a feedback loop in which CycE/Cdk2 

directly phosphorylates Rbf to cause its dissociation from E2F/DP complexes, E2F1/DP activity 

in turn promotes the expression of cyclins E, A, and B (Wei Du, Xie, & Dyson, 1996, W Du & 

Pogoriler, 2006). In mammals, when members of the RB family (p130, p107) bind to E2F2/DP, 

they can also recruit other proteins to form the DREAM (Dimerization partner (DP), Rb-like, 

E2F, and multi-vulval class B (MuvB)) and Myb-MuvB  (MMB) complexes. Many of these 

mammalian genes are conserved and regulate gene expression via a DREAM-like complex in D. 

melanogaster and Caenorhabditis elegans (Sadasivam & DeCaprio, 2013). 

 The MuvB genes were first discovered as loss-of-function mutants in C. elegans that in 

certain combinations caused the worms to develop multiple vulva-type (Muv) organs. Multiple 

vulvas form because mutants lose the ability to repress an epidermal growth factor (EGF)-RAS 

signaling cascade which should normally be restricted to the vulval precursor cells, not active in 

other epidermal cells (further away from the EGF producing anchor cell) (Hill & Sternberg, 

1992, Fay & Yochem, 2007). To get a Muv phenotype, Muv mutants must simultaneously 

disrupt genes in at least two of the three gene classes termed the “synthetic multi-vulva 

(synMuv) classes” (Ceol et al., 2006). Class A genes affect EGF expression, class B encode 

homologs to Rb (LIN-35), E2F (EFL-1), DP (DPL-1) as well as genes of unknown function that 

are homologous to components of the DREAM complex described above (lin-52, lin-53, lin-54, 
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lin-37, lin-9), and class C encode components of the nucleosome acetyltransferase of histone H4 

(NuA4) complex (Ceol & Horvitz, 2004). The orthologs of the MuvB class are conserved in 

mammals and flies (as shown in parenthesis); LIN9 (Myb-interacting protein 130 (Mip130)), 

LIN54 (Mip120), LIN37 (Mip40), LIN52 (Lin52), and RBBP4 (Caf1/p55) (Sadasivam & 

DeCaprio, 2013). 

 In mammals, the MuvB core binds with either Myb or Rb family members to form two 

distinct complexes (respectively MMB or DREAM) that act in opposing manner upon 

transcription (Fig. 1.3). The mammalian MMB complex promotes cell cycle gene transcription, 

particularly genes involved in G2/M progression and the maintenance of chromosomal stability 

during mitosis (Laoukili et al., 2005). This is due to the MuvB core complex associating with 

Myb during S phase, with Myb's transactivation domain then being phosphorylated by 

CycA/Cdk2 during G2 to increase its activity (Johnson et al., 1999). Before the phosphorylated 

Myb is targeted for degradation by the SCFFbxw7 E3 ubiquitin ligase complex during G2 (Kanei-

Ishii et al., 2008), it recruits the forkhead box protein M1 (FOXM1) to promoters of cell cycle 

genes. This increases expression of the polo-like kinase protein 1 (PLK1) that phosphorylates 

G2/M promoting factors such as FOXM1, Cdc25c, and CycB to positively regulate their activity 

and also phosphorylate the G2/M negative regulator, Wee, to repress its function (Fu et al., 

2008). FOXM1 remains bound to the MuvB core until its phosphorylation by PLK1 enables 

FOXM1 to be recognized and targeted for degradation by APC/C during mitosis (Park et al., 

2008). Degradation of both Myb and FOXM1 leaves the MuvB core free to be bound by Rb 

family members so as to form the DREAM complex in mitosis and early G1. The DREAM 

complex represses the expression of many G2/M cell cycle genes as well as Myb and FoxM1 

(Sadasivam & DeCaprio, 2013). MuvB core alternating between binding with Myb and FoxM1 
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(to form MMB) or Rb family members (to form DREAM) causes signaling cascades that drives 

cell cycle progression. 

 

 

Fig. 1.3 Cell cycle phases of MMB and DREAM activity. The E2F1/DP transcription factor 
complex promotes cell cycle gene expression during G1/S when it is not bound by Rb or Rb 
family members. The MuvB core promotes cell cycle gene expression during S phase through 
part of mitosis when it is associated with Myb and/or FoxM1 (in mammals) transcription factors 
(MMB complex). Phosphorylation of Myb and FoxM1 increases their activity but also results in 
their degradation. The MuvB core associates with Rb family members to form the DREAM 
complex mid-mitosis into early G1, to repress the transcription of many cell cycle genes. Cell 
cycle genes are also repressed by the DREAM complex when cells exit the cell cycle into a state 
called G0 and terminally differentiate.  
 
 
  Flies however only have a single dREAM/MMB (Drosophila Rbf, E2F2, and Myb-

MuvB) complex, and lack a clear FoxM1 homolog (Fig. 1.4). It is thought that in actively 

proliferating cells of Drosophila, E2F1/DP activator complexes form during G1 and G2, and 

Myb binds to MMB to promote cell cycle gene expression during G2 to M progression. Then 

after completion of the cell cycle, when Cyclin/Cdk activity is low, the repressive dREAM 

complex forms to repress cell cycle gene expression (Georlette et al., 2007, Wen et al., 2008, 
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Lewis et al., 2012, Lewis et al., 2004). In addition, dREAM/MMB has also been shown to 

repress a small number of specific differentiation-associated genes in a cell cycle independent 

manner, possibly acting constitutively at these sites throughout the cell cycle (Lee et al., 2010). 

 

Fig. 1.4 Oscillations of E2F and dREAM activity promote cell cycle progression. When not 
bound by Drosophila Rbf, the E2F1/DP transcription factor complex promotes cell cycle gene 
expression to drive entry into and progression through the cell cycle. Cell cycle progression is 
further regulated by the Myb/MMB complex, which in cooperation with E2F1/DP promotes cell 
cycle gene expression. When Cyclin/Cdk2 activity is low, for example after mitosis, 
dREAM/MMB forms to repress the expression of cell cycle genes.  
 
 
1.5 Cell cycle compensation 

 E2F1/DP activity promotes cell cycle progression during active proliferation by 

increasing the expression of critical cell cycle factors such as cycE, cdc25c, and cycB (Reis & 

Edgar, 2004). E2F1/DP activity is sufficient to control cell cycle speed, with high levels of E2F1 

accelerating cell cycle progression and low levels of E2F1 slowing the cell cycle (Neufeld et al., 

1998). Notably, E2F also "compensates" for the duration of each of the cell cycle phases to 

maintain the overall cell cycle timing. For example, if cells are temporarily arrested in G1 due to 

increased activity of the CKI Dacapo that represses CycE/Cdk2 activity, E2F1 protein levels 

become abnormally high due to the delayed entry into S-phase where E2F1/DP degradation 

occurs (Reis & Edgar, 2004, Shibutani et al., 2008). The increase in E2F1/DP activity causes an 
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increase in expression of cycE and the cdc25c (string) phosphatase. CycE eventually promotes 

G1/S progression, which is then rapidly followed by String activating CycB/Cdk1 to drive 

mitotic entry (Reis & Edgar, 2004). In this way, a slowing of G1/S progression results in a faster 

progression from G2/M that ultimately maintains the normal overall cell cycle length (Reis & 

Edgar, 2004). Similarly, slowed progression through G2/M also increases E2F1 protein levels 

through mechanisms that are still uniendtified, which then promotes increased expression of 

string and the G1/S rate-liming factor, cycE, resulting in a shortened subsequent G1/S transition 

(Reis & Edgar, 2004). Since delays in the cell cycle can alter the timing of the subsequent 

phases, we became interested in examining how temporary cell cycle arrests (such as those that 

occur in response to DNA damage) impact the cell cycle and the proper timing of cell cycle exit 

as tissues differentiate. 

 

DNA damage response and the cell cycle 

 The DNA damage response (DDR) is a conserved cascade of protein activation that 

spreads the DNA damage signal throughout the nucleus and serves to prevent transmission of 

damaged genetic material to daughter cells (Song, 2005, Polo & Jackson, 2011). The type of 

damage (double-strand vs. single-strand DNA breaks) and the cell cycle stage at which the 

damage occurs result in activation of either distinct repair mechanisms or lead to programmed 

cell death. To repair damage, cells temporarily stop cell cycle progression by engaging a 

"checkpoint" and recruiting DNA repair proteins to the damage sites. Alternatively, excessive 

and irreparable DNA damage may induce the expression of apoptotic factors that cause cell 

death. Though both single- and double-strand DNA breaks can result in cell cycle arrests, my 

work has focused on the double-strand DNA break DDR pathway. This is because double-strand 
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DNA breaks in a parent cell can potentially lead to chromosomal aberrations being passed down 

to daughter cells, which increases the likelihood of oncogenic transformation of the daughter 

cells (Tang et al., 2012). In addition in proliferating cells, unrepaired singe strand breaks become 

double-strand breaks during the subsequent S-phase. It is therefore natural for this thesis to focus 

on double-strand DNA damage because it can impact our main topics of interest, cell cycle 

regulation and the decision to exit the cell cycle during differentiation in development. 

	

2.1 Cell cycle checkpoints 

 Cells activate a checkpoint soon after encountering DNA double-strand breaks (DSBs) to 

provide the opportunity for the cells to repair the damage via homologous recombination (HR) or 

non-homologous end joining (NHEJ) (Vitale et al., 2011). Acquisition of damage during S phase 

activates an intra-S phase checkpoint to block DNA replication, and damage prior to mitosis 

activates a checkpoint at the G2-M transition to avoid improper chromosome segregation and 

mitotic catastrophe (Song, 2005). Checkpoint activation causes a temporary cell cycle arrest so 

the cell can attempt to repair the DNA damage. As long as cell cycle compensation is still 

operational, after the damage is repaired and the cell re-enters the cell cycle, the next phase 

transition would be expected to be accelerated and the overall cell cycle length of a population of 

cells would be largely preserved. Alternatively, extensive damage may require a prolonged arrest 

for complete repairs to be made, after which rapid progression through the next phases may be 

unable to rescue the overall cell cycle length. 

 If a cell perceives DNA damage prior to the M phase of its final cell cycle, a checkpoint 

is activated to arrest the cell in G2 and attempt to repair the damage. E2F1 is activated by DNA 

damage and drives the expression of many DNA repair genes (Polager et al., 2002, C. Stevens et 
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al., 2003). As the repairs are being made, the cell may also accumulate cell cycle-promoting 

factors that would have otherwise been used to accelerate its next G1/S transition (as described 

above). After repair of the DNA damage, the cell re-enters the cell cycle and completes its final 

mitosis at a later time than its wild type counterparts, thereby delaying that cell's exit from the 

cell cycle. This delayed mitosis can be easily mistaken to be the result of delayed cell cycle exit 

or extra divisions, unless live imaging is performed or the total number of cell doubling events is 

determined by lineage tracing.  

 

2.2 DNA damage response 

 The DDR begins with the initial recognition of damaged DNA by the MRN complex, 

which rapidly associates with DSBs and soon thereafter recruits the ataxia telangiectasia mutated 

kinase (ATM) (Sun et al., 2009). The MRN complex is composed of the highly conserved Mre11 

and Rad50 proteins and the lesser conserved Nbs1 protein, all of which preserve chromosomal 

integrity by functioning as the primary DSB detector (Ciapponi, Cenci, & Gatti, 2006). The 

mammalian acetyltransferase Tip60 performs a role in the initial steps of the DDR where it 

acetylates and activates the ATM kinase (Sun et al., 2005), however our studies of Drosophila 

Tip60 suggest this function is not conserved in flies (see discussion, chapter 2). ATM 

autophosphorylates to transition from an inactive dimer to an active monomer that proceeds to 

phosphorylate the Histone H2A variant near sites of DNA damage (called γH2AX in mammals 

or pH2Av in flies) (Sun et al., 2009). The initial site of γH2AX/pH2Av is recognized by MDC1 

(mediator of DNA damage checkpoint 1) to facilitate the recruitment and retention of MRN 

complexes and ATM, which in turn leads to the phosphorylation of H2AX/H2Av at increasingly 

larger distances from the damage site (van Attikum & Gasser, 2009, Gontijo et al., 2003) (Fig. 
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1.5). The breast cancer associated gene 1 (BRCA1) represses transcription of the G2/M 

promoting cyclinB to contribute to cell cycle arrest while also promoting the transcription of 

certain DNA repair factors. In addition BRCA1 co-localizes with MRN complexes where it 

recruits DNA repair factors (MacLachlan et al., 2000, Deng, 2003). The spread of γH2AX 

around the site of damage also creates  docking sites for the accumulation of additional DNA 

repair factors (Sun et al., 2007). Potentially hundreds of proteins other than H2AX/H2Av are 

also phosphorylated by ATM, including Chk2 and p53 (Sun et al., 2010). The Chk2 kinase is 

activated by ATM's activity and in turn phosphorylates Cdc25c (String in Drosophila) to trigger 

its nuclear export, which also contributes to a delay in cell cycle progression. Without nuclear 

Cdc25c the mitosis-promoting CycB/Cdk1complexes remain inactive to provide time for DNA 

repair in mammals (Pietenpol & Stewart, 2002). Chk2 and ATM activity also promote the 

activity of E2F1 to promote transcription of many DNA repair factors (Lin et al., 2001, Polager 

et al., 2002, Stevens et al., 2003, Stevens & La Thangue, 2004). After damage repair, the 

conserved chromatin remodeling complex Tip60/NuA4 quenches the DNA damage signal by 

acetylating γH2AX/pH2Av and using the helicase function of its p400 subunit (Domino in flies) 

to exchange it with an unmodified H2Av-H2B pair (Kusch et al., 2004). 
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Fig. 1.5 Mechanism of H2AX/H2Av phosphorylation spreading from site of DNA damage 
(van Attikum & Gasser, 2009). DNA double-strand breaks are initially recognized by MDC1, 
which rapidly recruits the MRN complex (Mre11, Rad50, Nbs1) and the ATM kinase. ATM 
phosphorylates nearby H2A variants (H2AX/ H2Av), which in turn recruit more MDC1, MRN 
complexes, and ATM to phosphorylate H2A variants at increasing distance from the initial site. 
   
  

 Many of the components of the DDR are conserved in Drosophila, though some roles are 

slightly different that in mammals. Mei-41 (homolog of ATR) is the kinase that primarily 

controls the DDR checkpoint and DNA repair, whereas Tefu (homolog of ATM) is the 

predominant regulator of p53-dependent apoptosis and telomere stabilization (LaRocque et al., 

2007). p53 is the conserved transcription factor that functions in both mammalian and fly DDRs 

and is most famous for being inactivated in >50% of human cancers (Momand et al., 1992, 

Freed-Pastor & Prives, 2012, Levine & Oren, 2009, Polager & Ginsberg, 2009). Upon DNA 

damage in mammals, p53 levels increase and either slow cell cycle progression by promoting 

p21 expression (the CKI of the G1-S CyclinE/cdk2 pair) or induce programmed cell death by 

promoting the expression of apoptotic factors. In flies however, p53 protein levels do not 
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increase in response to DSB (Brodsky et al., 2004). Instead, p53 activity is increased by 

Chk2/MNK phosphorylation. Though Drosophila p53 is unable to slow G1-S progression 

(Ollmann et al., 2000, Brodsky et al., 2004), it has retained the ability to promote the expression 

of regulators of apoptosis, cell-cell signaling, and DNA repair (Fig. 1.6). It is thought that the 

decision to repair damage instead of performing a programmed cell death is controlled by the 

levels and duration of p53 activity, as well as the promoter-specificity of p53 at the time of 

damage. By post-translationally modifying p53 and/or by changing its' protein-protein 

interactions, signaling pathways (such as Ras) can affect whether p53 induces expression of pro-

apoptotic or DNA repair genes (Riley et al.,, 2008). Despite mammalian Tip60 co-activating 

p53-target gene expression through its acetylation of nearby H4 histones (Tang, et al., 2006), and 

the acetylation of p53 itself impacting p53's promoter selectivity (Oren, 2003), we found that 

interaction between fly p53 and Tip60 was not needed for NuA4's role in cell cycle progression 

(Flegel et al., 2016). In chapter II, I describe how we instead found that a Tip60/NuA4 complex 

is needed to resolve endogenous DNA damage that occurs during normal proliferation, which 

otherwise induces a p53-independent DDR (Flegel et al., 2016). This slows cell cycle 

progression, and impacts the proper timing of cell cycle exit during development in the absence 

of proper Tip60/NuA4 function (Flegel et al., 2016). As previously mentioned, activation of the 

DDR during can cause a temporary cell cycle arrest that could delay cell cycle exit (section 2.1). 

Consistent with this we show that when Tip60/NuA4 function is compromised, discordant timing 

of E2F-target gene silencing and differentiation occurs. In this thesis, we examine how 

disruptions of the proper timing of the final cell cycle impact the timing of cell cycle exit, cell 

cycle gene repression, and terminal differentiation. 
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Fig. 1.6 Conserved DNA damage response Adapted from (Wahl & Carr, 2001). DNA double-
strand breaks (DSBs) in mammals are detected by ATM, which acts predominantly through 
Chk2. ATR detects DNA single-strand breaks (SSBs) and acts predominantly through Chk1. In 
Drosophila, Mei-41/ATR primarily controls the DNA damage response (DDR) checkpoint and 
DNA repair, whereas Tefu/ATM is involved more in telomere stabilization and regulation of 
p53-dependent apoptosis (LaRocque et al., 2007).  
 
 
Developmental control of cell cycle exit 

3.1 Types of cell cycle exit 

 Cessation of proliferation and prolonged exit with a G1 or 2C DNA content are 

characteristics of quiescence, senescence, and cell cycle exit associated with terminal 

differentiation (Buttitta & Edgar, 2007). Though G0 has been used in the literature to refer to any 

of these distinct states of cell cycle exit, they differ in their causes and durations. Replicative 

senescence is one of several types of cellular senescence characterized as G1 arrested cells that 

have a distinct morphology, heterochromatin foci, and a characteristic gene expression profile 

(Narita et al., 2003, Zhang et al., 2005, Campisi, 2005, Narita & Lowe, 2005). Cellular 

senescence also includes age-associated replicative senescence that results from teleomere 
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shortening triggering a DNA damage response after many successive bouts of DNA replication 

(Schraml & Grillari, 2012, Bodnar et al., 1998). Another state of exit is known as quiescence 

when cells have stopped proliferating but can re-enter the cell cycle upon extrinsic signals from 

the environment. This includes cells in culture that are deprived of mitogens and quiescent adult 

mammalian stem cells that re-enter the cell cycle to maintain tissue homeostasis and respond to 

stresses such as wounding (Li & Bhatia, 2011). However, we focus on the developmentally 

regulated cell cycle exit associated with terminal differentiation, which is permanent in most 

cases and is the predominant cycling status in adult tissues. Cell cycle exit associated with 

terminal differentiation is defined as the transition to a non-proliferative and post-mitotic state 

where cells acquire their final cell fates to form functional tissues and organs. This is achieved 

by an intricate interplay of signaling cascades that is not yet fully understood. 

 

3.2 Establishing cell cycle exit  

 Thus far several redundant mechanisms have been found to reinforce cell cycle exit 

associated with terminal differentiation, including transcriptional repression and increased 

degradation of cell cycle-promoting proteins. Endogenous transcriptional repression of cell 

cycle-promoting genes during cell cycle exit has been linked with increased expression of CKIs 

(such as Dacapo in flies) which repress CycE/Cdk2 activity (Baumgardt et al., 2014) and 

recruitment of Rb family members for formation of the DREAM/MMB complex to repress cell 

cycle genes (Blais & Dynlacht, 2007). Perturbations in the DREAM/MMB complex can shift 

cells from quiescence towards proliferation in mammalian tissue culture (Litovchick et al., 

2007), but in vivo functions during terminal differentiation remain largely unknown (Forristal et 

al., 2014). Other transcription factors (yeast Stb3 and Xbp1) have also been found to promote 
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quiescence, specifically by recruiting chromatin remodelers, such as the histone deacetylase 

Rpd3, to promote chromatin closing and stable repression of cell cycle genes (McKnight et al., 

2015). Rpd3 is critical for proper establishment of quiescence in yeast, yet it remains to be 

determined whether that translates to role in cell cycle exit associated with terminal 

differentiation in multicellular organisms. 

 To reinforce the developmentally regulated post-mitotic state, cells also have a double 

assurance mechanism through which they establish and maintain cell cycle exit (Buttitta et al., 

2007). This mechanism makes post-mitotic cells refractory to increases individual complexes 

such as CycE/Cdk2 or E2F/DP, which normally positively regulate one another to promote cell 

cycle progression during active proliferation (Buttitta et al., 2007). This is achieved at least in 

part, by post-mitotic cells having increased activity of the anaphase promoting 

complex/cyclosome (APC/C), a ubquitin ligase complex whose activity promotes mitotic exit by 

triggering the degradation of major G2/M regulatory proteins including CycA, Geminin (Zielke 

et al.,  2008), CycB, and the Cdc25c homolog, Stg (Grosskortenhaus & Sprenger, 2002). 

Consequently, for a cell to abrogate the double assurance mechanism of cell cycle exit, multiple 

cell cycle promoting complexes such as CycE/Cdk2 and E2F/DP would have to be expressed 

simultaneously at levels sufficient for CycE/Cdk2 to inhibit the high levels of APC/C activity 

during cell cycle exit (Buttittal et al. 2010). 

 

3.3 Gal4/UAS system 

 Throughout this work we used the binary Gal4/UAS system to spatially and temporally 

drive transgene expression in specific fly tissues (Fig. 1.7). In this system adapted from yeast, 

Gal4 is a transcription activator that binds upstream activation sequences (UAS) to drive the 
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expression of downstream genes (Duffy, 2002). When transgenes encoding these are crossed into 

the same fly, the Gal4 can promote the expression of the sequence that lies immediately 

downstream of the UAS construct. For example, Gal4 controlled by a promoter for a gene that is 

normally expressed in the posterior of the wing (wing posterior - Gal4) mated to flies carrying a 

UAS construct controlling the expression of an RNA interference (RNAi) transgene and/or the 

marker, green fluorescent protein (GFP) will produce offspring that express the RNAi and/or 

GFP in the posterior of the wing blade. This system can be further modified by the inclusion of a 

temperature sensitive Gal80 (Gal80TS) that binds Gal4 protein and inhibits gal4's activation of 

UASs. The Gal80TS is active at low (18°C) temperatures and therefore represses the Gal4 activity 

at the UAS. A shift to high temperatures (28°C) degrades the gal80, thereby releasing the gal4 to 

activate the UAS driven RNAi and/or GFP. Variations from the basic Gal4/UAS system are used 

throughout this work. 

 

Fig. 1.7 Gal4/UAS system spatially and temporally regulates transgene expression in 
Drosophila. Flies with tissue-specific promoters driving Gal4 expression can be mated with flies 
possessing transgenes and fluorescent markers that are under control of the Gal4-responsive 
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upstream activating sequences (UAS), to produce progeny that have tissue-specific transgene 
expression. Adding an additional temperature sensitive Gal80 allows the transgene expression to 
be temporally restricted.   
 

3.4 Screen to identify regulators of cell cycle exit 

 Twenty-four hours after the start of Drosophila metamorphosis, many tissues have 

become or are transitioning to a post-mitotic state associated with terminal differentiation  (Fig. 

1.8). As previously mentioned, when cells stop proliferating and terminally differentiate, E2F is 

thought to associate with dREAM to repress cell cycle genes. In the interest of identifying genes 

involved in the proper timing of cell cycle exit, a genetic screen for negative effectors of E2F 

transcriptional activity was performed. Approximately 2,000 RNAi lines from the TRiP 

collection (Ni et al., 2011) were screened for ectopic cell cycle activity in pupal eyes or wings at 

timepoints when these tissues are normally fully post-mitotic (Buttitta & Edgar, 2007).  
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   Proliferative               G2 arrest    Final cycle           Post-mitotic 
 
Fig. 1.8 Development of the Drosophila wing. The third larval instar (L3) wing disc evaginates 
during pupal metamorphosis to form the adult wing. Patterning of the vein (orange) and wing 
margin (red) allows changes in the gross morphological organization to be observed. During this 
process the cells that were once proliferating in the larval wing, now arrest in the G2 phase of the 
cell cycle 6h after pupa formation (APF). Release from this arrest causes cells to synchronously 
perform their final cell cycle. Most cells exit the final cell cycle with a G1 or 2C DNA content by 
24h APF, and maintain their G1 DNA content throughout the rest of development as cells 
terminally differentiate. 
 
 
 The initial screen was performed by expressing the RNAi transgenes in the eye and 

assayed a PCNA-white reporter transgene previously described as a readout for E2F activity 

(Bandura et al.,  2013). Since this reporter used the promoter of the E2F-responsive β-clamp 

DNA polymerase processivity factor, Proliferating Cell Nuclear Antigen (PCNA), increases in 

the reporter actually indicated de-repression of E2F activity but not necessarily effects on cell 

cycle exit. Therefore we performed a secondary dissection-based screen with selected RNAi 

lines in both the eye and wing, directly assessing the timing of cell cycle exit by monitoring the 

mitotic marker Ser-10-Phospho-Histone H3 (PH3). From this secondary screen, we identified 
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(and then went on to confirm) that inhibition of several components of the nucleosome 

acetyltransferase of histone H4 (Tip60/NuA4) complex delay cell cycle exit in eyes and wing 

and repress Drosophila E2F1 transcriptional activity during the transition to a post-mitotic state. 

The function of the NuA4 complex in cell cycle exit is described in more detail in chapter II.  

 

3.5 Nucleosome acetyltransferase of histone H4 complex (NuA4)  

 NuA4 is a multi-subunit complex conserved from yeast to humans, best characterized as 

a H4 histone acetyltransferase (HAT) that opens chromatin to factors that regulate gene 

expression (Lu et al.,  2009, Doyon et al., 2004). NuA4 has acetyltransferase, DNA helicase, 

histone reading, and histone exchange activities through which it plays an essential, conserved 

role in quenching the DNA damage signal (Lu et al., 2009, Doyon et al., 2004, Auger et al., 

2008, Kusch et al., 2004). One of the earliest responses to DNA damage is the phosphorylation 

of H2A variants (H2AX known as H2Av in Drosophila) close to the damage site. Upon DNA 

repair, NuA4 quenches the damage signal by acetylating and replacing the modified variants 

with unmodified H2A variants (Auger et al., 2008, Kusch et al., 2004). NuA4 can also engage 

many transcription factors, including Myc, p53, NFĸB, and E2F to turn on target gene expression 

in proliferating cells (Frank et al., 2003, Tang et al., 2006, Taubert et al., 2004). However, in 

specific contexts (such as embryonic stem cells) the NuA4 complex is an essential repressor 

(Fazzio et al.,  2008) furthermore NuA4 can also promote the formation of closed chromatin in 

flies (Qi et al.,  2006). NuA4 components were also found in C. elegans to genetically interact 

with the synMuvB components that are critical for both the activating and repressive 

transcriptional roles of dREAM/MMB (Ceol & Horvitz, 2004) suggesting a possible role in cell 

cycle regulation. In addition, RNAi of several NuA4 components in Drosophila cell culture de-



	 25	

repressed an E2F1-responsive reporter and the NuA4 components were recruited to E2F1 targets 

in an E2F1-dependent manner, leading to the conclusion that NuA4 normally directly represses 

E2F1/DP targets (Lu et al.,  2007). They also concluded that NuA4 components acted in parallel 

to the DREAM complex to repress E2F-target gene expression, because RNAi of a DREAM 

component (Rbf1) and a NuA4 component (Domino) synergistically increased the E2F1-

responsive reporter (Lu et al., 2007). The combination of these roles within a cell may account 

for NuA4's paradoxical function as both a tumor suppressor and oncogene in the literature; but 

has unfortunately caused its positive vs. negative regulatory roles in cell cycle control to remain 

unresolved (Sapountzi, Logan, & Robson, 2006, Judes et al., 2015, Gorrini et al., 2007). 

Consistent with NuA4 normally promoting cell cycle progression, we found that compromising 

NuA4 delayed the timing of cell cycle exit in the fly wing and eye (see chapter II).  

 

Drosophila melanogaster as a model system for cell cycle exit 

 Analysis of cell cycle regulation in mammals can be challenging due to the 

multiple, redundant factors involved in the process, often requiring double and triple mutants to 

be generated. By contrast, most cycle regulators are well conserved in Drosophila melanogaster, 

but with fewer paralogs facilitating genetic analysis of novel cell cycle regulatory pathways 

(Dimova & Dyson, 2005). We use Drosophila to study the cell cycle regulation that occurs as 

cells transition from a proliferating to a non-proliferating state during development, in a process 

coordinated with tissue differentiation called cell cycle exit. 
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4.1 Ecdysone steroid regulates D melanogaster development and cell cycle exit 

 In Drosophila many tissues transition from actively proliferating to a terminally 

differentiated, post-mitotic state during pupal metamorphosis (Fig. 1.8) . The onset of 

metamorphosis is controlled by an increased titer of the steroid hormone ecdysone, with 

subsequent developmental events naturally synchronized in vivo (Ashburner, 1989). This 

includes the final cell cycle in the Drosophila eye and wing that culminates with cells becoming 

post-mitotic 24 hours after pupa formation (APF) relatively synchronously (Tomlinson & Ready, 

1987, O’Keefe et al., 2012, Schubiger & Palka, 1987, Milan et al., 1996) (Fig. 1.8).  

 The synchrony of the final cell cycle in the wing is a direct consequence of a temporary 

G2 arrest that occurs at 6 hours APF (O’Keefe et al., 2012). This and other pivotal points of 

Drosophila development are thought to be induced by the periodic secretion of the hormone 

ecdysone (Nijhout et al., 2014, Ou & King-Jones, 2013). Interestingly, ecdysone exposure in 

Drosophila tissue culture cells can also induce a cell cycle arrest in G2-phase (Echalier, 1997, 

Stevens et al., 1980), suggesting the mechanism through which ecdysone impacts the cell cycle 

may be similar in cell culture and fly wings. Steroid hormones play a central role in coordinating 

the timing of developmental events not only for the fly's transition from larva to pupa, but also 

the mammalian pre- to post-natal transitions and puberty. The ecdysone steroid hormone 

signaling explored here, is most similar to the vertebrate retinoic acid signaling pathway that also 

acts as a key modulator of cell differentiation in many cell types (Breitman et al., 1980). We are 

interested in how developmental cues such as these impinge upon cell cycle regulation and the 

decision of a cell to stop cycling and terminally differentiate into the tissues and organs that 

make up metazoans.  
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 During D. melanogaster development, the steroid ecdysone is synthesized in the 

prothoracic gland after which peripheral tissues convert it into its active form of 20-

hydroxyecdysone (20-HE). Upon dimerization with the nuclear ecdysone receptor (EcR) and the 

retinoid X receptor called Ultraspiracle in flies (USP) (Thomas et al., 1993), 20-HE induces 

tissue-specific cascades of gene expression that are synchronized across the whole animal to 

drive the coordinated events of metamorphosis (Emery et al.,1994). Though pulses of ecdysone 

occur several times during Drosophila development, it is not until the last larval instar (L3) and 

attainment of a critical weight that a large pulse of ecdysone triggers cessation of feeding after 

which a second, even larger pulse induces the molt to the pupa (Ou & King-Jones, 2013, Mirth et 

al., 2014) (Fig.1.9).  

 

Fig. 1.9 Pulses of ecdysone coincide with major events in Drosophila development Adapted 
from O’Keefe et al., 2012 and Ou & King-Jones, 2013. A pulse of activated ecdysone (20-HE) 
promotes the larva to pupa transition called metamorphosis. The distribution of DNA content 
determined via flow cytometry (G1, S, G2) shows that the 20-HE pulse at the larva-pupa 
transition precedes a temporary arrest of cells in G2 (red arrow at 6h). This is followed by a large 
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peak of 20-HE that coincides with cell cycle exit and terminal differentiation. Time after 
puparium formation is indicated in hours (h).  
 
 
 The primary response to 20-HE is the induction of a small set of "early" transcriptional 

target genes that amplify the original signal by triggering the subsequent expression of many 

tissue-specific "late" genes. Different isoforms of early-response genes and the possible 

combinations therein also contribute to the tissue-specificity of ecdysone responses. The 20-HE 

early-response genes include members of the broad (br) locus which encodes 4 distinct proteins 

through alternative splicing. The Broad isoforms share a common N-terminus that is 

alternatively spliced with different combinations of C2H2 zinc finger pairs (termed Broad-Z1, Z2, 

Z3, Z4) through which Broad site-specifically binds DNA (Crossgrove et al.,  1996). Although 

Broad protein is widely distributed in larva and prepupa (Emery et al., 1994, Huet et al., 1993), 

20-HE responsive tissues differ in their relative abundance of each isoform and even these 

abundances can change throughout development to result in tissue-specific cascades of events 

(Bayer et al., 1996). A relationship between 20-HE, broad expression and cell cycle progression 

is supported by ectopic 20-HE signaling in the early pupal wing inducing broad expression ( 

Schubiger & Truman, 2000) and naturally high levels of Broad coinciding with the temporary 

G2 arrest of the pupal wing (O’Keefe et al., 2012). These correlations led us to speculate that 20-

HE pulses may impinge upon cell cycle progression through its regulation of Broad. 

 A large pulse of 20-HE induces pupal metamorphosis and expression of Broad, after 

which wing (O’Keefe et al., 2012, Fain & Stevens, 1982) and leg (Graves & Schubiger, 1982) 

cells rapidly accumulate in G2. Once released from this arrest, cells perform a final cell cycle 

before permanently exiting the cell cycle at the beginning of the largest pulse of 20-HE. In 

chapter III, we describe how a pulse of the steroid hormone ecdysone modulates the cell cycle 
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during metamorphosis to synchronize the final cell cycle, and therefore cell cycle exit, in the 

Drosophila wing.  

 Altogether, the work presented here examines the NuA4 and ecdysone signaling 

pathways and how they impact the transcriptional programs that normally maintain the proper 

developmental timing of cell cycle exit in the Drosophila eye and wing. 
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Abstract 

Robust and synchronous repression of E2F-dependent gene expression is critical to the proper 

oscillation of cell cycle gene expression in proliferating cells, as well as the proper timing of cell 

cycle exit when cells transition to a post-mitotic state. Previously NuA4 was suggested to act as a 

barrier to proliferation in Drosophila by repressing E2F-dependent gene expression. Here we 

show that NuA4 activity is required for the proper timing of a developmentally controlled cell 

cycle exit and the proper repression of cell cycle genes during the transition to the post-mitotic 

state in vivo. However, the delay of cell cycle exit caused by compromising NuA4 is not due to 

additional proliferation or effects on E2F activity. Instead NuA4 inhibition results in slowed cell 

cycle progression through late S and G2 phases due to aberrant activation of an intrinsic p53-
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independent DNA damage response. A reduction in NuA4 function ultimately produces a 

paradoxical cell cycle gene expression program, where certain cell cycle genes become de-

repressed in cells that are delayed during the G2 phase of the final cell cycle. Bypassing the G2 

delay when NuA4 is inhibited leads to abnormal mitoses, genetic instability and results in severe 

tissue defects. NuA4 physically and genetically interacts with components of the E2F complex 

termed DREAM/MMB, and modulates a DREAM/MMB-dependent ectopic neuron phenotype in 

the posterior wing margin. However, this effect is also likely due to the cell cycle delay, as 

simply reducing Cdk1 is sufficient to generate a similar phenotype. Our work reveals that the 

major requirement for NuA4 in the cell cycle in vivo is to suppress an endogenous DNA damage 

response, which is required to coordinate proper S and G2 cell cycle progression with 

differentiation and cell cycle gene expression. 

 

Introduction 

A conserved eukaryotic transcriptional oscillator controls cell cycle gene expression in 

proliferating cells and underlies the well-studied Cyclin/Cdk cell cycle protein oscillator 

(ORLANDO et al. 2008; OIKONOMOU AND CROSS 2010). In metazoans, this oscillator depends 

upon transcriptional activation of several hundred cell cycle genes, initiated by E2F transcription 

factor complexes and followed by E2F inhibition (or degradation) (SHIBUTANI et al. 2008; 

ZIELKE et al. 2011; SADASIVAM AND DECAPRIO 2013). This generates an oscillation of chromatin 

opening and closing at cell cycle genes that is thought to properly coordinate G1/S and G2/M 

gene expression as well as the transition to a non-cycling state (LITOVCHICK et al. 2007; 

LITOVCHICK et al. 2011; FORRISTAL et al. 2014). Disruption of this coordination can affect cell 

cycle progression by causing inappropriate gene expression (REIS AND EDGAR 2004; WEN et al. 
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2008; FORRISTAL et al. 2014). While the oscillation of E2F activity is required for robust cell 

cycle gene expression (DIMOVA et al. 2003; KORENJAK et al. 2012), E2F complexes are not 

absolutely essential for cell cycle progression or timely cell cycle exit in Drosophila (FROLOV et 

al. 2001; FROLOV et al. 2003; FROLOV et al. 2005). In the absence of E2F activity there must be 

E2F-independent factors or mechanisms that allow sufficient cell cycle gene regulation for cell 

cycle progression and timely cell cycle exit.  

Cells entering non-proliferative or quiescent states are thought to repress the 

transcriptional oscillator by association of the tumor suppressor Retinoblastoma (RB) or RB 

family members with E2F. This association recruits a repressive complex termed the 

DREAM/MMB complex (Drosophila, Rbf, E2F and Myb/Multi-vulva class B) that is thought to 

promote the closing of chromatin and stable repression of cell cycle genes (KORENJAK et al. 

2004; LEWIS et al. 2004; LITOVCHICK et al. 2007; SADASIVAM AND DECAPRIO 2013). Though 

DREAM/MMB has no apparent histone exchange component itself, recent findings suggest that 

its role in transcriptional repression is linked with histone H2A variant (H2Av) localization to 

target gene bodies (LATORRE et al. 2015). Perturbations in the DREAM/MMB complex have 

been reported to shift cells from quiescence towards proliferation in mammalian tissue culture 

and chondrocytes, but additional in vivo DREAM/MMB functions during terminal differentiation 

remain largely unknown (LITOVCHICK et al. 2007; LITOVCHICK et al. 2011; FORRISTAL et al. 

2014). Furthermore, Drosophila tissues can still proliferate and exit the cell cycle normally in the 

complete absence of DREAM/MMB binding to chromatin, underscoring the importance of 

additional chromatin modulating factors in cell cycle progression and exit (KORENJAK et al. 

2012).  
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The transition from proliferation to a post-mitotic state in Drosophila 

Pulses of the hormone ecdysone control the developmental stages of Drosophila, with terminal 

differentiation of most adult tissues occurring during metamorphosis at the pupal stage 

(ASHBURNER 1989). Since ecdysone pulses control the onset of metamorphosis, subsequent 

developmental events are relatively naturally synchronized in vivo. This includes the final cell 

cycles in the Drosophila eyes and wings. All cell types in the eye become post-mitotic by 24 

hours after pupa formation (APF) (CAGAN AND READY 1989). In the wing, there is a temporary 

G2 arrest early in metamorphosis, such that most cells complete their final cell cycle between 12 

and 24 hours APF (SCHUBIGER AND PALKA 1987; MILAN et al. 1996; O'KEEFE et al. 2012). The 

synchronized cell cycle exit in the pupal fly wings and eyes provides a convenient in vivo context 

to identify genes that influence the proper timing of cell cycle exit.  

 

The NuA4 complex 

We took advantage of the synchronized cell cycle exit in the pupal fly eyes and wings to perform 

an RNAi-based screen for genes involved in the proper timing of cell cycle exit. This screen 

identified multiple components of the Tip60/NuA4 complex as important regulators of proper 

cell cycle exit, which we subsequently also found to be important for proper cell cycle 

progression in proliferating tissues. 

Tip60/NuA4 is a multi-subunit complex conserved from yeast to humans, best 

characterized to open chromatin to promote gene expression (DOYON et al. 2004; LU et al. 

2009). Tip60/NuA4 has histone acetyltransferase (HAT), DNA helicase, histone reading and 

histone exchange activities and plays an essential, conserved role in histone exchange for the 
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H2Ax variant (H2Av in Drosophila) that becomes phosphorylated upon DNA damage (KUSCH et 

al. 2004). NuA4 has been reported to engage many transcription factors, including Myc, p53 and 

E2F (MCMAHON et al. 2000; FRANK et al. 2003; LEGUBE et al. 2004; TAUBERT et al. 2004) to 

turn on target gene expression in proliferating cells. However, the NuA4 complex also acts as an 

essential repressor of gene expression in certain contexts, such as embryonic stem cells (FAZZIO 

et al. 2008; CHEN et al. 2013), and can promote closed chromatin formation in flies (QI et al. 

2006). Furthermore, NuA4 components paradoxically act as both tumor suppressors and 

oncogenes, leaving their positive vs. negative roles in cell cycle control unresolved (SAPOUNTZI 

et al. 2006; JUDES et al. 2015).  

 Several studies suggest roles for NuA4 and H2Av in regulation of E2F target genes and 

genetic interactions with DREAM/MMB components (CEOL AND HORVITZ 2004; LU et al. 2007; 

DEBRUHL et al. 2013; LATORRE et al. 2015). Mammalian studies implicate Tip60/NuA4 as a 

transcriptional activator of E2F target genes, whereas a subset of NuA4 components in 

Drosophila cell culture were shown to repress E2F transcriptional targets (LU et al. 2007). Here 

we reveal contradictory roles for NuA4 in cell cycle progression and cell cycle gene expression 

during development. We find the loss of NuA4 function: (1) compromises proliferation (2) leads 

to accumulation of the DNA damage hallmark phosphoH2Av (3) causes aberrant expression of a 

transcriptional program associated with a DNA damage response and (4) disrupts the proper 

timing of cell cycle exit in pupal eyes and wings by delaying the final mitosis. We further show 

that NuA4’s role in delaying cell cycle exit is independent of E2F/DP function as well as the 

DNA damage response pathway component p53 and that NuA4 acts to promote genetic stability 

in proliferating tissues.  
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Results 

Compromising NuA4 delays cell cycle exit 

To identify genes involved in the proper timing of cell cycle exit in Drosophila eyes and wings, 

we screened approximately 2,000 RNAi lines from the TRiP collection (NI et al. 2011) for 

ectopic cell cycle activity in pupal eyes or wings at timepoints when these tissues are normally 

fully post-mitotic (BUTTITTA et al. 2007). Our initial screen was performed in the eye and 

assayed a PCNA-white reporter transgene previously described as a readout for cell cycle activity 

(BANDURA et al. 2013). This screen used the Glass Multimer Repeats (GMR) promoter to drive 

Gal4/UAS induced RNAi expression in the eye during the transition to a post-mitotic state. From 

36 hits in the initial eye screen, we verified 12 RNAi lines that led to ectopic mitoses in both the 

eye and wing at timepoints later than 24h after puparium formation (APF), a developmental 

timepoint when these tissues should be fully post-mitotic. Four of these RNAi hits fell within the 

same complex, the NuA4 complex. We therefore systematically tested the core subunits of NuA4 

with additional RNAi lines and mutant alleles. We found that multiple, independent RNAi lines 

to six NuA4 subunits expressed in the posterior wing from larval stages (using engrailed-

Gal4/UAS, en-Gal4) resulted in ectopic mitoses (as detected by phospho-Ser10-histone H3, 

PH3) at timepoints after the normal transition to a post-mitotic state (Fig. 2.1, Fig. 2.1a., Table 

2.1). The effect of Tip60RNAi could be phenocopied by over-expression of a histone 

acetyltransferase (HAT)-inactive form of the catalytic subunit Tip60, (Tip60E481Q also termed 

Tip60DN) previously shown to act as a dominant negative and reduce H4 acetylation (Fig. 2.1a. 

A,B) (LORBECK et al. 2011). By contrast, overexpression of a wild-type Tip60 transgene 

(Tip60WT) had no effect on the cell cycle, or wing and eye development in any of our assays. 
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Through a timecourse analysis  (Fig. 2.1 J-N), we confirmed that cells with inhibited NuA4 were 

not permanently arrested in an aberrant mitosis. Inhibition of NuA4 delayed cell cycle exit for 4-

6h in both eyes and wings, after which all cells became post-mitotic at 32h APF with a normal 

2C DNA content as measured by flow cytometry (Fig. 2.1 N). The effects of NuA4 inhibition on 

cell cycle exit were compartment autonomous, as the anterior wing became post-mitotic 

normally (Fig. 2.1). We further verified the effects were cell autonomous by generating GFP-

labeled clones of cells expressing Tip60DN in the wing. Cells within the clone delayed cell cycle 

exit, while non-expressing cells neighboring the clones became post-mitotic normally (Fig. 

2.2a.1D). All 6 subunits with similar phenotypes are core NuA4 subunits, required for full 

function of the complex (DOYON AND COTE 2004) (Fig. 2.1 O). Thus, NuA4 HAT activity is 

required for the proper timing of developmentally controlled cell cycle exit. 

 We next examined whether the delay of cell cycle exit associated with NuA4 inhibition 

was an indirect effect due to earlier developmental defects. Using temporal restriction of 

Gal4/UAS transgene activation via engrailed-Gal4 combined with a temperature sensitive Gal80 

(hereafter termed enTS), we limited expression of Tip60DN to the final cell cycle in the pupal 

wing. Inhibition of Tip60 HAT function during only the final cell cycle also recapitulated the cell 

cycle exit delay observed with RNAi to NuA4 subunits (Fig. 2.1a. C,E). Similar to the wing, 

inhibition of NuA4 HAT activity during the final cell cycle in the eye (using GMR-Gal4) also 

delayed the timing of cell cycle exit for several hours (Fig. 2.1a. F-H). To test whether the effects 

of Tip60DN on cell cycle exit reflect a general requirement for H4 acetylation, we inhibited 

another major H4 HAT, Drosophila CBP (PARKER et al. 2008). Inhibition of CBP in the wing 

reduced overall levels of histone H4 acetylation, but did not delay cell cycle exit (Fig. 2.1a. I), 



	 44	

suggesting that NuA4 performs a specific function required for the proper timing of cell cycle 

exit.  

 

Compromising NuA4 does not alter the timing of terminal differentiation  

Since NuA4 has histone H4 acetyltransferase activity, it could be responsible for promoting gene 

expression globally. To determine if NuA4 inhibition simply slows developmental progression, 

we examined whether the 4-6h delay of cell cycle exit was also associated with a delay in the 

acquisition of characteristics associated with terminal differentiation. In the pupal wing, the 

formation of actin-rich hairs is a physical marker for terminal differentiation (MITCHELL et al. 

1983). At 25oC wing cells initiate hair formation at 32h APF (MITCHELL et al. 1983; FANG AND 

ADLER 2010). Inhibition of Tip60 or other NuA4 components using enTS did not alter wing hair 

initiation or growth (33h APF shown, Fig. 2.2a. A-C), when compared to the anterior non- 

expressing compartment despite a 4-6hr delay of cell cycle exit. We also examined whether 

Tip60/NuA4 inhibition altered the timing of differentiation in the eye (Fig. 2.2a. D-F). Terminal 

differentiation of many cell types in the late 3rd larval instar (L3) eye disc is spatially 

synchronized, following the morphogenetic furrow (MF) that sweeps from posterior to anterior 

across the tissue. Posterior to the MF, a new row of differentiated cells is established every 2h 

which can be marked by the expression of post-mitotic neural and cone cell markers (TREISMAN 

2013). A 4-6h delay in development would be expected to cause a 2-3 row posterior shift in the 

onset of differentiation marker expression. We used heat-shock induced recombination to create 

non-overlapping GFP-labeled clones expressing Tip60DN that span the MF and the first few rows 

of differentiated cells. We did not observe any delay in photoreceptor or cone cell marker 

expression upon NuA4 inhibition, compared to the surrounding non-clonal cells (Fig. 2.2a. D-F). 
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This suggests that compromising NuA4 does not delay cell cycle exit simply by slowing overall 

developmental progression. 

 

Inhibition of NuA4 leads to ectopic cell cycle gene expression 

NuA4 is a chromatin remodeler and components of NuA4 have been shown to repress E2F-

dependent gene expression in cultured Drosophila S2 cells (LU et al. 2007). We therefore 

examined whether NuA4 inhibition altered cell cycle gene repression in pupal wings and eyes 

during cell cycle exit. We examined three reporters previously shown to be accurate readouts of 

endogenous cell cycle gene regulation including transcriptional repression at cell cycle exit; a 

PCNA-GFP transgene which reports E2F-dependent G1-S gene expression, and the Mad2-GFP 

and Stg-GFP protein traps that report endogenous levels of G2-M phase cell cycle regulators 

(THACKER et al. 2003; WEN et al. 2008; INABA et al. 2011). Inhibition of Tip60/NuA4 in the 

posterior pupal wing by RNAi or Tip60DN expression led to ectopic PCNA-GFP and Mad2-GFP 

expression at stages that are normally post-mitotic (Fig. 2.2 A-G). NuA4 inhibition during the 

final cell cycle in the eye also caused a subset of interommatidial cells to exhibit ectopic PCNA-

GFP expression at post-mitotic pupal stages (Fig. 2.2 H). In clones with Tip60/NuA4 inhibited in 

the late L3 eye, we observed higher and prolonged Stg-GFP expression in the G1 arrested cells 

of the morphogenetic furrow as well as the post-mitotic region posterior to the MF (Fig. 2.1 I-K). 

To confirm that the reporters reflect the endogenous transcripts we performed quantitative RT-

PCR for cell cycle genes in pupal wings at 26h APF expressing Tip60WT and Tip60DN. 

Transcripts for pcna and mad2 were increased in wings expressing Tip60DN, consistent with our 

reporter assays (Fig. 2.1 L). However, we did not observe an increase in stg expression in pupal 

wings. Unlike the eye, endogenous stg levels normally peak at the time of cell cycle exit in the 
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pupal wing (BUTTITTA et al. 2007), and NuA4 inhibition may not increase stg beyond the already 

high levels of expression at this stage. The ectopic expression of the known E2F1 targets pcna 

and mad2 (NEUFELD et al. 1998; THACKER et al. 2003; WEN et al. 2008) raised the possibility 

that NuA4 impacts E2F1 expression or activity.  Surprisingly, expression of Tip60DN reduced 

both e2f1 transcript and E2F1 protein levels in the pupa wing (Fig. 2.1 L,M). Altogether our data 

suggests that NuA4 function is needed for the proper shut-off of specific cell cycle genes at cell 

cycle exit, but seemingly paradoxically is also required for the proper maintenance of E2F1 

levels.  

 

Compromising NuA4 disrupts cell cycle progression 

Our finding that NuA4 is required both for the proper shutoff of cell cycle gene expression as 

well as the proper maintenance of E2F1 levels, raised the question of whether the delayed cell 

cycle exit observed upon NuA4 inhibition is due to extra cell cycles or the result of a slowed 

final cell cycle. To address this we performed a clonal lineage tracing experiment in the wing 

blade to quantify the number of cell divisions occurring before the delayed cell cycle exit. Non-

overlapping, GFP-labeled clones expressing Tip60DN were induced at 0h APF during the final 

cell cycle in the wing. Pupa wings were examined at 36h APF, (12h after normal exit and 4-6h 

after the delayed cell cycle exit) and the number of cells per clone was counted blind for at least 

100 clones per genotype (Fig. 2.3 A). We also co-expressed the apoptosis inhibitor P35, to avoid 

the effects of apoptosis on counting cell divisions. Control clones expressing GFP+P35 averaged 

2.22±0.08 cells/clone, while clones expressing Tip60DN +P35 averaged 2.11±0.05 cells/clone 

(Fig. 2.3 A). We confirmed that this method is sensitive enough to detect even one extra cell 

cycle in the wing, as clones overexpressing CycD/Cdk4 +P35 caused one extra cell cycle in 
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approximately 50% of clones resulting in 2.59±0.11 cells/clone. Thus, inhibition of Tip60 HAT 

activity delays cell cycle exit by slowing the final cell cycle, rather than by causing additional 

cycles.  

 We next examined whether loss of Tip60/NuA4 function prolongs the cell cycle during 

asynchronous proliferation in the larval wing. We again created non-overlapping GFP-marked 

clones and compared cells/clone 30 and 46h after induction for Tip60DN+P35 vs. Tip60WT+P35 

(Fig. 2.3 B). Clonal cell counts for Tip60WT averaged 4.26 ± 0.12 cells/clone at 30h 

corresponding to a normal cell doubling time (DT) of approximately 15h in the wandering L3 

larval wing, consistent with other reports (REIS AND EDGAR 2004). By contrast, clones 

expressing Tip60DN averaged 3.39 ± 0.11 cells/clone (Fig. 2.3 B), corresponding to an average 

DT almost 4h longer than the control (18.93h). This indicates that Tip60 HAT activity is 

required for proper cell cycle progression.  

Slowed cell cycle progression was also observed upon inhibition of other NuA4 subunits. 

RNAi to E(Pc) or Nipped-A in the presence of P35 to block apoptosis resulted in smaller clones 

in the larval wing (Fig. 2.3 C) despite little change to cell size (Fig. 2.3a. A). domino (dom) null 

clones generated by mitotic recombination in a dom+/- background were also significantly 

smaller than their dom+/+ sibling twinspot clones, even when one copy of the H99 locus was 

removed to minimize cell death (Fig. 2.3 D, Fig. 2.3a. B-D). Using flow cytometry to measure 

DNA content, we determined that dom-/- cells accumulated in the late S, G2 phase of the cell 

cycle (with >2C DNA content) in proliferating L3 wings (Fig. 2.3.D’). We observed similar 

results with RNAis to the other NuA4 subunits and Tip60DN, when expressed in the GFP-positive 

posterior compartment of the late L3 wing (Fig. 2.3 E). To ensure the changes in cell cycle 

phasing were not due to non-autonomous effects on the non-Gal4 expressing anterior 
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compartment of the wing, we also performed posterior-to-posterior wing comparisons of flow 

cytometry profiles to control genotypes including w1118, whiteRNAi and Tip60WT (Fig. 2.3 F). We 

consistently observed an increase in cells with >2C DNA content when NuA4 is inhibited, 

although we also found a mild compensatory non-autonomous effect on the cell cycle 

distribution in the anterior wing as well (Fig. 2.3 G). This, together with the slowed cell cycle 

progression suggests that full Tip60/NuA4 function is required for proper S/G2/M progression in 

vivo; which is consistent with data from other organisms (CLARKE et al. 1999; CHOY et al. 2001; 

LI et al. 2004; HU et al. 2009; TAPIAS et al. 2014). 

 A previous study of the NuA4 subunits Brd8, YL-1 and dom in cultured Drosophila S2 

cells described an effect of NuA4 on E2F activity, but did not describe a cell cycle phenotype 

(LU et al. 2007). To examine whether NuA4 impacts cell cycle progression in S2 cells, we used 

an S2 cell line containing the FUCCI (fluorescent ubiquitination-based cell cycle indicator) 

reporters and performed RNAi to NuA4 subunits for 5 days, followed by E2F reporter assays, 

flow cytometry and cell counts (ZIELKE et al. 2014). NuA4 inhibition in S2 cells had the 

previously described effects on an E2F-Luciferase reporter (not shown), but also reduced EdU 

incorporation during S-phase and lengthened the S-G2 transition (Fig. 2.3a. E-G). This resulted 

in altered cell cycle phasing, mainly by increasing the proportion of cells in late S and early G2 

(Fig. 2.3 H). Altogether our data suggests inhibition of NuA4 leads to cell cycle alterations that 

slow S/G2 cell cycle progression.  

 

NuA4 inhibition deregulates cell cycle gene expression during active proliferation 

A well-known readout of E2F transcriptional activity, PCNA-GFP is increased upon NuA4 

inhibition in pupal wings (Fig. 2.1). We observed similar increases in PCNA-GFP and Stg-GFP 
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reporters when NuA4 was inhibited in the proliferating late L3 wing, despite the slowed 

proliferation and prolonged S and G2 phases under these conditions (Fig. 2.4 A-H). Similar to 

the pupa wing, expression of Tip60DN in the posterior L3 wing caused a reduction in E2F1 

protein levels (Fig. 2.4 I, J). Since E2F1 is degraded in S-phase but accumulates during G1 and 

late G2 phases (SHIBUTANI et al. 2008; ZIELKE et al. 2014) cells in a prolonged late S/early G2 

would be expected to have lower E2F1 protein levels. However we were puzzled by the 

apparently contradictory results of a delay in S/G2 progression when NuA4 is inhibited, 

accompanied by higher levels of Stg. This suggested that compromising NuA4 may activate a 

checkpoint to offset the increased levels of Stg. Stg acts on the CycB/Cdk1 complex to promote 

its activity by removing the inhibitory Cdk1 phosphorylation catalyzed by the Wee and Myt 

kinases. However we observed no obvious changes in total Cdk1 or Wee levels by 

immunofluorescence. Instead, we found that expression of Tip60DN reduced CycB protein within 

24h of expression in the larval wing, while Tip60WT expression had no effect on CycB (Fig. 2.4 

K-M). RNAi to other NuA4 subunits also recapitulated this effect, leading to a ~15-20% 

reduction in CycB protein levels which we also confirmed by qRT-PCR (Fig. 2.4a. A,B). By 

contrast we did not observe consistent changes in another G2-M regulator CycA (Fig. 2.4a. C-E). 

We suggest that the reduced levels of CycB may contribute to the slowed S/G2 progression when 

NuA4 is compromised. Importantly, a previous study of Tip60 localization on the genome by 

DamID resolved one of the top 5 strongest peaks of Tip60 binding on the entire chromosome to 

the 5’ region of the cycB gene, suggesting the regulation of cycB by Tip60 could be direct (Fig. 

2.4 N) (FILION et al. 2010).  
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The transcriptional response to Tip60 inhibition 

To get a more global view of the gene expression changes caused by inhibition of Tip60, we 

performed RNAseq on dissected late L3 wings containing large, overlapping clones expressing 

Tip60WT or Tip60DN. We used flipoutTS to restrict expression of Tip60WT or Tip60DN to 48 or 78h 

prior to RNA extraction. Tip60WT expression caused minimal changes in the transcriptome 

compared to control wings expressing Gal4/GFP alone (112-133 transcripts out of the entire 

genome), while Tip60DN expression for 48 and 78h led to a largely overlapping program of 860 

genes that significantly change expression >1.4-fold compared to Tip60WT.  

Tip60 has been primarily reported to play roles as a transcriptional co-activator with 

several factors including nuclear hormone receptors, Myc and E2F (BRADY et al. 1999; FRANK et 

al. 2003; TAUBERT et al. 2004; HATTORI et al. 2008). We were therefore surprised to find that 

the majority of genes with changed expression (72.5%) are upregulated when Tip60 HAT 

function is inhibited (Fig. 2.4 O). We observed few significant changes to core G2 cell cycle 

regulators, with the exception of a mild (1.4-fold) upregulation of tribbles, a mitotic inhibitor 

involved in String degradation (MATA et al. 2000; SEHER AND LEPTIN 2000). Also consistent 

with our qRT-PCR results, cycB (and cycB3) were mildly reduced (32-41%) at both timepoints. 

We examined the genes altered by Tip60DN for overlap with Tip60 binding based upon published 

Tip60 ChIP-Seq and Tip60-DamID data (FILION et al. 2010; XU et al. 2014). We found that 35% 

of upregulated and 33% of downregulated genes are also bound by Tip60 in Drosophila cells, 

suggesting our dataset includes targets of both direct and indirect Tip60 regulation.   

We next compared the genes upregulated by Tip60DN to transcriptional targets identified 

for the DREAM/MMB complex (GEORLETTE et al. 2007). At the same time, due to the known 
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roles for Tip60/NuA4 in DNA damage signaling (reviewed by SQUATRITO et al. 2006; SUN et al. 

2010; GURSOY-YUZUGULLU et al. 2015) we also included a comparison to a transcriptional 

response (both p53-dependent and p53-independent) to DNA damage by ionizing radiation (IR) 

in wings (VAN BERGEIJK et al. 2012) (Fig. 2.4 P). We found a significant overlap with the genes 

upregulated by Tip60DN expression and the DNA damage response (DDR) profile (104 out of 

634 genes, Table 2.1a), and a lesser overlap with the DREAM/MMB regulated genes (68 out of 

634 genes). The DNA damage response also partially overlaps with DREAM/MMB regulated 

genes, as several DNA repair and synthesis enzymes are regulated by DREAM, but only 24% 

(14 out of 48) of the shared DREAM/DNA damage response genes are also significantly 

upregulated by Tip60DN (Table 2.2a). Thus, the inhibition of Tip60/NuA4 results in the 

upregulation of over 100 genes associated with a DNA damage response. These include the 

known direct targets of p53 such as reaper, eiger and Xrp1 (BRODSKY et al. 2000; AKDEMIR et al. 

2007; LINK et al. 2013), as well as several p53-independent targets such as Gadd45, Snap25 and 

Traf4 (VAN BERGEIJK et al. 2012). A subset of targets, their regulation by p53 and DREAM, as 

well as whether they overlap with known locations of Tip60 binding is shown in Fig. 2.4 Q. 

Importantly orthologs of several of these targets (e.g. Snap25, Gadd45, Traf4, trbl, eiger) are 

also upregulated in mammalian cells in response to replication stress induced by aphidicolin 

treatment (MAZOUZI et al.). 

Tip60/NuA4 may act to quench DNA damage signaling in Drosophila via its 

modification and replacement of phosphorylated H2A variant (pH2Av), with an unmodified 

variant (KUSCH et al. 2004). Consistent with this role, Tip60/NuA4 inhibition in the proliferating 

wing (using enTS) led to a significant increase in formation of pH2Av foci in wings, even in the 

absence of any exogenous DNA damaging agents (Fig. 2.4 R-T, Fig. 2.4a. F). This suggests that 
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Tip60/NuA4 is required to limit or prevent a DNA damage response due to some form of 

endogenous stress. Tip60/NuA4 has been shown to catalyze the acetylation and exchange of 

pH2Av for H2Av, which is required for resolution of the DNA damage response (KUSCH et al. 

2004). Consistent with this, we found that S2 cells treated with RNAi to Tip60 or E(Pc) failed to 

resolve pH2Av foci 16h after a pulse of the DNA damaging agent Camptothecin (CPT, Fig. 4a. 

G-I). Altogether our data suggests unresolved pH2Av and/or possibly unrepaired DNA damage, 

contributes to the transcriptional response and cell cycle defects we observe when NuA4 is 

inhibited. 

 

NuA4 inhibition does not delay cell cycle exit through the p53-dependent DNA damage 

response 

To test whether DNA damage signaling could cause a delay in cell cycle exit, we overexpressed 

p53 in the posterior wing with enTS starting at L3 and examined pupal wings for mitoses at 26-

30h APF. We found that overexpression of p53 is sufficient to induce a compartment 

autonomous delay of cell cycle exit, with similar timing to NuA4 inhibition (Fig. 2.5 A). We 

next tested whether p53 is necessary for the cell cycle exit delay caused by loss of NuA4. We co-

expressed a DNA-binding defective p53 (p53DN) with Tip60DN in the posterior wing (BRODSKY 

et al. 2000), or expressed Tip60DN or Brd8RNAi in a p53 null background (p535A-1-4/11-1B-1) (RONG 

et al. 2002; XIE AND GOLIC 2004). We verified that these p53 alleles were functional and blocked 

p53-induced apoptosis in the wing (Fig 2.5a. A-C) and loss of p53 does not affect the normal 

timing of cell cycle exit (Fig. 2.5a. D,E). However, despite the inhibition or loss of p53, the cell 

cycle exit delay caused by NuA4 inhibition persisted (Fig. 2.5 B-D). Instead we observed a 

severe enhancement of wing defects, a reduction in wing size and animal survival, suggesting 
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Tip60/NuA4 and p53 may be required in parallel for proliferation and survival in the absence of 

exogenous DNA damage (Fig. 2.5 E, Fig. 2.5a. F). Loss of p53 did not prevent the reduction in 

CycB levels in the wing caused by NuA4 inhibition (Fig. 2.5a. G-I), and inhibition of p53 by 

p53DN could not rescue the poor growth or survival of dom-/- cells in the proliferating larval 

wing (Fig. 2.5a. J). Knockdown of the DDR kinases upstream of p53, ATM (mei-41), chk1 (grp), 

and ATR (tefu), also did not suppress the delayed cell cycle exit caused by Tip60DN expression. 

However similar to our results with p53, the posterior wing size was significantly reduced by 

coexpression of ATM and ATRRNAi with Tip60DN, creating notches in the wing blade (arrows, Fig. 

2.5a. K-M). Because ATM and ATR can act redundantly in Drosophila (BI et al. 2005; JOYCE et 

al. 2011; KONDO AND PERRIMON 2011), we also attempted to simultaneously knockdown ATM 

with expression of Tip60DN in an ATR mutant background. However we were unable to recover 

any animals of the correct genotype, suggesting possible synthetic lethality. Finally blocking 

apoptosis, the most downstream component of DDR signaling, also could not suppress the 

delayed cell cycle exit caused by NuA4 inhibition (Fig. 2.5a. N,O). This suggests that the effects 

of NuA4 on cell cycle progression act independent of, but in parallel to components of the 

canonical DDR pathway. 

 

NuA4 inhibition does not delay cell cycle exit through altered E2F/DP function  

Tip60 and NuA4 subunits genetically interact with components of a repressive RB/E2F/DP 

DREAM-like complex in C. elegans, while in Drosophila cell culture specific NuA4 

components have been shown to repress E2F target gene expression (CEOL AND HORVITZ 2004; 

LU et al. 2007).  Our results in vivo suggest the effects of the NuA4 complex on cell cycle genes 

are complicated, as we see context-dependent evidence of both activating (e.g. cycB, e2f1) and 
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repressive (e.g. pcna, stg, mad2, tribbles) effects on cell cycle gene expression. Tip60 physically 

interacts with the E2F dimerization partner DP as assayed by co-immunoprecipitation (Fig. 2.6a. 

A), consistent with the reported interactions between Dom and E2F in both Drosophila and 

mammalian cells (LU et al. 2007). We therefore examined whether E2F/DP function could be 

required for the delayed cell cycle exit caused by Tip60/NuA4 inhibition.  

We used a severe Dp hypomorphic mutation over a null allele (Dpa1/a4) to obtain pupal 

wings with normal developmental timing (ROYZMAN et al. 1997). The strong loss of Dp function 

neither suppressed nor enhanced the delay of cell cycle exit caused by Tip60DN in the pupa wing 

(Fig. 2.6 A-C). The loss of Dp also did not suppress the S/G2 cell cycle phase elongation in the 

larval wing, or alter the reduction in CycB caused by Tip60 inhibition (Fig. 2.6a. B-D). By 

contrast, the loss of Dp enhanced a phenotype of ectopic Elav-positive neurons at the posterior 

wing margin (PWM) caused by Tip60DN or inhibition of another NuA4 subunit Brd8 (Fig. 2.6D-

H, Fig.. 2.6a. E). This is a phenotype previously associated with the loss of repressive 

components of the DREAM/MMB complex, that is thought to be independent of the cell cycle 

functions of DREAM/MMB (ROVANI et al. 2012). The loss of Dp also enhanced the severity of 

defects caused by Tip60DN in adult wings (Fig. 2.6a. F), and the loss of another DREAM/MMB 

component, Rbf is synthetically cell-lethal with Brd8RNAi in pupal eyes and wings (Fig. 2.6a. G).  

Altogether our data suggests that while NuA4 and DREAM/MMB genetically interact in some 

contexts, the impacts of NuA4 loss on cell cycle progression and cell cycle exit appear to be 

independent of E2F/DP function.  
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Delaying the final G2-M transition impacts the proper repression of cell cycle genes at cell 

cycle exit 

NuA4 inhibition elongates late S/early G2 phases (Fig. 2.3) and reduces the expression of a 

major G2-M regulator CycB in proliferating tissues (Fig. 2.4). We therefore directly examined 

whether slowing the final cell cycle in the pupal wing could recapitulate the cell cycle exit 

defects we observe when NuA4 is inhibited. We used the enTS system to over-express transgenes 

that prolonged the final G2-M transition, through the expression of the Cdk1 inhibitory Wee 

kinase, or an RNAi to Cdk1. Prolonging the final G2-M transition effectively delayed cell cycle 

exit with timing similar to that observed when we compromise NuA4 function (up to 30h APF, 

Fig. 2.7 A,B), while prolonging the final cell cycle with an RNAi to e2f1 or the expression of a 

dominantly active Rbf, Rbf 280 did not perturb the overall timing of cell cycle exit (Fig. 2.7a. A-

D). Other genetic conditions known to prolong the cell cycle such as generating Minute+/- clones 

or slowly dividing Dp null mutant clones also did not detectibly delay cell cycle exit in the pupal 

wing (MARTIN AND MORATA 2006; SUN AND BUTTITTA 2015). This demonstrates that simply 

slowing cell cycles during the proliferative phases or slowing the final G1-S does not delay cell 

cycle exit in the wing.  

What is the biological consequence then, of slowing the final G2-M? We find that 

delaying the final mitosis results in a failure to properly shut down the expression of cell cycle 

genes in the pupal wing. Elongation of the final G2 phase via expression of Wee kinase or Cdk1 

inhibition led to ectopic PCNA-GFP and Mad2-GFP expression for several hours after they are 

normally repressed (PCNA-GFP shown, Fig. 2.7 C-D). This was particularly striking in the case 

of cdk1RNAi, where expression starting from the proliferating larval stages led to an early arrest of 

cell proliferation in the posterior wing, but with ubiquitously high PCNA-GFP expression that 
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persisted for several hours beyond the transition to a post-mitotic state (Fig. 2.7 D). Why does an 

elongation of the final G2-M transition lead to aberrant expression of cell cycle genes? The 

lengthening of either gap phase in the proliferating larval wing has previously been shown to 

result in an accumulation of E2F1 activity that drives a compensatory shortening of the next gap 

phase to maintain the overall cell doubling time. This is termed “cell cycle compensation” and is 

dependent upon the negative regulation of E2F1 activity by Cyclin/Cdks (REIS AND EDGAR 

2004). This creates a situation where G2 elongation, for example by Wee expression, results in 

increased E2F transcriptional activity that can be detected by the PCNA-GFP reporter (Fig. 2.7a. 

E). Our results suggest that cell cycle compensation also occurs during the final cell cycle in the 

pupal wing, but due to the absence of a subsequent cell cycle this results in aberrant E2F activity 

and cell cycle gene expression in tissues entering into a post-mitotic state. Based on these results, 

we suggest that the aberrant cell cycle gene expression and de-repression of E2F targets observed 

when NuA4 is inhibited may be due in part to the S/G2 delay and subsequent activation of the 

cell cycle compensation mechanism. 

We also observed additional consequences of altering the final G2 phase on cell fate at 

the posterior wing margin. A developmentally regulated G2 arrest is essential for proper cell fate 

decisions in sensory organ precursors (SOPs), as disruption of proper Cdk1 activity in SOPs can 

alter cell division timing and asymmetric cell fate decisions (FICHELSON AND GHO 2004; AYENI 

et al. 2016). Consistent with this, we observed that inhibition of Cdk1 activity was sufficient to 

fully recapitulate the ectopic neuron phenotype in the posterior wing margin, similar to that 

observed when components of the DREAM or the Myb component of MMB are inhibited 

(ROVANI et al. 2012) (Fig. 2.6 F, Fig. 2.7 E,F). We suggest this phenotype is similar to that 

shown previously in SOPs of the notum where a delay in G2 caused a cell fate change in the pI 
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SOP to the pIIb fate, which produces a neuron and sheath cell (FICHELSON AND GHO 2004). 

Importantly, activation of the DDR pathway via p53 expression in the posterior wing is also 

sufficient to recapitulate this phenotype (Fig. 2.7 G), suggesting that multiple pathways 

impacting timely S/G2 progression converge on this phenotype. Altogether our results suggest 

that the Tip60/NuA4 complex is required for proper S/G2 progression, likely through its roles in 

modulating CycB levels and pH2Av removal. This impacts proper cell cycle exit, cell identity in 

the posterior wing and as described further below, is essential for genetic stability (Fig. 2.7 H). 

 

Promoting G2 progression when NuA4 is inhibited leads to aberrant mitoses and genetic 

instability 

A reduction in CycB occurs within 24h of Tip60DN expression in proliferating wings, even in p53 

null and in strong Dp hypomorphic backgrounds. To determine whether increasing CycB/Cdk1 

activity could suppress the G2 elongation and proliferation defects caused by Tip60/NuA4 

inhibition, we co-overexpressed String to increase the activity of the remaining CycB/Cdk1. In 

larval wings, co-expression of Stg with Tip60DN effectively suppressed the effect of Tip60DN on 

increased S and G2 populations (Fig. 2.8 A). However when we examined the pupal wing, we 

found that the delay in cell cycle exit persisted even in the presence of high levels of Stg and 

CycB (Fig. 2.8 B-D, H-J).  Closer examination of the PH3 staining in wings co-expressing 

Tip60DN and Stg or CycB (not shown) revealed many mitotic defects, including defects in 

chromosome alignment, condensation, anaphase bridges and mis-segregated chromosomes, 

defects we do not observe in wings expressing Tip60DN alone (Fig. 2.8 E-F).  Inhibition of 

Tip60/NuA4 function leads to defects in cell cycle progression that elongate the late S/early G2 

phases of the cycle. This elongation may occur in part through a reduction in CycB expression 
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and activation of a DNA damage response, which effectively increases the chances for repair 

prior to mitosis. When cells with compromised NuA4 are forced into mitosis without delay by 

high CycB/Cdk1 activity, severe mitotic defects occur ultimately resulting in defects in the adult 

wing (Fig. 2.8 G, J). Thus NuA4 plays an essential role in S/G2 progression to promote genetic 

stability.     

 

Discussion 

Here we show that compromising the Tip60/NuA4 complex in vivo leads to a delay of cell cycle 

exit and ectopic cell cycle gene expression in terminally differentiating cells. NuA4 components 

physically and genetically interact with DREAM components and can impact specific targets of 

RB/E2F repression (LU et al. 2007). But we find that other essential roles for NuA4 in promoting 

S and G2-phase progression leads to slower cycling and confounding indirect effects on E2F cell 

cycle targets in vivo when NuA4 is compromised. When NuA4 is inhibited, cells accumulate 

pH2Av and exhibit transcriptional changes associated with a DNA damage response. In addition, 

E2F1 and CycB levels are reduced when NuA4 is inhibited. This leads to an elongation of the 

cell cycle, coupled with de-repression of specific RB/E2F targets, resulting in a paradoxical cell 

cycle gene expression program where certain cell cycle genes become highly expressed in cells 

that are exiting the cell cycle. We suggest that NuA4 acts as an essential component to 

coordinate proper pH2Av removal with S/G2 phase completion prior to mitotic entry, in addition 

to its other roles in modulating chromatin for gene expression. 
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The Tip60/NuA4 complex and cell cycle gene expression 

NuA4 components directly localize to the promoters of many cell cycle genes in several 

organisms, and most often Tip60/NuA4 is thought to promote cell cycle gene expression via 

HAT activity (LI et al. 2004; TAUBERT et al. 2004; TAPIAS et al. 2014). We show that the 

Tip60/NuA4 complex in Drosophila impacts cell cycle gene expression in complex ways. 

Tip60/NuA4 is required to prevent the expression of a cluster of DNA damage response and 

specific cell cycle genes, but is also required for the normal expression of cycB (Fig. 2.4, Fig. 

2.4a. ). Tip60/NuA4 binds to the cycB promoter and 5’ intron, suggesting that cycB could be 

directly regulated by NuA4 (FILION et al. 2010). Interestingly, cycB is located in the genome as a 

divergently paired gene (DPG) (YANG AND YU 2009) with stall, which is upregulated 6.5-fold 

upon Tip60 inhibition. Tip60/NuA4 may therefore act to direct the proper transcription of certain 

DPGs with differential expression patterns. Consistent with this idea we noted that 18 of the 20 

strongest Tip60 binding peaks in the genome (FILION et al. 2010), are associated with DPGs. 

While specific components of NuA4 have been shown to repress certain E2F targets in 

cell culture, a repressive function for the Tip60 subunit on expression of many other genes was 

unexpected, as HAT activity is usually associated with increased gene expression. Some of the 

effects we observe on gene expression are indirect, likely due to an inability to remove pH2Av 

from chromatin and resolve DNA damage signaling (Fig. 2.4, Fig. 2.4a. ). However, Tip60 HAT 

activity may also act on chromatin to directly repress target genes, as 35% of genes upregulated 

by Tip60DN in the Drosophila wing have Tip60 binding sites (FILION et al. 2010; XU et al. 2014). 

Tip60/NuA4 has been shown to catalyze histone exchange to incorporate the H2A variant H2AZ 

in yeast (AUGER et al. 2008; ALTAF et al. 2010), and the H2A variant in Drosophila H2Av, has 

been associated with gene repression (SWAMINATHAN et al. 2005; QI et al. 2006; HANAI et al. 
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2008). Recent work in C. elegans has revealed that target genes of RB/E2F repression, including 

cell cycle genes bound by the DREAM complex, exhibit deposition of the H2Av homolog 

H2A.Z, along the gene body (LATORRE et al. 2015). H2A.Z localization on the gene body is 

associated with repression as opposed to H2A variant localization at promoters, which is 

associated with transcriptional activation (BARSKI et al. 2007; HARDY et al. 2009), and loss of 

H2A.Z at the majority of DREAM bound genes in C. elegans de-represses their expression. Thus 

the function of NuA4 in H2Av incorporation could act to directly repress gene expression. While 

we did not observe large changes in expression of most Drosophila DREAM targets in our 

RNAseq data (Table 2.3a), compromising Tip60/NuA4 function may prevent proper H2Av 

deposition at the 17% of genes affected by Tip60DN that overlap with Drosophila DREAM 

regulated genes. Consistent with this idea, we found that 60% of the genes upregulated by Tip60 

inhibition that are shared with DREAM targets exhibit significant H2Av localization on the gene 

body, including pcna and mad2 (modencode.org, dataset #4953).  

 Elongation of G2 phase can lead to an upregulation of E2F activity and activation of the 

E2F transcriptional reporter PCNA-GFP (Fig. 2.7, Fig. 2.7a). This is due to cell cycle 

compensation, where E2F1 protein accumulates during the G2 delay resulting in an increased 

E2F transcriptional output (REIS AND EDGAR 2004). When NuA4 is inhibited we observe 

hallmarks of increased E2F1 activity and cell cycle delay, but without an accumulation of E2F1. 

Instead we observe a reduction in E2F1 protein and transcript levels (Fig. 2.2, Fig. 2.4). This 

suggests that either NuA4 inhibition acts on the cell cycle reporters in an E2F-independent 

manner, possibly by the H2Av mechanism described above, or that the reduced levels of E2F1 

may somehow have increased activity when NuA4 is inhibited. E2F1 activity can be increased 

through reduced levels of the repressor Rbf or increased phosphorylation of Rbf by Cyclin/Cdks. 
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We examined whether there were higher levels of G1 and S Cyclins CycE and CycA when 

NuA4 was inhibited (Fig. 2.4a. , CycE data not shown) but did not observe any significant 

differences from controls. We also did not see significant changes in expression of other direct or 

indirect negative E2F1 regulators including ago, dacapo e2f2, Rbf, Rbf2, cycD or cdk4 in our 

RNAseq data. Because we could not ultimately rule out the possibility of a change in Rbf 

phosphorylation or protein levels, we genetically eliminated Rbf in cells expressing Brd8RNAi. We 

found that this combination was strongly synthetically cell-lethal, suggesting the two pathways 

may act independently but in parallel (Fig. 2.6a. G).   

 

The Tip60/NuA4 complex and DNA damage signaling 

Tip60/NuA4 plays multiple roles, both positive and negative, at several levels within the DNA 

damage response and repair pathway. Tip60 can acetylate the ATM kinase to promote its 

activation and phosphorylation of targets in response to DNA damage (SUN et al. 2005; SUN et 

al. 2007). Tip60 also acetylates p53 protein to modulate its activity (TANG et al. 2006), as well as 

acts with p53 at the chromatin to promote expression of target genes (LEGUBE et al. 2004). We 

find that inhibition of Tip60/NuA4 leads to high levels of pH2Av, a hallmark of high ATM/ATR 

kinase activity, as well as activation of several direct transcriptional targets of p53 (Fig. 2.4). 

This demonstrates that activating ATM and p53 target expression are not the key roles for 

Tip60/NuA4 in vivo in Drosophila. Instead, our results are consistent with an essential role for 

the Tip60/NuA4 complex in acetylating and exchanging phospho-H2Av for H2Av to resolve 

DNA damage signaling (KUSCH et al. 2004) (Fig. 2.4, Fig. 2.4a.). We show that Tip60/NuA4 

inhibition or loss leads to an accumulation of pH2Av, possibly in response to endogenous DNA 

damage. We believe this is why loss of Tip60/NuA4 leads to ectopic activation of DNA damage 



	 62	

response genes encompassing both a p53-dependent and p53-independent response (Fig. 2.4), as 

well as enhances the loss of function phenotypes for multiple components of the DNA damage 

response pathway (Fig. 2.5). We suggest a delayed progression through S/G2 becomes essential 

when NuA4 is inhibited, to allow for pH2Av removal or DNA/chromatin repair. This is 

demonstrated by the severe mitotic defects and genetic instability that occur when NuA4 is 

compromised but the cell cycle delay is bypassed (Fig. 2.8). 

 

NuA4 and cancer 

Previous studies have paradoxically characterized NuA4 as both a tumor suppressor and an 

oncogene (GORRINI et al. 2007; JUDES et al. 2015). Maintenance of proper cell cycle gene 

expression may in part underlie some roles for NuA4 in cancer, while others may be due to its 

roles in DNA damage signaling (SQUATRITO et al. 2006). Our data suggests Tip60/NuA4 may 

behave as a tumor suppressor by ensuring genetic stability (Fig. 2.4, Fig. 2.8). However, we also 

observe cell cycle gene upregulation when NuA4 is compromised (Fig. 2.3). While the increased 

cell cycle gene expression we observe upon NuA4 inhibition was insufficient to cause extra or 

accelerated cell cycling in our experiments, additional hits (which may be caused by increased 

genetic instability) could cooperate with compromised NuA4 to further de-regulate E2F targets 

or bypass the slowing of the cell cycle due to the late S/G2 phase elongation. This is of concern 

for the development and use of Tip60 HAT and bromodomain inhibitors in cancer therapy (GAO 

et al. 2014; SANCHEZ et al. 2014) which could cause further genetic instability and impair NuA4-

dependent cell cycle gene repression and cell cycle exit.  

NuA4 inhibitors may be highly effective in some contexts however. Inhibition of Brd8 by 

RNAi in Rbf null cells strongly enhances their elimination in pupal eyes and wings, even more 
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strongly than a combination previously shown to completely bypass cell cycle exit (Fig. 2.6a. G) 

(BUTTITTA et al. 2010). This is reminiscent of other Rbf synthetic lethal genes such as TSC1 and 

2 that lead to a lethal accumulation of DNA damage when Rbf is lost, which can effectively 

eliminate RB mutant cancer cells (LI et al. 2010; GORDON et al. 2013). This suggests NuA4 

inhibitors could be highly effective for elimination of cancer cells that have lost or inactivated 

RB. 

 

Materials and Methods 

Fly stocks and genetics: 
Inhibition of NuA4 in the posterior wing:  
w/y, w, hs-FLP; en-GAL4, UAS-GFP; UAS-Tip60WT or DN or UAS-NuA4RNAi/ tub-gal80TS 

w/y, w, hs-FLP; en-GAL4, UAS-GFP/+; UAS-P35/ UAS-Tip60 DN UAS-NuA4 RNAi 

Inhibition of NuA4 during the final cell cycle in the eye:  
w/y, w, hs-FLP; GMR-GAL4/+; UAS-Tip60WT or DN or UAS-NuA4RNAi/ PCNA-GFP 
Clonal lineage analysis: 
w/ y, w, hs-FLP; UAS-P35/+; UAS-Tip60WT or DN or UAS-NuA4RNAi /act>CD2>GAL4, UAS-
GFPNLS 
Clones to assess terminal differentiation in the eye and qRT-PCR 
w/ y, w, hs-FLP; tub>CD2>GAL4, UAS-GFP/+; tub-gal80TS, UAS-dIAP/ UAS-Tip60DN or UAS-
NuA4RNAi  
Fluorescent reporters and inhibition of NuA4  
w/ y, w, hs-FLP; en-GAL4, UAS-His2Av::RFP/+; mad2-GFP, mRFP-Nup107/ UAS-NuA4transgene 
y,w/ y,w, hs-FLP;+; PCNA-GFP, act>CD2>GAL4/ UAS-NuA4transgene  
y,w, hs-FLP;+;stg-GFPYD0246, act>CD2>GAL4, UAS-His2Av::RFP/UAS-NuA4transgene 
RNAi and over-expression lines (also refer to Table 2.1) 
y, w, hs-FLP;+; UAS-Tip60E431QB/Tm6B 
y, w, hs-FLP; UAS-Tip60WT/CyO-GFP; + 
y, w, hs-FLP; UAS-CycD, UAS-cdk4/CyO-GFP;+ 
UAS-Wee (NEUFELD et al. 1998) 
BDSC 28368 UAS-Cdk1RNAi 

UAS-Stg (on II) (NEUFELD et al. 1998) 
BDSC 6583: w1118;+; PGUS-p53.Ct3.1/TM6B, Tb1  
BDSC 6584: w1118; PGUS-p53.2.1 
BDSC 27277: y,v;+; UAS-grpRNAi  
BDSC 31635: y,v;+; UAS-atmRNAi  

Mutant alleles: 
domLL05537 (TEA AND LUO 2011) 
Dpa1 (ROYZMAN et al. 1997), Dpa4 (FROLOV et al. 2005) 
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p535A-1-4/11-1B-1 (RONG et al. 2002; XIE AND GOLIC 2004)     
Brd8G19099 (BDSC#31838) 
 
To reduce lethality, some crosses used temperature sensitive Gal80 (tub-Gal80TS) (MCGUIRE et 

al. 2004) to suppress transgene expression until later in development. In these cases animals 

were raised at 18oC, then shifted to 28oC for Gal4 induction at the indicated times. For cell cycle 

gene reporter assays (PCNA-GFP, Mad-GFP, Stg-GFP), animals were raised at room 

temperature due to the lack of Gal80TS in these stocks (23oC). For inhibition of NuA4 in the 

pupal eye, GMR-GAL4 was used to over-express the transgenes starting in the posterior 

terminally differentiating, third larval instar eye and continuing until late development stages. 

For maximum GAL4 production with weak UAS-RNAi lines (e.g. dominoRNAi), animals were 

raised at 28oC and staged at 0h APF.  

 

Clone size and lineage counting: 

Clone counts in pupal wings were performed as described (BUTTITTA et al. 2007). In brief, a 

35mm dish containing pupae on a wetted tissue, was sealed with parafilm and submerged in a 

37oC water bath for two minutes. Pupae were then incubated at 25oC until dissection. For 

Tip60DN and Tip60WT clone counts at L3, animals were reared in un-crowded conditions and 

heat-shocked in a 37oC water bath for 7.5mins. Mitotic Flp/FRT clones for the dom-/- analysis 

were counted 48hrs after a 13min (37oC) heatshock. Clone areas and cell numbers were counted 

blind.  

 

Histology: 

Pupae were staged from white pre-pupae (0h after pupa formation). Development at 28oC occurs 

1.15 times faster than at 25oC, 1.25 times faster at 31oC, and 2.2 times more slowly at 18oC 
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(ASHBURNER 1989; BUTTITTA et al. 2007). All incubation times were adjusted accordingly and 

the hours APF presented as the 25oC equivalent. Wings and eyes from animals equivalent to 26-

32h APF or from wandering larvae at the third larval instar, were fixed with 4% 

paraformaldehyde/1X PBS for 30min. Tissues were washed twice in 1x PBS, 0.1% Triton X, 

10min each and then used for immunostaining (BUTTITTA et al. 2007). 

 

Immunohistochemistry: 

Fixed tissues were blocked with 1x PBS, 0.1% Triton X-100, 1% BSA for 20min prior to 

primary antibody incubation either at room temperature (RT) for 4hrs or overnight at 4oC with 

rotation. After removal of the primary antibody, tissues were washed with 1x PBS, 0.3% Triton 

X-100, 0.1% BSA, 2% NGS three times for 20min each. Tissues were incubated with secondary 

antibody conjugated to Alexa-Fluor 488, 568 or 633 1:4000 (Molecular Probes) for 4h at RT or 

overnight at 4oC with nutation. Höechst 33258 was used to label nuclei, tissues were mounted in 

vectashield (Vector Labs). F-actin staining was performed in 1XPBS using 1:100 rhodamine-

labelled phalloidin (Invitrogen R415) for 2-4 hours. 

  

Antibodies and reagents: 

Anti-phospho-Ser10 histone H3: 1:4000 rabbit (Millipore #06-570) or 1:1000 mouse (Cell 

Signaling #9706), Anti-GFP: 1:1000 chicken (Life Technologies A10262) or 1:1000 rabbit (Life 

Technologies A11122), Anti-Elav: 1:100 rat (DSHB 7E8A10), Anti-Cut: 1:100 mouse (DSHB 

2B10). Anti- CycB 1:100 (DSHB, F2F5) Anti-CycA 1:100 (DSHB, A12), Anti-pH2Av 1:100 

(DSHB, UNC93-5.2.1) Anti-DP rabbit (1:1,000, kindly provided by Dr. M. Frolov) mouse anti-

FLAG (1:1,000, Sigma). Secondary antibodies to the appropriate animals were labeled with 
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Alexa fluor 488, 568 or 633 (Invitrogen) and used at 1:2,000. Co-immunoprecipitation was 

performed as described (SUN AND BUTTITTA 2015) using 3X106 S2R+ cells transiently 

transfected with pMT-Tip60FLAG. Mouse anti-FLAG-agarose (Sigma) was used to 

immunoprecipitate endogenous DP which was detected by western blot with Rabbit anti-DP. 

 

Microscopy: 

Images were obtained using a Leica DM1600 epi-fluorescence system with de-convolution 

(ImageQuant) or a Leica SP5 confocal. All images were cropped, rotated, and processed using 

Adobe Photoshop. All brightness/contrast adjustments were applied equally on the entire image.  

 

Flow cytometry: 

Flow cytometry on larval and pupal wings was performed on an Attune cytometer with 

dissociation and gating/detection parameters as described (FLEGEL et al. 2013).  

 

Mounting and scoring of Adult wings: 

Mounting and microscopy of adult wings was performed as described (O'KEEFE et al. 2012). For 

scoring phenotype severity, 7 classes of defects (notched margin, ectopic vein, ectopic bristles, 

L4 truncation, loss of crossveins, L5 truncation and smaller posterior compartment) were 

generated and wings were scored according to the same rubric for the total number of defects.  

 

qRT-PCR and RNAseq: 

Animals were reared in un-crowded conditions and heat-shocked in a 37oC water bath for 30min. 

to induce overlapping clones. Transgene expression was silenced by keeping animals at 18°C 
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until they reached the developmental stage appropriate for either RT-qPCR or RNA-seq analysis. 

For RT-qPCR, animals were shifted to 28°C at 0wpp and wings were dissected in 1x PBS from 

animals equivalent to 26h APF. RNA was isolated per the TRIzol manual, resuspended in water, 

and then treated with DNase I to remove contaminating DNA. Using 300ng of RNA per sample, 

cDNA was synthesized using oligo(dT)20 and the Superscript III First-Strand Synthesis System 

(Invitrogen 18080051). qPCR using 0.5µL of cDNA per reaction was then performed using the 

7500 Fast Real-Time PCR and StepOnePlus Real-Time PCR Systems (Applied Biosystems).  

 For RNA-seq, heat-shocked animals were shifted to 28°C either 48h or 78h prior to their 

dissection as wandering L3 larvae. Twenty wing discs were dounce homogenized in TRIzol with 

ten strokes of a tight pestle. Samples were vortexed at speed 10 for 1min, incubated for 5mins at 

room temperature then frozen in liquid nitrogen. Samples were kept at -80°C until they were 

pooled to make a total of 40 wing discs per replicate of each condition and genotype. The pooled 

RNA was phase separated with chloroform and RNA was precipitated in isopropanol at -30°C 

overnight prior to 20min 4°C centrifugation at 12,000x g. The RNA pellet was resuspended in 

30µL of RNase-Free water.  

 Using PolyA selection, the University of Michigan's Sequencing Core generated 

directional barcoded libraries for each sample and confirmed the quality via the Bioanalyzer and 

qPCR. Sequencing was performed with the Illumina HiSeq 2000 platform and high read quality 

was confirmed using FastQC. Reads were aligned to the BDGP6.82 D. melanogaster genome 

using Rsubread (v1.21.5), with featureCounts resulting in >83% of the reads being successfully 

assigned to genes (LIAO et al. 2014). Counts per million (cpm) were determined with edgeR 

(v3.13.4) and transcripts with low expression were identified and removed using the data-based 

Jaccard similarity index determined with HTSFilter (v1.11.0). The cpm were TMM normalized 
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(calcNormFactors), voom transformed (LAW et al. 2014), fit to a linear model (lmFit), then 

differential gene expression calls were made with eBayes. 

For significance of overlap with other datasets (Fig. 2.4), hypergeometric probabilities 

were calculated using the hypergeometric distribution. In our case: (1) the population size equals 

the total number of genes that align to the genome and pass our filters for the RNAseq (2) the 

number of successes in the population is the total number of genes that are represented in both 

our dataset and the published dataset under comparison, (3) the sample size is the total number of 

genes upregulated by Tip60DN and for which there is data in the published dataset under 

comparison, and (4) the number of successes in the sample equals the total number of genes that 

overlap in our Tip60DN upregulated dataset and are significantly upregulated in the published 

dataset under comparison. 

 

S2R+ RNAi, EdU labeling and Camptothecin treatment and recovery: 

S2R+ Fucci cells were cultured as previously described (ZIELKE et al. 2014). (Note that in Fig. 

2.3 the graphs are color-coded according to the indicated cell cycle phase, not according to the 

FUCCI red/green readout.) RNAi was performed as described (ROGERS AND ROGERS 2008) with 

the following modifications; cells were incubated in 1mL of serum free medium with 10 µg/mL 

of dsRNA for 4-24h, followed by addition of 1mL of 10% serum medium for 4 days. dsRNA 

was synthesized using the T7 Megascript Kit (Ambion) and primer sequences are provided in 

Table 2.4a. For flow cytometry cells were stained with DyeCycleViolet (for samples run live in 

Fig.3) or FX Cycle Violet for fixed cells (Fig. 2.3a) and were run on the Attune flow cytometer 

(Life Technologies). EdU incorporation was performed on S2R+ cells (without FUCCI reporters) 

and detected using reagents from the Click-IT EdU 488 flow cytometry kit (Life Technologies). 
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For Camptothecin (CPT) treatment, S2R+ cells were treated with the indicated dsRNA for 3 

days. On the 4th day 10 µM CPT was added for 6 hours, followed by washing and recovery in 

fresh media without CPT for 16h. Cells were subsequently fixed with 4% paraformaldehyde/PBS 

and stained for pH2Av. 
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Fig. 2.1. NuA4 inhibition delays cell cycle exit   
(A-I) Using engrailed-Gal4 modified with a temperature sensitive Gal80 (enTS), a UAS-driven 
HAT-inactive form of Tip60 (Tip60E431Q, “dominant negative” Tip60, Tip60DN) or the indicated 
UAS-RNAis were expressed in the posterior wing from the second larval instar (L2). Pupa were 
collected at 0hr after puparium formation (APF) and aged to 27h APF or the indicated stages 
while being kept at the permissive temperature for Gal4-induced transgene expression. The 
dotted line indicates the wing anterior/posterior boundary. NuA4 inhibition increased the number 
of mitoses (indicated by phospho-Ser10 histone H3, PH3) in the posterior wing, at timepoints 
when the wing is normally post-mitotic. (J-N) Ectopic mitoses persist for <8h past the time of 
normal cell cycle exit. (N) Flow cytometry at the indicated timepoints (h APF) showed an 
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increased proportion of cells with a 4C DNA content (G2/M) in wings expressing Tip60DN. (O) 
Schematic of the NuA4 complex. Multiple RNAi lines for the core subunits were tested (Table 
2.1). Subunits required for proper cell cycle exit are shown in blue.   
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Fig. 2.1a. Compromising NuA4 delays the timing of the final cell cycle   
(A-C, E, I) Using enTS, Tip60DN or the indicated RNAis were expressed in the posterior wing 
from the second larval instar. Pupa were collected at 0hr after puparium formation (APF) and 
aged to 27h APF at the permissive temperature for Gal4-induced transgene expression. The 
dashed line indicates the anterior/posterior boundary. (A) Tip60RNAi in the posterior wing 
recapitulates the delayed cell cycle exit phenotype of Tip60DN (compare to Fig. 2.1D, mitoses 
indicated by PH3). (B) Tip60DN expression compromises endogenous H4 HAT activity as 
indicated by an antibody for H4K5/8/12/16 acetylation. (C,D) Using heat-shock induced flipase 
(hs-flp) with a tub>stop>Gal4 transgene combined with Gal80TS, (flipoutTS) we generated clones 
of cells expressing Gal4 beginning at 24 h after embryo hatching, but restricted the UAS-induced 
expression of Tip60DN to stages after 0h APF using temperature shifts to limit cell death (the 
clonal border and wing anterior-posterior boundary are respectively indicated by the dotted and 
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dashed lines). In pupa staged to 26h APF, clonal Tip60DN expression delays cell cycle exit (as 
indicated by PH3) in a manner similar to that observed with enTS. (C,E) Using enTS we restricted 
Tip60DN expression in the posterior wing to the final cell cycle in the wing (from 0h APF). 
Inhibition of Tip60 during the final cell cycle delayed cell cycle exit. (F-H) Inhibition of 
Tip60/NuA4 during the final cell cycle in the eye was performed using GMR-GAL4/UAS. 
Inhibition of Tip60/NuA4 delayed cell cycle exit in the pupal eye, as indicated by persistent 
mitoses and S phases (indicated by EdU labeling) in interommatidial cells 3h after normal cell 
cycle exit. (I) RNAi of CBP does not delay cell cycle exit, despite reducing H4 acetylation. p-
values were determined with an unpaired t-test, * p-value<0.05, ** p-value<0.01.  
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Fig. 2.2. NuA4 is essential for proper cell cycle gene repression at cell cycle exit  
(A-G) Using en-Gal4, the indicated transgenes were expressed in the posterior wing. RNAi to 
white (wRNAi) and Tip60WT serve as negative controls that do not affect the cell cycle. Pupa were 
collected at 0h APF and aged to 27h APF. The dashed line indicates the wing anterior/posterior 
boundary. (B,C,F) NuA4 inhibition resulted in high levels of PCNA-GFP expression. (D,E,G) A 
G2-M reporter Mad2-GFP, also accumulated when Tip60 HAT activity was inhibited. (H) 
Tip60DN was expressed during the final cell cycle in the eye using GMR-GAL4/UAS, resulting in 
PCNA-GFP expression in the interommatidial bristle precursors at 27h APF. (I-K) Using heat-
shock induced flipout-Gal4 we generated clones expressing Tip60DN in the larval eye in a 
background carrying a String-GFP protein trap insertion (Stg-GFP). Cells expressing Tip60DN 
posterior to the morphogenetic furrow (MF) increased Stg-GFP expression (MF indicated by 
arrowhead, posterior is at top.) (L) Using flipout-Gal4 in combination with Gal80TS (flipout TS) 
we generated large, overlapping clones of cells expressing Gal4 24h after embryo hatching, but 
restricted the UAS-induced expression of Tip60DN or Tip60WT to pupal stages only (from 0h 
APF) using temperature shifts. In pupa expressing Tip60DN staged to 26h APF, quantitative RT-
PCR revealed aberrant pcna and mad2 in the wing, compared to the Tip60WT expressing controls. 
By contrast, e2f1 transcript is reduced by Tip60DN. Levels of stg in the pupa wing are unchanged 
by Tip60DN. (M) E2F1 protein levels are decreased in 27h APF pupal wings expressing Tip60DN 
in the posterior. p-values were determined by an unpaired t-test, * p-value<0.05, ** p-
value<0.01, *** p-value<0.001  
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Fig. 2.2a. NuA4 inhibition does not delay terminal differentiation   
(A-C) NuA4 was inhibited in the posterior wing using enTS and the indicated UAS transgenes 
(the dashed line indicates the wing anterior-posterior boundary). Images are oriented with the 
posterior below the line. Developing pupal wing hairs were stained with rhodamine-phalloidin at 
33h APF. NuA4 inhibition did not alter the timing or growth of wing hairs. (D-F) GFP-labeled 
clones were generated using flipoutTS. Tip60DN expression in clones that crossed the boundary of 
photoreceptor differentiation in the late L3 larval eye, did not delay or prevent the differentiation 
of photoreceptors labeled with Elav (D,E) or cone cells labeled by Cut (F) compared to 
neighboring non-Gal4 expressing cells. For D-F images are oriented with posterior at top. 
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Fig. 2.3. Compromising NuA4 disrupts cell cycle progression  
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(A) Using heat-shock induced flipout-Gal4 we generated non-overlapping clones of cells co-
expressing UAS-Tip60DN, an inhibitor of apoptosis P35, and GFP at 0h APF. Pupa were aged to 
36h APF and the average number of cells per clone was counted blind from a minimum of 100 
clones per genotype. CycD/cdk4 serves as a positive control (Buttitta et al. 2007). (B) We 
generated clones expressing Tip60WT or Tip60DN and P35 in the proliferating L3 wing for 30h, to 
measure cell doubling times (DT). Tip60DN expression lengthened cell doubling time by ~4h 
(Tip60WT: 15h, Tip60DN: 18.93h). (C) Clones expressing the indicated UAS-RNAis and P35 
were induced for 72h and measured in the late L3 wing. (D) FRT-mediated mitotic 
recombination was used to generate domino null (domLL05537) mosaic wings. Sibling clones 
generated from the same recombination event (+/+ and -/-) were measured after 48h in the late 
L3 wing. A heterozygous deficiency for the pro-apoptotic H99 locus (H99+/-) could not rescue 
the small size of dom-/- clones. (D') Flow cytometry was performed on late L3 wings to examine 
the DNA content of GFP-labeled dom-/- cells (grey). Cells lacking dom (grey trace) exhibit an 
increased proportion of  >2C DNA content (cells in S/G2/M phases) compared to dom+/- and 
dom+/+ cells (black trace). (E-G) Flow cytometry was performed on wandering L3 wings with 
enTS, UAS-Tip60DN or the indicated UAS-RNAis with GFP. (E) NuA4 inhibition increased the 
proportion of cells with >2C DNA content (green trace) compared to the non-Gal4 expressing 
cells (black trace). (F) Quantification of flow cytometry replicates are shown. NuA4 inhibition in 
the posterior wing (green bars, F) increases the >2C (S/G2/M) population compared to the 
posterior wing of control genotypes (grey bars, F). (G) NuA4 inhibition in the posterior wing 
also non-autonomously increased the proportion of anterior cells with 2C DNA content (G1, blue 
bars G) compared to the anterior wing of control genotypes (grey bars, G). (H) RNAi to NuA4 
subunits was performed in S2R+ FUCCI cells (Zielke et al. 2014). Inhibition of NuA4 increased 
cell doubling time (DT) and the proportion of cells in S and G2, with the exception of Brd8. p-
values were determined with an unpaired t-test,* p-value<0.05, *** p-value<0.001  
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Fig. 2.3a. NuA4 is needed for proper proliferation  
(A) Cell size (as measured by Forward Scatter in flow cytometry) is not significantly altered by 
RNAi to NuA4 components (compare to cell cycle alterations in Fig. 2.3E). Brd8RNAi mildly 
increases cell size, likely due to the increased proportion of cells in G2 in the wing. (B-D) FRT-
mediated mitotic recombination was used to generate domino null (domLL05537, dom-/-) clones in 
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the proliferating L3 wing. (C) Heterozygosity for the pro-apoptotic H99 locus (H99+/-) increased 
the recovery of small lacZ-negative dom-/- clones, but did not rescue their poor growth. (D) 
LacZ-negative dom-/- cells do cycle, as indicated by EdU labeling (arrowheads). (E) RNAi to 
Tip60 and domino in S2R+ cells decreased EdU incorporation (provided in a 30 min. pulse). 
However, consistent with the results shown in Fig. 2.3H, RNAi to Brd8 did not compromise 
proliferation in S2R+ cells, as it does in vivo. (F) Cell proliferation is reduced for S2R+ cells 
exposed to RNAi for Tip60 and E(Pc) (presented as % increase from day 4). RNAi to GFP did 
not affect cell proliferation. (G) An EdU pulse-chase experiment was performed in dsRNA 
treated S2R+ cells to measure the duration of G2. Cells were labeled with EdU for 1hr and DNA 
content of EdU+ cells was quantified by flow cytometry for the indicated timepoints following 
EdU removal. Cells exposed to RNAi to Tip60, E(Pc) or dom and labeled with EdU during the 
pulse, accumulated in G2 for 6-9 hours after the pulse. Vehicle indicates a mock RNAi treatment 
without any dsRNA added.  
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Fig. 2.4. NuA4 inhibition deregulates cell cycle gene expression during active proliferation  
(A-M, R-T) Using en-Gal4/UAS the indicated transgenes were expressed in the posterior larval 
wing. The dashed line indicates the wing anterior/posterior boundary. Wings are oriented with 
the posterior to the left. (A-H) NuA4 inhibition leads to high levels of PCNA-GFP and Stg-GFP. 
(I-J) NuA4 inhibition causes a decrease in E2F1 protein levels. (K-M) NuA4 inhibition reduced 
CycB protein levels after 24h of expression in the L3 wing. Tip60WT had no effect on CycB. (N) 
Tip60 binds to the 5' region of CycB (FILION et al. 2010). (O-Q) RNAseq was performed on 
dissected late L3 wings containing large, overlapping clones of cells expressing Tip60WT or 
Tip60DN using flipoutTS. (O) The majority (72.5%) of genes that change upon Tip60DN expression 
are upregulated. Genes with increased log Fold Change (logFC, Tip60DN/Tip60WT) are indicated 
in red, while genes that decrease expression are indicated in blue. (P) A comparison of genes 
significantly upregulated by Tip60DN to DREAM targets in proliferating Kc Drosophila cells, 
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and targets of the DNA damage response to IR in wings. Fourteen genes overlap in all three 
datasets. The Tip60DN transcriptional response highly overlaps with the DNA damage response 
profile (90+14 out of 635 genes), with a lesser overlap with the DREAM/MMB program (54+14 
out of 635 genes). p-values indicate overlap greater than that expected by chance for the 
comparisons. (Q) The table shows a subset of IR response genes that are also upregulated upon 
Tip60DN expression, encompassing both p53-dependent and p53-independent targets with Tip60 
binding. (R-T) NuA4 inhibition leads to an accumulation of pH2Av foci in the absence of 
exogenous DNA damage.  1. (FILION et al. 2010) 2. (XU et al. 2014) 
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Fig. 2.4a. Loss of NuA4 function alters expression of specific cell cycle genes   
(A, C-F) Using en-Gal4/UAS the indicated transgenes were expressed in the posterior larval 
wing. The dashed line indicates the anterior/posterior boundary (left side is posterior). (A) CycB 
is reduced 15-20% in the posterior wing when NuA4 is inhibited (n=5 discs). (B) Using flipout-
Gal4 in combination with Gal80TS (flipout TS) we generated large, overlapping clones of cells 
expressing Gal4 24h after embryo hatching, but restricted the UAS-induced expression of 
Tip60DN or Tip60WT to 24h or 48h prior dissection at wandering L3 larval stages using 
temperature shifts. We confirmed by quantitative RT-PCR that Tip60DN expression in L3 wings 
caused aberrant mRNA expression of pcna and reduction of cycB, compared to the Tip60WT 
expressing controls. (C-E) CycA were not significantly affected by NuA4 inhibition compared to 
controls expressing whiteRNAi, which exhibited no cell cycle phenotypes in any of our FACS 
assays. (F) Inhibition of Tip60 HAT activity or expression of Brd8RNAi led to formation of 
phospho-H2Av foci in L3 wings in the absence of exogenous DNA damaging agents. (G-I) 
Inhibition of NuA4 in S2R+ cell culture by dsRNA to Tip60 and E(Pc) decreased the cells' 
ability to recover from the DNA damage inducing agent Camptothecin (CPT). NuA4 inhibition 
resulted in more pH2Av+ cells compared to the GFPRNAi control. p-values were determined by 
an unpaired t-test, *p-value<0.05 *** p-value<0.001.  
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Fig. 2.5. NuA4 inhibition delays cell cycle exit independent of the p53-dependent DNA 
damage response (DDR)  
Pupa expressing the indicated transgenes in the posterior wing (en-GAL4/UAS) were collected at 
0hr APF, aged to 25-28h APF, and stained for mitoses using PH3. The dashed line indicates the 
anterior/posterior boundary. (A) Overexpression of wild-type p53 (p53WT) was sufficient to 
delay cell cycle exit similar to NuA4 inhibition in the posterior wing (compare to Fig. 2.1). (B-E) 
Overexpression of a p53 allele that cannot bind DNA (p53DN) or p53 null alleles (p535A-1-4/11-1B-1) 
did not prevent the delay of cell cycle exit caused by NuA4 inhibition in the posterior wing. (E) 
Loss of p53 strongly enhanced the severity of adult wing defects, suggesting loss of NuA4 
function and p53 cooperate to increase genetic instability (The full details of the adult wing 
defect scoring are described in the Methods).   
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Fig. 2.5a. NuA4 inhibition delays cell cycle exit and slows the cell cycle independent of 
several DDR components  
Using en-GAL4/UAS the indicated transgenes were expressed in the posterior wing. The dashed 
line indicates the anterior/posterior boundary (left is posterior). (A-C) p53-dependent apoptosis 
(as indicated by staining for the cleaved caspase, Dcp1) induced by 40 Grays of irradiation is 
substantially reduced by en-Gal4 expression of a p53 allele that cannot bind DNA (p53DN) or in a 
p53 null background (p535A-1-4/11-1B-1) compared to the w1118 control. (D,E, K-O) Pupa expressing 
the indicated transgenes in the posterior wing were collected at 0hr APF, aged to 25-28h APF, 
and stained for mitoses using PH3. (D, E) Loss of p53 or expression of p53DN in the posterior 
wing, does not alter cell cycle exit in the pupal stages nor does it reduce the size of the posterior 
wing (27h APF shown). (F) Loss of p53 severely enhances larval and pupal lethality when 
combined with NuA4 loss of function transgenes driven by en-Gal4. Numbers indicate eclosed 
adults for each genotype. (G-I) p53-/- mutant larvae expressing RFP only, or RFP with Tip60DN 
or Brd8RNAi in the posterior L3 larval wing were stained for CycB protein. Loss of p53 does not 
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rescue the reduction in CycB levels. (J) en-Gal4/UAS driven expression of p53DN in the posterior 
larval wing cannot rescue the small size of LacZ negative dom-/- clones. (KI-O) Pupa expressing 
the indicated transgenes in the posterior wing were collected at 0hr APF, aged to 25-28h APF, 
and stained for mitoses using PH3. (K-M) RNAi knockdown of the DDR kinases tefu/ATM, 
grp/chk1, and mei-41/ATR in combination with Tip60DN expression could not prevent the 
delayed cell cycle exit in the posterior wing caused by inhibition of NuA4. (N, O) Blocking 
apoptosis by co-expression of P35 did not prevent the cell cycle exit delay when NuA4 is 
inhibited in the posterior wing.  
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Fig. 2.6. NuA4 affects cell cycle exit independent of DP function  
(A) Dpa1/a4 wings with en-Gal4/UAS-GFP exhibit normal cell cycle exit. (B,C) Expression of 
Tip60DN in the posterior wing delays cell cycle exit (as shown by PH3) in Dpa1/+ and Dpa1/a4 
wings. All wings shown are at 27h APF. (D) Tip60DN expression in the posterior pupal wing 
leads to ectopic neurons (as indicated by Elav staining, arrowheads) at the posterior wing margin 
(indicated by the dashed line). (E) Brd8-/- (BrdG19099) clones in the pupal wing often contain 
ectopic neurons at the posterior wing margin (clone boundaries are indicated by dotted lines). 
(F,G) Dp mutant wings (Dpa1/a4) occasionally exhibit ectopic neurons at the posterior wing 
margin, which becomes strongly enhanced when Tip60DN is expressed in the posterior wing 
using en-Gal4/UAS. (H) Quantification of the ectopic posterior wing margin neurons in the 
indicated genetic backgrounds.   
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Fig. 2.6a. NuA4 and DREAM genetically and physically interact   
 (A) FLAG-tagged Tip60 co-immunoprecipitates endogenous Dp (arrowhead) in S2 cells. 
Controls were transfected with empty vector. (B) Using en-Gal4/UAS, either GFP alone, or 
GFP+Tip60DN was expressed in Dpa1/a4 mutant larval wings and cell cycle phasing was 
examined by flow cytometry. Dpa1/a4 mutant wings show an increase in the G2/M population 
with GFP expression alone, but Tip60DN expression in Dpa1/a4 mutants further increases the 
proportion of cells in late S/early G2. (C,D) Dpa1/a4 mutant larvae expressing GFP only, or GFP 
with Tip60DN in the posterior L3 larval wing were stained for CycB protein. The dashed line 
indicates the anterior/posterior boundary (left side is posterior). (E) Overexpression of Tip60 in 
the posterior wing (en-Gal4/UAS-Tip60WT) does not cause ectopic posterior wing margin 
neurons in the pupal wing at 27hAPF as indicated by Elav staining (this is a control for Fig. 
2.6D). (F) Loss of Dp enhances the adult wing defects caused by expression of en-Gal4/UAS-
Tip60DN. The adult wing defect scoring system is described in the Methods. (G) Loss of NuA4 
function enhances the lethality of Rbf loss in pupal clones, to a degree even more severe than 
that caused by a genetic combination causing a complete bypass of cell cycle exit, Rbf -/-
,CycE/Stg (BUTTITTA et al. 2010).   
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Fig. 2.7. Prolonging the final G2 delays cell cycle exit, de-represses cell cycle genes and 
causes ectopic neurons at the posterior wing margin  
(A-G) Using en-GAL4/UAS the indicated transgenes were expressed in the posterior wing. 
Inhibition of Cdk1 activity by expression of Wee or Cdk1 RNAi in the posterior wing delays the 
timing of cell cycle exit (A, B) and leads to ectopic E2F activity (C,D) similar to inhibition of 
NuA4. (Note that the posterior wing in D is smaller, because there is no Gal80TS in the PCNA-
GFP background.) (E, F) Inhibition of Cdk1 activity leads to Elav positive ectopic neurons in the 
posterior wing margin. (G) Overexpression of p53 (p53WT) also led to Elav positive ectopic 
neurons in the posterior wing margin. (H) Schematic of the Tip60/NuA4 functions described in 
our study.  
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Fig. 2.7a. Slowing the final cell cycle does not delay cell cycle exit  
Using en-GAL4/UAS the indicated transgenes were expressed in the posterior wing. The dashed 
line indicates the anterior/posterior boundary (left side is posterior).  (A, B) Slowing the cell 
cycle with RNAi to E2F or expression of a constitutively repressive Rbf, Rbf 280, in the posterior 
wing did not alter the timing of cell cycle exit. (C) By contrast, co-expression of Rbf 280 with 
Wee delayed the timing of cell cycle exit in a manner similar to Wee alone. (D) RNAi to E2F in 
the posterior wing effectively reduced E2F activity as shown by PCNA-GFP. (E) By contrast, 
expression of Wee in the posterior wing increased PCNA-GFP, similar to inhibition of NuA4 
(compare to Fig. 2.4A-E). 
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Fig. 2.8. Accelerating G2-M when NuA4 is inhibited leads to severe mitotic defects  
(A) Using enTS the indicated transgenes were expressed in wings from the L2 stage. Cell cycle 
phasing was subsequently examined by flow cytometry at the late L3 stage. Tip60DN expression 
increases the proportion of cells in S/G2 compared to Tip60WT but co-expression of Stg with 
Tip60DN forces cells through G2/M, similar to Stg expression alone. (B-D) Using enTS we drove 
expression of the indicated transgenes in the posterior wing, starting from L2. Pupa were 
collected at 0h APF and aged to 26-28h APF at the permissive temperature for transgene 
expression. (B) Stg expression does not alter normal cell cycle exit, (C) while Tip60DN 
expression delayed cell cycle exit as observed by ectopic PH3 staining. (D) Co-expression of Stg 
with Tip60DN did not rescue the delayed cell cycle exit, but defects in mitosis occurred when 
cells with inhibited NuA4 were forced through G2. (E) Delayed mitoses in Tip60DN expressing 
wings appeared relatively normal in prometaphase, metaphase and telophase. (F) By contrast, 
many defective mitoses were observed in wings co-expressing Stg and Tip60DN including 
anaphase bridges (arrowhead) and improperly segregated DNA. (G) Co-expression of Stg with 
Tip60DN increased the number of defects observed in the adult wing. (H) cycB expression does 
not alter normal cell cycle exit (J) Co-expression of cycB with Tip60DN delayed cell cycle exit of 
even more cells than (I) Tip60DN alone. p-values were determined with an unpaired t-test, ** p-
value<0.01, *** p-value<0.001  
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Table 2.1. RNAi lines for core NuA4 subunits  
RNAi lines for the core NuA4 subunits tested for a delay in cell cycle exit.   
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Table 2.1a. Genes induced by Tip60DN and the DNA damage response    
Transcriptional program induced by Tip60DN expression that also overlaps with the DNA damage 
response (DDR) from (VAN BERGEIJK et al. 2012).    

Gene name log FC 48h log FC 78h 
p53 

indep? 

Tip60 
binding 

(DamID) 

Tip60 
binding 

(ChIP-Seq) 
Act57B 

 
1.342216064 

 
- 

 AOX1 3.801490374 3.301794879 
 

- 
 Arc2 1.215181446 1.034855483 yes - 
 babos 

 
0.418713017 

 
- 

 CG10283 
 

0.433444083 
 

- 
 CG10445 0.465519089 

  
++ 

 CG11897 2.245622593 1.600368667 yes ++ 
 CG12868 0.939229825 0.865127822 

 
++ 

 CG12880 0.976410376 1.158980571 
 

- 
 CG1299 0.495174603 

  
- 

 CG13082 
 

0.68835997 
 

- 
 CG13272 0.803148204 0.516431244 

 
- 

 CG14304 1.093800673 0.753920145 
 

- 
 CG14906 0.785916726 

  
++ 

 CG15212 
 

0.924881684 yes - 
 CG15611 0.903978898 0.653038717 

 
- 

 CG16947 0.72647539 0.928485339 
 

- 
 CG17124 0.86546946 0.734796299 

 
- 

 CG2064 0.466489153 
  

- 
 CG2909 0.549313473 

  
++ 

 CG3008 0.524269958 
  

++ 
 CG3036 1.058351625 1.428808634 

 
- 

 CG31705 0.520564086 
  

- 
 CG31728 0.675036303 0.923457292 yes - 
 CG32099 0.635967699 0.609609741 

 
- 

 CG32549 
 

0.540903248 yes - 
 CG3376 0.403461924 0.40848306 

 
+ 

 CG33978 0.42565307 
  

- 
 CG4096 0.696812108 0.580545009 

 
++ 
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CG43366 0.781221336 0.712964268 
 

- 
 CG44085 1.312354838 

  
+ 

 CG4858 0.405236616 
  

+ 
 CG5953 1.608032473 1.368840213 

 
+ 

 CG6071 1.949376604 1.626851016 
 

- 
 CG6272 0.556560007 0.553892692 

 
+ 

 CG6353 0.447686561 
  

- 
 CG6739 1.090821225 1.147412068 

 
- 

 CG7054 0.495430562 
  

+ 
 CG7587 

 
2.628726912 

 
- 

 CG9192 0.911997434 1.378796065 
 

- 
 CG9411 0.64687876 0.948425397 yes - 
 CG9689 0.570699579 0.719950785 

 
- 

 CG9850 0.841627595 0.690785423 yes - 
 chinmo 1.107781665 

  
+ ++ 

clt 0.429276272 
  

- 
 CR32207 0.578413568 0.514878676 

 
- 

 Cyp9f2 1.197893534 0.804763201 
 

+ 
 Cyp9f3Psi 0.707765408   

 
- 

 DAAM 
 

0.414447167 
 

- 
 dlp 0.567400273 0.566626183 

 
- 

 Ef1alpha100E 1.800520907 2.460928756 yes - 
 egr 0.862643263 0.999696729 

 
+ 

 Gadd45 1.429339908 1.357381446 yes + 
 Gclc 

 
0.445761634 

 
++ 

 Glt 1.354925071 1.548219214 
 

- 
 Ilp8 2.697269829 

  
- 

 ImpL3 4.051401102 2.311946537 
 

- 
 insc 

 
0.434949876 

 
++ 

 IP3K2 
 

0.469238654 
 

+ 
 Men 1.046098012 0.524298472 

 
++ 

 mfas 0.521014147 0.583992439 
 

- 
 Mmp1 0.413081884 0.588866613 

 
+ 
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Mmp2 
 

0.553214543 
 

++ 
 Mocs1 0.618731138 

  
++ 

 mtg 0.850179279 0.764570301 
 

- 
 Osi14 0.660001447 

  
- 

 PEK 0.440366963 
  

+ 
 Pka-C3 

 
0.724937275 

 
++ 

 Pvf2 0.709124596 0.764676259 
 

- 
 Rab32 

 
0.58043333 

 
- 

 rho-4 0.407496054 0.418121348 
 

- 
 RpL12 0.404517067 

  
- 

 Rpt3R 0.811634277 0.708548239 
 

- 
 sage 0.879251662 

  
- 

 sda 0.688492015 0.605342175 
 

- 
 slow 0.566129725 0.451540876 

 
- 

 Snap25 2.153476912 2.59429639 yes - ++ 
Socs36E 0.426088603 

  
+ 

 sog 0.429506453 
  

- 
 spir 

 
0.400539333 

 
- 

 Spn47C 3.495951559 3.491517574 
 

- 
 ssp3 

 
0.433282689 

 
- 

 Sulf1 
 

0.427977501 
 

- 
 Tep4 0.726897945 0.694545929 

 
- 

 Traf4 0.802301311 0.584587098 yes ++ 
 trbl 0.697977603 0.465379635 

 
+ 

 twz 
 

0.554252434 
 

- 
 unc-13 1.03890413 1.12947619 

 
+ 

 upd1 0.884009089 0.885374101 
 

- 
 Xrp1 0.849617743 0.732286277 

 
++ 
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Table 2.2a. Genes induced by Tip60DN, DREAM, and the DNA damage response  
Transcriptional program induced by Tip60DN expression that overlaps with both the DNA damage 
response and targets of DREAM (GEORLETTE et al. 2007; VAN BERGEIJK et al. 2012).  

 

Gene name log FC 48h log FC 78h 
p53 

independent? 
CG15784 2.830843772 2.006137895 yes 
Arc1 2.462872484 2.452627785 yes 
corolla (mei-39) 

 
1.820713845 

 mol 1.113604616 0.678560687 
 MRP 1.032300087 0.813099375 
 spn-E 0.972779342 0.883056532 yes 

agt 0.918326335 0.623356841 
 rpr 0.658195641 0.464573596 
 CG3448 0.624751423 

 
yes 

glob1 0.624270474 0.437249977 yes 
vir-1 

 
0.714230166 

 kay 0.454967406 0.60817313 
 CG18213 0.419637685 

  CG5399 
 

1.64980284 
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Table 2.3a. Genes regulated by Tip60DN that are also targets of DREAM  
Transcriptional program induced by Tip60DN expression that overlaps with targets of DREAM 
(GEORLETTE et al. 2007). Genes upregulated logFC >0.5 by Tip60DN are shaded in red and genes 
downregulated logFC >0.5 by Tip60DN are green. A total of 511 genes significantly regulated by 
Tip60DN that were also on the array used by GEORLETTE et al. (2007) were entered for 
comparison and had an overlap of 88/511. H2Av localization is from H2Av ChIP-Seq on L3 
larvae from modencode data file 4953. Significant H2Av signal on gene body coding region as 
well as enrichment on 5' end is indicated by "enriched at 5' ". H2Av was on the gene body of 
36/60 (60%) of shared Tip60/DREAM upregulated genes and 14/27 (51%) of downregulated 
genes.  

FBgn gene symbol 
DREAM/MMB 

class 
H2Av on gene 

body? 
FBgn0003483 spn-E A + (enriched at 5') 
FBgn0029147 NtR A + (enriched at 5') 
FBgn0030852 corolla A + 
FBgn0035542 CG11347 A - 
FBgn0037742 Rpt3R A + 
FBgn0000246 c(3)G B - 
FBgn0034075 Asph B + (enriched at 5') 
FBgn0000533 ea C + 
FBgn0014469 Cyp4e2 C - 
FBgn0024366 CG11409 C N/D 
FBgn0031011 CG8034 C - 
FBgn0033483 egr C + (enriched at 5') 
FBgn0038037 CG17227 C + (enriched at 5') 
FBgn0052412 CG32413 C + 
FBgn0003087 pim D + 
FBgn0011828 Pxn D - 
FBgn0014135 bnl D - 
FBgn0027657 glob1 D - 
FBgn0030362 regucalcin D + 
FBgn0033712 CG13163 D + (enriched at 5') 
FBgn0053969 CG5571 D + (enriched at 5') 
FBgn0001122 G-oalpha47A E - 
FBgn0001297 kay E - 
FBgn0005683 pie E + 
FBgn0012037 Ance E - 
FBgn0031816 CG16947 E + 
FBgn0039006 Cyp6d4 E + 
FBgn0033051 dream F + 
FBgn0043364 cbt F - 
FBgn0016694 Pdp1 H - 
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FBgn0023129 aay H - 
FBgn0023537 CG17896 H + (enriched at 5') 
FBgn0025885 Inos H + 
FBgn0027570 Nep2 H - 
FBgn0033313 Cirl H - 
FBgn0034997 CG3376 H + (enriched at 3') 
FBgn0016715 Reg-2 I - 
FBgn0033205 CG2064 I + (enriched at 5') 
FBgn0024920 Ts K + 
FBgn0000071 Ama L - 
FBgn0030309 CG1572 L + 
FBgn0037617 CG8145 L + (enriched at 5') 
FBgn0001168 h M - 
FBgn0022069 Nnp-1 M + (enriched at 5') 
FBgn0026319 Traf4 M - 
FBgn0031286 CG3862 M + (enriched at 5') 
FBgn0031888 Pvf2 M - 
FBgn0032620 CG12288 M + (enriched at 5') 
FBgn0033088 CG3271 M + (enriched at 5') 
FBgn0033928 Arc2 M + 
FBgn0036549 CG10516 M + (enriched at 5') 
FBgn0038455 CG14907 M + 
FBgn0038601 CG18600 M + 
FBgn0038893 CG6353 M + 
FBgn0039644 CG11897 M + 
FBgn0040308 Jafrac2 M + 
FBgn0050382 CG30382 M + (enriched at 5') 
FBgn0000299 Cg25C N - 
FBgn0004133 blow N - 
FBgn0014380 RhoL N - 
FBgn0016075 vkg N + 
FBgn0022710 Ac13E N - 
FBgn0031307 CG4726 N - 
FBgn0033538 CG11883 N - 
FBgn0040398 CG14629 N - 
FBgn0019952 Orct O - 
FBgn0025683 CG3164 O - 
FBgn0026562 BM-40-SPARC O + 
FBgn0029791 CG4096 O - 
FBgn0035356 CG16986 O + 
FBgn0035767 CG8596 O - 
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FBgn0038972 CG7054 O + 
FBgn0041629 Hexo2 O + 
FBgn0051673 CG31673 O + 
FBgn0029167 Hml P - 
FBgn0011722 Tig Q - 
FBgn0052702 CG32699 Q - 
FBgn0001114 Glt R - 
FBgn0023540 CG3630 R + 
FBgn0030057 Ppt1 R + 
FBgn0030628 CG9114 R + 
FBgn0031053 CG14223 R + 
FBgn0032213 CG5390 R + 
FBgn0032889 CG9331 R + 
FBgn0037028 CG3618 R + (enriched at 5') 
FBgn0039128 CG13599 R + 
FBgn0039774 Cdase R - 
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Table 2.4a. Primer sequences for NuA4 dsRNA synthesis 
List of primer sequences used for in vitro T7 transcription of dsRNA made for inhibition of 
NuA4 in S2R+ cell culture.  

NuA4 dsRNA  5' to 3' primer sequence 
T7-Brd8-fwd1 TAATACGACTCACTATAGG GAT AAA CCA AAA TCT GTG GAG 
T7-Brd8-rev1 TAATACGACTCACTATAGG GTC TTT TCT TGC ATT GTT ACT G 
T7-E(Pc)-fwd1 TAATACGACTCACTATAGG CAA CAA CAA CAA CAA TAC CG 
T7-E(Pc)-rev1 TAATACGACTCACTATAGG CAG CTC ATT GCA GAT GTC TA 
T7-Dom-fwd1 TAATACGACTCACTATAGG CTT TGT GGA AGA AAC TGG AG 
T7-Dom-rev1 TAATACGACTCACTATAGG CGG ACT CTT CAG GTA CTC AG 
T7-Tip60-fwd1 TAATACGACTCACTATAGG TTA AGC CCT GGT ATT TCT CA 
T7-Tip60-rev1 TAATACGACTCACTATAGG TGA GAT CAC GTC CTC TTT TT 
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Abstract 

During development cell proliferation and differentiation must be tightly coordinated to ensure 

proper tissue morphogenesis. Because steroid hormones are central regulators of developmental 

timing, the links between steroid hormone signaling and cell proliferation are crucial. Here we 

examined the mechanism by which the steroid hormone ecdysone regulates the cell cycle in 

Drosophila. We find that a cell cycle arrest induced by ecdysone in Drosophila cell culture is 

analogous to a G2 cell cycle arrest observed in the early pupa wing. We show that in the wing, 

ecdysone signaling at the larva to puparium transition induces Broad which in turn represses the 

cdc25c phosphatase String. The repression of String generates a temporary G2 arrest that 

synchronizes the cell cycle in the wing epithelium during early pupa wing elongation and 

flattening. As ecdysone levels decline during early metamorphosis, Broad expression plummets 
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allowing String to become re-activated, which promotes rapid G2/M progression and a 

subsequent synchronized final cell cycle in the wing. In this manner, pulses of ecdysone can both 

synchronize the final cell cycle and promote the coordinated acquisition of terminal 

differentiation characteristics in the wing.  

 

Introduction 

 Steroid hormones play a central role in coordinating the timing of developmental events. 

The insect steroid hormone ecdysone is a critical regulator of developmental transitions in hemi- 

and holometabolous insects, and has long served as a model to study the mechanisms by which 

steroid hormones control developmental timing (Yamanaka et al., 2013). The ecdysone nuclear 

hormone receptor signaling pathway is most closely related to the retinoic acid signaling 

pathway in vertebrates, which also acts a key modulator of cell differentiation in many cell types 

(Breitman et al., 1980). A pulse of ecdysone signaling occurs during the initiation of 

metamorphosis at the larval to pupal transition (Ashburner, 1989), where extensive changes in 

proliferation, cell shape, apoptosis and cell adhesion take place. For example the strong ecdysone 

pulse at the larva to puparium transition leads to activation of apoptotic programs in many larval 

cell types such as the salivary gland, muscle and midgut (Jiang et al., 1997; Jiang et al., 2000; 

Lee et al., 2002; Yin and Thummel, 2004; Zirin et al., 2013) while in other tissues such as the 

abdominal histoblasts or Dorsal Adult Progenitor (DAP) cells of trachea, proliferation of adult 

progenitors is triggered (Djabrayan et al., 2014; Ninov et al., 2009). In the case of abdominal 

histoblasts, these cells remain quiescent in the G2 phase of the cell cycle during larval 

development, and are poised to enter mitosis and proliferate when the rate-limiting G2-M cdc25c 

phosphatase String (Stg) is induced by ecdysone. Normally as a regulator of mitotic entry, Stg 
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itself is not sufficient to drive the entire cell cycle and therefore proliferation (Neufeld et al., 

1998). However the dramatic proliferative response in histoblasts to the induction of Stg occurs 

because these cells accumulate high levels of the G1-S rate-limiting cyclin, Cyclin E (CycE) 

during the G2 arrest. The accumulation of CycE drives the subsequent G1-S transition, making 

Stg induction in these cells uniquely sufficient to induce a rapid proliferative response to remodel 

the abdomen during pupal stages (Ninov et al., 2009).  In this manner the pulse of ecdysone that 

triggers the larval-puparium transition also induces rapid and sustained cell-type specific changes 

in cell cycle dynamics. 

In contrast to the abdominal histoblasts, other adult precursors such as the imaginal eye, wing 

and leg discs exhibit reduced proliferation during the early pupal stages and ultimately become 

postmitotic one day after the larval to puparium transition (Buttitta et al., 2007; Graves and 

Schubiger, 1982; Milan et al., 1996; Schubiger and Palka, 1987). How can we explain the 

different cell cycle and survival responses of tissues to the same system-wide pulse of hormone? 

The differential effects of ecdysone on specific cell types has been postulated to be due in part to 

different ecdysone receptor (EcR) isoform expression (Cherbas et al., 2003; Davis et al., 2005; 

Gautam et al., 2015; Schubiger et al., 2003). The ecdysone receptor complex is a heterodimer of 

two nuclear receptors, EcR and Ultraspiracle (USP). The ecdysone ligand binds to the EcR 

subunit of the heterodimer and the EcR gene locus in Drosophila encodes 3 isoforms (EcR-A, 

EcR-B1 and EcR-B2) that have identical DNA and ligand binding domains but differ in their N-

terminal domains. In the wing, the focus of our study here, EcR-A and EcR-B1 are both 

expressed in the pouch where the progenitors of the wing blade reside, but during early 

metamorphosis EcR-B1 levels drop and the predominant EcR in the wing becomes the EcR-A 

isoform (Schubiger et al., 2003; Talbot et al., 1993). This isoform of the receptor is thought to 
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contain a repressive domain that is absent from the other isoforms, such that in the absence of 

ecdysone it represses target gene expression, but in the presence of ecdysone, these targets 

become de-repressed (Mouillet 2001, Schubiger, Truman 2005). In contrast, the imaginal 

histoblasts predominantly express EcR-B1 (Talbot et al., 1993), but this changes upon the larval-

puparium transition after which histoblasts express both EcR-A and EcR-B1 isoforms (Ninov et 

al., 2007). While different EcR receptor isoforms may shape some of the differential responses to 

ecdysone in the imaginal discs versus other tissues, it is becoming clear that many targets for 

each receptor isoform can also be cell type specific (Stoiber et al., 2016).  

 Several studies have investigated how ecdysone signaling impacts the cell cycle in larval 

imaginal discs. For example ecdysoneless (ecd) temperature sensitive mutants, which severely 

reduce ecdysone production at the restrictive temperature, exhibit disruption of cell cycle 

progression in a proliferative region of the developing eye disc termed the second mitotic wave 

(SMW). This wave of proliferation is preceded by the front of initial photoreceptor 

differentiation in the developing eye disc termed the morphogenetic furrow, which sweeps across 

the disc from the posterior to anterior during late larval and early prepupal stages. In the SMW of 

ecd mutants, proliferation and expression of the mitotic cyclin, Cyclin B (CycB) is dramatically 

reduced (Brennan et al., 1998).  Consistent with ecdysone signaling promoting proliferation, 

disruption of the USP component of the ecdysone receptor complex also leads to fewer 

proliferating cells in the area of the SMW (Zelhof et al., 1997). Ecdysone signaling has also been 

linked to proliferation in the larval wing imaginal disc. For example, larval wings with 

suppressed ecdysone signaling contain fewer and smaller cells, in part due to upregulation of the 

growth suppressor Thor (Herboso et al., 2015). Ecdysone signaling is also required for 

expression of the zinc-finger transcription factor Crooked legs (Crol), which is required in the 
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larval wing for proper cell proliferation and survival (Mitchell et al., 2008). Furthermore 

ecdysone signaling also acts through Crol and Wingless to indirectly regulate CycB levels at the 

wing margin, an area at the dorso-ventral wing boundary where the cell proliferation pattern is 

distinct from the rest of the developing future wing blade (Mitchell et al., 2013). In addition, 

ecdysone signaling impinges on another growth and proliferation pathway in the wing, the Hippo 

signaling pathway (Saucedo and Edgar, 2007). An EcR co-activator Taiman (Tai) binds to the 

downstream Hippo pathway transcription factor Yorkie, and is also required for normal 

proliferation in the larval wing pouch (Zhang et al., 2015). Thus, in the larval stages where wing 

cells are largely asynchronously proliferating, ecdysone signaling is critical for proper 

proliferation and growth. 

 By contrast, the response of the imaginal wing disc to ecdysone during the larval-

puparium transition and metamorphosis is quite different. Cell cycle regulation in the wing 

during metamorphosis is interesting because the wing undergoes precise temporally regulated 

cell cycle alterations prior to a permanent cell cycle exit. In the prepupal wing, a temporary G2 

arrest precedes the final cell cycle, leading to a roughly synchronized final cell cycle followed by 

permanent cell cycle arrest (Fain and Stevens, 1982; O'Keefe et al., 2012). Leg discs also 

perform a temporary G2 arrest, that precedes the final cell cycle and ultimate arrest of 

proliferation with similar timing to the wing during metamorphosis (Graves and Schubiger, 

1982). The final cell cycle arrest in these tissues occurs at 24h APF at 25°C, which corresponds 

to the beginning of the largest pulse of the active form of ecdysone 20-hydroxyecdysone (20-HE) 

during fly development. However, the temporary G2 arrest occurs just a few hours after the 

second-largest ecdysone pulse, which triggers the larva-puparium transition (Ashburner, 1989). 
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The model that the synchronized cell cycle alterations in the imaginal disc during 

metamorphosis are induced by ecdysone signaling is pervasive, and supported by the finding 

over 30 years ago that 20-HE exposure in Drosophila tissue culture cells can induce a cell cycle 

arrest in G2 phase (reviewed in Echalier, 1997; Stevens et al., 1980). Even more provocatively, 

removal of 20-HE after 3 days simulating a long pulse, was reported to trigger transient mitotic 

re-entry, potentially analogous to the final cell cycle observed in imaginal discs after the G2 

arrest (Besson et al., 1987). Despite thorough descriptions of these ecdysone induced cell cycle 

alterations in cell culture, the mechanisms underlying the response of the cell cycle machinery to 

ecdysone and how they might relate to the cell cycle changes observed in vivo during wing 

metamorphosis have remained largely unknown. Here we reveal a pathway by which ecdysone 

signaling in the wing can modulate the cell cycle to coordinate cell cycle arrest with the events of 

cellular differentiation during metamorphosis. 

 

Results 

20-HE induces G2 phase cell cycle arrest  

 The levels of ecdysone signaling in specific tissues are difficult to manipulate in vivo 

without disrupting other aspects of metamorphosis. We therefore wondered whether Drosophila 

cell culture could be used as a model to examine the effects of ecdysone signaling on the cell 

cycle during wing metamorphosis. First, we examined the cell cycle arrest induced by 20-HE in 

a wing disc derived cell line, Clone 8 (cl-8) (Peel and Milner, 1990). Cl-8 cells arrest 

proliferation with a G2 DNA content in response to 0.1-1µg mL-1 HE treatment for 24h (Fig. 

3.1a.) (Cottam and Milner, 1997b). Unfortunately this cell line had a propensity to clump due to 

the secretion of cuticle proteins in response to 20-HE (Cottam and Milner, 1997a; Cottam and 
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Milner, 1997b), which inhibited acquisition of clean, quantitative cell cycle profiles for cl-8 cells 

by flow cytometry. We therefore examined the cell cycle response to 20-HE in other cell lines. 

Treating the Drosophila embryonic plasmatocyte derived cell lines Kc167 (Kc) and S2R+ with 

20-HE, also induced a G2 cell cycle arrest, similar to what we observe with cl-8 cells (Besson et 

al., 1987; Cherbas et al., 2011; Stevens et al., 1980). Kc cells undergo an easily visible cell shape 

change from a spherical shape to a spindle morphology in response to 20-HE within 18h 

(Courgeon, 1972; Echalier, 1997), providing a convenient readout to confirm ecdysone 

responsiveness (Fig. 3.1 A,B, Fig. 3.1a.) . Therefore, subsequent experiments examining cell 

cycle responses to 20-HE in culture were performed on Kc cells. At concentrations ranging from 

0.01 - 1µg mL-1 (0.02-2.1µM) 20-HE, a cell cycle arrest occurs in G2 phase within 18h of 

exposure, reproducibly in 85-95% of cells (Fig. 3.1 C-F, I, Fig. 3.1a.). At time points after 24h of 

exposure, the cell cycle arrest is sustained and accompanied by cell death (Fig. 1E, Fig. 3.1a.) 

(Besson et al., 1987). Prolonged exposure to 20-HE beyond 3 days selected for a small 

population of cells that remain rounded and resistant to the cell cycle arrest and cell death. These 

results are consistent with previous observations that long-term exposure selects for cells that 

failed to respond or become non-responsive to 20-HE (Besson et al., 1987; Stevens et al., 1980). 

When we performed RNAi mediated knockdown to all isoforms of the 20-HE receptor 

EcR, the cell cycle and cell death responses to 20-HE were completely abrogated (Fig. 3.1 F,I,  

Fig. 3.1a.). RNAi to EcR was highly effective (Fig. 3.2a.) and increased Kc cell proliferation and 

survival, even in the absence of exogenously provided 20-HE, suggesting that under normal 

culture conditions Kc cells respond to low levels of endogenous 20-HE (Fig. 3.1a.). This may be 

responsible for the increased G2 population we and others have observed in Kc versus S2R+ 

cells (Wu et al., 2007).  
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The Wee/Myt1 kinases are partially responsible for 20-HE induced G2 arrest 

To determine how 20-HE blocks the cell cycle in G2, we performed RNAi treatments to knock 

down key cell cycle regulators of G2 phase and exposed cells to 1µg mL-1 20-HE for 24-48h. We 

then examined cell cycle phasing by FACS (Fig. 3.1 F) and quantified cell cycle arrest by EdU 

incorporation (Fig. 3.1 G). A non-specific dsRNA fragment from the Bluescript SK vector, 

previously shown not to affect cell viability or cycling, served as our control RNAi (Rogers and 

Rogers, 2008). Knocking down the Cdc2 inhibitory kinases Wee and Myt1 together effectively 

bypassed the 20-HE induced G2 arrest in about half of the population (Fig. 3.1 F,G), but did not 

fully suppress the 20-HE induced increase in G2 cells (Fig. I, p<0.001). Knockdown of Wee and 

Myt1 was effective and also affected the cell cycle in cells exposed to vehicle only, leading to a 

substantially increased proportion of G1 cells compared to control RNAi (Fig. 3.1 F,I, Fig. 3.2a.) 

and increased cell proliferation (not shown). 

We examined the phosphorylation state of Cdc2 using an antibody recognizing the 

inhibitory phosphorylation catalyzed by Wee and Myt1 (anti-pCdc2). The knockdown of Wee 

and Myt1 was effective, as it substantially reduced Cdc2 phosphorylation in unexposed Kc cells, 

which already exhibit a significant fraction of cells in G2-phase (Fig. 3.1 H, Fig. 3.2a.). 20-HE 

exposure together with Wee/Myt RNAi led to an increase in p-Cdc2 compared to treatment with 

the RNAi alone, consistent with our FACS showing that the G2 arrest induced by 20-HE 

partially persists even when Wee/Myt1 are strongly reduced (Fig. 3.1 F,I). 
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The 20-HE induced G2 arrest is reversible 

Previous work mapping origins of replication in Kc cells used a protocol of 20-HE induced G2 

arrest followed by release into media without 20-HE, containing hydroxyurea to synchronize 

cells in S-phase (MacAlpine et al., 2004). This suggested the 20-HE induced G2 arrest was 

reversible upon 20-HE removal for at least a proportion of cells. To examine how the exposure 

to a pulse of 20-HE affected subsequent cell cycles following 20-HE removal, we performed a 

20-HE G2 arrest and release protocol with EdU labeling, to measure the fraction of cells that re-

enter the cell cycle following G2 arrest. We exposed cells to 1µg mL-1 20-HE for 24h and 

removed the 20-HE by performing washes and providing fresh media. After allowing cells to 

recover for the indicated times, we counted cells to measure their proliferation rate or exposed 

them to EdU for a duration sufficient to label about 50% of the total population to measure S-

phase re-entry (Fig. 3.2 A,B). Since the addition of fresh media alone can alter cell cycle 

dynamics in culture, we treated mock controls the same way, in parallel using vehicle only. 

 We found that 18-32h after recovery from 20-HE induced cell cycle arrest, about 26% of 

the cells have completed mitosis and re-entered the cell cycle progressing into a subsequent S-

phase (Fig. 3.2 A,B). This is in comparison to over 50% of the mock control, which suggests that 

roughly one half of cells can re-enter a subsequent cell cycle following a 20-HE induced G2 

arrest and 20-HE removal. Cells exposed to 20-HE continually for 46h also exhibit a low level of 

EdU incorporation (about 16%), which may be due to a combination of prolonged cell death and 

arrest over 2 days selecting for a population of cells that failed to arrest initially or cells that lose 

responsiveness to 20-HE (Fig. 3.2 A,B).   
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20-HE removal leads to prolonged alterations in cell cycle dynamics  

The proliferation rate of cells after a 20-HE induced arrest also remains slower than that of mock 

treated controls, even up to 97h after 20-HE removal (Fig. 3.2 C). This could be due to persistent 

cell death that continues in response to the 20-HE even after removal (Besson et al., 1987) or an 

alteration of the subsequent cell cycle, such as a prolonged G1 or G1 arrest (Fig. 3.2 D). To 

examine the effects on the cell cycle in more detail, we performed a timecourse analysis of the 

cell cycle phase after 20-HE removal. We performed this timecourse under conditions that 

reduce the amount of apoptosis in response to 20-HE, by reducing the concentration of 20-HE to 

0.5µg mL-1. Under these conditions, as quickly as 8h after 20-HE removal, a substantial fraction 

of cells have re-entered the cell cycle and proceed through mitosis and into the subsequent G1 

phase (Fig. 3.2 E). By 24h after 20-HE removal many cells are in G1 phase (42%). By 32-48h 

after 20-HE removal we begin to see an increase in cycling cells in S and G2 phases, but the 

majority of the population remains in G1 (55%), suggesting a substantially prolonged G1 or a 

subsequent G1 arrest in a significant portion of the population occurs following 20-HE removal 

(Fig. 3.2 E, quantification in Fig. 3.2a. A). 

We were interested to find that few cells were in S and G2 phases 24h after 20-HE 

removal, considering that our EdU labeling experiment indicated that about ½ of cells can re-

enter the cell cycle and proceed through an S-phase after 20-HE removal (Fig. 3.2 A,B). This 

suggests that a prolonged G1 or G1 arrest may follow cell cycle re-entry after 20-HE removal. 

To confirm this we performed an EdU pulse chase experiment to follow the cell cycle timing of 

cells that re-enter S-phase after a pulse of 20-HE. We again exposed cells to 20-HE to 0.5µg mL-

1 for 36-40h followed by removal. Cells were allowed to recover for 6h, then pulsed with EdU 

for an hour followed by a chase without EdU or 20-HE for the indicated times. We then assayed 
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the EdU labeled cells by FACS, starting 4h after the EdU pulse, which is equivalent to 12h after 

20-HE removal. At this time, 15.2-23.2% of EdU labeled cells have progressed from S-phase 

through mitosis to the subsequent G1 phase. This is in contrast to 3.8% of the mock treated 

control, indicating that after 20-HE release the subsequent progression from S-phase to the next 

G1 proceeds much more rapidly than in mock treated controls. By 20-23h after 20-HE removal 

(13-16h post EdU labeling) 60.1-74.0% of 20-HE pulsed cells have completed mitosis and now 

exhibit a G1 DNA content, while only 24% have done so in the mock treated control. Altogether 

this suggests that after the release from a 20-HE induced G2 arrest, cells that re-enter the cell 

cycle exhibit a rapid S/G2/M progression, followed by a subsequent prolonged G1 phase (Fig. 

3.2 D).  This is consistent with the large G1 population we observe 24 and 32h after 20-HE 

removal in Fig. 3.2 E.  

 

Cell cycle changes during wing metamorphosis are similar to those induced by pulsed 20-

HE in cell culture. 

The pattern of cell cycle changes we observed in cell culture in response to a pulse of 20-HE is 

highly reminiscent of the cell cycle dynamics in the Drosophila wing blade during early pupal 

stages (Fig. 3.3A, O'Keefe et al., 2012). The wing blade transitions from a largely 

asynchronously proliferating tissue in the late third instar larval stage (L3), to a mostly G2 

arrested tissue at 6h after the larval-puparium transition (hours after puparium formation or h 

APF). After the G2 arrest in the wing, a fraction of cells re-enter the cell cycle at 12-18h APF 

and progress through an additional cell cycle followed by a sustained G1 arrest as the wing 

becomes quiescent and begins terminal differentiation (Milan et al., 1996; O'Keefe et al., 2012; 

Schubiger and Palka, 1987). As the larval-puparium transition is triggered by a pulse of ecdysone 
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(Ashburner, 1989), we wondered whether the temporary G2 arrest at 6h in the wing may be 

caused by ecdysone signaling at 0h APF, similar to what we observed in cell culture. In the 

larval wing disc, the EcR/USP complex acts in a repressive manner in the absence of ecdysone, 

and the binding of ecdysone at the larval-pupa transition relieves this repression.  Therefore, 

knockdown of EcR by RNAi or mutation of USP (the EcR dimerization partner in the wing), 

mimics early ecdysone exposure and de-represses ecdysone target genes that are normally 

induced in the wing in response to the ecdysone pulse triggering the larval to puparium transition 

(Ghbeish et al., 2001; Schubiger and Truman, 2000). To determine whether the G2 arrest in the 

early pupal wing is due to ecdysone signaling, we knocked down EcR by expressing an EcR 

RNAi in the dorsal wing using apterous-Gal4, UAS-GFP, Gal80TS (ap-Gal4) for 24-96h and 

collected wings at 0h APF. We examined the cell cycle distribution in wings by FACS to 

determine the relative percentages of cells in G1 and G2 compared to controls without the EcR 

RNAi. Consistent with the G2 arrest we observe in cell culture, we find that inhibition of EcR in 

the wing resulted in a significant fraction of cells at 0h APF exhibiting a precocious G2 arrest 

(Fig. 3.3 B). This suggests that ecdysone signaling is sufficient to induce a G2 arrest in the larval 

Drosophila wing. 

 We performed an RNA- timecourse on wings from L3 to 44h APF to examine the global 

changes in gene expression during metamorphosis. These timepoints include the L3 larval stage 

(-10h APF), the temporary G2 arrest (6h APF) the final cell cycle (18h APF), the permanent cell 

cycle arrest (24h APF), and stages of terminal differentiation including vein differentiation, wing 

hair formation and cuticle protein production (36 and 44h APF). We observed a striking number 

of gene expression changes during this timecourse, with over 2,000 genes (~12% of the genome) 

significantly changing expression in the wing within the first 6h of metamorphosis (Fig. 3.3a.). 
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Subsequent timepoints also showed dramatic changes in gene expression ranging from over 

1,900 genes changing between 6h and 18h APF during cell cycle re-entry from the G2 arrest to 

nearly 650 changing between 18 and 24h APF when cells complete the final cell cycle and enter 

quiescence (Supp. Fig. 3.3).  

We next examined a set of 183 core cell cycle genes that include the cell cycle 

Cyclins/Cdks and their key targets and regulators (Fig. 3.3 C, Table 3.1). Cell cycle genes 

showed generally similar behavior during wing metamorphosis with high expression in the 

proliferating L3 wing and during the final cell cycle at 18h APF, but lower expression during the 

6h G2 arrest and very low expression after completion of the final cell cycle at 24 and 36h APF. 

We observed reduced mRNA expression for many G2/M cell cycle regulators during the G2 

arrest at 6h APF including the mitotic aurora-A and polo kinases, the G2/M cyclin cyclinB and 

the mitotic checkpoint regulators mad2, bub3 and fizzy, the Drosophila homolog of cdc20 (Table 

3.1). However we noted that the gene showing the most dramatic reduction specifically at 6h 

APF, was the rate limiting G2/M phosphatase string (stg) which removes the phosphorylation on 

cdc2 catalyzed by the Wee/Myt kinases (Fig. 3.3 C).  

 We next examined the global gene expression changes during wing metamorphosis for 

enrichment of specific gene ontology (GO) terms. Consistent with the changes in cell cycle 

genes we observed, we found that cell cycle-associated terms such as “M-phase”, “nuclear 

division” and “mitotic cell cycle” were greatly enriched in the genes that decrease expression at 

6h APF (Fig. 3.3 D, Fig. 3.4a.). Conversely, the genes that increase expression between 6 and 

18h APF during the final cell cycle are strongly enriched for this same set of cell cycle terms, 

which decrease expression again during cell cycle exit at 24h APF.  
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We noted that there is also a strong enrichment for genes involved in “RNA processing” 

(including rRNA) and “ribosome biogenesis” in the genes that decrease expression at 6h APF 

(Fig. 3.3 D). This is consistent with the observation that the final two cell cycles in the 

Drosophila wing are reductive divisions that occur in the absence of cellular growth, resulting in 

smaller cells which ultimately stretch and flatten to increase apical area during wing elongation 

(Aigouy et al., 2010, our unpublished observations; O'Keefe et al., 2012). Altogether our GO 

term analysis suggests that a significant fraction of the dramatic gene expression changes we 

observe in the wing during metamorphosis are driven by changes in the cell cycle dynamics of 

the pupal wing. 

 

A peak of Broad-Z1 expression is correlated with the G2 arrest in the wing. 

From our RNA-seq data we next extracted a set of known ecdysone signaling targets (Beckstead 

et al., 2005; Gauhar et al., 2009; Shlyueva et al., 2014) and plotted their expression levels over 

time in a clustered heat map, superimposed with the ecdysone titer and key events during these 

pupal timepoints (Fig. 3.4 A, 20-HE titer graph reproduced from Ashburner, 1989). This 

revealed multiple waves of ecdysone responses in the pupal wing, including early and late 

responses induced by the larval-prepupal pulse as well as distinct early and late responses to the 

larger pulse at 24h APF. We noted a cluster of ecdysone-direct targets that are expressed prior to 

or during the G2 arrest at 6h APF but are not induced by the second ecdysone pulse at 24h (Fig. 

3.4 A, cluster indicated by red line). This cluster included 5 transcription factors, Kr-h1, broad, 

ftz-f1, hairy (h) and CG9932. We decided to examine Broad further as a potential regulator for 

the G2 arrest in the early pupa wing, since the knockdown of EcR by RNAi that induced a 

precocious G2 arrest in the wing (Fig. 3.3 B) was previously shown to induce precocious 
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expression of a specific isoform of Broad, Broad-Z1 (Schubiger and Truman, 2000). Importantly, 

we also found Broad-Z1 to be specifically enriched in wings at 6h APF by western blot (Fig. 3.4 

B) and immunofluorescence (Fig. 3.4 C-E), coincident with the G2 arrest. We also detected total 

Broad expression in wings using an antibody to the Broad-core region that recognizes all Broad 

isoforms. We found that other isoforms of Broad, most likely transcripts encoding the Z3 

isoform (based on our RNA-seq data), are expressed in the larval wing prior to the larval-

puparium transition. However we saw no Broad expression at 27h APF following the largest 

ecdysone pulse, suggesting ecdysone only induces Broad-Z1 in the early prepupal wing (Fig. 3.4 

F-H). 

 

Broad regulates the ecdysone-induced G2 cell cycle arrest in early pupal wings 

We have shown that the 20-HE–induced G2 arrest in cell culture relies in part upon the Wee/Myt 

kinases, which phosphorylate and inhibit Cdc2 activity (Fig. 3.1). We also found that stg 

expression, which counteracts the activity of the Wee/Myt kinases on Cdc2 is very low at 6h 

APF during an ecdysone induced G2 arrest in the wing.  We therefore tested whether the G2 

arrest in the early prepupa wing was dependent upon inhibitory Cdc2 phosphorylation.  To do 

this, we used the engrailed-Gal4 driver with a temperature sensitive Gal80 (en-Gal4/Gal80TS) to 

turn on ectopic expression of UAS-driven stg and GFP in the posterior wing at 0hr APF. We then 

dissected wings at 6h APF and stained for the mitotic marker phosphorylated Ser-10 histone H3 

(PH3) to determine whether cells in the posterior wing bypassed the G2 arrest and entered into 

mitosis. Indeed ectopic expression of stg robustly bypassed the G2 arrest in 100% of wings at 

this stage, demonstrating that the arrest is dependent upon inhibitory phosphorylation of Cdc2 

(Fig. 3.5 A,B). Previous work had shown that ecdysone signaling could regulate Cyclin B 
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(CycB) levels in the larval wing margin indirectly through another ecdysone regulated 

transcription factor crooked legs (crol) (Mitchell et al., 2013). Since CycB also regulates Cdc2 

activity and cyclin B levels were also low at 6h APF in our RNA-seq data, we tested whether 

overexpression of CycB could bypass the G2 arrest. However in 100% of wings robust 

expression of CycB failed to promote entry into mitosis (Fig. 3.5 C).  

We next asked whether inhibition of Broad altered the G2 arrest in the early pupa wing. 

To inhibit Broad we used a UAS-driven RNAi that targets a common region of broad transcripts 

effectively knocking down all isoforms with the en-Gal4/Gal80TS driver. Expression of the 

broad RNAi from the early second larval instar disrupted pupariation and resulted in visible 

defects in pupa cuticle tanning similar to those reported for overexpression of the repressive 

EcR-A isoform (Fig. 2.2a., Schubiger et al., 2003). By contrast expression of the RNAi from 0h 

APF was too weak to show any visible effects on pupal development. We therefore turned on 

Broad RNAi for only 18-24h prior to 6h APF, which likely results in only a partial knockdown.  

Nevertheless, expression of broad RNAi at these moderate levels resulted in ectopic mitoses 

(ranging from 3-14) in the posterior wing of 75% of animals (Fig. 3.5 D), consistent with a role 

for Broad in promoting the G2 cell cycle arrest.  

 To determine whether Broad may regulate Stg levels, we used a Stg-GFP protein trap line 

to monitor endogenous Stg expression (Inaba et al., 2011). We combined this protein trap with 

an actin-“flipout stop”-Gal4 transgene  (act>Gal4) to generate heat-shock induced flp/FRT, 

UAS-RFP labeled clones expressing Broad RNAi or a control RNAi to the white gene that has no 

effect on the cell cycle. Clones expressing Broad RNAi exhibit increased expression of Stg-GFP 

from L3 to 6h APF in the wing (Fig. 3.5 E-G, arrows, Fig. 3.2a.). Conversely ectopic Broad-Z1 

overexpression reduces Stg-GFP expression in the proliferating L3 wing (Fig. 3.5 H-I, Fig. 
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3.2a.). Altogether our data suggests ecdysone signaling acts via Broad to downregulate String to 

induce a temporary G2 arrest in the pupa wing. The G2 arrest in the early pupal wing can be 

bypassed by reducing Broad or by providing exogenous String. 

  

Broad binds to the stg regulatory locus and overlaps with wing enhancers. 

To investigate whether Broad may regulate Stg expression directly, we examined Broad binding 

to the string gene locus at 0h APF using modencode dataset #3806 (www.modencode.org). The 

string regulatory region is modular and extensive spanning >40kb (Lehman et al., 1999; Lopes 

and Casares, 2015) and several regulatory elements that drive expression in the wing have been 

previously described (Andrade-Zapata and Baonza, 2014). These regions overlap with accessible 

potential regulatory elements identified by Formaldehyde-Assisted Isolation of Regulatory 

Elements (FAIRE) that become inaccessible after cell cycle exit in the late pharate adult tissues 

(McKay and Lieb, 2013). By aligning Broad binding data with FAIRE data at the stg locus, we 

found that several strong peaks of Broad binding overlap with potential wing regulatory elements 

(Fig. 3.6 A).  

Two Gal4 reporters generated from stg regulatory regions (from the Janelia Gal4 

collection) that drive expression in the wing overlap with peaks of Broad binding, 32B06 and 

32C11. We therefore examined whether the loss of Broad alters the expression of these reporters. 

In males hemizygous for wild-type broad, we observed normal Broad levels and the previously 

reported expression patterns for these reporters in the wing (Andrade-Zapata and Baonza, 2014). 

(Fig. 3.6 B,C) By contrast, in animals hemizygous for the broad npr3 null allele, Broad 

expression is lost and ectopic reporter expression is observed in the central wing pouch for 

32B06, and additional expression in the wing pouch and hinge is observed for 32C11 (Fig. 3.6 
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D-E). Loss of Broad also disrupts larval development and wing patterning (Jia et al., 2016), 

resulting in reduced wing size and altered wing pouch shape. Altogether this data suggests that 

Broad can bind to stg regulatory regions that are known to drive expression in the wing and 

Broad may directly repress stg expression. 

 

Discussion 

 We present a model for how the pulse of ecdysone at the larval to pupal transition 

impacts the cell cycle dynamics in the wing during metamorphosis (Fig. 3.7). Ecdysone signaling 

at the larva to puparium transition induces Broad, which in turn represses Stg to generate a 

temporary G2 arrest, which synchronizes the cell cycle in the wing epithelium. As ecdysone 

levels decline, Broad expression plummets, allowing Stg to be re-activated resulting in a pulse of 

cdc2 activity that promotes a rapid G2/M progression during the final cell cycle in the wing. This 

ultimately culminates in the relatively synchronized cell cycle exit at 24h APF (Milan et al., 

1996; Schubiger and Palka, 1987), coinciding with the second large pulse of ecdysone. This 

second pulse in the pupa activates a different set of transcription factors (not Broad), promoting 

the acquisition of terminal differentiation characteristics in the wing. In this way, two pulses of 

ecdysone signaling can both synchronize the final cell cycle by a temporary G2 arrest and 

coordinate permanent cell cycle exit with the acquisition of terminal differentiation 

characteristics in the wing.  

Over 30 years ago it was shown that 20-HE exposure in Drosophila tissue culture cells 

induces a cell cycle arrest in G2-phase (reviewed in Echalier, 1997; Stevens et al., 1980). This 

response appears to be shared among 3 different cell lines, Cl-8, Kc and S2 (Fig. 3.1a.). Here we 

show that in Kc cells, pulsed 20-HE exposure also leads to a G2 arrest followed by rapid cell 
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cycle re-entry after 20-HE removal and a subsequent prolonged G1 (Fig. 3.2). This cell cycle 

response to a pulse of 20-HE is reminiscent of the cell cycle changes that occur during early 

metamorphosis in the pupal wings and legs (Graves and Schubiger, 1982; O'Keefe et al., 2012). 

It is worth considering why Kc (and S2) cells, which are thought to be derived from embryonic 

hemocytes would exhibit a similar cell cycle response to 20-HE to the imaginal discs.  

 Relatively little is known about how ecdysone signaling impacts embryonic hemocytes, 

although recent work suggests that ecdysone signaling induces embryonic hemocyte cell death 

under sensitized conditions (Sopko et al., 2015). More is known about larval hemocytes, which 

differentiate into phagocytic macrophages and disperse into the hemolymph during the first 8h of 

metamorphosis (Grigorian et al., 2011). Ecdysone is involved in this maturation process, as 

lymph glands of ecdysoneless (ecd) mutants fail to disperse mature hemocytes and become 

hypertrophic in the developmentally arrested mutants (Sorrentino et al., 2002). This suggests that 

the high levels of systemic ecdysone signaling at the larval-puparium transition mediates a 

switch from proliferation to cell cycle arrest and terminal differentiation for lymph gland 

hemocytes during metamorphosis. Without ecdysone signaling, hemocytes may continue to 

proliferate and fail to undergo terminal differentiation leading to the hypertrophic lymph gland 

phenotype observed. Further studies will be needed to examine whether the ecdysone induced 

cell cycle arrest in larval hemocytes occurs in the G2 phase, or whether their cell cycle arrest 

proceeds via a similar pathway to that shown here for the wing.  

 

The Ecdysone Receptor is a repressive complex in the wing 

Multiple lines of evidence suggest that the Ecdysone Receptor complex in the larval wing acts as 

a repressor for certain early pupa targets and that the binding of ecdysone to the receptor relieves 
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this repression (Fig. 3.7). For example loss of EcR by RNAi or loss of the EcR dimerization 

partner, USP, de-represses ecdysone target genes that are high in the early pupal wing such as 

BroadZ1 and bFtz-F1 (Ghbeish et al., 2001; Schubiger and Truman, 2000). The EcR/USP 

heterodimer also cooperates with the SMRTR co-repressor in the wing to prevent precocious 

expression of ecdysone target genes such as BrZ1 (Heck et al., 2012). Consistent with our 

hypothesis that a repressive EcR/USP complex prevents precocious expression of Broad and 

thereby a precocious G2 arrest, inhibition of SMRTR can also cause a G2 arrest (Pile et al., 

2002). Thus, in the context of the early pupal wing, we propose that the significant pulse of 

ecdysone at the larval to puparium transition relieves the inhibition of a repressive receptor 

complex, leading to Broad-Z1 activation (Fig. 3.7). Consistent with this model, high levels of 

Broad-Z1 in the larval wing lead to precocious neural differentiation at the margin (Schubiger et 

al., 2005), and in our hands precocious inhibition of stg expression in the wing pouch (Fig. 3.5). 

Interestingly, a switch in Broad isoform expression also occurs during the final cell cycle in the 

larval eye, such that BrZ1 becomes high in cells undergoing their final cell cycle and entering 

into terminal differentiation (Brennan et al., 2001). However in this case, BrZ1 expression is not 

associated with a G2 arrest and occurs in an area of high Stg expression, suggesting the 

downstream BrZ1 targets in the eye may be distinct from those in the wing. 

The Ecdysone Receptor has also been shown to down regulate Wg expression via the 

transcription factor Crol at the wing margin, to indirectly promote CycB expression (Mitchell et 

al., 2013). While a loss of EcR at the margin decreased CycB protein levels, effects of EcR loss 

on CycB levels in the wing blade outside of the margin were not obvious (Mitchell et al., 2013). 

We suggest that in the wing, the role for EcR outside of the margin acts on the cell cycle via a 

different mechanism through stg. Consistent with a distinct mechanism acting in the wing blade, 
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over-expression of Cyclin B in the early prepupal wing could not promote increased G2 

progression or bypass the prepupal G2 arrest (Fig. 3.5). Instead our results on the prepupal G2 

arrest are consistent with previous findings that Stg is the rate-limiting component for G2-M cell 

cycle progression in the fly wing pouch and blade (Neufeld et al., 1998).  

 

Gene expression changes during metamorphosis in the wing. 

In order to identify the gene expression changes in the wing that occur in response to the major 

peaks of eccdysone during metamorphosis, we performed RNA-seq on a timecourse of pupal 

wings. We observed major changes in gene expression in this tissue during metamorphosis (Fig. 

3.3, Fig. 3.3a.). In addition, we identified known ecdysone targets that are affected differently in 

the wing during the first larval-to-pupal ecdysone pulse and the second larger pulse at 24h APF 

(Fig. 3.4). Ecdysone signaling induces different direct targets with distinct kinetics (King-Jones 

and Thummel, 2005). Furthermore specific targets, for example Ftz-F1 can modulate the 

expression of other ecdysone targets, to shape the response to the hormone (King-Jones et al., 

2005). Thus, we expect that a pulse of ecdysone leads to sustained effects on gene expression 

and the cell cycle, even after the ecdysone titer returns to its initial state. These factors together 

with the differences in the magnitude of the ecdysone pulse may contribute to the differences in 

the response to the early vs. later pulses in the wing. 

Ecdysone signaling can also affect the cell cycle and cell cycle exit via indirect 

mechanisms such as altering cellular metabolism. This is used to promote cell cycle exit and 

terminal differentiation in neuroblasts, where a switch toward oxidative phosphorylation leads to 

progressive reductive divisions, (divisions in the absence of growth) leading to reduced 

neuroblast cell size and eventually terminal differentiation (Homem et al., 2014). Although 
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reductive divisions do occur in the final cell cycle of the pupa wing (Aigouy et al., 2010, our 

unpublished results), this type of mechanism does not provide a temporary arrest to synchronize 

the final cell cycle in neuroblasts as we see in wings. Importantly, we do see a striking reduction 

in the expression of genes involved in protein synthesis and ribosome biogenesis in the wing 

during metamorphosis, consistent with the lack of cellular growth (Fig. 3.3, O'Keefe et al., 

2012). Instead the increased surface area of the pupal wing comes from a flattening, elongation 

and apical expansion of the cells due to interactions with the extracellular matrix creating tension 

and influencing cell shape changes (Etournay et al., 2015). This is also consistent with our 

findings that a significant number of genes associated with protein targeting to the membrane are 

increased as the wing begins elongation in the early pupa (Fig. 3). Further studies will be needed 

to determine whether the changes in expression of genes involved in ribosome biogenesis and 

protein targeting to the membrane are controlled by ecdysone signaling, or some other 

downstream event during early wing metamorphosis. 

 

Tissue specific responses to ecdysone can mediate opposite effects on the cell cycle through 

the same target 

Perhaps the most interesting and least understood aspect of steroid hormone signaling is how a 

diversity of cell-type and tissue-specific responses are generated to an individual hormone. Cell 

cycle responses to ecdysone signaling are also highly cell type specific. For example, progenitors 

of the adult abdominal epidermis termed histoblasts become specified during embryogenesis and 

remain quiescent in G2 phase during larval stages. During pupal development, the abdominal 

histoblasts are triggered to proliferate by a pulse of ecdysone to replace the larval abdominal 

epidermis. This is in contrast to the behavior of the wing imaginal disc, where epithelial cells 
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undergo asynchronous rapid proliferation during larval stages, but during metamorphosis the cell 

cycle dynamics become restructured to include a G2 arrest followed by a final cell cycle and 

entry into a permanently postmitotic state.  

How do the same system-wide pulses of ecdysone at the larval to puparium transition 

lead to such divergent effects on the cell cycle? Surprisingly it seems to be through divergent 

effects on tissue specific pathways that act on the same cell cycle targets. In the abdominal 

histoblasts the larval to puparium pulse of ecdysone triggers cell cycle re-entry and proliferation 

via indirect activation of Stg (Ninov et al., 2009), by modulating the expression of a microRNA 

that targets Stg (Verma and Cohen, 2015) (Fig. 3.4 C). This tissue-specific addition of the 

microRNA essentially opposes Broad's repressive effects on stg expression.  Thus, tissue specific 

programs of gene regulatory networks can create divergent outcomes from the same system-wide 

hormonal signal, even when they ultimately act on the same target.  

	

Materials and Methods 

Cell culture: Clone-8 (Cl-8) and S2R+ cells were obtained from the DGRC. A strongly ecdysone 

responsive Kc167 subclone was obtain from Dr. K. Cadigan (University of Michigan, Ann 

Arbor). All cells were cultured at 25°C in Schneider’s media (Invitrogen) supplemented with 

penicillin-streptomycin (Gibco) and 10% heat-inactivated “Optima” fetal bovine serum (Atlanta 

Biologicals).  For Cl-8 cells, the media was supplemented with 5 µg mL-1 insulin (Sigma) and 

2.5% fly extract. Fly extract was prepared and stored as described 

(https://dgrc.bio.indiana.edu/include/file/additions_to_medium.pdf). Cell counting/viability was 

performed manually using a hemocytometer and trypan blue staining. 20-Hydroxyecdysone 

(Sigma) was dissolved at 1mg mL-1 in DMSO or water. RNAi experiments were performed in 6-

well dishes, with 1-3X106 cells mL-1. Cells were seeded for 12-24h in complete media. Media 

was removed, cells were washed with 1mL 1XPBS and replaced with 0.5mL serum free medium 

containing 10-20µg mL-1 dsRNA overnight. 0.5mL of complete medium was added and cells 

were incubated for 3 days prior to flow cytometry or treatment with 20-HE. 
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Primers used for dsRNA synthesis using T7 Polymerase as described (Rogers and Rogers, 2008): 

T7-Wee-fwd: TAATACGACTCACTATAGGGATGACTTTGACAAGGACAC 
T7-Wee-rev: TAATACGACTCACTATAGGATCTAGTCGATTGACGCATT 
 
T7-Myt1-fwd: TAATACGACTCACTATAGGAATTGCACGACGACAAACAC  
T7-Myt1-rev: TAATACGACTCACTATAGGTGTCCAGATGGATGAGATTC  
 
T7-Myt1-fwd2: TAATACGACTCACTATAGGACAACAATCTGAACCGAAGC 
T7-Myt1-rev2: TAATACGACTCACTATAGGTGGAGCCATATACCTCGAAT  
 
T7-EcR-fwd: TAATACGACTCACTATAGGTGCGAAATGGACATGTACAT  
T7-EcR-rev: TAATACGACTCACTATAGGTCCCGCGTATATGATCTATT  
 
T7-Br-fwd: TAATACGACTCACTATAGGCTGCAGGATGTCAACTTCAT  
T7-Br-rev: TAATACGACTCACTATAGGGTGCTTGATCGTACTGAAGT 
 

Flow cytometry- Flow cytometry analysis for DNA content in Figs 3.1, 3.2 and Fig. 3.1 C was 

performed on live cells in 1X PBS with DyeCycleViolet (Life Technologies) at a 1:2,000 

dilution for 30 minutes at room temperature. Cells were run on an Attune Cytometer (Life 

Technologies) under standard settings using the Violet laser with the 450/40 filter. Flow 

cytometry analysis for DNA content in Fig. 3.1a. A was performed on Ethanol fixed cells, 

treated with RNaseA  (Sigma) and stained with propidium iodide (Sigma) as described 

(Bettencourt-Dias et al., 2004) and analyzed on a FACSCalibur (BD). For EdU incorporation 

assays, cells were cultured in complete medium with 10 µM EdU for the indicated timepoints, 

and either chased with complete media lacking EdU for the indicated timepoints prior to fixation 

(Fig. 3.2 F) or fixed immediately and stained (Figs. 3.1 G and 3.2 A) using the protocol of the 

Click-IT EdU AlexaFluor-488 Flow Cytometry kit (Life Technologies). For all EdU treated 

samples DNA was stained with FX CycleViolet (Life Technologies) for 30 min. at room 

temperature and samples were analyzed on an Attune cytometer. Results from multiple replicates 

were graphed and analyzed by one-way ANOVA (for comparing groups) or paired t-tests (for 

individual comparisons) using Prism. P-values are indicated as follows; from p<0.05 *, p<0.01 

**, p<0.001 ***, n.s. = p>0.05. 

 

Western blots: Western blots were performed using BioRad TGX precast 4-20% gels, and HRP 

conjugated secondary antibodies with high sensitivity ECL detection reagents (Thermo) as 

described (Sun and Buttitta, 2015). We used the following antibodies; anti-Tyr15-P-cdc2 (Cell 
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Signaling Technologies, #9111), anti-EcR common (DSHB, Ag10.2 and DDA2.7), anti-Wee 

(kindly provided by Dr. S. Campbell), rabbit anti-GFP (1:1000 Invitrogen) anti Broad Z1 and 

Broad-Core (DSHB, 1:100, #Z1.3C11.OA1 and #25E9.D7), rabbit anti phospho-histone H3 

Ser10 (Upstate, 1:4,000), mouse anti-a-tubulin (DSHB, AA4.3 1:1,000) and anti-total cdc2 

(Millipore, #06-923). For Fig. 3.1, western blot signal was quantified using Image J and 

presented as the ratio of pCdc2 to total Cdc2. 

 

Fly stocks: The w;engrailed-Gal4,UAS-GFP; tub-Gal80TS and w;apterous-Gal4,UAS-GFP; tub-

Gal80TS stocks have been described (Buttitta et al., 2007). The w;+,act>CD2,stop>Gal4,UAS-

dsRed (BL# 30558) was recombined with the Stg-GFP protein trap (YD0685) kindly provided 

by Dr. Y. Yamashita (University of Michigan). EcR RNAi (Schubiger and Truman, 2000), Broad 

TRiP RNAi lines (BL #27272 and #33641) and UAS-BrZ1 (BL#51379) were crossed to 

y,w,hsflp122 and are available in the Bloomington Stock Center. The broad null allele npr3 was 

also used (BL#5964). 

 

Immunofluorescence: For EdU labeling, cells were cultured with 10 µM EdU for 45 min. in 

complete medium and fixed and stained using the protocol of the Click-IT EdU AlexaFluor-555 

Imaging kit (Life Technologies). DNA was stained for 10 min. with 1µg ml-1 Hoechst 33258. For 

Drosophila tissues, pupa were collected and staged at 25°C, using the immobile white-prepupa 

stage as 0h APF. Tissues were dissected and fixed in paraformaldehyde, followed by washed in 

1XPBS-0.1%Triton-X100 and blocking and staining as described (Buttitta et al., 2007). For Figs. 

3.4-6 all samples within each figure were scanned with the same gain and laser intensity settings 

as the control genotypes. For Fig. 3.6 GFP signal in the wing pouch (pouch boundary defined by 

folding at hinge) was quantified (pixels*area) using Image J.  

 

RNAseq Gene expression analysis: Animals were staged at 25°C as described (O'Keefe et al., 

2012). Forty wings for each stage were manually dissected and RNA was isolated using Trizol as 

previously described (McKay and Lieb, 2013). Two independent replicates for each timepoint 

were performed. Libraries for RNA seq were generated using the stranded mRNA sequencing kit 

from KAPA Biosystems (catalog # KK8421). Reads were mapped to the genome (dm3) using 

Tophat2 (Kim et al., 2013) using a transcript annotation file for the alignment. The Htseq-count 
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tool (Anders et al., 2015) was used to count reads mapping to genes, and the EdgeR package in 

Bioconductor (Robinson et al., 2010) was used to calculate RPKMs. For heatmaps of core cell 

cycle gene expression across the time series, the percent maximum of TMM normalized read 

counts was used for hierarchical clustering analysis based on average linkage. For gene ontology 

analysis, we defined differentially expressed genes as those having a logCPM greater than 2 in at 

least one sample and changing by at least 2-fold between pairwise time points. The resulting 

gene lists were submitted to DAVID (Huang da et al., 2009) gene ontology analysis, and 

subsequently filtered using REViGO (Supek et al., 2011) to remove redundant terms. 
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Fig. 3.1 Kc cell response to 20-HE involves a Wee/Myt-dependent cell cycle arrest in G2.  
Cells were treated with vehicle only (DMSO) or 1µg mL-1 20-Hydroxyecdysone (20-HE) in 
DMSO for 48 hours (A-I) or the indicated number of days (E). Cells treated with 20-HE exhibit 
an altered cell shape and reduce EdU incorporation indicating cell cycle arrest (A-D). Sustained 
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treatment with 20-HE for 2-10 days results in fewer cells from a sustained cell cycle arrest and 
increased apoptosis (E, see also Fig. 3.1a.) Error bars indicate the s.e.m. of four replicates, p-
values were determined by paired t-tests with vehicle treated controls and range from p<0.01** 
to p<0.001***. (F) Flow cytometry confirmed that 20-HE induced cell cycle arrest occurs in G2, 
which can be blocked by treatment with RNAi (i) to the Ecdysone Receptor (EcRi) or partially 
blocked by RNAi to the Cdc2 kinases wee and myt1 (wee/myti). Control (ctrl) dsRNA matches a 
region of Bluescript SK vector (Rogers and Rogers, 2008) and does not alter cell growth or 
proliferation. (G) Treatment with wee/myt1 RNAi partially restores proliferation as shown by 
EdU incorporation increasing from 8% to 15% in the presence of 1µg mL-1 20-HE. (H) Levels of 
tyrosine-15-phosphorylated Cdc2 (pCdc2) are reduced by EcR RNAi and wee/myt1 RNAis. (I) 
The cell cycle distribution as determined by FACS is altered in the presence of 20-HE. This 
effect is suppressed by knockdown of EcR. Knockdown of Wee/Myt kinases partially suppresses 
the increase in the G2 population in response to 20-HE. Error bars indicate the s.e.m. of four 
replicates, p-values were determined by paired t-tests with vehicle treated controls and range 
from not significant (ns=p>0.05) to p<0.01** or p<0.001***. 
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Fig. 3.1a. (A) Cells were treated with vehicle only (DMSO) or the indicated concentration of 20-
Hydroxyecdysone (20-HE) in DMSO for 24 hours. DNA content was examined by flow 
cytometry. (B) Cells were treated with the indicated RNAi for 48h and then exposed to vehicle 
or 1µg mL-1 20-HE for 48 hours. Cell numbers were counted (left) and trypan blue staining was 
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used to assay for live/dead cells (right). Knockdown of the Ecdysone Receptor (EcR) prevents 
cell cycle arrest and apoptosis induced by 20-HE. It also increases cell proliferation and survival 
in the absence of 20-HE for Kc cells. Error bars indicate s.e.m. t-tests were used to determine 
significance (p<0.05*, p<0.01**, p<0.001***, ns= p>0.05) (C) Kc cells were treated with 
vehicle or 1µg mL-1 20-HE for the indicated number of hours. 20-HE induces a stable G2 cell 
cycle arrest after 18h. (D) Kc cells were treated with vehicle (mock) or 1µg mL-1 20-HE 
monitored by live imaging for 24h. Cell shape changes occur within 9h of 20-HE exposure and 
precede the G2 arrest that occurs at 18h of exposure. We did not observe any increase or 
decrease in cell motility associated with the cell shape change. 
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Fig. 3.2 20-HE induced arrest is reversible and leads to prolonged alterations in cell cycle 
dynamics. 
(A) Cells were treated with vehicle (mock) or 1µg mL-1 20-HE for 48h followed by removal and 
replacement with fresh media for the indicated number of hours. “No recovery” indicates 
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continued incubation with 20-HE. EdU incorporation for 45 minutes was used to examine cell 
cycle re-entry after 20-HE removal. Gating (blue circle) was used to identify early and late S-
phase cells (indicated by arrows). (B) Quantification of EdU positive cells, error bars indicate 
s.e.m. of four replicates, p-values were determined by t-test compared to mock treated controls. 
Removal of HE for 18-32h only partially restores EdU incorporation. (C) Normalized cell counts 
after mock treatment or removal of 20-HE for the indicated hours. Cells treated with 20-HE fail 
to recover normal proliferation even several days after hormone removal. Error bars indicate 
s.e.m. of four replicates. (D) A diagram depicting the relative cell cycle phasing of Kc cells with 
the indicated treatments. (E) Cells were treated with 0.5 µg mL-1 20-HE for 36h followed by 
removal, washing and media replacement for the indicated number of hours. One to two days 
after 20-HE removal the majority of cells exhibit a G1 DNA content, suggesting a rapid cell 
cycle re-entry followed by a G1 arrest. For quantification see. Fig. 3.2a. A. (F) An EdU pulse-
chase experiment was performed to track the cell cycle progression of cells after 20-HE removal. 
Cells that re-enter the cell cycle 6h after 20-HE removal were pulsed with EdU and followed for 
the indicated number of hours. The percentage of EdU positive cells that progress from S-phase 
through the cell cycle to G1 after 20-HE removal is shown. S to G1 progression proceeds more 
rapidly after 20-HE exposure. Two independent pulse-chase experiments with 2 replicates are 
shown. Paired t-tests indicate significant differences (p<0.001 ***) between mock treated 
controls and 20-HE removal. 
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Fig. 3.2a. (A) Quantification of cells in G1 for the experiment shown in Fig. 3.2E. Error bars 
indicate std. dev. p-values were determined by t-tests. (B) Kc cells were cultured with 10mg mL-

1 of the indicated dsRNAs for RNAi mediated knockdown for 3 days. Western blots for EcR, 
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Wee and Broad indicated highly effective knockdown. Tubulin serves as a protein loading 
control. (C) Knockdown of Broad using engrailed-Gal4, Gal80TS with two independent UAS-
RNAi lines driven by engrailed-gal4 (en-Gal4) generated identical phenotypes, effectively 
reducing total Broad levels in the wing, and (D) disrupting pupa development and pupa cuticle 
tanning in each posterior segment . (C) UAS-BrZ1 effectively induced ectopic precocious 
expression of BrZ1 in the larval wing. (E-I) A Stg-GFP protein trap was recombined with an 
actin-“flipout stop”-Gal4 transgene  (act>Gal4) to generate heat-shock induced flp/FRT, UAS-
RFP labeled clones expressing the indicated UAS transgenes. (F,G) Knockdown of broad 
increased Stg-GFP expression at the indicated timepoints. (H-I) Overexpression of BrZ1 reduced 
Stg-GFP in the wing margin and hinge area as well as the proximal leg at 0h APF (arrows). 
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Fig. 3.3 Cell cycle changes during wing metamorphosis. 
(A) Drosophila wings undergo a temporary G2 arrest at 6h after puparium formation (APF) 
followed by one additional cell cycle and a subsequent G1 arrest as indicated by flow cytometry 
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on staged, dissected wing tissues. This figure is reproduced from (O'Keefe et al., 2012). (B) 
RNAi to all isoforms of EcR was expressed in the dorsal compartment of larval wings using 
apterous-Gal4, UAS-GFP, Gal80TS (Gal4+).  EcR RNAi + GFP or GFP alone (ctrl) was 
expressed for 24-96h prior to dissection, dissociation and analysis by FACS at 0hAPF for cell 
cycle distribution in G1 and G2. Inhibition of EcR resulted in a significant fraction of cells at 0h 
APF exhibiting a G2 arrest. (C) RNA-seq was performed on dissected wings at the indicated 
timepoints to monitor changes in gene expression. A core cluster of 183 cell cycle genes exhibit 
dynamic regulation during wing metamorphosis, with high expression during the proliferative L3 
stage and the final cell cycle, followed by very low expression after cell cycle exit at 24h. Most 
cell cycle genes also decrease expression during the G2 arrest at 6h, although string (stg) 
behaves as an outlier in this cluster, showing the most dramatic decrease at 6h. (D) Analysis of 
GO term enrichment revealed that genes involved in cell cycle and cell growth (ribosome 
biogenesis) decrease during the G2 arrest at 6h. During cell cycle re-entry (18h) cell cycle genes 
are upregulated to promote progression through a rapid final cell cycle. Cell cycle genes are 
again strongly downregulated at 24h to promote cell cycle exit. 
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Fig. 3.3a. 
Comparative MA expression plots (log Fold Change vs. average log counts per million) are 
shown for RNAseq on pupal wings at the indicated timepoints along with the numbers of 
differentially expressed genes for each comparison. FDR= false discovery rate, CPM=counts per 
million reads. 
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Fig. 3.4 G2 arrest in the prepupal wing coincides with a peak of Broad Z1 expression. 
(A) The titer of ecdysone in animals from -10h APF to 44h APF (at 25°C) is shown. This graph 
is adapted from (Ashburner, 1989). Known ecdysone targets were clustered using Pearson 
correlation coefficients according to their expression changes during metamorphosis in the wing 
by RNA-seq. Each gene is represented as a fraction of its maximum expression across the time 
course. The top cluster (indicated by a red line) contains targets induced specifically prior to or 
during the G2 arrest. The RNA-seq heatmap signal for the direct ecdysone target broad 
encompasses all isoforms. (B) Endogenous BroadZ1 (BrZ1) protein levels were assayed in 
dissected wings of the indicated stages by western blot. BrZ1 peaks at 6h. Alpha-tubulin from 
the same blot serves as a protein loading control. (C-H) Wings of the indicated stages were 
dissected, fixed and immunostained for all Broad isoforms (Broad core) or BrZ1. Broad isoforms 
are expressed at L3 stage prior to puparium formation, while BrZ1 is specific to the early 
prepupa wing. All images were taken with identical gain and laser intensities for comparison. 
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Fig.  3.4a. Complete GO term analysis for the RNA-seq timecourse data shown in Fig. 3.3 B. 
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Fig. 3.5 The prepupal wing G2 arrest is partially dependent upon Broad regulation of 
String. 
 (A-D) en-gal4 coupled with a temperature-sensitive tubulin-Gal80 (TS) was used to drive UAS-
driven expression from mid-L3 to avoid defects in pupariation. Wings were dissected at 6h APF 
and stained for mitoses using anti-phosphohistone H3 (PH3)(Su et al., 1998). (A) A UAS 
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transgene driving expression of RNAi to the eye pigment gene white was used as a negative 
control. At 6h APF mitoses are normally restricted to the anterior margin (arrowhead) but are 
absent from the wing blade (n=6/6). (B) Expression of string in the posterior wing bypasses the 
G2 arrest and drives cells of the posterior wing into an early mitosis (n=7/7), (C) while 
overexpression of CycB does not (n=8/8). (D) Knockdown of Broad leads to ectopic mitoses in 
the posterior wing (arrows, n=9/14). (E-I) A Stg-GFP protein trap was recombined with an actin-
“flipout stop”-Gal4 transgene  (act>Gal4) to generate heat-shock induced flp/FRT, UAS-RFP 
labeled clones expressing the indicated UAS transgenes. (E-G) Broad RNAi increases Stg-GFP 
at L3, 4 and 6h APF (H-I) while BrZ1 overexpression decreases Stg-GFP levels. Representative 
experiments are shown, which were independently replicated 2-3 times. 
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Fig. 3.6 Broad binds to the stg regulatory locus and overlaps with wing enhancers. 
(A) An 80kb window of the stg locus is shown including Broad ChIP-seq signal at 0h APF 
(modencode dataset #3806, www.modencode.org), and potential regulatory elements revealed by 
FAIRE that are accessible during larval stages in the wing and leg disc, but become inaccessible 
after cell cycle exit in the pharate tissues (McKay and Lieb, 2013). Two regions are shown that 
overlap with reporters from the Janelia Gal4 collection previously shown to drive expression in 
the wing (Andrade-Zapata and Baonza, 2014). (B-C) Male animals hemizygous for broad show 
expression of these reporters in the wing. (D-E) Animals hemizygous for the broad npr3 null 
allele show loss of Broad expression and ectopic reporter expression in the central wing pouch 
(for 32B06) and additional expression outside of the anterior-posterior and dorsal-ventral 
boundary regions (for 32C11). GFP expression is shown in green, and Broad protein expression 
is shown in magenta. 
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Fig. 3.7 A model for how the temporal dynamics of Ecdysone signaling induce two phases 
of cell cycle arrest in Drosophila wings  
Pulses of Ecdysone signaling, Broad expression and String expression are temporally regulated 
during wing metamorphosis to coordinate cell cycle changes with differentiation and 
morphogenesis. In the wing, ecdysone relieves EcR/USP repression of Broad, which in turn 
regulates Stg. The outcome is opposite to that of the recently worked out molecular pathway for 
G2 progression in the abdominal histoblasts (Verma and Cohen, 2015). 
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CHAPTER IV 

GENERAL DISCUSSION 

 Adult tissues are mostly composed of cells that have undergone a developmentally 

regulated exit from the cell cycle and have differentiated into their final cell fate. It is not fully 

understood how environmental cues and changes in hormone levels impinge upon the cell cycle 

regulatory machinery to stop proliferation and promote the transition to a non-cycling, terminally 

differentiated state. Though the transition to a post-mitotic state is associated with cell cycle gene 

repression via activity of the major cell cycle repressor (DREAM), fly tissues that have lost 

DREAM activity will still exit the cell cycle, indicating that there are still unknown factors 

involved in this process. This work demonstrates that the NuA4 complex and steroid hormone 

ecdysone are part of two essential separate signaling pathways that can impact cell cycle gene 

expression and cell cycle progression to properly coordinate the differentiation-associated cell 

cycle exit and development. 

 

NuA4  

 Our research helped clarify previous data pertaining to Tip60/NuA4's role in cell cycle 

regulation. As mentioned in chapter I, E2F/DP master cell cycle transcription factor complexes 

drive cell cycle progression by oscillating between functioning as transcriptional activators 

(E2F1/DP) and repressors (E2F/DP/Rb and DREAM) of cell cycle gene expression (Fig. 1.3). 

Our data suggest that the changes in E2F/DP activity that we and others have found (Lu et al., 
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2007) may be an indirect effect of NuA4 inhibition slowing progression through late S/G2, 

which causes a concomitant increase in E2F1 activity through the mechanism of cell cycle 

compensation (Reis & Edgar, 2004, Flegel et al., 2016). Alternatively, NuA4 knockdown may 

also induce E2F1 activity as a result of the cell perceiving DNA damage (Moon et al., 2008). 

Though certain E2F1 activities were increased, Tip60/NuA4 inhibition actually decreased E2F1 

protein levels and slowed the overall cell cycle, suggesting that Tip60/NuA4 is also required for 

the accumulation of E2F1 that would have otherwise accompanied the temporary cell cycle 

arrest to promote proper cell cycle compensation (Reis & Edgar, 2004). Since endogenous E2F1 

activity is highest during S phase when E2F1 protein is naturally degraded, Tip60/NuA4 

inhibited cells are likely temporarily arrested in late S phase or early G2 before E2F1 protein 

levels accumulate. This is consistent with our assays using the Drosophila FUCCI cell cycle 

reporters.   

 An increase in the percentage of cells in G2 phase was also found when NuA4 was 

inhibited in mouse embryonic stem cells (mESCs) (Fazzio et al., 2008). Contrary to NuA4's 

ability to promote gene transcription via acetylation of histone H4 (H4Ac), Fazzio et al. (2008) 

found that NuA4 represses differentiation-specific genes to maintain mESC pluripotency. It was 

suggested that a pluripotency transcription factor (Nanog) and NuA4 function together to 

regulate the expression of a common set of differentiation genes.  Although it is important to 

note that NuA4 was actually found at 55% of all mESC promoters (Fazzio et al., 2008). Fazzio et 

al. (2008) speculated that NuA4 acetylated histone H4, H2A variants, or non-histone targets to 

achieve this context-dependent regulation of gene expression. In light of our findings in chapter 

II where we revealed an unappreciated role for NuA4 in resolving endogenous DNA damage 

during every cell cycle, we wonder whether knockdown of NuA4 could instead activate a DNA 
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damage response (DDR) that may indirectly promote mESC differentiation. This would be 

consistent with recent work that suggests cell cycle arrest or slowing promotes ESC 

differentiation (Hardwick et al., 2015). Although we have not distinguished whether NuA4 

inhibition affects the amount of DNA damage occurring or just the perception of damage, 

knockdown of NuA4 activates a DNA damage response which attempts to preserve the integrity 

of the tissue by repairing the damage or eliminating the cell (Wells & Johnston, 2012).  

 Activation of a DDR in differentiated cells results in apoptosis or cell cycle arrest and 

DNA repair, whereas the effects upon pluripotent (such as mESCs) or multipotent cells are 

context-dependent (Sherman et al., 2011). For example, a DDR in mESCs can induce 

differentiation by activating p53 that then directly suppresses the expression of nanog (Lin et al., 

2005). Since Nanog protein levels were not affected by NuA4 inhibition (Fazzio et al. 2008), if 

NuA4 knockdown in mESCs did trigger a DDR it may be p53-independent such as we found in 

chapter II (Flegel et al., 2016). Alternatively, premature differentiation of ES cells could also 

result if NuA4 inhibition in mESCs reduced H2A variant expression or the variant's ability to 

associate with and protect Nanog from ubiquitin-proteosome degradation (Wang et al., 2015).  

 NuA4 could also impact mESC pluripotency without invoking NuA4's involvement in 

the DDR. ESC identity is determined by the separable regulatory Polycomb, Myc, and Core 

networks (Kim et al., 2010). The Core network contains Nanog, whose activity is needed at least 

in part for NuA4's repression of differentiation genes in mESCs (Fazzio et al., 2008). However, 

NuA4 can also interact with the oncogenic transcription factor Myc in both ESCs and non-ESCs 

to drive the efficient acetylation of histone H4 and transcription of Myc targets (McMahon et al., 

1998, Frank et al., 2003, Doyon et al., 2004, Kim et al., 2010). Similar to NuA4 knockdown, 

Myc inhibition in mESCs induces a flattened morphology indicative of differentiation, 
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suggesting that NuA4's role in promoting mESC pluripotency could potentially occur at least in 

part through its interaction with Myc (Kim et al., 2010).  

 We found that just 24 hours of in vivo Tip60/NuA4 inhibition decreased levels of the 

G2/M-promoting protein, CycB, and that Tip60 can bind the cycB promoter in Drosophila cell 

culture. Although we do not have direct evidence, NuA4 may modify the chromatin at the cycB 

promoter to make it accessible to the transcriptional machinery and drive proper G2/M 

progression. This hypothesis is supported by over-expression of the cdc25c/string phosphatase of 

CycB/Cdk1 rescuing the slowed progression through late S/G2. Despite the ability of string 

expression to rescue the late S/ G2 defect, the timing of cell cycle exit was still delayed by 

Tip60/NuA4 inhibition. Closer inspection revealed that many of these mitotic cells after normal 

cell cycle exit had chromosome segregation errors that were not caused by Tip60/NuA4 inhibited 

alone. This suggests that string overexpression is sufficient to promote the activity of the low 

levels of CycB/Cdk2 complexes in NuA4 inhibited tissues, but does not fix what caused the 

reduction of CycB in the first place.  

 We are not the first to find an interaction between Tip60/NuA4 and CycB/Cdk1. 

Phosphorylation of mammalian Tip60 at Ser86 and Ser90 has been shown in vitro to promote 

Tip60's acetyltransferase activity (Lemercier et al., 2003, Charvet et al., 2011). Ser90 of Tip60 

lies within a canonical CycB/Cdk1 binding site that is targeted by Cdk1 (Lemercier et al., 2003, 

Mo et al., 2016). Furthermore, high levels of phosphorylated Tip60 are evident when ~90% of 

human cells are forcibly arrested in G2/M, when CycB/Cdk1 activity is normally high (Mo et al., 

2016). In combination with our in vivo data that shows Tip60 inhibition reduces both CycB 

transcript and protein, there may exist an unexpected feed-forward relationship where Tip60 

acetyltransferase activity promotes cycB expression and CycB/Cdk1 activity in turn promotes 
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Tip60's activity. A recent mammalian cell culture study indicates that Tip60/NuA4 also functions 

downstream of CycB to promote the metaphase to anaphase transition. Phosphorylation of 

Aurora B (AurB) promotes mitotic progression by destabilizing microtubules that have 

incorrectly attached to chromosomes so as to ultimately allow chromosomes to properly 

segregate to opposing spindle poles via correct kinetochore-microtubule attachments (Mo et al., 

2016). Tip60's acetylation of AurB's activation loop preserves the activity of AurB by protecting 

it from being dephosphorylated (Mo et al., 2016). If these Tip60 functions are conserved in 

Drosophila, the chromosome segmentation defects we find in Tip60/NuA4 inhibited and string 

or cycB overexpression wings could be caused by the persistence of mis-attached microtubules. 

Whether a result of defects in microtubule attachment or by acquiring DNA damage, cells that 

persist with chromosomal aberrations have a greater likelihood of oncogenic transformation 

(Tang et al., 2012). This means that despite NuA4 promoting the expression of targets of the 

oncogenic Myc and E2F1 transcription factors (Frank et al., 2003, Taubert et al., 2004), NuA4's 

role in promoting genetic stability also places it as an essential tumor suppressor (Gorrini et al., 

2007).  

 Tip60/NuA4 knockdown in Drosophila slowed cell cycle progression to delay the timing 

of cell cycle exit (Flegel et al., 2016). This change in the rate of proliferation did not affect the 

timing of differentiation, but it did impact the proper formation and pattern of wing veins. 

Whether cells in the wing identify as vein or intervein is dependent upon the pattern of 

differential rates of proliferation that naturally exist in the wing (González-Gaitán et al., 1994, 

Mao et al., 2013), cell signaling, and expression of cell-fate determinants (De Celis, 2003). Vein 

formation is also dependent upon the cells being appropriately juxtaposed in the two sheets of 

epithelial cells that make up the wing (De Celis, 2003). NuA4 inhibition in the wing posterior 
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likely caused an incorrect number of cells between the layers due to an increase in cell death that 

was accompanied by improper patterns of proliferation rates to adversely affect the formation of 

veins that normally convey rigidity and structure to the tissue (De Celis, 2003).  

 Surprisingly, Tip60/NuA4's impact on cell cycle progression occurred in the absence of 

factors that it had previously been shown to coactivate (E2F/DP, p53). We therefore looked for 

answers in its target genes via RNA-seq. We know that Tip60/NuA4 inhibition does not disrupt 

the ability to initially detect DNA damage (such as unprotected, newly replicated ends of DNA) 

because pH2Av foci are apparent in Tip60/NuA4 inhibited tissues in the absence of exogenous 

DNA damaging agents. Upon comparison with a previously reported p53-independent DNA 

damage response (van Bergeijk et al., 2012), we found a significant amount of the transcriptome 

of Tip60/NuA4 inhibited proliferating wing discs to correspond with the p53-independent DDR. 

The precise DDR pathway activated by Tip60/NuA4 inhibition remains to be explored. The p53-

independent DDR includes members of the JNK (c-jun-NH2-kinases) pathway, which will be our 

first candidates to test in the future. Though the JNK pathway has context-dependent roles in 

morphogenesis, proliferation, and apoptosis (McEwen et al., 2000, McEwen & Peifer, 2005), 

JNK can also promote DNA repair by phosphorylating sirtuin 6 (Sirt6) (Van Meter et al., 2016). 

Since NuA4 knockdown in Drosophila induces a p53-independent DDR but only a few cells are 

eliminated, the cells that survived may have repaired their DNA by JNK activation of Sirt6, 

which has recently been shown to be necessary for the recruitment of poly (ADP-ribose) 

polymerase 1 (PARP1) to sites of damage to initiate DNA repair in mammals (Ko & Ren, 2012, 

Van Meter et al., 2016). It remains to be determined if this role of Sirt6 is conserved in flies 

(Frye, 2000) and whether the survival of NuA4-inhibited cells is dependent upon JNK's 

activation of Sirt6.  
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Development and ecdysone 

 Perturbations to developmentally controlled cell cycle exit and differentiation have 

historically been used as models for cancer development (Yamanaka et al., 2013). It has long 

been speculated that the steroid hormone ecdysone in holometabolous insects triggers tissues to 

complete their development and cells to differentiate into their final fates during metamorphosis. 

It was previously unknown how pulses of ecdysone impinge upon the cell cycle machinery to 

make proliferating Drosophila cells transition to the non-cycling state called cell cycle exit. We 

found that a pulse of activated ecdysone (20-HE) induces the expression of the transcription 

factor, broad in the larval wing, which in turn represses the expression of the G2/M-promoting 

cdc25c/string. Cells are arrested in G2 until 20-HE levels drop and cause a decline in broad 

expression. The repression of string is therefore released so it can in turn promote CycB/Cdk1 

activity for a tissue-wide, rapid cell cycle reentry into the final cell cycle of the wing. 

Deciphering the components of the signaling cascade induced by ecdysone that impacts 

proliferation and differentiation in the Drosophila wing, may help us understand the signaling 

cascades involved in the regulation of developmentally controlled cell cycle exit in more 

complex tissues or organisms (Ollikainen et al., 2006). 

 Though we now know how the pulse of ecdysone at the larva to pupa transition affects 

transcription to synchronize the final cell cycle associated with terminal differentiation, we have 

yet to determine how the later and largest pulse of ecdysone is linked with acquisition of the final 

cell fate in Drosophila pupal wings. Previous studies have focused on the ecdysone-inducible 

transcription factor Crooked legs (Crol) that downregulates the Wingless (Wg) pathway, which 

otherwise promotes cell cycle exit and differentiation in the larval wing margin (Quinn et al., 
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2012). Since we found in chapter III that a pulse of 20-HE arrested Kc167 cells in G2 phase 

similar to the arrest found in 6h APF wings, we can find candidate ecdysone responsive factors 

involved in differentiation by mining a study of ecdysone receptor (EcR) and ultraspiracle (Usp) 

genomic binding in Kc cells that had been induced to differentiate by exposure to 20-HE 

(Gauhar et al., 2009). Candidates for further testing in vivo could then be chosen by comparing 

the genes bound by EcR and Usp with those that are differentially expressed over a wing 

developmental timecourse spanning from the larva to the pupa that includes the 24h APF 

timepoint that corresponds to the largest pulse of ecdysone (O’Keefe et al., 2012). Though it 

would be challenging to obtain sufficient knockdown during the critical period without lethally 

disrupting organismal development (such as we found when inhibiting Broad during our studies 

in chapter III), we would then need to determine if these ecdysone targets are indeed required for 

the differentiation of wing cells in vivo. 
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