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ABSTRACT

Analysis and Actions on Graph Data

by

Pin-Yu Chen

Chair: Alfred O. Hero III

Graphs are commonly used for representing relations between entities and handling

data processing in various research fields, especially in social, cyber and physical

networks. Many data mining and inference tasks can be interpreted as certain actions

on the associated graphs, including graph spectral decompositions, and insertions

and removals of nodes or edges. For instance, the task of graph clustering is to group

similar nodes on a graph, and it can be solved by graph spectral decompositions. The

task of cyber attack is to find effective node or edge removals that lead to maximal

disruption in network connectivity.

In this dissertation, we focus on the following topics in graph data analytics:

1. Fundamental limits of spectral algorithms for graph clustering in single-layer

and multilayer graphs.

2. Efficient algorithms for actions on graphs, including graph spectral decomposi-

tions and insertions and removals of nodes or edges.

3. Applications to deep community detection, event propagation in online social

networks, and topological network resilience for cyber security.

xix



For 1, we established fundamental principles governing the performance of graph

clustering for both spectral clustering and spectral modularity methods, which play

an important role in unsupervised learning and data science. The framework is then

extended to multilayer graphs entailing heterogeneous connectivity information.

For 2, we developed efficient algorithms for large-scale graph data analytics with

theoretical guarantees, and proposed theory-driven methods for automatic model or-

der selection in graph clustering.

For 3, we proposed a disruptive method for discovering deep communities in

graphs, developed a novel method for analyzing event propagation on Twitter, and

devised effective graph-theoretic approaches against explicit and lateral attacks in

cyber systems.

xx



CHAPTER I

Introduction

1.1 Motivation

Many real-world data are often represented as graphs, ranging from relations

in social networks (e.g., friendship), links in cyber networks (e.g., the World Wide

Web), connections in physical systems (e.g., computer networks, power systems), bi-

ological interactions and chemical reactions, to information flows in networks (e.g.,

transportation systems, routing). Therefore, graphs are common themes in various

research fields, and many data mining and inference tasks, such as clustering, merg-

ing, pruning, visualization, summarization, sparsification, extraction, sampling, etc.,

can be interpreted as certain actions on the associated graphs. Specifically, actions

on graphs include but are not limited to graph spectral decompositions, insertions of

nodes or edges, removals of nodes or edges, and edge weight modification. In this

dissertation, we are interested in understanding the principles for graph data analysis

and processing through actions on graphs. In particular, we focus on two types of

actions on graphs, namely graph spectral decompositions and insertions and removals

of nodes or edges, for graph data analytics in graph clustering (also known as com-

munity detection) and cyber security. We also show some applications to discovering

deep communities in graphs, analyzing event propagation on Twitter, and enhancing

network resilience to cyber attacks.

1



1.2 Highlights of the Dissertation

This dissertation addresses three topics in graph data analytics:

1. Fundamental limits of spectral algorithms for graph clustering, including per-

formance analysis of spectral clustering and spectral modularity methods in

single-layer and multilayer weighted graphs. (Chapters III, IV, and VI)

2. Efficient algorithms for actions on graphs, including incremental eigenpair com-

putation of graph Laplacian matrices, automated model order selection methods

for graph clustering in single-layer and multilayer graphs, and greedy approaches

for insertions and deletions of nodes or edges with theoretic guarantees. (Chap-

ters II, V, VI, VII, and X)

3. Applications to community detection, event propagation in online social net-

works, and cyber security, including deep community extraction, event propa-

gation on Twitter, and topological network resilience to explicit and implicit

attacks. (Chapters VII, VIII, IX, and X)

1.3 Matrix Representations for Graphs

One common methodology of graph data analytics is to represent the data of

interest as a graph for inference and processing, where a node represents an entity

(e.g., a pixel in an image or a user in a social network), and an edge represents

similarity (e.g., a distance metric between two multivariate data samples) or actual

relation (e.g., friendship) between nodes. Therefore, graphs are useful representations

that characterize explicit relations for relational data (e.g., friendship between users

in a social network), or implicit dependencies for attributional data (e.g., correlations

between multivariate data samples in a dataset).

Mathematically, a graph consisting of n nodes and m edges is denoted by G =

2



(V , E ,W), where V = {1, 2, . . . , n} is the set of nodes with cardinality |V| = n,

E ⊆ V×V is the set of edges with cardinality |E| = m, and W is the n×n nonnegative

matrix of edge weights. Throughout this dissertation we assume there is at most

one edge between any ordered node pairs, and all edge weights are positive. The

connectivity structure of G is characterized by an n× n adjacency matrix A, where

its entry [A]ij = 1 if there is a directed edge connecting from node i to node j,

and [A]ij = 0 otherwise. If G is undirected, then an edge (i, j) ∈ E means that

[A]ij = [A]ji = 1. The entry of the weight matrix [W]ij > 0 if [A]ij = 1, and

[W]ij = 0 otherwise. Therefore, for undirected graphs W and A are symmetric

matrices, and for unweighted graphs W = A.

Throughout this dissertation bold uppercase letters (e.g., X or Xk) denote ma-

trices and [X]ij denotes the entry of the i-th row and the j-th column of X, bold

lowercase letters (e.g., x or xi) denote column vectors, (·)T denotes matrix or vector

transpose, italic letters (e.g., x or xi) denote scalars, and calligraphic uppercase let-

ters (e.g., X or Xi) denote sets. The n × 1 vector of ones (zeros) is denoted by 1n

(0n). The matrix I denotes an identity matrix and the matrix O denotes the matrix

of zeros. The notation λk(X) denotes the k-th smallest eigenvalue (in absolute value)

of a square matrix X, and its associated eigenvector is called the k-th smallest eigen-

vector. The notation σk(X) denotes the k-th largest singular value of a rectangular

matrix X, and its associated left (right) singular vector is called the k-th largest left

(right) singular vector.

1.3.1 Block model for graph data

Here we introduce a block model for graph data, where each block either char-

acterizes the connectivity structure within one cluster or between two clusters. The

block model not only allows us to generate synthetic graphs with ground-truth cluster

assignment for performance evaluation, but also provides parametric network models
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for graph data analysis. Without loss of generality, we assume there are K clusters

in the graph, and cluster k has nk nodes and mk edges such that
∑K

k=1 nk = n and∑K
k=1mk = m. For analysis purposes, we reorder the nodes in the graph such that

the adjacency matrix A of the entire graph has block-wise connectivity structure,

which is represented as

A =



A1 C12 C13 · · · C1K

C21 A2 C23 · · · C2K

...
...

. . .
...

...

...
...

...
. . .

...

CK1 CK2 · · · · · · AK


. (1.1)

We call the matrix representation in (1.1) a block model for graph data. The block

matrix Ak is the adjacency matrix of within-cluster edges of cluster k, and the block

matrix Cij is the adjacency matrix of between-cluster edges between clusters i and

j. For undirected graphs, A is symmetric, Ak = AT
k and Cij = CT

ji. Similar block

models can be defined for the weight matrix W.

A popular block model for undirected graph data is the stochastic block model

(SBM) [74]. SBM assumes each entry in A is random and mutually independent,

and the entry in Ak (Cij, i 6= j) is a Bernoulli(pk) (Bernoulli(pij)) random variable.

Other statistical network models can be found in the recent survey paper [65].

1.3.2 A signal plus noise perspective

Throughout this dissertation, the established phase transition analysis on the

eigendecomposition of different matrices representing a graph is based on a signal

plus noise block model, where the within-cluster connections are viewed as signal and

the between-cluster connections are viewed as noise. For the purpose of illustration,

Fig. 1.1 shows the connectivity structure of a graph generated from a block model
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“Noise”

(between-cluster edges)

“Signal” 

(within-cluster edges)
“Observed graph”

Figure 1.1: An illustration of the connectivity structure of a graph generated from a
block model with K = 2 clusters.

with K = 2 clusters. Fixing the signal and varying the noise, we are interested in the

behavior of eigendecomposition of different matrices for graph data analytics.

1.3.3 Graph Laplacian matrices and their properties

Graph Laplacian matrices are widely used for graph data analysis due to their

special matrix properties and their close relation to graph-cut based metrics. For

undirected weighted graphs, the (unnormalized) graph Laplacian matrix is defined as

L = S−W, (1.2)

where S = diag(s1, s2, . . . , sn) is the diagonal matrix of nodal strengths (i.e., weighted

degrees) and si =
∑n

j=1[W]ij is the strength of node i. In particular, for undirected

unweighted graphs, S = D, where D = diag(d1, d2, . . . , dn) is the diagonal matrix of

degrees, and di =
∑n

j=1[A]ij is the degree of node i.

The graph Laplacian matrix L has the following properties:

1. 1n is in the null space of L, i.e., L1n = 0n.

2. L is positive semidefinite (PSD) and λ1(L) = 0, i.e., 0 = λ1(L) ≤ · · · ≤ λn(L).

3. The number of connected components in G is the number of zero eigenvalues
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of L.

4. For any non-complete undirected unweighted graph G, the second smallest

eigenvalue of L, λ2(L), also known as the algebraic connectivity of G, is a

lower bound on node and edge connectivity [55].

One popular variant of the graph Laplacian matrix is the normalized graph Lapla-

cian matrix, which is defined as

LN = S−
1
2 LS−

1
2 = I− S−

1
2 WS−

1
2 , (1.3)

where S is assumed to be invertible and S−
1
2 = diag( 1√

s1
, 1√

s2
, . . . , 1√

sn
). Interested

readers can refer to [38, 98] and the references therein for more details.

It is worth mentioning that over the past two decades, the graph Laplacian matrix

and its variants have been widely adopted for solving various research tasks, includ-

ing graph partitioning [128], data clustering [97], community detection [25, 166], con-

sensus in networks [114], dimensionality reduction [12], entity disambiguation [178],

graph signal processing [145], centrality measures for graph connectivity [24], inter-

connected physical systems [133], network vulnerability assessment [27], image seg-

mentation [144], among others.

1.3.4 Spectral clustering

In many graph clustering tasks, spectral clustering methods [97, 108, 166, 176]

are used for clustering nodes in the graph by inspecting the eigenstructure of L.

To partition the nodes in the graph into K (K ≥ 2) clusters, spectral clustering

[97] uses the K eigenvectors associated with the K smallest eigenvalues of L. Each

node can be viewed as a K-dimensional vector in the subspace spanned by these

eigenvectors. K-means clustering [72] is then implemented on the K-dimensional

vectors to group the nodes into K clusters. Vector normalization of the obtained
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Ground truth Observation Spectral Methods

eigenvector 

space

Figure 1.2: An illustration of graph spectral decomposition methods for graph clus-
tering. Graph spectral decomposition methods transform the observed graph into a
representation in a low-dimensional vector space to reveal the ground-truth clusters.

K-dimensional vectors or degree normalization of the adjacency matrix can be used

to stabilize K-means clustering [97, 108, 176]. Fig. 1.2 illustrates the methodology of

graph spectral decomposition methods for graph clustering, which includes spectral

clustering. Graph spectral decomposition methods transform the observed graph into

a representation in a low-dimensional vector space to reveal the ground-truth clusters.

The success of spectral clustering can be explained by the fact that acquiring K

smallest eigenvectors of L is equivalent to solving a relaxed graph cut minimization

problem, which partitions a graph into K clusters by minimizing various objective

functions including min cut, ratio cut or normalized cut [97].

1.4 Overview of Graph Clustering Methods

Broadly speaking, actions on graphs can be viewed as various means for optimizing

an objective function associated with a data analysis task. For graph clustering, the

fundamental task is to partition the nodes in a graph into groups based on the graph

connectivity structure. Different graph clustering methods lead to different edge

removal strategies that uncover the cluster structures, and the associated cost often

relates to the total edge weight of the removed edges, which is known as the min-

cut score. In particular, one principal method for graph clustering is through graph

spectral decompositions.
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Throughout this dissertation we will use the terms “graph clustering” and “com-

munity detection” interchangeably, as they both aim at clustering nodes in a graph

but may target different objective functions based on the data features, e.g., a simi-

larity graph of an image, or a friendship graph of a social network.

1.4.1 Graph clustering methods and analysis for single-layer graphs

Graph clustering has been an active research field across various disciplines, in-

cluding machine learning, physics, data mining, graph signal processing, computer

science, bio-informatics, network analysis, and data science. Here we categorize the

related work based on the methodologies for graph clustering. Interested readers can

refer to the [56] and the references therein for more details.

� Spectral algorithms. In principle, spectral algorithms utilize the eigenstruc-

ture of matrices associated with the graph data for clustering. For instance,

spectral clustering [97, 108, 166, 176] uses the graph Laplacian matrix, the

spectral modularity method [105, 106] uses the modularity matrix, and the

spectral redemption method [87, 139] uses the nonbacktracking matrix.

� Inference methods. Inference methods are built upon generative network

models such as the stochastic block model (SBM) [74] and its variants [4].

The task is to infer the cluster assignment for each node based on the graph

connectivity structure. In [80], the authors infer clusters based on a maximum

likelihood method. Other methods such as belief propagation and message

passing are proposed in [47, 73, 179].

� Hierarchical methods. Hierarchical methods can often relate to clustering

based on dendrograms. Popular methods for creating dendrograms include re-

moving edges of high betweenness measure [63], greedy modularity maximiza-

tion approaches [18, 104], label propagation [135], and node removals based on
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centrality measures [165].

� Random walk based methods. Random walk based methods specify a tran-

sition matrix of random walks on a graph and use its stationary distribution of

random walks for clustering. Typical methods can be found in [125, 160].

� Performance limits for graph clustering. Recently there is growing interest

in understanding the universal limits of graph clustering, as well as performance

limits of specific graph clustering methods. Most of the works assume the graph

data is a realization of a generative network model, such as the SBM [181]. For

instance, the performance limit of the spectral modularity method is studied

in [102], the performance limit of eigenspectrum-based approaches is studied

in [122], and the information theoretic limit is studied in [1]. A summary of

inferential limits under the SBM can be found in [2].

1.4.2 Model order selection

A long-standing challenge for graph clustering is the selection of cluster counts K

for partitioning. For spectral clustering, it is equivalent to selecting the number K

of smallest eigenvectors of L that best fits the data, which we call it as the model

order selection problem. Most existing model selection algorithms specify an upper

bound Kmax on the number K of clusters and then select K based on optimizing some

objective function, e.g., the goodness of fit of the k-cluster model for k = 2, . . . , Kmax.

In [108], the objective is to minimize the sum of cluster-wise Euclidean distances

between each data point and the centroid obtained from K-means clustering. In

[124], the objective is to maximize the gap between the K-th largest and the (K+1)-

th largest eigenvalue. In [176], the authors propose to minimize an objective function

that is associated with the cost of aligning the eigenvectors with a canonical coordinate

system. A model based method for determining the number of clusters is proposed
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in [126]. In [105], the authors propose to iteratively divide a cluster based on the

leading eigenvector of the modularity matrix until no significant improvement in the

modularity measure can be achieved. The Louvain method in [18] uses a greedy

algorithm for modularity maximization. In [87, 139], the authors propose to use the

eigenvectors of the nonbacktracking matrix for graph clustering, where the number of

clusters is determined by the number of real eigenvalues with magnitude larger than

the square root of the largest eigenvalue.

1.4.3 Graph clustering methods and analysis for multilayer graphs

Graph clustering on multilayer graphs aims to find a consensus cluster assignment

on each node in the common node set shared by different layers. Layer aggregation

has been a principal method for processing and mining multilayer graphs [20, 46, 153,

154, 156, 168], as it transforms a multilayer graph into a single aggregated graph,

facilitating application of data analysis techniques designed for single-layer graphs.

Extending from the stochastic block model (SBM) for graph clustering in single-layer

graphs [74], multilayer SBM has been proposed for graph clustering on multilayer

graphs [10, 71, 121, 149, 156, 159]. Under the assumption of two equally-sized clusters,

the authors in [156] show that if each layer is an independent realization of a common

SBM, the inferential limit for cluster detectability decays with O(L−
1
2 ), where L

is the number of layers. In [149], a layer selection method based on a multilayer

SBM is proposed to improve the performance of graph clustering by identifying a

subset of layers of a common SBM. However, multilayer SBM assumes homogeneous

connectivity structure for within-cluster and between-cluster edges in each layer, and

it assumes layer-wise independence.

In addition to inference approaches based on multilayer SBM, other methods

have been proposed for graph clustering on multilayer graphs, including information-

theoretic approaches [77, 117], k-nearest neighbor method [67], nonnegative matrix
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factorization [110], flow-based approach [45], linked matrix factorization [155], random

walk [89], tensor decomposition [43], subspace methods [51, 52], and greedy multilayer

modularity maximization [101]. More details on multilayer graph models can be found

in the recent surveys on graph clustering on multilayer graphs [81, 84].

It is worth mentioning that the aforementioned work requires the knowledge

of the number of clusters (model order) for graph clustering, especially for matrix

decomposition-based methods [43, 51, 52, 110, 155] and multilayer SBM [10, 71, 121,

149, 156, 159]. However, in many practical cases the model order is not known in

advance. Although many model order selection methods have been proposed for auto-

mated graph clustering without prespecifying the model order for single-layer graphs

[18, 31, 87, 176], little has been developed for automated model order selection for

graph clustering on multilayer graphs. Moreover, many layer aggregation methods

assign uniform weights over layers such that the aggregated graph is insensitive to

the quality of clusters in each layer [153, 154, 156].

1.5 Overview of Node Centrality Measures

Node and edge centralities are quantitative measures that are used to evaluate the

level of importance and/or influence of a node or an edge in the network. Centrality

measures can be classified into two categories, global and local measures. Global

centrality measures require complete topological information for their computation,

whereas local centrality measures only require partial topological information from

neighboring nodes. For instance, acquiring shortest path information between every

node pair is a global method required for the betweenness centrality measure, and

acquiring degree information of every node is a local method. Some commonly used

centrality measures are:

� Betweenness [58]: betweenness measures the fraction of shortest paths pass-

11



ing through a node relative to the total number of shortest paths in the net-

work. Specifically, betweenness is a global measure defined as betweenness(i) =∑
k 6=i
∑

j 6=i,j>k
φkj(i)

φkj
, where φkj is the total number of shortest paths from k to

j and φkj(i) is the number of such shortest paths passing through i. A similar

notion is used to define the edge betweenness centrality [63].

� Closeness [140]: closeness is a global measure of geodesic distance of a node

to all other nodes. A node is said to have high closeness if the sum of its

shortest path distances to other nodes is small. Let ρ(i, j) denote the shortest

path distance between node i and node j in a connected graph. Then we define

closeness(i) = 1/
∑

j∈V,j 6=i ρ(i, j).

� Eigenvector centrality (eigen centrality) [107]: eigenvector centrality is the

i-th entry of the eigenvector associated with the largest eigenvalue of the adja-

cency matrix A. It is defined as eigen(i) = λ−1
max

∑
j∈V Wjiξj, where λmax is the

largest eigenvalue of A and ξ is the left eigenvector associated with λmax. It is a

global measure since eigenvalue decomposition of A requires global knowledge

of the graph topology.

� Degree (di): degree is the simplest local node centrality measure which ac-

counts for the number of neighboring nodes.

� Ego centrality [54]: consider the (di + 1)-by-(di + 1) local adjacency matrix of

node i, denoted by A(i), and let R be a matrix of ones. Ego centrality can be

viewed as a local version of betweenness that computes the shortest paths be-

tween its neighboring nodes. Since [A2(i)]kj is the number of two-hop walks be-

tween k and j, and
[
A2(i) ◦

(
E−A(i)

)]
kj

is the total number of two-hop short-

est paths between k and j for all k 6= j, where ◦ denotes entrywise matrix prod-

uct. Ego centrality is defined as ego(i) =
∑

k

∑
j>k 1/

[
A2(i) ◦

(
E−A(i)

)]
kj

.
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Chapters Graph spectral decompositions Insertions/Removals of nodes/edges
I
II X
III X
IV X
V X
VI X
VII X X
VIII X X
IX X X
X X X
XI

Table 1.1: Dissertation outline with respect to two actions on graphs

1.6 Dissertation Outline and Contributions

The dissertation outline with respect to two actions on graphs, graph spectral

decompositions and insertions and removals of nodes or edges, is listed in Table 1.1.

The contributions of each chapter are summarized as follows.

� Chapter II proposes an efficient incremental eigenpair computation method for

graph Laplacian matrices. The proposed method adapts a novel matrix trans-

form that enables fast incremental eigenpair computation of increasing eigenpair

orders. In particular, the proposed method significantly outperforms the batch

computation method in terms of computation time. This incremental eigen-

pair computation method can be readily applied to iterative graph clustering of

increasing orders in the following chapters.

� Chapter III establishes phase transition analysis of the spectral modularity

method under the stochastic block model (SBM) with K = 2 clusters. The

phase transition results are shown to be universal in the sense that the critical

threshold affecting the performance of spectral modularity method is indepen-

dent of the clusters sizes as long as they grow with comparable rates.

� Chapter IV establishes phase transition analysis of spectral graph clustering
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(SGC) under the random interconnection model (RIM). The analysis identifies

the role of inter-cluster edge connection probabilities in the success of SGC.

Specifically, we show that under the RIM, a graph can be separated into two

regimes: a regime where SGC is successful, and a regime where SGC is un-

successful. It is called a phase transition since the regimes are separated by a

critical value of the inter-cluster inter-cluster edge connection probability. The

phase transition analysis is then extended to undirected weighted graphs gen-

erated by the RIM.

� Chapter V develops an automated model order selection (AMOS) algorithm for

determining the number of clusters in single-layer weighted graphs based on the

phase transition analysis established in Chapter IV. AMOS works by iterative

spectral graph clustering of increasing model orders, and finds the minimal

model order such that the identified clusters meet the phase transition criterion

for clustering reliability. AMOS also provides statistical clustering reliability

guarantees for graph data inference. Experimental results on several real-life

datasets show that AMOS can produce consistent clusters when compared with

the meta information, e.g., ground-truth clusters or geographical separations.

� Chapter VI establishes phase transition analysis of spectral graph clustering in

multi-layer graphs via convex layer aggregation. Based on the phase transition

analysis, a multilayer iterative model order selection algorithm (MIMOSA) is

proposed for model selection and layer weight adaption for graph clustering in

multilayer graphs with statistical clustering reliability. The success of MIMOSA

can be explained by a multilayer signal plus noise model since its layer weight

adaption process is sensitive to the noise level of each layer.

� Chapter VII introduces a new centrality measure called local Fielder vector cen-

trality (LFVC). Stemming from algebraic connectivity minimization via node/edge
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removals, LFVC evaluates the importance of a node or an edge for graph con-

nectivity. In particular, we show that greedy node removals based on LFVC

have bounded performance guarantee relative to the optimal batch removals.

Based on LFVC removals, a deep community detection algorithm is proposed

to extract important communities from the graph.

� Chapter VIII proposes a method for identifying influential links for event prop-

agation on Twitter, also applicable to other social network applications, where

the influence of a link is evaluated in terms of the effect of its removal on

event propagation. The proposed method incorporates the network of networks

structure embedded in Twitter follower networks, and can effectively identify

influential links in several actual event propagation traces.

� Chapter IX proposes an edge rewiring algorithm for enhancing network re-

silience to centrality attacks. The proposed method works by swapping edges

in the graph for improved algebraic connectivity without introducing additional

edges, and it can be implemented in a distributed fashion. Experimental results

on real-like network show that the proposed method can effectively enhance the

network resilience by only rewiring a few edges in the graph.

� Chapter X develops a graph-theoretic framework for cyber resilience against

lateral movement attacks. By modeling the interactions among user, hosts, and

applications in an enterprise network as a tripartite heterogeneous graph and

mapping feasible preventative actions to operations on the associated graph ma-

trices, we propose greedy algorithms with performance guarantees to enhance

enterprise cyber resiliency. Experimental results show that the proposed meth-

ods can greatly contain simulated lateral movement attacks in actual enterprise

networks and actual lateral movement attacks extracted from real-world traces.
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CHAPTER II

Incremental Method for Spectral Graph

Clustering of Increasing Orders

As introduced in Chapter I, the smallest eigenvalues and the associated eigen-

vectors (i.e., the smallest eigenpairs) of a graph Laplacian matrix have been widely

used for spectral clustering and community detection. However, the majority of ap-

plications require computation of a large number Kmax of eigenpairs, where Kmax

is an upper bound on the number K of clusters, called the order of the clustering

algorithms. In this chapter, we propose an incremental method for constructing the

eigenspectrum of the graph Laplacian matrix. This method leverages the eigenstruc-

ture of graph Laplacian matrix to obtain the (k + 1)-th eigenpairs of the Laplacian

matrix given a collection of all the k smallest eigenpairs. Our proposed method

adapts the Laplacian matrix such that the batch eigenvalue decomposition problem

transforms into an efficient sequential leading eigenpair computation problem.

Generally, the number of clusters K is selected to be much smaller than n (the

number of data points), making full eigen decomposition (such as QR decomposition)

unnecessary. An efficient alternative is to use methods that are based on power

iteration, such as Arnoldi method or Lanczos method, which computes the leading

eigenpairs through repeated matrix vector multiplication. ARPACK [94] library is a

popular parallel implementation of different variants of Arnoldi and Lanczos method,
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which is used by many commercial software including Matlab.

However, in most situations the best value of K is unknown and a heuristic is used

by clustering algorithms to determine the number of clusters, e.g., fixing a maximum

number of clusters Kmax and detecting a large gap in the values of the Kmax largest

sorted eigenvalues or normalized cut score [108, 124]. Alternatively, this value of K

can be determined based on domain knowledge [11]. For example, a user may require

that the largest cluster size be no more than 10% of the total number of nodes or

that the total inter-cluster edge weight be no greater than a certain amount. In these

cases, the desired choice of K cannot be determined a priori. Over-estimation of the

upper bound Kmax on the number of clusters is expensive as the cost of finding K

eigenpairs using the power iteration method grows rapidly with K. On the other

hand, choosing an insufficiently large value for Kmax runs the risk of severe bias.

Setting Kmax to the number of data points n is generally computationally infeasible,

even for a moderate-sized graph. Therefore, an incremental eigenpair computation

method that effectively computes the K-th smallest eigenpair of graph Laplacian

matrix by utilizing the previously computed K − 1 smallest eigenpairs is needed.

Such an iterative method obviates the need to set an upper bound Kmax on K, and

its efficiency can be explained by the adaptivity to increments in K.

In this chapter, we propose an efficient method for incremental computation of

smallest eigenpairs by exploiting the eigenspace structure of graph Laplacian ma-

trices. For each increment, given the previously computed smallest eigenpairs, we

show that computing the next smallest eigenpair is equivalent to computing a lead-

ing eigenpair of a particular matrix, which transforms potentially tedious numerical

computation (such as the tridiagonalization step in Lanczos algorithm [90]) to simple

matrix power iterations of known computational efficiency [90]. Our experimental

results show that for a given K, the proposed incremental computation provides a

significant reduction in computation time compared to a batch computation method
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which computes the K smallest eigenpairs in a single batch. Also, as K increases,

the gap between the incremental approach and the batch approach widens, providing

an order of magnitude speed-up.

It is worth noting that the proposed method aims to incrementally compute the

smallest eigenpair of a given graph Laplacian matrix. There are several works that

are named as incremental eigenvalue decomposition methods [50, 79, 111, 112, 136].

However, these works focus on updating the eigenstructure of graph Laplacian matrix

of dynamic graphs when nodes (data samples) or edges are inserted or deleted into

the graph.

2.1 Incremental Eigenpair Computation for Graph Laplacian

Matrices

2.1.1 Notation for eigenpairs

The i-th smallest eigenvalue and its associated unit-norm eigenvector of L are

denoted by λi(L) and vi(L), respectively. That is, the eigenpair (λi,vi) of L has

the relation Lvi = λivi, and λ1(L) ≤ λ2(L) ≤ . . . ≤ λn(L). The eigenvectors have

unit Euclidean norm and they are orthogonal to each other such that vTi vj = 1

if i = j and vTi vj = 0 if i 6= j. The eigenvalues of L are said to be distinct if

λ1(L) < λ2(L) < . . . < λn(L). Similar notation is used for LN .

2.1.2 Theoretical foundations of the proposed method

The following lemmas and corollaries provide the cornerstone for establishing the

incremental computation method. The main idea is that we utilize the eigenspace

structure of graph Laplacian matrix to inflate specific eigenpairs via a particular per-

turbation matrix, without affecting other eigenpairs. The proposed method can be

viewed as a specialized Hotelling’s deflation method [118] designed for graph Lapla-
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Type / Graph Laplacian Unnormalized Normalized
Connected Graphs Lemma 2.1, Theorem 2.6 Corollary 2.2, Corollary 2.8

Disconnected Graphs Lemma 2.3, Theorem 2.7 Corollary 2.4, Corollary 2.9

Table 2.1: Utility of the established lemmas, corollaries, and theorems in Chapter II.

cian matrices by exploiting their spectral properties and associated graph character-

istics. It works for both connected, and disconnected graphs using both normalized

and unnormalized graph Laplacian matrices. For illustration purposes, in Table 2.1

we group the established lemmas, corollaries, and theorems under different graph

types and different graph Laplacian matrices. The proofs of the established lemmas,

theorems and corollaries are given in Appendix A.

Lemma 2.1. Assume that G is a connected graph and L is the graph Laplacian with

si denoting the sum of the entries in the i-th row of the weight matrix W. Let s =∑n
i=1 si and define L̃ = L + s

n
1n1

T
n . Then the eigenpairs of L̃ satisfy (λi(L̃),vi(L̃)) =

(λi+1(L),vi+1(L)) for 1 ≤ i ≤ n− 1 and (λn(L̃),vn(L̃)) = (s, 1n√
n
).

Corollary 2.2. For a normalized graph Laplacian matrix LN , assume G is a con-

nected graph and let L̃N = LN+2
s
S

1
2 1n1

T
nS

1
2 . Then (λi(L̃N ),vi(L̃N )) = (λi+1(LN ),vi+1(LN ))

for 1 ≤ i ≤ n− 1 and (λn(L̃N ),vn(L̃N )) = (2, S
1
2 1n√
s

).

Lemma 2.3. Assume that G is a disconnected graph with δ ≥ 2 connected compo-

nents, and let s =
∑n

i=1 si, let V = [v1(L),v2(L), . . . ,vδ(L)], and let L̃ = L+sVVT .

Then (λi(L̃),vi(L̃)) = (λi+δ(L),vi+δ(L)) for 1 ≤ i ≤ n− δ, λi(L̃) = s for n− δ+ 1 ≤

i ≤ n, and [vn−δ+1(L̃),vn−δ+2, (L̃),

. . . ,vn(L̃)] = V.

Corollary 2.4. For a normalized graph Laplacian matrix LN , assume G is a discon-

nected graph with δ ≥ 2 connected components. Let Vδ = [v1(LN ),v2(LN ), . . . ,vδ(LN )],

and let L̃N = LN + 2VδV
T
δ . Then (λi(L̃N ),vi(L̃N )) = (λi+δ(LN ),vi+δ(LN )) for 1 ≤

i ≤ n−δ, λi(L̃N ) = 2 for n−δ+1 ≤ i ≤ n, and [vn−δ+1(L̃N ),vn−δ+2, (L̃N ), . . . ,vn(L̃N )] =

Vδ.
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Remark 2.5. The columns of any matrix V′ = VR with an orthonormal transfor-

mation matrix R (i.e., RTR = I) are also the largest δ eigenvectors of L̃ and L̃N in

Lemma 2.3 and Corollary 2.4. Without loss of generality we consider the case R = I.

2.1.3 Incremental eigenpair computation method

Given the K smallest eigenpairs of a graph Laplacian matrix, we prove that com-

puting the (K+1)-th smallest eigenpair is equivalent to computing the leading eigen-

pair (the eigenpair with the largest eigenvalue in absolute value) of a certain perturbed

matrix. The advantage of this transformation is that the leading eigenpair can be

efficiently computed via matrix power iteration methods [90, 94].

Let VK = [v1(L),v2(L), . . . ,vK(L)] be the matrix with columns being the K

smallest eigenvectors of L and let ΛK = diag(s−λ1(L), s−λ2(L), . . . , s−λK(L)) be the

diagonal matrix with {s−λi(L)}Ki=1 being its main diagonal. The following theorems

show that given the K smallest eigenpairs of L, the (K + 1)-th smallest eigenpair of

L is the leading eigenvector of the original graph Laplacian matrix perturbed by a

certain matrix.

Theorem 2.6. (connected graphs) Given VK and ΛK, assume that G is a connected

graph. Then the eigenpair (λK+1(L),vK+1(L)) is a leading eigenpair of the matrix

L̃ = L + VKΛKVT
K + s

n
1n1

T
n − sI. In particular, if L has distinct eigenvalues, then

(λK+1(L),vK+1(L)) = (λ1(L̃) + s,v1(L̃)).

The next theorem describes an incremental eigenpair computation method when

the graph G is a disconnected graph with δ connected components. The columns of

the matrix Vδ are the δ smallest eigenvectors of L. Note that Vδ has a canonical

representation where the nonzero entries of each column are a constant and their

indices indicate the nodes in each connected component [26, 97], and the columns of

Vδ are the δ smallest eigenvectors of L with eigenvalue 0 [26]. Since the δ smallest

eigenpairs with the canonical representation are trivial by identifying the connected
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components in the graph, we only focus on computing the (K+1)-th smallest eigenpair

given K smallest eigenpairs, where K ≥ δ. The columns of the matrix VK,δ =

[vδ+1(L),vδ+2(L), . . . ,vK(L)] are the (δ + 1)-th to the K-th smallest eigenvectors of

L and the matrix ΛK,δ = diag(s−λδ+1(L), s−λδ+2(L), . . . , s−λK(L)) is the diagonal

matrix with {s − λi(L)}Ki=δ+1 being its main diagonal. If K = δ, VK,δ and ΛK,δ are

defined as the matrix with all entries being zero, i.e., O.

Theorem 2.7. (disconnected graphs) Assume that G is a disconnected graph with δ ≥

2 connected components, given VK,δ, ΛK,δ and K ≥ δ, the eigenpair (λK+1(L),vK+1(L))

is a leading eigenpair of the matrix L̃ = L+VK,δΛK,δV
T
K,δ+sVδV

T
δ −sI. In particular,

if L has distinct nonzero eigenvalues, then (λK+1(L),vK+1(L)) = (λ1(L̃) + s,v1(L̃)).

Following the same methodology for proving Theorem 2.6 and using Corollary 2.2,

for normalized graph Laplacian matrices, let VK = [v1(LN ),v2(LN ), . . . ,vK(LN )] be

the matrix with columns being the K smallest eigenvectors of LN and let ΛK =

diag(2− λ1(LN ), 2− λ2(LN ), . . . , 2− λK(LN )). The following corollary provides the

basis for incremental eigenpair computation for normalized graph Laplacian matrix

of connected graphs.

Corollary 2.8. For the normalized graph Laplacian matrix LN of a connected graph

G, given VK and ΛK, the eigenpair (λK+1(LN ),vK+1(LN )) is a leading eigenpair of

the matrix L̃N = LN+VKΛKVT
K+ 2

s
S

1
2 1n1

T
nS

1
2−2I. In particular, if LN has distinct

eigenvalues, then (λK+1(LN ),vK+1(LN )) = (λ1(L̃N ) + 2,v1(L̃N )).

For disconnected graphs with δ connected components, let VK,δ = [vδ+1(LN ),vδ+2(LN ),

. . . ,vK(LN )] with columns being the (δ + 1)-th to the K-th smallest eigenvectors of

LN and let ΛK,δ = diag(2 − λδ+1(LN ), 2 − λδ+2(LN ), . . . , 2 − λK(LN )). Based on

Corollary 2.4, the following corollary provides an incremental eigenpair computation

method for normalized graph Laplacian matrix of disconnected graphs.
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Corollary 2.9. For the normalized graph Laplacian matrix LN of a disconnected

graph G with δ ≥ 2 connected components, given VK,δ, ΛK,δ and K ≥ δ, the

eigenpair (λK+1(LN ),vK+1(LN )) is a leading eigenpair of the matrix L̃N = LN +

VK,δΛK,δV
T
K,δ + 2

s
S

1
2 1n1

T
nS

1
2 − 2I. In particular, if LN has distinct eigenvalues, then

(λK+1(LN ),vK+1(LN )) = (λ1(L̃N ) + 2,v1(L̃N )).

2.1.4 Computational complexity analysis

Here we analyze the computational complexity of the proposed incremental eigen-

pair computation method and compare it with the batch computation method. The

proposed incremental method utilizes the existing K smallest eigenpairs to compute

the (K + 1)-th smallest eigenpair as described in Sec. 2.1.3, whereas the batch com-

putation method recomputes all eigenpairs for each value of K. Both methods can

be easily implemented via well-developed numerical computation packages such as

ARPACK [94].

Following the analysis in [88], the average relative error of the leading eigenvalue

from Lanczos algorithm [90] has an upper bound of the order O
(

(lnn)2

t2

)
, where n

is the number of nodes in the graph and t is the number of iterations for Lanczos

algorithm. Therefore, when one sequentially computes from k = 2 to k = K smallest

eigenpairs, for the proposed incremental computation method the upper bound on the

average relative error of K smallest eigenpairs is O
(
K(lnn)2

t2

)
since in each increment

computing the corresponding eigenpair can be transformed to a leading eigenpair

computation process as described Sec. 2.1.3. On the other hand, for the batch

computation method, the upper bound on the average relative error of K smallest

eigenpairs is O
(
K2(lnn)2

t2

)
since for the k-th increment (k ≤ K) it needs to compute

all k smallest eigenpairs from scratch. These results also imply that to reach the

same average relative error ε for sequential computation of K smallest eigenpairs,

the incremental method requires Ω

(√
K
ε

lnn

)
iterations, whereas the batch method
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Figure 2.1: Sequential eigenpair computation time on Erdos-Renyi random graphs
with edge connection probability p = 0.1. The markers are averaged computation
time of 50 trials and the error bar represents standard deviation.

requires Ω
(
K lnn√

ε

)
iterations.

2.2 Experimental Results

We compare the computation time between the proposed incremental method

and the batch method by perform experiments on synthetic connected graphs gener-

ated by Erdos-Renyi random graphs. We implement the proposed incremental eigen-

pair computation method using Matlab R2015a’s “eigs” function, which is based on

ARPACK package [94]. Note that, this function takes a parameter K and returns

K leading eigenpairs of the given matrix. Following Theorem 2.6, the incremental

method works by sequentially perturbing the graph Laplacian matrix L with a par-

ticular matrix and computing the leading eigenpair of the perturbed matrix L̃ by

calling eigs(L̃, 1). For the batch computation method, we use eigs(L, K) to compute

the desired K eigenpairs from scratch as K increases. The Matlab implementation of

both the batch mode and the proposed incremental method are available for download

from https://sites.google.com/site/pinyuchenpage/codes.

To illustrate the advantage of the proposed incremental eigenpair computation
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method, we compare the computation time between the proposed incremental method

and the batch method both for varying K and varying graph size. The Erdos-Renyi

random graphs that we build are used for this comparison. Fig. 2.1 (a) shows the

computation time of incremental and batch computation methods for sequentially

computing from K = 2 to K = 10 smallest eigenpairs. Fig. 2.1 (b) shows the compu-

tation time of both methods with respect to different graph size n. It is observed that

the difference in computation time grows polynomially as n increases, which suggests

that the proposed incremental method is more efficient than the batch computation

method, especially for large graphs.
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CHAPTER III

Phase Transitions in Spectral Modularity Method

under a Stochastic Block Model

In this chapter, we study the performance of the spectral modularity method [106]

under the stochastic block model (SBM) of two communities. We prove the existence

of an asymptotic phase transition threshold on community detectability for the spec-

tral modularity method. The phase transition on community detectability occurs as

the inter-community edge connection probability p grows. This phase transition sep-

arates a sub-critical regime of small p, where modularity-based community detection

successfully identifies the communities, from a super-critical regime of large p where

successful community detection is impossible. We show that, as the community sizes

become large, the asymptotic phase transition threshold p∗ is equal to
√
p1p2, where

pi (i = 1, 2) is the within-community edge connection probability. Thus the phase

transition threshold is universal in the sense that it does not depend on the ratio of

community sizes. The universal phase transition phenomenon is validated by simula-

tions for moderately sized communities. Using the derived expression for the phase

transition threshold we propose an empirical method for estimating this threshold

from real-world data.

It has been observed in the literature that community detectability (i.e., the frac-

tion of correctly identified nodes) degrades rapidly as the number of inter-community
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edges increases beyond a certain critical value [17, 47, 48, 87, 102, 131, 132, 138, 180].

This chapter establishes a mathematical expression for the critical phase transition

threshold in modularity-based community detection under a stochastic block model.

This phase transition threshold governs the community modularity measure of the

graph as a function of the respective edge connection probabilities p1 and p2 within

community 1 and community 2. Defining p as the edge connection probability be-

tween the two communities the critical phase transition threshold on p takes on the

simple asymptotic form p∗ =
√
p1p2, in the limit as the two community sizes converge

(at comparable rate) to infinity. Remarkably, p∗ does not depend on the community

sizes, and in this sense it is a universal threshold.

Newman [106] proposed a measure called modularity that evaluates the number of

excessive edges of a graph compared with the corresponding degree-equivalent random

graph. More specifically, define the modularity matrix as B = A − bddT , where d

is the degree vector of the graph and b = 1
2m

is the reciprocal of the total number

of edges in the graph. The last term bddT can be viewed as the expected adjacency

matrix of the degree-equivalent random graph. Newman proposed to compute the

largest eigenvector of B and perform K-means clustering [72] or take the sign function

on this vector to cluster the nodes into two communities. Since the n-dimensional

vector of all ones, 1n, is always in the null space of B, i.e, B1n = 0n, where 0n is

the n-dimensional vector of all zeros, the (unnormalized) modularity is the largest

eigenvalue of B and has the representation

λmax(B) = max
xTx=1, xT 1n=0

xTBx. (3.1)

3.1 Phase Transition Analysis

Consider a stochastic block model [74] consisting of two community structures

parameterized by edge connection probability pi within community i (i = 1, 2) and
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edge connection probability p between the two communities. Let ni denote the size of

community i such that n1 +n2 = n. Recall from (1.1) that the overall n×n adjacency

matrix of the entire graph can be represented as

A =

A1 C

CT A2

 , (3.2)

where Ai is the ni-by-ni adjacency matrix of an Erdos-Renyi random graph with

edge connection probability pi and C is the n1-by-n2 adjacency matrix of the inter-

community edges where each entry in C is a Bernoulli(p) random variable.

Using the network model in (3.2), let d = A1n = [dT1 dT2 ]T denote the degree

vector of the graph with d1 ∈ Rn1 and d2 ∈ Rn2 . Then b = (1TnA1n)−1 = (dT1 1n1 +

dT2 1n2)
−1. Let d̃i = Ai1ni denote the degree vector of community i. Since A1n = d,

with (3.2) the degree vectors d1, d2, d̃1, and d̃2 satisfy the following equations:

d1 = d̃1 + C1n2 and d2 = d̃2 + CT1n1 . (3.3)

Let bi = (d̃Ti 1ni)
−1. The modularity matrix of community i is denoted by Bi =

Ai − bid̃id̃Ti . Using these notations, the modularity matrix of the entire graph can

be represented as

B =

B1 + b1d̃1d̃
T
1 − bd1d

T
1 C− bd1d

T
2

CT − bd2d
T
1 B2 + b2d̃2d̃

T
2 − bd2d

T
2

 . (3.4)

Let y = [yT1 yT2 ]T denote the largest eigenvector of B, where y1 ∈ Rn1 and y2 ∈

Rn2 . Following the definition of modularity in (3.1) and (3.4), y = arg maxx Γ(x),
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where

Γ(x) = xT1 B1x1 + xT2 B2x2 + b1(d̃T1 x1)2 + b2(d̃T2 x2)2

− b(dT1 x1)2 − b(dT2 x2)2 + 2xT1 Cx2 − 2b(dT1 x1)(dT2 x2)

− µ(xT1 x1 + xT2 x2 − 1)− ν(xT1 1n1 + xT2 1n2), (3.5)

and x = [xT1 xT2 ]T , x1 ∈ Rn1 , and x2 ∈ Rn2 . µ and ν are Lagrange multipliers of the

constraints xTx = 1 and xT1n = 0 in (3.1), respectively.

Differentiating (3.5) with respect to x1 and x2 respectively, and substituting y to

the equations, we obtain

2B1y1 + 2b1(d̃T1 y1)d̃1 − 2b(dT1 y1)d1 − 2b(dT2 y2)d1 + 2Cy2 − 2µy1 − ν1n1 = 0n1 ;

(3.6)

2B2y2 + 2b2(d̃T2 y2)d̃2 − 2b(dT2 y2)d2 − 2b(dT1 y1)d2 + 2CTy1 − 2µy2 − ν1n2 = 0n2 .

(3.7)

Left multiplying (3.6) by 1Tn1
and left multiplying (3.7) by 1Tn2

and recalling that

Bi1ni = 0ni and bi = (d̃Ti 1ni)
−1, we have

2(d̃T1 y1)− 2b(dT1 y1)(dT1 1n1)− 2b(dT2 y2)(dT1 1n1) + 21Tn1
Cy2 − 2µyT1 1n1 − νn1 = 0;

(3.8)

2(d̃T2 y2)− 2b(dT2 y2)(dT2 1n2)− 2b(dT1 y1)(dT2 1n2) + 21Tn2
CTy1 − 2µyT2 1n2 − νn2 = 0.

(3.9)

Summing (3.8) and (3.9) and using (3.3) gives ν = 0. Left multiplying (3.6) by yT1

and left multiplying (3.7) by yT2 , substituting ν = 0 and summing the equations, with

(3.4) we have µ = λmax(B).

Let C = p1n11
T
n2

, a matrix whose elements are the means of entries in C. Let
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σi(M) denote the i-th largest singular value of a rectangular matrix M and write C =

C + ∆, where ∆ = C−C. Latala’s theorem [91] implies that the expected value of

σ1

(
∆√
n1n2

)
converges to 0 as n1 and n2 approach infinity, denoted E

[
σ1

(
∆√
n1n2

)]
→ 0

as n1, n2 →∞. The proof is given in Appendix C.10 with the condition that W = 1.

Furthermore, by Talagrand’s concentration theorem [150],

σ1

(
C
√
n1n2

)
a.s.−→ p and σi

(
C
√
n1n2

)
a.s.−→ 0, ∀i ≥ 2 (3.10)

when n1, n2 → ∞, where
a.s.−→ means almost sure convergence. The proof is given in

Appendix C.10 with the condition that W = 1. Note that the convergence rate is

maximal when n1 = n2 because n1 + n2 ≥ 2
√
n1n2 and the equality holds if n1 = n2.

Throughout this chapter we further assume n1

n2
→ c > 0 as n1, n2 → ∞. This

means the community sizes grow with comparable rates. As proved in [13], the

singular vectors of C and C are close to each other in the sense that the square of

inner product of their left/right singular vectors converges to 1 almost surely when

√
n1n2p→∞. Consequently, the concentration results in (3.10) and [13] imply that

C1n2

n2

a.s.−→ p1n1 and
CT1n1

n1

a.s.−→ p1n2 . (3.11)

Furthermore, since under the stochastic block model setting each entry of the

adjacency matrix Ai in (3.2) is a Bernoulli(pi) random variable, following the same

concentration arguments in (3.10) and (3.11) we have

A11n1

n1

a.s.−→ p11n1 and
A21n2

n2

a.s.−→ p21n2 . (3.12)

By the fact that d̃i = Ai1ni , (3.12) implies that

d̃1

n1

a.s.−→ p11n1 and
d̃2

n2

a.s.−→ p21n2 . (3.13)
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Applying (3.11), (3.12) and (3.13) to (3.3) and recalling that n1

n2
→ c > 0, we have

d1

n1

a.s.−→
(
p1 +

p

c

)
1n1 and

d2

n2

a.s.−→ (p2 + cp) 1n2 . (3.14)

Therefore the reciprocal of the total degree in the graph b has the relation

n1n2b =
n1n2

dT1 1n1 + dT2 1n2

a.s.−→ 1

cp1 + 2p+ p2
c

. (3.15)

Substituting these limits into (3.8) and (3.9) and recalling that ν = 0 and yT1 1n1 =

−yT2 1n2 , we have

yT1 1n1

(
µ

n
− p1p2 − p2

cp1 + 2p+ p2
c

)
a.s.−→ 0; (3.16)

yT2 1n2

(
µ

n
− p1p2 − p2

cp1 + 2p+ p2
c

)
a.s.−→ 0. (3.17)

Since µ = λmax(B), for each inter-community edge connection probability p, one of

the two cases below has to be satisfied:

Sub-critical regime:
λmax(B)

n

a.s.−→ p1p2 − p2

cp1 + 2p+ p2
c

(3.18)

Super-critical regime: yT1 1n1

a.s.−→ 0 and yT2 1n2

a.s.−→ 0 (3.19)

In the sub-critical regime, observe that λmax(B)
n

converges to p1p2−p2
cp1+2p+

p2
c

almost surely

such that the corresponding asymptotic largest eigenvector y of B remains the same

(unique up to its sign) for different p. Left multiplying (3.6) by yT1 and left multiplying

(3.7) by yT2 , summing these two equations, and using the limiting expressions (3.4),

(3.11), (3.12), (3.13), (3.14), (3.15), and (3.18), in the sub-critical regime, we have

yT1 B1y1

n
+

yT2 B2y2

n
+ f(p)

a.s.−→ 0, (3.20)
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where f(p) = p1p2−p2
cp1+2p+

p2
c

[(√
c+ 1√

c

)2
(yT1 1n1)

2

n
− 1

]
. Since f(p) is a Laurent polynomial

of p with finite powers, and (3.20) has to be satisfied over all values of p in the

sub-critical regime,

yT1 B1y1

n
+

yT2 B2y2

n

a.s.−→ 0 and f(p)
a.s.−→ 0. (3.21)

Furthermore, we can show that, in the sub-critical regime, y1 and y2 converge almost

surely to constant vectors with opposite signs,

√
nn1

n2

y1
a.s.−→ ±1n1 and

√
nn2

n1

y2
a.s.−→ ∓1n2 . (3.22)

The proof is given in Appendix B.1. Therefore, in the sub-critical regime the two

communities can be almost perfectly detected. On the other hand, in the super-

critical regime the spectral modularity method fails to detect the two communities

since by (3.19) y1 and y2 must have both positive and negative entries.

Next we derive the asymptotic universal phase transition threshold p∗ for transi-

tion from the sub-critical regime to the super-critical regime that occurs as p increases.

Note that in the super-critical regime, since yT1 1n1

a.s.−→ 0 and yT2 1n2

a.s.−→ 0, using (3.1),

(3.4), (3.11), (3.12), (3.13) and (3.14) we have
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λmax(B)

n
=

1

n

[
yT1 B1y1 + yT2 B2y2 + b1(d̃T1 y1)2 + b2(d̃T2 y2)2 − b(dT1 y1)2 − b(dT2 y2)2

+2yT1 Cy2 − 2b(dT1 y1)(dT2 y2)
]

a.s.−→ 1

n

{
yT1 (p11n11

T
n1
− p11n11

T
n1

)y1 + yT2 (p21n21
T
n2
− p21n21

T
n2

)y2

+ b1(n1p1y
T
1 1n1)

2 + b2(n2p2y
T
2 1n2)

2 − b
[
(n1p1 + n2p) yT1 1n1

]2

−b
[
(n2p2 + n1p) yT2 1n2

]2

+ 2p(yT1 1n1)(y
T
2 1n2)

−2b
[
(n1p1 + n2p) yT1 1n1

] [
(n2p2 + n1p) yT2 1n2

]}
= 0. (3.23)

Consequently, by (3.18) and (3.23), the phase transition occurs at p = p∗ almost

surely when p1p2−p∗2
cp1+2p∗+

p2
c

= 0. This implies an asymptotic universal phase transition

threshold on community detectability:

p∗
a.s.−→ √p1p2 (3.24)

as n1, n2 → ∞ and n1

n2
→ c > 0. Note that the limit (3.24) does not depend on

the community sizes. In this sense, the phase transitions are universal as they only

depend on the within-community connection probabilities p1 and p2.

Moreover, the same phase transition results hold for a more general setting where

pi = Ω( 1
nε

) and p = Ω( 1
nε

) for any ε ∈ [0, 1) by following the same derivation pro-

cedures. As a comparison, the phase transition threshold under the sparse network

setting, where pi = Ω( 1
n
) and p = Ω( 1

n
) [47, 48, 87, 102, 131, 180], is different from

the threshold established in this chapter where pi = Ω( 1
nε

) and p = Ω( 1
nε

) for any

ε ∈ [0, 1). Also note that when pi = Ω( 1
nε

) and p = Ω( 1
nε

) for any ε ∈ [0, 1), the

community detectability undergoes an abrupt transition at the threshold whereas the
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Figure 3.1: Validation of theoretical critical phase transition threshold (3.24) for two
communities generated by a stochastic block model. The curves represent averages
over 100 realizations of the model. Here n1 = n2 = 2000 and p1 = p2 = 0.25 so
that the predicted critical phase transition is p∗ = 0.25. (a) When p < p∗, λmax(B)

n

converges to p1p2−p2
cp1+2p+

p2
c

as predicted in (3.18). When p > p∗, λmax(B)
n

converges to 0

as predicted by (3.23). (b) Fraction of nodes that are correctly identified using the
spectral modularity method. Community detectability undergoes a phase transition
from perfect detectability to low detectability at p = p∗. (c) The spectral modularity
method fails to detect the communities when p > p∗ since the components of the
largest eigenvector of B, y1 and y2, undergo transitions at p = p∗ as predicted by
(3.19) and (3.22).

transition is smoother for sparse networks.

3.2 Numerical Experiments

3.2.1 Validation of phase transition analysis

We validate the asymptotic phase transition phenomenon predicted by our theory,

and in particular the critical phase transition threshold (3.24), showing that the

asymptotic theory provides remarkably accurate predictions for the case of finite

small community sizes. Fig. 3.1 (a) shows that λmax(B)
n

converges to p1p2−p2
cp1+2p+

p2
c

when

p < p∗ and λmax(B)
n

converges to 0 when p > p∗, as predicted by (3.16) and (3.23).
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Figure 3.2: Validation of theoretical critical phase transition threshold (3.24) for two
communities generated by a stochastic block model. The curves represent averages
over 100 realizations of the model. Here n1 = 1000, n2 = 2000, p1 = 0.5, and
p2 = 0.25 so that the predicted critical phase transition is p∗ = 0.3536. Similar phase
transition phenomenon can be observed for this network setting.

Fig. 3.1 (b) shows the phase transition from perfect detectability to low detectability

at the critical value p = p∗. The numerical phase transition thresholds are accurately

predicted by (3.24). Fig. 3.1 (c) further validates the predictions in (3.19) and (3.22)

that y1 and y2 converge almost surely to constant vectors with opposite signs in the

sub-critical regime of p < p∗ and yT1 1n1 and yT2 1n2 converge to 0 almost surely in

the super-critical regime of p > p∗. Similarly in Fig. 3.2, the results are shown for a

different stochastic block model where the sizes of the two communities are not the

same. These results validate that the asymptotic phase transition threshold p∗ in

(3.24) is a universal phenomenon that does not depend on the community sizes. We

have observed (see Appendix B.2) that the asymptotic phase transition expression in

(3.24) is accurate even in cases of relatively small community sizes, e.g. down to sizes

as small as 100.
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3.2.2 Empirical estimator of the phase transition threshold

Using the derived expression of the phase transition threshold in (3.24), we propose

an empirical method for estimating the threshold in order to evaluate the reliability

of community detection on real-world data a posteriori. Let n̂i and m̂i denote the size

and the number of edges of the identified community i, and let m̂12 denote the number

of identified external edges between communities. Define the empirical estimators

p̂ =
m̂12

n̂1n̂2

; (3.25)

p̂i =
m̂i

n̂2
i

; (3.26)

p̂∗ =
√
p̂1p̂2. (3.27)

We apply these estimators to the political blog data in [3], where this dataset contains

1222 blogs, labeled as either conservative or liberal, and an edge corresponds to a

hyperlink reference between blogs. The detectability using the spectral modularity

method is 0.9419 (the labels are predicted by taking the sign function on the leading

eigenvector of the modularity matrix). The corresponding empirical estimates are

p̂ = 0.0042, p̂1 = 0.0244, p̂2 = 0.0179, and p̂∗ = 0.0209. The high detectability of the

spectral modularity method is consistent with the fact that the empirical estimate p̂

is below the empirical phase transition threshold p̂∗.
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CHAPTER IV

Phase Transitions in Spectral Graph Clustering

under the Random Interconnection Model

Recall from Chapter I that spectral clustering [97, 108, 176] is a principal method

for graph clustering, which we call is as spectral graph clustering (SGC). It works

by transforming the graph adjacency matrix into a graph Laplacian matrix [98],

computing its eigendecomposition, and performing K-means clustering [72] on the

eigenvectors to partition the nodes into clusters. In recent years, researchers have

established phase transitions of the accuracy of clustering nodes in a graph under a

diverse set of network models [2, 5, 25, 29, 48, 70, 102]. A widely used network model

is the stochastic block model (SBM) [74], where the edge connections within and be-

tween clusters are independent Bernoulli random variables. Under the SBM, a phase

transition on the cluster interconnectivity probability separates clustering accuracy

into two regimes: a regime where correct graph clustering is possible, and a regime

where correct graph clustering is impossible. The critical values that separate these

two regimes are called phase transition thresholds. A summary of phase transition

analysis under the SBM can be found in [2].

In this chapter we analyze the performance of spectral clustering on undirected

unweighted graphs generated by a random interconnection model (RIM), where each

cluster can have arbitrary internal connectivity structure and inter-cluster edges are
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assumed to be random. The RIM does not impose any distributional assumptions

on the within-cluster connectivity structure, but assumes the between-cluster edges

are generated by a SBM. Under the RIM, we establish a breakdown condition on the

ability to identify correct clusters using SGC. Furthermore, when all of the cluster

interconnection probabilities are identical, a model we call the homogeneous RIM, this

breakdown condition specifies a critical phase transition threshold p∗ ∈ [0, 1] on the

inter-cluster connection probability p. When this interconnection probability is below

the critical phase transition threshold, spectral clustering can perfectly detect the

clusters. On the other hand, when the interconnection probability is above the critical

phase transition threshold, spectral clustering fails to identify the clusters. This

breakdown condition and phase transition analysis apply to weighted graphs as well,

where the critical phase transition threshold depends not only on the interconnection

probability but also on the weights of the interconnection edges. In Sec. 4.2, Theorems

4.1, 4.2 and 4.8 apply to unweighted undirected graphs while Theorems 4.9 extends

these theorems to weighted undirected graphs.

4.1 Random Interconnection Model (RIM) and Spectral Clus-

tering

4.1.1 Random interconnection model (RIM)

Assume there are K clusters in the graph and denote the size of cluster k by

nk. The size of the largest and smallest cluster is denoted by nmax and nmin, re-

spectively. Using the block model notations for graphs in Sec. 1.3,. let Ak denote

the nk × nk adjacency matrix representing the internal edge connections in cluster

k and let Cij (i, j ∈ {1, 2, . . . , K}) be an ni × nj matrix representing the adjacency

matrix of inter-cluster edge connections between the cluster pair (i, j). The proposed

random interconnection model (RIM) assumes that: (1) the adjacency matrix Ak is
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associated with a connected graph of nk nodes but is otherwise arbitrary; (2) the

K(K − 1)/2 matrices {Cij}i>j are random mutually independent, and each Cij has

i.i.d. Bernoulli distributed entries with Bernoulli parameter pij ∈ [0, 1]. We call this

model a homogeneous RIM when all random interconnections have equal probability,

i.e., pij = p for all i 6= j. Otherwise, the model is called an inhomogeneous RIM. In

the next section, Theorems 4.1 and 4.8 apply to general RIM while Theorems 4.2 and

4.9 are restricted to the homogeneous RIM.

The stochastic block model (SBM) [74] is a special case of the RIM in the sense

that the RIM does not impose any distributional constraints on Ak. In contrast, under

the SBM Ak is a Erdos-Renyi random graph with some edge connection probability

pk ∈ [0, 1].

4.1.2 Mathematical formulation for spectral graph clustering

For analysis purposes, throughout this chapter we will focus on the case where

the observed graph is connected. If the graph is not connected, the connected com-

ponents can be easily found and the proposed algorithm can be applied to each

connected component separately. Since the smallest eigenvalue of L is always 0 and

the associated eigenvector is 1n√
n
, only the higher order eigenvectors will affect the

clustering results. By the Courant-Fischer theorem [78], the K − 1 eigenvectors asso-

ciated with the K − 1 smallest nonzero eigenvalues of L, represented by the columns

of the eigenvector matrix Y ∈ Rn×(K−1), are the solution of the minimization problem

S2:K(L) = min
X∈Rn×(K−1)

trace(XTLX),

subjec to XTX = IK−1, XT1n = 0K−1, (4.1)

where the optimal value S2:K(L) = trace(YTLY) of (4.1) is the partial sum of the

second to the K-th smallest eigenvalues of L, and IK−1 is the (K − 1) × (K − 1)
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identity matrix. The constraints in (4.1) impose orthonormality and centrality on

the eigenvectors.

4.2 Breakdown Condition and Phase Transition Analysis

In this section we establish a mathematical condition (Theorem 4.1) under which

SGC fails to accurately identify clusters under the RIM. Furthermore, under the

homogeneous RIM assumption of identical interconnection probability pij = p gov-

erning the entries of the matrices {Cij} in (1), the condition leads to (Theorem 4.2)

a critical phase transition threshold p∗ where, if p < p∗ spectral clustering correctly

identifies the communities with probability one, while if p > p∗ spectral clustering

fails. The phase transition analysis developed in this section will be used to establish

an automated model order selection algorithm for spectral graph clustering in Chap-

ter V. Proofs of the established theorems and corollaries in this section are given in

Appendix C. In the sequel, there are a number of limit theorems stated about the

behavior of random matrices and vectors whose dimensions go to infinity as the sizes

nk of the clusters goes to infinity while their relative sizes nk/n` are held constant.

For simplicity and convenience, the limit theorems are often stated in terms of the

the finite, but arbitrarily large, dimensions nk, k = 1, . . . , K.

Based on the RIM (1.1), Theorem 4.1 establishes a general breakdown condition

under which spectral clustering fails to correctly identify the clusters.

Theorem 4.1 (breakdown condition for SGC).

Let Ã be the (K − 1)× (K − 1) matrix with (i, j)-th element

[Ã]ij =

 (ni + nK) piK +
∑K−1

z=1,z 6=i nzpiz, if i = j,

ni ·
(
piK − pij

)
if i 6= j.

The following holds almost surely as nk →∞ and nmin

nmax
→ c > 0. If λi

(
Ã
n

)
6= λj

(
L
n

)
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for all i = 1, 2, . . . , K − 1 and j = 2, 3, . . . , K, then spectral clustering cannot be

successful.

Proof. The proof is given in Appendix C.1.

Since the eigenvalues of Ã depend only on the RIM parameters pij and nk whereas

the eigenvalues of L depend not only on these parameters but also on the internal

adjacency matrices Ak, Theorem 4.1 specifies how the graph connectivity structure

affects the success of SGC.

For the special case of homogeneous RIM, where pij = p, for all i 6= j, Theorem

4.2 establishes the existence of a phase transition in the accuracy of SGC as the in-

terconnection probability p increases. A similar phase transition likely exists for the

inhomogeneous RIM (i.e., pij’s are not identical), but an inhomogeneous extension

of Theorem 4.2 is an open problem. Nonetheless, Theorem 4.8 shows that the ho-

mogeneous RIM phase transition threshold p∗ in Theorem 4.2 can be used to bound

clustering accuracy when the RIM is inhomogeneous.

Theorem 4.2 (phase transition in unweighted graphs).

Let Y = [YT
1 ,Y

T
2 , . . . ,Y

T
K ]T be the cluster partitioned eigenvector matrix associated

with the graph Laplacian matrix L obtained by solving (4.1), where Yk ∈ Rnk×(K−1)

with its rows indexing the nodes in cluster k. Let c∗ = mink∈{1,2,...,K}

{
S2:K(Lk)

n

}
. Un-

der the homogeneous RIM in (1.1) with constant interconnection probability pij = p,

there exists a critical value p∗ such that the following holds almost surely as nk →∞

and nmin

nmax
→ c > 0:

(a)

 If p ≤ p∗, S2:K(L)
n

= (K − 1)p;

If p > p∗, c∗ + (K − 1)
(
1− nmax

n

)
p ≤ S2:K(L)

n
≤ c∗ + (K − 1)

(
1− nmin

n

)
p.

In particular, if p > p∗ and c = 1, S2:K(L)
n

= c∗ + (K−1)2

K
p.

Furthermore,
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(b)


If p < p∗, Yk = 1nk1

T
K−1Vk =

[
vk11nk , v

k
21nk , . . . , v

k
K−11nk

]
, ∀ k ∈ {1, 2, . . . , K};

If p > p∗, YT
k 1nk = 0K−1, ∀ k ∈ {1, 2, . . . , K};

If p = p∗, ∀ k ∈ {1, 2, . . . , K}, Yk = 1nk1
T
K−1Vk or YT

k 1nk = 0K−1,

where Vk = diag(vk1 , v
k
2 , . . . , v

k
K−1) ∈ R(K−1)×(K−1) is a diagonal matrix.

Finally, p∗ satisfies:

(c) pLB ≤ p∗ ≤ pUB, where pLB =
mink∈{1,2,...,K} S2:K(Lk)

(K−1)nmax
;

pUB =
mink∈{1,2,...,K} S2:K(Lk)

(K−1)nmin
.

In particular, pLB = pUB when c = 1.

Proof. The proof is given in Appendix C.2.

Theorem 4.2 (a) establishes a phase transition of the normalized partial eigenvalue

sum S2:K(L)
n

at some critical value p∗, called the critical phase transition threshold.

When p ≤ p∗ the quantity S2:K(L)
n

is exactly (K − 1)p. When p > p∗ the slope in

p of S2:K(L)
n

changes and the intercept c∗ = mink∈{1,2,...,K}

{
S2:K(Lk)

n

}
depends on the

cluster having the smallest partial eigenvalue sum. When all clusters have the same

size (i.e., nmax = nmin = n
K

) so that c = 1, S2:K(L)
n

undergoes a slope change from

K − 1 to (K−1)2

K
.

Theorem 4.2 (b) establishes that p > p∗ makes the entries of the matrix Yk

incoherent, making it impossible for SGC to separate the clusters. On the other

hand, p < p∗ makes Yk coherent, and hence the row vectors in the eigenvector matrix

Y possess cluster-wise separability. This is stated as follows.

Corollary 4.3 (separability of the row vectors in the eigenvector matrix Y when

p < p∗).

Under the same assumptions as in Theorem 4.2, when p < p∗, the following properties

of Y hold almost surely as nk →∞ and nmin

nmax
→ c > 0:

(a) The columns of Yk are constant vectors.

(b) Each column of Y has at least two nonzero cluster-wise constant components,
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and these constants have alternating signs such that their weighted sum equals 0 (i.e.,∑
k nkv

k
j = 0, ∀ j ∈ {1, 2, . . . , K − 1}).

(c) No two columns of Y have the same sign on the cluster-wise nonzero components.

Proof. The proof is given in Appendix C.3.

These properties imply that for p < p∗ the rows in Yk corresponding to different

nodes are identical, while the row vectors in Yk and Y`, k 6= `, corresponding to

different clusters are distinct. Hence, K-means clustering on these row vectors can

group the nodes into correct clusters. Note that when p > p∗, from Theorem 4.2

(b) the row vectors of Yk corresponding to the same cluster sum to a zero vector.

This means that the entries of each column in Yk have alternating signs and hence

K-means clustering on the rows of Y yields incorrect clusters.

Furthermore, as a demonstration of the breakdown condition in Theorem 4.1, ob-

serve that when pij = p, Theorem 4.1 implies that the matrix Ã
n

reduces to a diagonal

matrix pIK−1, and from (C.15) we know that λj

(
L
n

)
= p for j = 2, 3, . . . , K almost

surely when p < p∗. Therefore, under the homogeneous RIM spectral clustering can

only be successful when p is below the critical threshold value p∗.

Theorem 4.2 (c) provides upper and lower bounds on the critical threshold value

p∗ for the phase transition to occur when pij = p. These bounds are determined

by the cluster having the smallest partial eigenvalue sum S2:K(Lk), the number of

clusters K, and the size of the largest and smallest cluster (nmax and nmin). When all

cluster sizes are identical (i.e., c = 1), these bounds become tight. Based on Theorem

4.2 (c), the following corollary specifies the properties of p∗ and the connection to

algebraic connectivity of each cluster.

Corollary 4.4 (properties of p∗ and its connection to algebraic connectivity).

Under the same assumptions as in Theorem 4.2, the following statements hold almost

surely as nk →∞ and nmin

nmax
→ c > 0:
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(a) If mink∈{1,2,...,K} S2:K(Lk) = Ω(nmax), then p∗ > 0.

(b) If mink∈{1,2,...,K} S2:K(Lk) = o(nmin), then p∗ = 0.

(c)
mink∈{1,2,...,K} λ2(Lk)

nmax
≤ p∗ ≤ mink∈{1,2,...,K} λK(Lk)

nmin
.

Proof. The proof is given in Appendix C.4.

The following corollary specifies the bounds on the critical value p∗ for some special

types of clusters. These results provide theoretical justification of the intuition that

strongly connected clusters, e.g., complete graphs, have high critical threshold value,

and weakly connected clusters, e.g., star graphs, have low critical threshold value.

Corollary 4.5 (bounds on the critical value p∗ for special type of cluster).

Under the same assumptions as in Theorem 4.2, the following statements hold almost

surely as nk →∞ and nmin

nmax
→ c > 0:

(a) If each cluster is a complete graph, then c ≤ p∗ ≤ 1.

(b) If each cluster is a star graph and K < nmin, then p∗ = 0.

Proof. The proof is given in Appendix C.5.

Furthermore, if the internal connectivity of each cluster (i.e., Ak) is a Erdos-Renyi

random graph with edge connection probability pk (i.e., the SBM), under the same

assumptions as in Theorem 4.2 we can show that almost surely,

c · min
k∈{1,2,...,K}

pk ≤ p∗ ≤ 1

c
· min
k∈{1,2,...,K}

pk. (4.2)

The proof of (4.2) is given in Appendix C.6.

The next corollary summarizes the results from Theorem 4.2 for the case of K = 2

to elucidate the phase transition phenomenon. Note that it follows from Corollary

4.6 (b) that below the phase transition (p < p∗) the rows in Y corresponding to

different clusters are constant vectors with entries of opposite signs, and thus K-

means clustering is capable of yielding correct clusters. On the other hand, above the
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phase transition (p > p∗) the entries corresponding to each cluster have alternating

signs, and thus K-means clustering fails.

Corollary 4.6 (special case of Theorem 4.2 when K = 2).

When K = 2, let Y = [yT1 yT2 ]T and let c∗ =
λ2(L1)+λ2(L2)−|λ2(L1)−λ2(L2)|

2n
. Then there

exists a critical value p∗ such that the following holds almost surely as n1, n2 → ∞

and nmin

nmax
→ c > 0.

(a)

 If p ≤ p∗, λ2(L)
n

= p;

If p > p∗, c∗ + c
1+c

p ≤ λ2(L)
n
≤ c∗ + 1

1+c
p.

In particular, if p > p∗ and c = 1, S2:K(L)
n

= c∗ + p
2
.

(b)

 If p < p∗,
√

nn1

n2
y1 = ±1n1 and

√
nn2

n1
y2 = ∓1n2 ;

If p > p∗, yT1 1n1 = 0 and yT2 1n2 = 0;

(c) pLB ≤ p∗ ≤ pUB, where pLB =
λ2(L1)+λ2(L2)−|λ2(L1)−λ2(L2)|

n+|n1−n2| ;

pUB =
λ2(L1)+λ2(L2)−|λ2(L1)−λ2(L2)|

n−|n1−n2| .

When c = 1, pLB = pUB =
λ2(L1)+λ2(L2)−|λ2(L1)−λ2(L2)|

n
.

Proof. The proof is given in Appendix C.7.

The above phase transition analysis can also be applied to the inhomogeneous RIM

for which the pij’s are not constant. Let pmin = mini 6=j pij and pmax = maxi 6=j pij. The

corollary below shows that under the inhomogeneous RIM when pmax is below p∗,

which is the critical threshold value specified by Theorem 4.2 for the homogeneous

RIM, the smallest K − 1 nonzero eigenvalues of the graph Laplacian matrix L
n

lie

within the internal [pmin, pmax] with probability one.

Corollary 4.7 (bounds on the smallest K − 1 nonzero eigenvalues of L under the

inhomogeneous RIM).

Under the RIM with interconnection probabilities {pij}, let pmin = mini 6=j pij, pmax =

maxi 6=j pij, and let p∗ be the critical threshold value of the homogeneous RIM specified

by Theorem 4.2. If pmax < p∗, the following statement holds almost surely as nk →∞
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and nmin

nmax
→ c > 0:

pmin ≤ λj

(
L

n

)
≤ pmax, ∀ j = 2, 3, . . . , K. (4.3)

Proof. The proof is given in Appendix C.8.

In particular, Corollary 4.7 implies that the algebraic connectivity of the inho-

mogeneous RIM λ2(L
n

) is between pmin and pmax almost surely as nk → ∞ and

nmin

nmax
→ c > 0.

For graphs following the inhomogeneous RIM, Theorem 4.8 below establishes that

accurate clustering is possible if it can be determined that pmax < p∗. As defined in

Theorem 4.2, let Y ∈ Rn×(K−1) be the eigenvector matrix of L under the inhomoge-

neous RIM, and let Ỹ ∈ Rn×(K−1) be the eigenvector matrix of the graph Laplacian

L̃ of another random graph, independent of L, generated by a homogeneous RIM

with cluster interconnectivity parameter p. We can specify the distance between the

subspaces spanned by the columns of Y and Ỹ by inspecting their principal angles

[97]. Since Y and Ỹ both have orthonormal columns, the vector v of K− 1 principal

angles between their column spaces is v = [cos−1 σ1(YT Ỹ), . . . , cos−1 σK−1(YT Ỹ)]T ,

where σk(M) is the k-th largest singular value of real rectangular matrix M. Let

Θ(Y, Ỹ) = diag(v), and let sin Θ(Y, Ỹ) be defined entrywise. When p < p∗, the

following theorem provides an upper bound on the Frobenius norm of sin Θ(Y, Ỹ),

which is denoted by ‖ sin Θ(Y, Ỹ)‖F .

Theorem 4.8 (distance between column spaces spanned by Y and Ỹ).

Under the RIM with interconnection probabilities {pij}, let p∗ be the critical thresh-

old value for the homogeneous RIM specified by Theorem 4.2, and define δp,n =

min{p, |λK+1(L
n

) − p|}. For a fixed p, if p < p∗ and δp,n → δp > 0 as nk → ∞,
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the following statement holds almost surely as nk →∞ and nmin

nmax
→ c > 0:

‖ sin Θ(Y, Ỹ)‖F ≤
‖L− L̃‖F

nδp
. (4.4)

Furthermore, let pmax = maxi 6=j pij. If pmax < p∗,

‖ sin Θ(Y, Ỹ)‖F ≤ min
p≤pmax

‖L− L̃‖F
nδp

. (4.5)

Proof. The proof is given in Appendix C.9.

As established in Corollary 4.3, under the homogeneous RIM when p < p∗ the row

vectors of the eigenvector matrix Ỹ are perfectly cluster-wise separable as nk → ∞

and nmin

nmax
→ c > 0. Under the inhomogeneous RIM, thus it establishes that cluster

separability can still be expected provided that ‖ sin Θ(Y, Ỹ)‖F is small and p < p∗.

As a result, we can bound the clustering accuracy under the inhomogeneous RIM by

inspecting the upper bound (4.4) on ‖ sin Θ(Y, Ỹ‖F . Note that if pmax < p∗, we can

obtain a tighter upper bound on (4.4).

Next we extend Theorem 4.2 to undirected weighted random graphs obeying the

homogeneous RIM. The edges within each cluster are assumed to have nonnegative

weights and the weights of inter-cluster edges are assumed to be independently drawn

from a common nonnegative bounded distribution. Let W denote the n×n symmetric

nonnegative weight matrix of the entire graph. Then the corresponding graph Lapla-

cian matrix is defined as L = S −W, where S = diag(W1n) is the diagonal matrix

of nodal strengths of the weighted graph. Similarly, the symmetric graph Laplacian

matrix Lk of each cluster can be defined. The following theorem establishes a phase

transition phenomenon for such weighted graphs. The critical value depends not only

on the inter-cluster edge connection probability but also on the mean of inter-cluster

edge weights.
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Theorem 4.9 (phase transition in weighted graphs).

Under the same assumptions as in Theorem 4.2, assume the weight matrix W is sym-

metric, nonnegative, and bounded, and the weights of the upper triangular part of W

are independently drawn from a common nonnegative bounded distribution with mean

W . Let t = p ·W and let c∗ = mink∈{1,2,...,K}

{
S2:K(Lk)

n

}
. Then there exists a critical

value t∗ such that the following holds almost surely as nk →∞ and nmin

nmax
→ c > 0:

(a)

 If t ≤ t∗, S2:K(L)
n

= (K − 1)t;

If t > t∗, c∗ + (K − 1)
(
1− nmax

n

)
t ≤ S2:K(L)

n
≤ c∗ + (K − 1)

(
1− nmin

n

)
t.

In particular, if t > t∗ and c = 1, S2:K(L)
n

= c∗ + (K−1)2

K
t.

(b)


If t < t∗, Yk = 1nk1

T
K−1Vk =

[
vk11nk , v

k
21nk , . . . , v

k
K−11nk

]
, ∀ k ∈ {1, 2, . . . , K};

If t > t∗, YT
k 1nk = 0K−1 ∀ k ∈ {1, 2, . . . , K};

If t = t∗, ∀ k ∈ {1, 2, . . . , K}, Yk = 1nk1
T
K−1Vk or YT

k 1nk = 0K−1,

where Vk = diag(vk1 , v
k
2 , . . . , v

k
K−1) ∈ R(K−1)×(K−1) is a diagonal matrix.

(c) tLB ≤ t∗ ≤ tUB, where tLB =
mink∈{1,2,...,K} S2:K(Lk)

(K−1)nmax
;

tUB =
mink∈{1,2,...,K} S2:K(Lk)

(K−1)nmin
.

In particular, tLB = tUB when c = 1.

Proof. The proof is given in Appendix C.10.

Theorem 4.9 reduces to the case of unweighted graphs in Theorem 4.2 when W =

1. Theorem 4.1 and Theorem 4.8 can be extended to weighted graphs under the

inhomogeneous RIM, where the edge weights between clusters i and j, i 6= j, are

independently drawn from a common nonnegative distribution with mean W ij and

bounded fourth moment.
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Figure 4.1: Phase transition of clusters generated by Erdos-Renyi random graphs.
K = 3, n1 = n2 = n3 = 8000, and p1 = p2 = p3 = 0.25. The empirical critical phase
transition threshold value predicted by Theorem 4.2 is p∗ = 0.2301.

4.3 Numerical Experiments: Validation of Phase Transitions

in Simulated Networks

We simulate graphs generated by the homogeneous RIM to validate the phase

transition analysis. Fig. 4.1 (a) shows the phase transition in partial eigenvalue

sum S2:K(L) and cluster detectability (i.e., the fraction of correctly identified nodes)

for clusters generated by Erdos-Renyi random graphs with varying inter-cluster edge

connection probability p. Random guessing leads to cluster detectability 1
K

. The

simulation results verify Theorem 4.2 that the simulated graphs transition from almost

perfect detectability to low detectability and undergo a change of slope in S2:K(L)

when p exceeds the critical value p∗. In addition, the separability of the row vectors of

Y in Corollary 4.3 is demonstrated in Fig. 4.1 (b). Similar phase transitions can be

found for clusters generated by the Watts-Strogatz small world network model [163]

in Fig. 4.2. Fig. 4.3 shows phase transition of weighted graphs where the inter-cluster

edge weights are independently drawn from a common exponential distribution with

mean W , which verifies the results in Theorem 4.9. The effect of different cluster
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Figure 4.2: Phase transition of clusters generated by the Watts-Strogatz small world
network model. K = 3, n1 = n2 = n3 = 1000, average number of neighbors = 200,
and rewire probability for each cluster is 0.4, 0.4, and 0.6. The empirical critical
threshold value predicted by Theorem 4.2 is p∗ = 0.0985.
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Figure 4.3: Phase transition of clusters generated by Erdos-Renyi random graphs with
exponentially distributed edge weight with mean 10. K = 3, n1 = n2 = n3 = 8000,
and p1 = p2 = p3 = 0.25. The predicted phase transition threshold curve from

Theorem 4.9 is p ·W =
K mink∈{1,2,...,K} S2:K(Lk)

(K−1)n
.

sizes and sensitivity to the inhomogeneous RIM are discussed in Appendix C.11.
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CHAPTER V

AMOS: An Automated Model Order Selection

Criterion for Spectral Graph Clustering

One of the longstanding open problems in unsupervised classification is the so-

called model order selection problem: automated selection of the correct number of

classes or clusters. In the context of spectral graph clustering (SGC), this is equivalent

to the problem of finding the number of connected components or communities in an

undirected graph. In this chapter we propose a solution to the SGC model selection

problem under a homogeneous random interconnection model (RIM) using a novel

selection criterion that falls out of an asymptotic phase transition analysis established

in Chapter IV, which we call automated model order selection (AMOS).

AMOS works by sequentially increasing the model order while running multi-

stage tests for testing for RIM structure. Specifically, for a given model order and

an estimated cluster membership map obtained from SGC, we first test for local

RIM structure for a single cluster pair using a binomial test of homogeneity. This is

repeated for all cluster pairs and, if they pass the RIM test, we proceed to the second

stage of testing, otherwise we increase the model order and start again. The second

stage consists of testing whether the RIM is globally homogeneous or inhomogeneous.

This is where the phase transition results are used - if any of the estimated inter-cluster

connection probabilities exceed the critical phase transition threshold the model order
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is increased. In this manner, the outputs from AMOS are the SGC clustering results

of minimal model order that are deemed reliable.

Comparing to other automated graph clustering methods, experiments on real-

world network datasets show that the AMOS algorithm indeed outputs clusters that

are more consistent with the ground truth meta information. For example, when

applied to network data with longitude and latitude meta information, such as the

Internet backbone map across North American and Europe, and the Minnesota road

map, the clusters identified by the AMOS algorithm are more consistent with known

geographic separations.

5.1 Automated Model Order Selection (AMOS) Algorithm

for Spectral Graph Clustering

Based on the phase transition analysis in Sec. 4.2, we propose an automated model

order selection (AMOS) algorithm for selecting the number of clusters in spectral

graph clustering (SGC). This algorithm produces p-values of hypothesis tests for test-

ing the RIM and phase transition. In particular, under the homogeneous RIM, we can

estimate the critical phase transition threshold for each put/ative cluster found and

use this estimate to construct a test of reliability of the cluster. The statistical tests

in the AMOS algorithm are implemented in two phases. The first phase is to test the

RIM assumption based on the interconnectivity pattern of each cluster (Sec. 5.1.2),

and the second phase is to test the homogeneity and variation of the interconnectivity

parameter pij for every cluster pair i and j in addition to making comparisons to the

critical phase transition threshold (Sec. 5.1.3). The flow diagram of the proposed

algorithm is displayed in Fig. 5.1, and the algorithm is summarized in Algorithm 5.2.

The AMOS codes can be downloaded from https://github.com/tgensol/AMOS. Next

we explain the functionality of each block in the diagram.
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Figure 5.1: Flow diagram of the proposed automated model order selection (AMOS)
scheme in spectral graph cluster (SGC).

5.1.1 Input graph data and spectral clustering

The input graph data is a matrix that can be a symmetric adjacency matrix A, a

degree-normalized symmetric adjacency matrix D−
1
2 AD−

1
2 , a symmetric weight ma-

trix W, or a normalized symmetric weight matrix S−
1
2 WS−

1
2 , where D = diag(A1n)

and S = diag(W1n) are assumed invertible. Spectral clustering is then implemented

on the input data to produce K clusters {Ĝk}Kk=1, where Ĝk is the k-th identified

cluster with number of nodes n̂k and number of edges m̂k. Initially K is set to 2. The

AMOS algorithm works by iteratively increasing K and performing spectral clustering

on the data until the output clusters meet a level of significance criterion specified by

the RIM test and phase transition estimator. In particular, the incremental eigenpair

computation method developed in Chapter II can be readily applied to AMOS.

5.1.2 RIM test via p-value for local homogeneity testing

Given clusters {Ĝk}Kk=1 obtained from spectral clustering with model order K, let

Ĉij be the n̂i × n̂j interconnection matrix of edges connecting clusters i and j. Our

goal is to compute a p-value to test the hypothesis that the matrix A in (1.1) satisfies

the RIM. More specifically, we are testing the null hypothesis that Ĉij is a realization

of a random matrix with i.i.d. Bernoulli entries (RIM) and the alternative hypothesis

that Ĉij is a realization of a random matrix with independent Bernoulli entries (not

RIM), for all i 6= j, i > j. Since the RIM homogeneity model for the interconnection
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Algorithm 5.1 p-value computation of V-test for the RIM test

Input: An ni × nj interconnection matrix Ĉij

Output: p-value(i, j)

x = Ĉij1nj (# of nonzero entries of each row in Ĉij)

y = nj1ni − x (# of zero entries of each row in Ĉij)
X = xTx− xT1ni and Y = yTy − yT1ni .

N = ninj(nj − 1) and V =
(√

X +
√
Y
)2

.

Compute test statistic Z = V−N√
2N

Compute p-value(i, j)= 2 ·min{Φ(Z), 1− Φ(Z)}

matrices Cij will only be valid when the clusters have been correctly identified, this

RIM test can be used to test the quality of a graph clustering algorithm.

To compute a p-value for the RIM we use the V-test [129] for homogeneity testing

of the row sums or column sums of Ĉij. Specifically, given s independent binomial

random variables, the V-test tests that they are all identically distributed. For con-

creteness, here we apply the V-test to the row sums. Given a candidate set of clusters,

the V-test is applied independently to each of the
(
K
2

)
interconnection matrices Ĉij.

For any interconnection matrix Ĉij the test statistic Z of the V-test converges

to a standard normal distribution as ni, nj →∞, and the p-value for the hypothesis

that the row sums of Ĉij are i.i.d. is p-value(i, j) = 2 ·min{Φ(Z), 1− Φ(Z)}, where

Φ(·) is the cumulative distribution function (cdf) of the standard normal distribution.

The proposed V-test procedure is summarized in Algorithm 5.1. The RIM test on Ĉij

rejects the null hypothesis if p-value(i, j) ≤ η, where η is the desired single comparison

significance level. Since the Cij’s are independent, the p-value threshold parameter

η can be easily translated into a multiple comparisons significance level for detecting

homogeneity of all Cij’s. It can also be translated into a threshold for testing the

homogeneity of at least one of these matrices using family-wise error rate Bonferroni

corrections or false discovery rate analysis [14, 147].
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Algorithm 5.2 Automated model order selection (AMOS) algorithm for spectral
graph clustering (SGC)

Input: a connected undirected weighted graph, p-value significance level η, RIM
confidence interval parameters α, α′

Output: number of clusters K and identified clusters {Ĝk}Kk=1

Initialization: K = 2. Flag = 1.
while Flag= 1 do

Obtain K clusters {Ĝk}Kk=1 via spectral clustering (∗)
# Local homogeneity testing #
for i = 1 to K do

for j = i+ 1 to K do
Calculate p-value(i, j) from Algorithm 5.1.
if p-value(i, j) ≤ η then Reject RIM

Go back to (∗) with K = K + 1.
end if

end for
end for
Estimate p̂, Ŵ , {p̂ij}, {Ŵ ij}, and t̂LB specified in Sec. 5.1.3.
# Homogeneous RIM test #
if p̂ lies within the confidence interval in (5.1) then

# Homogeneous RIM phase transition test #

if p̂ · Ŵ< t̂LB then Flag= 0.
else Go back to (∗) with K = K + 1.
end if

else if p̂ does not lie within the confidence interval in (5.1) then
# Inhomogeneous RIM phase transition test #

if
∏K

i=1

∏K
j=i+1 Fij

(
t̂LB

Ŵ ij

, p̂ij

)
≥ 1− α′ then Flag= 0.

else Go back to (∗) with K = K + 1.
end if

end if
end while
Output K clusters {Ĝk}Kk=1.

5.1.3 Phase transition tests

Once the identified clusters {Ĝk}Kk=1 pass the RIM test in Sec. 5.1.2, one can

empirically determine the reliability of the clustering results using the phase tran-

sition analysis in CH. IV. AMOS first tests the assumption of homogeneous RIM,

and performs the homogeneous RIM phase transition test by comparing the empirical

estimate p̂ of the interconnectivity parameter p with the empirical estimate p̂LB of the
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lower bound pLB on p∗ based on Theorem 4.2. If the test on the assumption of homo-

geneous RIM fails, AMOS then performs the inhomogeneous RIM phase transition

test by comparing the empirical estimate p̂max of pmax with p̂LB based on Theorem

4.8.

In a nutshell, after the identified clusters {Ĝk}Kk=1 pass the RIM test in Sec. 5.1.2,

the AMOS algorithm (Fig. 5.1) runs a serial process of statistical tests, including

homogeneous RIM test, homogeneous and inhomogeneous RIM phase transition tests.

Each of these is considered separately in what follows.

• Homogeneous RIM test:

The homogeneous RIM test is summarized as follows. Given clusters {Ĝk}Kk=1, we

estimate the interconnectivity parameters {p̂ij} by p̂ij =
m̂ij
n̂in̂j

, where m̂ij is the number

of inter-cluster edges between clusters i and j, and p̂ij is the maximum likelihood

estimator (MLE) of pij. Under the homogeneous RIM, the estimate of the parameter

p is p̂ =
2(m−

∑K
k=1 m̂k)

n2−
∑K
k=1 n̂

2
k

, where m̂k is the number of within-cluster edges of cluster k

and m is the total number of edges in the graph. A generalized log-likelihood ratio

test (GLRT) is used to test the validity of the homogeneous RIM. By the Wilk’s

theorem [167], an asymptotic 100(1 − α)% confidence interval for p in an assumed

homogeneous RIM is

{
p : ξ(K2 )−1,1−α

2
≤ 2

K∑
i=1

K∑
j=i+1

I{p̂ij∈(0,1)}

[
m̂ij ln p̂ij +(n̂in̂j − m̂ij) ln(1− p̂ij)

]

−2

m− K∑
k=1

m̂k

 ln p−

n2 −
K∑
k=1

n̂2
k − 2

m− K∑
k=1

m̂k


 ln(1− p) ≤ ξ(K2 )−1,α

2

}
,

(5.1)

where ξq,α is the upper α-th quantile of the central chi-square distribution with de-

gree of freedom q. The derivation of the confidence interval in (5.1) is given in

Appendix D.1.
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The identified clusters pass the homogeneous RIM test if p̂ is within the confidence

interval specified in (5.1). Intuitively, if p̂ij are close to p̂, then the interconnectivity

structure of the identified clusters are regarded homogeneous. On the other hand, if

there is a large variation in {p̂ij}, the homogeneity RIM test fails.

• Homogeneous RIM phase transition test:

By Theorem 4.2, if the identified clusters follow the homogeneous RIM (i.e., pass the

homogeneous RIM test), then they are deemed reliable if p̂ < p̂LB, an estimate of the

lower bound on the critical phase transition threshold value, which is

p̂LB =
mink∈{1,2,...,K} S2:K(L̂k)

(K − 1)n̂max

. (5.2)

• Inhomogeneous RIM phase transition test:

If the identified clusters fail the homogeneous RIM test, we then use the maximum

of MLEs of pij’s, denoted by p̂max = maxi>j p̂ij, as a test statistic for testing the

null hypothesis H0: p̂max < p∗ against the alternative hypothesis H1: p̂max ≥ p∗.

The test accepts H0 if p̂max < p∗ and hence by Theorem 4.8 the identified clusters

are deemed reliable. Using the Anscombe transformation on the p̂ij’s for variance

stabilization [8], let Aij(x) = sin−1

√
x+ c′

n̂in̂j

1+ 2c′
n̂in̂j

, where c′ = 3
8
. By the central limit

theorem,
√

4n̂in̂j + 2 ·
(
Aij(p̂ij)− Aij(pij)

) d−→ N(0, 1) for all pij ∈ (0, 1) as n̂i, n̂j →

∞, where
d−→ denotes convergence in distribution and N(0, 1) denotes the standard

normal distribution [8]. Therefore, under the null hypothesis that maxi>j pij < p∗,

from [23, Theorem 2.1] an asymptotic 100(1 − α′)% confidence interval for p̂max is

[0, ψ], where ψ(α′, {p̂ij}) is a function of the precision parameter α′ ∈ [0, 1] and {p̂ij},

which satisfies
∏K

i=1

∏K
j=i+1 Φ

(√
4n̂in̂j + 2 ·

(
Aij(ψ)− Aij(p̂ij)

))
= 1 − α′, and Φ(·)

is the cdf of the standard normal distribution. As a result, if ψ < p∗, then p̂max < p∗

with probability at least 1− α′. Note that verifying ψ < p∗ is equivalent to checking
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the condition

K∏
i=1

K∏
j=i+1

Fij(p
∗, p̂ij) ≥ 1− α′, (5.3)

where Fij(p
∗, p̂ij) = Φ

(√
4n̂in̂j + 2 ·

(
Aij(p

∗)− Aij(p̂ij)
))
·I{p̂ij∈(0,1)}+I{p̂ij<p∗}I{p̂ij∈{0,1}}.

For implementation of the inhomogeneous RIM phase transition test, we replace

Fij(p
∗, p̂ij) in (5.3) with Fij(p̂LB, p̂ij), and check whether

∏K
i=1

∏K
j=i+1 Fij(p̂LB, p̂ij) ≥

1− α′ or not. Since pLB ≤ p∗, by the monotonicity of Φ(·) and sin−1(·),∏K
i=1

∏K
j=i+1 Fij(pLB, p̂ij) ≥ 1− α′ implies

∏K
i=1

∏K
j=i+1 Fij(p

∗, p̂ij) ≥ 1− α′.

These phase transition tests can be extended to weighted graphs by defining the

RIM parameter tij = pij ·W ij for weighted graphs, and using the empirical estimators

t̂ij = p̂ij · Ŵ ij and t̂LB =
mink∈{1,2,...,K} S2:K(L̂k)

(K−1)n̂max
in the AMOS algorithm, where Ŵ ij is

the average weight of the inter-cluster edges between clusters i and j. The details are

given in Appendix D.2.

5.1.4 Computational complexity analysis

Let n and m be the number of nodes and edges in the graph, respectively. Fixing

a model order K (i.e., the number of clusters) in the AMOS iteration as displayed in

Fig. 5.1, the computational complexity of AMOS consists of three parts.

1. Based on the incremental eigenpair computation method in CH. II, acquiring

an additional smallest eigenvector for spectral graph clustering takes O(m+ n)

iterations via power iteration approach, since the number of nonzero entries in

the graph Laplacian matrix L is m+ n.

2. The estimation of the RIM parameters {pij} and {W ij} takes O(m) operations

since they only depend on the number of edges and edge weights. The estimation

of tLB takes O(K(m + n) · K) = O(K2(m + n)) iterations for computing the

least partial eigenvalue sum among K clusters.
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Dataset Node Edge
Ground truth
meta information

IEEE reliability
test system (RTS) [68]

73 power stations 108 power lines
3 interconnected
power subsystems

Hibernia Internet
backbone map [85]

55 cities 162 connections
city names and
geographic locations

Cogent Internet
backbone map [85]

197 cities 243 connections
city names and
geographic locations

Minnesota road map [64] 2640 intersections 3302 roads geographic locations

Table 5.1: Summary of real-world single-layer graph datasets.

3. K-means clustering takes O(nK2) operations [174] for clustering n data points

of dimension K − 1 into K groups.

As a result, if the AMOS algorithm outputs K clusters, then the iterative process

leads to total computational complexity of O(K3(m+ n)) operations.

5.2 Experiments: Automated model order selection (AMOS)

on real-world network data

We implement the proposed AMOS algorithm (Algorithm 5.2) on several real-

world network datasets with α = α′ = 0.05, η = 10−5 and compare the results

with the self-tuning spectral clustering method proposed in [176] with Kmax = dn/4e.

Comparisons to the nonbacktracking matrix method [87, 139] and the Louvain method

[18] can be found in the supplementary file. Note that no information beyond network

topology is used for clustering. The meta information provided by these datasets are

used ex post facto to validate the clustering results. The details of these datasets are

summarized in Table 5.1.

Fig. 5.2 shows the clustering results of IEEE reliability test system for power sys-

tem. Marker shapes represent different power subsystems. It is observed that AMOS

correctly selects the number of true clusters (subsystems), and unnormalized SGC

(taking adjacency matrix as the input data) misidentifies 3 nodes while normalized
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power line
subgrid 1
subgrid 2
subgrid 3

unnormalized
SGC

normalized
SGC

(a) Proposed AMOS algorithm. The num-
ber of clusters is 3.

 

 

power line
subgrid 1
subgrid 2
subgrid 3

self−tuning

(b) Self-tuning spectral clustering [176].
The number of clusters is 2.

Figure 5.2: IEEE reliability test system [68]. Normalized (unnormalized) spectral
graph clustering (SGC) misidentifies 2 (3) nodes, whereas self-tuning spectral clus-
tering fails to identify the third cluster.

(a) Proposed AMOS algorithm. The num-
ber of clusters is 2.

(b) Self-tuning spectral clustering [176].
The number of clusters is 2.

Figure 5.3: The Hibernia Internet backbone map across Europe and North America
[85]. Cities of different continents are perfectly clustered via automated SGC, whereas
one city in North America is clustered with the cities in Europe via self-tuning spectral
clustering. Automated clusters found by AMOS, including city names, can be found
in Fig. D.3.

SGC (taking degree-normalized adjacency matrix as the input data) only misidentifies

2 nodes. Self-tuning spectral clustering fails to identify the third cluster.

We implement AMOS with normalized SGC for the rest of datasets, and the

different colors represent different automated clusters. Fig. 5.3 shows the automated
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(a) Proposed AMOS algorithm. The num-
ber of clusters is 4.

(b) Self-tuning spectral clustering [176].
The number of clusters is 14.

Figure 5.4: The Cogent Internet backbone map across Europe and North America
[85]. Clusters from automated SGC are consistent with the geographic locations,
whereas clusters from self-tuning spectral clustering are inconsistent with the geo-
graphic locations. Automated clusters found by AMOS, including city names, can be
found in Fig. D.4.

clusters of the Hibernia Internet backbone map. AMOS outputs two clusters that

perfectly separates the cities in North America and Europe, whereas one city in North

America is clustered with the cities in Europe via self-tuning spectral clustering.

Fig. 5.4 shows the automated clusters of the Cogent Internet backbone map across

North America and Europe. The clusters yielded by AMOS are consistent with the

geographic locations except that North Eastern America and West Europe are identi-

fied as one cluster due to many transoceanic connections, wheres the clusters yielded

by self-tuning spectral clustering are inconsistent with the geographic locations.

In Fig. 5.5, the clusters of the Minnesota road map via AMOS are shown to

be aligned with the geographic separations, whereas some clusters identified via self-

tuning clustering are inconsistent with the geographic separations and several clusters

have small sizes1. In addition, when compared with the nonbacktracking matrix

method [87, 139] and the Louvain method [18] (see Appendix D.3), the output clusters

from the proposed AMOS algorithm are shown to be more consistent with the ground

1For the Minnesota road map we set Kmax = 100 for self-tuning spectral clustering to speed up
the computation.
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(a) Proposed AMOS algorithm. The num-
ber of clusters is 46.
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(b) Self-tuning spectral clustering [176].
The number of clusters is 100.

Figure 5.5: Minnesota road map [64]. Clusters from automated SGC are aligned with
the geographic separations, whereas some clusters from self-tuning spectral clustering
are inconsistent with the geographic separations and self-tuning spectral clustering
identifies several small clusters.

truth meta information.

5.2.1 External and internal clustering metrics

We use the following external and internal clustering metrics to evaluate the per-

formance of different automated graph clustering methods. External metrics can be

computed only when ground-truth cluster labels are known, whereas internal metrics

can be computed in the absence of ground-truth cluster labels. In particular, we de-

note the K clusters identified by a multilayer graph clustering algorithm by {Ck}Kk=1,

and denote the K ′ ground truth clusters by {C ′k}K
′

k=1.

• External clustering metrics

1. normalized mutual information (NMI) [175]: NMI is defined as

NMI({Ck}Kk=1, {C ′k}K
′

k=1) =
2 · I({Ck}, {C ′k})

|H({Ck}) +H({C ′k})|
, (5.4)

where I is the mutual information between {Ck}Kk=1 and {C ′k}K
′

k=1, and H is the

entropy of clusters. Larger NMI means better clustering performance.
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2. Rand index (RI) [175]: RI is defined as

RI({Ck}Kk=1, {C ′k}K
′

k=1) =
TP + TN

TP + TN + FP + FN
, (5.5)

where TP , TN , FP and FN represent true positive, true negative, false posi-

tive, and false negative decisions, respectively. Larger RI means better cluster-

ing performance.

3. F-measure [175]: F-measure is the harmonic mean of the precision and recall

values for each cluster, which is defined as

F-measure({Ck}Kk=1, {C ′k}K
′

k=1) =
1

K

K∑
k=1

F-measurek, (5.6)

where F-measurek = 2·PRECk·RECALLk
PRECk+RECALLk

, and PRECk and RECALLk are the pre-

cision and recall values for cluster Ck. Larger F-measure means better clustering

performance.

• Internal clustering metrics

1. conductance [144]: conductance is defined as

conductance({Ck}Kk=1) =
1

K

K∑
k=1

conductancek, (5.7)

where conductancek =
W out
k

2·W in
k +W out

k
, and W in

k and W out
k are the sum of within-

cluster and between-cluster edge weights of cluster Ck, respectively. Lower con-

ductance means better clustering performance.

2. normalized cut (NC) [144]: NC is defined as

NC({Ck}Kk=1) =
1

K

K∑
k=1

NCk, (5.8)
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Dataset Method K True K NMI RI F C NC

RTS

AMOS
Louvain

NB
ST

3
6
3
2

3

0.8958
0.7406
0.7535
0.7382

0.9642
0.8387
0.8752
0.7808

0.9448
0.6733
0.8121
0.7474

0.0461
0.1439
0.0695
0.0208

0.0682
0.1687
0.1000
0.0407

Hibernia

AMOS
Louvain

NB
ST

2
6
2
2

2

1.0000
0.2713
0.7333
0.8787

1.0000
0.5118
0.8949
0.9636

1.0000
0.3256
0.9019
0.9667

0.0296
0.2216
0.0273
0.0283

0.0573
0.2630
0.0530
0.0500

Cogent

AMOS
Louvain

NB
ST

4
11
3
14

2

0.4242
0.2451
0.2632
0.3435

0.6277
0.5424
0.5444
0.5492

0.5303
0.2584
0.5765
0.2868

0.0356
0.1864
0.0732
0.1481

0.0487
0.2044
0.1089
0.1640

Minnesota

AMOS
Louvain

NB
ST

46
33
35
100

- - - -

0.0739
0.2899
0.1399
0.1189

0.0756
0.2987
0.1441
0.1201

Table 5.2: Summary of the number of identified clusters (K) and the external and
internal clustering metrics. “F” stands for F-measure and “C” stands for conductance.
“NB” refers to the nonbacktracking matrix method, and “ST” refers to the self-tuning
method. “-” means “not available” due to lack of ground-truth cluster labels. For
each dataset, the method that leads the best clustering metric is highlighted in bold
face. AMOS is shown to outperform most clustering methods for all datasets.

where NCk =
W out
k

2·W in
k +W out

k
+

W out
k

2·(Wall
k −W

in
k )+W out

k
, and W in

k , W out
k and W all

k are the

sum of within-cluster, between-cluster and total edge weights of cluster Ck,

respectively. Lower conductance means better clustering performance.

Table 5.2 summarizes the external and internal clustering metrics of the four

methods for the single-layer graph datasets listed in Table 5.1. It is observed from

Table 6.2 that AMOS outperforms most clustering metrics for all datasets, which

demonstrates its robustness and reliability.
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CHAPTER VI

Multilayer Spectral Graph Clustering via Convex

Layer Aggregation

Extending the phase transition analysis in single-layer graphs in Chapter IV and

the AMOS algorithm in Chapter V, this chapter studies multilayer spectral graph clus-

tering (SGC) via convex layer aggregation for multilayer graphs. Multilayer graphs are

useful methods for representing and handling heterogeneous data, where each layer

describes a specific type of connectivity pattern among a common node set across

layers. For example, in multi-relational social networks, each layer corresponds to

one social relation. In temporal networks, each layer corresponds to the snapshot

of the entire network at a sampled time instance. Multilayer graphs have been ap-

plied to many signal processing and data mining techniques, including inference of

mixture models [115, 171], tensor decomposition [43], information extraction [116],

multi-view learning and processing [170], graph wavelet transform [95], principal com-

ponent analysis and dictionary learning [15, 34], and community detection [81, 84],

among others.

In particular, the task of multilayer graph clustering is to find a consensus clus-

ter assignment on each node in the common node set by inspecting the connectivity

pattern in each layer. Different from clustering in single-layer graphs, clustering in

multilayer graph faces new challenges due to (1) information aggregation from multi-
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ple layers, and (2) lack of a theoretical framework on clustering reliability assessment.

This chapter aims to tackle these challenges by proposing a multilayer SGC method

via convex layer aggregation. Specifically, we propose to perform SGC on an ag-

gregated graph via convex layer combination, where each layer is assigned with a

nonnegative weight for aggregation. We first analyze the performance of multilayer

SGC via convex layer aggregation under a novel multilayer signal plus noise model,

where the signal and noise refer to within-cluster and between-cluster edge connec-

tions, respectively. Numerical experiments are conducted to verify its performance.

We then propose MIMOSA, a multilayer iterative model order selection algorithm

featuring automated layer weight adaptation and cluster count selection for multi-

layer SGC. Experimental results on real-world multilayer graphs show that MIMOSA

has superior clustering performance over the baseline approach of assigning uniform

layer weight, and the greedy multilayer modularity maximization method [101].

In summary, the contributions of this chapter are twofolds. First, under a general

multilayer signal plus noise model, we establish a phase transition analysis on the

performance of multilayer SGC via convex layer aggregation. Fixing the within-

cluster edges (signals) and varying the parameters governing the between-cluster edges

(noises), we show that the accuracy of multilayer SGC can be separated into two

regimes: a reliable regime where high clustering accuracy can be guaranteed, and

an unreliable regime where high clustering accuracy is impossible. Moreover, we

specify the critical value that separates these two regimes, which is an analytical

function of the signal strength, the number of clusters, the cluster size distributions,

and the layer weight vector for convex layer aggregation. As a result, we establish a

complete theoretic framework that specifies the interplay between the layer weights,

the multilayer graph connectivity structure, and the performance of multilayer SGC

via convex layer aggregation. This theoretic framework also provides a novel criterion

for assessing the quality of clustering results.
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Second, leveraging the established clustering reliability criterion under the multi-

layer signal plus noise model, we propose a multilayer iteration model order selection

algorithm (MIMOSA) for multilayer SGC via convex layer aggregation. MIMOSA

is a multilayer SGC algorithm that features automated model order selection for

determining the number of clusters and the layer weights. It is an iterative SGC al-

gorithm on the aggregated graph that incrementally increases the number of clusters,

adapts layer weight assignment based on the noise level estimates from each layer,

and adopts a series of statistical clustering reliability tests. As a result, MIMOSA

finds the minimal number of clusters and the optimal layer weight assignment such

that the identified clusters are estimated to be in the reliable regime as supported by

the established theoretic framework. We apply MIMOSA to several real-world multi-

layer graphs and find that the clusters identified by MIMOSA indeed result in better

clustering performance than the other two methods in terms of multiple external and

internal clustering metrics.

6.1 Multilayer Graph Model and Spectral Graph Clustering

via Convex Layer Aggregation

6.1.1 Multilayer graph model

Throughout this chapter, we consider the multilayer graph model of L layers

representing different relationships among a common node set V of n nodes. The

graph in the `-th layer is an undirected graph with nonnegative edge wights, which is

denoted by G` = (V , E`), where E` is the set of weighted edges in the `-th layer. The

n × n binary symmetric adjacency matrix A(`) is used to represent the connectivity

structure of G`. The entry [A(`)]uv = 1 if nodes u and v are connected in the `-th

layer, and [A(`)]uv = 0 otherwise. Similarly, the n× n nonnegative symmetric weight

matrix W(`) is used to represent the edge weights in G`, where W(`) and A(`) have
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the same zero structure.

We assume each layer in the multilayer graph is a (possibly correlated) repre-

sentation of common K clusters that partitions the node set V , where the k-th

cluster has cluster size nk such that
∑K

k=1 nk = n. nmin = mink∈{1,...,K} nk and

nmax = maxk∈{1,...,K} nk denote the largest and smallest cluster size, respectively.

Specifically, the adjacency matrix A(`) of G` in the `-th layer can be represented as

A(`) =



A
(`)
1 C

(`)
12 C

(`)
13 · · · C

(`)
1K

C
(`)
21 A

(`)
2 C

(`)
23 · · · C

(`)
2K

...
...

. . .
...

...

...
...

...
. . .

...

C
(`)
K1 C

(`)
K2 · · · · · · A

(`)
K


, (6.1)

where A
(`)
k is an nk × nk binary symmetric matrix denoting the adjacency matrix of

within-cluster edges of the k-th cluster in the `-th layer, and C
(`)
ij is an ni×nj binary

rectangular matrix denoting the adjacency matrix of between-cluster edges of clusters

i and j in the `-th layer, 1 ≤ i, j ≤ K, i 6= j, and C
(`)
ij = C

(`)
ij

T
.

Similarly, the edge weight matrix W(`) of the `-th layer can be represented as

W(`) =



W
(`)
1 F

(`)
12 F

(`)
13 · · · F

(`)
1K

F
(`)
21 W

(`)
2 F

(`)
23 · · · F

(`)
2K

...
...

. . .
...

...

...
...

...
. . .

...

F
(`)
K1 F

(`)
K2 · · · · · · W

(`)
K


, (6.2)

where W
(`)
k is an nk × nk nonnegative symmetric matrix denoting the edge weights

of within-cluster edges of the k-th cluster in the `-th layer, and F
(`)
ij is an ni × nj
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nonnegative rectangular matrix denoting the edge weights of between-cluster edges

of clusters i and j in the `-th layer, 1 ≤ i, j ≤ K, i 6= j, and F
(`)
ij = F

(`)
ij

T
.

6.1.2 Multilayer signal plus noise model

Using the cluster-wise block representations of the adjacency and edge weight ma-

trices for the multilayer graph model described in (6.1) and (6.2), we propose a signal

plus noise model for A(`) and W(`) to analyze the effect of convex layer aggregation

on graph clustering. Specifically, for each layer we assume the connectivity structure

and edge weight distributions follow the random interconnection model (RIM) in Sec.

4.1. In RIM the signal of the k-th cluster in the `-th layer is the connectivity structure

and weights of the within-cluster edges represented by the matrices A
(`)
k and W

(`)
k ,

respectively. In particular, analogous to the formulation of many detection problems

in signal processing, the signal can be arbitrary in the sense that we impose no dis-

tributional assumption for the within-cluster edges. The noise between clusters i and

j in the `-th layer is the connectivity structure and weights of the between-cluster

edges represented by the matrices C
(`)
ij and F

(`)
ij , respectively.

Throughout this chapter, we assume the connectivity of a between-cluster edge

(i.e., the noise) in each layer is independently drawn from a layer-wise and block-

wise independent common Bernoulli distribution. Specifically, each entry in C
(`)
ij

representing the existence of an edge between clusters i and j in the `-layer is an

independent realization of a Bernoulli random variable with edge connection proba-

bility p
(`)
ij ∈ [0, 1] that is layer-wise and block-wise independent. In addition, given

the existence of an edge (u, v) between clusters i and j in the `-layer, the entry [F
(`)
ij ]uv

representing the corresponding edge weight is independently drawn from a nonnega-

tive distribution with mean W
(`)

ij and bounded fourth moment that is layer-wise and

block-wise independent.

For the `-th layer, the noise accounting for the between-cluster edges is said to
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be block-wise identical if the noise parameters p
(`)
ij = p(`) and W

(`)

ij = W
(`)

for every

cluster pair i and j, i 6= j. Otherwise it is said to be block-wise non-identical. The

effect of these two noise models on multilayer spectral graph clustering will be studied

in Sec. 6.2.

6.1.3 Multilayer spectral graph clustering via convex layer aggregation

Let w = [w1, . . . , wL]T ∈ WL be an L × 1 column vector representing the layer

weight vector for convex layer aggregation, where WL = {w : w` ≥ 0,
∑L

`=1w` = 1}

is the set of feasible layer weight vectors. The single-layer graph obtained via convex

layer aggregation with layer weight vector w is denoted by Gw. The (weighted)

adjacency matrix Aw and the edge weight matrix Ww of Gw have the relation Aw =∑L
`=1w`A

(`) and Ww =
∑L

`=1w`W
(`). The graph Laplacian matrix Lw of Gw is

defined as Lw = Sw−Ww =
∑L

`=1 w`L
(`), where Sw = diag(sw) is a diagonal matrix,

sw = Ww1n is the vector of nodal strength of Gw, 1n is the n × 1 column vector of

ones, and L(`) is the graph Laplacian matrix of G`. Similarly, the graph Laplacian

matrix Lw
k accounting for the within-cluster edges of the k-th cluster in Gw is defined

as Lw
k = Sw

k −Ww
k =

∑L
`=1w`L

(`)
k , where Ww

k =
∑L

`=1w`W
(`)
k , Sw

k = diag(Ww
k 1nk),

and L
(`)
k = S

(`)
k −W

(`)
k . The i-th smallest eigenvalue of Lw is denoted by λi(L

w). Based

on the definition of Lw, the smallest eigenvalue λ1(Lw) of Lw is 0, since Lw1n = 0n,

where 0n is the n× 1 column vector of zeros.

Spectral graph clustering [97] partitions the nodes in Gw into K (K ≥ 2) clusters

based on the K eigenvectors associated with the K smallest eigenvalues of Lw. Specif-

ically, spectral graph clustering first transforms a node in Gw to a K-dimensional

vector in the subspace spanned by these eigenvectors, and then implements K-means

clustering [72] on the K-dimensional vector space representation to group the nodes

in Gw into K clusters based on their distances. For analysis purposes, throughout

this chapter we assume Gw is a connected graph. In practice if Gw is a disconnected

71



graph, spectral graph clustering can be applied to each connected component in Gw.

Moreover, if Gw is a connected graph, λi(L
w) > 0 for all i ≥ 2. That is, the second

to the n-th smallest eigenvalue of Lw are all positive [55]. The eigenvector associated

with the smallest eigenvalue λ1(Lw) provides no information about graph clustering

since it is proportional to a constant vector 1n.

Written in a mathematical expression, let Y ∈ Rn×(K−1) denote the eigenvector

matrix where its k-th column is the (k+ 1)-th eigenvector associated with λk+1(Lw),

1 ≤ k ≤ K − 1. By the Courant-Fischer theorem [78], Y is the solution of the

minimization problem

S2:K(Lw) = min
X∈Rn×(K−1)

trace(XTLwX),

subjec to XTX = IK−1, XT1n = 0K−1, (6.3)

where the optimal value S2:K(Lw) = trace(YTLwY) in (6.3) is the partial eigenvalue

sum S2:K(Lw) =
∑K

k=2 λk(L
w), IK−1 is the (K − 1) × (K − 1) identity matrix, and

the constraints in (6.3) impose orthonormality and centrality on the eigenvectors. In

summary, multilayer spectral graph cluster via convex layer aggregation works by

computing the eigenvector matrix Y from Lw of Gw, and implementing K-means

clustering on the rows of Y to group the nodes into K clusters.

6.2 Performance Analysis of Multilayer Spectral Graph Clus-

tering via Convex Layer Aggregation

In this section, we establish three theorems for performance analysis of multilayer

spectral graph clustering (SGC) via convex layer aggregation. The analysis provides

a theoretic framework for multilayer SGC and allows us to evaluate the quality of

clustering results in terms of a novel signal-to-noise (SNR) ratio that falls out of the
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established theorems, which is then used for determining the number of clusters and

selecting layer weights in the multilayer SGC algorithm proposed in Sec. 6.3.

The first theorem (Theorem 6.1) specifies the interplay between layer weights and

the success of SGC by establishing a condition under which multilayer SGC via convex

layer aggregation fails to correctly identify clusters under the multilayer signal plus

noise model in Sec. 6.1.2.

The second theorem (Theorem 6.2) establishes phase transitions in the success of

multilayer SGC under the block-wise identical noise model for a given layer weight

vector w. Under the block-wise identical noise model, define t(`) = p(`) ·W (`)
to be the

noise level of the `-th layer and let tw =
∑L

`=1w` · t(`) be the aggregated noise level

via convex layer aggregation. We show that for each w there exists a critical value

tw∗ of tw such that if tw < tw∗, multi-layer SGC can correctly identify the clusters,

and if tw > tw∗, multi-layer SGC is in vain.

The third theorem (Theorem 6.3) extends the phase transition analysis of the

block-wise identical noise model to the block-wise non-identical noise model. Under

the block-wise non-identical noise model, define t
(`)
max = maxi,j,i6=j p

(`)
ij ·W

(`)

ij to be the

maximum noise level of the `-th layer and let twmax =
∑L

`=1w` · t
(`)
max. Then for each

w we show that good clustering results can be guaranteed provided that twmax < tw∗,

where tw∗ is the critical value for phase transition under the block-wise identical noise

model.

In the sequel, there are a number of limit theorems stated about the behavior of

random matrices and vectors whose dimensions go to infinity as the sizes {nk}Kk=1

of the clusters go to infinity while their relative sizes nk/nk′ are held constant. For

simplicity and convenience, the limit theorems are often stated in terms of the the

finite, but arbitrarily large, dimensions nk, k = 1, 2, . . . , K.
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6.2.1 Breakdown condition for multilayer SGC via convex layer aggrega-

tion

Under the multilayer signal plus noise model in Sec. 6.1.2, let t
(`)
ij = W

(`)

ij · p
(`)
ij

be the noise level between clusters i and j in the `-layer, 1 ≤ i, j ≤ K, i 6= j, and

1 ≤ ` ≤ L. The following theorem establishes a general breakdown condition under

which multilayer SGC fails to correctly identify the clusters.

Theorem 6.1 (general breakdown condition).

Let W̃w be the (K − 1)× (K − 1) matrix with (i, j)-th element

[W̃w]ij =


∑L

`=1w`

[
(ni + nK) t

(`)
iK +

∑K−1
z=1,z 6=i nzt

(`)
iz

]
, if i = j;∑L

`=1w`ni ·
(
t
(`)
iK − t

(`)
ij

)
, if i 6= j.

The following holds almost surely as nk → ∞ ∀ k and nmin

nmax
→ c > 0. If for any

layer weight vector w ∈ WL, λi

(
W̃w

n

)
6= λj

(
Lw

n

)
for all i = 1, 2, . . . , K − 1 and

j = 2, 3, . . . , K, then multilayer SGC cannot be successful.

Proof. The proof is given in Appendix E.1.

Theorem 6.1 specifies the interplay between the layer weight vector w and the

accuracy of multilayer SGC. Different from the case of single-layer graphs (i.e., L = 1

and hence w = 1) such that the layer weight has no effect on the performance of

SGC, Theorem 6.1 states that multilayer SGC cannot be successful if every possible

layer weight vector w ∈ WL leads to distinct K − 1 smallest nonzero eigenvalues of

the matrices W̃w

n
and Lw

n
. It also suggests that the selection of layer weight vector

does affect the performance of multilayer SGC.

6.2.2 Phase transitions in multilayer SGC under block-wise identical noise

Under the multilayer signal plus noise model in Sec. 6.1.2, if we further assume the

between-cluster edges in each layer follow a block-wise identical distribution, then the
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noise level in the `-th layer can be characterized by the parameter t(`) = p(`) ·W (`)
,

where p(`) ∈ [0, 1] is the edge connection parameter and W
(`)

> 0 is the mean of

the between-cluster edge weights in the `-th layer. Under the block-wise identical

noise model and given a layer weight vector w ∈ WL, let tw =
∑L

`=1 w`t
(`) denote

the aggregated noise level of the graph Gw. Theorem 6.2 below establishes phase

transitions in the eigendecomposition of the graph Laplacian matrix Lw of the graph

Gw. We show that there exists a critical value tw∗ such that the K smallest eigenpairs

of Lw that are used for multilayer SGC have different characteristics when tw < tw∗

and tw > tw∗. In particular, we show that the solution to the minimization problem

in (6.3), the eigenvector matrix Y = [YT
1 ,Y

T
2 , . . . ,Y

T
K ]T ∈ Rn×(K−1) represented by

the cluster partitioned form, where Yk ∈ Rnk×(K−1) with its rows indexing the nodes

in cluster k, has cluster-wise separability when tw < tw∗ in the sense that the matrices

{Yk}Kk=1 are row-wise identical and cluster-wise distinct, whereas when tw > tw∗ the

row-wise average of each matrix Yk is a zero vector and hence the clusters are not

separable by inspecting the eigenvector matrix Y.

Theorem 6.2 (block-wise identical noise).

Let Y = [YT
1 ,Y

T
2 , . . . ,Y

T
K ]T be the solution of the minimization problem in (6.3) and

let cw∗ = mink∈{1,2,...,K}

{
S2:K(Lw

k )

n

}
, where Lw

k =
∑L

`=1w`L
(`)
k . Given a layer weight

vector w ∈ WL, under the block-wise identical noise model with aggregated noise level

tw =
∑L

`=1w`t
(`) =

∑L
`=1 w`p

(`)W
(`)

, there exists a critical value tw∗ such that the

following holds almost surely as nk →∞ ∀ k and nmin

nmax
→ c > 0:

(a)

 If tw ≤ tw∗, S2:K(Lw)
n

= (K − 1)tw;

If tw > tw∗, cw∗ + (K − 1)
(
1− nmax

n

)
tw ≤ S2:K(Lw)

n
≤ cw∗ + (K − 1)

(
1− nmin

n

)
tw.

In particular, if tw > tw∗ and c = 1, S2:K(Lw)
n

= cw∗ + (K−1)2

K
tw.

Furthermore,
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(b)


If tw < tw∗, Yk = 1nk1

T
K−1Vk =

[
vk11nk , v

k
21nk , . . . , v

k
K−11nk

]
, ∀ k ∈ {1, 2, . . . , K};

If tw > tw∗, YT
k 1nk = 0K−1, ∀ k ∈ {1, 2, . . . , K};

If tw = tw∗, ∀ k ∈ {1, 2, . . . , K}, Yk = 1nk1
T
K−1Vk or YT

k 1nk = 0K−1,

where Vk = diag(vk1 , v
k
2 , . . . , v

k
K−1) ∈ R(K−1)×(K−1) is a diagonal matrix.

In particular, when tw < tw∗, Y has the following properties:

(b-1) The columns of Yk are constant vectors.

(b-2) Each column of Y has at least two nonzero cluster-wise constant components,

and these constants have alternating signs such that their weighted sum equals 0 (i.e.,∑
k nkv

k
j = 0, ∀ j ∈ {1, 2, . . . , K − 1}).

(b-3) No two columns of Y have the same sign on the cluster-wise nonzero compo-

nents. Finally, tw∗ satisfies:

(c) twLB ≤ tw∗ ≤ twUB, where twLB =
mink∈{1,2,...,K} S2:K(Lw

k )

(K−1)nmax
;

twUB =
mink∈{1,2,...,K} S2:K(Lw

k )

(K−1)nmin
.

In particular, twLB = twUB when c = 1.

Proof. The proof is given in Appendix E.2.

Theorem 6.2 (a) establishes a phase transition in the increase of the normal-

ized partial eigenvalue sum S2:K(Lw)
n

with respect to the aggregated noise level tw.

When tw ≤ tw∗ the quantity S2:K(L)
n

is exactly (K − 1)tw. When tw > tw∗ the

slope in tw of S2:K(L)
n

changes and the intercept c∗ = mink∈{1,2,...,K}

{
S2:K(Lw

k )

n

}
=

mink∈{1,2,...,K}

{∑L
`=1 w`S2:K(L

(`)
k )

n

}
depends on the cluster having the smallest aggre-

gated partial eigenvalue sum given a layer weight vector w. In particular, when all

clusters have the same size (i.e., nmax = nmin = n
K

) so that c = 1, S2:K(L)
n

undergoes a

slope change from K − 1 to (K−1)2

K
at the critical value tw = tw∗.

Theorem 6.2 (b) establishes a phase transition in cluster-wise separability of the

eigenvector matrix Y for multilayer SGC. When tw < tw∗, the conditions (b-1) to

(b-3) imply that the rows of the cluster-wise components {Yk}Kk=1 are coherent, and
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hence the row vectors in Y possess cluster-wise separability. On the other hand,

when tw > tw∗, the row sum of each Yk is a zero vector, making Yk incoherent.

This means that the entries of each column in Yk have alternating signs and hence

K-means clustering on the rows of Y yields incorrect clusters.

Theorem 6.2 (c) establishes upper and lower bounds on the critical threshold value

tw∗ of the aggregated noise level tw given a layer weight vector w. These bounds

are determined by the cluster having the smallest aggregated partial eigenvalue sum

S2:K(Lw
k ) =

∑L
`=1w`S2:K(L

(`)
k ), the number of clusters K, and the largest and smallest

cluster size (nmax and nmin). When all cluster sizes are identical (i.e., c = 1), these

bounds become tight (i.e., twLB = twUB). Moreover, by the nonnegativity of the layer

weights we can obtain a universal lower bound on twLB for any w ∈ WL, which is

twLB =
mink∈{1,2,...,K} S2:K(Lw

k )

(K − 1)nmax

≥
mink∈{1,2,...,K}min`∈{1,2,...,L} S2:K(L

(`)
k )

(K − 1)nmax

. (6.4)

Since S2:K(L
(`)
k ) is a measure of connectivity for cluster k in the `-th layer, the lower

bound of twLB in (6.4) implies that the performance of multilayer SGC is indeed affected

by the least connected cluster among all K clusters and across L layers. Specifically,

if the graph in each layer is unweighted and K = 2, then S2:K(L
(`)
k ) = λ2(L

(`)
k ) reduces

to the algebraic connectivity of cluster k in the `-th layer. Similarly, we can obtain a

universal upper bound on twUB for any w ∈ WL, which is

twUB ≤
mink∈{1,2,...,K}max`∈{1,2,...,L} S2:K(L

(`)
k )

(K − 1)nmin

. (6.5)
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6.2.3 Phase transitions in multilayer SGC under block-wise non-identical

noise

Under the block-wise non-identical noise model, the noise level of between-cluster

edges between clusters i and j in the `-th layer is characterized by the parameter

t
(`)
ij = p

(`)
ij ·W

(`)

ij , 1 ≤ i, j ≤ K, i 6= j, and 1 ≤ ` ≤ L. Let t
(`)
max = max1≤i,j≤K, i 6=j t

(`)
ij

be the maximum noise level in the `-th layer and let twmax =
∑L

`=1w`t
(`)
max denote the

aggregated maximum noise level given a layer weight vector w ∈ WL.

Let Y ∈ Rn×(K−1) be the eigenvector matrix of Lw under the block-wise non-

identical noise model, and let Ỹ ∈ Rn×(K−1) be the eigenvector matrix of the graph

Laplacian L̃w of another random graph generated under the block-wise identical noise

model with aggregated noise level tw, which is independent of L. Theorem 6.3 below

specifies the distance between the subspaces spanned by the columns of Y and Ỹ by

inspecting their principal angles [97]. Specifically, since Y and Ỹ both have orthonor-

mal columns, the vector v of K − 1 principal angles between their column spaces is

v = [cos−1 σ1(YT Ỹ), . . . , cos−1 σK−1(YT Ỹ)]T , where σk(M) is the k-th largest singu-

lar value of a real rectangular matrix M. Let Θ(Y, Ỹ) = diag(v), and let sin Θ(Y, Ỹ)

be defined entrywise. When tw < tw∗, Theorem 6.3 provides an upper bound on the

Frobenius norm of sin Θ(Y, Ỹ), which is denoted by ‖ sin Θ(Y, Ỹ)‖F . Moreover, if

twmax < tw∗, where tw∗ is the critical threshold value for the block-wise identical noise

model as specified in Theorem 6.2, then ‖ sin Θ(Y, Ỹ)‖F can be further bounded.

Theorem 6.3 (block-wise non-identical noise).

Under the multilayer signal plus noise model in Sec. 6.1.2 with maximum noise

level {t(`)max}L`=1 for each layer, given a layer weight vector w ∈ WL, let tw∗ be be the

critical threshold value for the block-wise identical noise model specified by Theorem

6.2, and define δtw,n = min{tw, |λK+1(Lw

n
) − tw|}. For a fixed tw, if tw < tw∗ and

δtw,n → δtw > 0 as nk → ∞ ∀ k, the following statement holds almost surely as
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nk →∞ ∀ k and nmin

nmax
→ c > 0:

‖ sin Θ(Y, Ỹ)‖F ≤
‖Lw − L̃w‖F

nδtw
. (6.6)

Furthermore, let twmax =
∑L

`=1 w`t
(`)
max. If twmax < tw∗,

‖ sin Θ(Y, Ỹ)‖F ≤ min
tw≤twmax

‖Lw − L̃w‖F
nδtw

. (6.7)

Proof. The proof is given in Appendix E.3.

Theorem 6.3 shows that the subspace distance ‖ sin Θ(Y, Ỹ)‖F is upper bounded

by (6.6), where Ỹ is the eigenvector matrix of L̃w under the block-wise identical

noise model when its aggregated noise level tw < tw∗. Furthermore, if the aggregated

maximum noise level twmax < tw∗, then a tight upper bound on ‖ sin Θ(Y, Ỹ)‖F can

be obtained by (6.7). Therefore, using the phase transition results of the cluster-wise

separability in Ỹ as established in Theorem 6.2 (b), when twmax < tw∗, cluster-wise

separability in Y can be expected provided that ‖ sin Θ(Y, Ỹ)‖F is small.

6.3 MIMOSA: Multilayer Iterative Model Order Selection

Algorithm

The phase transition analysis established in Sec. 6.2 shows that under the mul-

tilayer signal plus noise model in Sec. 6.1.2, the performance of multilayer spec-

tral graph clustering (SGC) via convex layer aggregation can be separated into two

regimes: a reliable regime where high clustering accuracy is guaranteed, and an un-

reliable regime where high clustering accuracy is impossible. We have specified the

critical threshold value of the aggregated noise level that separates these two regimes,

and have shown that the assigned layer weight vector w for convex layer aggregation

indeed affects the accuracy of multilayer SGC.
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In this section, we use the established phase transition criterion to propose a mul-

tilayer SGC algorithm, for which we call multilayer iterative model order selection

algorithm (MIMOSA). MIMOSA is a multilayer SGC algorithm that features auto-

mated model order selection for determining the number of clusters (K) and the layer

weight vector w. It works by incrementally partitioning the aggregated graph Gw

into K clusters, adjusting the layer weight vector, and finding the minimal number

of clusters such that the output clusters are estimated to be in the reliable regime.

The flow diagram of MIMOSA is displayed in Fig. 6.1, and the complete algorithm

is summarized in Algorithm 6.2. The details of MIMOSA are discussed as follows.

6.3.1 Input data

The input data for MIMOSA is summarized as follows. (1) a multilayer graph

{G`}L`=1 of L layers, where each layer G` is an undirected weighted graph. (2) an

initial layer weight vector wini ∈ WL. wini can be specified according to domain

knowledge, or it can be a uniform vector such that w` = 1
L
∀ `. (3) a layer weight

adaptation coefficient set T = {τz}|T |z=1. The coefficients in T play a role in the

process of layer weight adaptation in Sec. 6.3.2. (4) a p-value significance level

η that is used for the block-wise homogeneity test in Sec. 6.3.3. (5) confidence

interval parameters {α`}L`=1 of each layer under the block-wise identical noise model

for clustering reliability evaluation in Sec. 6.3.4. (6) confidence interval parameters

{α′`}L`=1 of each layer under the block-wise non-identical noise model for clustering

reliability evaluation in Sec. 6.3.5.

6.3.2 Layer weight adaptation

Given an initial layer weight vector wini and the number of clusters K in the

iterative process (step 4) of MIMOSA, we propose to adjust the layer weight vector

w for convex layer aggregation by estimating the noise level {t̂(`)ini}L`=1 under the block-
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Figure 6.1: Flow diagram of the proposed multilayer iterative model order selection
algorithm (MIMOSA) for multilayer spectral graph clustering (SGC).

wise identical noise model in Sec. 6.1.2. Specifically, given K clusters {Cwini

k }Kk=1 of

size {n̂k}Kk=1 via multilayer SGC with wini, let {Ĉ(`)
ij } and {F̂(`)

ij } be the interconnection

matrix and edge weight matrix of {Cwini

k }Kk=1, respectively, for 1 ≤ i, j ≤ K, i 6= j,

and 1 ≤ ` ≤ L. Then the noise level estimator under the block-wise identical noise

model is

t̂
(`)
ini = p̂(`) · Ŵ

(`)

, (6.8)

for ` ∈ {1, 2, . . . , L}, where p̂(`) =
∑K
i=1

∑K
j=i+1 m̂

(`)
ij∑K

i=1

∑K
j=i+1 n̂in̂j

is the maximum likelihood estimator

(MLE) of p(`), m̂
(`)
ij = 1Tn̂iĈ

(`)
ij 1n̂j is the number of between-cluster edges of clusters

i and j in the `-th layer, and Ŵ
(`)

is the average of between-cluster edge weights in

the `-th layer.

Since the estimates {t̂(`)ini}L`=1 reflect the noise level in each layer, we propose to

adjust the layer weight vector w ∈ WL with a nonnegative regularization parameter

τ ∈ T . The adjusted w layer weight vector is inversely proportional to the estimated

noise level, which is defined as

w` ∝
wini
`

1 + τ · t̂(`)ini

, (6.9)

for ` ∈ {1, 2, . . . , L}. Note that if τ = 0, then w reduces to wini. In addition, larger

τ further penalizes the layers of high noise level by assigning less weight for convex

layer aggregation.
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6.3.3 Block-wise homogeneity test

Given K clusters {Cw
k }Kk=1 with respect to a layer weight vector w in the iterative

process (step 4) of MIMOSA, we implement a block-wise homogeneity test for each

block Ĉ
(`)
ij accounting for the interconnection matrix of clusters i and j in the `-th

layer, in order to test the assumption of the block-wise homogeneity noise model

as assumed in Sec. 6.1.2, which is the cornerstone of the phase transition results

established in Sec. 6.2.

More specifically, we are testing the null hypothesis that Ĉ
(`)
ij is a realization of

a random matrix with i.i.d. Bernoulli entries and the alternative hypothesis that

Ĉ
(`)
ij is a realization of a random matrix with independent Bernoulli entries, for every

(i, j, `) such that 1 ≤ i, j ≤ K, i 6= j, and 1 ≤ ` ≤ L. We use the V-test [129] for

homogeneity testing of the row sums or column sums of Ĉ
(`)
ij as described in Algorithm

6.1. Given a set of independent binomial random variables, the V-test tests that they

are all identically distributed. For concreteness, here we apply the V-test to the row

sums of each Ĉ
(`)
ij independently.

For each Ĉ
(`)
ij , the test statistic Z of the V-test converges to a standard normal

distribution as ni, nj → ∞, and the p-value for the hypothesis that the row sums

of Ĉ
(`)
ij are i.i.d. is p-value(i, j, `) = 2 · min{Φ(Z), 1 − Φ(Z)}, where Φ(·) is the

cumulative distribution function (cdf) of the standard normal distribution. The block-

wise homogeneity test on Ĉ
(`)
ij rejects the null hypothesis if p-value(i, j, `) ≤ η, where

η is the desired single comparison significance level. In step 4-5 of MIMOSA, the

layer weight vector w and the corresponding clusters {Cw
k }Kk=1 are deemed unreliable

if there exists some Ĉ
(`)
ij such its p-value does not exceed the significance level.

6.3.4 Clustering reliability test under the block-wise identical noise model

In the iterative process of step 4 in MIMOSA, if every interconnection matrix Ĉ
(`)
ij

passes the block-wise homogeneity test in Sec. 6.3.3, the identified clusters {Cw
k }Kk=1
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Algorithm 6.1 p-value computation from V-test for block-wise homogeneity test

Input: An ni × nj interconnection matrix Ĉ
(`)
ij

Output: p-value(i, j, `)

x = Ĉ
(`)
ij 1nj (# of nonzero entries of each row in Ĉ

(`)
ij )

y = nj1ni − x (# of zero entries of each row in Ĉ
(`)
ij )

X = xTx− xT1ni and Y = yTy − yT1ni .

N = ninj(nj − 1) and V =
(√

X +
√
Y
)2

.

Compute test statistic Z = V−N√
2N

Compute p-value(i, j, `)= 2 ·min{Φ(Z), 1− Φ(Z)}

are then used to test the clustering reliability under the block-wise identical noise

model in Sec. 6.1.2. In particular, for each layer `, we first estimate the noise level

parameter p̂
(`)
ij for each every cluster pair i and j as p̂

(`)
ij =

m̂
(`)
ij

n̂in̂j
, where p̂

(`)
ij is an

MLE of p
(`)
ij . We then use a generalized log-likelihood ratio test (GLRT) developed in

Appendix D.1 based on the Wilk’s theorem [167] to specify an asymptotic 100(1−α`)%

confidence interval for p(`) accounting for the block-wise identical noise level parameter

for each layer, which is

{
p(`) : ξ(K2 )−1,1−α`

2
≤ 2

K∑
i=1

K∑
j=i+1

I{p̂(`)ij ∈(0,1)}

[
m̂

(`)
ij ln p̂

(`)
ij + (n̂in̂j − m̂(`)

ij ) ln(1− p̂(`)
ij )
]

−2

m(`) −
K∑
k=1

m̂
(`)
k

 ln p(`) −

n2 −
K∑
k=1

n̂2
k − 2

m(`) −
K∑
k=1

m̂
(`)
k


 ln(1− p(`))

≤ ξ(K2 )−1,
α`
2

}
, (6.10)

where ξq,α is the upper α-th quantile of the central chi-square distribution with degree

of freedom q, IE is the indicator function of the event E, m(`) is the total number of

edges in the `-th layer, and m̂
(`)
k is the number of within-cluster edges of cluster k in

the `-th layer.

If the estimated block-wise identical noise level parameter p̂(`) =
∑K
i=1

∑K
j=i+1 m̂

(`)
ij∑K

i=1

∑K
j=i+1 n̂in̂j

is within the confidence interval in (6.10) for every `, then the clusters {Cw
k } satisfy
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Algorithm 6.2 Multilayer iterative model order selection algorithm (MIMOSA)

Input:
(1) a multilayer graph {G`}L`=1

(2) an initial layer weight vector wini ∈ WL

(3) a layer weight adaptation coefficient set T = {τz}|T |z=1

(4) a p-value significance level η
(5) confidence interval parameters {α`}L`=1 under the block-wise identical noise
model for each layer
(6) confidence interval parameters {α′`}L`=1 under the block-wise non-identical noise
model for each layer
Output: K clusters {Ck}Kk=1

Initialization: K = 2. Flag = 1. Wreliable = ∅.
while Flag= 1 do

1. Compute Y ∈ Rn×(K−1) of Lwini

2. Obtain K clusters {Cwini

k }Kk=1 by K-means algorithm on the rows of Y

3. Estimate the noise level {t̂(`)ini}L`=1 from (6.8)
4. Layer weight adaptation and multilayer SGC reliability tests:
for z = 1 to |T | do

4-1. Layer weight adaptation: w` ← wini
` · (1 + τz · t̂(`))−1, ∀ ` ∈ {1, 2, . . . , L}

4-2. Layer weight normalization: w` ← w` ·(
∑L

`′=1w`′)
−1, ∀ ` ∈ {1, 2, . . . , L}

4-3. Compute Y ∈ Rn×(K−1) of Lw

4-4. Obtain K clusters {Cw
k }Kk=1 by K-means algorithm on the rows of Y

4-5. Block-wise homogeneity test:
calculate p-value(i, j, `) by Algorithm 6.1, 1 ≤ i, j ≤ K, i 6= j, and 1 ≤ ` ≤ L
if p-value(i, j, `) ≤ η for some (i, j, `) then

Go back to step 4-1 with z = z + 1
end if
4-6. Estimate the noise level {t̂(`)ij } for all i, j, ` and estimate t̂wLB from (6.11)
4-7. Block-wise identical noise test:
estimate the aggregated noise level t̂w =

∑L
`=1 w` · t̂(`)

if t̂(`) lies in the confidence interval (6.10) ∀ ` then
if t̂w < t̂wLB then

Flag= 0. Wreliable =Wreliable ∪ {w}.
end if

else if t̂(`) does not lie in the confidence interval (6.10) for some ` then
4-8. Block-wise non-identical noise test:
estimate the aggregated maximum noise level t̂wmax =

∑L
`=1w`t̂

(`)
max

if
∏K

i=1

∏K
j=i+1 Fij(

t̂LB

Ŵ
(`)

ij

, p̂
(`)
ij ) ≥ 1− α′` ∀ ` then

if t̂wmax < t̂wLB then
Flag= 0. Wreliable =Wreliable ∪ {w}.

end if
end if

end if
Go back to step 4-1 with z = z + 1

end for
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Algorithm 6.2 MIMOSA (continued)

if Flag= 1 then
Go back to step 1 with K = K + 1

end if
end while
5. SNR criterion: select w∗ = arg maxw∈Wreliable

t̂wLB

t̂w

6. Output final clustering result: {Ck}Kk=1 ← {Cw∗

k }Kk=1

the block-wise identical noise model, and therefore we can apply the phase transition

results in Theorem 6.2 to evaluate the clustering reliability. In particular, we compare

the estimated aggregated noise level t̂w with the estimated phase transition lower

bound t̂wLB of twLB in Theorem 6.2 (c), where t̂w =
∑L

`=1w`t̂
(`) =

∑L
`=1w` · p̂(`) · Ŵ

(`)

,

and

t̂wLB =
mink∈{1,2,...,K} S2:K(

∑L
`=1w` · L̂

(`)
k )

(K − 1) · n̂min

, (6.11)

where L̂
(`)
k is the graph Laplacian matrix of within-cluster edges of cluster Cw

k in the

`-layer, S2:K(
∑L

`=1 w` · L̂
(`)
k ) =

∑K
z=2 λz(

∑L
`=1 w` · L̂

(`)
k ), and n̂min = mink∈{1,2,...,K} n̂k.

Therefore, using Theorem 6.2, the clusters {Cw
k }Kk=1 are deemed reliable if t̂w < t̂wLB,

since the eigenvector matrix Y used for multilayer SGC possesses cluster-wise sepa-

rability.

6.3.5 Clustering reliability test under the block-wise non-identical noise

model

In the iterative process of step 4 in MIMOSA, if every interconnection matrix Ĉ
(`)
ij

passes the block-wise homogeneity test in Sec. 6.3.3, but some layers fail the clustering

reliability test under the block-wise identical noise model in Sec. 6.3.4, the identified

clusters {Cw
k }Kk=1 are then used to test the clustering reliability under the block-wise

non-identical noise model in Sec. 6.1.2 based on Theorem 6.3. Given a layer weight

vector w, the noise level estimates {t̂(`)ij }, and the estimate t̂wLB of the phase transition
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lower bound in (6.11), we compare the maximum noise level t̂
(`)
max = max1≤i,j≤K,i6=j t̂

(`)
ij

with t̂wLB for each layer `. More specifically, for each layer `, we use t̂
(`)
max to test the

null hypothesis H
(`)
0 : t

(`)
max < twLB against the alternative hypothesis H

(`)
1 : t

(`)
max ≥ twLB.

The test accepts H
(`)
0 if the condition in (6.12) holds, and rejects H

(`)
0 otherwise.

Using the Anscombe transformation on {t̂(`)ij } for variance stabilization [8], testing

whether t̂
(`)
max lies within an asymptotic 100(1 − α′`)% confidence interval under H

(`)
0

is equivalent to testing the condition

K∏
i=1

K∏
j=i+1

Fij

 t̂wLB

Ŵ
(`)

ij

, p̂
(`)
ij

 ≥ 1− α′`, (6.12)

where

Fij

 t̂wLB

Ŵ
(`)

ij

, p̂
(`)
ij

 = Φ

√4n̂in̂j + 2 ·

Aij
 t̂wLB

Ŵ
(`)

ij

− Aij(p̂(`)
ij )


 · I{p̂(`)ij ∈(0,1)}

+ I{t̂(`)ij <t̂wLB}
I{p̂(`)ij ∈{0,1}}. (6.13)

The proof of the condition in (6.12) is given in Appendix E.4.

Therefore, if the estimated maximum noise level t̂
(`)
max satisfies the condition in

(6.12) for each layer `, then if the aggregated maximum noise level t̂wmax =
∑L

`=1 w`t̂
(`)
max <

t̂wLB, by Theorem 6.3 the identified clusters {Ck}Kk=1 are deemed reliable since the eigen-

vector matrix Y possesses good cluster-wise separability.

6.3.6 A signal-to-noise ratio criterion for final clustering results

In step 4 of MIMOSA, given the number of clusters K, if MIMOSA finds any

feasible layer weight vector that passes the clustering reliability tests in Sec. 6.3.4 or

Sec. 6.3.5, it then stores the vector in the set Wfeasible, and stops increasing K. This

means that MIMOSA has identified a set of clustering results of the same number
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of clusters K that are deemed reliable based on the clustering reliability tests. To

select the best clustering result from the feasible set, in step 5 we use the phase

transition results established in Sec. 6.2 to define a signal-to-noise ratio (SNR) for

each clustering result, which is

SNRw =
t̂wLB

t̂w
. (6.14)

t̂wLB can be viewed as the aggregated strength of within-cluster edges, and t̂w is the

the aggregated noise level across layers. Therefore, the final clustering result is the

clusters {Cw∗

k }Kk=1, where w∗ = arg maxw∈Wfeasible
SNRw is the layer weight vector

having the largest SNR in the set Wfeasible.

6.3.7 Computational complexity analysis

Let n and m be the number of nodes and edges in the aggregated graph Gw,

respectively. Fixing a model order K (i.e., the number of clusters) in the iteration

of MIMOSA as displayed in Fig. 6.1, the computational complexity of MIMOSA

consists of three parts.

1. Based on the incremental eigenpair computation method in CH. II, acquiring

an additional smallest eigenvector for spectral graph clustering takes O(m+ n)

iterations via power iteration approach, since the number of nonzero entries in

the graph Laplacian matrix Lw of Gw is m+ n.

2. The estimation of the multilayer RIM parameters {t(`)ij } takes O(Lm) operations

since for each layer they only depend on the number of edges and edge weights.

The estimation of twLB takes O(K(m + n) · K) = O(K2(m + n)) iterations for

computing the least partial eigenvalue sum among K clusters.

3. K-means clustering takes O(nK2) operations [174] for clustering n data points

of dimension K − 1 into K groups.
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As a result, if MIMOSA outputs K clusters, then the iterative process leads to total

computational complexity of O(|T |K3(m+ n) + |T |Lm) operations.

6.4 Numerical Experiments

To validate the phase transition results in the accuracy of multilayer SGC via

convex layer aggregation in Sec. 6.2, we generate synthetic multilayer graphs from a

two-layer correlated multilayer graph model. Specifically, we generate edge connec-

tions within and between K = 3 equally-sized ground-truth clusters on L = 2 layers

G1 and G2. The two layers G1 and G2 are correlated since their edge connections are

generated in the following manner. For every node pair (u, v) of the same cluster,

with probability q11 there is a within-cluster edge (u, v) in G1 and G2, with proba-

bility q10 there is a within-cluster edge (u, v) in G1 but not in G2, with probability

q01 there is a within-cluster edge (u, v) in G2 but not in G1, and with probability q00

there is no edge (u, v) in G1 and G2. These four parameters are nonnegative and sum

to 1. For between-cluster edges, we adopt the block-wise identical noise model in Sec.

6.1.2 such that for each layer `, the edge connection between every node pair from

different clusters is an i.i.d. Bernoulli random variable with parameter p(`).

6.4.1 Phase transitions in multilayer SGC via convex layer aggregation

By varying the noise level {p(`)}2
`=1, Fig. 6.2 shows the accuracy of multilayer

SGC with respect to different layer weight vector w = [w1 w2]T , where the accuracy

is evaluated in terms of cluster detectability, i.e., the fraction of correctly identified

nodes in the same cluster. Given a fixed w, as proved in Theorem 6.2, there is indeed

a phase transition in cluster detectability that separates the noise level {p(`)}2
`=1 into

two regimes: a reliable regime where high clustering accuracy is guaranteed, and

an unreliable regime where high clustering accuracy is impossible. Furthermore, the

critical value of {p(`)}2
`=1 that separates these two regimes are successfully predicted
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Figure 6.2: Phase transitions in the accuracy of multilayer SGC with respect to dif-
ferent layer weight vector w = [w1 w2]T for the two-layer correlated graph model.
n1 = n2 = n3 = 1000, q11 = 0.3, q10 = 0.2, q01 = 0.1, and q00 = 0.4. The results
are averaged over 10 runs. For a given w, the variations in the noise level {p(`)}2

`=1

indeed separates the accuracy of multilayer SGC into a reliable regime and an un-
reliable regime. Furthermore, the critical value that separates these two regimes are
successfully predicted by Theorem 6.2.

by Theorem 6.2 (c), which validates the phase transition analysis. Fig. 6.3 shows

the geometric mean of cluster detectability from multilayer SGC via convex layer

aggregation for the two-layer correlated graph model, where w1 is uniformly sampled

from the interval [0, 1]. It can be observed that the universal phase transition lower

bound predicted by (6.4) indeed specifies a regime where any layer weight vector

w ∈ W2 can lead to correct clustering results. Similarly, the universal phase transition

upper bound predicted by (6.5) specifies a regime where any layer weight vector

w ∈ W2 leads to incorrect clustering results.

6.4.2 The effect of layer weight vector on multilayer SGC via convex layer

aggregation

Next we investigate the effect of layer weight vector w on multilayer SGC via

convex layer aggregation given a fixed noise level. In the two-layer graph setting,

since by definition w2 = 1 − w1, it suffices to study the effect of w1 on clustering

accuracy. Fig. 6.4 shows the clustering accuracy by varying w1 under the two-layer

correlated graph model. As shown in Fig. 6.4 (a), if each layer has low noise level,
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Figure 6.3: Phase transitions in the geometric mean of cluster detectability from
multilayer SGC via convex layer aggregation for the two-layer correlated graph model,
where w1 is uniformly sampled from the [0, 1] with unit interval 0.1. n1 = n2 = n3 =
500, q11 = 0.3, q10 = 0.2, q01 = 0.1, and q00 = 0.4. The results are averaged over 10
runs. It can be observed that the universal phase transition lower bound predicted
by (6.4) indeed specifies a regime where any layer weight vector w ∈ W2 can lead to
correct clustering results. Similarly for the universal phase transition upper bound
predicted by (6.5).

then any layer weight vector w ∈ W2 can lead to correct clustering result. If one

layer has high noise level, Fig. 6.4 (b) and (c) show that there exists a critical

value w?1 ∈ [0, 1] that separates the cluster detectability into a reliable regime and

an unreliable regime. In particular, Theorem 6.2 implies that the critical value w?1,

if existed, satisfies the condition tw = tw
∗

when w = [w?1, 1 − w?1]T = w∗, which is

equivalent to

K − 1

K

[
w?1p

(1) + (1− w?1)p(2)
]

= w?1 · min
k∈{1,2,...,K}

S2:K

(
L

(1)
k

n

)

+ (1− w?1) · min
k∈{1,2,...,K}

S2:K

(
L

(2)
k

n

)
. (6.15)
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Figure 6.4: The effect of the layer weight vector w = [w1 w2]T on the accuracy
of multilayer SGC with respect to difference noise level {p(`)}2

`=1 for the two-layer
correlated graph model. n1 = n2 = n3 = 1000, q11 = 0.3, q10 = 0.2, q01 = 0.1, and
q00 = 0.4. The results are averaged over 50 runs. Fig. 6.4 (a) shows that in the case
of low noise level for each layer, any layer weight vector w ∈ W2 can lead to correct
clustering result. Fig. 6.4 (b) and (c) show that if one layer has high noise level, then
there may exist a critical value w∗1 ∈ [0, 1] that separates the cluster detectability
into a reliable regime and an unreliable regime. Furthermore, the critical value w∗1 is
shown to satisfy the equation in (6.15) derived from Theorem 6.2. Fig. 6.4 (d) shows
that in the case of high noise level for each layer, no layer weight vector can lead to
correct clustering result, and the cluster detectability is similar to random guessing
of clustering accuracy 33.33%.
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It is observed that the empirical critical value w?1 matches the predicted value from

(6.15). Lastly, as shown in Fig. 6.4 (d), if each layer has high noise level, then no

layer weight vector can lead to correct clustering result, and the corresponding cluster

detectability is similar to random guessing of clustering accuracy 1
K
≈ 33.33%.

6.5 MIMOSA on Real-World Multi-Layer Graphs

6.5.1 Dataset descriptions

In this section, we apply MIMOSA to 7 real-world multilayer graphs and compute

the external and internal clustering metrics for quality assessment. The statistics of

the 7 real-world multilayer graphs are summarized in Table 6.1, and the details are

described as follows.

� VC 7th grader social network [162]: This dataset is based a survey of social

relations among 29 7th grade students in Victoria, Australia. There are 12

boys and 17 girls in this dataset. A 3-layer graph is created based on different

relationships, including “friends you get on with”, “your best friends”, and

“friends you prefer to work with” in the class. For each layer we only retain the

edge of mutual agreement among every student pair.

� Leskovec-Ng collaboration network1: We collected the coauthors of Prof.

Jure Leskovec or Prof. Andrew Ng at Stanford University from ArnetMiner

[151] from year 1995 to year 2014. In total, there are 191 researchers in this

dataset. We separate the coauthorship of 20 years by a 5-year interval and hence

create a 4-layer multilayer graph. For each layer, there is an edge between two

researchers if they coauthored at least one paper in the 5-year interval. For

every edge in each layer, we adopt the temporal collaboration strength as the

edge weight [141, 177]. Notably, although Prof. Leskovec and Prof. Ng both

1The dataset can be downloaded from https://sites.google.com/site/pinyuchenpage/datasets

92



worked at the same department, there is no record of coauthorship between

them on ArnetMiner. Nonetheless, the entire collaboration network among 191

researchers is a connected graph so that the graph clustering task is nontrivial.

We manually label each researcher by either “Leskovec’s collaborator” or “Ng’s

collaborator” based on the collaboration frequency, and use the labels as the

ground-truth cluster assignment. The ground-truth clusters with researcher

names are displayed in Fig. 6.5.

� 109th Congress votes: We collected the votes of 100 senators of the 109th

U.S. Congress to create 3 multilayer graph datasets based on bill subjects,

including “Budget”, “Energy”, and “Security”. Only bills that every senator

has voting records are considered in these datasets. For each bill subject (a

multilayer graph), each layer corresponds to one bill. In each layer, there is an

edge between two senators if they both have the same vote. We use the party

(Democratic or Republican) as the ground-truth cluster label. In addition,

we label the independent senator as Democratic since he caucused with the

Democrats.

� Reality mining [123]: The reality mining dataset contains mobile and social

traces among 94 MIT students. We extract the largest connected component of

students from this dataset to form a 2-layer graph, where one layer represents

user connection via text messaging, and the other layer represents user connec-

tion via proximity (Bluetooth scanning). For each layer we only retain the edge

of mutual contact among every student pair.

� London transportation network [44]: The London transportation network

dataset contains different transportation routes of stations in London. We ex-

tract the largest connected component of stations that are either connected by

Overground transportation or by Docklands Light Railway (DLR) to form a 2-
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Dataset # of layers
Ground-truth
cluster labels

VC 7th grader
social network

3
boy
girl

Leskovec-Ng
collaboration network

4
Leskovec’s collaborator

Ng’s collaborator
109th Congress votes

- Budget
4

Democratic
Republican

109th Congress votes
- Energy

2
Democratic
Republican

109th Congress votes
- Security

2
Democratic
Republican

Reality mining 2 None
London transportation

network
2 None

Table 6.1: Summary of real-world multilayer graph datasets.

layer graph, where one layer represents overground connectivity, and the other

layer represents DLR connectivity.

Since MIMOSA allows the input multilayer graph to be weighted, for each layer

G`, if G` is unweighted, we adopt the degree normalization technique [97] such that

the (u, v)-th entry in the edge weight matrix W(`) is [W(`)]uv = [A(`)]uv√
d
(`)
u ·d

(`)
v

if d
(`)
u > 0

and d
(`)
v > 0, and [W(`)]uv = 0 otherwise, where A(`) is the adjacency matrix of G`

and d
(`)
u is the degree of node u in G`.

6.5.2 Performance evaluation

Using the multilayer graphs datasets listed in Table 6.1, we compare the clustering

performance of MIMOSA with other two methods that also feature automated cluster

assignment without specifying the number of clusters K a priori. The first method is

the baseline approach that assigns uniform weight on each layer for layer aggregation

(i.e., w` = 1
L
∀ `). Since this baseline approach is equivalent to MIMOSA with the

setting wini = 1L
L

and T = {0}, we call this method MIMOSA-uniform. The second

method is a greedy multilayer modularity maximization approach that extends the
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Figure 6.5: Ground-truth clusters of the collected Leskovec-Ng collaboration network.
Nodes represent researchers, edges represent the strength of coauthorship [141, 177],
and colors and shapes represent two clusters - “Leskovec’s collaborator” (cyan square)
or “Ng’s collaborator” (red circle).

Louvain method for clustering in single-layer graphs to multilayer graphs, which is

called GenLouvain2. GenLouvain aims to merge the nodes to maximize the multilayer

modularity defined in [101] in a greedy manner. For all datasets, we set the resolution

parameter γ = 1 and the latent inter-layer coupling parameter ω = 1 for GenLouvain.

For MIMOSA, we set wini = 1L
L

to be a uniform vector, η = 10−5, α` = α′` = 0.05 ∀ `,

and the regularization set T = {0, 10−1, 100, 101, 102, 103, 104, 105}.

We use the external and internal clustering metrics introduced in Sec. 5.2.1 to

evaluate the performance of different methods. Since these metrics are designed for

single-layer graphs, we extend these metrics to multilayer graphs by summing the

2http://netwiki.amath.unc.edu/GenLouvain/GenLouvain
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metrics from each layer.

Table 6.2 summarizes the external and internal clustering metrics of the three

methods for the multilayer graph datasets listed in Table 6.1. For MIMOSA and

MIMOSA-uniform, we terminate the iterative process and report the clustering result

as “not applicable” (NA) when the number of clusters K exceeds n
2
, where n is the

number of nodes. As a result, NA means that before termination no clustering results

have passed the clustering reliability tests.

It is observed from Table 6.2 that MIMOSA has the best clustering performance

among 5 out of 7 datasets. For the Congress votes-Budget and Congress votes-

Security datasets, MIMOSA still has comparable performance to the best method.

For the VC 7th grader social network and Leskovec-Ng collaboration network datasets,

MIMOSA-uniform fails to find a reliable clustering result, whereas MIMOSA has

superior clustering metrics over other methods. The robustness of MIMOSA implies

the utility of layer weight adaptation, and it also suggests that assigning uniform

weight to every layer regardless of the noise level may lead to unreliable clustering

results. In addition, we also observe that GenLouvain tends to identify more clusters

than the number of ground-truth clusters.

As a visual illustration, Fig. 6.6 displays the ground-truth clusters and the clusters

identified by MIMOSA for each layer of the VC 7th grader social network dataset.

The number of clusters identified by MIMOSA is 2, which is consistent with the

ground truth. The optimal layer weight vector obtained from step 5 of MIMOSA

in Algorithm 6.2 is w∗ = [0.0531 0.1608 0.7861]T . Comparing each layer with the

ground-truth clusters, it can be observed that the connectivity patterns in Fig. 6.6 (c

) and (d) are more consistent with the ground truth, whereas the connectivity pattern

in Fig. 6.6 (a) is less informative, which explains why MIMOSA adapts more weights

to the second and the third layers. It is worth noting that MIMOSA correctly groups

all nodes into 2 clusters except node 9. However, we also observe that node 9 has no
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Table 6.2: Summary of the number of identified clusters (K) and the external and
internal clustering metrics. “NA” means “not applicable”, and “-” means “not avail-
able” due to lack of ground-truth cluster labels. For each dataset, the method that
leads the highest clustering metric is highlighted in bold face.
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(a) Ground-truth clusters (b) Friends you get on with

(c) Your best friends (d) Friends you work with

Figure 6.6: Illustration of ground-truth clusters and the clusters found by MIMOSA
for the VC 7th grader social network dataset. Fig. 6.6 (a) displays the ground-truth
clusters, where nodes 1 to 12 are boys (labeled by blue color) and nodes 13 to 29
are girls (labeled by red color). Fig. 6.6 (b) to (d) display the clusters (labeled by
different colors) found by MIMOSA on each layer. Comparing to the ground-truth
clusters, MIMOSA correctly group all nodes into 2 clusters except node 9, since node
9 has no edge connections in Fig. 6.6 (c) and (d), and has more connections to girls
than boys in Fig. 6.6 (a).

edge connections in the two informative layers as shown in Fig. 6.6 (c) and (d), and

indeed has more connections to girls than boys in the first layer as shown in Fig. 6.6

(a).
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CHAPTER VII

Local Fiedler Vector Centrality and Deep

Community Detection

In this chapter we specify how insertion and deletion of nodes or edges on a graph

can be mapped to certain matrix operations associated with the graph. We then define

a new centrality measure based on the matrix operation and show its application for

deep community detection. A deep community in a graph is a connected component

that can only be seen after removal of nodes or edges from the rest of the graph. We

formulate the problem of detecting deep communities as multi-stage node removal

that maximizes a new centrality measure, called the local Fiedler vector centrality

(LFVC), at each stage. The LFVC is associated with the sensitivity of algebraic

connectivity to node or edge removals. We prove that a greedy node/edge removal

strategy, based on successive maximization of LFVC, has bounded performance loss

relative to the optimal, but intractable, combinatorial batch removal strategy. Under

a stochastic block model framework, we show that the greedy LFVC strategy can

extract deep communities with probability one as the number of observations becomes

large. We apply the greedy LFVC strategy to real-world network datasets. Compared

with conventional community detection methods we demonstrate improved ability to

identify important communities and key members in the network.

Many community detection methods are based on detecting nodes or edges with
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high centrality. Some examples of commonly used centrality measures are summarized

in Sec. 1.5. ]In [165], a node removal strategy based on targeting high degree nodes is

proposed to improve the performance of the modularity method. The authors of [165]

argue that high-degree nodes incur more noisy connections than low-degree nodes,

and it is experimentally demonstrated that removing high-degree nodes can better

reveal the community structure.

Nonparametric community detection methods, such as the the edge betweenness

method [63] and the modularity method [105], can be viewed as edge removal strate-

gies that aim to maximize a centrality measure, e.g., the modularity or betweenness

measures. It is worth noting that these methods presume that each node in the graph

is affiliated with a community. However, in some community detection applications it

often occurs that the graphs contain spurious edges connecting to irrelevant “noisy”

nodes that are not members of any single community. In such cases, noisy nodes and

edges mask the true communities in the graph. Detection of these masked commu-

nities is a difficult problem that we call “deep community detection”. The formal

definition of a deep community is given in Sec. 7.2. Due to the presence of noisy

nodes and spurious edges [9, 57], deep communities elude detection when conventional

community detection methods methods are applied.

In this chapter, a new partitioning strategy is applied to detect deep communities.

This strategy uses a new local measure of centrality that is specifically designed to

unmask communities in the presence of spurious edges. The new partitioning strategy

is based on a novel spectral measure [38] of centrality called local Fiedler vector

centrality (LFVC). LFVC is associated with the sensitivity of algebraic connectivity

[55] when a subset of nodes or edges are removed from a graph [27, 28]. We show that

LFVC relates to a monotonic submodular set function which ensures that greedy node

or edge removals based on LFVC are nearly as effective as the optimal combinatorial

batch removal strategy.
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Our approach utilizes LFVC to iteratively remove nodes in the graph to reveal

deep communities. A removed node that connects multiple deep communities is

assigned mixed membership: it is shared among these communities. We illustrate the

proposed deep community detection method on several real-world networks. When

our proposed greedy LFVC approach is applied to the network scientist coauthorship

dataset [106], it reveals deep communities that are not identified by conventional

community detection methods. When applied to social media, the Last.fm online

music dataset, we show that LFVC has the best performance in detecting users with

similar interest in artists.

7.1 Algebraic Connectivity and Fiedler Vector

7.1.1 Algebraic connectivity

The algebraic connectivity of G is defined as the second smallest eigenvalue of L,

i.e., λ2(L). G is connected if and only if λ2(L) > 0. Moreover, it is a well-known

property [55] that for any non-complete graph,

λ2(L) ≤ node connectivity ≤ edge connectivity, (7.1)

where node/edge connectivity is the least number of node/edge removals that discon-

nects the graph. (7.1) is the main motivation for our proposed node/edge pruning

approach. A graph with larger algebraic connectivity is more resilient to node and

edge removals. In addition, let dmin be the minimum degree of G, it is also well-known

[38, 40] that λ2(L) ≤ 1 if and only if dmin = 1. That is, a graph with a leaf node (i.e.,

a node with a single edge) cannot have algebraic connectivity larger than 1. For any
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connected graph, we can represent the algebraic connectivity as

λ2(L) = min
‖x‖2=1, x⊥1

xTLx (7.2)

by the Courant-Fischer theorem [76] and the fact that the constant vector is the

eigenvector associated with λ1(L) = 0.

7.1.2 Fiedler vector

The Fiedler vector of a graph is the eigenvector associated with the second smallest

eigenvalue λ2(L) of the graph Laplacian matrix L [55]. The Fiedler vector has been

widely used in graph partitioning, image segmentation and data clustering [97, 127,

143, 144, 148]. Analogously to modularity partitioning, the Fiedler vector performs

community detection by separating the nodes in the graph according to the signs of the

corresponding Fiedler vector elements. Similarly, hierarchical community structure

can be detected by recursive partitioning with the Fiedler vector. In this chapter, we

use the Fiedler vector to define a new centrality measure. One advantage of using the

Fiedler vector over other global centrality measures is that it can be computed in a

distributed manner via local information exchange over the graph [16].

7.2 Deep Community Detection

A deep community is defined in terms of an additive signal (community) plus

noise model. Let A1, . . . ,Ag denote the n× n mutually orthogonal binary adjacency

matrices associated with g non-singleton connected components in a noiseless graph

G0 over n nodes. Assume the nodes have been permuted so that A1, . . . ,Ag are

block diagonal with non-overlapping block indices I1, . . . , Ig. The observed graph G

is a noise corrupted version of G0 where random edges have been inserted between

the connected components of G0. More specifically, let Anse be a random adjacency
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Figure 7.1: An illustration of deep community detection. The entire network is a
realization of the two-community stochastic block model with p2 = p. That is, the
first block is the deep community and the second block only contains spurious edges.
The network size n = 50 and deep community size n1 = ndeep = 20. The parameters
cin = ndeep · p1 and cout = n2 · p. The nodes in the deep community are marked
by red solid circle, and the other nodes are marked by blue solid rectangles. The
left and right columns represent adjacency matrices and their corresponding graphs,
respectively. It is observed when cin is fixed, the deep community is more difficult to
be detected as cout increases.

matrix with the property that Anse(i, j) = 0, i, j ∈ Ik, for k = 1, . . . , g and where the

rest of the elements of Anse are Bernoulli i.i.d random variables. Then the adjacency

matrix A of G satisfies the signal plus noise model

A =

g∑
k=1

Ak + Anse. (7.3)

The deep community detection problem is to recover the embedded connected

components A1, . . . ,Ag from the noise corrupted observations A. An illustrative

visual example of deep community detection is shown in Fig. 7.1. Deep community
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detection is equivalent to the planted clique problem [7] in the special case that g = 1

and the non-zero block of A1 corresponds to a complete graph, i.e., all off-diagonal

elements of this block are equal to one. Models similar to (7.3) have also been

used for hypothesis testing on the existence of dense subgraphs embedded in random

graphs [99, 100]. The null hypothesis is the noise only model (i.e., Ak = 0 ∀k). The

alternative hypothesis is the signal plus noise model (7.3) with Ak 6= 0.

We propose an iterative denoising algorithm for recovering deep communities that

is based on either node or edge removals. The proposed algorithm uses a spectral

centrality measure, defined in Sec. 7.3, to determine the nodes/edges to be pruned

from the observed graph with adjacency matrix A.

Let L̃ be the resulting n × n graph Laplacian matrix after removing a subset of

nodes or edges from the graph. The following theorem provides an upper bound on

the number of deep communities in the remaining graph G̃.

Theorem 7.1. For any node removal set R of G with |R| = q, let r be the rank of

the resulting graph Laplacian matrix L̃ and let ‖L̃‖∗ =
∑

i λi(L̃) denote its nuclear

norm. The number ε of remaining non-singleton connected components in G̃ has the

upper bound

ε ≤ n− q − r

≤ n− q − ‖L̃‖∗
λn(L̃)

= n− q − 2m̃

λn(L̃)
, (7.4)

where m̃ is the number of edges in G̃. The first inequality in (7.4) becomes an equality

if all connected components in G̃ are non-singletons. The second inequality in (7.4)

becomes an equality if all non-singleton connected components are complete subgraphs

of the same size. Similarly, for any edge removal set of G, let r be the rank of
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the resulting graph Laplacian matrix L̃. The number ε of remaining non-singleton

connected components in G̃ has the upper bound ε ≤ n− r ≤ n− ‖L̃‖∗
λn(L̃)

= n− 2m̃

λn(L̃)
.

Proof. The proof can be found in Appendix F.1.

The upper bound in Theorem 7.1 can be further relaxed by applying the inequal-

ity λn(L̃) ≤ 2d̃max [38], where d̃max is the maximum degree of G̃. Other bounds on

λn(L̃) can be found in [69].

The next theorem shows that the largest non-singleton connected component size

can be represented as a norm of a matrix whose column vectors are orthogonal and

sparsest among all binary vectors that form a basis of the null space of L̃.

Theorem 7.2. Define the sparsity of a vector to be the number of zero entries in

the vector. Let null(L̃) denote the null space of L̃ and let X denote the matrix whose

columns are orthogonal and they form the sparsest basis of null(L̃) among binary

vectors. Let ψ(G̃) be the largest non-singleton connected component size of G̃. Then

ψ(G̃) = ‖X‖1 = maxi ‖xi‖1, where xi is the i-th column vector of binary matrix X.

Proof. The proof can be found in Appendix F.2.

Theorems 7.1 and 7.2 are key results that motivate and theoretically justify the

proposed local Fiedler vector centrality measure introduced below. Theorem 7.1

establishes that the number of deep communities is closely related to the number of

edge/node removals that are required to reveal them. Theorem 7.2 establishes that

L1 norm of the sparsest basis for the null space of the graph Laplacian matrix can be

used to estimate the size of the largest deep community in the network.
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7.3 The Proposed Node and Edge Centrality: Local Fiedler

Vector Centrality (LFVC)

The proposed deep community detection algorithm (Algorithm 7.1) is based on

removal of nodes or edges according to how the removals affect a measure of algebraic

connectivity. This measure, called the local Fiedler vector centrality (LFVC), is

computed from the graph Laplacian matrix. In particular, the LFVC is motivated

by the fact that node/edge removals result in low rank perturbations to the graph

Laplacian matrix when n � dmax, where dmax is the maximum degree. The node

and edge LFVC are then defined to correspond to an upper bound on algebraic

connectivity.

7.3.1 Edge-LFVC

Considering the graph G̃(i, j) = (V , E ∪ (i, j)) by adding an edge (i, j) /∈ E to G,

we have L̃ = L + ∆L and ∆L = ∆D−∆A, where ∆D and ∆A are the augmented

degree and adjacency matrices, respectively. Denote the resulting graph Laplacian

matrix by L̃(i, j). Let ei be a zero vector except that its i-th element is equal to 1.

Then

∆D = diag(ei) + diag(ej) = eie
T
i + eje

T
j ; (7.5)

∆A = eie
T
j + eje

T
i , (7.6)

and therefore

L̃(i, j) = L + (ei − ej)(ei − ej)
T . (7.7)

Thus, the resulting graph Laplacian matrix L̃(i, j) after adding an edge (i, j) to G is

the original graph Laplacian matrix L perturbed by a rank one matrix (ei− ej)(ei−
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ej)
T . Similarly, when an edge (i, j) ∈ E is removed from G, we have L̃(i, j) =

L− (ei − ej)(ei − ej)
T .

Consider removing an edge (i, j) ∈ E from G resulting in L̃(i, j) above. Let

y denote the Fiedler vector of L, computing yT L̃(i, j)y gives an upper bound on

λ2(L̃(i, j)) as

λ2(L̃(i, j)) ≤ yT L̃(i, j)y

= yT (L− (ei − ej)(ei − ej)
T )y

= λ2(L)− (yi − yj)2 (7.8)

following the definition of λ2(L) = min‖x‖2=1,x⊥1 xTLx in (7.2). It is worth mentioning

that for any connected graph G there exists at least one edge removal such that the

inequality λ2(L̃(i, j)) < λ2(L) holds, otherwise yi = yj for all i, j ∈ V and this violates

the constraints that ‖y‖2 = 1 and
∑n

i=1 yi = 0. Consequently, there exists at least

one edge removal that leads to a decrease in algebraic connectivity.

Similarly, when we remove a subset of edges ER ⊂ E from G, where |ER| = h. We

obtain an upper bound

λ2(L̃(ER)) ≤ λ2(L)−
∑

(i,j)∈ER

(yi − yj)2. (7.9)

Correspondingly, we define the local Fiedler vector edge centrality as

edge-LFVC(i, j) = (yi − yj)2. (7.10)

Edge-LFVC is a measure of centrality as it associates the sensitivity of algebraic

connectivity to edge removal as described in (7.9). The top h edge removals which

lead to the largest decrease on the right hand side of (7.9) are the h edges with the

highest edge-LFVC.
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7.3.2 Node-LFVC

When a node i ∈ V is removed from G, all the edges attached to i will also be

removed from G. Similar to (7.8), the resulting graph Laplacian matrix L̃(i) can be

regarded as a rank di matrix perturbation of L. Since L− L̃(i) =
∑

j∈Ni(ei−ej)(ei−

ej)
T , where Ni is the set of neighboring nodes of node i, we obtain an upper bound

λ2(L̃(i)) ≤ yT L̃(i)y

= yT (L + L̃(i)− L)y

= λ2(L)−
∑
j∈Ni

(yi − yj)2. (7.11)

Similar to edge removal, for any connected graph, there exists at least one node

removal that leads to a decrease in algebraic connectivity.

If a subset of nodes R ⊂ V are removed from G, where |R| = q, then

L− L̃(R) =
∑
i∈R

∑
j∈Ni

(ei − ej)(ei − ej)
T − 1

2

∑
i∈R

∑
j∈R

Aij(ei − ej)(ei − ej)
T , (7.12)

where the last term accounts for the edges that are attached to the removed nodes

at both ends. Consequently, similar to (7.9), we obtain an upper bound for multiple

node removals

λ2(L̃(R)) ≤ λ2(L)−
∑
i∈R

∑
j∈Ni

(yi − yj)2 +
1

2

∑
i∈R

∑
j∈R

Aij(yi − yj)2. (7.13)

We define the local Fiedler vector node centrality as

node-LFVC(i) =
∑
j∈Ni

(yi − yj)2, (7.14)

which is the sum of the square terms of the Fiedler vector elementwise differences

between node i and its neighboring nodes, and it is also the sum of edge-LFVC of
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i′s neighboring nodes. From (7.11) and (7.13), node-LFVC is associated with the

upper bound on the resulting algebraic connectivity for node removal when |R| = 1.

A node with higher centrality implies that it plays a more important role in the

network connectivity structure.

7.3.3 Monotonic submodularity and greedy removals

Fixing |R| = q, consider the problem of finding the optimal node removal set Ropt

that maximizes the decrease in the upper bound on algebraic connectivity in (7.13).

The computational complexity of this batch removal problem is of combinatorial order(
n
q

)
. Here we show that the greedy LFVC removal procedure, shown in Algorithm 7.1,

and whose computation is only linear in n, has bounded performance loss relative to

the combinatorial algorithm in terms of achieving, within a multiplicative constant

(1− 1/e), an upper bound on algebraic connectivity, where e is Euler’s constant. Let

f(R) =
∑
i∈R

∑
j∈Ni

(yi − yj)2 − 1

2

∑
i∈R

∑
j∈R

Aij(yi − yj)2 (7.15)

and recall from (7.13) that λ2(L̃(R)) ≤ λ2(L)−f(R). Note that when |R| = 1, f(R)

reduces to node-LFVC as Aii = 0. The following lemma provides the cornerstone to

Theorem 7.4.

Lemma 7.3. The function f(R) in (7.15) is equal to

f(R) =
1

2

∑
i∈R

∑
j∈Ni

(yi − yj)2 +
1

2

∑
i∈R

∑
j∈V/R

Aij(yi − yj)2.

Furthermore, f(R) ≥ 0 and f(∅) = 0, where ∅ is the empty set.

Proof. The proof can be found in Appendix F.3.

The following theorem establishes monotonic submodularity [86] of f(R). Mono-

tonicity means f(R) is a non-decreasing function: for any subsets R1,R2 of the node
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set V satisfying R1 ⊂ R2 we have f(R1) ≤ f(R2). Submodularity means f(R) has

diminishing gain: for any R1 ⊂ R2 ⊂ V and v ∈ V \ R2 the discrete derivative

∆f(v|R) = f(R ∪ {v}) − f(R) satisfies ∆f(v|R2) ≤ ∆f(v|R1). As will be seen

below (see (F.9)), this implies that greedy node removal based on LFVC is almost

as effective as the combinatorially complex batch algorithm that searches over all

possible removal sets R.

Theorem 7.4. f(R) is a monotonic submodular set function.

Proof. The proof can be found in Appendix F.4.

Based on Theorem 7.4, we propose a greedy node-LFVC based node removal

algorithm for deep community detection as summarized in Algorithm 7.1. Algo-

rithm 7.1 yields an adjacency matrix Â that corresponds to the remaining edges

after node removal. In addition to a list of the q removed nodes, the deep com-

munities are defined by the non-singleton connected components in Â supplemented

by the nodes that were removed, where the membership of these nodes is defined

by the connected components in Â to which they connect. More specifically, if

Ŝ = (VŜ, EŜ) denotes one of these non-singleton connected components, the set

VŜ ∪
{
i ∈ R : Aij = 1 for some j ∈ Ŝ

}
is called a deep community. This definition

means that some of the removed nodes may be shared by more than one deep com-

munity. The following theorem shows that this greedy algorithm has bounded per-

formance loss no worse than 0.63 as compared with the optimal combinatorial batch

removal strategy.

Theorem 7.5. Fix the target number of nodes to be removed as |R| = q. Let Ropt

be the optimal node removal set that maximizes f(R) and let Rk be the greedy node

removal set at the k-th stage of Algorithm 7.1, where |Rk| = k. Then

f(Ropt)− f(Rq) ≤
(

1− 1

q

)q
f(Ropt) ≤

1

e
f(Ropt).
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Algorithm 7.1 Deep Community Detection by greedy node-LFVC

Input: Adjacency matrix A, number of removed nodes q
Output: Deep communities
R = ∅
for i = 1 to q do

Find the largest connected component
Compute the corresponding Fiedler vector y
Find i∗ = arg maxi

∑
j∈Ni(yi − yj)

2

R = R∪ i∗
Remove i∗ and its edges from the graph

end for
Find Ŝ, one of the non-singleton connected components.

The set VŜ ∪
{
i ∈ R : Aij = 1 for some j ∈ Ŝ

}
is a deep community.

Furthermore,

λ2(L̃(Rq)) ≤ λ2(L)−
(
1− e−1

)
f(Ropt). (7.16)

Proof. The proof can be found in Appendix F.5.

The submodularity of the function f implies that after q greedy iterations the

performance loss is within a factor 1/e of optimal batch removal [103]. In other

words, when removingRq from G, the algebraic connectivity is guaranteed to decrease

by at least (1− e−1)f(Ropt) of its original value. Consequently, identifying the top q

nodes affecting algebraic connectivity can be regarded as a monotonic submodular set

function maximization problem, and the greedy algorithm can be applied iteratively

to remove the node with the highest node-LFVC. Similarly, we can use edge-LFVC

to detect deep communities by successively remove the edge with the highest edge-

LFVC from the graph, and it is easy to show that the term
∑

(i,j)∈ER(yi−yj)2 in (7.9)

is a monotonic submodular set function of the edge removal set ER.
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7.4 Deep Community Detection on Real-world Datasets

In this section, we use the proposed node and edge centrality measures to perform

deep community detection on several datasets collected from real-world networks.

In the implementations of the community detection methods below, the number of

removed nodes or edges is a user-specified free parameter. For LFVC (Algorithm

7.1) this parameter can be selected based on the bounds established in Theorem

7.1. We define h the number of edge removals, q the number of node removals and

g the number of deep communities. The results are compared with the modularity

method and other node centralities discussed in Sec. 1.5. For data visualization,

vertex shapes and colors represent different communities, and edges attached to the

removed nodes are retained in the figures in comparison with other methods. Nodes

with cross labels (black X labels) are singleton survivors that do not belong to any

deep communities using LFVC (Algorithm 7.1).

7.4.1 Dolphin social network

It is shown in [96] that there are tight social structures in dolphin populations.

Most dolphins interact with other dolphins of the same group and only a few dol-

phins can interact with dolphins from different groups. In terms of the proposed

LFVC algorithm, these latter Dolphins introduce ”noisy” edges connecting the two

communities. Figure 7.2 shows that they can therefore be detected by LFVC. In Fig.

7.2 we compare the results of separating 62 dolphins into two communities as proposed

in [96]. For this dataset, community detections based on modularity, edge-LFVC and

node-LFVC have high concordance on the community structures. To partition the

graph into two communities, we need to remove 6 edges based on edge-LFVC or re-

move 4 nodes based on node-LFVC. The four dolphins that are able to communicate

between these two communities are further identified by node-LFVC.
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(a) modularity (b) edge−LFVC, h=6 (c) node−LFVC, q=4

Figure 7.2: Dolphin social network [96] with n = 62 nodes and m = 159 edges.
(a) The modularity method. (b) Edge-LFVC community detection with h = 6 edge
removals. (c) Node-LFVC community detection with q = 4 node removals. Using
node-LFVC, we are able to identify the four dolphins that interact with two groups
as marked by nodes in gray circles. This algorithm, defined by Algorithm 7.1, detects
that these four nodes are members of the two communities. The result of spectral
clustering is shown in the supplementary file1. Spectral clustering results in the same
discovered communities as the proposed edge-LFVC community detection method.
However, unlike the proposed node-LFVC method it does not explicitly identify the
four mixed membership dolphins that connect the two communities.

7.4.2 Zachary’s karate club

Zachary’s karate club [173] is a widely used example for social network analysis,

which contains interactions among 34 karate students. Based on the student activities,

Zachary determines the ground-truth community structure for g = 2, which coincides

with the result of the modularity method in Fig. 7.3 (a). However, the visualization

indicates that there are some deep communities embedded in these two communities,

such as the five-node community in the upper left corner. Indeed, the modularity will

keep increaseing if we further divide communities into 3 and 4 small communities as

shown in Fig. 7.4 (b) and (c), respectively.

As shown in Fig. 7.4 (a), using edge-LFVC, the five-node community in the left

upper corner is revealed when we partition the graph into two connected subgraphs.
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(a) g=2 (b) g=3 (c) g=4

Figure 7.3: The modularity method on Zachary’s karate club [173] with n = 34 nodes
and m = 78 edges.

In Fig. 7.4 (b), three communities are revealed and the only node with a single

acquaintance is excluded from any deep community. Excluding this node makes the

community structure more tightly connected compared with Fig. 7.3 (b). For g = 4,

the community structure in Fig. 7.4 (c) much resembles Fig. 7.3 (c) except that we

exclude the node having a single acquaintance.

Using node-LFVC, we are able to extract important communities and key mem-

bers as shown in Fig. 7.5. For g = 2, only one node removal is required to partition

the graph into two connected subgraphs, which implies that this node is common to

the two communities according to the proposed Algorithm 7.1. For g = 3, two deep

communities (green circle and blue triangle) are discovered in the largest community

(the blue triangle community in Fig. 7.5 (a)), where these two deep communities have

dense internal connections compared with the external connections to other members

in the largest community. These discovered deep communities are important commu-

nities embedded in the network since they play an important role in connecting the

singleton survivors indicated by black X labels. Similar observations hold for g = 4

in Fig. 7.5 (c).
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(a) h=4, g=2 (b) h=15, g=3 (c) h=20, g=4

Figure 7.4: Edge-LFVC community detection on Zachary’s karate club [173] with
n = 34 nodes and m = 78 edges. For g = 3 and 4, the only node with a single
acquaintance is excluded from any deep community.

7.4.3 Coauthorship among network scientists

We next examine the coauthorship network studied by Newman [106]. Nodes

represent network scientists and edges represent the existence of coauthorship. Mul-

tiple memberships are expected to occur in this dataset since a network scientist may

collaborate with other network scientists across different regions all the while having

many collaborations with his/her colleagues and students at the same institution.

As a result, one would expect, as implemented by Algorithm 7.1, node-LFVC to be

advantageous for identifying authors who with multiple memberships and detecting

deep communities.

As shown in Fig. 7.6, the first node with the highest node-LFVC is Yamir Moreno,

who is a network scientist in Spain but has many collaborators outside Spain. The

local (two-hop) coauthorship network of Yamir Moreno is shown in Fig. 7.6. The red

square community represents the network scientists in Spain and Europe, whereas

the blue triangle community represents the rest of the network scientists.

After removing Yamir Moreno from the network, the node with the highest node-
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(a) q=1, g=2 (b) q=6, g=3 (c) q=7, g=4

Figure 7.5: Node-LFVC community detection on Zachary’s karate club [173] with
n = 34 nodes and m = 78 edges. Important communities and key members are dis-
covered using node-LFVC. This also demonstrates how the singleton survivors (nodes
with black X labels) interact through the deep communities. The result of spectral
clustering is shown in the supplementary file1. When g = 4, spectral clustering yields
imbalanced communities (one community has single node).

LFVC in the remaining largest community is Mark Newman, who is associated with

5 community memberships and 3 singleton survivors as shown in Fig. 7.7. Each

community can be related to certain relationship such as colleagues, students and

research institutions. Notably, Lusseau is detected as a singleton survivor in the

deep community detection process in Fig. 7.7. This can be explained by the fact

that although Lusseau has coauthorship with Newman, his research area is primarily

in zoology and he has no interactions with other network scientists in the dataset

since other network scientists are mainly specialists in physics. Also note that the

modularity method (gray dashed box) fails to detect these deep communities and it

detects 25 out of 28 network scientists in Fig. 7.7 as one big community.

7.4.4 Last.fm online music system

Last.fm is an online music system which allows users to tag their favorite songs

and artists and make friends with other users. We use the friendship dataset collected
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Figure 7.6: Yamir Moreno’s local 2-hop coauthorship network (from part of the net-
work of coauthorship among network scientists [106] having n = 379 nodes and
m = 914 edges). Moreno has 14 coauthors (marked by light orange color) and his
coauthors have 35 coauthors. The modularity method [106] detects that Moreno is
a member of only one large community (dashed box in gray). The proposed LFVC
method detects Moreno as belonging to two separate communities indicated by red
and blue nodes, respectively.

in [21] for deep community detection based on node-LFVC and the other centralities

introduced in Sec. 1.5. Two quantities, the normalized largest community size and

the number of discovered communities with respect to node removals, are used to

evaluate the performance of community detection when different node centralities are

applied. These two quantities reflect the effectiveness of graph partitioning. The

number of removed nodes is the number of stages for performing deep community

detection and removing more nodes reveals more deep communities and key members

in the network.

As shown in Fig. 7.8 (a), the normalized largest community size decays linearly

with respect to the number of node removals. Among all node centralities, node-LFVC

has the steepest decaying rate. Furthermore, using node-LFVC discovers more deep

communities, as shown in Fig. 7.8 (b) during the first 50 node removals. The only
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Figure 7.7: Mark Newman’s local 1-hop coauthor network in the network scientist
coauthorship graph [106]. The proposed LFVC method detects Newman as belonging
to 5 communities (marked by different vertex shapes and colors in solid boxes) and
being associated with 3 singleton survivors (marked by black X label). Notably,
Lusseau is detected as singleton survivor since his research area is primarily in zoology.
As shown in gray dashed box, the modularity method [106] detects 25 out of 28
scholars as being in a single community, and the top left 3 scholars as belonging to 3
different communities.

node centrality that is comparable to node-LFVC is betweenness centrality.

To validate the effectiveness of deep community detection, we use the user-artists

dataset in [21] to compute the listening similarity in each discovered community.

The dataset contains 17632 artists and records the number of times each user has

listened to an artist. Let wi be a 17632-by-1 vector with its j-th entry being the

number of times the i-th user has listened to the j-th artist. The residual community

similarity (RCS) is defined as the sum of cosine similarity between each user in the

same community excluding the nodes that have been removed and the singleton

survivors. The residual community similarity of a deep community Ck is defined as

RCS(Ck) =
∑

i∈Ck,i/∈R

∑
j∈Ck,j>i,j /∈R

wT
i wj

‖wi‖2‖wi‖2

. (7.17)
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Figure 7.8: Friendship in Last.fm online music system [21] with n = 1843 nodes and
m = 12668 edges. (a) Normalized largest community size decreases in the number of
node removals at different rates under different node centralities. (b) Discovered com-
munities with respect to node removals using different node centralities. Node-LFVC
outperforms other node centralities in terms of minimizing the largest community
size, and while being capable of detecting more communities in the network for the
first 50 removals.

The residual sum of community similarity (RSCS) is defined as the sum of RCS of

each discovered community. That is,

RSCS =

g∑
k=1

RCS(Ck). (7.18)

As shown in Fig. 7.9, the residual sum of community similarity based on node-

LFVC is larger than that for other centralities. This suggests that node removals

based on node-LFVC can best detect friendship communities that share common in-

terest in artists. Note that although betweenness may detect more communities in

Fig. 7.8 (b), Fig. 7.9 shows that the residual sum of community listening similar-

ity based on betweenness is smaller than that based on node-LFVC, which indicate

that node-LFVC reveals more accurate community structure than betweenness. The

residual sum of community similarity decreases with respect to the number of discov-
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Figure 7.9: Residual sum of community similarity (RSCS) in Last.fm network. The
residual sum of community similarity based on node-LFVC outperforms other cen-
tralities, which indicates that node removals based on node-LFVC can best detect
deep communities that share common interest in artists.

ered communities due to the fact that the removed nodes and singleton survivors are

excluded for similarity computation.
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CHAPTER VIII

Identifying Influential Links for Event Propagation

on Twitter: A Network of Networks Approach

Patterns of event propagation in online social networks are closely related to the

modeling and analysis of information dissemination over certain networks and phys-

ical systems. Examples include epidemic processes in contact networks [113, 120],

information diffusion in social networks and social media [41, 49, 82, 83, 134, 172],

and malware propagation in technological networks [37, 39, 60, 182], among others.

This chapter studies the importance of follower links for event propagation on Twitter,

where the importance of a follower link is associated with the consequence of its re-

moval to event propagation. Three recent event propagation traces are collected with

the user languages being used to identify the Network of Networks (NoN) structure

embedded in the Twitter follower networks.

Specifically, this chapter exploits the network structure embedded in online social

networks for identifying influential links for event propagation. Specifically, we use

Twitter follower networks to study and develop an effective link score function that

reflects the importance of a follower link in event propagation. An event on a Twitter

follower network can be a uniform resource locator (URL) of a web address or a

hashtag in a tweet. A follower who has seen a tweet and decided (not) to retweet the

event is called a retweeter (non-retweeter). A typical example of event propagation
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on Twitter is the announcement of the discovery of a Higgs boson-like particle in

July 2012 [42]. Given a Twitter follower network, our proposed method effectively

identifies important follower links affecting event propagation based on the network

connectivity structure without requiring prior knowledge such as where the event is

originally posted and how the event is retweeted.

We model event propagation using an iterative state equation, and then propose

a Left Eigenvector Score (LES) for each follower link. We show that LES is able to

identify influential follower links for event propagation in the sense that the removal

of those links is effective in reducing the event propagation. Although our method

requires only the information of the network’s connectivity structure, it can be easily

extended to incorporate certain additional user information to further improve the

effectiveness of the proposed method. Specifically, we utilize the Network of Networks

(NoN) structure in Twitter follower networks as additional user information. The NoN

model is a general approach for characterizing a network at different scales. A large-

scale network is often composed of several sub-networks, and the interconnectivity and

interdependency between these sub-networks are known to be crucial to information

dissemination and network robustness [19, 61, 109, 119, 133, 142].

To validate the effectiveness of LES and the NoN structure of event propagation

on Twitter, we collect three recent event propagation traces on Twitter using the

Application Programming Interface (API)1 provided by Twitter for public data re-

trieval, which in turn offers new platforms for tracking and collecting real-world event

propagation traces on Twitter at large scales. The user language is used to identify

the sub-networks within the Twitter follower network under consideration. We find

that the between-network links play an important role in event propagation, as they

account for information dissemination from one user language to another. Experi-

mental results demonstrate that link removals based on LES can successfully reduces

1Twitter REST APIs. Available at https://dev.twitter.com/rest/public
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(a) Obama FB (b) Premier 12 (c) AlphaGo

Figure 8.1: The three collected retweeter networks with user language identifying the
Network of Networks (NoN) structure. A retweeter is represented by a node with
language setting denoted by its color/number. An edge between two nodes indicates
that the event is retweeted from one node to another. The node 0 represents the
virtual source of event propagation. For succinct representation, we grouped all the
same-language leaf retweeters of a single node into a small node. It is observed that
an event is first disseminated by some seed nodes, and other nodes tend to retweet
the event from a same-language node.

event propagation in real-world traces, especially when the between-network follower

links are used for LES calculation.

8.1 The NoN Structure of Event Propagation on Twitter

To study event propagation, we collected the traces of three recent events on

Twitter during a period of two weeks through the Twitter API. These events include

URLs and hashtags specified as follows2.

� Obama FB: A URL that links to U.S. President Obama’s personal Facebook

page created in 2015.

� Premier 12: A hashtag of an international baseball tournament in 2015.

� AlphaGo: A hashtag about a board game algorithm defeating a European Go

champion in 2016 [146].

2More details about the collected event propagation traces on Twitter are
given in Appendix G.1. The collected datasets can be downloaded from
https://sites.google.com/site/pinyuchenpage/datasets
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We also collected each user’s language setting on Twitter, which is used as the

network identity. The source of an event need not to be unique. For example, the

same URL can be independently posted by some users and then be retweeted by their

followers. Fig. 8.1 displays the Network of Networks (NoN) structure in the retweeter

network of the aforementioned events. It is observed that the propagation patterns

of these events share some common features. (i) For each event, there are some hub

users such that their posts are retweeted by many other users. For the Obama FB

event, one hub user is President Obama’s personal Twitter account, and another hub

user is White House’s Twitter account. For the Premier 12 event, one hub user is

the tournament organizer’s official Twitter account. For the AlphaGo event, one hub

user is Google’s Twitter account. (ii) The events are originally posted by some “seed

users” of different languages, and other users tend to retweet the event from a user of

the same language. Take Premier 12 as an example, the tweets regarding Premier 12

are first tweeted by some seed users of different languages, including Dutch, English,

Spanish, Korean, zh-TW and Italian. Then most of the tweets are retweeted by users

of the same language.

8.2 Methodology

8.2.1 Event propagation model

Consider a Twitter follower network consisting of n users and m follower links. Let

A be an n× n binary adjacency matrix representing the follower relationship in the

network, where its entry of the i-th row and the j-th column [A]ij = 1 if user i follows

user j, and [A]ij = 0 otherwise. We divide the time period of event propagation into

F non-overlapping frames, and let At be an n×n binary adjacency matrix indicating

the follower links that have been activated for event propagation during the t-th time

frame, t = 1, 2, . . . F . In other words, [A]ij = 1 indicates that user i follows user j,

124



while [At]ij = 1 indicates that user i retweets user j during the t-th time frame. Let

rt be an n-dimensional binary vector indicating the event propagation status of every

user, where rt’s i-th entry [rt]i = 1 if the event has ever been posted or retweeted by

the i-th user since the beginning to the t-th time frame, and [rt]i = 0 otherwise. In

addition, let r0 be a binary vector such that its nonzero entries indicate the set of

users who first post the event. Then the event propagation model can be written as

an iterative state equation

rt+1 = T
(

rt + T
(
AT
t+1rt

))
, ∀ t = 0, 1, 2, . . . , F − 1, (8.1)

where AT
t+1 is the matrix transpose of At+1, and T(·) is an entry-wise threshold

function defined as [T(x)]i = 1 if [x]i > 1 and [T(x)]i = [x]i if 0 ≤ [x]i ≤ 1, for any

nonnegative vector x. The term T
(
AT
t+1rt

)
can be viewed as the increment vector

for event propagation in the t + 1-th time frame. The derivation of (8.1) is given in

Appendix G.2.

The event propagation model in (8.1) can be easily adapted to incorporate the

NoN structure of a Twitter follower network. Let Abet and Awit denote the adjacency

matrix of the between-network and within-network follower links, respectively. The

event propagation model can be rewritten as

rt+1 = T
(

rt + T
(
Abet
t+1

T
rt

)
+ T

(
Awit
t+1

T
rt

))
(8.2)

for all t = 0, 1, 2, . . . , F − 1. The matrices Abet
t and Awit

t are defined similarly as At

such that At = Abet
t +Awit

t . The terms T
(
Abet
t+1

T
rt

)
and T

(
Awit
t+1

T
rt

)
in (8.2) account

for the event propagation increment caused by between-network and within-network

follower links, respectively.
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8.2.2 Surrogate function for event propagation

Since we are interested in investigating the effect of link removals on a Twitter fol-

lower network prior to actual event propagation, in practice only the adjacency matrix

A of the Twitter follower network is modeled as known, whereas the event propaga-

tion status vector rt and the adjacency matrix At affecting actual event propagation

are unknown. Nonetheless, we will show that the largest eigenvalue of A, denoted by

λmax(A), can be used as a surrogate function for the containment of event propaga-

tion, as it is associated with an upper bound on the increment of event propagation. In

addition, λmax(A) is known to be related to the information dissemination threshold

of some parametric epidemic models [120, 130].

Specifically, let ‖x‖0 denote the number of nonzero entries of an n-dimensional

vector x, which is also known as the `0 norm or the sparsity level of x. Under the

sparsity assumption that ‖rF‖0 ≤ s, where s ≤ n is a trivial upper bound on s, we

can obtain a surrogate function of the increment ‖T
(
AT
t+1rt

)
‖0 in terms of λmax(A),

s and n, which is

∥∥∥∥T(AT
t+1rt

)∥∥∥∥
0

≤ s · λmax(A) +
√
ns (8.3)

for all t = 0, 1, 2, . . . , F − 1. The derivation is given in Appendix G.3. It is clear

from (8.3) that minimizing the largest eigenvalue λmax(A) of the adjacency matrix A

can be effective in containing event propagation, since λmax(A) is associated with an

upper bound on the event propagation increment ‖T
(
AT
t+1rt

)
‖0 for each iteration in

t.

Applying the results in (8.3) to the event propagation model with NoN structure

in (8.2), we can obtain upper bounds on the increments T
(
Abet
t+1

T
rt

)
and T

(
Awit
t+1

T
rt

)
associated with between-network and within-network follower links in terms of λmax(Abet)
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and λmax(Awit), which are

∥∥∥∥T(Abet
t+1

T
rt

)∥∥∥∥
0

≤ s · λmax(Abet) +
√
ns; (8.4)∥∥∥∥T(Awit

t+1

T
rt

)∥∥∥∥
0

≤ s · λmax(Awit) +
√
ns. (8.5)

8.2.3 LES: left eigenvector score

Since in Sec. 8.2.2 the largest eigenvalue of the adjacency matrix of a Twitter

follower network, λmax(A), is shown to be an important factor affecting event prop-

agation, we propose a score function on follower links such that link removals based

on the score function of decreasing order become an effective reducer in the largest

eigenvalue. Specifically, we use the left eigenvector y of the adjacency matrix A to

define a score for each follower link for evaluating every follower link’s importance

in event propagation. By the Perron-Frobenius theorem [76], the largest eigenvalue

of an adjacency matrix is always real and nonnegative, and its associated left eigen-

vector y has nonnegative entries and unit Euclidean norm, i.e., [y]i ≥ 0 for all i

and (
∑

i[y]2i )
1/2 = 1. Since y satisfies the eigenfunction ATy = λmax(A)y, it can be

viewed as the vector of eigenvector centrality of each user based on every user’s fol-

lower connectivity patten in the Twitter follower network, for which the eigenvector

centrality is a measure of importance among influential nodes in a network [107].

Let (i, j) denote a follower link in the Twitter follower network representing the

relation that user i follows user j. The follower link score we propose for assessing

the influence in event propagation, which we call the Left Eigenvector Score (LES),

is defined as

LES(i, j) = [y]i · [y]j. (8.6)

Since y is the vector of eigenvector centrality based on each user’s follower connectivity
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pattern, high LES for a follower link (i, j) means that the followers of both user i and

user j play an important role in the Twitter follower network, and hence the follower

link (i, j) is crucial to event propagation.

Moreover, we show that removing the follower links of top LES can be effective in

reducing the largest eigenvalue λmax(A), and hence is able to contain event propaga-

tion increment according to (8.3). Let ER denote a subset of follower links in a Twitter

follower network such that (i, j) ∈ ER if the follower link (i, j) will be removed from

the Twitter follower network. For any follower link removal set ER with cardinality

|ER| = q ≥ 1, let Ã(ER) be the adjacency matrix after removing the follower links in

ER from the Twitter follower network. If
∑

(i,j)∈ER [y]i[y]j > 0, then

λmax(A)−
∑

(i,j)∈ER

[y]i[y]j ≤ λmax(Ã(ER)); (8.7)

λmax(A)− c ·
∑

(i,j)∈ER

[y]i[y]j ≥ λmax(Ã(ER)), (8.8)

where c = ε
q
, ε =

∑
(i,j)∈ER [ỹ]i[ỹ]j, and ỹ is the left leading eigenvector of Ã(ER). The

proof of (8.7) and (8.8) is given in Appendix G.4. Since the number of nonzero entries

in A is the total number of follower links m, computing the left eigenvector y takes

O(m) time by power iteration methods, and reporting the top q follower links of LES

take O(mq) time. Therefore, the overall computation time complexity for finding the

removal set ER of cardinality q is O(mq).

Similar analysis in (8.7) and (8.8) can be directly applied to the largest eigen-

values λmax(Abet) and λmax(Awit) in (8.4) and (8.5) by using their corresponding left

leading eigenvectors. As a result, the proposed LES can be easily adapted to the NoN

structure in the Twitter follower network.
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Dataset Retweet Event Duration
Networks

(Languages)
Obama FB http://Facebook.com/POTUS Nov. 9th-Nov. 23rd, 2015 117
Premier 12 #premier12 Nov 19th-Dec. 3rd, 2015 90
AlphaGo #AlphaGo Jan 27th-Feb.10th, 2016 141

(Continued) Users Follower Links
Obama FB 5,169,477 7,272,858
Premier 12 7,557,534 9,702,942
AlphaGo 9,259,187 9,794,702

(Continued)
Between-Network

Follower Links
Within-Network
Follower Links

Obama FB 19.74% 80.26%
Premier 12 22.11% 77.89%
AlphaGo 29.35% 70.65%

Table 8.1: Statistics of the collected events and Twitter follower networks

8.3 Experiments on Twitter Traces

8.3.1 Experiment setup and dataset description

To study the effect of follower link removals on event propagation, we collected

three real-world event propagation traces and user languages from Twitter as de-

scribed in Sec. 8.1. We also collected the users who have seen but have not retweeted

the event (i.e., non-retweeters) and their user languages to form a Twitter follower

network for testing the effect of link removals on event propagation. In other words,

the collected Twitter follower networks include the follower connectivity structure

of retweeters and non-retweeters of an event, and their user languages are used to

identify the NoN structure. The statistics of the collected datasets are summarized

in Table 8.1. One notable NoN feature of these Twitter follower networks is that the

between-network follower links only account for a portion of roughly 20% to 30% of

total follower links.

Evaluation Metric. When designing a link score function for assessing the

influence in event propagation, the available information are the adjacency matrix
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and the NoN identities of a Twitter follower network. The actual event propagation

traces are only used to compare the performance of different link scores. Specifically,

we use the event reachability as the performance metric, which is defined as the

fraction of users who can still post or retweet the events after some follower links

are removed from the original Twitter follower network. The event fails to propagate

further to a user’s follower if the corresponding follower link has been removed. As a

result, link removals that lead to lower event reachability means that these links are

more influential to event propagation.

Follower Link Scores. We compare the effect of removing top q follower links on

event reachability based on different link score functions, for which the score function

of a follower link (i, j) takes the form

score(i, j) = [x]i · [x̃]j, (8.9)

where x and x̃ are nonnegative n-dimensional vectors 3.

The following summarizes different score functions for performance comparison,

including the scenario where the network identity of every user is known and the

NoN model is applied such that the between-network and within-network follower

links are used separately for link score computation. The implementation and com-

putation time complexity of returning top q follower links for different follower link

score functions are given in Appendix G.5.

� LES: LES uses the left leading eigenvector of the adjacency matrix A for score

computation.

� InDeg: InDeg uses the in-degree (number of followers) of each user for score

3The score function can be easily incorporated with centrality measures on users based on
the Twitter follower network topology. However, since the Twitter follower network is often not
a connected graph, i.e., there is not a path connecting any two users in the network, centrality
measures defined on connected graphs, such as the closeness and betweenness centrality measures,
cannot be used as a score function.
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Figure 8.2: The effect of removing top-score follower links on the collected Twitter
datasets in Table 8.1. Event reachability is the fraction of users who can still post
or retweet the event after some follower links are removed from the original Twitter
follower network. It is observed that using the proposed LES and exploiting the
NoN structure, the NoN-LES-Bet method can achieve remarkable reduction in event
reachability. The results suggest that LES indeed reflects the level of importance of
a follower link for event propagation, and between-network follower links are crucial
to event propagation.

computation.

� NetMelt: NetMelt [157] is an edge removal algorithm proposed to decrease

the largest eigenvalue λmax(A) by using the left and right leading eigenvectors

of A.

� NoN-LES-Bet (NoN-LES-Wit): NoN-LES-Bet (NoN-LES-Wit) exploits

the NoN structure and evaluates the score function using the left leading eigen-

vector of the between-network (within-network) adjacency matrix Abet (Awit).

� NoN-InDeg-Bet (NoN-InDeg-Wit): NoN-InDeg-Bet and NoN-InDeg-Wit

are extensions of the InDeg score tailored to the NoN structure.

� NoN-NetMelt-Bet (NoN-NetMelt-Wit): Non-NetMelt-Bet and NoN-NetMelt-

Wit are NetMelt algorithms that incorporate the NoN structure.
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8.3.2 Performance evaluation

Fig. 8.2 displays the event reachability with respect to different link removal meth-

ods as described in Sec. 8.3.1. Comparing to the link removal methods without using

the NoN structure (LES, InDeg and NetMelt), it can be observed that incorporating

the NoN structure (user languages) can further reduce event reachability. In particu-

lar, the NoN-LES-Bet method is shown to outperform other methods in the Premier

12 and AlphaGo datasets. For the Obama FB dataset, LES and NoN-LES-Wit can

be more effective than other methods for the first few follower link removals. How-

ever, as the number of removals increases these two methods soon lose their appeals,

and NoN-LES-Bet is shown to significantly outperform other methods. For example,

if we are able to remove 0.25% of follower links from the Obama FB dataset, NoN-

LES-Bet can reduce the event reachability to roughly 20%, whereas the second best

method (NoN-InDeg-Bet) only reduces the event reachability to roughly 35%, which

means that NoN-LES-Bet achieves at least 15% performance improvement compared

with other methods. These results suggest that LES can better reflect the level of

importance of a follower link for event propagation. More interestingly, the success of

NoN-LES-Bet in reducing event propagation on Twitter leads to the finding that al-

though between-network follower links only take roughly 20% to 30% of total follower

links in these datasets, they are crucial to event propagation.

The effectiveness of LES in reducing event propagation can be explained by the

fact it is a minimizer of an upper bound on the increment of event propagation as

established in Sec. 8.2. On the contrary, in these experiments link score functions

based on in-degrees or NetMelt are less effective in containing event propagation

when compared with the LES-based methods, as they are not specifically designed

for identifying influential links for event propagation. The finding that the LES-based

methods are superior over the InDeg-based methods suggests that event propagation

not only depends on the number of followers, but also on the role of each user’s
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Figure 8.3: Fraction of between-network follower links in different link removal meth-
ods. Comparing to Fig. 8.2, although the fraction of removed between-network
follower links of NoN-LES-Bet and NoN-NetMelt-Bet are similar, the follower links
identified by NoN-LES-Bet are more influential in event propagation as their removals
result in lower event reachability.

followers in event propagation. This is also consistent with the finding of strong/weak

social ties for event propagation in online social networks [53, 152].

As shown in Fig. 8.3, we also find that although NoN-LES-Bet and NoN-NetMelt-

Bet lead to similar fraction of between-network follower link removals, NoN-LES-

Bet achieves lower event reachability than NoN-NetMelt-Bet as shown in Fig. 8.2.

This implies that the proposed LES is indeed more effective in identifying influential

follower links for event propagation.
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CHAPTER IX

Assessing and Safeguarding Network Resilience to

Nodal Attacks

This chapter introduces new methods for evaluating and improving resilience of

network connectivity to attacks on nodes of the network. Network connectivity is

evaluated using a centrality measure that quantifies sensitivity of the size of the

largest connected component to node removals. Based on the local Fiedler vector

centrality (LFVC) proposed in Chapter VII, a new method for improving resilience

is introduced called edge rewiring. In terms of actions on graphs, rewiring an edge

on a graph can be viewed as simultaneously inserting a new edge and removing an

existing edge.

The topology of the power grid of western US states is used to illustrate the

proposed method. Using the proposed centrality measure, we show that the power

grid topology is especially vulnerable to nodal attacks. In particular, by using the

proposed centrality measure, an attacker could reduce the largest component size by

nearly a factor of two by only targeting 0.2% of the nodes. More importantly, we

show that network resilience can be greatly improved via a few edge rewires without

introducing additional edges in the network.

The problem of establishing resilience of network connectivity to node removals

has received much recent attention [6, 26, 32, 33, 169]. Resilience is closely related to
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reliability of networks when a subset of nodes are inactivated. It arises in applications

including service disruption in communication systems caused by router failures, and

blackout in power systems caused by power station shutdowns, among others. In

these applications network functionality can be disrupted by targeted attacks, e.g.,

denial of service (DoS) or jamming attacks, or by natural occurrences, e.g., weather-

related link failures and power outages. In this chapter we introduce a new method

for assessing the resilience of networks to node removals and preventive approaches

to desensitize numerous connectivity attacks.

A resilient network has global connectivity and largest component size that are

only minimally disrupted by limited attacks on nodes or edges. For example, a

fully connected network allows communication between all pairs of nodes and its

largest component is the entire set of nodes in the network. One measure of network

connectivity is given by the standard graph-theoretic k-connectivity definition: a

graph is k-connected if any set of k-1 node removals does not disconnect the graph.

However, this definition does not account for the number of communication paths

between nodes that are disrupted, which is more relevant to the functioning of the

network. A more relevant measure of connectivity is proposed here: the minimum

number of node removals necessary to reduce the size of the largest component by a

fixed proportion, e.g. 10% or 50%, of its original size.

To illustrate consider a large network where one of its nodes is connected to the

rest of the network by a single edge (i.e., node degree one). Removing this edge (or

the adjacent node) will reduce both the number of communication paths and the

largest component size by one. However, if the network is composed of two cliques

of equal size connected by a single edge then removal of this edge will reduce the

number of paths and the largest component size by a factor of two.

A node centrality measure is a quantity that measures the level of importance

of a node in a network. The utility of centrality measures is that they can break
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the combinatorial bottleneck of searching through all the possible permutations and

combinations of nodes that might reduce largest component size. An attack that

removes nodes according to a measure of centrality, such as the one introduced in

Sec. 1.5, will be referred to as a centrality attack. For example, the authors of

[6, 32, 33, 169] study the effectiveness of degree centrality attacks, i.e., removing the

largest hub nodes, as a way to reduce the size of the largest component of the network.

However, it has been shown in [26] that node degree is not the most effective centrality

measure for minimizing largest component size. For different network topologies,

investigating resilience of network connectivity to centrality attacks provides a unified

metric for evaluating network vulnerabilities.

Quantitative network resilience measures can also be used to assess the effective-

ness of preventive approaches for hardening a network against attacks. Two preven-

tive approaches are discussed in this chapter. The first method is the edge addition

method [62], where edges are added to the network to enhance network resilience. The

second method is the proposed edge rewiring method, where new edges are introduced

by swapping a subset of existing edges.

One possible advantage of edge rewiring over edge addition is that edge rewiring

requires no additional edges to enhance network resilience. The edge rewiring method

might be preferable to the edge addition method in the following aspects:

� Lower operational and maintenance costs: for power grids, power dissi-

pation and facility maintenance costs are proportional to the total number of

edges in the network.

� Easier link monitoring for network security: in large-scale systems such

as Internet and cellular infrastructures, introducing additional edges inevitably

raises the security risks to information exposure, and it also incurs extra burden

for system administration and monitoring.
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� Reduced provisioning budget: in networking applications with stringent

energy/bandwidth constraints, such as sensor networks and peer-to-peer (P2P)

networks, introducing additional edges consumes more networking resources.

To illustrate resilience of network connectivity to different centrality attacks, and

effectiveness of preventive approaches, we consider the power grid network for western

US states [163]. We show that different centrality measures differ significantly in

their ability to assess resilience of this real-world network. If the proposed centrality

measure is used by an attacker, the largest component size can be reduced to nearly

half of its original size by removing only 0.2% of nodes in the network. Attacks using

other types of centrality measures are less effective in reducing largest component

size. In particular, even if as many as 1% of the nodes are removed, less than 6%

reduction in largest component size is achieved by other types of centrality attacks.

In addition, we show that the proposed edge rewiring method can greatly improve

network resilience via only a few edge rewires while achieving the same performance

as the edge addition method.

9.1 Resilience of Western US States Power Grid Topology

to Centrality Attacks

Nodal centrality attack on a network incapacitates the nodes that have highest

centrality measure. The resilience of a network to centrality attacks is defined as the

decrease in the size of the largest component that results from the attack. Throughout

this chapter we adopt a greedy node removal strategy that sequentially removes the

node with highest centrality measure from the remaining largest component. The

centrality measure is recalculated after node removals. It has been shown in [75] that

greedy node removal strategies can be effective reducers of the largest component

size as compared with batch node removal strategies based on the same centrality
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Figure 9.1: Resilience of network connectivity to different centrality attacks on the
power grid topology of western US states [163]. This network contains 4941 nodes and
6594 edges, where nodes represent power stations and edges represent power lines.
By removing roughly 0.2% of the nodes in the network based on an LFVC attack,
the largest component size is reduced to nearly half of its original size.

measure. For general centrality measures there is no performance guarantee relating

the greedy node removal strategy and the optimal batch removal strategy. However,

using submodularity of the LFVC measure, it is proved in [28] that greedy node

removal based on LFVC comes within at least 1 − 1/e of the performance of an

optimal batch node removal strategy, where e is the Euler constant. Therefore one

might expect that greedy LFVC attacks are almost as effective as batch LFVC attacks

in terms of severe impact on network connectivity.

We use the topology of the power grid of western US states [163] to illustrate

network vulnerability to different types of centrality attacks. The results are shown

in Fig. 9.1. This network contains 4941 nodes and 6594 edges, where nodes represent

power stations and edges represent power lines. More network topology information

can be found in the supplementary file. One can see from Fig. 9.1 that an LFVC
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attack is capable of reducing the largest component size to roughly 54% of its original

size by removing only 8 nodes from the network. On the other hand, betweenness

and closeness attacks require 28 and 31 node removals, respectively, to achieve the

same reduction. Equivalently, the LFVC attack requires removal of only 0.2% of the

nodes in order to severely disrupt communications between nearly half of the nodes

in the network. Furthermore, degree, eigen centrality, and ego centrality attacks fail

to as significantly disrupt the network (less than 6% reduction in largest component)

even when 1% of the nodes are attacked. By inspecting the adjacency matrix A

in [163], it is observed that the adjacency matrix has apparent blockwise structure

where blocks are densely connected subgrids that are interconnected by relatively

a few inter-subgrid edges (see supplementary file). Since the high-degree nodes are

not connected to those interconnected edges and each subgrid is densely connected,

greedy degree attacks do not result in severe connectivity loss. We conclude that

LFVC attacks do significantly more damage than other types of centrality attacks.

Therefore, LFVC is a more reliable measure of resilience of the network.

9.2 Preventive Approaches to Centrality Attacks

Here we discuss two preventive approaches to protect against centrality attacks,

namely the edge addition method and the edge rewiring method.

9.2.1 Edge addition method

Edge addition is perhaps the most intuitive method for enhancing resilience of

network connectivity since it adds edges that are not already present in G. Let L̂ be

the resulting graph Laplacian matrix after adding an edge (i, j) /∈ E to G and let 1 be

a vector of all ones. Recalling the definition of the graph Laplacian matrix L in Sec.

1.3.3, L̂ − L = (ei − ej)(ei − ej)
T , where ei is an all-zero vector except that its i-th

entry is equal to 1. The term (ei − ej)(ei − ej)
T corresponds to the graph Laplacian
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matrix of the removed edge (i, j) alone. Since the algebraic connectivity µ(L) is the

second smallest eigenvalue of L and the smallest eigenvalue of L is 0 with associated

eigenvector 1, we have the representation µ(L) = min‖x‖2=1,xT 1=0 xTLx [55]. It is

proved in [62] that

µ(L̂) ≥ µ(L) + c1 · (yi − yj)2, (9.1)

where y is the eigenvector of µ(L) and c1 > 0 is a positive constant.

Since algebraic connectivity is a lower bound on node connectivity and edge con-

nectivity, it is proposed in [62] that one should iteratively add an edge that maximizes

the quantity (yi − yj)
2 to the graph. For each iteration, the edge that maximizes

(yi − yj)
2 maximizes the lower bound on the resulting algebraic connectivity, and

therefore enhances network resilience to centrality attacks. The edge addition method

will serve as the baseline for comparison to the proposed edge rewiring method.

9.2.2 Edge rewiring method

Edge rewiring aims to rewire the edges in the graph in order to enhance the

resilience of network connectivity to attacks. In particular, edge rewiring method

does not change the total number of edges in the graph. The proposed edge rewiring

algorithm is summarized as follows.

For each rewire, the edge rewiring method consists of two stages: an edge addition

stage and an edge deletion stage. In the edge addition stage, similar to the edge

addition method, an edge (i, j) /∈ E that maximizes (yi− yj)2 is selected to maximize

the lower bound (9.1) on the resulting algebraic connectivity. Let φ(L) denote the

largest eigenvalue of L and let z denote the associated eigenvector of φ(L). In the

edge deletion stage, an edge (k, `) ∈ E that maximizes (zk − z`)
2 is removed. The

intuition is as follows. Let L̃ denote the graph Laplacian matrix after removing an
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Algorithm 9.1 Edge rewiring method

Input: number of rewires r, graph G = (V , E)

Output: rewired graph G̃ = (V , Ẽ)
for i = 1 to r do

Compute the second smallest eigenvector y of L
Compute the largest eigenvector z of L
Find (i∗, j∗) = arg max(i,j)/∈E(yi − yj)2

Find (k∗, `∗) = arg max(k,`)∈E(zk − z`)2

Edge addition stage: Ẽ ← E ∪ (i∗, j∗)

Edge deletion stage: Ẽ ← Ẽ/(k∗, `∗)
G← G̃

end for

edge from G. Since trace(L)−trace(L̃) = 2, i.e., 2 times the number of edge removals,

and by Cauchy’s eigenvalue interlacing property [76], φ(L) ≥ φ(L̃) and µ(L) ≥ µ(L̃),

we have

µ(L̃) ≥ µ(L) + φ(L)− φ(L̃)− 2. (9.2)

Consequently, for maximum effect, the edge rewiring algorithm should remove

the edge that maximizes φ(L) − φ(L̃) such that the lower bound on the resulting

algebraic connectivity in (9.2) is maximized. By definition, φ(L) = max‖x‖2=1 xTLx,

and L − L̃ = (ek − e`)(ek − e`)
T when the edge (k, `) ∈ E is removed. Therefore,

computing zT L̃z, we have φ(L) − φ(L̃) ≤ (zk − z`)2. Moreover, by the eigenvector

property that z is orthogonal to 1 (i.e., zT1 = 0), it is easy to verify that there exists

an edge (k, `) ∈ E and a constant c2 > 0 such that φ(L)− φ(L̃) ≥ c2 · (zk − z`)2.

Note that since the eigenvector y associated with µ(L) can be computed in a

distributed manner [16], the eigenvector z associated with φ(L) can also be obtained

using distributed local computations and message passing.
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(a) The edge addition method.
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(b) The proposed edge rewiring method.

Figure 9.2: Network connectivity when restricted to 10 greedy node removals on the
power grid topology of western US states [163]. For the edge addition method, the
network connectivity can be enhanced from 54% to 80% under LFVC attacks by
adding one edge. The proposed edge rewiring method can perform as well as the
edge addition method without introducing additional edges in the network.

9.3 Performance Evaluation

In this section, we evaluate the effectiveness of the edge addition and edge rewiring

methods on protecting the power grid topology [163] from centrality attacks. When

10 nodes are removed from the network by LFVC attacks, Fig. 9.1 shows that the

network connectivity is reduced to 54%. In contrast, under other types of centrality

attacks there is almost no loss in connectivity when 10 nodes are removed. Fig. 9.2

(a) illustrates the effect of edge addition as a preventive approach against centrality

attacks. It is observed that by adding one edge, the network connectivity can be

increased from 54% to 80% under LFVC attack. Fig. 9.2 (b) illustrates the proposed

edge rewiring method. Similar to the edge addition method, one edge rewire is capable

of enhancing the network connectivity from 54% to 80%. Thus using the edge rewiring

method with only one edge rewire can protect the network as well as the edge addition

method even though the latter introduces additional edges in the network.

When 20 nodes are removed from the network, as shown in Fig. 9.3 (a), 11

edge additions are required to increase network connectivity from 29% to 82%. In
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(a) The edge addition method.
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(b) The proposed edge rewiring method.

Figure 9.3: Network connectivity when restricted to 20 greedy node removals on the
power grid topology of western US states [163]. For the edge addition method, 11
additional edges are required to enhance the network connectivity from 29% to 82%.
The proposed edge rewiring method requires only 12 edge rewires to achieve the same
performance as the edge addition method, which means that we only need to rewire
fewer than 0.4% of edges to make it resilient to centrality attacks.

comparison, as shown in Fig. 9.3 (b), the proposed edge rewiring method requires

only 12 edge rewires to achieve the same performance, which means that we only need

to rewire fewer than 0.4% of the edges to make it resilient to centrality attacks. This

performance advantage is explainable since, for the same number of edge additions or

rewiring actions, edge rewiring changes twice as many edges in the network as edge

addition.
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CHAPTER X

Graph-Theoretic Action Recommendations for

Cyber Resiliency

This chapter presents a theoretical framework for modeling lateral movement at-

tacks in enterprise networks and proposes a graph-based methodology for designing

mission critical cyber systems that are resilient against such attacks by mapping fea-

sible preventative actions to operations on graph matrices. The enterprise is modeled

as a tripartite network capturing the interaction between users, machines and appli-

cations, and a set of procedures is proposed to harden the network by increasing the

cost of lateral movement.

Cyber security is one of the most critical problems of our time. Notwithstanding

the enormous strides that researchers and practitioners have made in modeling, an-

alyzing and mitigating cyber attacks, black hats find newer and newer methods for

launching attacks requiring white hats to revisit the problem with a new perspective.

One of the major ways1 that attackers launch an attack against an enterprise is by

what is known as lateral movement via privilege escalation. This attack cycle, shown

in Fig. 10.1, begins with the compromise of a single user account (not necessarily a

privileged one) in the targeted organization typically via phishing email, spear phish-

ing or other social engineering techniques. From this initial foothold and with time

1http://www.verizonenterprise.com/DBIR
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1. Attacker sends 
phishing email to 
all users

2. Victim clicks 
on link in email

3. Bot installed on 
victim’s machine 
communicates 
with C2 server

4. Move laterally in 
the network to gain 
access to other 
devices

5. Found account with 
administrator privilege 
to databases

6. Data exfiltrated,  
security breached.

Enterprise targeted by attackers

Command and 
control (C2) 

server

Figure 10.1: An illustration of a cyber attack using privilege escalation techniques.

on his side, the attacker begins to explore the network, possibly compromising other

user accounts until he gains access to a user account with administrative privileges

to the coveted resource: files containing intellectual property, employee or customer

databases or credentials to manage the network itself. Typically the attacker compro-

mises multiple intermediate user accounts, each granting him increasing privileges.

Skilled attackers frequently camouflage their lateral movements into the normal net-

work traffic making these attacks particularly difficult to detect and insidious. Since

the authorized user plays the role of an unwitting accomplice in these attacks, there

is an increasing consensus that designing large enterprises to be resilient against such

attacks is the preferred defensive approach.

Resilient systems accept that not all attacks can be detected and prevented;

nonetheless, the system should be able to continue operation even in the face of

cyber attacks and provide its core services or missions even if in a degraded manner

[66]. To build such a resilient system it is important to be proactive in understanding
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(d) Node hardening

Figure 10.2: (a) Illustration of a tripartite network consisting of a set of users, a
set of hosts and a set of applications. (b) Segmentation in user-host access graph.
The user Charlie modifies his access configuration by disabling the access of the
existing account (Charlie-2) to host H3 and by creating a new user account (Charlie-
1) for accessing H3 such that an attacker cannot reach the data server H5 though
the printer H3 if Charlie-2 is compromised. (c) Edge hardening in host-application
graph via additional firewall rules on all network flows to H5 through HTTP. (d) Node
hardening in host-application graph via system update or security patch installation
on H5.

and reasoning about lateral movement in an enterprise network, its potential effects

on the organization, and identify ways to best defend against these threats. Unfortu-

nately, a theoretical framework for such risk analysis is currently missing. Our goal

in this chapter is to establish the theoretical foundations of a systematic framework

for building networks resilient to lateral movement attacks.

We model lateral movement attack on a mission as a graph-walk problem on a

tripartite user-host-application network that logically comprises two subgraphs: a

user-host graph and a host-application graph. Fig. 10.2 illustrates the model and our

methodology. The user-host-application paradigm allows us to develop an abstraction

of a mission in terms of concrete entities whose behavior can be monitored and con-

trolled. Note that, a mission is more than just the IT network or infrastructure that

it is executing on. At an operational level a mission captures interactions between

diverse categories of users, software and hardware resources (e.g., virtual machines,

workstations, mobile devices) and applications, and we use these entities to abstract

a mission.
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Defining lateral movements as graph walks allows us to determine which nodes

in the tripartite graph can be reached starting at a given node. From an attacker’s

perspective, these nodes that can be “reached” are exactly those mission components

that can be attacked and compromised via exploits. The more number of nodes

that can be reached by the attacker, the more “damage” he/she can render to the

mission. Given a system snapshot and a compromised workstation or mobile device,

we can define the “Attacker’s Reachability” as a measure that estimates the number

of hosts at risk through a given number of system exploits. Now, from a defender’s

perspective, putting some defensive control on one of these nodes (or edges) allows

the walk to be broken at that point. Intuitively, then such walk can also be used to

identify mission hardening strategies that reduce risk. This central idea is illustrated

in Fig. 10.2. The heterogeneity of a cyber system entails a network of networks

(NoN) representation of entities in the system as displayed in Fig. 10.2, allowing us

to devise effective hardening strategies from different perspectives, which differs from

works focusing on manipulating the network topology under the assumption that the

graph is homogeneous, that is, all nodes have an identical role in a cyber system.

As our model considers the heterogeneity of a cyber system and incorporates

several defensive actions for enhancing the resilience to lateral movement attacks, to

assist reading the utility of the proposed approaches and the established theoretical

results are summarized in Table 10.1, and the proofs of the established mathematical

results are placed in the appendix (Appendix H).
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System Heterogeneity Attack Reachability
Proposed
Approaches

Theoretical
Guarantees

User-Host Algorithm 10.1
Algorithm 10.4
Algorithm 10.5

Theorem 10.3
Corollary 10.4

Host-Application Algorithm 10.2
Algorithm 10.6
Algorithm 10.7

Theorem 10.7
Corollary 10.8

User-Host-Application Algorithm 10.3 all of the above all of the above

Table 10.1: Utility of the proposed algorithms and established theoretical results in
Chapter X.

10.1 Tripartite Network Model and Iterative Reachability

Computation of Lateral Movement

10.1.1 Notations and tripartite graph model

The expression e denotes the Euler’s number, i.e., the base of the natural loga-

rithm. The expression exi denotes the x× 1 canonical vector of zero entries except its

i-th entry being 1. The expression In denotes the n× n identify matrix. The expres-

sion 1n denotes the n× 1 column vector of ones. The expression colx(X) denotes the

x-th column of X. The expression λmax(X) denotes the largest eigenvalue (in magni-

tude) of a square matrix X. The operation ·T denotes matrix or vector transpose. The

operation ⊗ denotes the Kronecker product which is defined in Appendix H.1. The

operation � denotes the Hadamard (entry-wise) product of matrices. The operator

T : Rn
+ 7→ [0, 1]n is a thresholding function such that [T(x)]i = [x]i if 0 ≤ [x]i ≤ 1 and

[T(x)]i = 1 if [x]i > 1. The operator Ha : [0, 1]n 7→ {0, 1}n is an entry-wise indicator

function such that [Ha(x)]i = 1 if [x]i > [a]i, and [Ha(x)]i = 0 otherwise.

The tripartite graph in Fig. 10.2 can be characterized by a set of users Vuser, a set

of hosts Vhost, a set of applications Vapp, a set of user-host accesses E ⊂ Vuser ×Vhost,

and a set of host-application-host activities T ⊂ Vhost×Vapp×Vhost. The cardinality

of Vuser, Vhost and Vapp are denoted by U , N and K, respectively. The list of main

notations and symbols used in this chapter are listed in Table 10.2.
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U/N/K number of users / hosts / applications
λmax(X) largest eigenvalue of matrix X
⊗ Kronecker product
1n n× 1 column vector of ones
AC User-host graph matrix
A Host-application graph matrix
P Compromise probability matrix
B AT

CAC

J (P⊗ 1N)T AT

r / a Reachability / Hardening level vector
T(x) Threshold function on vector x
Ha(x) Comparator function of x and a

Table 10.2: List of main notations and symbols in Chapter X.

10.1.2 Reachability of lateral movement on user-host access graph

Let GC = (Vuser,Vhost, E) with E ⊂ Vuser × Vhost denote the user-host bipartite

graph. The access privileges between users and hosts are represented by a binary

U×N adjacency matrix AC , where [AC ]ij = 1 if user i can access host j, and [AC ]ij =

0 otherwise. Let r0 be an N × 1 binary vector indicating the initial host compromise

status, where [r0]j = 1 if host j is initially being compromised, and [r0]j = 0 otherwise.

Given r0, we are interested in computing the final binary compromise vector r∞ when

attackers leverage user access privileges to compromise other accessible hosts. r∞

specifies the reachability of a lateral movement attack, where reachability is defined

as the fraction of hosts that can be reached via graph walks on GC starting from

r0. Therefore, reachability is used as a quantitative measure of network vulnerability

to lateral movement attacks. Furthermore, studying r∞ allows us to investigate the

dominant factor that leads to high reachability and more efficient countermeasures.

The computation of r∞ can be viewed as a cascading process of repetitive walks

on GC starting from a set of compromised hosts. Let rt denote the binary compromise

vector after t-hop walks and let wh be the number of h-hop walks starting from r0

and w0 = r0. The hop count of a walk between two hosts in GC is defined as the
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Algorithm 10.1 Iterative reachability computation for lateral movement on user-
host graph

Input: r0, B
Output: r∞
Initialization: rold = r0. Flag = 1.
while Flag= 1 do

rnew = T (rold + Brold).
if rnew = rold then

Flag= 0. r∞ = rnew.
else

rold = rnew
end if

end while

number of traversed users. We begin by computing r1 from r0: the number of 1-hop

walk from r0 to host j is [w1]j =
∑U

i=1

∑N
k=1[AC ]ij[AC ]ik[r0]k = eNj

T
AT
CACr0. Let

B = AT
CAC , an induced adjacency matrix of hosts in GC , where [B]ij is the number of

common users that can access hosts i and j. Then we have w1 = Br0 and r1 = T(w1).

Generalizing this result, we have

wh+1 = Bwh = Bh+1r0; (10.1)

rt+1 = T

 t+1∑
h=1

wh

 . (10.2)

The term in (10.2) accounts for the accumulation of compromised hosts up to t + 1

hops. Note that based on the property of T, (10.2) can be simplified as

rt+1 = T (rt + Brt) . (Appendix H.2) (10.3)

(10.3) suggests that the term B is the dominant factor affecting the propagation of

lateral movement, and we obtain an efficient iterative algorithm (Algorithm 10.1)

for computing r∞ that involves successive matrix-vector multiplications until rt con-

verges.
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10.1.3 Reachability of lateral movement on host-application graph

The host-application graph contains the information of one host communicating

with another host through an application. Let Ak be an N × N binary matrix

representing the host-to-host communication through application k, where [Ak]ij = 1

means host i communicates with j through application k; and [Ak]ij = 0 otherwise.

The N ×KN binary matrix A = [A1 A2 · · · AK ] is the concatenated matrix of K

host-application-host matrices Ak for k = 1, 2, . . . , K. Let P be a K×N matrix where

its entry [P]kj specifies the probability of compromising host j through application k.

Each host is assigned with a hardening value [a]j ∈ [0, 1] indicating its security level.

Similar to Sec. 10.1.2, we are interested in computing the reachability of lateral

movement on the host-application graph. The hop count of a walk between two hosts

in the host-application graph is defined as the average number of paths between the

two hosts through applications. Let W be an N×N matrix where [W]ij is the average

number of one-hop walk from host i to host j. Then we have [W]ij =
∑K

k=1[Ak]ijPkj.

Let wh be an N × 1 vector representing the average number of h-hop walks of hosts

and w0 = r0. Then the j-th entry of the 1-hop vector w1 is

[w1]j = eTj

[
colj(P)T ⊗ In

]
AT r0. (Appendix H.3) (10.4)

Stacking (10.4) as a column vector gives

w1 = (P⊗ 1N)T AT r0. (Appendix H.4) (10.5)

The 1-hop compromise vector r1 is defined as r1 = Ha

(
T (w1)

)
. In effect the

operator Ha compares the thresholded average number of walks with the hardening

level for each host, which means a host j can be compromised only when the thresh-

olded average number of 1-hop walk [T (w1)]j is greater than its hardening level [a]j.
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Algorithm 10.2 Iterative reachability computation for lateral movement on host-
application graph

Input: r0, A, P and a
Output: r∞
Initialization: rold = r0. Flag = 1.
while Flag= 1 do

rnew = Ha

(
T
(
rold + (P⊗ 1N)T AT rold

))
.

if rnew = rold then
Flag= 0. r∞ = rnew.

else
rold = rnew

end if
end while

Algorithm 10.3 Iterative reachability computation for lateral movement on user-
host-application graph

Input: r0, A, P, B and a
Output: r∞
Initialization: rold = r0. Flag = 1.
while Flag= 1 do

rnew = Ha

(
T
(

rold +
[
B + (P⊗ 1N)T AT

]
rold

))
.

if rnew = rold then
Flag= 0. r∞ = rnew.

else
rold = rnew

end if
end while

Generalizing this result to h-hop, we have

wh+1 = (P⊗ 1N)T ATwh; (10.6)

rt+1 = Ha

T

 t+1∑
h=1

wh


 . (10.7)
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The term in (10.7) has an equivalent expression

rt+1 = Ha

(
T
(
rt + (P⊗ 1N)T AT rt

))
. (Appendix H.5) (10.8)

As a result, the matrix J =: (P⊗ 1N)T AT is the dominant factor for lateral

movement on the host-application graph, and (10.8) leads to an iterative algorithm

(Algorithm 10.2) for reachability computation, which is similar to the methodology

of Algorithm 10.1.

10.1.4 Reachability of lateral movement on tripartite user-host-application

graph

Utilizing the developed results in Sec. 10.1.2 and Sec. 10.1.3, the cascading process

of lateral movement on the tripartite user-host-application graph can be modeled by

rt+1 ≡ Ha

(
T
(

rt +
[
B + (P⊗ 1N)T AT rt

)])
.

The corresponding iterative algorithm for reachability computation is summarized in

Algorithm 10.3.

Moreover, in cases when attackers only know partial information (network topol-

ogy) of the tripartite graph, one can apply binary (potentially probabilistic) masking

functions on B or A and evaluate the corresponding reachability using the proposed

algorithms.

10.2 Segmentation on User-Host Graph

In this section we investigate segmentation on user-host graph as a countermea-

sure for suppressing lateral movement attacks. Segmentation works by creating new

user accounts to separate user-host in order to alleviate the reachability of lateral
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movement, as illustrated in Fig. 10.2 (b). In principle segmentation removes some

edges from the access graph GC and then merge these removed edges to create new

user accounts. Therefore, segmentation retains the same access functionality and

constrains lateral movement attacks at the price of additional user accounts. The fol-

lowing analysis provides a theoretical framework of different segmentation strategies.

Recall from (10.3) that the matrix B is the key factor affecting the reachability of

lateral movement on GC . Therefore, an effective edge removal approach for segmenta-

tion is reducing the spectral radius of B (i.e., λmax(B)) by removing some edges from

GC . Note that by definition B = AT
CAC so that B is a positive semidefinite (PSD)

matrix, and all entries of B are nonnegative. Therefore, by the Perron-Frobenious

theorem [76] the entries of B’s largest eigenvector u (i.e., the eigenvector such that

Bu = λmax(B)u) are nonnegative.

Here we investigate the change in λmax(B) when an edge is removed from GC in

order to define an edge score function that is associated with spectral radius reduction.

If an edge (i, j) ∈ E is removed from GC , then the resulting adjacency matrix of

GC \(i, j) is ÃC

(
(i, j)

)
= AC−eUi eNj

T
. The corresponding induced adjacency matrix

is

B̃
(
(i, j)

)
= ÃC

(
(i, j)

)T
ÃC

(
(i, j)

)
= B−AT

CeUi eNj
T − eNj eUi

T
AC + eNj eNj

T
. (10.9)

By the Courant-Fischer theorem [76] we have

λmax

(
B̃
(
(i, j)

))
≥ uT B̃

(
(i, j)

)
u

= λmax(B)− 2uTAT
CeUi [u]j + [u]2j . (10.10)

(10.10) leads to a greedy removal strategy that finds the edge (i, j) ∈ E that maximizes
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the edge score function 2uTAT
CeUi [u]j−[u]2j , in order to minimize a lower bound on the

spectral radius of B̃
(
(i, j)

)
. Moreover, Lemma 10.1 below shows that the edge score

function is also associated with an upper bound on the spectral radius of B̃
(
(i, j)

)
.

Following similar methodology, when a subset of edges ER ⊂ E are removed from GC ,

we have

λmax

(
B̃ (ER)

)
≥ λmax(B)− f(ER), (Appendix H.6) (10.11)

where the function

f(ER) = 2
∑

(i,j)∈ER

uTAT
CeUi [u]j −

∑
i∈Vuser

∑
j∈Vhost,(i,j)∈ER

∑
s∈Vhost,(i,s)∈ER

[u]j[u]s. (10.12)

In a nutshell, the function f(ER) provides a score that evaluates the effect of edge

removal set ER on the spectral radius of B̃ (ER). The lemma presented in Appendix

H.7 shows f(ER) is nonnegative as it can be represented as a sum of nonnegative

terms. The following lemma shows that f(ER) is associated with an upper bound

on the spectral radius of B̃ (ER). Therefore, maximizing f(ER) can be an effective

strategy for spectral radius reduction.

Lemma 10.1. For any edge removal set of cardinality q ≥ 1, if there exits one edge

removal set ER ⊂ E with |ER| = q such that f(ER) > 0, then there exists some

constant c > 0 such that

λmax(B)− c · f(ER) ≥ λmax

(
B̃ (ER)

)
. (10.13)

Proof. The proof can be found in Appendix H.8.

Moreover, the lemma presented in Appendix H.9 shows that f(ER) is a monotonic

increasing set function. A monotonic increasing set function means that for any

two subsets ER1, ER2 ⊂ E satisfying ER1 ⊂ ER2, f(ER2) ≥ f(ER1). In addition, the
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Algorithm 10.4 Greedy score segmentation algorithm

Input: AC , number of segmented edges q
Output: modified access adjacency matrix Aq

C

if recalculating score then
Initialization: Aold

C = AC . Eold ← E . ER ← ∅.
for z = 1 to q do

1. Compute the leading eigenvector u of B = Aold
C

T
Aold
C

2. Compute score f
(
(i, j)

)
= 2uTAold

C
T
eUi [u]j − [u]2j for all (i, j) ∈ Eold

3. Remove the highest scored edge (i∗, j∗) ∈ Eold from Aold
C

4. Aold
C = Aold

C − eUi∗e
N
j∗
T

. Eold ← Eold \ (i∗, j∗). ER ← ER ∪ (i∗, j∗).
end for

else
1. Compute the leading eigenvector u of B = AT

CAC

2. Compute score f
(
(i, j)

)
= 2uTAT

CeUi [u]j − [u]2j for all (i, j) ∈ E
3. Remove the q edges of highest scores from AC

4. Store this set of q edges in ER
end if
5. Segment the removed edges in ER to create new users. A new user u has access
to a set of hosts {s : (u, s) ∈ ER}
6. Obtain the modified access adjacency matrix Aq

C from segmentation

following theorem shows that f(ER) is a monotone submodular set function [59],

which establishes performance guarantee of greedy edge removal on reducing the

spectral radius of B̃ (ER). Submodularity means f(ER) has diminishing gain: for any

ER1 ⊂ ER2 ⊂ E and e ∈ E \ER2, the discrete derivative ∆f(e|ER) = f(ER∪e)−f(ER)

satisfies ∆f(e|ER2) ≤ ∆f(e|ER1).

Theorem 10.2. f(ER) is a monotone submodular set function.

Proof. The proof can be found in Appendix H.10.

With the established results, a greedy segmentation algorithm (Algorithm 10.4)

is proposed that computes the edge score function f
(
(i, j)

)
= 2uTAT

CeUi [u]j − [u]2j

for every edge (i, j) ∈ E and segments q edges of highest scores to create new user

accounts. For efficient computation step 2 of Algorithm 10.4 can be represented by

the matrix form F =
[
2AT

CuuT − 1U (u� u)T
]
� AC , where [F]ij = f

(
(i, j)

)
if

(i, j) ∈ ER, and [F]ij = 0 otherwise.
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Using the monotonic submodularity of f(ER) in Theorem 10.2, the following the-

orem shows that this greedy algorithm (Algorithm 10.4 without score recalculation)

has performance guarantee on spectral radius reduction relative to the optimal batch

edge removal strategy of combinatorial computation complexity for selecting the best

q edges.

Theorem 10.3. (Greedy segmentation without score recalculation) Let EoptR be the

optimal batch edge removal set of cardinality q ≥ 1 that maximizes f(ER) and let

EqR with |EqR| = q be the greedy edge removal set obtained from Algorithm 10.4. If

f(EqR) > 0, then there exists some constant c′ > 0 such that

f(EoptR )− f(EqR) ≤
(

1− 1

q

)q
f(EoptR ) ≤ 1

e
f(EoptR );

λmax(B)− f(EoptR ) ≤ λmax

(
B̃
(
EqR
))
≤ λmax(B)− c′ · f(EoptR ).

Proof. The proof can be found in Appendix H.11.

As a variant of Algorithm 10.4 without score recalculation, for better traceability

one may desire to successively recalculate the largest eigenvector u and update the

edge score function f(i, j) after each edge removal. The following corollary provides

a theoretical analysis of the greedy segmentation algorithm with score recalculation

(Algorithm 10.4 with score recalculation), which shows that score recalculation can

successively reduce the spectral radius of B.

Corollary 10.4. (Greedy segmentation with score recalculation) Let Ã(ER) de-

note the adjacency matrix of GC \ ER for some ER ⊂ E, and let uER denote the

largest eigenvector of B̃ (ER). For any edge removal set ER ⊂ E, let fER(i, j) =

2uTERÃ(ER)TeUi [uER ]j − [uER ]2j , and let (i∗, j∗) be a maximizer of fER(i, j). Then

λmax

(
B̃(ER)

)
≥ λmax

(
B̃(ER ∪ (i∗, j∗))

)
. Furthermore, if fER(i∗, j∗) > 0, then

λmax

(
B̃(ER)

)
> λmax

(
B̃(ER ∪ (i∗, j∗))

)
.
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Proof. The proof can be found in Appendix H.12.

In addition to establishing the performance guarantee of the greedy score segmen-

tation algorithm in Algorithm 10.4 for reducing the spectral radius of B, the following

theorem shows that the two intuitive greedy segmentation algorithms proposed in Al-

gorithm 10.5, with an aim of successively segmenting the edge connecting to the most

connected user or host, are also effectively reducing an upper bound on the spectral

radius of B. The terms dU = AC1N and dN = AT
C1U denote the degree vector

of users and hosts, respectively, and the terms dusermax and dhostmax denote the maximum

degree of users and hosts in GC , respectively.

Theorem 10.5. (Greedy user-(host-)first segmentation) If an edge (i, j) is removed

from GC and B̃(i, j) is irreducible, then

λmax

(
B̃(i, j)

)
≤ dusermax · dhostmax − max

s∈{1,2,...,N}

[(
[dU ]i − 1

)
eNj −AT

CeUi

]
s

.

Proof. The proof and the case when B̃(i, j) is reducible can be found in Appendix

H.13.

Since the term AT
CeUi in Theorem 10.5 is a vector of access connections of user

i, Theorem 10.5 suggests a greedy user-first segmentation approach that segments

the edge between the user of maximum degree and the corresponding accessible host

of maximum degree in order to reduce the upper bound on spectral radius in Theo-

rem 10.5. Similar analysis apples to the greedy host-first segmentation approach in

Algorithm 10.5.

10.3 Hardening on Host-Application Graph

In this section we discuss two countermeasures for constraining lateral movement

on the host-application graph. Edge hardening refers to securing access from appli-
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Algorithm 10.5 Greedy user-(host-)first segmentation algorithm

Input: AC , number of segmented edges q
Output: modified access adjacency matrix Aq

C

Initialization: Aold
C = AC . Eold ← E . ER ← ∅.

for z = 1 to q do

1. Compute user (host) degree vector dU = Aold
C 1N (dN = Aold

C
T
1U)

2. Obtain i∗ = arg maxi[d
U ]i and j∗ = arg maxj:[Aold

C ]i∗j>0[dN ]h (j∗ =

arg maxj[d
N ]j and i∗ = arg maxi:[Aold

C ]ij∗>0[dU ]i)

3. Remove the edge (i∗, j∗) ∈ Eold from Aold
C .

4. Aold
C = Aold

C − eUi∗e
N
j∗
T

. Eold ← Eold \ (i∗, j∗). ER ← ER ∪ (i∗, j∗)
end for
5. Segment the removed edges in ER to create new users. A new user u has access
to a set of hosts {s : (u, s) ∈ ER}
6. Obtain the modified access adjacency matrix Aq

C from segmentation

cation k to host j, and in effect reducing the compromise probability [P]kj. Node

hardening refers to securing a particular host and in effect increasing its hardening

level.

Recall from (10.8) that the reachability of lateral movement on host-application

graph is governed by the matrix J = (P ⊗ 1N)TAT . Note that although J is in

general not a symmetric matrix, it is a matrix of nonnegative entries and hence by

the Perron-Frobenious theorem [76] λmax(J) is real and nonnegative, and the entries

of its largest eigenvector are nonnegative.

Hardening a host j for an application k means that after hardening the compromise

probability [P]kj is reduced to some value εkj such that [P]kj > εkj ≥ 0. Let H

denote the set of hardened edges and let P̃H be the compromise probability matrix

after edge hardening. Then we have P̃H = P −
∑

(k,j)∈H
(
[P]kj − εkj

)
eKk eNj

T
. Let

J̃(H) = (P̃H ⊗ 1N)TAT and let y be the largest eigenvector of J. We can show that

λmax

(
J̃(H)

)
≥ λmax (J)− yT∆JHy; (10.14)

∆JH =


 ∑

(k,j)∈H

(
[P]kj − εkj

)
eKk eNj

T

⊗ 1N


T

AT .
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Algorithm 10.6 Greedy edge hardening algorithm

Input: J = (P⊗ 1N)TAT , number of hardened edges η, {εkj}k∈{1,2,...,K},j∈{1,2,...,N}
Output: modified compromise probability matrix Pη

if recalculating score then
Initialization: Pη = P. Jold = J.
for z = 1 to η do

1. Compute the leading eigenvector y of Jold

2. Compute score φ
(
(k, j)

)
= yT∆Jold(k,j)y

3. Obtain (k∗, j∗) = arg maxk,j φ
(
(k, j)

)
4. Edge hardening: [Pη]k∗j∗ = εk∗j∗
5. Jold = (Pη ⊗ 1N)TAT (see Appendix H.16)

end for
else

Initialization: Pη = P
1. Compute the leading eigenvector y of J
2. Compute score φ

(
(k, j)

)
= yT∆J(k,j)y

3. Find the η edges of highest scores
4. Store this set of η edges in H
5. Edge hardening: [Pη]kj = εkj for all (k, j) ∈ H

end if

The proof of (10.14) can be found in Appendix H.14.

Let φ(H) = yT∆JHy be a score function that reflects the effect of the edge

hardening set H on spectral radius reduction of J. The lemma presented in Appendix

H.15 shows that φ(H) is a monotonic increasing set function of H. The following

analysis shows that φ(H) is associated with a pair of upper and lower bounds on the

spectral radius of J after edge hardening.

The edge hardening algorithm proposed in Algorithm 10.6 is a greedy algorithm

that hardens the η edges of highest scores between applications and hosts, where the

per-edge hardening score is defined as φ
(
(k, j)

)
= yT∆J(k,j)y. Step 5 in Algorithm

10.6 with score recalculation can be updated efficiently by tracking the changes in the

matrix J caused by Step 4 (see Appendix H.16). The following theorem shows that

the hardened edge set obtained from Algorithm 10.6 without score recalculation is a

maximizer of φ(H).

Theorem 10.6. (Greedy edge hardening without score recalculation) For any hard-
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Algorithm 10.7 Greedy node hardening algorithm

Input: edge score φ((k, j)), number of hardened nodes ζ, {αj}Nj=1

Output: modified node hardening vector ã
Initialization: ã = a
1. Compute edge hardening score φ

(
(k, j)

)
for all k ∈ {1, 2, . . . , K} and j ∈

{1, 2, . . . , N}
2. Compute node hardening score ρ(j) =

∑K
k=1 φ((k, j)) for all j ∈ {1, 2, . . . , N}

3. Find the first ζ nodes of highest scores and store this set of ζ nodes in Hnode

4. Node hardening: [ã]j = αj for all j ∈ Hnode

ening set H of cardinality |H| = η ≥ 1, let Hη with |Hη| = η be the greedy hardening

set obtained from Algorithm 10.6. Then Hη is a maximizer of φ(H).

Proof. The proof can be found in Appendix H.17.

Furthermore, the following theorem shows that Algorithm 10.6 without score re-

calculation has bounded performance guarantee on spectral radius reduction of J

relative to that of the optimal batch edge hardening set for which the computation

complexity is combinatorial.

Theorem 10.7. (Performance garantee of greedy edge hardening without score recal-

culation) For any hardening setH of cardinality |H| = η ≥ 1, λmax(J) ≥ λmax

(
J̃(H)

)
.

Furthermore, let Hopt with |Hopt| = η be the optimal hardening set that minimizes

λmax

(
J̃(H)

)
and let Hη with |Hη| = η be the hardening set that maximizes φ(H). If

λmax(J) > 0 and φ(Hη) > 0, then there exists some constant c′′ > 0 such that

λmax(J)− φ(Hη) ≤ λmax

(
J̃(Hopt)

)
≤ λmax(J)− c′′ · φ(Hη).

Proof. The proof can be found in Appendix H.19.

Moreover, the corollary below shows that Algorithm 10.6 with score recalculation

can successively reduce the spectral radius of J.

Corollary 10.8. (Greedy edge hardening with score recalculation) Let yH denote the

largest eigenvector of J̃(H) and let φH
(
(k, j)

)
= yTHJ̃

(
H ∪ (k, j)

)
yH. For any edge
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hardening set H, let (k∗, j∗) be a maximizer of φH
(
(k, j)

)
. Then λmax

(
J̃(H)

)
≥

λmax

(
J̃
(
H ∪ (k∗, j∗)

))
. Furthermore, if λmax

(
J̃(H)

)
> 0 and φH

(
(k∗, j∗)

)
> 0,

then λmax

(
J̃(H)

)
> λmax

(
J̃
(
H ∪ (k∗, j∗)

))
.

Proof. The proof can be found in Appendix H.18.

Lastly, for node hardening we use the edge hardening score φ((k, j)) to define the

node hardening score ρ(j) for host j, where ρ(j) =
∑K

k=1 φ((k, j)). In effect, node

hardening on host j enhances its hardening level from [a]j to a value αj ∈ [[a]j, 1]. A

greedy node hardening algorithm based on the node hardening score is summarized

in Algorithm 10.7. In Sec. 10.4 we also investigate the performance of two other node

score functions based on a and J for greedy node hardening, namely ρa(j) = 1/[a]j

and ρJ(j) =
∑N

s=1[J]js.

10.4 Experimental Results

10.4.1 Dataset description and experiment setup

To demonstrate the effectiveness of the proposed segmentation and hardening

strategies against lateral movement attacks, we use the event logs and network flows

collected from a large enterprise to create a tripartite user-host-application graph as

in Fig. 10.2 (a) for performance analysis. This graph contains 5863 users, 4474 hosts,

3 applications, 8413 user-host access records and 6230 host-application-host network

flows. All experiments assume that the defender has no knowledge of which nodes are

compromised and the defender only uses the given tripartite network configuration

for segmentation and hardening.

To simulate a lateral movement attack we randomly select 5 hosts (approximates

0.1% of total host number) as the initially compromised hosts and use the algorithms

developed in Sec. 10.1 to evaluate the reachability, which is defined as the fraction of

reachable hosts by propagating on the tripartite graph from the initially compromised
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hosts. The initial node hardening level of each host is independently and uniformly

drawn from the unit interval between 0 and 1. The compromise probability matrix

P is a random matrix where the fraction of nonzero entries is set to be 10% and each

nonzero entry is independently and uniformly drawn from the unit internal between

0 and 1. The compromise probability after hardening, εkj, is set to be 10−5 for all k

and j. All experimental results are averaged over 10 trials.

10.4.2 Lateral movement and segmentation on user-host graph

Fig. 10.3 shows the effect of different segmentation strategies proposed in Sec.

10.2 on the user-host graph. In particular, Fig. 10.3 (a) shows that greedy host-first

segmentation strategy is the most effective approach to constrain reachability given

the same number of segmented edges because accesses to high connectivity hosts (i.e.,

hubs) are segmented. For example, segmenting 15% of user-host accesses can reduce

the reachability to nearly one third of its initial value. Greedy segmentation with score

recalculation is shown to be more effective than that without score recalculation since

it is adaptive to user-host access modification during segmentation. Greedy user-first

segmentation strategy is not as effective as the other strategies since segmentation

does not enforce any user-host access reduction and therefore after segmentation a

user can still access the hosts but with different accounts.

Fig. 10.3 (b) shows the fraction of newly created accounts with respect to different

segmentation strategies. There is clearly a trade-off between network robustness and

implementation practicality since Fig. 10.3 suggests that segmentation strategies

with better reachability reduction capability also lead to more additional accounts.

However, in practice a user might be reluctant to use many accounts to pursue his/her

daily jobs even though doing so can greatly mitigate the risk from lateral movement

attacks.

We also investigate the impact of user-host access information asymmetry on lat-
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Figure 10.3: The effect of segmentation on the user-host access graph. (a) Reacha-
bility with respect to different segmentation strategies. (b) Fraction of newly created
user accounts from segmentation.

eral movement attacks. Information asymmetry means that the defender uses com-

plete user-host access information for segmentation whereas the attacker launching a

lateral movement attack can only leverage the known user-host access information.

Fig. 10.4 shows that lateral movement attacks can be constrained when sufficient

segmentation is implemented and the user-host access information is limited to an

attacker, otherwise a surge in reachability is expected.

10.4.3 Lateral movement and hardening on host-application graph

Fig. 10.5 shows the effect of different hardening strategies proposed in Sec. 10.3

on the host-application graph. As shown in Fig. 10.5 (a), the proposed greedy edge

hardening strategies with and without score recalculation have similar performance

in reachability reduction, and they outperform the greedy heuristic strategy that

hardens edges of highest compromise probability. This suggest that the proposed

edge hardening strategies indeed finds the nontrivial edges affecting lateral movement.

Fig. 10.5 (b) shows that the node hardening strategies using the node score function

ρ and ρJ lead to similar performance in reachability reduction, and they outperform

the greedy heuristic strategy that hardens nodes of lowest hardening level. These
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Figure 10.4: The effect of known user-host access information on lateral movement
attacks. (a) Greedy segmentation without score recalculation. (b) Greedy segmenta-
tion with score recalculation. (c) Greedy host first segmentation. (d) Greedy user first
segmentation. Lateral movement attacks can be constrained in terms of reachability
when sufficient segmentation is implemented and the user-host access information is
limited to an attacker.

results suggest the intuition of hardening the host of lowest security level might not

be the best strategy for constraining lateral movement.

10.4.4 Lateral movement, segmentation and hardening on tripartite graph

Lastly, we investigate the joint effect of segmentation and hardening on constrain-

ing lateral movement attacks on the user-host-application tripartite graph. Fig. 10.6

shows the lateral movement reachability under a selected combination of segmenta-

tion and hardening strategies, namely greedy segmentation w/ score recalculation,

greedy edge hardening w/ score recalculation, and greedy node hardening with score

ρ. For clarity we only plot representative points to demonstrate the effectiveness. It
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Figure 10.5: The effect of hardening on host-application graph. (a) Reachability
with respect to different edge hardening strategies. (b) Reachability with respect to
different node hardening strategies.

can be observed that originally more than half of hosts can be compromised if no

preventative actions are taken. Nonetheless, the proposed segmentation and harden-

ing strategies can greatly mitigate the reachability of lateral movements to secure the

network.

10.5 Benchmark: Performance Evaluation on Actual Lateral

Movement Attacks

This section demonstrates the importance of incorporating the heterogeneity of a

cyber system for enhancing the resilience to lateral movement attacks. Specifically,

real lateral movement attacks taking place in an enterprise network are collected as a

performance benchmark2. This dataset contains the communication patterns between

2010 hosts via 2 communication protocols, and therefore the enterprise network can be

summarized as a bipartite host-application graph. It also contains lateral movements

originated from a single compromised host, and in total includes 2001 propagation

paths. The experiment in this section differs from the analysis in Sec. 10.4, as

2The dataset can be downloaded from https://sites.google.com/site/pinyuchenpage/datasets
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Figure 10.6: The effect of segmentation and hardening on lateral movement attack
in user-host-application tripartite graph. (a) Greedy segmentation w/o score recal-
culation, greedy edge hardening w/o score recalculation, and greedy node hardening
with score ρ. (b) Greedy segmentation w/ score recalculation, greedy edge hardening
w/ score recalculation, and greedy node hardening with score ρ. (c) Greedy host
first segmentation, greedy edge hardening w/o score recalculation, and greedy node
hardening with score ρJ. (d) Greedy host first segmentation, greedy edge hardening
w/ score recalculation, and greedy node hardening with score ρJ.

this dataset contains actual lateral movement traces on the host-application graph,

whereas in Sec. 10.4 we have a complete user-host-application tripartite graph of an

enterprise, but without the actual attack traces.

This benchmark dataset was collected from the network traffic of a cyber testbed

running inside a OpenStack-based cloud with nearly 2000 virtual machine instances.

Starting from a known machine (host), the attack involved logging from one machine

to another using SSH. Implemented by automated scripts, on each machine the at-

tack replicated to four other machines at the beginning of every hour. This process
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Figure 10.7: Performance evaluation on the collected benchmark dataset. Using
our proposed approaches, the lateral movement attacks can be further restrained by
incorporating the heterogeneity of the cyber system.

continued for 8 hours. We collected network traffic flows from each virtual machine

and combined to produce a 16 GB packet capture dataset. Each packet information

was further aggregated to produce “flow” level information, which can be interpreted

as a “communication session” between two machines. As an example, when a client

connects to the server, the client may send 5 packets and receive 10 packets of data

from the server. The “flow” level data will combine these 15 data packets into a single

“flow” to represent one interaction between the machines. Each flow record has the

following elements: IP address and port information for both source and destination

devices, protocol, flow start time, duration and message size. We infer the applica-

tion by considering the protocol and destination address pair. As an example, a flow

to destination port 22 over TCP protocol implies an SSH connection. To apply our

proposed method to the cyber system against lateral movement attacks, we select the

source and destination IP address, and the applications to build the host-application

graph.

We compare the performance of our proposed edge hardening method (Algorithm
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10.6) to the NetMelt algorithm [158], which is a well-known edge removal method

for containing information diffusion on a homogeneous graph. The edges in the

host-application bipartite graph are hardened sequentially according to the computed

scores, and the initial compromise probability matrix P is set to be a matrix of ones.

For every propagation path, the lateral movement will be contained if the edge it

attempts to leverage is hardened. Since NetMelt can only deal with homogeneous

graphs (in this case, the host-host graph), its recommendation on hardening a host

pair is equivalent to hardening K corresponding host-application edges (in this case,

K=2), whereas our method has better granularity for edge hardening by considering

the connectivity structure of the host-application bipartite graph. The computational

time complexity of NetMelt is O(mη + N) [158], where m is the number of edges in

the host-host graph, η is the number of hardened edges, and N is the number of

hosts. Since the operation of leading eigenpair computation in Algorithm 10.6 is sim-

ilar to NetMelt, the computation time complexity for Algorithm 10.6 without score

recalculation is O(m′η+N), where m′ is the number of nonzero entries in the matrix

J. For Algorithm 10.6 with score recalculation, the computational time complexity

is O(m′η2 +Nη).

Fig. 10.7 shows the reachability of lateral movements with respect to the fraction

of hardened edges. Initially the reachability is nearly 100%, suggesting that almost

every host is vulnerable to lateral movement attacks without edge hardening. It can

be observed that the proposed method (both with or without score recalculation) can

restrain the reachability to roughly 10% by hardening less than 1.5% of edges, whereas

NetMelt requires to harden more than 5% of edges to achieve comparable reachability,

since it does not exploit the heterogeneity of the cyber system. Consequently, the

results demonstrate the utility of incorporating heterogeneity for building resilient

systems.
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CHAPTER XI

Conclusion and Future Work

Many data mining and inference techniques are built upon certain actions on the

associated graph representations. This dissertation has focused on two types of ac-

tions on graphs, namely graph spectral decompositions and insertions and removals

of nodes or edges, for understanding their fundamental principles in graph data an-

alytics, and proposing novel and efficient algorithms for spectral graph clustering in

data science and for network resilience in cyber security. In addition to establishing

theoretical foundations and providing performance guarantees on the developed al-

gorithms, we have provided numerical experiments on both synthetic and real-world

datasets to validate and complement the theory.

In Chapter II, we have proposed an efficient incremental eigenpair computation

method for graph Laplacian matrices, which works by transforming a batch eigenvalue

decomposition problem into a sequential leading eigenpair computation problem. The

proposed method is elegant, robust and easy to implement using a scientific program-

ming language, such as Matlab. We provided analytical proof of its correctness and

demonstrated that it achieves significant reduction in computation time when com-

pared with the batch computation method. It also serves as the cornerstone for

incremental model order selection for graph clustering in single-layer and multilayer

graphs in the following chapters.
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In Chapter III, we have established a universal phase transition threshold on

community detectability using the spectral modularity method for a general stochastic

block model in single-layer graphs. The critical phase transition is universal in the

sense that it does not depend on the ratio of community sizes as long as the community

sized grow with a comparable rate.

In Chapter IV, we have established a phase transition analysis of spectral graph

clustering (SGC) under the random interconnection model (RIM) in single-layer

graphs. Under the RIM, we proved that there exists a critical value of the inter-

cluster edge connection probability that separates SGC into two regimes: a regime

where SGC is successful, and a regime where SGC is unsuccessful. We also provided

analytical upper and lower bounds on the critical value for phase transition, and

extended this framework to single-layer weighted graphs.

In Chapter V, we have proposed a framework for automated model order selec-

tion (AMOS) for SGC, which are applicable to unweighted and weighted single-layer

graphs. The proposed AMOS algorithm is based on the phase transition analysis of

SGC established in Chapter IV. It works by iterative SGC and finds the minimal

model order (i.e., the number of clusters) that satisfies the phase transition criterion

for clustering reliability. In addition, AMOS also provides statistical clustering re-

liability guarantees. Numerical results on real-world network data showed that the

clusters found by AMOS are consistent with the ground truth meta information.

In Chapter VI, we have extended the phase transition analysis for SGC to multi-

layer graphs via convex layer aggregation under a multilayer signal plus noise model

based on the RIM. A multilayer iterative model order selection algorithm (MIMOSA)

has been proposed for SGC in multilayer graphs. MIMOSA features automated model

order selection and layer weight adaption for finding common clusters shared among

different layers. Numerical results on simulated multilayer graphs validate the phase

transition analysis, and the experiments on real-world multilayer graphs show that
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the clusters found by MIMOSA result in improved performance in terms of multiple

external and internal clustering metrics.

In Chapter VII, we proposed a centrality measure called local Fiedler vector cen-

trality (LFVC) based on bounds on the sensitivity of algebraic connectivity to node or

edge removals. We proved that LFVC relates to a monotonic submodular set function

such that greedy node removals based on LFVC can be applied to identify the most

vulnerable nodes or edges with bounded performance loss compared to the optimal

combinatorial batch removal strategy. We also applied LFVC to deep community

detection for discovering embedded clusters in graphs via edge or node removals. The

proposed LFVC method provides better resolution for discovering important commu-

nities and key members in the studied real-world social network datasets.

In Chapter VIII, we have developed a novel method for identifying influential

links for event propagation on Twitter. We utilized the network of networks (NoN)

structure in real-world event propagation patterns on Twitter and proposed a left

eigenvector score (LES) to identify the level of importance in event propagation for

every follower link. Experiments on reducing event reachability via link removals

show that exploiting the NoN structure and LES leads to superior performance over

trivial methods using the number of followers for score calculation. Consequently, LES

successfully identifies influential links for event propagation and offers new insights

on modeling information dissemination in general networks.

In Chapter IX, we have studied network resilience to centrality attacks, where the

resilience is evaluated in terms of its network connectivity after node or edge removals.

We also proposed an edge rewiring method to enhance network resilience without

introducing additional edges to the network. The results on the power grid of western

US states show that the network is particularly vulnerable to LFVC attacks, and that

the edge rewiring method can significantly improve network resilience with only a few

edge rewires. Moreover, the proposed edge rewiring method can be implemented in
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a distributed fashion via in-network computation.

In Chapter X, we have developed a graph-theoretic framework for joint modeling

of multiple dimensions of cyber behavior (user access control, application traffic) for

enhancing cyber enterprise resiliency in an unified, tripartite graph model. Our ex-

periments performed on a real dataset demonstrate the value and powerful insights

from this unified model with respect to analysis performed on a single dimensional

dataset. Through the tripartite graph model, the dominant factors affecting lateral

movement are identified and effective algorithms are proposed to constrain the reach-

ability with theoretical performance guarantees. We also synthesized a benchmark

dataset containing traces of actual lateral movement attacks. The results showed that

our proposed approach can effectively contain lateral movements by incorporating the

heterogeneity of the system.

11.1 Future work

There are many interesting directions that are worthy of future study:

First, the phase transition analysis for spectral graph clustering in single-layer and

multilayer graphs in Chapters IV and VI are developed upon the random intercon-

nection model (RIM). Although the RIM includes popular block models such as the

stochastic block model, the inferential limits of graph clustering under the RIM has

not been explored. In addition, the RIM assumes Bernoulli-type noisy inter-cluster

connections. The generalization and extension to more complicated inter-cluster con-

nection models will be very helpful toward complete understanding of graph spectral

decompositions for graph clustering. Moreover, nonlinear layer aggregation for multi-

layer graphs, and phase transition analysis of eigendecomposition on tensors, are two

directions that are worthy of further investigation.

Second, it has been known that graph spectral decompositions may not possess

nice concentration properties in sparse graphs due to sparsity in the matrix repre-
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sentation. However, recent works [92, 93] have shown promising results that the

concentration properties of graph spectral decompositions hold in sparse graphs via

simple regularization techniques. As a result, how regularization can improve the

performance of graph clustering techniques developed in this dissertation, such as

AMOS in Chapter V, MIMOSA in Chapter VI, and LFVC deep community detec-

tion in Chapter VII, are worthy of further study.

Third, many empirical results on graph clustering have reported that joint ac-

tions on graphs via graph spectral decompositions and node or edge removals can

significantly improve its performance, especially for graphs possessing heterogeneous

connectivity structure such as the power-law networks or overlapping communities.

However, the effect of these joint actions on graph clustering are not fully understood

and the theoretical analysis is still lacking. Furthermore, the established theoretic

framework can be readily applied to analyzing the performance of graph summa-

rization techniques including graph sparsification and random sampling for graph

clustering and other tasks for graph data analytics.

Lastly, the algorithms developed for event propagation on Twitter and network

resilience for cyber security in Chapters VIII, IX, and X are based on a static graph

setting. In practice, a cyber system or an online social network may involve network

dynamics and only partial information may be given for inference and decision mak-

ing. Online algorithms and adaptive methods on graphs that take into account the

network dynamics and incomplete network information are interesting and challeng-

ing directions.
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APPENDIX A

Appendix of Chapter II

A.1 Proof of Lemma 2.1

Since L is a positive semidefinite (PSD) matrix, λi(L) ≥ 0 for all i. Since G is a

connected graph, by (1.2) L1n = (S−W)1n = 0n. Therefore, by the PSD property

we have (λ1(L),v1(L)) = (0, 1n√
n
). Moreover, since L is a symmetric real-valued square

matrix, from (1.2) we have

trace(L) =
n∑
i=1

Lii =
n∑
i=1

λi(L) =
n∑
i=1

si = s. (A.1)

By the PSD property of L, we have λn(L) < s since λ2(L) > 0 for any connected

graph. Therefore, by the orthogonality of eigenvectors of L (i.e., 1Tnvi(L) = 0 for all

i ≥ 2) the eigenvalue decomposition of L̃ can be represented as

L̃ =
n∑
i=2

λi(L)vi(L)vTi (L) +
s

n
1n1

T
n

=
n∑
i=1

λi(L̃)vi(L̃)vTi (L̃), (A.2)
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where (λn(L̃),vn(L̃)) = (s, 1n√
n
) and (λi(L̃),vi(L̃)) = (λi+1(L),vi+1(L)) for 1 ≤ i ≤

n− 1.

A.2 Proof of Lemma 2.3

The graph Laplacian matrix of a disconnected graph consisting of δ connected

components can be represented as a matrix with diagonal block structure, where

each block in the diagonal corresponds to one connected component in G[26], i.e.,

L =



L1 O O O

O L2 O O

O O
. . . O

O O O Lδ


, (A.3)

where Lk is the graph Laplacian matrix of k-th connected component in G. From

the proof of Lemma 2.1 each connected component contributes to exactly one zero

eigenvalue for L, and

λn(L) <
δ∑

k=1

∑
i∈component k

λi(Lk) =
δ∑

k=1

∑
i∈component k

si = s. (A.4)

Therefore, we have the results in Lemma 2.3.

A.3 Proof of Corollary 2.2

Recall from (1.3) that LN = S−
1
2 LS−

1
2 , and also we have LNS

1
2 1n = S−

1
2 L1n =

0n. Moreover, it can be shown that 0 ≤ λ1(LN ) ≤ λ2(LN ) ≤ . . . ≤ λn(LN ) ≤ 2 [98],

and λ2(LN ) > 0 if G is connected. Following the same derivation for Lemma 2.1 we

obtain the corollary. Note that S
1
2 = diag(

√
s1,
√
s2, . . . ,

√
sn) and (S

1
2 1n)TS

1
2 1n =

1TnS1n = s.
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A.4 Proof of Corollary 2.4

The results can be obtained by following the same derivation procedure in Sec.

A.2 and the fact that λn(LN ) ≤ 2 [98].

A.5 Proof of Theorem 2.6

From Lemma 2.1,

L +
s

n
1n1

T
n + VKΛKVT

K =
n∑

i=K+1

λi(L)vi(L)vTi (L) +
K∑
i=2

s · vi(L)vTi (L) +
s

n
1n1

T
n ,

(A.5)

which is a valid eigenpair decomposition that can be seen by inflating the K smallest

eigenvalues of L to s with the originally paired eigenvectors. Using (A.5) we obtain

the eigenvalue decomposition of L̃ as

L̃ = L + VKΛKVT
K +

s

n
1n1

T
n − sI

=
n∑

i=K+1

(λi(L)− s)vi(L)vTi (L). (A.6)

Since 0 ≤ λK+1(L) ≤ λK+2(L) ≤ . . . ≤ λn(L), we have |λK+1(L) − s| ≥ |λK+2(L) −

s| ≥ . . . ≥ |λn(L)− s|. Therefore, the eigenpair (λK+1(L),vK+1(L)) can be obtained

by computing the leading eigenpair of L̃. In particular, if L has distinct eigenvalues,

then the leading eigenpair of L̃ is unique. Therefore, by (A.6) we have the relation

(λK+1(L),vK+1(L)) = (λ1(L̃) + s,v1(L̃)). (A.7)

178



A.6 Proof of Tandheorem 2.7

First observe from (A.3) that L has δ zero eigenvalues since each connected com-

ponent contributes to exactly one zero eigenvalue for L. Following the same derivation

procedure in the proof of Theorem 2.6 and using Lemma 2.3, we have

L̃ = L + VK,δΛK,δV
T
K,δ + sVδV

T
δ − sI

=
n∑

i=K+1,K≥δ

(λi(L)− s)vi(L)vTi (L). (A.8)

Therefore, the eigenpair (λK+1(L),vK+1(L)) can be obtained by computing the lead-

ing eigenpair of L̃. If L has distinct nonzero eigenvalues (i.e, λδ+1(L) < λδ+2(L) <

. . . < λn(L)), we obtain the relation (λK+1(L),vK+1(L)) = (λ1(L̃) + s,v1(L̃)).
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APPENDIX B

Appendix of Chapter III

B.1 Proof of (3.22)

We prove the result by showing
yT1 B1y1

n

a.s.−→ 0 and
yT2 B2y2

n

a.s.−→ 0 such that√
nn1

n2
y1

a.s.−→ ±1n1 and
√

nn2

n1
y2

a.s.−→ ∓1n2 due to the facts that the vector of all

ones is always in the null space of a modularity matrix and yT1 1n1 + yT2 1n2 = 0. We

prove this statement by contradiction. Assume y1 and y2 converge almost surely to

other vectors such that
yT1 B1y1

n
→ c4 6= 0 and

yT2 B2y2

n
→ c5 6= 0 and c4 + c5 = 0 in

order to satisfy (3.21). By the concentration results in (3.12) and (3.13), we have

yT1 B1y1

n
=

yT1

(
A1 − b1d̃1d̃

T
1

)
y1

n

a.s.−→
yT1

(
p11n11

T
n1
− 1

n1
2p1
· n1

2p2
11n11

T
n1

)
y1

n

= 0, (B.1)

and similarly
yT2 B2y2

n

a.s.−→ 0, which contradicts the assumption that
yT1 B1y1

n

a.s.−→ c4 6= 0

and
yT2 B2y2

n

a.s.−→ c5 6= 0. Therefore
√

nn1

n2
y1

a.s.−→ ±1n1 and
√

nn2

n1
y2

a.s.−→ ∓1n2 .
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B.2 The Effect of Community Size on Phase Transition

To investigate the effect of community size on phase transition, we generate syn-

thetic communities from the stochastic block model with different community sizes

by fixing c = 1 and p1 = p2 = 0.25. The predicted phase transition threshold in

(3.24) is p∗ = 0.25. The results (averaged for 100 runs) are shown in Fig. B.1. The

phase transition is apparent for small community size in the sense that the spectral

modularity method fails to detect the communities in the super-critical regime (i.e.,

the p > p∗ regime). In the sub-critical regime (i.e., the p ≤ p∗ regime), we observe

an intermediate regime of community detectability for small community size, and

this intermediate regime vanishes as we increase the community size. This can be

explained by the fluctuation of finite community size on the concentration results in

(3.18), (3.19), (3.22), and (3.24). By concentration theory the fluctuation decreases

with the increase of community size, and an abrupt transition occurs at the phase

transition threshold p∗ when n1, n2 →∞ and n1

n2
→ c > 0.
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Figure B.1: The effect of community size on phase transition. The phase transition
phenomenon hold for communities of small sizes, and the empirical phase transition
threshold gets closer to the predicted asymptotic threshold p∗ = 0.25 as the commu-
nity size increases.
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APPENDIX C

Appendix of Chapter IV

C.1 Proof of Theorem 4.1

Based on the partitioned matrix representation of A in (1.1), define the induced

graph Laplacian matrix L = D−A. In particular, the (i, j)-th block is a matrix Lij

of dimension ni × nj satisfying

Lij =

 Li +
∑K

z=1, z 6=i Diz, if i = j,

−Cij, if i 6= j,
(C.1)

where Li is the graph Laplacian matrix of Ai, Dij = diag(Cij1nj) is the diagonal

degree matrix contributed by the inter-cluster edges between clusters i and j. Ap-

plying (C.1) to (4.1), let ν ∈ R(K−1) and U ∈ R(K−1)×(K−1) with U = UT be the

Lagrange multiplier of the constraints XT1n = 0K−1 and XTX = IK−1, respectively.

The Lagrangian function is

Γ(X) = trace(XTLX)− νTXT1n − trace
(
U(XTX− IK−1)

)
. (C.2)
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Let Y ∈ Rn×(K−1) be the solution of (4.1). Differentiating (C.2) with respect to X

and substituting Y into the equations, we obtain the optimality condition

2LY − 1nν
T − 2YU = O, (C.3)

where O is a matrix of zero entries. Left multiplying (C.3) by 1Tn , we obtain

ν = 0K−1. (C.4)

Left multiplying (C.3) by YT and using (C.4) we have

U = YTLY = diag(λ2(L), λ3(L), . . . , λK(L)), (C.5)

which we denote by the diagonal mateix Λ. Hence by (4.1) we have

S2:K(L) = trace(U). (C.6)

Now let X = [XT
1 ,X

T
2 , . . . ,X

T
K ]T and Y = [YT

1 ,Y
T
2 , . . . ,Y

T
K ]T , where Xk ∈

Rnk×(K−1) and Yk ∈ Rnk×(K−1). With representation (C.5), the Lagrangian func-

tion in (C.2) can be written as

Γ(X) =
K∑
k=1

trace(XT
kLkXk) +

K∑
k=1

K∑
j=1,j 6=k

trace(XT
kDkjXk)−

K∑
k=1

K∑
j=1,j 6=k

trace(XT
kCkjXj)

−
K∑
k=1

trace(UXT
kXk) + trace(U). (C.7)

Differentiating (C.7) with respect to Xk and substituting Yk into the equation, we
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obtain the optimality condition that for all k ∈ {1, 2, . . . , K},

LkYk +
K∑

j=1,j 6=k

DkjYk −
K∑

j=1,j 6=k

CkjYj −YkU = O. (C.8)

Using results from the Talagrand’s concentration theorem [150], the Latala’s theorem

[91] and the fact that each entry in Cij is a Bernoulli random variable we can show

that

Cij√
ninj

a.s.−→ pij11T (C.9)

as ni, nj → ∞ and nmin

nmax
→ c > 0, where

a.s.−→ denotes almost sure convergence and 1

is the constant vector of unit norm. The proof of (C.9) can be found in [25]. Hence

we have

Dij

nj
=

diag(Cij1nj)

nj

a.s.−→ pijI. (C.10)

The condition that nmin

nmax
→ c > 0 guarantees that the cluster sizes grow at comparable

rates so that (C.9) holds for all Cij. Using (C.10) and left multiplying (C.8) by
1Tnk
n

gives

1

n

 K∑
j=1,j 6=k

njpkj1
T
nk

Yk −
K∑

j=1,j 6=k

nkpkj1
T
nj

Yj − 1TnkYkU

 a.s.−→ 0TK−1, ∀ k. (C.11)

Using the relation 1TnKYnK = −
∑K−1

j=1 1TnjYnj , (C.11) can be represented as an

asymptotic form of Sylvester’s equation

1

n

(
ÃZ− ZΛ

)
a.s.−→ O, (C.12)

where Z = [YT
n1

1n1 ,Y
T
n2

1n2 , . . . ,Y
T
nK−1

1nK−1
]T ∈ R(K−1)×(K−1), Λ = diag(λ2(L), λ3(L),
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. . . , λK(L)), Ã is the matrix specified in Theorem 4.1, and we use the relation

U = YTLY = Λ from (C.5).

Let ⊗ denote the Kronecker product defined in Appendix H.1 and let vec(Z)

denote the vectorization operation of Z by stacking the columns of Z into a vector.

(C.12) can be represented as

1

n
(IK−1 ⊗ Ã−Λ⊗ IK−1)vec(Z)

a.s.−→ 0, (C.13)

where the matrix IK−1 ⊗ Ã−Λ⊗ IK−1 is the Kronecker sum, denoted by Ã⊕−Λ.

Observe that vec(Z) = 0 is always a trivial solution to (C.13), and if Ã ⊕ −Λ

is non-singular, vec(Z) = 0 is the unique solution to (C.13). Since vec(Z) = 0

implies 1TnkYnk = 0TK−1 for all k = 1, 2, . . . , K, the centroid
1Tnk

Ynk

nk
of each cluster in

the eigenspace is a zero vector, the clusters are not separable, and therefore accurate

clustering is not possible. Therefore a sufficient condition for spectral graph clustering

on the RIM to fail is that the matrix IK−1⊗Ã−Λ⊗IK−1 be non-singular. Moreover,

using the property of the Kronecker sum that the eigenvalues of Ã ⊕ −Λ satisfy

{λ`(Ã ⊕ −Λ)}(K−1)2

`=1 = {λi(Ã) − λj(Λ)}K−1
i,j=1, the sufficient condition on failure of

spectral graph clustering on the RIM is that λi

(
Ã
n

)
6= λj

(
L
n

)
for all i = 1, 2, . . . , K−1

and j = 2, 3, . . . , K.

C.2 Proof of Theorem 4.2

Following the derivations in AppendixC.1, since 1TnkYk = −
∑K

j=1,j 6=k 1TnjYj, under

the homogeneous RIM (i.e., pij = p), (C.11) can be simplified to

(
pIK−1 −

U

n

)
YT
k 1nk

a.s.−→ 0K−1, ∀ k. (C.14)
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This implies that one of the two cases below has to hold:

Case 1:
U

n

a.s.−→ pIK−1; (C.15)

Case 2: YT
k 1nk

a.s.−→ 0K−1, ∀ k. (C.16)

Note that with (C.6) Case 1 implies

S2:K(L)

n
=

trace(YTLY)

n
=

trace(U)

n

a.s.−→ (K − 1)p. (C.17)

In Case 1, left multiplying (C.8) by
YT
k

n
and using (C.9) and (C.10) gives

1

n

YT
k LkYk +

K∑
j=1,j 6=k

njpY
T
k Yk

−
K∑

j=1,j 6=k

pYT
k 1nk1

T
nj

Yj −YT
k YkU

 a.s.−→ O, ∀ k. (C.18)

Since 1TnkYk = −
∑K

j=1,j 6=k 1TnjYj, (C.18) can be simplified as

1

n

[
YT
k LkYk + (n− nk)pYT

k Yk + pYT
k 1nk1

T
nk

Yk

−YT
k YkU

]
a.s.−→ O, ∀ k. (C.19)

Taking the trace of (C.19) and using (C.15), we have

1

n

[
trace(YT

k LkYk)
]

+
p

n

[
trace(YT

k 1nk1
T
nk

Yk)− nktrace(YT
k Yk)

]
a.s.−→ 0, ∀ k

(C.20)

Since (C.20) has to be satisfied for all values of p in Case 1, this implies the following
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two conditions have to hold simultaneously:

1
n

[
trace(YT

k LkYk)
] a.s.−→ 0, ∀ k;

1
n

[
trace(YT

k 1nk1
T
nk

Yk)− nktrace(YT
k Yk)

]
a.s.−→ 0, ∀ k.

(C.21)

Since Lk is a positive semidefinite (PSD) matrix, Lk1nk = 0nk , and λ2(Lk) > 0,

1
n

[
trace(YT

k LkYk)
] a.s.−→ 0 implies that every column of Lk is a constant vector.

Therefore, (C.21) implies that in Case 1,

Yk
a.s.−→ 1nk1

T
K−1Vk =

[
vk11nk , v

k
21nk , . . . , v

k
K−11nk

]
, (C.22)

where V = diag(vk1 , v
k
2 , . . . , v

k
K−1) is a diagonal matrix.

Let S = {X ∈ Rn×(K−1) : XTX = IK−1, XT1n = 0K−1}. In Case 2, since

YT
k 1nk

a.s.−→ 0K−1 ∀ k, we have

S2:K(L)

n

a.s.−→ min
X∈S

 1

n

 K∑
k=1

trace(XT
kLkXk) + p

K∑
k=1

(n− nk)trace(XT
kXk)

 (C.23)

≥ min
X∈S

 1

n

K∑
k=1

trace(XT
kLkXk)

+ min
X∈S

p

n

K∑
k=1

(n− nk)trace(XT
kXk)


(C.24)

= min
k∈{1,2,...,K}

{
S2:K(Lk)

n

}
+

(K − 1)p

n
min

k∈{1,2,...,K}
(n− nk) (C.25)

= min
k∈{1,2,...,K}

{
S2:K(Lk)

n

}
+

(K − 1)(n− nmax)p

n
, (C.26)

where nmax = maxk∈{1,2,...,K} nk.

Let Sk = {X ∈ Rn×(K−1) : XT
kXk = IK−1, Xj = Onj×(K−1) ∀ j 6= k, XT1n =
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0K−1}. Since Sk ⊆ S, in Case 2, we have

S2:K(L)

n

a.s.−→ min
X∈S

 1

n

 K∑
k=1

trace(XT
kLkXk) + p

K∑
k=1

(n− nk)trace(XT
kXk)

 (C.27)

≤ min
k∈{1,2,...,K}

min
X∈Sk

 1

n

 K∑
k=1

trace(XT
kLkXk) + p

K∑
k=1

(n− nk)trace(XT
kXk)


(C.28)

= min
k∈{1,2,...,K}

{
1

n

[
S2:K(Lk) + (K − 1)(n− nk)p

]}
(C.29)

≤ min
k∈{1,2,...,K}

{
1

n

[
S2:K(Lk) + (K − 1)(n− nmin)p

]}
(C.30)

= min
k∈{1,2,...,K}

{
S2:K(Lk)

n

}
+

(K − 1)(n− nmin)p

n
, (C.31)

where nmin = mink∈{1,2,...,K} nk.

Comparing (C.17) with (C.26) and (C.31), as a function of p the slope of S2:K(L)
n

changes at some critical value p∗ that separates Case 1 and Case 2, and by the

continuity of S2:K(L)
n

a lower bound on p∗ is

pLB =
mink∈{1,2,...,K} S2:K(Lk)

(K − 1)nmax

, (C.32)

and an upper bound of p∗ is

pUB =
mink∈{1,2,...,K} S2:K(Lk)

(K − 1)nmin

. (C.33)

C.3 Proof of Corollary 4.3

Recall the eigenvector matrix Y = [YT
1 ,Y

T
2 , . . . ,Y

T
K ]T , where Yk is the nk× (K−

1) matrix with row vectors representing the nodes from cluster k. Since YTY =∑K
k=1 YT

k Yk = I(K−1)×(K−1), YT1n =
∑K

k=1 YT
k 1nk = 0K−1, and from (C.22) when

p < p∗ the matrix Yk
a.s.−→ 1nk1

T
K−1Vk =

[
vk11nk , v

k
21nk , . . . , v

k
K−11nk

]
as nk →∞ and
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nmin

nmax
→ c > 0, we have

∑K
k=1 nkvkvk

T = I(K−1)×(K−1);∑K
k=1 nkvk = 0K−1,

(C.34)

where vk = Vk1nk = [vk1 , v
k
2 , . . . , v

k
K−1]T . (C.34) suggests that some vk cannot be a

zero vector since
∑K

k=1 nk(v
k
j )

2
= 1 for all j ∈ {1, 2, . . . , K − 1}, and from (C.34) we

have

∑
k:vkj>0 nkv

k
j = −

∑
k:vkj<0 nkv

k
j , ∀ j ∈ {1, 2, . . . , K − 1};∑

k:vki v
k
j>0 nkv

k
i v

k
j = −

∑
k:vki v

k
j<0 nkv

k
i v

k
j , ∀ i, j ∈ {1, 2, . . . , K − 1}, i 6= j.

(C.35)

This concludes the properties in Corollary 4.3.

C.4 Proof of Corollary 4.4

If mink∈{1,2,...,K} S2:K(Lk) = Ω(nmax), then by Theorem 4.2 (c) pLB > 0. Therefore

p∗ ≥ pLB > 0. Similarly, If mink∈{1,2,...,K} S2:K(Lk) = o(nmin), then by Theorem 4.2 (c)

pUB = 0. Therefore p∗ = 0. Finally, since S2:K(Lk) =
∑K

i=2 λi(Lk) ≥ (K − 1)λ2(Lk)

and S2:K(Lk) =
∑K

i=2 λi(Lk) ≤ (K − 1)λK(Lk), applying these two inequalities to

Theorem 4.2 (c) gives Corollary 4.4 (c).

C.5 Proof of Corollary 4.5

If cluster k is a complete graph, then λi(Lk) = nk for 2 ≤ i ≤ nk [161]. Therefore

pLB =
mink∈{1,2,...,K} S2:K(Lk)

(K−1)nmax
=

mink∈{1,2,...,K} nk
nmax

= nmin

nmax
= c, and pUB =

mink∈{1,2,...,K} S2:K(Lk)

(K−1)nmin
=

mink∈{1,2,...,K} nk
nmin

= 1. If cluster k is a star graph, then λi(Lk) = 1 for 2 ≤ i ≤ nk − 1

[161]. Hence if K < nmin, then S2:K(Lk) = o(nmin) and by Corollary 4.4 (b) p∗ = 0.
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C.6 Proof of (4.2)

If cluster k is a Erdos-Renyi random graph with edge connection probability pk,

then λi(Lk)
nk

a.s.−→ pk for 2 ≤ i ≤ nk [25] as nk →∞ and nmin

nmax
→ c > 0, where pk is a con-

stant. Therefore pLB =
mink∈{1,2,...,K} S2:K(Lk)

(K−1)nmax
=

mink∈{1,2,...,K} nkpk
nmax

≥ c ·mink∈{1,2,...,K} pk,

and pUB =
mink∈{1,2,...,K} S2:K(Lk)

(K−1)nmin
=

mink∈{1,2,...,K} nkpk
nmin

≤ nmax·mink∈{1,2,...,K} pk
nmin

= 1
c
·mink∈{1,2,...,K} pk.

C.7 Proof of Corollary 4.6

Corollary 4.6 (a) is a direct result from Theorem 4.2 (a), with K = 2 and the

fact that min {a, b} = a+b−|a−b|
2

for all a, b ≥ 0. Corollary 4.6 (b) is a direct result

from Theorem 4.2 (b) and Corollary 4.3, with the orthonormality constraints that

yT1 1n1 + yT2 1n2 = 0 and yT1 y1 + yT2 y2 = 1. Corollary 4.6 (c) is a direct result from

Corollary 4.4 (c), with max {a, b} = a+b+|a−b|
2

for all a, b ≥ 0.

C.8 Proof of Corollary 4.7

We first show that when pmax < p∗, the second eigenvalue of L
n

, λ2(L
n

), lies within

the interval [pmin, pmax] almost surely as nk →∞ and nmin

nmax
→ c > 0. Consider a graph

generated by the inhomogeneous RIM with parameter {pij}. By (C.9) with proper

scaling the entries of each interconnection matrix Cij converge to pij almost surely as

nk →∞ and nmin

nmax
→ c > 0. Let A(p) be the adjacency matrix under the homogeneous

RIM with parameter p. Then the adjacency matrix A of the inhomogeneous RIM can

be written as A = A(pmin) + ∆A, and the graph Laplacian matrix associated with

A can be written as L = L(pmin) + ∆L, where L(pmin) and ∆L are associated with

A(pmin) and ∆A, respectively. Since pmin = mini 6=j pij, as nk →∞ and nmin

nmax
→ c > 0,

∆A
n

is a symmetric nonnegative matrix almost surely, and ∆L
n

is a graph Laplacian

matrix almost surely. By the PSD property of a graph Laplacian matrix and Corollary

4.6 (a), we obtain λ2(L
n

) ≥ pmin almost surely as nk →∞ and nmin

nmax
→ c > 0. Similarly,
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following the same procedure we can show that λ2(L
n

) ≤ pmax almost surely as nk →∞

and nmin

nmax
→ c > 0. Lastly, when p < p∗, using the fact from (C.15) that λj(

L̃
n

)
a.s.−→ p,

and λj(
L(pmin)

n
) ≤ λj(

L
n

) ≤ λj(
L(pmax)

n
) almost surely for all j ∈ {2, 3, . . . , K} as

nk →∞ and nmin

nmax
→ c > 0, we obtain the results.

C.9 Proof of Theorem 4.8

Applying the Davis-Kahan sin θ theorem [22] to the eigenvector matrices Y and

Ỹ associated with the graph Laplacian matrices L
n

and L̃
n

, respectively, we obtain

an upper bound on the distance of column spaces spanned by Y and Ỹ, which is

‖ sin Θ(Y, Ỹ‖F ≤ ‖L−L̃‖F
nδ

, where δ = inf{|x − y| : x ∈ {0} ∪ [λK+1(L
n

),∞), y ∈

[λ2( L̃
n

), λK( L̃
n

)]}. If p < p∗, using the fact from (C.15) that λj(
L̃
n

)
a.s.−→ p for all

j ∈ {2, 3, . . . , K} as nk → ∞ and nmin

nmax
→ c > 0, the interval [λ2( L̃

n
), λK( L̃

n
)] reduces

to a point p almost surely. Therefore, δ reduces to δp as defined in Theorem 4.8.

Furthermore, if pmax ≤ p∗, then (4.4) holds for all p ≤ pmax. Taking the minimum of

all upper bounds in (4.4) for p ≤ pmax completes the theorem.

C.10 Proof of Theorem 4.9

Similar to the proof of Theorem 4.2, for undirected weighted graphs under the

homogeneous RIM we need to show

Wij√
ninj

a.s.−→ pW11T (C.36)

for all i, j ∈ {1, 2, . . . , K} as ni, nj →∞ and nmin

nmax
→ c > 0, where Wij is the weight

matrix of inter-cluster edges between the cluster pair (i, j) and W is the mean of

the common nonnegative inter-cluster edge weight distribution. By the smoothing
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property we have the mean of Wij to be

EWij = E
[
E
[
WijCij|Cij

]]
= ECijE

[
Wij|Cij

]
= p ·W.

Let ∆ = Wij −Wij, where Wij = pW1ni1
T
nj

is a matrix whose elements are the

means of entries in Wij. Then [∆]uv = [Wij]uv− pW with probability p and [∆]uv =

−pW with probability 1 − p. Let σi(M) denote the i-th largest singular value of

a real rectangular matrix M. The Latala’s theorem [91] states that for any random

matrix M with statistically independent and zero mean entries, there exists a positive

constant c1 such that

E
[
σ1(M)

]
≤ c1

max
u

√∑
v

E
[
[M]2uv

]
+ max

v

√∑
u

E
[
[M]2uv

]
+ 4

√∑
u,v

E
[
[M]4uv

] .

(C.37)

It is clear that E
[
[∆]uv

]
= 0 and each entry in ∆ is independent. Substituting

M = ∆√
ninj

into the Latala’s theorem, since p ∈ [0, 1] and the common inter-

cluster edge weight distribution has finite fourth moment, by the smoothing prop-

erty we have maxu

√∑
v E
[
[M]2uv

]
= O( 1√

ni
), maxv

√∑
u E
[
[M]2uv

]
= O( 1√

nj
), and

4

√∑
u,v E

[
[M]4uv

]
= O( 1

4
√
ninj

). Therefore E
[
σ1

(
∆√
ninj

)]
→ 0 for all i, j ∈ {1, 2, . . . , K}

as ni, nj →∞ and nmin

nmax
→ c > 0.

Next we use the Talagrand’s concentration theorem stated as follows. Let g :

Rk 7→ R be a convex and Lipschitz function. Let x ∈ Rk be a random vector and

assume that every element of x satisfies |xi| ≤ φ for all i = 1, 2, . . . , k and some

constant φ, with probability one. Then there exist positive constants c2 and c3 such

that for any ε > 0,

Pr

(∣∣∣g(x)− E
[
g(x)

]∣∣∣ ≥ ε

)
≤ c2 exp

(
−c3ε

2

φ2

)
. (C.38)
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It is well-known that the largest singular value of a matrix M can be represented

as σ1(M) = maxzT z=1 ||Mz||2 [76] so that σ1(M) is a convex and Lipschitz function.

Applying the Talagrand’s theorem by substituting M = ∆√
ninj

and using the facts

that E
[
σ1

(
∆√
ninj

)]
→ 0 and [∆]uv√

ninj
≤ [W]uv√

ninj
, we have

Pr

σ1

(
∆
√
ninj

)
≥ ε

 ≤ c2 exp
(
−c3ninjε

2
)
. (C.39)

Since for any positive integer ni, nj > 0 ninj ≥ ni+nj
2

,
∑

ni,nj
c2 exp

(
−c3ninjε

2
)
<

∞. By Borel-Cantelli lemma [137], σ1

(
∆√
ninj

)
a.s.−→ 0 when ni, nj → ∞. Finally, a

standard matrix perturbation theory result [76] is |σi(Wij + ∆)− σi(Wij)| ≤ σ1(∆)

for all i, and as σ1

(
∆√
ninj

)
a.s.−→ 0, we have as ni, nj →∞,

σ1

(
Wij√
ninj

)
= σ1

(
Wij + ∆
√
ninj

)
a.s.−→ σ1

(
Wij√
ninj

)
= pW ; (C.40)

σi

(
Wij√
ninj

)
a.s.−→ 0, ∀ i ≥ 2. (C.41)

Furthermore, by Wedin’s sin θ theorem [164], the singular vectors of Wij and Wij

are close to each other in the sense that the square of inner product of their left/right

singular vectors converges to 1 almost surely when σ1

(
∆√
ninj

)
a.s.−→ 0. Therefore

Wij√
ninj

a.s.−→ pW11T . Lastly, following the same proof procedure in Appendix C.2, we

obtain Theorem 4.9.

C.11 Additional phase transition results in simulated net-

works

Fig. C.1 (a) shows the phase transition in normalized partial eigenvalue sum

S2:K(L)
n

and cluster detectability for clusters generated by Erdos-Renyi random graphs
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Figure C.1: Phase transition of clusters generated by Erdos-Renyi random graphs.
K = 3, (n1, n2, n3) = (6000, 8000, 10000), and p1 = p2 = p3 = 0.25. The empirical
lower bound pLB = 0.1373 and the empirical upper bound pUB = 0.2288. The results
in (a) are averaged over 50 trials.

with different network sizes. As predicted by Theorem 4.2 (a), the slope of S2:K(L)
n

undergoes a phase transition at some critical threshold value p∗. When p < p∗,

S2:K(L)
n

is exactly 2p. When p > p∗, S2:K(L)
n

is upper and lower bounded by the derived

bounds. Fig. C.1 (b) shows the row vectors of Y that verifies Theorem 4.2 (b) and

Corollary 4.3. Similar phase transition can be found for clusters generated by the

Watts-Strogatz small world network model [163] with different cluster sizes in Fig.

C.2.

Next we investigate the sensitivity of cluster detectability to the inhomogeneous

RIM. We consider the perturbation model pij = p0 + unif(−a, a), where p0 is the

base edge connection probability and unif(−a, a) is an uniform random variable with

support (−a, a). The simulation results in Figs. C.3 (a) and (b) show that almost

perfect cluster detectability is still valid when pij is within certain perturbation of

p0. The sensitivity of cluster detectability to inhomogeneous RIM also implies the

accuracy of SGC under the inhomogeneous RIM in Theorem 4.8.

Note that Theorem 4.1 also explains the effect of the perturbation model pij =
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Figure C.2: Phase transition of clusters generated by the Watts-Strogatz small world
network model. K = 3, (n1, n2, n3) = (1500, 1000, 1000), average number of neighbors
= 200, and rewire probability for each cluster is 0.4, 0.4, and 0.6. The empirical lower
and upper bounds are pLB = 0.0602 and pUB = 0.0902. The results in (a) are averaged
over 50 trials.
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Figure C.3: Sensitivity of cluster detectability to the inhomogeneous RIM. The results
are average over 50 trials and error bars represent standard deviation. (a) Clusters
generated by Erdos-Renyi random graphs. K = 3, n1 = n2 = n3 = 8000, p1 = p2 =
p3 = 0.25, and p0 = 0.15. (b) Clusters generated by the Watts-Strogatz small world
network model. K = 3, n1 = n2 = n3 = 1000, average number of neighbors = 200,
and rewire probability for each cluster is 0.4, 0.4, 0.6, and p0 = 0.08.
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p0 + unif(−a, a) on cluster detectability. As a increases the off-diagonal entries in

Ã further deviate from 0 and the matrix Ã ⊕ −Λ in AppendixC.1 gradually be-

comes non-singular, resulting in the degradation of cluster detectability. Further-

more, using Theorem 4.1 and the Gershgorin circle theorem [76], each eigenvalue of

Ã
n

lies within at least one of the closed disc centered at [Ã]ii
n

with radius Ri, where

Ri = ni
n

∑K−1
j=1,j 6=i |piK − pij|. Therefore larger inhomogeneity in pij further drives the

matrix Ã⊕−Λ away from singularity.
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APPENDIX D

Appendix of Chapter V

D.1 Asymptotic confidence interval for the homogeneous RIM

Here we define the generalized log-likelihood ratio test (GLRT) under the RIM for

the hypothesis H0 : pij = p ∀i, j, i 6= j, against its alternative hypothesis H1 : pij 6= p,

for at least one i, j, i 6= j. Let fhij(x, θ|{Ĝk}Kk=1) denote the likelihood function

of observing x edges between Ĝi and Ĝj under hypothesis Hh, and θ is the edge

interconnection probability. n̂k is the number of nodes in cluster k, and m̂ij is the

number of edges between clusters i and j. Then under the RIM,

f 1
ij(m̂ij, pij|{Ĝk}Kk=1) =

(
n̂in̂j
m̂ij

)
p
m̂ij
ij (1− pij)n̂in̂j−m̂ij ;

f 0
ij(m̂ij, p|{Ĝk}Kk=1) =

(
n̂in̂j
m̂ij

)
pm̂ij(1− p)n̂in̂j−m̂ij . (D.1)
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Since p̂ij is the MLE of pij under H1 and p̂ is the MLE of p under H0, the GLRT

statistic is

GLRT = 2 ln
suppij

∏K
i=1

∏K
j>i f

1
ij(m̂ij, pij|{Ĝk}Kk=1)

suppij=p
∏K

i=1

∏K
j>i f

0
ij(m̂ij, pij|{Ĝk}Kk=1)

= 2 ln

∏K
i=1

∏K
j=i+1 f

1
ij(m̂ij, p̂ij|{Ĝk}Kk=1)∏K

i=1

∏K
j=i+1 f

0
ij(m̂ij, p̂|{Ĝk}Kk=1)

= 2


K∑
i=1

K∑
j=i+1

I{p̂ij∈(0,1)}
[
m̂ij ln p̂ij + (n̂in̂j − m̂ij) ln(1− p̂ij)

]

−

m− K∑
k=1

m̂i

 ln p̂ −

1

2

n2 −
K∑
k=1

n̂2
k

−
m− K∑

k=1

m̂k


 ln(1− p̂)

 ,

(D.2)

where we use the relations that
∑K

i=1

∑K
j=i+1 m̂ij = m−

∑K
k=1 m̂k and

∑K
i=1

∑K
j=i+1 n̂in̂j =

n2−
∑K
k=1 n̂

2
k

2
. By the Wilk’s theorem [167], as nk → ∞ ∀ k, this statistic converges in

law to the chi-square distribution, denoted by χ2
ν , with ν =

(
K
2

)
− 1 degrees of free-

dom. Therefore, we obtain the asymptotic 100(1 − α)% confidence interval for p in

(5.1).

D.2 Phase transition tests for undirected weighted graphs

Given clusters {Ĝk}Kk=1 of an undirected weighted graph obtained from spectral

clustering with model order K, let Ŵ ij be the average weight of the inter-cluster

edges between clusters i and j, and let Ŵ be the average weight of all between-cluster

edges. Define t̂ij = p̂ij ·Ŵ ij, t̂ = p̂ ·Ŵ , t̂max = maxij t̂ij and t̂LB =
mink∈{1,2,...,K} S2:K(L̂k)

(K−1)n̂max
.

For undirected weighted graphs, the first phase of testing the RIM assumption in the

AMOS algorithm is identical to undirected unweighted graphs, i.e., the estimated local

inter-cluster edge connection probabilities p̂ij’s are used to test the RIM hypothesis.

In the second phase, if the clusters pass the homogeneous RIM test (i.e., the estimate
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of global inter-cluster edge probability p̂ lies in the confidence interval specified in

(5.1)), then based on the phase transition results in Theorem 4.9, the clusters pass

the homogeneous phase transition test if t̂ < t̂LB. If the homogeneous RIM test fails,

then by Theorem 4.8 the clusters pass the inhomogeneous RIM test if t̂max lies in a

confidence interval [0, ψ] and ψ < t∗. Moreover, since testing t̂ij < t∗ is equivalent to

testing p̂ij <
t∗

Ŵ ij

, as discussed in Sec. 5.1.3, we can verify ψ < t∗ by checking the

condition

K∏
i=1

K∏
j=i+1

Fij

 t̂LB

Ŵ ij

, p̂ij

 ≥ 1− α′, (D.3)

where α′ is the precision parameter of the confidence interval.

D.3 Performance of the Louvain method and the nonback-

tracking matrix method on real-life network data

Fig. D.1 and Fig. D.2 show the clusters of the datasets in Table 5.1 identified

by the the nonbacktracking matrix method [87, 139] and the Louvain method [18],

respectively. Comparing the proposed AMOS algorithm with the two method, the

clusters identified by AMOS are more consistent with the ground truth meta infor-

mation provided by the datasets.

The performance of the nonbacktracking matrix method is summarized as follows.

For IEEE reliability test system, 8 nodes are clustered incorrectly. For Hibernia

Internet backbone map, 3 cities in the north America are clustered with the cities in

Europe. For Cogent Internet backbone map, the clusters are inconsistent with the

geographic locations. For Minnesota road map, some clusters are not aligned with

the geographic separations.

The performance of the Louvain method is summarized as follows. For IEEE

reliability test system, the number of clusters is different from the number of actual
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subgrids. For Hibernia and Cogent Internet backbone maps, although the clusters

are consistent with the geographic locations, the Louvain method tends to identify

clusters with small sizes. For Minnesota road map, the clusters are inconsistent with

the geographic separations.
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subgrid 3

Nonbacktracking 
matrix method

(a) IEEE reliability test system. The num-
ber of clusters is 3.

(b) Hibernia Internet backbone map. The
number of clusters is 2.

(c) Cogent Internet backbone map. The
number of clusters is 3.
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(d) Minnesota road map. The number of
clusters is 35.

Figure D.1: Clusters found with the nonbacktracking matrix method [87, 139]. For
IEEE reliability test system, 8 nodes are clustered incorrectly. For Hibernia Internet
backbone map, 3 cities in the north America are clustered with the cities in Europe.
For Cogent Internet backbone map, the clusters are inconsistent with the geographic
locations. For Minnesota road map, some clusters are not aligned with the geographic
separations.
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(a) IEEE reliability test system. The num-
ber of clusters is 6.
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(b) Hibernia Internet backbone map. The
number of clusters is 6.
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(c) Cogent Internet backbone map. The
number of clusters is 11.
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(d) Minnesota road map. The number of
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Figure D.2: Clusters found with the Louvain method [18]. For IEEE reliability test
system, the number of clusters is different from the number of actual subgrids. For
Hibernia and Cogent Internet backbone maps, although the clusters are consistent
with the geographic locations, the Louvain method tends to identify clusters with
small sizes. For Minnesota road map, the clusters are inconsistent with the geographic
separations.
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Figure D.3: 2 clusters found with the proposed automated model order selection
(AMOS) algorithm for the Hibernia Internet backbone map with city names. The
clusters are consistent with the geographic locations in the sense that one cluster
contains cities in America and the other cluster contains cities in Europe.
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Figure D.4: 4 clusters found with the proposed automated model order selection
(AMOS) algorithm for the Cogent Internet backbone map with city names. Clusters
are separated by geographic locations except for the cluster containing cities in North
Eastern America and West Europe due to many transoceanic connections.

205



APPENDIX E

Appendix of Chapter VI

E.1 Proof of Theorem 6.1

Given a layer weight vector w ∈ WL, using (6.2) the graph Laplacian matrix Lw of

the graph Gw via convex layer aggregation can be written in the block representation

such that its (i, j)-th block of dimension ni × nj satisfies

Lw
ij =

 Lw
i +

∑K
z=1, z 6=i S

w
iz, if i = j,

−Fw
ij , if i 6= j,

(E.1)

for 1 ≤ i, j ≤ K, where Sw
ij = diag(

∑L
`=1 w`F

(`)
ij 1nj) is the diagonal nodal strength

matrix contributed by the inter-cluster edges between clusters i and j of the graph

Gw, and Fw
ij =

∑L
`=1 w`F

(`)
ij .

Applying the block representation in (E.1) to the minimization problem in (6.3),

let ν ∈ R(K−1) and U ∈ R(K−1)×(K−1) with U = UT be the Lagrange multiplier of the

constraints XT1n = 0K−1 and XTX = IK−1, respectively. The Lagrangian function
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is

Γ(X) = trace(XTLwX)− νTXT1n − trace
(
U(XTX− IK−1)

)
. (E.2)

Let Y ∈ Rn×(K−1) be the solution of (6.3). Differentiating (E.2) with respect to X

and substituting Y into the equations, we obtain the optimality condition

2LwY − 1nν
T − 2YU = O, (E.3)

where O is a matrix of zero entries. Left multiplying (E.3) by 1Tn , we obtain

ν = 0K−1. (E.4)

Left multiplying (E.3) by YT and using (E.4), we have

U = YTLY = diag(λ2(Lw), λ3(Lw), . . . , λK(Lw)), (E.5)

which we denote by the diagonal matrix Λ. Therefore, by (6.3) we have

S2:K(Lw) = trace(U). (E.6)

Now let X = [XT
1 ,X

T
2 , . . . ,X

T
K ]T and Y = [YT

1 ,Y
T
2 , . . . ,Y

T
K ]T , where Xk ∈

Rnk×(K−1) and Yk ∈ Rnk×(K−1). With (E.5), the Lagrangian function in (E.2) can be

written as

Γ(X) =
K∑
k=1

trace(XT
kLw

k Xk) +
K∑
k=1

K∑
j=1,j 6=k

trace(XT
kSw

kjXk)

−
K∑
k=1

K∑
j=1,j 6=k

trace(XT
kFw

kjXj)−
K∑
k=1

trace(UXT
kXk) + trace(U). (E.7)

207



Differentiating (E.7) with respect to Xk and substituting Yk into the equation, we

obtain the optimality condition that for all k ∈ {1, 2, . . . , K},

Lw
k Yk +

K∑
j=1,j 6=k

Sw
kjYk −

K∑
j=1,j 6=k

Fw
kjYj −YkU = O. (E.8)

Using the concentration results for F
(`)
ij from Appendix E.3 that

F
(`)
ij√
ninj

a.s.−→ t
(`)
ij 11T (E.9)

as ni, nj → ∞ and nmin

nmax
→ c > 0, where

a.s.−→ denotes almost sure convergence and 1

is the constant vector of unit norm, we have

Fw
ij√
ninj

=

∑L
` w`F

(`)
ij√

ninj

a.s.−→
L∑
`

w`t
(`)
ij 11T (E.10)

and

Sw
ij

nj
=

diag(
∑L

` w`F
(`)
ij 1nj)

nj

a.s.−→
L∑
`

w`t
(`)
ij I. (E.11)

Using (E.11) and left multiplying (E.8) by
1Tnk
n

gives

1

n

 L∑
`=1

K∑
j=1,j 6=k

njw`t
(`)
kj 1

T
nk

Yk −
L∑
`=1

K∑
j=1,j 6=k

nkw`t
(`)
kj 1

T
nj

Yj − 1TnkYkU

 a.s.−→ 0TK−1,

∀ k ∈ {1, . . . , K}. (E.12)

Using the centrality relation 1TnKYnK = −
∑K−1

j=1 1TnjYnj and (E.6), (E.12) can be

represented as an asymptotic form of Sylvester’s equation

1

n

(
W̃wZ− ZΛ

)
a.s.−→ O, (E.13)
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where Z = [YT
n1

1n1 ,Y
T
n2

1n2 , . . . ,Y
T
nK−1

1nK−1
]T ∈ R(K−1)×(K−1) and W̃w is the matrix

defined in Theorem 6.1.

Let ⊗ denote the Kronecker product defined in Appendix H.1 and let vec(Z)

denote the vectorization operation of Z by stacking the columns of Z into a column

vector. Then (E.13) can be represented as

1

n
(IK−1 ⊗ W̃w −Λ⊗ IK−1)vec(Z)

a.s.−→ 0, (E.14)

where the matrix IK−1⊗W̃w−Λ⊗IK−1 is the Kronecker sum, denoted by W̃w⊕−Λ.

Observe that vec(Z) = 0 is always a trivial solution to (E.14), and if W̃w ⊕ −Λ

is non-singular, vec(Z) = 0 is the unique solution to (E.14). Since vec(Z) = 0

implies 1TnkYnk = 0TK−1 for all k = 1, 2, . . . , K, the centroid
1Tnk

Ynk

nk
of each cluster in

the eigenspace is a zero vector, the clusters are not separable, and therefore correct

clustering is not possible. Therefore, a sufficient condition for multilayer SGC with

layer weight vector w to fail is that the matrix IK−1⊗W̃w−Λ⊗IK−1 be non-singular.

Moreover, using the property of the Kronecker sum that the eigenvalues of W̃w⊕−Λ

satisfy {λ`(W̃w ⊕ −Λ)}(K−1)2

z=1 = {λi(W̃w) − λj(Λ)}K−1
i,j=1, the sufficient condition on

failure of multilayer SGC is that for every w ∈ WL, λi

(
W̃w

n

)
6= λj

(
Lw

n

)
for all

i = 1, 2, . . . , K − 1 and j = 2, 3, . . . , K.

E.2 Proof of Theorem 6.2

Following the derivations in Appendix E.1, since 1TnkYk = −
∑K

j=1,j 6=k 1TnjYj by

the centrality constraint, under the block-wise identical noise model (i.e., t
(`)
ij = t(`)

for all ` = 1, 2, . . . , L), the optimality condition in (E.12) can be simplified to

(
twIK−1 −

U

n

)
YT
k 1nk

a.s.−→ 0K−1, ∀ k, (E.15)
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where tw =
∑L

`=1w`t
(`) is the aggregated noise level given a layer weight vector w.

The optimality condition in (E.15) implies that one of the two cases below has to

hold:

Case 1:
U

n

a.s.−→ twIK−1; (E.16)

Case 2: YT
k 1nk

a.s.−→ 0K−1, ∀ k. (E.17)

Note that with (E.6), Case 1 implies

S2:K(Lw)

n
=

trace(U)

n

a.s.−→ (K − 1)tw. (E.18)

Furthermore, in Case 1, left multiplying (E.8) by
YT
k

n
and using (E.9) and (E.11)

gives

1

n

YT
k Lw

k Yk +
K∑

j=1,j 6=k

njt
wYT

k Yk −
K∑

j=1,j 6=k

twYT
k 1nk1

T
nj

Yj −YT
k YkU

 a.s.−→ O, ∀ k.

(E.19)

Since 1TnkYk = −
∑K

j=1,j 6=k 1TnjYj, (E.19) can be simplified as

1

n

[
YT
k Lw

k Yk + (n− nk)twYT
k Yk + twYT

k 1nk1
T
nk

Yk −YT
k YkU

]
a.s.−→ O, ∀ k. (E.20)

Taking the trace of (E.20) and using (E.16), we have

1

n

[
trace(YT

k Lw
k Yk)

]
+
tw

n

[
trace(YT

k 1nk1
T
nk

Yk)− nktrace(YT
k Yk)

]
a.s.−→ 0, ∀ k.

(E.21)

Since (E.21) has to be satisfied for all values of tw in Case 1, this implies the following
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two conditions have to hold simultaneously:

1
n

[
trace(YT

k Lw
k Yk)

] a.s.−→ 0, ∀ k;

1
n

[
trace(YT

k 1nk1
T
nk

Yk)− nktrace(YT
k Yk)

]
a.s.−→ 0, ∀ k.

(E.22)

Since Lw
k =

∑L
`=1 w`L

(`)
k is a positive semidefinite (PSD) matrix, Lw

k 1nk = 0nk , and

λ2(Lw
k ) > 0, 1

n

[
trace(YT

k Lw
k Yk)

] a.s.−→ 0 implies that every column of Lw
k is a constant

vector. Therefore, (E.22) implies that in Case 1,

Yk
a.s.−→ 1nk1

T
K−1Vk =

[
vk11nk , v

k
21nk , . . . , v

k
K−11nk

]
, (E.23)

where V = diag(vk1 , v
k
2 , . . . , v

k
K−1) is a diagonal matrix.

To prove the phase transition results in Theorem 6.2 (a), let S = {X ∈ Rn×(K−1) : XTX =

IK−1, XT1n = 0K−1}. In Case 2, since YT
k 1nk

a.s.−→ 0K−1 ∀ k from (E.17), we have

S2:K(Lw)

n

a.s.−→ min
X∈S

 1

n

 K∑
k=1

trace(XT
kLw

k Xk) + tw
K∑
k=1

(n− nk)trace(XT
kXk)


(E.24)

≥ min
X∈S

 1

n

K∑
k=1

trace(XT
kLw

k Xk)

+ min
X∈S

twn
K∑
k=1

(n− nk)trace(XT
kXk)


(E.25)

= min
k∈{1,2,...,K}

{
S2:K(Lw

k )

n

}
+

(K − 1)tw

n
min

k∈{1,2,...,K}
(n− nk) (E.26)

= min
k∈{1,2,...,K}

{
S2:K(Lw

k )

n

}
+

(K − 1)(n− nmax)tw

n
, (E.27)

where nmax = maxk∈{1,2,...,K} nk.

Similarly, let Sk = {X ∈ Rn×(K−1) : XT
kXk = IK−1, Xj = Onj×(K−1) ∀ j 6=
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k, XT1n = 0K−1}. Since Sk ⊆ S, in Case 2, we have

S2:K(Lw)

n

a.s.−→ min
X∈S

 1

n

 K∑
k=1

trace(XT
kLw

k Xk) + tw
K∑
k=1

(n− nk)trace(XT
kXk)


(E.28)

≤ min
k∈{1,2,...,K}

min
X∈Sk

 1

n

 K∑
k=1

trace(XT
kLw

k Xk) + tw
K∑
k=1

(n− nk)trace(XT
kXk)


(E.29)

= min
k∈{1,2,...,K}

{
1

n

[
S2:K(Lw

k ) + (K − 1)(n− nk)tw
]}

(E.30)

≤ min
k∈{1,2,...,K}

{
1

n

[
S2:K(Lw

k ) + (K − 1)(n− nmin)tw
]}

(E.31)

= min
k∈{1,2,...,K}

{
S2:K(Lw

k )

n

}
+

(K − 1)(n− nmin)tw

n
, (E.32)

where nmin = mink∈{1,2,...,K} nk. Therefore, we obtain the phase transition results in

Theorem 6.2 (a).

Proceeding to Theorem 6.2 (b), we first note that each cluster-wise eigenvector

component Yk in Y has to either satisfy the cluster-wise separability in (E.23) or the

zero row-sum condition in (E.17). To show the conditions (b-1) to (b-3) in Theorem

6.2 (b), recall the eigenvector matrix Y = [YT
1 ,Y

T
2 , . . . ,Y

T
K ]T , where Yk is the nk ×

(K−1) matrix with row vectors representing the nodes from cluster k. Since YTY =∑K
k=1 YT

k Yk = I(K−1)×(K−1), YT1n =
∑K

k=1 YT
k 1nk = 0K−1, and from (E.23) when

tw < tw∗ the matrix Yk
a.s.−→ 1nk1

T
K−1Vk =

[
vk11nk , v

k
21nk , . . . , v

k
K−11nk

]
as nk →

∞ ∀ k and nmin

nmax
→ c > 0, we have

∑K
k=1 nkvkvk

T = I(K−1)×(K−1);∑K
k=1 nkvk = 0K−1,

(E.33)

where vk = Vk1nk = [vk1 , v
k
2 , . . . , v

k
K−1]T . (E.33) suggests that some vk cannot be a
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zero vector since
∑K

k=1 nk(v
k
j )

2
= 1 for all j ∈ {1, 2, . . . , K − 1}, and from (E.33) we

have

∑
k:vkj>0 nkv

k
j = −

∑
k:vkj<0 nkv

k
j ,

∀ j ∈ {1, 2, . . . , K − 1};∑
k:vki v

k
j>0 nkv

k
i v

k
j = −

∑
k:vki v

k
j<0 nkv

k
i v

k
j ,

∀ i, j ∈ {1, 2, . . . , K − 1}, i 6= j.

(E.34)

As a results, the optimality conditions of vk in (E.33) and (E.34) lead to the conditions

(b-1) to (b-3) in Theorem 6.2.

Lastly, comparing (E.18) with (E.27) and (E.32), as a function of tw the slope of

S2:K(Lw)
n

changes at some critical value tw∗ that separates Case 1 and Case 2. By the

continuity of S2:K(Lw)
n

, a lower bound on tw∗ is

twLB =
mink∈{1,2,...,K} S2:K(Lw

k )

(K − 1)nmax

, (E.35)

and an upper bound on tw∗ is

twUB =
mink∈{1,2,...,K} S2:K(Lw

k )

(K − 1)nmin

. (E.36)

In particular, if c = 1, then nmax = nmin = n
K

and hence the expressions in (E.27)

and (E.32) are identical, which completes Theorem 6.2 (c).

E.3 Proof of Theorem 6.3

The following lemma provides bounds on the smallest K − 1 nonzero eigenvalues

of Lw under the block-wise non-identical noise model.

Lemma. Under the block-wise non-identical noise model in Sec. 6.1.2 with maximum

noise level {t(`)max}L`=1 for each layer, given a layer weight vector w ∈ WL, let twmin =
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∑L
`=1w` mini 6=j t

(`)
ij , twmax =

∑L
`=1w` maxi 6=j t

(`)
ij , and let tw∗ be the critical threshold

value for the block-wise identical noise model specified by Theorem 6.2. If twmax < tw∗,

the following statement holds almost surely as nk →∞ ∀ k and nmin

nmax
→ c > 0:

twmin ≤ λj

(
Lw

n

)
≤ twmax, ∀ j = 2, 3, . . . , K. (E.37)

Proof. We first show that when twmax < tw∗, the second eigenvalue of Lw

n
, λ2(Lw

n
),

lies within the interval [twmin, t
w
max] almost surely as nk → ∞ ∀ k and nmin

nmax
→ c > 0.

Under the block-wise non-identical noise model in Sec. 6.1.2, by (E.9) with proper

scaling the entries of each interconnection matrix F
(`)
ij converge to t

(`)
ij almost surely as

nk →∞ ∀ k and nmin

nmax
→ c > 0. Let Ww(tw) be the weight matrix of the aggregated

graph Gw under the block-wise identical noise model with aggregated noise level

tw. Then the weight matrix Ww can be written as Ww = Ww(twmin) + ∆Ww, and

the corresponding graph Laplacian matrix can be written as Lw = Lw(twmin) + ∆Lw,

where Lw(twmin) and ∆Lw are associated with Ww(tw) and ∆Ww, respectively. Since

twmin =
∑L

`=1w` mini 6=j t
(`)
ij , as nk → ∞ ∀ k and nmin

nmax
→ c > 0, ∆Ww

n
is a symmetric

nonnegative matrix almost surely, and ∆Lw

n
is a graph Laplacian matrix almost surely.

By the PSD property of a graph Laplacian matrix, we obtain λ2(Lw

n
) ≥ twmin almost

surely as nk → ∞ ∀ k and nmin

nmax
→ c > 0. Similarly, following the same procedure

we can show that λ2(Lw

n
) ≤ twmax almost surely as nk → ∞ ∀ k and nmin

nmax
→ c > 0.

Lastly, when tw < tw∗, using the fact from (E.16) that λj(
Lw(tw)

n
)

a.s.−→ tw for all

j ∈ {2, 3, . . . , K}, we obtain

twmin = λj

(
L(twmin)

n

)
≤ λj

(
Lw

n

)
≤ λj

(
L(twmax)

n

)
= twmax (E.38)

almost surely for all j ∈ {2, 3, . . . , K} as nk →∞ ∀ k and nmin

nmax
→ c > 0.

Proceeding to proving Theorem 6.3, applying the Davis-Kahan sin θ theorem [22]
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to the eigenvector matrices Y and Ỹ associated with the graph Laplacian matrices

Lw

n
and L̃w

n
, respectively, we obtain an upper bound on the distance of column spaces

spanned by Y and Ỹ, which is ‖ sin Θ(Y, Ỹ‖F ≤ ‖Lw−L̃w‖F
nδ

, where δ = inf{|x − y| :

x ∈ {0} ∪ [λK+1(Lw

n
),∞), y ∈ [λ2( L̃w

n
), λK( L̃w

n
)]}. Under the block-wise identical

noise model, if tw < tw∗, using the fact from (E.16) that λj(
L̃w

n
)

a.s.−→ tw for all

j ∈ {2, 3, . . . , K} as nk → ∞ ∀ k and nmin

nmax
→ c > 0, the interval [λ2( L̃w

n
), λK( L̃w

n
)]

reduces to a point tw almost surely. Therefore, δ reduces to δtw as defined in Theorem

6.3. Furthermore, if twmax ≤ tw∗, then (6.6) holds for all tw ≤ twmax. Taking the

minimum over all upper bounds in (6.6) for every tw ≤ twmax, we obtain (6.7).

E.4 Proof of the condition in (6.12)

First, using the Anscombe transformation on {p̂(`)
ij } for variance stabilization [8],

let Aij(x) = sin−1

√
x+ c′

n̂in̂j

1+ 2c′
n̂in̂j

, where c′ = 3
8
. By the central limit theorem,

√
4n̂in̂j + 2 ·(

Aij(p̂
(`)
ij )− Aij(p(`)

ij )
)

d−→ N(0, 1) for all p
(`)
ij ∈ (0, 1) as n̂i, n̂j → ∞, where

d−→

denotes convergence in distribution and N(0, 1) denotes the standard normal distri-

bution [8]. Therefore, under the null hypothesis H
(`)
0 , from [23, Theorem 2.1] an

asymptotic 100(1−α′)% confidence interval for t̂
(`)
max is [0, ψ`], where ψ(α′`, {t̂

(`)
ij }) is a

function of the precision parameter α′` ∈ [0, 1] and {t̂(`)ij }, which satisfies

∏K
i=1

∏K
j=i+1 Φ

√4n̂in̂j + 2 ·

Aij(ψ`)− Aij ( t̂
(`)
ij

Ŵ
(`)

ij

)
 = 1−α′`, where Φ(·) is the

cdf of the standard normal distribution, and we use the relation t̂
(`)
ij = p̂

(`)
ij · Ŵ

(`)

ij .

As a result, if ψ` < twLB, then t̂
(`)
max < twLB with probability at least 1 − α′`. Note

that verifying ψ` < twLB is equivalent to checking the condition

K∏
i=1

K∏
j=i+1

Fij

 twLB

W
(`)

ij

, p̂
(`)
ij

 ≥ 1− α′`, (E.39)
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where Fij(
twLB

W
(`)
ij

, p̂
(`)
ij ) = Φ

(√
4n̂in̂j + 2 ·

(
Aij(

twLB

W
(`)
ij

)− Aij(p̂(`)
ij )

))
· I{p̂(`)ij ∈(0,1)}

+ I{t̂(`)ij <twLB}
I{p̂(`)ij ∈{0,1}}. Finally, we replace twLB and W

(`)

ij in (E.39) with the empirical

estimates t̂wLB and Ŵ
(`)

ij , respectively, which leads to (6.12).
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APPENDIX F

Appendix of Chapter VII

F.1 Proof of Theorem 7.1

From (7.1) a graph is connected if and only if the algebraic connectivity is greater

than zero. Furthermore, the smallest eigenvalue of the associated graph Laplacian

matrix is always 0. Therefore n− q − r is the number of connected components (in-

cluding the singleton nodes) in G̃ [38] by the fact that n− q and r are the node size

and rank of L̃, respectively. Since the definition of a deep community excludes single-

ton nodes, the first inequality in (7.4) becomes equality if all connected components

in G̃ are non-singleton.

Using a well-known matrix norm inequality [76] that ‖M‖∗ ≤ r‖M‖2 for any

square matrix M of rank r, where ‖M‖2 = max‖x‖2=1 ‖Mx‖2 = λn(M). We have

n− q − r ≤ n− q − ‖L̃‖∗
λn(L̃)

= n− q − 2m̃

λn(L̃)
,

where ‖L̃‖∗ = trace(L̃) = 2m̃ is the total degree of G̃.

Next we show that the second inequality in (7.4) becomes an equality if each non-

singleton connected graph is a complete subgraph of the same size. Consider a graph
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consisting of g disjoint complete subgraphs of n′ ≥ 2 nodes and n′(n′ − 1)/2 edges.

The largest eigenvalue of each subgraph is n′ and ‖L̃‖∗ = g · n′(n′ − 1). The upper

bound becomes g · n′ − gn′(n′−1)
n′

= g, which is exactly the number of non-singleton

connected components in G̃. These results can be directly applied to edge removals

in G by setting q = 0 since no nodes are removed.

F.2 Proof of Theorem 7.2

Let r be the rank of L̃. We prove that there exists an n× (n− r) binary matrix

X = [x1 x2 . . .xn−r] whose columns {xi}n−ri=1 satisfy: 1) ‖xi‖1 is the size of the i-th

connected component of G̃; 2) they are orthogonal; 3) they span null(L̃). Assume G̃

consists of g connected components. Then there exits a matrix permutation (node

relabeling) such that

L̃ =



L̃1 0 0 0

0 L̃2 0 0

0 0
. . . 0

0 0 0 L̃g


. (F.1)

Associated with the i-th block matrix L̃i we define xi as an n × 1 binary vector xi

in null(L̃) having the form xi = [0 . . . 0 1 . . . 1 0 . . . 0]T , where the locations of the

nonzero entries correspond to the indexes of the i-th block matrix. It is obvious

that ‖xi‖1 =
∑n

j=1 |xij| equals the size of the i-th component and such {xi}n−ri=1 are

mutually orthogonal. Furthermore, there exists no other binary matrix which is

sparser than X with column span equal to null(L̃). If there existed another binary

matrix that were sparser than X, then it would contradict the fact that its column

vectors have sums equal to the component sizes of G̃. Therefore the largest non-

singleton connected component size of G̃ is ψ(G̃) = ‖X‖1 = maxi ‖xi‖1.
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F.3 Proof of Lemma 7.3

By the relation

∑
i∈R

∑
j∈V

Aij(yi − yj)2 =
∑
i∈R

∑
j∈Ni

(yi − yj)2 (F.2)

and V = {V/R} ∪ {R}, we have

f(R) =
∑
i∈R

∑
j∈Ni

(yi − yj)2 − 1

2

∑
i∈R

∑
j∈V

Aij(yi − yj)2 +
1

2

∑
i∈R

∑
j∈V/R

Aij(yi − yj)2

=
1

2

∑
i∈R

∑
j∈Ni

(yi − yj)2 +
1

2

∑
i∈R

∑
j∈V/R

Aij(yi − yj)2

≥ 0. (F.3)

f(∅) = 0 follows directly from the definition of f(R) in (7.15).
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F.4 Proof of Theorem 7.4

We first prove the monotonic property. Consider two node removal sets R1 ⊂

R2 ⊂ V . Then using Lemma 7.3 and the fact that R1/R2 = ∅,

f(R2)− f(R1)

=
∑

i∈R2/R1

∑
j∈Ni

(yi − yj)2 −
∑
i∈R1

∑
j∈R2/R1

Aij(yi − yj)2 − 1

2

∑
i∈R2/R1

∑
j∈R2/R1

Aij(yi − yj)2

=
∑

i∈R2/R1

∑
j∈V

Aij(yi − yj)2 −
∑
i∈R1

∑
j∈R2/R1

Aij(yi − yj)2 −
∑

i∈R2/R1

∑
j∈R2/R1

Aij(yi − yj)2

+
1

2

∑
i∈R2/R1

∑
j∈R2/R1

Aij(yi − yj)2

=
∑

i∈R2/R1

∑
j∈V

Aij(yi − yj)2 −
∑
j∈R2

Aij(yi − yj)2

+
1

2

∑
i∈R2/R1

∑
j∈R2/R1

Aij(yi − yj)2

=
∑

i∈R2/R1

∑
j∈V/R2

Aij(yi − yj)2 +
1

2

∑
i∈R2/R1

∑
j∈R2/R1

Aij(yi − yj)2

≥ 0. (F.4)

Therefore f(R) is a monotonic increasing set function (i.e., f(R2) ≥ f(R1) for all

R1 ⊂ R2 ⊂ V).

Furthermore, f(R) is a submodular set function [59, 103] since for any node

v ∈ V , v /∈ R2, R1 ⊂ R2 ⊂ V , we have from (7.15) that

f(R1 ∪ v)− f(R1) =
∑
j∈Nv

(yv − yj)2 −
∑
j∈R1

Avj(yv − yj)2

≥
∑
j∈Nv

(yv − yj)2 −
∑
j∈R2

Avj(yv − yj)2

= f(R2 ∪ v)− f(R2). (F.5)

This diminishing returns property of f(R) establishes that f is submodular [86].
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F.5 Proof of Theorem 7.5

By submodularity of f(R) in Theorem 7.4, there exists a v ∈ Ropt/Rk [59] such

that

f(Rk ∪ v)− f(Rk) ≥
1

q

(
f(Ropt)− f(Rk)

)
. (F.6)

After algebraic manipulation, we have

f(Ropt)− f(Rk+1) ≤
(

1− 1

q

)
(f(Ropt)− f(Rk)) (F.7)

and therefore

f(Ropt)− f(Rq) ≤
(

1− 1

q

)q
f(Ropt) ≤

1

e
f(Ropt). (F.8)

Applying this result to (7.13), we have

λ2(L̃(Rq)) ≤ λ2(L)− f(Rq)

≤ λ2(L)−
(
1− e−1

)
f(Ropt). (F.9)
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APPENDIX G

Appendix of Chapter VIII

G.1 Details of the collected real-world event propagation

traces on Twitter

Ee collected the traces of three recent events on Twitter during a period of two

weeks through the Twitter API. These events include URLs and hashtags specified

as follows.

� Obama FB: we tracked the tweets including the URL “http://Facebook.com/POTUS”

from November 9th to November 23rd in 2015. The URL links to U.S. President

Obama’s personal Facebook page, and was firstly being posted by his personal

Twitter account on November 9th 2015.

� Premier 12: we tracked the tweets including the hashtag “#premier12” from

November 19th to December 3rd in 2015. Premier 12 is a flagship international

baseball tournament organized by the World Baseball Softball Confederation

(WBSC), featuring the twelve best-ranked national baseball teams in the world.
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� AlphaGo: we tracked the tweets including the hashtag “#AlphaGo” from Jan-

uary 27th to February 10th in 2016. AlphaGo is a computer program developed

by Google DeepMind in London to play the board game Go. On January 27th

2016, the news of AlphaGo defeating a European Go champion was announced

along with the algorithm published in Nature [146].

G.2 Derivation of the iterative state equation in (8.1)

Since At accounts for the adjacency matrix of activated follower links for event

propagation during the t-th time frame, the i-th entry of the vector AT
t+1rt can be

expressed as [AT
t+1rt]i =

∑n
j=1[At]ij[rt]j, which is the number of tweets regarding

the event that user i decides to share on Twitter during the t + 1-th time frame.

Therefore, the entry-wise thresholded binary vector T(AT
t+1rt) indicates the status of

new users participating in event propagation during the t+ 1-th time frame. Lastly,

since T(AT
t+1rt) represents the vector of event propagation increment, rt+1 = T(rt +

T(AT
t+1rt)) accounts for the event propagation status of all users since the beginning

to the t+ 1-th time frame.

G.3 Proof of the upper bound in (8.3)

First, observe from (8.1) that the sparsity level ‖rt‖0 of rt is a non-decreasing

function in t. Therefore, the condition that ‖rF‖0 ≤ s implies ‖rt‖0 ≤ s for all t ≤ F .

Let 1n denote the n-dimensional column vector of all ones. Then the sparsity level

‖T(AT
t+1rt)‖0 of the binary vector T(AT

t+1rt) can be expressed as

‖T(AT
t+1rt)‖0 = 1TnT(AT

t+1rt). (G.1)
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Decomposing the term 1TnT(AT
t+1rt), we have

1TnT(AT
t+1rt) = rTt T(AT

t+1rt) + (1n − rt)
TT(AT

t+1rt). (G.2)

Let ‖x‖2 =
(∑n

i=1[x]2i
)1/2

denote the Euclidean norm of a vector x. We can derive

an upper bound on the term rTt T(AT
t+1rt), which is

rTt T(AT
t+1rt)

(a)

≤ rTt AT
t+1rt

(b)
= rTt At+1rt

(c)
= ‖rt‖2

2 ·
rTt
‖rt‖2

At+1
rt
‖rt‖2

(d)

≤ ‖rt‖2
2 · max

x:‖x‖2=1
xTAt+1x

(e)
= ‖rt‖2

2 · λmax(At+1)

(f)

≤ s · λmax(At+1)

(g)

≤ s · λmax(A), (G.3)

where (a) is due to the fact that T(·) is a threshold function and AT
t+1rt is a non-

negative vector, (b) is true since rTt At+1rt is a real value, (c) is a simple arithmetic

operation, (d) is due to the fact that rt
‖rt‖2 is a vector of unit Euclidean norm, (e) is

from the Courant-Fischer theorem [76], (f) uses the fact that rt is a binary vector

such that ‖rt‖2
2 =

∑n
i=1[rt]

2
i =

∑n
i=1[rt]i = ‖rt‖0 ≤ s, and (g) is due to the fact fact

all the nonzero entries in At also appear in A, and hence λmax(At+1) ≤ λmax(A),

which can be verified by using the matrix perturbation theorem [76].

Next, using the Cauchy-Schwartz inequality, the term (1n−rt)
TT(AT

t+1rt) is upper
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bounded by

(1n − rt)
TT(AT

t+1rt) ≤ ‖1n − rt‖2 · ‖T(AT
t+1rt)‖2

≤
√
n ·
√
s. (G.4)

‖1n − rt‖2 ≤ ‖1n‖2 =
√
n is a trivial upper bound since rt is a binary vector.

‖T(AT
t+1rt)‖2 ≤

√
s since ‖T(AT

t+1rt)‖2
2 = ‖T(AT

t+1rt)‖0 ≤ ‖rt+1‖0 ≤ s by the iterative

state equation in (8.1) and the assumption that ‖rF‖0 ≤ s.

Combining the two established upper bounds on rTt T(AT
t+1rt) and (1n−rt)

TT(AT
t+1rt),

we obtain the upper bound on ‖T(AT
t+1rt)‖0 as in (8.3).

G.4 Proof of the bounds in (8.7) and (8.8)

Given a follower link removal set ER with cardinality |ER| = q ≥ 1, the adjacency

matrix Ã(ER) after removing the follower links in ER from the original network can

be written as a matrix perturbation to the adjacency matrix A of the original Twitter

follower network, which takes the form

Ã(ER) = A−
∑

(i,j)∈ER

eie
T
j , (G.5)

where ei denotes the n-dimensional column vector of zeros except that its i-th entry

is 1.

Left and right multiplying the left leading eigenvector y of A to the matrix per-
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turbation equation, we obtain

yT

A−
∑

(i,j)∈ER

eie
T
j

y = λmax(A)−
∑

(i,j)∈ER

[y]i[y]j

= yT Ã(ER)y

≤ λmax(Ã(ER)), (G.6)

where the inequality is from the Courant-Fischer theorem [76] that λmax(Ã(ER)) =

maxx:‖x‖2=1 xT Ã(ER)x. Therefore, we obtain the lower bound on λmax(Ã(ER)) as in

(8.7).

To obtain an upper bound on λmax(Ã(ER)) in terms of λmax(A) and
∑

(i,j)∈ER [y]i[y]j,

we first note that ([y]i− [y]j)
2 = [y]2i + [y]2j − 2[y]i[y]j ≥ 0 for any i and j. Summing

this inequality over the set ER gives

0 ≤
∑

(i,j)∈ER

[y]2i +
∑

(i,j)∈ER

[y]2j − 2
∑

(i,j)∈ER

[y]i[y]j

(a)

≤ 2q − 2
∑

(i,j)∈ER

[y]i[y]j, (G.7)

where (a) is due to the fact that y has unit Euclidean norm such that
∑

(i,j)∈ER [y]2i ≤

|ER| ·maxi[y]2i ≤ |ER| · 1 = q. Therefore, we obtain the inequality

∑
(i,j)∈ER

[y]i[y]j ≤ q. (G.8)

Lastly, assume
∑

(i,j)∈ER [y]i[y]j > 0 and let ỹ denote the left leading eigenvector of

Ã(ER) such that
∑

(i,j)∈ER [ỹ]i[ỹ]j = ε. Left and right multiplying ỹ of Ã(ER) to the
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matrix perturbation equation gives

λmax(Ã(ER)) ≤ λmax(A)−
∑

(i,j)∈ER

[ỹ]i[ỹ]j

= λmax(A)−
∑

(i,j)∈ER [ỹ]i[ỹ]j∑
(i,j)∈ER [y]i[y]j

·
∑

(i,j)∈ER

[y]i[y]j

≤ λmax(A)− ε

q
·
∑

(i,j)∈ER

[y]i[y]j, (G.9)

which leads to the upper bound on λmax(Ã(ER)) as in (8.8).

G.5 Implementation of follower link score functions

We consider the score function of a follower link (i, j) that takes the form

score(i, j) = [x]i · [x̃]j, (G.10)

where x and x̃ are nonnegative n-dimensional vectors.

The following reports on the implementation and computation time complexity of

returning q follower links of the highest score for different follower link score functions.

� LES: x = x̃ = y, where y is the left leading eigenvector of the adjacency matrix

A. The computation time complexity is O(mq), which is analyzed in Sec. 8.2.3.

� InDeg: x = x̃ = din, where din is the vector of in-degree of each user, and

its j-th element [din]j =
∑n

i=1[A]ij is the number of followers of user j. The

computation time complexity is O(mq).

� NetMelt: NetMelt [157] is an edge removal algorithm proposed to decrease

the largest eigenvalue λmax(A) of the adjacency matrix A, where x = y and

x̃ = z, and z denotes the right leading eigenvector of A. The computation time

complexity is O(mq + n).
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� NoN-LES-Bet (NoN-LES-Wit): NoN-LES-Bet (NoN-LES-Wit) exploits

the NoN structure and evaluates the score function using x = x̃ = ybet (x =

x̃ = ywit), where ybet (ybit) denotes the left leading eigenvector of the between-

network (within-network) adjacency matrix Abet (Awit). The computation time

complexity is O(mq).

� NoN-InDeg-Bet (NoN-InDeg-Wit): NoN-InDeg-Bet and NoN-InDeg-Wit

are extensions of the InDeg score tailored to the NoN structure. Specifically,

for NoN-InDeg-Bet (NoN-InDeg-Wit) we set x = x̃ = dbet
in ( x = x̃ = dwit

in ),

where dbet
in (dwit

in ) is the in-degree vector that only accounts for the between-

network (within-network) follower links in the Twitter follower network. The

computation time complexity is O(mq).

� NoN-NetMelt-Bet (NoN-NetMelt-Wit): Non-NetMelt-Bet and NoN-NetMelt-

Wit are NetMelt algorithms that incorporate the NoN structure. For NoN-Melt-

Bet (NoN-NetMelt-Wit), we set x = ybet and x̃ = zbet (x = ywit and x̃ = zwit),

where ybet and zbet (ywit and zwit) denote the left and right leading eigenvectors

of Abet (Awit). The computation time complexity is O(mq + n).

We also implemented score functions based on the right leading eigenvector of the

adjacency matrix. However, its effect on reducing event propagation is not prominent,

so we omit the results in the chapter.
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APPENDIX H

Appendix of Chapter X

H.1 Kronecker Product

If X1 is a r1 × `1 matrix and X2 is a r2 × `2 matrix, then the Kronecker product

X1 ⊗X2 is a a r1r2 × `1`2 matrix is defined as

X1 ⊗X2 =



[X]11X2 [X]12X2 . . . [X]1`1X2

[X]21X2 [X]22X2 . . . [X]2`1X2

...
...

...
...

[X]r11X2 [X]r12X2 . . . [X]r1`1X2


. (H.1)

Some useful properties of Kronecker product are

(X1 ⊗X2)T = XT
1 ⊗XT

2 ; (H.2)

X1 ⊗ (X2 + X3) = X1 ⊗X2 + X1 ⊗X3. (H.3)

229



If X1 is a r1× `1 matrix, X2 is a r2× `2 matrix, X3 is an `1× `3 matrix and X4 is an

`2 × `4 matrix, then

(X1 ⊗X2) · (X3 ⊗X4) = (X1 ·X3)⊗ (X2 ·X4). (H.4)

H.2 Proof of (10.3)

Following (10.2),

rt+1 = T

 t+1∑
h=1

wh


= T

 t∑
h=1

wh + wt+1


≡ T

T

 t∑
h=1

wh

+ wt+1


≡ T (rt + Brt) . (H.5)
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H.3 Proof of (10.4)

Following the definition of w1 we have

[w1]j =
N∑
i=1

[r0]i[W]ij

=
N∑
i=1

[r0]i

K∑
k=1

[Ak]ij[P]kj

=
K∑
k=1

N∑
i=1

[r0]i[Ak]ij[P]kj

=
K∑
k=1

rT0 Ake
N
j [P]kj

= rT0

K∑
k=1

(
[P]kjAk

)
eNj . (H.6)

Since
∑K

k=1 PkjAk = A ·
[
colj(P)⊗ In

]
, applying it to (H.6) we have

[w1]j = rT0 A
[
colj(P)⊗ In

]
ej (H.7)

= eTj

[
colj(P)T ⊗ In

]
AT r0.
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H.4 Proof of (10.5)

Using (H.2) and (H.4) gives

w1 =



eT1 0TN . . . 0TN

0TN eT2 0TN
...

...
...

... 0TN

0TN . . . 0TN eTN


·



col1(P)T ⊗ In

col2(P)T ⊗ In
...

coln(P)T ⊗ In


·AT r0

=
(
In ⊗ 1TN

)
·
(
PT ⊗ In

)
·AT r0

=
(
In ·PT

)
⊗
(
1TN · In

)
AT r0

=
(
PT ⊗ 1TN

)
AT r0

= (P⊗ 1N)T AT r0.

(H.8)

H.5 Proof of (10.8)

Following (10.7),

rt+1 = Ha

T

 t+1∑
h=1

wh




= Ha

T

 t∑
h=1

wh + wt+1




≡ Ha

T

T

 t∑
h=1

wh

+ wt+1




≡ Ha

(
T
(
rt + (P⊗ 1N)T AT rt

))
. (H.9)
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H.6 Proof of (10.11)

When a subset of edges ER ⊂ E are removed from GC , the resulting adjacency

matrix of GC \ ER is

ÃC (ER) = AC −
∑

(i,j)∈ER

eUi eNj
T
. (H.10)

Therefore, the corresponding induced adjacency matrix B̃ (ER) is

B̃ (ER) = B−
∑

(i,j)∈ER

eNj eUi
T
AC −

∑
(i,j)∈ER

AT
CeUi eNj

T
+

∑
(i,j)∈ER

∑
(`,s)∈ER

eNj eUi
T
eU` eNs

T

= B−
∑

(i,j)∈ER

eNj eUi
T
AC −

∑
(i,j)∈ER

AT
CeUi eNj

T

+
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈ER

∑
s∈Vhost,(i,s)∈ER

eNj eNs
T
. (H.11)

Recall that u is the largest eigenvector of B. Left and right multiplying (H.11)

by uT and u and using the Courant-Fischer theorem [76] we have

λmax

(
B̃ (ER)

)
≥ λmax(B)− f(ER), (H.12)

where f(ER) is defined in (10.12).

H.7 An equivalent expression of f(ER)

The following lemma provides an equivalent representation of the function f(ER)

in (10.11), which also implies that f(ER) is nonnegative as it can be represented by

a sum of nonnegative terms.
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Lemma. Let ∅ denote the empty set. Then f(∅) = 0 and

f(ER) =
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈ER

∑
s∈Vhost,(i,s)∈ER

[u]j[u]s + 2
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈ER

∑
s∈Vhost,(i,s)∈E/ER

[u]j[u]s.

Proof. f(∅) = 0 is a direct result from the definition of f(ER). f(ER) has an equiva-

lent expression that

f(ER) = 2
∑

(i,j)∈ER

uTAT
CeUi [u]j −

∑
i∈Vuser

∑
∈Vhost,(i,j)∈ER

∑
s∈Vhost,(i,s)∈ER

[u]j[u]s

= 2
∑

(i,j)∈ER

∑
s∈Vhost

[AC ]is[u]s[u]j −
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈ER

∑
s∈Vhost,(i,s)∈ER

[u]j[u]s

= 2
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈ER

 ∑
s∈Vhost,(i,s)∈ER

+
∑

s∈Vhost,(i,s)∈E/ER

 [u]j[u]s

−
∑
i∈V

∑
∈V,(i,j)∈ER

∑
s∈V,(i,s)∈ER

[u]j[u]s

=
∑
i∈V

∑
j∈V,(i,j)∈ER

∑
s∈V,(i,s)∈ER

[u]j[u]s + 2
∑
i∈V

∑
j∈V,(i,j)∈ER

∑
s∈V,(i,s)∈E/ER

[u]j[u]s.

(H.13)

The nonnegativity of u suggests that f(ER) ≥ 0.

H.8 Proof of Lemma 10.1

For any edge removal set ER ⊂ E with |ER| = q, let v be the largest eigenvector

of B̃ (ER). Left and right multiplying (H.11) by vT and v gives

λmax

(
B̃ (ER)

)
= vTBv − g(ER)

≤ λmax(B)− g(ER) (H.14)
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by the Courant-Fischer theorem [76], where g(ER) =
∑

i∈Vuser
∑

j∈Vhost,(i,j)∈ER

∑
s∈Vhost,(i,s)∈ER

[v]j[v]s + 2
∑

i∈Vuser
∑

j∈Vhost,(i,j)∈ER

∑
s∈Vhost,(i,s)∈E/ER [v]j[v]s is obtained by following

the same derivation procedure as in Lemma H.7.

Next, recall from the Perron-Frobenius theorem [76] that the entries of u and v

are all nonnegative and bounded. Therefore, there must exist one edge removal set

ER with |ER| = q such that g(ER) > 0. Otherwise g(ER) = 0 for every edge removal

set with cardinality q ≥ 1 implies that v is a zero vector, which contradicts the fact

that v is an eigenvector. Finally, since f(ER) > 0, there exists a constant c > 0 such

that g(ER) ≥ c · f(ER). Applying this inequality to (H.14) gives λmax

(
B̃ (ER)

)
≤

λmax(B)− c · f(ER).

H.9 Monotonicity of f(ER)

Lemma. f(ER) is a monotonic increasing set function.

Proof. For any two subsets ER1, ER2 ⊂ E satisfying ER1 ⊂ ER2, let ∆ER = ER2/ER1.

Using the relation ER2 = ER1 ∪∆ER and ER1 ∩∆ER = ∅, from Lemma H.7 f(ER2)

can be represented as

f(ER2) =
∑

i∈Vuser

 ∑
j∈Vhost,(i,j)∈ER1

+
∑

j∈Vhost,(i,j)∈∆ER

 ∑
s∈Vhost,(i,s)∈ER1

+
∑

s∈Vhost,(i,s)∈∆ER

 [u]j[u]s

+ 2
∑

i∈Vuser

 ∑
j∈Vhost,(i,j)∈ER1

+
∑

j∈Vhost,(i,j)∈∆ER

 ∑
s∈Vhost,(i,s)∈E\ER

[u]j[u]s. (H.15)
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Similarly, using the relation ∆ER = (E \ ER1) \ (E \ ER2), from Lemma H.7 we have

f(ER1) =
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈ER1

∑
s∈Vhost,(i,s)∈ER1

[u]j[u]s

+ 2
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈ER1

 ∑
s∈Vhost,(i,s)∈E\ER2

+
∑

s∈Vhost,(i,s)∈E\∆ER

 [u]j[u]s.

(H.16)

Therefore,

f(ER2)− f(ER1) =
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈∆ER

∑
s∈Vhost,(i,s)∈ER2

[u]j[u]s

+ 2
∑

iuser∈V

∑
j∈Vhost,(i,j)∈∆ER

∑
s∈Vhost,(i,s)∈E\ER2

[u]j[u]s

−
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈ER1

∑
s∈Vhost,(i,s)∈∆ER

[u]j[u]s

≥
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈∆ER

∑
s∈Vhost,(i,s)∈ER1

[u]j[u]s (H.17)

+ 2
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈∆ER

∑
s∈Vhost,(i,s)∈E\ER2

[u]j[u]s

−
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈ER1

∑
s∈Vhost,(i,s)∈∆ER

[u]j[u]s

= 2
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈∆ER

∑
s∈Vhost,(i,s)∈E\ER2

[u]j[u]s (H.18)

≥ 0, (H.19)

where the inequality in (H.17) uses the Perron-Frobenious theorem [76] that [u]s ≥ 0

and the fact that ER1 ⊂ ER2. The inequality in (H.19) is due to the nonnegativity of

the largest eigenvector u.
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H.10 Proof of Theorem 10.2

It has been proved in Lemma H.9 that f(ER) is a monotone increasing set function.

Here we prove that f(ER) is submodular. For any ER1 ⊂ ER2 ⊂ E and e ∈ E \ ER2,

let e = (u, v) ∈ E , from (H.17) we have

∆f(e|ER2) = f(ER2 ∪ e)− f(ER2)

=
∑

i∈Vuser

∑
j∈Vuser,(i,j)=e

 ∑
s∈Vhost,(i,s)∈ER2

+
∑

s∈Vhost,(i,s)=e

 [u]j[u]s

+ 2
∑

i∈Vuser

∑
j∈Vhost,(i,j)=e

∑
s∈Vhost,(i,s)∈E\(ER2∪e)

[u]j[u]s

−
∑

i∈Vuser

∑
j∈Vhost,(i,j)∈ER2

∑
s∈Vhost,(i,s)=e

[u]j[u]s

= [u]u[u]v + 2
∑

s∈Vhost,(u,s)∈E\(ER2∪e)

[u]u[u]s

≤ [u]u[u]v + 2
∑

s∈Vhost,(u,s)∈E\(ER1∪e)

[u]u[u]s (H.20)

= ∆f(e|ER1), (H.21)

where the inequality in (H.21) holds due to the fact that E\(ER2∪e) ⊂ E\(ER1∪e) and

the entries of u are nonnegative from the Perron-Frobenious theorem [76]. Therefore,

f(ER) is a monotone submodular set function.

H.11 Proof of Theorem 10.3

Let EsR with |EsR| = s be the greedy edge removal set obtained from Algorithm

10.4. By submodularity of f(ER) from Theorem 10.2, for every s < q there exists an

edge e ∈ EoptR /EsR such that

f(EsR ∪ e)− f(EsR) ≥ 1

q

(
f(EoptR )− f(EsR)

)
. (H.22)
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After algebraic manipulation, we have

f(EoptR )− f(Es+1
R ) ≤

(
1− 1

q

)(
f(EoptR )− f(EsR)

)
(H.23)

and therefore by telescoping (H.23) we have

f(EoptR )− f(EqR) ≤
(

1− 1

q

)q
f(EoptR ) ≤ 1

e
f(EoptR ). (H.24)

Applying (H.24) and the fact that 0 < f(EqR) ≤ f(EoptR ) to (10.11), there exists some

constant c > 0 such that

λmax(B)− c
(
1− e−1

)
· f(EoptR ) ≥ λmax

(
B̃
(
EqR
))
≥ λmax(B)− f(EoptR ). (H.25)

The proof is complete by setting c′ = c
(
1− e−1

)
.

H.12 Proof of Corollary 10.4

This corollary is a direct result of Lemma 10.1 and Theorem 10.3 by replacing B

with B̃ (ER) and setting q = 1.

H.13 Proof of Theorem 10.5

We use the fact from the Perron-Frobenius theorem that if a square matrix X is

irreducible and nonnegative, then λmax(X) ≤ maxs
∑

t[X]st. A square nonnegative

matrix X is irreducible means that for every pair of indices s and t, there exists

a natural number z such that [Xz]st > 0. Since B̃(i, j) is a matrix of nonnegative
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entries, if B̃(i, j) is irreducible, from (10.9) we have

λmax

(
B̃(i, j)

)
≤ max

s∈{1,2,...,N}

[
B̃(i, j)1N

]
s

= max
s∈{1,2,...,N}

[
B1N −AT

CeUi − [dU ]ie
N
j + eNj

]
s

≤ dusermax · dhostmax − max
s∈{1,2,...,N}

[(
[dU ]i − 1

)
eNj −AT

CeUi

]
s

, (H.26)

where (H.26) uses the fact that for all t ∈ {1, 2, . . . , N},

[B1N ]t = [AT
CAC1N ]t = [AT

CdU ]t ≤ dusermax · dhostmax. (H.27)

Remark 8.1. If B̃(i, j) is reducible, one can obtain a similar upper bound as in The-

orem 10.5 since the largest eigenvalue of B̃(i, j) is the maximum value of the largest

eigenvalue of block-wise irreducible nonnegative submatrices of B̃(i, j).

H.14 Proof of (10.14)

By the Courant-Fischer theorem [76], (H.2) and (H.3) we have

λmax

(
J̃(H)

)
≥ yT J̃(H)y

= yT (P̃H ⊗ 1N)TATy

= λmax (J)− yT∆JHy, (H.28)

where

∆JH =


 ∑

(k,j)∈H

(
[P]kj − εkj

)
eKk eNj

T

⊗ 1N


T

AT . (H.29)
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H.15 Monotonicity of φ(H)

Lemma 8.2. φ(∅) = 0 and φ(H) is a monotonic increasing set function.

Proof. By definition φ(∅) = 0 since ∆J∅ is a zero matrix. For any two sets H1 ⊂

H2 ⊂ Vapp × Vmac,

φ(H2)− φ(H1) = yT (∆JH2 −∆JH1) y

= yT
(
∆JH2\H1

)
y

≥ 0 (H.30)

since ∆JH2\H1 is a nonnegative matrix and y is a nonnegative vector by the Perron-

Frobenious theorem [76]. Therefore, φ(H) is a monotonic increasing set function.

H.16 Efficient update of step 5 in Algorithm 10.6 with score

recalculation

Using the notations in Algorithm 10.6, when hardening the edge (k∗, j∗) the entry

[Pη]k∗j∗ changes to εk∗j∗ . Let the original value of [Pη]k∗j∗ before hardening be ψ.

Then the update in step 5 is equivalent to

Jold = Jold −HTAT , (H.31)

where H = [0, . . . ,h, . . . ,0] is a matrix of zeros except that the [(k∗ − 1) ·N + 1]-th

to (k∗ ·N)-th entry of H’s j∗-th column h is ψ − εk∗j∗ .
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H.17 Proof of Theorem 10.6

For any two hardening sets H1 and H2 satisfying H1 ⊂ H2 ⊂ Vapp × Vhost, using

(H.29) and (H.30) we have the additivity for the score function φ(H) as

φ(H2) = φ(H1) + φ(H2 \ H1). (H.32)

For any hardening set H of cardinality |H| = η ≥ 1, let H = {Hs}ηs=1, where Hs is

the s-th element in H, and let Hη = {Hη
s }

η
s=1. Then with (H.32) we have

φ(H) =

η∑
s=1

φ(Hs)

≤
η∑
s=1

φ(Hη
s )

= φ(Hη), (H.33)

where the maximum of φ(H) is attained whenH contains η edges of highest hardening

scores. Therefore, Hη is a maximizer of φ(H).

H.18 Proof of Corollary 10.8

This corollary is a direct result of Theorem 10.7 by replacing J with J̃(H) and

setting η = 1.
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H.19 Proof of Theorem 10.7

We first show the relation that λmax(J) ≥ λmax

(
J̃(H)

)
. For any hardening set

H, let ỹ be the largest eigenvector of J̃(H). With (H.29) we have

λmax

(
J̃(H)

)
= ỹT J̃ (H) ỹ

= ỹTJỹ − ỹT∆JHỹ

≤ λmax (J)− ỹT∆JHỹ

≤ λmax (J) . (H.34)

The fact that ỹTJỹ ≤ λmax (J) is from the Courant-Fischer theorem [76], and the last

inequality uses the fact that ỹT∆JHỹ ≥ 0 from the Perron-Frobenious theorem [76]

due to the fact that all entries in ∆JH and ỹ are nonnegative.

If λmax(J) > 0, then by (H.28) and (H.34) we have φ(Hopt) > 0. Otherwise

φ(Hopt) = 0 implies that y is a zero vector, which contradicts the fact that y is the

largest eigenvector of J. Therefore, if λmax(J) > 0 we have λmax(J) > λmax

(
J̃(Hopt)

)
.

When |H| = η, since Hopt is the minimizer of λmax

(
J̃(H)

)
and Hη is the maximizer

of φ(H), we have

λmax

(
J̃(Hη)

)
≥ λmax

(
J̃(Hopt)

)
≥ λmax(J)− φ(Hopt)

≥ λmax(J)− φ(Hη). (H.35)

By the facts that λmax(J) > λmax

(
J̃(Hopt)

)
and λmax(J) ≥ λmax

(
J̃(Hη)

)
, if φ(Hη) >
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0, with (H.35) there exists some constant c′′ > 0 such that

λmax(J)− c′′ · φ(Hη) ≥ λmax

(
J̃(Hopt)

)
;

λmax

(
J̃(Hopt)

)
≥ λmax(J)− φ(Hη). (H.36)
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Multilayer stochastic block models reveal the multilayer structure of complex
networks, Phys. Rev. X, 6, 011,036.

[160] Van Dongen, S. M. (2000), Graph clustering by flow simulation, Ph.D. thesis,
University of Utrecht.

[161] Van Mieghem, P. (2010), Graph Spectra for Complex Networks, Cambridge Uni-
versity Press.

[162] Vickers, M., and S. Chan (1981), Representing classroom social structure, Vic-
toria Institute of Secondary Education, Melbourne.

[163] Watts, D. J., and S. H. Strogatz (1998), Collective dynamics of ‘small-world’
networks, Nature, 393 (6684), 440–442.

[164] Wedin, P.-A. (1972), Perturbation bounds in connection with singular value
decomposition, BIT Numerical Mathematics, 12 (1), 99–111.

[165] Wen, H., E. A. Leicht, and R. M. D’Souza (2011), Improving community de-
tection in networks by targeted node removal, Phys. Rev. E, 83, 016,114.

[166] White, S., and P. Smyth (2005), A spectral clustering approach to finding com-
munities in graph., in SIAM International Conference on Data Mining (SDM),
vol. 5, pp. 76–84.

[167] Wilks, S. S. (1938), The large-sample distribution of the likelihood ratio for
testing composite hypotheses, The Annals of Mathematical Statistics, 9 (1), 60–
62.

[168] Wu, Z., Z. Bu, J. Cao, and Y. Zhuang (2015), Discovering communities in
multi-relational networks, in User Community Discovery, pp. 75–95, Springer.

255



[169] Xiao, S., G. Xiao, and T. H. Cheng (2008), Tolerance of intentional attacks in
complex communication networks, IEEE Commun. Mag., 45 (1), 146–152.

[170] Xiaowen, D. (2014), Multi-view signal processing and learning on graphs, Ph.D.
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