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CHAPTER 1

Introduction

1.1 Motivation

Neutronic analysis of nuclear reactors is an important aspect of reactor analysis and design,

as it governs many of the most important phenomena from an engineering perspective. En-

ergy release rates, changes in nuclide inventory and transient behaviors are all driven by

the distribution of neutrons in space, energy, angle and time, and how those neutrons in-

teract with their background media. This behavior is described by the Boltzmann transport

equation, which is described in detail on the following pages.

The reactor physics community has been using computers to assist in reactor core de-

sign and analysis since the beginning of the industry. The methods used have historically

been limited by the computing resources that were available at the time, and have evolved

considerably as computer speed and memory have increased. These computational tech-

niques are numerous and varied. In the taxonomy of reactor analysis methods, the first

bifurcation occurs between deterministic and stochastic, or Monte Carlo, methods. Monte

Carlo methods randomly simulate the individual behavior of many simulated neutron “his-

tories,” yielding estimates of the average behavior. While Monte Carlo methods do not

solve the transport equation per se, by simulating the underlying physics they obtain esti-

mates of such solutions within some statistical uncertainty. On the other hand, deterministic

methods endeavor to solve the transport equation directly. This work is concerned mostly
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with deterministic methods, of which there are many. Each deterministic method employs

a series of approximations and/or discretization schemes to the transport equation to yield

a form that is suitable for solving on a computer. These methods have evolved greatly as

available computing power has increased, with newer methods including more physics and

increased fidelity.

1.2 Pin-Resolved Transport

Reactors take many forms with different fuel compositions and configurations, different

coolants, and different operating characteristics. By far the most common type of reactor,

especially in the commercial sector, are Light Water Reactors (LWRs). These tend to be

large systems composed of many long, slender, cylindrical fuel rods, which are assembled

into rectangular lattices and loaded into a roughly-cylindrical core. This is depicted roughly

in Fig. 1.1. These rods are immersed in water, which serves as both a coolant and a mech-

anism for slowing neutrons down, improving their likelihood of initiating fission without

becoming captured or leaking out of the system. Neutrons born from fission within a fuel

rod tend to leak out of the rod and into the surrounding water, where they thermalize, ide-

ally to reenter a fuel region and initiate a new fission. As a result, the behavior of neutrons

varies strongly throughout a single pin cell, as well as through the larger reactor domain.

Neutrons are also born from fission at high energies, on the order of 106 eV, and slow down

to thermal energies on the order of a fraction of an electronvolt. To obtain an accurate

understanding of neutron behavior in such systems requires a sufficiently fine treatment of

the spatial and energy variables.

Older reactor analysis methods relied upon multi-stage simulations, where small sub-

domains were analyzed using fine meshes and energy grids, then homogenized and com-

posed to solve the whole-core problem using lower-order methods. The errors accumulated

from the series of homogenizations and simplifications not only increased the degree of un-
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Figure 1.1: Typical power reactor core layout and mesh.

certainty in the final solutions, but also limited the range of situations to which these meth-

ods could be reasonably applied. Improvements to reactor analysis methods have enabled

power uprates in existing reactors by reducing uncertainty, and have allowed core designers

to use more advanced fuel technologies, such as Integral-Fuel Burnable Absorber (IFBA)

pins and other burnable absorbers, which were previously too difficult to analyze. More

accurate neutronics simulations also result in a better understanding of the state of the core

under operation, improving operational safety and economy.

For the above reasons, it has become more popular to attempt direct solutions to the

transport equation for entire reactor cores with pin resolved meshes. The Consortium for

the Advanced Simulation of Light Water Reactors (CASL), a Department of Energy ini-

tiative has supported this work. Under reasonable discretization, this can lead to numbers

of unknowns on the order of trillions (see Table 1.1). Methods are therefore sought that

can solve the transport as quickly and efficiently as possible, and are capable of scaling to

computation on very large, massively parallel computers.

When developing such methods, it is important to consider the nature of the comput-

ers upon which computation will take place. Throughout the history of supercomputing,

many of the increases in performance (see Fig. 1.2) have come from adding parallelism.
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Table 1.1: Typical number of unknowns for a whole-core, pin-resolved LWR calculation.

Energy Groups 47
Discrete Angles 144
Pin Cells ∼ 56,000
Axial Mesh ∼ 400
Regions per Pin 64
Total Spatial Regions ∼ 1,400,000,000
Total Unknowns ∼ 9.7×1012

Recent years have also seen the addition of co-processing hardware and the introduction

of more exotic processor architectures such as general-purpose GPUs, the Intel Xeon Phi,

and the Sunway processors found in Sunway TaihuLight, the fastest computer in the world

at the time of this writing. These co-processors have gained in popularity, since they of-

fer much better floating point performance per cost per watt than traditional CPUs. While

these highly-parallel, heterogeneous architectures have enabled supercomputers with as-

tonishing floating-point performance, it tends to be much more difficult to develop efficient

algorithms for these architectures. Many of the reactor analysis methods and codes in use

today still do not perform well on these machines, if at all.

1.3 Method of Characteristics and 2-D/1-D

One class of methods in use today is the Method of Characteristics (MoC) and the 2-D/1-D

iteration scheme. These have seen widespread use in reactor analysis codes such as CRX

[25]. DeCART [16] and MPACT [8, 22, 32]. This approach is a type of “planar synthesis”

method, which employs a series of two-dimensional transport sweepers1 to treat each radial

slab of a reactor. These sweepers are then coupled through some form of one-dimensional

solver, which treats the axial dimension. Multiple iterations between the radial and ax-

ial sweepers are then used to converge the solution. The result is an approximate three-

dimensional solution for the 3-D whole-core problem. The 2-D/1-D methods use 2-D MoC

1The term “sweeper” is used to refer to a technique for solving the transport equation by which angular
flux is propagated from a boundary through the spatial domain.
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Figure 1.2: Supercomputer performance by year. Data collected from TOP500, showing
performance of fastest and 500th fastest computers, along with total performance of all 500
fastest computers in the world.

sweepers to treat the radial directions, while myriad axial solvers have been used to couple

them, including Fine Mesh (FM) diffusion, nodal diffusion, and more recently SN meth-

ods. The MoC (described in more detail in Section 2.4.2) is particularly well suited for 2-D

reactor applications because it is based upon ray tracing and can be applied to very general

and efficient meshes. While MoC has been extended to 3-D, it has remained intractably

expensive for whole-core applications [21].

While these 2-D/1-D methods have proved to be a great improvement over older meth-

ods, they still suffer in accuracy in certain cases that stress the assumption of separability

between the axial and radial directions. This is typically the case in regions where strong

material discontinuities occur in both the radial and axial directions. Such is the case sur-

rounding the tips of control rods and other strong neutron absorbers. Higher-order repre-

sentations of the transverse leakage have been recently developed [30] to improve accuracy

considerably, but remain computationally expensive. Either way, MoC has been shown to
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scale well on traditional massively parallel computers [23]. Work in the last several years

has also shown that MoC has promise on massively parallel devices like GPUs [5, 6].

1.4 Orthogonal Mesh SN

Another class of solution techniques involve formulating an approximate solution to the

transport equation within each mesh region. This approach, typically referred to as SN

methods, may be applied to many different types of meshes, though SN formulations be-

come more complicated as the mesh becomes more general. When restricted to an orthog-

onal grid, SN methods become incredibly efficient on a per-mesh element basis.

The orthogonal-mesh SN method was used in the Denovo code [10, 11] at Oak Ridge

National Laboratory, and permits the use of extremely efficient parallel wavefront propa-

gation algorithms [20]. Denovo has been applied to reactor analysis problems and demon-

strated impressive computational performance, scaling well to hundreds of thousands of

processor cores [2, 15].

While the Cartesian grid approach exhibits impressive parallel performance, it tends to

produce significant modeling error when used to approximate the circular fuel structures

found in nuclear reactors. It was found that reduction of this error required a prohibitively

fine mesh to resolve intra-pin behavior, and that reasonably accurate solutions using the SN

method on a Cartesian mesh alone is impractical [35].

In this work, a new 2-D/3-D method is investigated, which is intended to leverage both

the computational efficiency of orthogonal-mesh SN and the efficient mesh of the MoC to

arrive at full-core, pin resolved reactor neutronics solutions.

1.5 About the Code Used in This Work

Most of the results presented in this work were obtained using one of two different pieces

of software. The first, MPACT, is a MoC-based code developed jointly by the University
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of Michigan and Oak Ridge National Laboratory (ORNL). The author is has contributed

extensively to this project. It is an incredibly feature-rich, well-tested, production grade

reactor analysis tool written in modern Fortran as part of the CASL initiative. While some

early 2-D/3-D code was implemented in MPACT, the majority of the 2-D/3-D results pre-

sented here were obtained using MOCC [34], a different MoC code written in C++ almost

solely by the author. The primary goals in the development of MOCC were to refine and

simplify many aspects of MPACT, and to provide technical demonstrations of a number of

software engineering techniques that make developing this kind of complicated scientific

software much easier. In many ways, MOCC can be considered a surrogate to MPACT,

as many aspects of its high-level architecture are inspired or derived in some way from

MPACT.

MPACT was used to produce the 2-D/1-D results presented in Chapter 5, as well as

the 2-D results that are presented in Section 3.3. MOCC was used to produce all other

2-D/3-D results. The mesh convergence studies discussed in Section 3.1 were produced

with Denovo.

1.6 The Transport Equation

Neutron transport phenomena are governed by the Boltzmann transport equation. In the

presence of multiplying (fissile) media, it is

1
v
∂ψ

∂t
(r,Ω̂,E, t) + Ω̂ · ∇ψ(r,Ω̂,E, t) +Σt(r,E)ψ(r,Ω̂,E, t)

=

∫
4π

∫ ∞

0
Σs(r,Ω̂′ · Ω̂,E′→ E)ψ(r,Ω̂′,E′, t)dE′dΩ′

+
χ(r,E)

4π

∫
4π

∫ ∞

0
(1−β(r,E′))νΣf(r,E′)ψ(r,Ω̂′,E′, t)dE′dΩ′

+

Ndg∑
k=1

χk(r,E)
4π

Ck(r, t)λk +
1

4π
Q(r,E, t), (1.1a)
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∂Ck

∂t
(r, t) =

∫
4π

∫ ∞

0
βk(r,E′)νΣf(r,E′)ψ(r,Ω̂′,E′, t)dE′dΩ′−λkCk(r, t), (1.1b)

subject to the boundary and initial conditions

ψ(r,Ω̂,E, t) = ψb(r,Ω̂,E, t), r ∈ ∂V, Ω̂ ·n < 0, 0 < E <∞, 0 < t, (1.1c)

and

ψ(r,Ω̂,E,0) = ψ0(r,Ω̂,E), r ∈ V, Ω̂ ∈ 4π, 0 < E <∞,

Ck(r,0) = C0
k (r), r ∈ V. (1.1d)

The above equations describe the process by which neutrons change in population in time,

move (or “stream”) through space, interact with their background medium, and are intro-

duced into the system as the result of fission events or generic sources. The terms on the

left hand side of Eq. (1.1a) represent losses of neutrons from a particular region of phase

space, while the right-hand-side terms represent sources of neutrons. Here r is a position

vector describing a location in space, Ω̂ is a unit vector describing a direction in the unit

sphere. The neutron angular flux, ψ(r,Ω̂,E, t), is the variable for which solutions are de-

sired. Neutron flux is defined as the product of the neutron density and velocity, or the rate

at which neutrons trace out path length through space, and is typically presented in units of

neutrons
eV·cm2·str·s .

The terms Σf, Σs and Σt represent the macroscopic cross section for fission, scattering

and all collisions, respectively. More precisely, each represents the probability per unit

path length that a neutron traveling at location r and energy E will undergo the subscripted

reaction. While in reality, the composition of the background medium changes in time, af-

fecting the cross sections, it is typically assumed that they vary slowly enough with respect

to the flux that their variation is negligible. In the context of reactor analysis, calculations

in which the cross sections and nuclide densities are allowed to vary are called “deple-
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tion” calculations, which still typically assume roughly stationary cross sections for each

time step. The factor ν(r,E) represents the number of new neutrons that are released as

the result of a fission event initiated by a neutron traveling with energy E, and χ(r,E) is

a probability distribution function describing the likelihood of a neutron born from fission

having an energy within dE about E.

The term
Ndg∑
k=1

χk(r,E)
4π

Ck(r, t)λk

represents the “delayed” neutron source. Not all neutrons born from fission are emitted im-

mediately; instead they are bound within fission products, or “delayed neutron precursors,”

to be emitted later as by decay. Since it is intractable to consider all delayed neutron pre-

cursors individually, they are instead lumped into Ndg delayed neutron groups, each with

their own concentrations, Ck, decay constants, λk, and yields, βk. Typically, six delayed

neutron groups are used [27]. The complement of the total delayed neutron yield,

β =

Ndg∑
k=1

βk, (1.2)

is used in Eq. (1.1a) as the prompt fission neutron yield. Eqs. (1.1b) describe the rate of

change of the delayed neutron precursor densities as new precursors are produced by fission

and removed by decay.

It is often useful to employ the definition of the angularly-independent scalar flux,

φ(r,E, t) ≡
∫

4π
ψ(r,Ω̂,E, t)dΩ, (1.3)

which is useful in simplifying the isotropic terms in the transport equation.
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1.6.1 Eigenvalue Form of the Transport Equation

Equations (1.1) are very general, but difficult to solve in their original form. In particular,

when not analyzing transient behavior of a reactor, an analyst is usually more interested

in the quasi-steady state of a reactor. To simplify such analyses, the time dependence is

removed by assuming that the delayed neutron precursor densities are in equilibrium and

applying a scaling factor, 1/k, to the fission source term and removing the inhomogeneous

source, Q, to arrive at

Ω̂·∇ψ(r,Ω̂′,E) +Σtψ(r,Ω̂,E)

=

∫
4π

∫ ∞

0
Σs(r,Ω̂′ · Ω̂,E′→ E)ψ(r,Ω̂′,E)dE′dΩ′

+
1
k
χ(r,E)

4π

∫ ∞

0
νΣf(r,E′)φ(r,E′)dE′, (1.4a)

subject to the boundary condition

ψ(r,Ω̂,E) = 0, r ∈ ∂V, Ω̂ ·n < 0, 0 < E <∞. (1.4b)

Equation (1.4a) is called the eigenvalue form of the transport equation. The value k is the

multiplication factor of the system, where a value of unity means that neutrons introduced

into the system are in natural balance with neutrons lost to leakage or absorption. As k

deviates from unity, the fission source is being artificially scaled to enforce balance. In a

super-critical system, where k > 1, the neutron population would be increasing in time, thus

requiring that the fission source be reduced. In a sub-critical system, where k < 1, the fission

source is scaled up to achieve balance. The value of k, often referred to as the eigenvalue,

for a particular reactor configuration is very important from a design perspective and is

therefore one of the key results from a reactor neutronics simulation.
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1.6.2 Representing the Scattering Integral

In its original form, the scattering integral in the transport equation is easy to understand

conceptually, but difficult to manipulate mathematically. It is therefore common to repre-

sent the scattering cross section as a series of Legendre polynomials. Legendre polynomials

form an orthogonal set of functions defined on the interval −1 ≤ µ ≤ 1, making them well

suited for representing the scattering cross section, which depends angularly on the scat-

tering cosine, µ. Employing an infinite series expansion of the scattering source gives the

representation

Σs(r,µ) =

∞∑
n=0

2n + 1
4π

Σs,n(r)Pn(µ), (1.5)

where Pn(µ) is is the nth-order Legendre polynomial. Σs,n(r) is the nth Legendre moment

of scattering cross section, defined as

Σs,n(r) = 2π
∫ 1

−1
Pn(µ′)Σs(r,µ′)dµ′. (1.6)

The infinite series represented above is exact, though in practice the series is truncated at

some order N:

Σs(r,µ) ≈
N∑

n=0

2n + 1
4π

Σs,n(r)Pn(µ), (1.7)

For example, the case of N = 0 assumes isotropic scattering, while N = 1 assumes linearly

anisotropic scattering. The required Pn order to achieve accurate solutions depends upon

the nature of the system being simulated; the target nuclide and neutron energy determine

the scattering behavior, which may vary between isotropic and highly-anisotropic. All of

the methods in this work could be extended to treat anisotropic scattering; this work is

restricted to isotropic scattering for simplicity.
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1.7 Document Outline

The remainder of this document is devoted to describing a new 2-D/3-D method for per-

forming 3-D, full-core, pin-resolved reactor analysis and exploring its effectiveness. The

document is divided into this chapter and five others.

Chapter 2 introduces a number of discretizations to the transport equation that will be

necessary to describe the 2-D/3-D method. This includes the multi-group and discrete

ordinates approximations, which treat the energy and angular variables, respectively. The

Method of Characteristics and SN methods for discretizing the spatial domain are both

described, as they are important components of the 2-D/3-D method and many 2-D/1-D

methods. Since the 2-D/3-D and 2-D/1-D methods are so similar, the 2-D/1-D method is

also described for context, and to better compare and contrast the two methods. Finally,

since it has become such an important component of many reactor analysis codes, the

Coarse Mesh Finite Difference (CMFD) acceleration technique is described.

Chapter 3 introduces the Corrected Diamond Difference concept and applies it to a

number of 2-D scenarios. It demonstrates that Corrected Diamond Difference (CDD) is

capable of producing equivalent solutions on a coarsened, orthogonal mesh to the fine-

mesh MoC used to calculate correction factor and cross section data.

The 2-D/3-D method is introduced in Chapter 4, where the CDD equations are extended

to 3-D problems. Two coupling methods are discussed: one in which correction factors and

cross sections are calculated by multiple separate 2-D MoC eigenvalue calculations and

stitched together into a 3-D problem. The other couples a stack of MoC sweepers and the

3-D SN sweeper using a transverse leakage term, similarly to 2-D/1-D.

In Chapter 5, the methods described in Chapter 4 are applied to the C5G7 benchmark,

and the results are discussed, analyzed, and compared to a pair of 2-D/1-D methods for

context. The various strengths and weaknesses of the 2-D/3-D method are presented.

Chapter 6 contains a brief summary of the work, final conclusions, and a healthy list of

topics for possible future work.
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CHAPTER 2

Discretization of the Transport Equation and

Solution Techniques

While methods exist to solve the transport equation as a continuous function in space and/or

angle, this work is concerned mostly with methods that discretize phase space entirely.

This section discusses the various discretization schemes used to treat the energy, angle

and spatial domains to arrive at the forms of the transport equation that are relevant to this

work. Particular attention is paid to the SN and MoC methods.

2.1 Multi-Group Approximation

The energy domain is discretized using the multi-group approximation, which applies a

one-dimensional grid to the energy domain. Each term in the continuous-energy transport

equation is then represented as energy-averaged quantities over NG energy “groups,” which

are bounded by NG + 1 energy bounds, E0 = Emax > E1 > · · · > Eg > · · · > ENG−1 > ENG =

Emin. Conventionally, the energy groups are ordered in descending energy, with the range

E1 < E < E0 being the highest energy group and EG < E < EG−1 being the lowest.

Throughout this text, G is used to refer to the set of all energy groups. The following group-

wise quantities are also defined as the integral of their respective energy group intervals:

13



ψg(r,Ω̂) =

∫ Eg−1

Eg

ψ(r,Ω̂,E)dE, (2.1a)

χg(r) =

∫ Eg−1

Eg

χ(r,E)dE. (2.1b)

The cross-section data must also be treated in a similar way, with the added the constraint

that it is desired to preserve the reaction rates of the continuous-energy transport equation.

The definition of the cross sections are therefore flux-weighted such that the product of the

group-wise flux and group-wise cross section yields the integral of the continuous-energy

reaction rate. For a generic reaction, b, the group-wise cross section is defined as

Σb,g(r) =

∫ Eg−1

Eg
Σb,g(r,E)

∫
4πψ(r,Ω̂,E)dΩdE∫ Eg−1

Eg

∫
4πψ(r,Ω̂,E)dΩdE

. (2.2)

The scattering cross section requires special attention, and is defined as

Σs,g′g(r,Ω̂′ · Ω̂) =

∫ Eg−1

Eg

∫ Eg′−1

E′g
Σs(r,E′→ E,Ω̂′ · Ω̂)φ(r,E′)dE′dE∫ Eg′−1

Eg′
φ(r,E′)dE′

(2.3)

These spectrum-weighted reaction cross sections of course rely upon a priori knowledge

of the continuous-energy flux spectrum. Typically, a spectrum is assumed to facilitate the

generation of a cross section library, which contains suitable group constants.

Integrating Eq. (1.4a) over the energy range ENG < E < ENG−1 and employing the defi-

nitions above, the multi-group form of the k-eigenvalue transport equation is obtained:

Ω̂·∇ψg(r,Ω̂) +Σt,gψg(r,Ω̂) =
∑
g′∈G

∫
4π

Σs,g’g(r,Ω̂′ · Ω̂)ψg′(r,Ω̂′)dΩ′

+
1
k
χg(r)

4π

∑
g′∈G

νΣf,g′(r)φg′(r). (2.4)
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2.2 Angular Discretization

As with other components of phase space, there are numerous approaches to treating the

angular variable. This section describes two such approaches, which are particularly rele-

vant to this work: diffusion and discrete ordinates.

2.2.1 Diffusion Approximation

The diffusion approximation is not actually an angular discretization method, but rather

assumes that the angular flux is well-approximated as the linear function in angle,

ψ(r,Ω̂,E) ≈
1

4π

(
φ(r,E) + 3J · Ω̂

)
. (2.5)

With linearly-anisotropic scattering, the multi-group form of the transport equation can be

written as

ψg(r,Ω̂) + Ω̂ · ∇ψg(r,Ω̂) +Σt,g(r)ψg(r,Ω̂) =

1
4π

∑
g′∈G

(
Σs0,g′g(r)φg′(r) + 3Σs1,g′g(r)

(
ηJx,g′(r) +εJy,g′(r) +µJz,g′(r)

))
+

1
k
χg(r)

4π

∑
g′∈G

νΣ f ,g′(r)φg′(r)

 . (2.6)

The Jx, Jy, and Jz terms are the x, y, and z components of the neutron current, or the first

angular moments of the angular flux. Integrating Eq. (2.6) over all angles gives the zeroth

angular moment of the transport equation,

∂

∂x
Jx,g(r) +

∂

∂y
Jy,g(r) +

∂

∂z
Jz,g(r) +Σt,g(r)φg(r) =∑

g′∈G

Σs0,g′(r)φg′(r) +
1
k
χg(r)

4π

∑
g′∈G

νΣ f ,g′(r)φg′(r). (2.7)
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Similarly, multiplying Eq. (2.6) by angle and integrating over all angles gives the first

angular moment of the transport equation:

1
3
∂φg

∂x
(r) +Σt,g(r)Jx,g(r) =

∑
g′∈G

Σs1,g′g(r)Jx,g′(r), (2.8a)

1
3
∂φg

∂y
(r) +Σt,g(r)Jy,g(r) =

∑
g′∈G

Σs1,g′g(r)Jy,g′(r), and (2.8b)

1
3
∂φg

∂z
(r) +Σt,g(r)Jz,g(r) =

∑
g′∈G

Σs1,g′g(r)Jz,g′(r). (2.8c)

To arrive at the neutron diffusion equation, a couple of approximations are made. First,

the derivative of the neutron currents with respect to time are neglected. Second, the first-

order scattering cross sections, Σs1,g′g, which would otherwise form a G ×G matrix, are

approximated by a diagonal matrix, Σ̄s1, with elements:

Σ̄s1,g =
∑
g′∈G

Σs1,g′g. (2.9)

Applying these approximations to Eqs. (2.8) gives

1
3
∂φg

∂x
(r) +Σt,g(r)Jx,g(r) = Σ̄s1,g(r)Jx,g(r), (2.10a)

1
3
∂φg

∂y
(r) +Σt,g(r)Jy,g(r) = Σ̄s1,g(r)Jy,g(r), and (2.10b)

1
3
∂φg

∂z
(r) +Σt,g(r)Jz,g(r) = Σ̄s1,g(r)Jz,g(r). (2.10c)

Solving for current using the above equations gives

J(r) = −
1

3
(
Σt,g(r)− Σ̄s1,g(r)

)∇φg(r). (2.11)
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The value 1
3(Σt,g(r)−Σ̄s1,g(r)) is often referred to as the diffusion coefficient, Dg(r). Using this

definition, the expression for the current becomes

J = −Dg(r)∇φg(r), (2.12)

which is Fick’s Law applied to neutron diffusion.

Using Eq. (2.12) to represent the streaming term in Eq. (2.7) yields the neutron diffusion

equation:

−∇·Dg(r)∇φg(r) +Σt,g(r)φg(r)

=
∑
g′∈G

Σs0,g′g(r)φg′(r) +
1
k
χg(r)

4π

∑
g′∈G

νΣ f ,g′(r)φg′(r). (2.13)

The diffusion equation functions as a good approximation under specific circumstances;

namely, when the solution to the transport equation can be considered “diffusive.” This

usually holds in regions sufficiently far (on the order of several mean free paths) away from

strong material discontinuities, boundary conditions, or sources, and when the background

medium is not too strongly-absorbing.

2.2.2 Discrete Ordinates Approximation

The discrete ordinates approximation represents the continuous angular space with a dis-

crete set of angles. Directions of neutron travel are represented by the unit vector Ω̂, which

can be localized on the unit sphere using a polar angle, θ, and azimuthal angle, ϕ as depicted

in Fig. 2.1.

When working with these angles, as in the streaming term of the transport equation, it

is useful to express them as unit vectors in Cartesian coordinates,

Ω̂ = Ωx î +Ωyĵ +Ωzk̂, (2.14)
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Figure 2.1: Representation of angles in the unit sphere.

where the components of Ω̂ are expressed as

Ωx = η =

√
1−µ2 cos(ϕ) (2.15a)

Ωy = ε =

√
1−µ2 sin(ϕ) (2.15b)

Ωz = µ = cos(θ). (2.15c)

To discretize the angular variable a set of discrete angles is selected,

Ω̂n = Ω̂(θn,ϕn), n = 1,2, . . . ,N (2.16)

along with corresponding weights, wn. Such sets of angles and weights are referred to as

angular quadrature sets. The angles, Ω̂n, and weights, wn, are selected to result in accurate

angular integrals approximated by quadrature,

∫
4π

f (Ω̂)dΩ ≈

N∑
n=1

wn f (Ω̂n). (2.17)
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The angular flux variable is then constrained to these discrete angles,

ψn(r) = ψ(r,Ω̂n). (2.18)

Using this quadrature set, angular integrals in the transport equation and elsewhere are

approximated by quadrature summation. For example, the scalar flux can be represented as

φ(r) =

∫
4π
ψ(r,Ω̂)dΩ ≈

N∑
n=1

wnψ
n(r). (2.19)

Applying this treatment to Eq. (2.4) results in the discrete ordinates form of the multi-group

transport equation,

Ω̂n · ∇ψn
g(r) +Σt,g(r)ψn

g(r) =
∑
g′∈G

∑
n′∈N

wnΣn′n
s,g’g(r)ψn

g(r) +
1
k
χg(r)

4π

∑
g′∈G

νΣf,g′(r)
∑
n∈N

ψn
g′(r)wn.

(2.20)

In the above, a discrete form of the scattering cross section, Σn′n
s,g’g, is used, which is defined

as

Σn′n
s,g’g(r) = Σs,g′g(r,Ω̂n′ · Ω̂n). (2.21)

Various quadrature sets have been developed, each with different properties. The pri-

mary requirement for any set is that the weights sum to 4π thereby preserving the integral

of constant functions of angle on the unit sphere. In practice, the specific directions and

corresponding weights in a particular quadrature set are chosen in such a way that they

properly integrate polynomial functions on the unit sphere as accurately as possible.

Historically, SN methods (described in Section 2.4.1) have used “level symmetric”

quadratures, which have the property that the direction components maintain symmetry

about the coordinate axes under 90° rotations, as can be seen in Fig. 2.2. Level-symmetric

quadratures are named like SN , where N is the “order” of the quadrature, which refers to the

number of levels in the set of directions between two poles. For example, the quadrature
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Figure 2.2: A typical level-symmetric quadrature, in this case S8.

in Fig. 2.2 is S8, with the four levels in the positive-z half-space being depicted. Level-

symmetric quadratures aim to place no emphasis on any particular direction, which is why

they tend to be useful for general 3-D problems. The SN method, described below uses

such quadratures so often that it has assumed their name.

In some situations, such as reactor simulations, it becomes beneficial to construct a

quadrature that treats different directions in space differently. With reactors, containing

many cylindrical structures with parallel axes, it is useful to align the pole of the angular

coordinate system with the axes of the fuel pins, then sample the azimuthal angles more

finely than the polar angles. To do this, “product quadratures” are used instead of level-

symmetric quadratures. A product quadrature is formed by all combinations of the angles

in two separate quadratures which treat the azimuthal and polar angles, respectively. Fig-

ure 2.3 depicts a product quadrature with four azimuthal angles and three polar angles

per octant. The final weights of each angle in the product quadrature is the product of

the weights from the corresponding angles in the source azimuthal and polar quadratures,

hence the name. As an example, to calculate the scalar flux, φ(r), the following summation
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Figure 2.3: A typical product quadrature with azimuthal and three polar angles per octant.

would be used:

φ(r) =

Npolar∑
n=1

Nazi∑
m=1

ψ(r, θn,ϕm)wnwm. (2.22)

Typical azimuthal quadratures are evenly-spaced angles in (0,2π) with equal weights, often

referred to as a Chebyshev quadrature. Polar quadratures are usually Gauss-Legendre or

Yamamoto [33] quadratures. Since the final product quadrature weights must sum to 4π, the

weights of the polar quadrature are normalized to sum to 2, while the azimuthal quadrature

weights are normalized to sum to 2π, reflecting their respective domains.

Not only do product quadratures more efficiently discretize the angular variable in the

context of reactor analysis, but they permit a number of computational optimizations. These

optimizations usually leverage the fact that a 2-D solver may in certain contexts ignore the

presence of multiple polar angles. For instance, in 2-D MoC, rays may be traced only

for the azimuthal angles, saving time and memory, and the sweep algorithms can solve all

polar angles in parallel as they sweep a single ray.
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2.3 Source Iteration

Many methods of solving the transport equation rely upon the concept of source iteration.

Source iteration is a technique by which the scattering and fission source terms of the trans-

port equation, rather than being calculated implicitly, are converged iteratively. This allows

the fission and scattering sources to be incorporated into an inhomogeneous source term,

greatly simplifying the equation to be solved for each iteration. A number of sophisticated

methods exist to achieve better approximations of the source terms [1, 11, 28]. However, a

relatively straightforward approach was used in this work (in both MOCC and MPAC) and

is described below.

Starting with the multi-group, discrete ordinates transport equation, the fission and scat-

tering sources are referred to separately as F and S , respectively,

Ω̂n · ∇ψn
g +Σtψ

n
g =

1
4π

S g +
1

4π
χgF. (2.23)

The fission source is calculated using the current estimate of the system eigenvalue, keff, as

F =
1

keff

G∑
g=1

νΣ f ,gφg (2.24)

When using the multi-group approximation, it is often useful to separate the scattering

source into a self-scattering source, S self, a down-scattering source, S down, and an up-

scattering source S up
1.

Ω̂ · ∇ψ+Σtψ =
1

4π

(
S self + S up + S down +χgF

)
. (2.25)

A fixed-point iteration scheme is then used in which the in-scattering and fission sources

are calculated using previous-iteration estimates of the flux.

1Self-scattering refers to neutrons that scatter, but do not change energy group. Down-scattering refers to
neutrons that scatter into the current group from higher energy groups and up-scattering refers to neutrons
scattering up from lower energy groups.
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For a particular iteration, `, it is assumed that the fission source and keff have been

updated either by power iteration or some other iterative eigenvalue technique using the

previous iteration flux. A loop is then performed over the energy groups, from high energy

to low energy. The scattering sources S down and S up are usually handled in one of two

ways. In the first, both in-scattering sources are obtained using the previous-iteration scalar

flux, giving

Ω̂ · ∇ψ` +Σtψ
` = S `

self + S `−1
down + S `−1

up + F`−1, (2.26)

which is essentially a Jacobi iteration on the scattering source. Alternatively, since the en-

ergy sweep loops from high to low energy, advantage may be taken of the current-iteration

estimate of the flux for higher energy groups to get a more up-to-date down-scatter source:

Ω̂ · ∇ψ` +Σtψ
` = S `

self + S `
down + S `−1

up + F`−1. (2.27)

This constitutes a Gauss-Seidel style iteration on the scattering source. In the bulk of the

energy domain takes place overwhelmingly from higher energy groups to lower, since it

only becomes possible for neutrons to to scatter up in energy when they are close to thermal

energies. As a result, Gauss-Seidel iteration very nearly constitutes a direct inversion of the

scattering operator, and tends to perform well. Sometimes in the thermal energy range,

where up-scattering is more common, it is beneficial to loop over this range several times

to help converge the up-scatter source without having to revisit the higher-energy groups.

These are called “up-scatter iterations.”

Within a given energy group, it is also common to perform multiple transport sweeps,

updating the self-scattering source each time. There are typically referred to as “inner”

iterations.
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2.4 Spatial Discretization

While the discretization of the energy and angular variables are important, the multi-group

and discrete ordinates approximations are very well understood. This work is concerned

mostly with methods used for treating the spatial variable. The two spatial discretization

methods most relevant to the 2-D/3-D method are SN and the MoC, which are described

below.

2.4.1 Discrete Ordinates (SN) Method

The SN method is a simple approach for solving the multi-group, discrete ordinates form

of the transport equation discussed in Section 1.6. In this derivation of the SN method,

the geometry is restricted to a structured Cartesian grid. A single element of such a grid

is depicted in Fig. 2.4. Any region on the mesh, Vi, j,k, is bounded by xi−1/2 < x ≤ xi+1/2,

y j−1/2 < y ≤ y j+1/2 and zk−1/2 < z ≤ zk+1/2. The cross section, Σt and the source, Q are both

assumed to be constant within each mesh region.

To simplify notation, a modified version of Eq. (2.20) is used, in which the fission and

scattering sources are combined into an inhomogeneous source, Qn
g(r), leaving behind only

the streaming and reaction loss terms thusly,

(
ηn ∂

∂x
+εn ∂

∂y
+µn ∂

∂z
+Σt,g(r)

)
ψn

g(r) = Qn
g(r), (2.28a)

Qn
g(r) =

χg

4πk
(r)

∑
g′∈G

νΣ f g′(r)φg′(r) +
∑
g′∈G

∑
n′∈N

Σs,g’g(r,Ω̂n · Ω̂n′)wn′ψn′
g′(r), (2.28b)

where ηn, εn and µn are the x−, y− and z−components of the n−th discrete angle in our

angular quadrature. To further simplify notation, the energy group index, g, is omitted.

Since it is desired to find the cell-averaged flux for each cell, the equation is integrated over
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Figure 2.4: Element from a structured Cartesian mesh.
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the volume of the mesh element, giving

ηn
∫

k

∫
j

[
ψn(xi±1/2,y,z)−ψn(xi∓1/2,y,z)

]
dydz

+εn
∫

k

∫
i

[
ψn(x,y j±1/2,z)−ψn(x,y j∓1/2,z)

]
dxdz

+µn
∫

j

∫
i

[
ψn(x,y,zk±1/2)−ψn(x,y,zk∓1/2)

]
dxdy

+Σt,i jk

∫
k

∫
j

∫
i
ψ(x,y,z)dxdydz =

∫
k

∫
j

∫
i
Q(x,y,z)dxdydz. (2.29)

Here the following shorthand was used:

∫
i
(·)dx =

∫ xi+1/2

xi−1/2

(·)dx
∫

j
(·)dy =

∫ y j+1/2

y j−1/2

(·)dy
∫

k
(·)dz =

∫ zk+1/2

zk−1/2

(·)dz.

The material properties have also been assumed to be constant within a mesh region. Defin-

ing the node- and surface-averaged quantities

ψn
i±1/2, j,k =

1
∆y j∆zk

∫
j

∫
k
ψn(xi±1/2,y,z)dydz

ψn
i, j±1/2,k =

1
∆xi∆zk

∫
i

∫
k
ψn(x,yi±1/2,z)dxdz

ψn
i, j,k±1/2 =

1
∆xi∆y j

∫
i

∫
j
ψn(x,y,zi±1/2)dxdy

ψ̄n
i, j,k =

1
∆xi∆y j∆zk

∫
k

∫
j

∫
i
ψn(x,y,z)dxdydz, (2.30)

Eq. 2.29 can be divided by the node volume to yield

ηn

∆xi

(
ψn

i+1/2, j,k −ψ
n
i−1/2, j,k

)
+
εn

∆y j

(
ψn

i, j+1/2,k −ψ
n
i, j−1/2,k

)
+

µn

∆zk

(
ψn

i, j,k+1/2−ψ
n
i, j,k−1/2

)
+Σt,i jkψ̄

n
i, j,k = Qi, j,k. (2.31)

For a given angle and energy group, the result is a single equation with seven unknowns.

Some auxiliary relationships must therefore be introduced between the node- and surface-
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averaged fluxes to arrive at a closed set of equations.

Many differencing schemes have been developed throughout the years, some of which

will be discussed in Chapter 4. A common and simple closure of particular relevance to

this work are the Diamond Difference (DD) equations [24]. They specify the node-averaged

flux as the average of the upwind and downwind surface flux for each direction:

ψ̄n
i, j,k =

1
2

(
ψn

i+1/2, j,k +ψn
i−1/2, j,k

)
,

ψ̄n
i, j,k =

1
2

(
ψn

i, j+1/2,k +ψn
i, j−1/2,k

)
, and

ψ̄n
i, j,k =

1
2

(
ψn

i, j,k+1/2 +ψn
i, j,k−1/2

)
. (2.32)

The above is essentially the Crank-Nicolson method in space.

To perform a sweep along each direction in the angular quadrature, the procedure begins

with the upwind2 boundary condition and propagates the flux through the spatial domain

until the downwind edges of the mesh are reached. The order in which the cells of the

mesh are swept depends upon the octant in which the discrete direction lies. Introducing

Eqs. 2.32 into Eq. 2.31, eliminating the downwind fluxes and solving for ψn
i, j,k yields

ψ̄n
i jk =

2ηn

∆xi
ψn

i∓1/2, j,k + 2εn

∆y j
ψn

i, j∓1/2,k +
2µn

∆zk
ψn

i, j,k∓1/2 + Qi jk

σi jk +
2ηn

∆xi
+ 2εn

∆y j
+

2µn

∆zk

,

ηn ≷ 0, εn ≷ 0, µn ≷ 0. (2.33)

The angular component sign conditionals apply to the indices of the flux terms correspond-

ing to the appropriate angular component. For instance, when η > 0, ψi±1/2, j,k ≡ ψi+1/2, j,k,

and so on. Following the evaluation of the node-averaged flux using the upwind node sur-

face fluxes, the diamond-difference equations (2.32) are invoked to calculate the downwind

2Upwind and downwind are used to specify directions with respect to the direction of neutron travel.
When considering any particular direction, downwind denotes the direction in which the neutrons are travel-
ing, and upwind denotes the direction from which they are traveling.
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flux,

ψn
i±1/2, j,k = 2ψ̄n

i jk −ψ
n
i∓1/2, j,k, ηn ≷ 0,

ψn
i, j±1/2,k = 2ψ̄n

i jk −ψ
n
i, j∓1/2,k, εn ≷ 0,and

ψn
i, j,k±1/2 = 2ψ̄n

i jk −ψ
n
i, j,k∓1/2, µn ≷ 0 (2.34)

at which point the sweep proceeds to the next mesh element. This process is depicted in

Fig. 2.5.

When using an orthogonal mesh, parallel decomposition of the SN method can be car-

ried out using the Koch-Baker-Alcouffe (KBA) [20] algorithm. This algorithm was devel-

oped in the 1990’s at Los Alamos National Laboratory, and more recently has been demon-

strated in Denovo to achieve very impressive parallel performance on modern computing

hardware. Figure 2.6 shows the behavior of KBA under weak and strong scaling studies.

Weak scaling involves increasing the size or complexity of a problem to maintain the same

amount of work per processor as the number of processors is increased. In strong scaling,

the amount of overall work is kept constant while the number of processors is increased,

leading to a smaller amount of work per processor. Inter-process communication is usually

the dominant driver in the scaling performance of parallel algorithms. As a result, strong

scaling usually deviates more from ideal scaling than weak scaling, since the reduction

in local work results in proportionally more time spent in communication. Less-than-idea

Weak scaling tends to arise from load balancing efficiency, and is typically less severe than

strong scaling, as can be seen in Fig. 2.6.

While at the time of this writing, the KBA algorithm is not implemented in MOCC,

it is described here because parallel performance will be an important aspect of 2-D/3-D

methods in production environments. KBA operates by decomposing the diagonal plane

along which flux is propagated through a 3-D mesh. This planar wavefront starts as a single

cell at the farthest-upwind cell of the mesh, but grows as (1, 3, 6, 10, ...) to some maximum
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Octant (−x,+y,−z)

Figure 2.5: SN sweep procedure for octant (-1, 1, -1) [10], used with author’s permission.
Blue surfaces contain boundary flux values, green surfaces have downwind flux calculated
from sweeping a cell, and red surfaces have unknown flux, yet to be determined.
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Figure 2.6: Scaling of the KBA algorithm in Denovo [10]. Used with author’s permis-
sion. Strong scaling has an algorithm-dependent theoretical maximum efficiency, which
accounts for the increased communication time incurred with increased parallelism. Less-
than-ideal weak scaling arises from less efficient load balancing when more processors are
used.

size in the interior of the mesh (this maximum plane size being dependent upon the mesh

dimensions), before shrinking again at the most downwind corner of the mesh, as illustrated

in Fig. 2.7.

Rather than decompose the entire 3-D wavefront, it can instead be projected onto a 2-D

plane in which each processor treats cells at a different distance normal to the 2-D plane

chosen. For example, if the 3-D wavefront is projected onto the X-Y plane, it can be used

to decompose the mesh in space as shown in Fig. 2.8. For the depicted mesh, processor 2

X

Y

Z

(−1, 1, −1) Octant

(a) Wavefront 1.
X

Y

Z

(b) Wavefront 2.
X

Y

Z

(c) Wavefront 3.

Figure 2.7: KBA sweep plane progression.
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X
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Z
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3 4 5

6 7 8

z−blocks (on processor)

Figure 2.8: Spatial decomposition for KBA, using an X-Y projection. Top numbers cor-
respond to processor index. Red lines indicate within-processor block boundaries, which
create more wavefront steps and aid in parallelism.

would be the only active processor for the first wavefront step treating the hashed block of

cells in Fig. 2.7a. By the third wavefront step (Fig. 2.7c), processors 0, 4, and 8 would be

treating blocks at the top of the mesh, processors 1 and 5, blocks one lower, and processor

2 would be sweeping cells two blocks down. Using this scheme, communication need only

take place for the x and y faces of the blocks, while the z faces of the blocks are kept within

the processor.

Mapping the blocks in the wavefront to physical processors in this way minimizes the

communication necessary. However, there are still periods when not all processors are in

use. To improve utilization of the parallel processors, KBA uses an angular pipelining

approach. Since the order in which cells must be swept (and hence the nature of the wave-

front decomposition) depends only upon the octant in which an angle lies, all angles in

given octant are swept together in series. This allows a processor to continue sweeping the

next angle in the octant as soon as it has reached the end of the mesh for the current octant

angle. This has the effect of stacking the multiple instances of the spatial domain, resulting

in an effective mesh that is “taller” than it would otherwise be, increasing the amount of
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time that all processors are active. This is depicted in Fig. 2.9, in which the blue borders

denote the boundaries between the angles. It should be noted that with a fixed number of

angles, weak scaling in space will not be ideal, since an appreciable number of processors

will be unused while the sweep pipeline is being filled. This effect is apparent in Fig. 2.6a.

2.4.2 Method of Characteristics

The Method of Characteristics treats the multi-group, discrete ordinates form of the trans-

port equation by considering characteristic curves along which the solution variable is al-

lowed to change [13, 19]. This results in a series of ordinary differential equations which

may be solved along each characteristic. Starting with Eq. (2.20), the coordinate transfor-

mation,

x(s) = x0 +ηns

r = r0 + sΩ̂→ y(s) = y0 +εns

z(s) = z0 +µns,

is performed to obtain
d
ds
ψ(s) +Σt(s)ψ(s) = Q(s). (2.35)

Considering a single mesh region with constant total cross section and source, Eq. (2.35)

has the analytic solution

ψn(s) = ψn
ine−Σts +

Q
Σt

(
1− e−Σts

)
, (2.36)

where ψin is the angular flux incident upon the region, or at r0. The approximate solution

to the transport equation for each angle is obtained by solving the above equation along

numerous characteristic curves, or rays, which pass through the reactor core.
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Figure 2.9: Angular pipelining approach used in KBA. Blue lines are “imaginary” bound-
aries between spatial domains for different angles in the same octant. This has the effect of
vertically “stacking” multiple instances of the spatial domain.
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Figure 2.10: Typical MoC pin mesh with rays. Dotted lines denote mesh boundaries, while
the solid circle represents a material discontinuity (also a mesh boundary). An FSR is a
region of the mesh enclosed mesh boundaries. For example, the yellow highlighted region
is an FSR, which is shown in more detail in Fig. 2.11.

Flat Source Region mesh and rays The spatial domain is typically divided into a mesh

of Flat Source Regions (FSRs), as depicted in Fig. 2.10. In most cases, rays are spaced

evenly with some nominal ray spacing, δ. For a given ray segment of length t traversing

an FSR, that segment represents the approximate solution within a sub-volume of the FSR

as shown in Fig. 2.11. Even though the mesh and rays are 2-D, they actually represent and

interact with a prismatic, 3-D structure; therefore, the ray segment lengths must be scaled

relative to the polar angle,

` =
t√

1−µ2
. (2.37)

As depicted in Fig. 2.11, the volume of all ray segments in an FSR do not necessarily

represent the exact volume of that region. Therefore in practice, an effective ray segment

length is used instead, which preserves the total amount of material in each region by

stretching or compressing the length of the segments. This is typically done in one of two
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t

δ

Figure 2.11: Typical FSR with rays and associated ray segments.

ways. The first preserves the total volume of all FSRs for each angle individually,

`m
eff =

∑
m∈FSR δ`

m

VFSR
. (2.38)

The second preserves the angular integral of the FSR volumes,

`m
eff =

∑
m∈FSR

∑N
n=1 wnδ`m

4πVFSR
. (2.39)

While it is essential that the total amount of material be preserved for each FSR, the mod-

ification of the segment lengths does introduce error in the representation of the geometry

of the mesh regions, and thus it is desired to minimize the magnitude of the correction.

For this reason the second approach is usually favored, since considering all angles and all

segments together tends to yield a smaller overall modification.

Equation (2.36) can be used to develop expressions for the segment-average and outgo-
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ing angular flux for a given ray, m

ψm
out = ψm

ine−Σt`
m

+
Q
Σt

(
1− e−Σt`

m)
(2.40)

ψ̄m =
Q
Σt

+
1

Σt`m

(
ψm

in−
Q
Σt

) (
1− e−Σt`

m)
. (2.41)

Ray modularization Some MoC codes such as MPACT and MOCC use a concept called

modular ray tracing to reduce the memory burden of storing the ray data, as well as the time

needed to trace them through the mesh. Modular ray tracing takes advantage of the highly

periodic nature of the geometry of a nuclear reactor core, which permits the re-use of ray

tracing data within appropriate subdomains. Depending upon the nature of the problem,

different repeating geometries might be used, including pin cells, quarter assemblies or full

assemblies. These repeated structures are referred to as “ray tracing modules.”

In order to do this properly, several constraints must be placed on the nature of the

rays and the angles along which they travel to ensure that a ray exiting one module lines

up with another ray entering the neighboring module. A typical approach to enforcing this

constraint involves performing the following steps for each angle in the quadrature. First an

integral number of rays crossing each boundary of the border of the module is determined

given the starting azimuthal angle, α,

Nx =

⌈ Hx

δsinα

⌉
Ny =

⌈
Hy

δcosα

⌉
, (2.42)

where Nx and Ny are the number of rays crossing the x− and y−normal faces of the module,

respectively. Hx and Hy are the dimensions of the module. The use of the ceiling function

ensures that the final ray spacing is smaller than the desired, nominal ray spacing. A new
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azimuthal angle is then determined, given the configuration of the ray as

α′ = arctan
(

HyNx

HxNy

)
, (2.43)

and a new, angle-specific ray spacing is determined by

δ′ = cos
(
α′

) Hy

Ny
. (2.44)

This was the approach used in the CACTUS code [13], an early implementation of the

MoC. Depending upon the dimensions of the ray tracing module and the desired ray spac-

ing, modularization can have a noticeable impact upon the final angular quadrature, and

care must be taken to properly adjust quadrature weights accordingly.

It should be noted that even when not using modular ray tracing to save memory, it is

still useful to treat the entire geometry as a single ray tracing module to aid in handling

reflective boundary conditions; if the rays of reflected angles line up at the mesh boundary,

reflective or albedo boundary conditions may be enforced simply by using the outgoing

flux from the exiting ray as the incoming flux for the entering ray. This is the approach

used in the MOCC code.

MoC sweep algorithm An MoC sweep loops over all angles, initializing incoming an-

gular flux using an appropriate boundary condition, and propagates the angular flux along

each ray, one segment at a time. Following traversal of the mesh, the outgoing flux is stored

to possibly be used later as incoming flux for reflective, periodic, or albedo boundary con-

ditions.

While it is possible to use Eqs. (2.40) and (2.41) in the ray sweep, alternative forms tend

to be more efficient for computation. Instead of computing the segment-average angular

flux using Eq. (2.41), the outgoing flux can be expressed as the incoming flux, plus some
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incremental flux, ∆ψm, and the segment-average flux in terms of this incremental flux,

ψm
out = ψm

in +∆ψm. (2.45)

Using the above and Eq. (2.40), the incremental flux can be calculated as

∆ψm =

(
Q
Σt
−ψm

in

) (
1− e−Σt`

m)
. (2.46)

Referring back to Eq. (2.41), and inserting the expression for ∆ψm gives

ψ̄m =
Q
Σt
−

1
Σt`m ∆ψm. (2.47)

After common subexpression elimination, computing Eqs. (2.41) and (2.40) would re-

quire one exponential function evaluation, five floating-point multiplications, four floating-

point additions or subtractions, and two floating-point divisions. In contrast, Eqs. (2.46)

and (2.47) require three fewer floating-point multiplications. Since these are the most

frequently-evaluated expressions in an MoC sweeper, this reduction in operations is quite

valuable.

The scalar flux in an FSR is approximated as the sum over all segments and angles,

φFSR =

∑
n∈N

(
wn

∑
m∈FSR

δ`m,n
eff ψ̄

m,n
)

VFSR
. (2.48)

Further savings may be made by first applying the definition of ψ̄m to the above summation,

φFSR =

∑
n∈N

(
wnδ

n ∑
m∈FSR

`m,n
eff

Q
Σt
−

∆ψm

Σt

)
VFSR

. (2.49)

Recognizing that Q
Σt

is constant over angle and ray segment for any FSR and the quadrature-

weighted sum over all `eff for all angles is 4πVFSR allows the term to be removed from the
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summation. The 1
Σt

factor may similarly be removed. After removing as many operations

as possible from the scalar flux sum, what remains is

φFSR = 4πVFSR
Q
Σt
−

∑
n∈N

(
wnδ

n ∑
m∈FSR

∆ψm
)

VFSR
. (2.50)

The final MoC sweep algorithm is presented in Algorithm 1 as it would typically be

embedded in an eigenvalue solver.

Initialize;
Make initial guesses for fission source and keff;
while Fission source, eigenvalue not converged do

for group ∈G do
Calculate energy group-dependent source from in-scattering and fission;
Pre-calculate Q

Σt
for the current group;

for inner=0, Ninner do
Calculate total source, including self-scattering;
Reset running sum of intermediate scalar flux value: φ = 0;
for Angles do

for Rays do
Initialize ψin from boundary value;
for Ray segments do

Look up FSR index, i, corresponding to ray segment;
Calculate ∆ψ using Eq. (2.46);
φi = φi + wnδn∆ψ;
Update ψin using Eq. (2.45);

end
Store ψout boundary value;

end
end
Adjust flux summation to recover actual scalar flux: φ = 4πQ

Σt
−

φ
ΣtVFSR

;
end

end
Update fission source and keff;
Check for convergence;

end
Algorithm 1: Method of Characteristics sweep algorithm
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2.5 2-D/1-D Method

The 2-D/1-D method as considered in this work was first used in the CRX [25] and De-

CART [7, 16] reactor analysis codes, and was used to extend the solutions from 2-D MoC

sweepers to the full 3-D reactor geometry. It is currently the mainstay approach to solving

3-D problems in MPACT.

2-D/1-D is a planar synthesis method, which splits the 3-D reactor geometry into a

stack of 2-D axial slabs. A detailed 2-D method is used to treat each of these slabs, which

are coupled using a 1-D axial solver, as shown in Fig. 2.12. Traditionally, MoC is used

to treat the 2-D planes, while a lower-fidelity, pin-homogenized method is used in the

axial solvers. While the 2-D MoC treatment is fairly consistent between most 2-D/1-D

implementations, a variety of methods have been used for treating the axial dimension.

Nodal diffusion methods, such as Nodal Expansion Method (NEM) and Semi-Analytic

Nodal Method (SANM) have been used for some time, while newer methods have begun

employing nodal SN or other transport-based methods [14, 30]. Communication between

the radial and axial sweepers is carried out using the concept of Transverse Leakage (TL),

which applies an auxiliary source to each sweeper, accounting for neutron streaming in the

dimension(s) orthogonal to the particular sweeper. The radial sweepers include an axial TL

term, while the axial sweepers include a radial TL term. Each TL is obtained by integrating

the transport equation over the dimensions that are not treated by a given sweeper.

2.5.1 Axially-Integrated Transport Equation

The radial (MoC) sweepers in the 2-D/1-D scheme solve the axially-integrated form of the

transport equation. This equation is obtained by starting with the multi-group, discrete-

ordinates form of the transport equation in Cartesian coordinates,

(
ηn ∂

∂x
+εn ∂

∂y
+µn ∂

∂z

)
ψn

g(x,y,z) +Σt,g(x,y,z) = Q(x,y,z), (2.51)
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Figure 2.12: Illustration of the 2-D/1-D method.

where Q(x,y,z) is the true neutron source, including fission and scattering sources,

Q(x,y,z) =
χg

k

∑
g′∈G

νΣf,g′(x,y,z)φg′(x,y,z) +
∑
g′∈G

Σs,g’gφg′(x,y,z) (2.52)

Operating on the above equation with

1
hz

zT∫
zB

(·)dz (2.53)

produces the axially-averaged transport equation,

(
ηn ∂

∂x
+εn ∂

∂y

)
ψn

g(x,y) +Σt,gψ
n
g(x,y) + Ln

g(x,y) = Qn
g(x,y), (2.54a)

Ln
g(x,y) =

µn

hz

(
ψn

g,T (x,y)−ψn
g,B(x,y)

)
, (2.54b)

where hz is the height of the planar axial region and ψn
g,T (x,y) = ψn

g(x,y,zT ) and ψn
g,B(x,y) =

ψn
g(x,y,zB). ψn

g(x,y) represents the axially-averaged, or radially-dependent angular flux for

direction of travel n and group g, Σt(x,y) is the axially-averaged cross section, and so on.
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The Ln
g(x,y) term is called “axial transverse leakage,” and accounts for the component of the

streaming term in the axial direction. In 2-D/1-D schemes, it is typically moved to the right

hand side and treated as a transverse leakage source, where the flux at the top and bottom

of the axial slab are calculated using a 1-D axial solution. These schemes typically operate

on a pin-homogenized mesh, and the plane-top and -bottom fluxes are approximated as

piecewise constants,

ψn
g,B(x,y) ≈ ψn

g,B,i, j and (2.55)

ψn
g,T (x,y) ≈ ψn

g,T,i, j, (2.56)

where i and j are x and y pin indices, respectively. As a result, a single TL source is

usually applied to all FSRs within a given pin. This is often referred to as the “flat” TL

approximation. Research has shown that this can be a large source of error in 2-D/1-D

methods [31], and it is equally relevant for 2-D/3-D methods as well.

2.5.2 Radially-Integrated Equations

2-D/1-D methods choose to use either the transport or diffusion equations to treat the ax-

ial direction. Both are obtained using a similar approach as used above for the axially-

integrated equations, except they are integrated over a radial region as

1
hxhy

∫ xR

xL

∫ yR

yL

(·)dydx. (2.57)

Applying this treatment to Eq. (2.51) yields

µn d
dz
ψn

g(z) +Σt,g(z) + Ln
g(z) = Q(z), (2.58a)
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Ln
g(z) =

1
hxhy

(
ηn

∫ yR

yL

ψn
g(xR,y,z)−ψn

g(xL,y,z)dy+ (2.58b)

εn
∫ xR

xL

ψn
g(x,yR,z)−ψn

g(x,yL,z)dx
)

(2.58c)

It is also common in 2-D/1-D methods to use axial diffusion. The same treatment can

be applied to the 3-D diffusion equation to get

−Dg
∂2

∂z2φg(z) +Σr,gφ(z) + Lg(z) =
χg

k

∑
g′∈G

νΣf,g′φg′(z) +
∑

g′∈G,g′ 6=g

Σs,g’gφg′ (2.59a)

Lg(z) =
1
hx

(
JR

x (z)− JL
x (z)

)
+

1
hy

(
JR

y (z)− JL
y (z)

)
. (2.59b)

In the above, J represents the net current on the face and in the direction indicated, and are

obtained from the 2-D radial sweeper. Use of the above equation with NEM and SANM

nodal methods have historically been the most popular axial treatments in 2-D/1-D. How-

ever, 1-D transport-based methods, such as nodal Simplified Pn (SPn) are becoming more

commonly used.

2.5.3 Iteration Scheme

While iteration schemes vary between implementations, the iteration process employed by

MPACT is depicted in Fig. 2.13. Each outer iteration begins with a global CMFD solve,

which updates the fission source and eigenvalue estimate. An axial solver is then used

to determine the flux behavior along the axial direction for each pin. The resultant axial

solution is used to calculate axial TLs for use in the radial sweepers. Each plane is then

swept with the radial MoC sweepers, employing the TLs obtained in the previous step. At

the end of the radial sweeps, new currents are calculated on the pin boundaries for use in

the next CMFD iteration.

This iteration scheme has proved effective for many reactor analysis applications. How-

ever in some cases, especially with small axial slabs, the iteration scheme can become
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Initialize

Perform global CMFD solve.
Update fission source and k.

Perform axial solve.
Update axial TL.

Perform radial MoC solve.
Update radial currents.

Is converged?

Finalize

Yes

No

Figure 2.13: 2-D/1-D iteration scheme.

unstable, resulting in the divergence of the solution. This effect has been studied in re-

cent work [17, 18]. The result of this analysis was the development of an optimal under-

relaxation factor, which guarantees stability while minimizing the negative impact on the

convergence rate of the solution.

2.6 Coarse Mesh Finite Difference

The CMFD method [28] is a finite differencing approach for solving the diffusion equation,

described in Section 2.2.1. It is formulated in such a way that the Finite Difference (FD)

diffusion calculation will produce an equivalent solution to a coupled transport calculation

at convergence. This equivalence permits its use as an accelerator for the coupled transport

solver.
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In practice, CMFD is usually applied on a coarse mesh that is aligned with the pin mesh

of a reactor. Each pin cell is homogenized to form a single region of an orthogonal grid.

Within each region, the cross sections are assumed constant. In standard FD the interface

current from region, i to its neighbor, j is expressed

Ji→ j = D̃i j
(
φi−φ j

)
, (2.60)

where D̃i j is the surface diffusivity of the interface between regions i and j, and is defined

as

D̃i j =
2 Di

hi

D j
h j

Di
hi

+
D j
h j

. (2.61)

The CMFD method applies a modification to Eq. (2.60), which includes non-linear correc-

tion term, D̂i j:

Ji→ j = D̃i j
(
φi−φ j

)
+ D̂i j

(
φi +φ j

)
. (2.62)

Here, the value of D̂i j is computed using the known values of the fine-mesh flux and and

interface currents from the transport solver that is being accelerated, homogenized to the

coarse mesh:

D̂i j =
JFM

i→ j− D̃i j
(
φFM

i −φFM
j

)
φFM

i +φFM
j

. (2.63)

In the computation of D̂i j, φFM and JFM represent these homogenized values from the

fine mesh transport solver. In the case of accelerating MoC calculations, values of the

interface currents are computed with a specialized sweeping method that tallies the net

current contributions of rays as they cross the boundaries of the coarse mesh. This special

sweep procedure is more computationally expensive than the regular MoC sweeps, and

therefore is only used on the last iteration prior to performing a CMFD acceleration step.

Other necessary group constants are homogenized using the fine-mesh, transport-based

scalar flux.

Using our expressions for cell interface currents, Eq. (2.62), the following balance equa-
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tion for a 3-D, cuboid coarse mesh cell can be obtained:

(
D̂E

i,g− D̃E
i,g

)
Axφ

E
i,g +

(
D̂W

i,g− D̃W
i,g

)
Axφ

W
i,g+(

D̂N
i,g− D̃N

i,g

)
Ayφ

N
i,g +

(
D̂S

i,g− D̃S
i,g

)
Ayφ

S
i,g+(

D̂T
i,g− D̃T

i,g

)
Azφ

T
i,g +

(
D̂B

i,g− D̃B
i,g

)
Azφ

B
i,g+[(

D̃E
i,g + D̂E

i,g + D̃W
i,g− D̂W

i,g

)
Ax +

(
D̃N

i,g + D̂N
i,g + D̃S

i,g− D̂S
i,g

)
Ay+(

D̃T
i,g + D̂T

i,g + D̃B
i,g− D̂B

i,g

)
Az +Σt,i,gVi

]
φi,g

=
χg

k
Vi

∑
g′∈G

νΣ f ,i,g′φi,g′ + Vi

∑
g′∈G

Σs,i,g′gφi,g′ , i ∈CM, g ∈G. (2.64)

In the above equations, the superscripts N, S , E, W, T and B denote the neighboring mesh

regions or interfaces in the north, south, east, west, top and bottom, respectively. Ax, Ay and

Az are the x-, y- and z-normal interface areas and Vi is the volume of the Coarse Mesh (CM)

region i, and CM is the set of regions in the coarse mesh.

Equations (2.64) form a large system of equations, which are solved in the code using

standard algebra techniques. MPACT uses the PETSc library [3, 4], which is a powerful,

parallel linear algebra library. MOCC uses the Eigen linear algebra library, which is un-

fortunately serial. The solution of the CMFD eigenvalue problem is then projected back to

the transport mesh. If the solution is not yet converged, another series of transport sweeps

are performed, producing new cross sections and D̂ terms. Due to the equivalent formu-

lation of CMFD, at convergence the solution to the CMFD system will agree with that of

the transport sweeper. Since the CMFD system is much less expensive to solve than the

transport equation, it makes a very effective accelerator for the convergence of the transport

solution without affecting accuracy.
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CHAPTER 3

Corrected Diamond Difference

The goal of the 2-D/3-D method is to take advantage of the speed and parallel efficiency

of orthogonal mesh SN and the in-plane accuracy of MoC to obtain full-core, 3-D, pin-

resolved solutions to the transport equation. A key requirement of the method is for the

orthogonal-mesh SN to maintain accuracy at practical mesh refinements, which proves chal-

lenging for standalone SN , since orthogonal meshes are notoriously poor at representing the

geometries found in virtually all reactor designs. In this chapter, the poor performance of

standalone orthogonal mesh SN in reactor applications is demonstrated experimentally. The

CDD scheme, reminiscent of Weighted Diamond Difference (WDD), is then introduced,

which incorporates correction data from an underlying MoC sweeper. Finally, it is demon-

strated that in 2-D, CDD is capable of maintaining the same accuracy as the embedded

MoC solution, and some observations of the correction factors are presented.

3.1 Standard Sn with Flux-Weighted Cross Sections

The simplest method considered for improving the accuracy of orthogonal mesh SN is

to provide flux-weighted cross sections to the coarse mesh using a FM flux distribution.

This was the first method investigated for improving the accuracy of Denovo simulations,

and was studied in detail in 2012 [35] at Oak Ridge National Laboratory. By default, the

Denovo code operates by overlaying an orthogonal mesh on the physical pin geometry as

depicted in Fig. 3.1, and calculating volume-weighted cross sections for each region of
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the orthogonal grid. The number of sub-regions per pin is user-defined, with increasing

numbers of regions tending to result in less modeling error.

Early in the application of Denovo to reactor simulations, it was found that a pro-

hibitively large number of regions was necessary to achieve satisfactory accuracy in many

cases. In particular, cases with small regions of strong neutron absorbers, such as those

found in IFBA pins require upwards of 50-by-50 mesh elements per pin to yield acceptable

global solutions. As stated above, this would result in a prohibitively large mesh in full-

core situations. The error incurred by using an orthogonal mesh comes from several major

sources:

• discretization of the solution itself,

• poor representation of the actual pin geometry and its curved surfaces, and

• the mixture of cross sections, since multiple real-world materials may inhabit the

same orthogonal mesh regions.

Much of the error in the cross sections is due to the volume weighting that is used, which

assumes a flat flux profile within each coarse region. This grants equal importance to all

subregions, which in most cases is inappropriate. In realistic reactor scenarios, the flux

shape tends to exhibit strong radial dependence within a pin cell due to heterogeneities and

self-shielding effects. Therefore, flux-weighting was used to achieve lower error due to

cross sections for the same mesh refinement.

Flux weighting of the group constants is carried out using the following relationships,
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Figure 3.1: Orthogonal mesh overlay on a typical fuel pin.

which attempt to preserve total reaction rates within a homogenized region:

Σt,V,g =

∑
i∈V

Σt,i,gφi,gVi∑
i∈V

φi,gVi

νΣ f ,V,g =

∑
i∈V

νΣ f ,i,gφi,gVi∑
i∈V

φi,gVi

Σs,V,g′g =

∑
i∈V

Σs,g′gφg′,iVi∑
i∈V

φg′,iVi

χg,V =

∑
i∈V

χi,gVi
∑

g′∈G
φi,g′νΣ f ,i,g′∑

i∈V
Vi

∑
g′∈G

φi,g′νΣ f ,i,g′

Following the generation of the flux-weighted cross sections, any SN scheme may be em-

ployed to solve the resultant global problem, such as DD, Step Characteristics (SC) or

Linear Discontinuous (LD).

In the 2012 study, we considered a 3-by-3 pin array with a central control rod guide tube

and several pins containing IFBA coatings, depicted in Fig. 3.2. Several mesh refinements

were used, ranging from 4-by-4 regions per pin to 24-by-24 regions per pin. In each case,
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Figure 3.2: 3-by-3 pin array. Yellow pins contain IFBA coating, red pins are bare fuel.

an MoC calculation was performed on a sufficiently resolved conformal mesh (see Section

2.4.2), and the resulting scalar flux distribution was used to generate flux-weighted cross

sections for each orthogonal mesh region. Using these cross sections, an SN calculation

was performed with the LD differencing scheme, and the system eigenvalue was compared

against a very fine-mesh reference solution. The results are shown in Fig. 3.3.

Several important observations were made:

• As expected, the eigenvalue error with flux-weighted cross sections was lower for all

cases than the volume-weighted cross sections.

• Even at 24-by-24 regions per pin the eigenvalue error was in the hundreds of per cent

mille (pcm), which is far from acceptable.

• The eigenvalue error does not improve monotonically as the mesh is refined. Instead,

some coarser SN meshes produce better answers than finer ones. This is likely due to

the interaction of the IFBA coating with the orthogonal mesh; depending on where
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Figure 3.3: Mesh convergence behavior for 3x3 pin array with IFBA pins

the SN mesh boundaries lie in relation to the thin IFBA layer, it is possible for some

regions to contain only a small portion of IFBA, which contaminates the rest of the

region’s cross sections, resulting in poor representation of the pin geometry. The

severity of this IFBA “corner clipping” effect depends somewhat chaotically upon

mesh parameters, and is difficult to characterize. Operating on a pin-homogenized

mesh (1-by-1 per pin), would alleviate this particular issue, but is so inaccurate due

to the coarseness of the mesh that it is also not practical.

The results of the above analysis effectively rule out the use of traditional SN methods

for use in reactor calculations with reasonably coarse grids, even if flux-weighted cross

sections are used. In the following sections, a more sophisticated technique is developed

for informing a coarse mesh SN solver.

3.2 Corrected Diamond Difference

In Section 3.1 the usefulness of fine-mesh MoC flux weighted cross sections was explored

to improve the accuracy of coarse mesh SN . While this demonstrated roughly increasing

accuracy with refinement of the SN mesh, operating on the order of a pin-level mesh was

far too inaccurate. There is however much more information from the fine mesh sweep

at our disposal, which can be used to formulate a more accurate SN approach. In the
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CDD method, a pair of correction factors are developed, which are calculated using flux

data from a FM MoC sweeper, and correct the streaming and collision terms of the SN

equation. Both corrections apply sufficient modifications to the original DD equations to

force them to assume the same transport behavior as the underlying MoC sweeper under

certain circumstances.

3.2.1 Streaming Correction Factor

The first component of CDD involves adding a pair of correction terms, αx and αy, which

are calculated using fine-mesh flux quantities from an MoC sweep.

Determining the streaming correction factor begins with the discrete ordinate form of

the differential transport equation,

(
ηn ∂

∂x
+εn ∂

∂y
+Σt(~r)

)
ψn(~r) = Q(~r). (3.1)

Integrating Eq. (3.1) over a pin cell and representing the angular flux derivatives as spatial

differences produces

ηn

∆xi

(
ψi+1/2, j−ψi−1/2, j

)
+
εn

∆y j

(
ψi, j+1/2−ψi, j−1/2

)
+Σtψi j = Qi j. (3.2)

Here the angle index has been omitted for clarity.

Starting with the DD scheme and applying the streaming correction factors, αx and αy

gives

ψi j = αx,i j
(
ψi+1/2, j +ψi−1/2, j

)
and

ψi j = αy,i j
(
ψi, j+1/2 +ψi, j−1/2

)
. (3.3)

The correction terms are calculated for each dimension of the mesh element for which fine

mesh data is available. For example, in the case of using a 2-D MoC sweeper, these are
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calculated for the x and y directions, as shown in Eqs. (3.3) and (3.4).

Given values from the fine mesh solution for ψ̄F
i j, ψ

F
i±1/2, j and ψF

i, j±1/2, the terms can be

calculated with the expressions

αx,i j =
ψ̄F

i j

ψF
i+1/2, j +ψ

F
i−1/2, j

and

αy,i j =
ψ̄F

i j

ψF
i, j+1/2 +ψF

i, j−1/2

. (3.4)

3.2.2 Collision Correction Factor

To accurately represent the reaction rates within a coarse mesh cell, the fine mesh, angle-

dependent collision rate, homogenized onto a coarse mesh region is considered,

Rn = ψ̄nΣ̄t
n
, (3.5)

where Rn is the reaction rate of neutrons traveling in direction ~Ωn through a coarse mesh

region for a single energy group. In this case the homogenized cross section Σn
t are angular

flux-weighted, and defined as

Σ̄t
n

=

∑
i∈FM Σt,iψ̄

n
i Vi∑

i∈FM ψ̄n
i Vi

, (3.6)

where FM is the set of FM regions comprising a CM region. The corresponding cell-

averaged angular flux is defined as

ψ̄n =

∑
i∈FM ψ̄n

i Vi∑
i∈FM Vi

. (3.7)

In a traditional SN sweep, our collision term would employ a scalar flux-weighted total

cross section, yielding a reaction rate of

R̃n = ψ̄nΣt, (3.8)
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which under most circumstances would not reproduce the same reaction rate as the under-

lying FM sweeper.

An equivalent reaction rate could be recovered by calculating and storing an angular

flux-weighed cross section, and using it in the SN sweep. However, due to memory benefits

discussed below, it is beneficial to instead seek a correction factor that may be applied

similarly to the streaming correction factors. Introducing a correction factor, βn, to the

node-averaged flux, ψ̄n, the fine mesh reaction rate can be recovered,

Rn = βnψ̄nΣt. (3.9)

Combining Eqs. (3.5) and (3.9), produces the definition

βn =
Σ̄n

t

Σt
. (3.10)

Incorporating the above correction factor into the CDD equation (Eq. (3.3)), gives

ψ̄n = βnαn
x,i j

(
ψn

i+1/2, j +ψ
n
i−1/2, j

)
,

ψ̄n = βnαn
y,i j

(
ψn

i, j+1/2 +ψn
i, j−1/2

)
. (3.11)

At first, it appears that yet another another angularly-dependent quantity must be stored

to employ this method. However, the entire quantity βnαn can easily be stored as a single

value in memory.
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3.2.3 CDD Sweep Algorithm

To incorporate the CDD equations into an SN sweep algorithm, Eq. (3.3) is introduced into

Eq. (3.2), yielding the expression

ψ̄i j =

Qi j + 2
(
η

∆xi
ψi∓1/2, j +

ε
∆y j
ψi, j∓1/2

)
η

∆xiβαx,i j
+ ε

∆y jβαy,i j
+Σt,i j

, η≷ 0, ε≷ 0, (3.12)

which applies to solving purely 2-D problems.

In the normal way, the sweep starts at the upwind boundary of the spatial domain and

uses the upwind boundary flux to calculate the node-average flux with Eq. 3.12. The node-

average flux is then used to calculate the downwind surface flux using a rearranged form of

Eqs. 3.3,

ψi±1/2, j =
ψ̄i j

βαx,i j
−ψi∓1/2, j, η≷ 0 and

ψi, j±1/2 =
ψ̄i j

βαy,i j
−ψi, j∓1/2, ε≷ 0 (3.13)

Generation of the correction factors for use in the CDD equations is a potentially costly

operation, which relies on knowledge of the angular flux. For realistic problem sizes, the

full angular flux is too large to store in memory. As explained in Section 2.4.2, most MoC

sweeping algorithms avoid this by only storing the state of the angular flux for a single ray

at a time as that ray traverses the problem geometry. Therefore, data needed to compute the

CDD correction terms must be collected during the ray sweep itself. A slight modification

is made to the MoC sweeper kernel such that every time a ray crosses a cell boundary of

the CM, its angular flux contributes to a running average for the surface angular flux on

that surface. This concept is illustrated in Fig. 3.4. Also, the ray segment-average flux is

contributed to a running average of the cell-average angular flux. At the end of sweeping

all rays for a given angle, the resultant angular flux quantities may be used to calculate

correction factors for each coarse cell. The CDD equations require the storage of two
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Figure 3.4: CM angular flux accumulation.

correction factors (βαx and βαy) per pin cell per angle per energy group.

3.2.4 Coarse Mesh Equivalence

To demonstrate that the corrected diamond difference equations are capable of reproducing

important quantities from a fine mesh sweep, a simple one-dimensional problem is exam-

ined. Figure 3.5 depicts our computational grid, which features coarse mesh regions that

are divided into multiple fine mesh regions. While the figure shows all fine mesh regions

being the same size, this is not a requirement. In the below analysis, it is shown that for a

given incident flux on a coarse mesh region and fine mesh data in the form of the correction

factors αn and βn, the exiting angular flux and bulk reaction rate from the fine mesh sweep

can be preserved. This results in equivalent cell balance between the two methods and an

“equivalent” global solution.
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Figure 3.5: One-dimensional fine and coarse mesh.

Fine mesh projections

The quantities that are preserved are fine mesh values that have been projected onto the

coarse mesh. The following definitions apply:

Σ̄n
t ≡

∑
j∈∆x

Σt, jψ̄
n
jh j∑

j∈∆x
ψ̄n

jh j
, (3.14a)

QC = QF ≡

∑
j∈∆x

Q jh j

∆x
, (3.14b)

and

ψ̄n
F ≡

∑
j∈∆x

ψ̄n
jh j

∆x
. (3.14c)

Fine mesh equation

For a single angle, Ω̂n, and energy, the fine mesh solution may be cast into a differential

form similar to the SN equation, even though the angular flux quantities may have come
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from some other method, giving

µ

h j

(
ψn

j+1/2−ψ
n
j−1/2

)
+ ψ̄n

jΣt, j = Q j. (3.15)

As with any other SN-like sweeping method, the above is rearranged to obtain the outgoing

angular flux,

ψn
j+1/2 =

Q j +
µ
h j
ψn

j−1/2− ψ̄
n
jΣt, j

µ
h j

, (3.16)

ψn
j+1/2 = ψn

j−1/2 +
Q jh j

µ
−
ψ̄n

jΣt, jh j

µ
. (3.17)

The above applies to flux propagation through a single fine-mesh region. The flux prop-

agation through all fine-mesh regions in a coarse-mesh region can therefore be expressed

as the following:

ψn,R
F = ψn,L

F +

J∑
j=1

Q jh j

µ
−

J∑
j=1

ψ̄n
jΣt, jh j

µ
. (3.18)

Referring back to the definitions in Eqs. (3.14), the above can be expressed as

ψn,R
F = ψn,L

F +
∆x
µ

(
Q− Σ̄n

t ψ̄
n
F

)
. (3.19)

Coarse mesh equation

The discrete ordinates form of the transport equation for the coarse mesh region assumes a

form similar to the fine mesh equations, Eq. (3.15):

µ

∆x

(
ψn,R

C −ψ
n,L
C

)
+Σtψ̄

n = Q. (3.20)

Instead of having known quantities for the angular flux, the CDD streaming and collision

correction factors, Eq. (3.3), are inserted to get

µ

∆x

(
ψn,R

C −ψ
n,L
C

)
+Σtβ

nαn
(
ψn,L

C +ψn,R
C

)
= Q. (3.21)
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Applying the definition for βn (3.10) and canceling out the isotropic Σt,

µ

∆x

(
ψn,R

C −ψ
n,L
C

)
+Σ̄n

t α
n
(
ψn,L

C +ψn,R
C

)
= Q. (3.22)

Applying the definition of αn,

µ

∆x

(
ψn,R

C −ψ
n,L
C

)
+Σ̄n

t

 ψ̄n
F

ψn,L
F +ψn,R

F

(ψn,L
C +ψn,R

C

)
= Q. (3.23)

For a given state of the fine mesh flux, ψ̄ and incoming angular flux, ψn,L
F ≡ ψ

n,L
c , it can

be shown that the coarse mesh solution can reproduce the fine-mesh outgoing angular flux.

Rearranging Eq. (3.19) for ψ̄n
F and inserting into Eq. (3.23), gives

µ

∆x

(
ψn,R

C −ψ
n,L
C

)
+

 Σ̄n
t

ψn,L
F +ψn,R

F

(ψn,L
F −ψ

n,R
F +

∆x
µ

Q
)

µ

Σ̄n
t ∆x

(
ψn,L

C +ψn,R
C

)
= Q. (3.24)

After some manipulation, above reduces to our desired result,

ψn,R
C = ψn,R

F . (3.25)

By the CDD equations, the resultant product of the cell-averaged ψ̄C and the isotropic

transport cross section, Σtr, will yield the same reaction rate and an equivalent coarse-mesh

solution. This same analysis, while more complicated, may be extended to 2-D.

3.3 Numerical Results

The Corrected Diamond Difference SN formulation by itself does not constitute a 2-D/3-D

method. That said, it is still valuable to examine some of its behavior in 2-D scenarios

before moving on to 3-D problems. In this section, a number of small, 2-D problems

are used to calculate CDD correction factors, and their angular and energy dependence

are presented. The 2-D C5G7 benchmark is then used to demonstrate experimentally that
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Figure 3.6: C5G7 pin geometry.

the CDD equations are indeed capable of reproducing the same result as the underlying

FM solution that produced the CDD and cross section data, as though it were homogenized

onto the coarse mesh. Lastly, the 2-D C5G7 benchmark is run with coupled MoC and CDD

SN to demonstrate that the CDD equations may be used to accelerate the convergence of

the global eigenvalue problem.

3.3.1 Small Pin Array Test Cases

A number of small 2-D pin arrays were analyzed using the CDD method, mostly for illus-

trative purposes, and to study the correction terms in an accessible manner. Each of the

cases uses pin cells derived from the C5G7 benchmark, which is described in detail and

studied in more completeness in Sections 3.3.3 and 5.1. The pin geometry for the C5G7

benchmark is depicted in Fig. 3.6 and consists of single cylindrical regions with a radius of

0.54 cm, surrounded by moderator material, and arrayed in a square lattice with a pitch of

1.26 cm.

Two infinite lattice cases are presented, along with a case that features vacuum boundary
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conditions. Plots of the variation of the correction factors, αx|y, with azimuthal angle are

presented for each unit cell. The same product quadrature was used for all cases, with

12 azimuthal angles and 3 polar angles per octant. The values presented for αx and αy

were extracted from all azimuthal angles corresponding to the middle polar angle. It was

found that the qualitative behavior of the correction factors did not change significantly

with polar angle. In all figures, the blue line indicates the x correction term, αx, and the red

line indicates the y correction term, αy.

As noted in Section 3.2.1, values of the correction factors near 1
2 constitute small cor-

rections to the DD equations. Correction factors that deviate from 1
2 indicate situations in

which the flux variation within a coarse mesh region is more complicated.

One notable aspect shared by all cases is the large difference in behavior between en-

ergy groups; higher energy groups tend to exhibit far more angular variation of the correc-

tion factors than the lower energy groups. This is the result of smaller cross sections in the

high-energy groups, leading to more streaming and a more anisotropic angular flux. In the

lower energy groups, the correction factors take on a much smoother shape.

Another common behavior of the streaming correction factors is that they tend to devi-

ate from their trivial value most in angles that are more normal to the streaming direction

being corrected. For example, αx tends to assume values furthest from 0.5 in angles that

point mostly along the y axis. This is because angles normal to the direction of transmis-

sion produce apparent optical thicknesses that are much larger than otherwise. In extreme

circumstances, this can be considered in context of the DD positivity condition,

∆xΣt

|η|
< 2, (3.26)

which is discussed in more detail in Section 4.1.1. In short, as the direction cosine becomes

small, the apparent optical thickness of the cell becomes large, and DD becomes more

poorly-behaved. As a result, the corresponding correction factor steps in to compensate.
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Figure 3.7: Unrodded 3×3 pin array, with reflective boundary conditions.

Unrodded 3-by-3 This case is an infinite lattice of 3-by-3 arrays of UO2 fuel pins with a

central water-filled control rod guide tube, as depicted in Fig. 3.7. Figures 3.8-3.10 depict

the correction terms for select energy groups. In this case, the variation of the correction

factors is relatively weak, though small peaks can be seen in the highest energy groups for

the steepest angles.
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Figure 3.8: Group 1 correction terms for the unrodded 3×3 case.
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Figure 3.9: Group 4 correction terms for the unrodded 3×3 case.
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Figure 3.10: Group 7 correction terms for the unrodded 3×3 case.
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Figure 3.11: Rodded 3×3 pin array, with reflective boundary conditions.

Rodded 3-by-3 This case is the same as the lattice as above, with the guide tube replaced

by an inserted control rod, as shown in Fig. 3.11. Figures 3.12-3.14 depict the correction

terms for selected energy groups. At the highest energy group, the correction factors are

much like those in the unrodded case. At lower-energies, the corrections assume a more in-

teresting variation. Most notable is that the corrections in the control rod cell are uniformly

less than 0.5; this is to be expected in a region with a strong neutron absorber in its center,

as it results in a cell-average flux that is smaller than the cell edge flux.

65



0.5
0.9

0.5
0.9

0.5
0.9

0.5
0.9

0.5
0.9

0.5
0.9

0.5
0.9

0.5
0.9

0.5
0.9

αx
αy

Figure 3.12: Group 1 correction terms for the rodded 3×3 case.
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Figure 3.13: Group 4 correction terms for the rodded 3×3 case.

66



0.5
0.9

0.5
0.9

0.5
0.9

0.5
0.9

0.5
0.9

0.5
0.9

0.5
0.9

0.5
0.9

0.5
0.9

αx
αy

Figure 3.14: Group 7 correction terms for the rodded 3×3 case.
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Figure 3.15: Rodded 3×3 pin array, with reflector and vacuum boundary conditions.

3-by-3 with reflector and vacuum boundary This case is similar to the rodded 3×3

case, with the addition of a three pin-width reflector and vacuum boundary conditions to

the right and bottom, shown in Fig. 3.15. Figures 3.16-3.18 show only the x correction

factors for clarity. Since the problem is symmetric, the y correction factors are a 90 de-

gree reflection of the x correction factors. The addition of the vacuum boundary gives

rise to much more dramatic corrections. The large angular spikes inside and immediately

neighboring the fuel rods arise from streaming paths between the pins themselves. Another

interesting feature is the angular discontinuity in the correction factors on the edge reflec-

tor regions, where the inward-facing angles see positive corrections to the cell-average flux.

These occur due to the inability of the DD equations, on such a coarse mesh, to resolve the

boundary layer effects near the vacuum boundary.
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Figure 3.16: αx for rodded 3×3 case with reflector and vacuum boundary, group 7.
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Figure 3.17: αx for rodded 3×3 case with reflector and vacuum boundary, group 4.
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Figure 3.18: αx for rodded 3×3 case with reflector and vacuum boundary, group 1.
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3.3.2 2-D C5G7

A number of analyses were performed using the 2-D C5G7 benchmark [26]. First, it was

used to verify experimentally that the CDD SN formulation is equivalent to the underlying

fine-mesh MoC solution, as well as to study the nature of the correction factors in a more re-

alistic setting than the pin arrays discussed in the previous section. Lastly, the performance

of a simple coupled MoC-SN iteration scheme was investigated.

The 2-D C5G7 benchmark is a small, heterogeneous reactor core with simplified pin

geometry, identical to that used in the pin arrays discussed above (see Fig 3.6). The bench-

mark provides seven-group macroscopic cross sections describing seven different materi-

als: four fuel compositions, control rod guide tube, assembly-centered fission chamber,

and moderator. As depicted in Fig. 3.19, the quarter-symmetric core is comprised of a 2×2

array of assemblies, surrounded by a solid blanket of moderator, which is referred to as the

“radial reflector.”

3.3.3 2-D Convergence

To experimentally demonstrate the 2-D equivalence between the fine-mesh MoC solution

and the coarse-mesh SN solution, a 2-D C5G7 benchmark calculation was performed using

a two-step process.

An MoC calculation was performed, and the correction factors from Sections 3.2.1 and

3.2.2 were calculated using the converged solution, along with flux-weighted cross sections.

These data were then used in a 2-D SN calculation on the pin-homogenized mesh1. The

MoC calculation yielded identical system eigenvalues of 1.18570. Furthermore, the scalar

flux distribution from the SN calculation was the same as the pin-homogenized MoC flux

distribution.

Figure 3.20 shows the values of the weighting terms as calculated by Eq. (3.11) for a

1A pin-homogenized mesh was used for purely practical reasons. This method can accommodate finer SN
meshes, however collecting the correction data on such a mesh becomes onerous. Section 6.3 discusses the
potential benefits of moving to a finer SN mesh.
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Figure 3.19: 2-D C5G7 benchmark geometry. Presented as modeled, with quarter symme-
try; top and left boundaries are reflective, bottom and right boundaries vacuum.
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Figure 3.20: CDD correction factors, αx (left) and αy (right) for the angle Ω̂ = (0.602î−
0.06 ĵ + 0.797k̂) and energy group one. The arrow indicates the direction of neutron travel.

single angle and energy. As one might expect, the largest corrections are present in regions

where there are strong heterogeneities normal to the direction of neutron travel. The largest

magnitude correction factors are observed in the portion of the radial reflector downwind

of the active core region. The lower portion of the radial reflector experiences the smallest

correction, since the streaming path of neutrons through that region only encounter the

homogeneous reflector region.
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CHAPTER 4

CDD for 2-D/3-D Applications

In Chapter 3 it was discussed how the CDD auxiliary equations, applied to 2-D problems

using an embedded MoC sweeper, are capable of producing equivalent solutions to the un-

derlying FM solution from which the correction terms and cross sections were derived. In

the context of 2-D problems, this aspect of the CDD equations has only marginal value,

since having already obtained a FM solution, performing extra computation just to repro-

duce a coarsened version of the same solution makes little sense1. However, CDD becomes

useful when applied to 3-D problems, which can no longer by treated with 2-D MoC alone.

In such cases it is possible calculate correction factors and cross sections for each axial

subdomain of the 3-D mesh using 2-D MoC sweepers, then solve the global, 3-D problem

on a pin-homogenized mesh with an SN sweeper. Such approaches are referred as 2-D/3-D

methods.

2-D/3-D comprises a class of methods which mostly vary in the nature of the coupling

between the SN and MoC sweepers, and the approach used to treat the axial dimension

in the 3-D SN sweeper. In this chapter, a number of options are introduced for each, and

their effectiveness is investigated. Two of many possible axial treatments are described. A

one-way and a transverse leakage-based two-way SN-MoC interface are also developed.

1The equivalence property makes it possible to use the SN sweeper to accelerate the convergence of 2-D
MoC. Preliminary results have shown progress, and are discussed in Section 6.3
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4.1 Axial Differencing

When interfaced with a 2-D MoC sweeper, the CDD equations only receive correction fac-

tors for the radial (x and y) directions. How these correction factors are calculated and

provided to the SN sweeper is discussed in more detail in Section 4.2. The axial dimension

remains uncorrected and still requires an auxiliary equation. Many traditional SN auxil-

iary relations may be used to treat the axial dimension alongside the CDD relations. In

this section, sweeping strategies based upon the following diamond difference and step

characteristic auxiliary relations are discussed.

4.1.1 Diamond Difference

One of the easiest approaches to handling the axial dimension in a 3-D CDD sweep is to

use the conventional (uncorrected) DD equation. Performing similar steps used to produce

Eq. (3.12), the following expression for the cell-average flux is obtained

ψi jk =

Qi jk + 2
(
η

∆xi
ψi∓1/2, j,k + ε

∆y j
ψi, j∓1/2,k +

µ
∆zk
ψi, j,k∓1/2

)
η

∆xiβαx,i jk
+ ε

∆y jβαy,i jk
+

2µ
∆zk

+Σt,i jk
,

η≷ 0, ε≷ 0, µ≷ 0. (4.1)

After determining ψ̄, the downwind fluxes may be calculated as

ψi±1/2, j,k =
ψ̄

βαx,i j
−ψi∓1/2, j,k, (4.2a)

ψi, j±1/2,k =
ψ̄

βαy,i j
−ψi, j∓1/2,k, and (4.2b)

ψi, j,k±1/2 = 2ψ̄−ψi, j,k∓1/2. (4.2c)

The diamond difference equations are well known to exhibit second-order convergence

[24] and are astonishingly easy to evaluate computationally. However, they do possess a
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number of negative characteristics which are well known, and pose challenges to their use

in a 2-D/3-D solver.

One issue with the DD equations is that they tend to exhibit oscillatory behavior in

certain cases. These oscillations in the flux can not only be very inaccurate, but tend to

cause issues when coupled with other solution techniques.

Second, and more importantly, they are not positive; it is possible for DD to produce

negative angular fluxes in the presence of positive source and incoming angular flux. A

relevant positivity condition can be determined by considering a 1-D DD scheme,

µ

∆x
(
ψi+1/2−ψi−1/2

)
+Σtψ̄i = Qi, (4.3a)

ψ̄i =
1
2
(
ψi+1/2 +ψi−1/2

)
. (4.3b)

Using the DD equation to eliminate the cell-average flux, ψ̄ yields an expression for the

downwind flux:

ψi±1/2 =
Q +

(
|µ|
∆x −

Σt
2

)
ψi∓1/2

|µ|
∆x +

Σt
2

, µ≷ 0. (4.4)

For the purposes of determining positivity, we need only concern ourselves with the nu-

merator of Eq. (4.4), since the cross section is always positive, giving the condition

Q +ψi∓1/2

(
|µ|

∆x
−

Σt

2

)
> 0, µ≷ 0. (4.5)

Since the positivity condition should hold for zero incoming flux and zero inhomogeneous

source, it simplifies to
∆xΣt

|µ|
< 2. (4.6)

This result has a natural physical interpretation: if the apparent optical thickness of a cell is

too large, it becomes possible for the resultant flux to be negative, especially if the incoming

flux or inhomogeneous source are small.

It should be noted in the case of 2-D/3-D that the correction factors applied to the radial
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x and y dimensions enforce positivity upon the flux in those directions at convergence,

and in the absence of any axial streaming, so long as the FM scheme used to produce the

correction factors is also positive. In the case of MoC, this is true. This is because the CDD

correction factors are calculated using fluxes that are unconditionally-positive, and enforce

an equivalent relationship in the CDD solution. When the SN solution is unconverged, it

is possible for negative fluxes to arise, though this was never witnessed in any of the cases

run as part of this work.

Including the uncorrected DD equation as our axial treatment makes the possibility of

negative solutions far more likely, and care must be taken to ensure that the axial mesh is

sufficiently fine. While the resultant scalar flux may still be positive due to contributions

from other angles, these negative angular fluxes are clearly unphysical and troubling. In

certain situations, even if the scalar flux is positive, the negative angular fluxes can wreak

havoc with CMFD acceleration by producing pathologically large D̂ terms. It was found

that in some of the cases studied as part of this work, CMFD failed to converge due to these

negative fluxes. This behavior is discussed more in Chapter 5.

It is common in situations where there is concern about negative fluxes to employ a

negative flux “fix-up.” This flux fix-up is performed by checking if ψR
z , calculated using

Eqs. (4.1) and (4.2c) is negative. If so, it is set artificially to zero, and ψ̄ is recalculated

using the expression

ψi, j,k =

Qi, j,k + 2
(
η

∆xi
ψi∓1/2, j,k + ε

∆y j
ψi, j∓1/2,k

)
+

µ
∆zk
ψi, j,k∓1/2

η
∆xiβαx,i jk

+ ε
∆y jβαy,i jk

+Σt,i jk
. (4.7)

While this tends to result in a more robust CMFD acceleration, it can have noticeably

adverse impacts on the accuracy of the solution. It was found that the negative flux fix-up

was necessary to run some of the benchmarks discussed in Chapter 5.
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4.1.2 Step Characteristic Axial Treatment

Another option for axial differencing is to use the Step Characteristics (SC) auxiliary equa-

tion. The Step Characteristics (SC) differencing scheme assumes an exponential shape to

the angular flux within a cell, and can be derived using the same characteristic form of the

transport equation, Eq. (2.35), used to derive MoC. It gives the auxiliary relation

ψ̄n
k = ρn

kψ
n
k∓1/2 +

(
1−ρn

k

)
ψn

k±1/2, µn ≷ 0, (4.8)

where

ρn
k =

1
τn

k
−

1

eτ
n
k −1

(4.9)

and τn
k is the apparent optical thickness of cell k for angle n,

τn
k =

Σt,k∆zk

|µn|
. (4.10)

It is easy to see that unlike the DD scheme, SC is positive whenever the source and incom-

ing flux are positive. While in 1-D, SC exhibits second-order convergence, as shown in

Chapter 5, it tends to be noticeably less accurate than DD in many cases.

The SC auxiliary equation is applied alongside the CDD equations to yield a 2-D/3-D

method:

η

∆x

(
ψi+1/2, j,k −ψi−1/2, j,k

)
+
ε

∆y

(
ψi, j+1/2,k −ψi, j−1/2,k

)
+
µ

∆z

(
ψi, j,k+1/2−ψi, j,k−1/2

)
+Σtr,i jkψ̄i jk = Qi jk (4.11a)
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ψ̄i jk = βαx,i jk
(
ψi+1/2, j,k +ψi−1/2, j,k

)
(4.11b)

ψ̄i jk = βαy,i jk
(
ψi, j+1/2,k +ψi, j−1/2,k

)
(4.11c)

ψ̄i jk = ρψi, j,k∓1/2 + (1−ρ)ψi, j,k±1/2, µ≷ 0 (4.11d)

Eliminating instances of downwind flux from Eq. (4.11a) using Eqs. (4.11b)-(4.11d) gives

η

∆x

(
ψ̄i jk

βαx,i jk
−2ψi∓1/2, j,k

)
+
ε

∆y

(
ψ̄i jk

βαy,i jk
−2ψi, j∓1/2,k

)
+
µ

∆z

(
ψ̄i jk −ρψi, j,k∓1/2

1−ρ
−ψi, j,k±1/2

)
+Σtrψ̄ = Qi jk,

η≷ 0, ε≷ 0, µ≷ 0. (4.12)

Collecting like terms and rearranging for ψ̄i jk yields

ψ̄i jk =
Qi jk +

2η
∆xi
ψi∓1/2, j,k + 2ε

∆y j
ψi, j∓1/2,k +

µ
∆zk(1−ρ)ψi, j,k∓1/2

η
∆xiβαx,i jk

+ ε
∆y jβαy,i jk

+
µ

∆zk(1−ρ) +Σtr,i jk
, (4.13)

with downwind fluxes calculated using the auxiliary relations in Eqs. (4.11b)-(4.11d).

4.2 2-D/3-D Iteration Schemes

In the previous sections, it was discussed how to calculate correction factors and flux-

weighted cross sections from an MoC solver, as well as how such data might be used in a

3-D SN sweeper. The final step is to integrate these two components into a 2-D/3-D method

for solving actual 3-D problems.
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4.2.1 One-Way Coupling

The simplest approach to generating correction factors and cross sections from a series of

2-D MoC solvers is to do just that:

1. Break the problem into axial slabs,

2. model each slab as a 2-D problem (implicitly-reflective axial boundary conditions)

using MoC,

3. calculate flux-weighted cross sections and correction factors in the last sweep, and

4. compose the data from the slabs into a separate 3-D SN calculation.

This was the first approach that was tried, due to the ease with which it can be implemented

in existing transport codes. While somewhat contrived, it provided good preliminary results

which motivated further development of the method described in Section 4.2.2. It also has

a number of advantages and disadvantages worthy of note.

First, the treatment of each axial slab as completely independent of all others permits

a great deal of re-use of the correction factors and cross sections. The usefulness of this

feature is highly dependent upon the type of problem to be solved, but in the benchmark

problems such as the 3-D C5G7 rodded configurations discussed in Chapter 5, this re-

usability feature finds much utility. On the other hand, the treatment of each plane indi-

vidually causes a number of issues. Most obviously, in the absence of any axial streaming

the resultant cross sections and correction factors are unlikely to be representative of what

they should be if axial behavior were taken into account. Less apparent, but arguably more

important, is the difficulty it presents in producing any useful data in axial regions devoid

of multiplying media; in such cases without a source of neutrons, one is forced to rely upon

volume-weighted cross sections and no correction factors at all.

While this behavior is discussed in more detail in Chapter 5, in general it was found

that the one-way coupling technique managed to perform relatively well considering its
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crudeness. As applied to the 3-D C5G7 benchmark cases, its primary defects were found

in the region of the core closest to the axial reflector. This was due to the lack of valid

data for the axial reflector itself and the strong axial streaming effects in the vicinity of

the active core/axial reflector interface. In the next section, a more sophisticated method is

developed, which addresses both of these deficiencies.

4.2.2 Transverse Leakage Coupling

In the previous section, a crude method was discussed for generating CDD correction fac-

tors and flux-weighted cross sections to be used in a 3-D SN solver. While it performed

well considering its simplicity, the lack of reasonable cross sections and correction factors

for the axial reflectors, and neglecting the axial streaming effects resulted in poor perfor-

mance in certain situations. This section describes a method similar to 2-D/1-D to address

both of these issues.

Rather than perform the 2-D MoC calculations for each plane separately, they are cou-

pled using TL sources calculated iteratively from the 3-D SN sweeper, which in turn uses

correction factors and cross sections derived from the 2-D MoC sweepers. The coupled

sweepers are then accelerated using CMFD. The 3-D currents used to calculate the CMFD

D̂ factors are extracted from the SN sweeper. The transverse leakage source is updated

following each CMFD solve, and a new iteration begins. This process is shown in Fig. 4.1,

and is referred to as the “two-way” or “transverse leakage-based” coupling.

As with 2-D/1-D methods, the 3-D SN sweeper is operating on a pin-homogenized

mesh, and therefore the flat TL approximation is used in this work, though the use of shape

functions may be considered in future work. Furthermore, while access to the full angular

flux variable is possible during the SN sweep, an isotropic approximation is made to the

axial TL provided to the MoC sweepers:

(
ηn ∂

∂x
+εn ∂

∂y

)
ψn

g(x,y) +Σt,gψ
n
g(x,y) + Lg

n = Qn
g(x,y), (4.14a)
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Figure 4.1: Transverse leakage iteration scheme.
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Ln
g =

µn

hz

(
ψn

g,T (x,y)−ψn
g,B(x,y)

)
≈
µn

hz

(
ψn

g,T −ψ
n
g,B

)
≈

JT
g − JB

g

hz
, (4.14b)

where JT and JB are the neutron currents across the top and bottom surfaces of the MoC

pin, respectively, and defined as

JT
g =

∑
n∈N

wnµnψn
g,T and

JB
g =

∑
n∈N

wnµnψn
g,B. (4.15)

These currents are calculated either using a CMFD solution, if used, or throughout the

course of a SN sweep if not.

As with step characteristics, MoC has the property that given a non-negative source

and incoming angular flux, it will always produce positive fluxes. With the introduction

of TL sources, however, it becomes possible for the total source to be negative. Indeed,

in most problems with axial vacuum boundary conditions, it is expected that the overall

TL source will be negative due to net axial leakage. In regions with large scattering and

fission sources, or with large incident fluxes, this tends not to result in negative fluxes. In

regions where the flux is small, absent of fission and with little in-scattering (e.g. high

energy groups in reflector regions), it is possible for TL to drive the total source negative

enough to produce negative fluxes. In many cases, the MoC can have difficulty recovering

from this situation, leading to divergence.

To avoid this, transverse leakage “splitting” is used. Splitting involves dividing the TL

source by the angular flux and incorporating it as an augmentation to the transport cross

section: (
ηn ∂

∂x
+εn ∂

∂y

)
ψn

g(x,y) +

(
Σt,g +

Lg
n

ψn
g(x,y)

)
ψn

g(x,y) = Qn
g(x,y). (4.16)
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Since this addition to the cross section must occur before the sweep takes place, and be-

cause angular flux variable is not stored explicitly, the following approximation is used:

(
ηn ∂

∂x
+εn ∂

∂y

)
ψn

g(x,y) +

(
Σt,g +

4πLg
n

φg(x,y)

)
ψn

g(x,y) = Qn
g(x,y), (4.17)

where the scalar flux, φ, is drawn from the previous iteration. Due to its approximate nature,

transverse leakage splitting is only applied in regions where the total source, before adding

self-scattering, would be negative.

It can be shown that the coarse mesh equivalence of the CDD equations holds in the

presence of explicit, angle-dependent transverse leakage, and when the MoC and SN axial

meshes are the same. However, imposing such transverse leakages would be very oner-

ous for a number of reasons. First, 2-D MoC sweepers typically assume axial symmetry,

allowing them to only have to treat half of the angular space; applying angle-dependent

transverse leakage would require treating both the positive and negative half-spaces, ef-

fectively doubling the amount work in an MoC sweep. Second, storage of the transverse

leakages would effectively require the storage of another correction factor, increasing the

burden of 2-D/3-D by 50 percent. Therefore, this work constrains itself to isotropic trans-

verse leakage treatment, which has important ramifications.

Furthermore, being responsible for resolving the axial shape of the neutron flux, it is

necessary for the SN mesh to be appreciably finer in the axial direction than the MoC

planes. In the analyses contained in this work, meshes similar to that shown in Fig. 4.2 are

used. The SN sweeper operates on a radially-coarse, axially-fine orthogonal mesh, while

the MoC sweepers operate on an axially-coarse, radially-fine mesh. Correction factors and

flux-weighted cross sections are stored on the MoC axial mesh, giving considerable savings

in memory.

Due to the above, unlike 2-D/1-D, where the axial and radial sweepers maintain equiva-

lence, the 3-D SN sweeper in 2-D/3-D has an extra degree of freedom, and the requirement
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Figure 4.2: MoC and SN meshes.

for equivalence is relaxed. Instead of the MoC and SN sweepers converging to the same so-

lution (as it would be homogenized onto a coarse axial, coarse radial mesh), they converge

to some residual, which may not necessarily be zero. This behavior is investigated in more

detail in Chapter 5, and this residual tends to be rather small. To allow for this discrep-

ancy between the MoC and SN sweepers, yet still converge the global eigenvalue problem,

the state of the SN sweeper is ultimately used to calculate updated eigenvalues and fission

sources for each iteration of the eigenvalue solver. The state of the MoC sweeper is also

used to ensure that the FM solution is also sufficiently converged. In this way, it is easiest

to think of the 2-D/3-D method as 3-D, orthogonal-mesh SN with embedded MoC.
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CHAPTER 5

Results and Analysis

5.1 C5G7 Benchmark

The 2-D/3-D method was applied using both one-way and two-way, transverse leakage-

based coupling, to the rodded C5G7 benchmarks [29] the results of which are presented

in this section. The C5G7 benchmark is a small quarter-symmetric reactor, which supplies

7-group macroscopic cross sections to describe each of the materials. The active core

region is comprised of a two-by-two array of assemblies, each a square lattice of 17-by-17

fuel pins. Two of the assemblies are composed primarily of Uranium Dioxide (UO2) pins,

while the other two consist mostly of mixed oxide (MOx) fuel pins of various Plutonium

concentrations. Rather than resolve the full pin geometry, including cladding and gap,

the fuel regions are a mixture of the fuel and cladding materials and modeled as a single

cylinder of radius 0.54 cm as depicted in Fig 3.6. Each assembly contains a central fission

chamber and a bundle of control rod guide tubes, all of which employ the same geometry

as the fuel pins. A detailed top view of the active core region is presented in Fig. 3.19.

The active core region is 42.84 cm high with a 21.42 cm-tall axial reflector above. The

top surface of the axial reflector is a vacuum boundary condition, while the bottom of the

active core region is reflective. This produces a rather strange reactor, in which control rods

are inserted from the top and bottom of the core. The benchmark includes three different
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3-D cases featuring control rods in different configurations, each of which are depicted in

Figs. 5.1-5.4.

5.1.1 Methods and Discretization

Results were obtained for all three configurations using 2-D/1-D with NEM and SP3 ax-

ial treatment, as well as a collection of 2-D/3-D methods, and compared to Monte Carlo

reference solutions. The following shorthand is used to refer to various methods used:

• 2D1D NEM: 2-D/1-D with nodal expansion method axial treatment

• 2D1D SP3: 2-D/1-D with simplified P3 axial treatment

• TW CDD-DDFF: 2-D/3-D with two-way coupling, corrected diamond difference

correction factors and diamond difference axial treatment with negative flux fix-up

• TW CDD-DD: 2-D/3-D with two-way coupling, corrected diamond difference cor-

rection factors and diamond difference axial treatment with no negative flux fix-up

• TW CDD-SC: 2-D/3-D with two-way coupling, corrected diamond difference cor-

rection factors and step characteristic axial treatment

• OW DD: 3-D SN with diamond difference using flux-weighted cross sections ob-

tained from standalone 2-D MoC solutions

• OW CDD-DD: 3-D SN with corrected diamond difference and uncorrected diamond

difference axial treatment using data from standalone 2-D MoC solutions

The one-way 2-D/3-D schemes required three separate 2-D MoC calculations to produce

cross sections and correction factors for all three of the rodded configurations. Each of the

slabs from the rodded B configuration were needed to form SN meshes for all of the config-

urations by composing them in different combinations. The axial reflector region, absent
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Figure 5.1: C5G7 top assembly view.
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fissile material used volume-weighted cross sections and trivial values for the correction

factors.

The MPACT code was used to obtain the 2-D/1-D solutions, while MOCC was used

to obtain all of the 2-D/3-D solutions. All calculations used the same spatial mesh for the

MoC sweepers, in which the cylindrical pin cells (fuel, guide tube, fission chamber, and

control rod) used 5 radial rings in the non-moderator region, two extra radial rings in the

surrounding moderator and 8 azimuthal subdivisions. This is the same mesh that is shown

in Fig. 2.10. The homogeneous moderator regions in the radial reflector are represented

using a rectangular mesh with 5 equally-spaced subdivisions in the x and y directions. The

angular quadrature was relatively fine, using a Chebychev quadrature 16 azimuthal angles

and a Gauss quadrature with 4 polar angles per octant, for a total of 64 angles per octant.

Rays were traced with a nominal spacing of 0.05 cm. The two codes differ slightly in their

ray modularization approach, leading to very slight differences in ray placement, but all

other aspects of the mesh and angular quadrature were identical. The two methods also

employed the same MoC plane height of 3.57 cm. The SN mesh used for all 2-D/3-D

methods applies an axial sub-mesh of 5 regions per MoC plane, giving a uniform axial

mesh height of 0.714 cm.

5.1.2 Results

The tables in this section contain estimates of key quantities of interest in reactor analysis:

system eigenvalue, 2-D and 3-D assembly powers, and a number of aggregate pin power

error metrics were used. Assembly powers are presented integrated over the entire axial

dimension of the core, as well as over each slab individually. In all cases, “slab 1” refers to

the bottom-most slab, and “slab 3” to top-most. Three aggregate pin power error metrics

are also presented: average pin power error, AVG, mean relative error, MRE, and root mean
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squared (RMS) error. Each are calculated using the following formulas:

AVG =

∑
N
|en|

N
(5.1)

RMS =

√√∑
N

e2
n

N
(5.2)

MRE =

∑
N
|en| · pn

N · pavg
(5.3)

All three configurations required transverse leakage splitting to converge using the two-

way 2-D/3-D methods. Rodded configuration B and the unrodded configuration also re-

quired the negative flux fix-up in order to converge when using DD axial treatment and

CMFD acceleration. Eschewing CMFD acceleration and using unaccelerated power itera-

tion converges without the fix-up, but leads to unacceptably long run times. Nonetheless,

these runs were performed at great expense for comparison purposes. The negative flux

fix-up was required in these cases, since they exhibit stronger axial discontinuities, which

are more difficult to resolve than does the rodded A configuration.

Table 5.1: C5G7 Eigenvalues

Unrodded Rodded A Rodded B
Eigenvalue Error Eigenvalue Error Eigenvalue Error

Reference 1.14308 ±6.0 1.12806 ±6.0 1.07777 ±6.0
2D1D NEM 1.14220 -88.16 1.12727 -78.90 1.07635 -141.87
2D1D SP3 1.14281 -27.49 1.12791 -15.25 1.07745 -31.68
TW CDD-DDFF 1.14328 20.29 1.12849 43.44 1.07714 -63.34
TW CDD-DD 1.14328 20.13 1.12849 43.46 1.07819 42.34
TW CDD-SC 1.14276 -31.51 1.12764 -41.72 1.07691 -85.97
OW DD 1.14435 126.75 1.12876 70.44 1.07560 -217.07
OW CDD-DD 1.14286 -21.67 1.12831 24.99 1.07814 37.46

Table 5.1 shows the eigenvalue results for all configurations using all methods. As

will be a common theme, and is to be expected, OW DD performs poorly at predicting

keff in all configurations, except in rodded configuration A, in which it manages to surpass

92



2-D/1-D NEM. Somewhat surprisingly, the OW CDD-DD method managed to make good

eigenvalue estimates, consistently performing better even than the two-way coupled step

characteristic method, though it performed much worse in most other metrics. All two-

way coupled 2-D/3-D methods outperformed NEM, but were close to the SP3. Comparing

eigenvalues between the TW CDD-DD and TW CDD-DDFF methods shows the effect of

the negative flux fix-up upon the accuracy of the method. In the unrodded and rodded B

cases, larger differences can be seen between the eigenvalues than in the rodded A config-

uration, especially in rodded B. Also, in both cases where the DD/DDFF discrepancy was

largest, the DDFF method produced inferior results.

Table 5.2: C5G7 Unrodded 2-D pin power metrics.

AVG MRE RMS Max Error

2D1D NEM 0.57% 2.79% 0.61% 2.94%
2D1D SP3 0.57% 2.78% 0.61% 2.97%
TW CDD-DDFF 0.38% 1.79% 0.44% 2.44%
TW CDD-DD 0.38% 1.79% 0.44% 2.44%
TW CDD-SC 0.40% 1.75% 0.45% 2.24%
OW DD 1.59% 9.56% 2.08% 6.85%
OW CDD-DD 0.38% 1.80% 0.44% 2.56%

Table 5.3: C5G7 Unrodded slab-wise pin power metrics.

Slab 1 Slab 2 Slab 3
AVG MRE RMS AVG MRE RMS AVG MRE RMS

2D1D NEM 0.17% 0.14% 0.20% 0.12% 0.15% 0.16% 0.16% 0.23% 0.21%
2D1D SP3 0.15% 0.15% 0.18% 0.12% 0.13% 0.16% 0.10% 0.14% 0.14%
TW CDD-DDFF 0.12% 0.11% 0.15% 0.10% 0.10% 0.13% 0.12% 0.18% 0.17%
TW CDD-DD 0.12% 0.11% 0.15% 0.10% 0.10% 0.13% 0.12% 0.18% 0.17%
TW CDD-SC 0.17% 0.25% 0.24% 0.12% 0.16% 0.17% 0.15% 0.15% 0.17%
OW DD 0.73% 0.89% 0.97% 0.56% 0.66% 0.72% 0.37% 0.41% 0.47%
OW CDD-DD 0.24% 0.25% 0.26% 0.10% 0.09% 0.13% 0.31% 0.45% 0.39%

Tables 5.2-5.7 contain the 2-D and slab-wise pin power error metrics for each config-

uration. For most configurations and situations the two-way 2-D/3-D methods outperform

the 2-D/1-D methods, but not all. All of the methods that use CDD produced better 2-D pin
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Table 5.4: C5G7 Rodded A 2-D pin power metrics.

AVG MRE RMS Max Error

2D1D NEM 0.57% 3.55% 0.62% 2.66%
2D1D SP3 0.57% 3.63% 0.62% 2.68%
TW CDD-DDFF 0.38% 2.40% 0.45% 2.16%
TW CDD-DD 0.38% 2.40% 0.45% 2.16%
TW CDD-SC 0.41% 2.20% 0.48% 2.15%
OW DD 1.49% 10.77% 1.84% 7.64%
OW CDD-DD 0.38% 2.72% 0.45% 2.09%

Table 5.5: C5G7 Rodded A slab-wise pin power metrics.

Slab 1 Slab 2 Slab 3
AVG MRE RMS AVG MRE RMS AVG MRE RMS

2D1D NEM 0.19% 0.21% 0.24% 0.13% 0.15% 0.17% 0.05% 0.05% 0.07%
2D1D SP3 0.18% 0.18% 0.22% 0.11% 0.10% 0.14% 0.12% 0.14% 0.14%
TW CDD-DDFF 0.14% 0.13% 0.17% 0.09% 0.09% 0.12% 0.14% 0.17% 0.18%
TW CDD-DD 0.14% 0.13% 0.17% 0.09% 0.09% 0.12% 0.14% 0.17% 0.18%
TW CDD-SC 0.19% 0.27% 0.26% 0.14% 0.17% 0.18% 0.14% 0.14% 0.15%
OW DD 0.89% 1.13% 1.19% 0.56% 0.63% 0.70% 0.62% 0.72% 0.82%
OW CDD-DD 0.18% 0.19% 0.22% 0.09% 0.09% 0.12% 0.24% 0.28% 0.27%

Table 5.6: C5G7 Rodded B 2-D pin power metrics.

AVG MRE RMS Max Error

2D1D NEM 0.61% 4.09% 0.72% 3.12%
2D1D SP3 0.57% 4.17% 0.64% 2.76%
TW CDD-DDFF 0.43% 3.10% 0.51% 2.43%
TW CDD-DD 0.38% 2.79% 0.47% 2.29%
TW CDD-SC 0.46% 3.19% 0.56% 2.52%
OW DD 1.64% 13.88% 2.04% 9.52%
OW CDD-DD 0.38% 3.04% 0.47% 2.17%
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Table 5.7: C5G7 Rodded B slab-wise pin power metrics.

Slab 1 Slab 2 Slab 3
AVG MRE RMS AVG MRE RMS AVG MRE RMS

2D1D NEM 0.39% 0.52% 0.53% 0.12% 0.10% 0.16% 0.08% 0.07% 0.09%
2D1D SP3 0.20% 0.18% 0.26% 0.15% 0.16% 0.18% 0.07% 0.08% 0.09%
TW CDD-DDFF 0.51% 0.57% 0.55% 0.24% 0.27% 0.33% 0.37% 0.42% 0.44%
TW CDD-DD 0.19% 0.19% 0.23% 0.15% 0.17% 0.19% 0.13% 0.15% 0.16%
TW CDD-SC 0.29% 0.40% 0.40% 0.12% 0.12% 0.15% 0.16% 0.15% 0.17%
OW DD 1.16% 1.32% 1.48% 0.93% 1.01% 1.23% 0.66% 0.73% 0.86%
OW CDD-DD 0.23% 0.25% 0.27% 0.12% 0.12% 0.15% 0.21% 0.24% 0.24%

power error metrics than both 2-D/1-D methods for all three configurations. As expected,

the uncorrected DD method with flux weighted cross sections performed quite poorly, with

some 2-D metrics exceeding 10%. Examining the slab-wise metrics uncovers more mixed

results.

For the unrodded configuration, the CDD-DD and CDD-DDFF methods produce slightly

better answers in the bottom two slabs, but slightly worse in the top slab compared to SP3.

That being said, they are close enough to be more or less indistinguishable, especially con-

sidering that they are all falling within the statistical uncertainties of the reference Monte

Carlo solution. The TW CDD-SC method appears to perform adequately in this case, and

the OW CDD-DD is clearly suffering, especially in the top slab near the axial reflector.

Even though it was clear from the eigenvalue results that the negative flux fix-up was af-

fecting the solutions, these effects seem minor in the context of the pin power errors for the

unrodded configuration.

Similarly to the unrodded configuration, the two-way 2-D/3-D methods perform better

than the 2-D/1-D methods, except in the upper slab, where both 2-D/1-D methods performs

better. The step characteristic-based TW CDD-SC method performs comparatively worse

in the rodded A configuration than in the unrodded configuration, with errors in the bottom

and middle slabs twice that of the DD-based 2-D/3-D methods. The OW CDD-DD method

even manages to outperform the SC-based method in all but the top-most slab. Again, the

effect of the negative flux fix-up is not noticeable in this case.
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Examining the rodded B configuration on the other hand exhibits large differences in

the pin power error between the TW CDD-DD and TW CDD-DDFF methods, with the

negative flux fix-up producing much larger pin power errors than without. The rodded

configuration B appears to be the only case where the negative flux fix-up has a significantly

detrimental effect, which is also present in the assembly power estimates discussed below.

The rest of the methods show similar behavior to the previous configurations, with the

2-D/3-D methods doing better than 2-D/1-D towards the bottom of the core but worse at

the top.

Table 5.8: C5G7 Unrodded 2-D assembly powers.

Inner UO2 Error MOX Error Outer UO2 Error

Reference 491.20 ±0.29% 212.70 ±0.21% 139.40 ±0.15%
2D1D NEM 489.74 -0.30% 213.13 0.20% 140.00 0.44%
2D1D SP3 489.75 -0.30% 213.12 0.20% 140.01 0.45%
TW CDD-DDFF 490.06 -0.23% 213.05 0.16% 139.84 0.33%
TW CDD-DD 490.06 -0.23% 213.05 0.16% 139.84 0.33%
TW CDD-SC 489.78 -0.29% 213.21 0.24% 139.80 0.29%
OW DD 493.53 0.47% 211.60 -0.52% 139.27 -0.09%
OW CDD-DD 490.09 -0.23% 213.03 0.15% 139.86 0.34%

Table 5.9: C5G7 Unrodded Slab 1 assembly powers.

Inner UO2 Error MOX Error Outer UO2 Error

Reference 219.00 ±0.19% 94.50 ±0.14% 62.10 ±0.10%
2D1D NEM 219.05 0.01% 95.04 0.54% 62.64 0.84%
2D1D SP3 218.63 -0.19% 94.85 0.34% 62.52 0.64%
TW CDD-DDFF 218.95 -0.04% 94.85 0.34% 62.46 0.55%
TW CDD-DD 218.94 -0.04% 94.85 0.34% 62.46 0.55%
TW CDD-SC 217.99 -0.48% 94.47 -0.06% 62.19 0.11%
OW DD 221.22 1.00% 94.51 -0.03% 62.39 0.45%
OW CDD-DD 219.71 0.31% 95.17 0.68% 62.67 0.90%

Tables 5.8-5.19 contain assembly power estimates for all three C5G7 configurations,

in 2-D and for each axial slab individually. Overall, much of the same behavior from the

aggregate pin power error metrics is found in the assembly power predictions; OW DD
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Table 5.10: C5G7 Unrodded Slab 2 assembly powers.

Inner UO2 Error MOX Error Outer UO2 Error

Reference 174.20 ±0.17% 75.20 ±0.13% 49.50 ±0.09%
2D1D NEM 173.72 -0.30% 75.40 0.20% 49.69 0.47%
2D1D SP3 173.79 -0.26% 75.43 0.24% 49.71 0.52%
TW CDD-DDFF 173.93 -0.18% 75.40 0.20% 49.65 0.40%
TW CDD-DD 173.93 -0.18% 75.40 0.20% 49.65 0.40%
TW CDD-SC 173.58 -0.37% 75.29 0.06% 49.56 0.22%
OW DD 175.42 0.68% 74.99 -0.34% 49.51 0.12%
OW CDD-DD 174.20 -0.02% 75.51 0.35% 49.72 0.55%

Table 5.11: C5G7 Unrodded Slab 3 assembly powers.

Inner UO2 Error MOX Error Outer UO2 Error

Reference 97.90 ±0.13% 42.90 ±0.10% 27.80 ±0.07%
2D1D NEM 96.97 -0.98% 42.69 -0.54% 27.68 -0.51%
2D1D SP3 97.33 -0.61% 42.83 -0.20% 27.79 -0.12%
TW CDD-DDFF 97.18 -0.77% 42.80 -0.28% 27.74 -0.29%
TW CDD-DD 97.18 -0.76% 42.80 -0.28% 27.74 -0.29%
TW CDD-SC 98.21 0.28% 43.44 1.22% 28.05 0.83%
OW DD 96.90 -1.06% 42.10 -1.91% 27.36 -1.64%
OW CDD-DD 96.18 -1.79% 42.35 -1.34% 27.46 -1.29%

Table 5.12: C5G7 Rodded A 2-D assembly powers.

Inner UO2 Error MOX Error Outer UO2 Error

Reference 461.20 ±0.28% 221.70 ±0.22% 151.40 ±0.16%
2D1D NEM 459.77 -0.31% 222.13 0.19% 151.96 0.37%
2D1D SP3 459.87 -0.28% 222.08 0.17% 151.96 0.37%
TW CDD-DDFF 460.23 -0.21% 222.01 0.13% 151.76 0.24%
TW CDD-DD 460.23 -0.21% 222.01 0.13% 151.76 0.24%
TW CDD-SC 459.54 -0.36% 222.28 0.26% 151.90 0.33%
OW DD 461.96 0.17% 221.09 -0.28% 151.85 0.30%
OW CDD-DD 460.66 -0.11% 221.87 0.07% 151.60 0.13%
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Table 5.13: C5G7 Rodded A Slab 1 assembly powers.

Inner UO2 Error MOX Error Outer UO2 Error

Reference 237.40 ±0.20% 104.50 ±0.15% 69.80 ±0.11%
2D1D NEM 236.67 -0.31% 104.83 0.34% 70.23 0.62%
2D1D SP3 236.93 -0.20% 104.90 0.40% 70.25 0.64%
TW CDD-DDFF 237.43 0.01% 104.85 0.36% 70.12 0.46%
TW CDD-DD 237.43 0.01% 104.85 0.36% 70.12 0.46%
TW CDD-SC 236.25 -0.49% 104.47 -0.01% 69.88 0.11%
OW DD 240.86 1.45% 105.00 0.49% 70.47 0.96%
OW CDD-DD 237.83 0.18% 105.00 0.49% 70.21 0.59%

Table 5.14: C5G7 Rodded A Slab 2 assembly powers.

Inner UO2 Error MOX Error Outer UO2 Error

Reference 167.50 ±0.17% 78.00 ±0.13% 53.40 ±0.09%
2D1D NEM 166.93 -0.35% 78.16 0.20% 53.62 0.43%
2D1D SP3 167.25 -0.16% 78.19 0.24% 53.63 0.45%
TW CDD-DDFF 167.35 -0.10% 78.14 0.17% 53.56 0.32%
TW CDD-DD 167.34 -0.10% 78.14 0.17% 53.56 0.32%
TW CDD-SC 166.82 -0.42% 78.10 0.12% 53.55 0.30%
OW DD 168.39 0.52% 77.86 -0.19% 53.64 0.47%
OW CDD-DD 167.61 0.06% 78.20 0.24% 53.57 0.35%

Table 5.15: C5G7 Rodded A Slab 3 assembly powers.

Inner UO2 Error MOX Error Outer UO2 Error

Reference 56.30 ±0.09% 39.20 ±0.09% 28.20 ±0.07%
2D1D NEM 56.17 -0.15% 39.14 -0.22% 28.11 -0.35%
2D1D SP3 55.69 -1.00% 38.99 -0.60% 28.08 -0.45%
TW CDD-DDFF 55.45 -1.43% 39.01 -0.54% 28.08 -0.44%
TW CDD-DD 55.45 -1.43% 39.01 -0.54% 28.08 -0.44%
TW CDD-SC 56.47 0.38% 39.71 1.24% 28.47 0.95%
OW DD 52.71 -6.31% 38.24 -2.52% 27.75 -1.63%
OW CDD-DD 55.21 -1.85% 38.68 -1.40% 27.81 -1.40%
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Table 5.16: C5G7 Rodded B 2-D assembly powers.

Inner UO2 Error MOX Error Outer UO2 Error

Reference 395.40 ±0.26% 236.60 ±0.23% 187.30 ±0.18%
2D1D NEM 393.17 -0.57% 237.22 0.25% 188.40 0.56%
2D1D SP3 394.08 -0.34% 236.99 0.16% 187.94 0.32%
TW CDD-DDFF 394.01 -0.36% 236.98 0.15% 188.04 0.37%
TW CDD-DD 394.53 -0.23% 236.88 0.11% 187.71 0.20%
TW CDD-SC 393.54 -0.48% 237.16 0.23% 188.15 0.43%
OW DD 390.43 -1.26% 237.43 0.34% 190.71 1.80%
OW CDD-DD 394.86 -0.14% 236.83 0.09% 187.48 0.07%

Table 5.17: C5G7 Rodded B Slab 1 assembly powers.

Inner UO2 Error MOX Error Outer UO2 Error

Reference 247.70 ±0.21% 125.80 ±0.17% 91.60 ±0.13%
2D1D NEM 245.39 -0.95% 92.14 0.54% 125.82 0.02%
2D1D SP3 247.38 -0.15% 92.23 0.64% 126.27 0.39%
TW CDD-DDFF 249.63 0.76% 92.66 1.12% 127.02 0.98%
TW CDD-DD 248.29 0.22% 92.04 0.44% 126.24 0.36%
TW CDD-SC 245.96 -0.72% 91.76 0.13% 125.66 -0.10%
OW DD 251.62 1.56% 93.98 2.55% 127.57 1.42%
OW CDD-DD 248.57 0.33% 92.08 0.48% 126.30 0.41%

Table 5.18: C5G7 Rodded B Slab 2 assembly powers.

Inner UO2 Error MOX Error Outer UO2 Error

Reference 106.60 ±0.13% 81.40 ±0.14% 65.00 ±0.11%
2D1D NEM 106.60 0.04% 81.69 0.35% 65.43 0.63%
2D1D SP3 105.90 -0.62% 81.39 -0.02% 65.18 0.24%
TW CDD-DDFF 105.04 -1.42% 81.35 -0.07% 65.22 0.30%
TW CDD-DD 105.77 -0.74% 81.45 0.05% 65.16 0.22%
TW CDD-SC 106.18 -0.35% 81.57 0.20% 65.31 0.45%
OW DD 101.55 -4.70% 81.53 0.16% 66.20 1.81%
OW CDD-DD 106.12 -0.42% 81.52 0.13% 65.16 0.22%
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Table 5.19: C5G7 Rodded B Slab 3 assembly powers.

Inner UO2 Error MOX Error Outer UO2 Error

Reference 41.10 ±0.08% 29.40 ±0.08% 30.70 ±0.07%
2D1D NEM 41.18 0.14% 29.71 0.97% 30.83 0.49%
2D1D SP3 40.80 -0.79% 29.33 -0.33% 30.53 -0.48%
TW CDD-DDFF 39.33 -4.35% 28.60 -2.79% 30.16 -1.70%
TW CDD-DD 40.47 -1.59% 29.20 -0.76% 30.50 -0.58%
TW CDD-SC 41.39 0.66% 29.93 1.71% 31.08 1.30%
OW DD 37.26 -9.41% 28.33 -3.71% 30.54 -0.46%
OW CDD-DD 40.18 -2.30% 29.01 -1.41% 30.24 -1.43%

performs poorly throughout, OW CDD-DD performs admirably for the axially integrated

powers and slab 1 and slab 2, but fails miserably in slab 3. The negative flux fix-up shows

no strong effects on the assembly powers for the unrodded and rodded A configurations,

but in the rodded B configuration the difference in error is dramatic. In the unrodded and

rodded A configurations, the assembly power results from the TW CDD-DD and TW CDD-

DDFF methods outperform or are on par with the 2-D/1-D methods. Even in the rodded

B configuration, the 2-D/3-D methods perform comparatively well, except in the top-most

slab.

5.1.3 Convergence behavior

Convergence behavior was compared between the 2-D/3-D and 2-D/1-D methods. Fig-

ures 5.5-5.7 present the values of the fission source convergence criterion at each iteration

for each configuration. Only the TW CDD-DDFF and TW CDD-SC 2-D/3-D methods are

shown, as the TW CDD-DD method does not reliably converge with CMFD acceleration

enabled, requiring around 100 iterations to converge. Since MOCC and MPACT calculate

their convergence criteria on a different mesh basis, the MOCC results were scaled to match

MPACT for a fair comparison.

In general, the TW CDD-DDFF converges at a similar overall rate as both 2-D/1-D

methods. For much of the convergence, the TW CDD-DDFF method performed worse
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Figure 5.5: Fission source convergence for the C5G7 unrodded configuration.
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Figure 5.6: Fission source convergence for the C5G7 rodded A configuration.

101



1.00E-09

1.00E-08

1.00E-07

1.00E-06

1.00E-05

1.00E-04

1.00E-03

1.00E-02

1.00E-01

1.00E+00

1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 5 1 6 1 7 1 8 1 9 2 0

F
is

si
on

 s
ou

rc
e 

co
nv

er
ge

nc
e 

cr
it

er
io

n

Iteration

2D1D SP3

2D1D NEM

2D3D DDFF

2D3D SC

Figure 5.7: Fission source convergence for the C5G7 rodded B configuration.

than the 2-D/1-D methods, though this may be the result of insufficient SN inner iterations.

These are discussed more in Section 5.2. The TW CDD-SC method converged noticeably

slower in all cases.

5.1.4 Effect of Transverse Leakage on Correction Factors

The purpose of implementing the two-way transverse leakage-based 2-D/3-D method is

twofold:

• to provide better correction factors and flux-weighted cross sections to the SN sweeper,

and

• to improve the validity of the fine-mesh flux as it would be reconstructed using the

SN flux.

The second aspect is difficult to demonstrate without a fine-mesh reference solution. How-

ever, effects of the transverse leakage on the correction factors can be observed. In this

section, correction factors are compared between those obtained using a two-way method
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Figure 5.8: Axial dependence of βαx for pin at location (1,1).

to their one-way counterparts. The rodded B configuration was used for all of these com-

parisons because it exhibits the most interesting axial behavior.

Because the correction factors exhibit variations in space, energy, and angle, they can

be difficult to visualize. To aid in their comparison, an angular integral of the correction

factor deviations from their trivial value,

βα =

∫
4π

∣∣∣∣∣βαx−
1
2

∣∣∣∣∣dΩ, (5.4)

is used. Due to the symmetry of the problem, it does not matter which correction factor

(βαx or βαy) is used to obtain the metric defined in Eq. (5.4). Several axial line-outs were

obtained from the converged state of the rodded B configuration using the TW CDD-DDFF

method and compared to the one-way correction factors.

Figures 5.8-5.10 contain these axial line-outs for specific pin cells for the highest energy

group. The first is taken from the center-most UO2 pin cell, which is representative of
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Figure 5.9: Axial dependence of βαx for pin at location (27,9), in one of the MOx assem-
blies.
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Figure 5.10: Axial dependence of βαx for pin at location (39,35), in the radial reflector.
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Figure 5.11: Axial dependence of βαx for pin at location (8,25), the MOx fission chamber,
for group 1.

most of the pins in the central assembly. Large differences between the one- and two-way

corrections are clear, especially in the planes immediately below the tips of the control

rods and the axial reflector interface. This behavior is expected, as transverse leakage is

greatest in magnitude in these regions. The second (Fig. 5.9) is a fuel pin located in one of

the MOx assemblies. Even in the absence of control rod tips at the interface between the

bottom and middle slabs, variation is found in the corrections, likely due to the presence of

control rods in the neighboring UO2 assembly. Located in the radial reflector near the active

core region, the third cell (Fig. 5.10) highlights the significance of the correction factors in

the axial reflector region, which the one-way method lacks entirely. This discrepancy is

responsible for much of the error found in the OW CDD-DD method in the top slab.

Figures 5.11-5.17 show comparisons for the same pin cell for all energy groups. The

pin cell shown is the fission chamber in the center of one of the MOx assemblies. Due

to significant streaming behavior and more anisotropic flux at high energies, the two-way

correction factors exhibit the most axial variation in these groups. At lower energies, less
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Figure 5.12: Axial dependence of βαx for pin at location (8,25), the MOx fission chamber,
for group 2.
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Figure 5.13: Axial dependence of βαx for pin at location (8,25), the MOx fission chamber,
for group 3.
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Figure 5.14: Axial dependence of βαx for pin at location (8,25), the MOx fission chamber,
for group 4.
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Figure 5.15: Axial dependence of βαx for pin at location (8,25), the MOx fission chamber,
for group 5.
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Figure 5.16: Axial dependence of βαx for pin at location (8,25), the MOx fission chamber,
for group 6.
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Figure 5.17: Axial dependence of βαx for pin at location (8,25), the MOx fission chamber,
for group 7.
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axial variation is found. While small, there are still corrections applied in the axial reflector

region which are missed in the one-way methods.

Cross section differences, while present, tended to be very slight between the one-way

and two-way methods.

5.1.5 2-D/3-D Memory Footprint and Timing

In the previous section, it was demonstrated that the 2-D/3-D method was capable of pro-

ducing good predictions of system eigenvalue and power distribution for all of the C5G7

rodded configurations. A large source of concern, however, is the amount of memory re-

quired to use the 2-D/3-D method with CDD; two correction factors must be stored for

each pin, for every angle and energy group. At first blush this sounds prohibitive, but for

the cases shown they tended to be quite manageable due to the coarseness of the mesh.

For the one-way approach, the memory requirements depended upon the number of 2-D

MoC planes that are needed to capture the nature of the problem. The unrodded configu-

ration needed just one (all assemblies unrodded), while the rodded A and B configurations

required two and three, respectively, to handle the slabs with the rodded central UO2 as-

sembly and rodded MOx assemblies. Each plane required about 71 megabytes of memory

to store all of the correction factors, as demonstrated in Table 5.20. Furthermore, the SN

sweeper required unique cross sections for each cell. Since the cross sections lack angular

dependence, they only require several megabytes per plane. Since all C5G7 configurations

are symmetric about the 45° axis, all of these requirements could be cut roughly in half.

This optimization does not extend to general cases and is therefore not used. The total

memory requirement for storing the correction factors and cross sections for the one-way

method ended up being around 214 megabytes.

The two-way coupling approach required the storage of considerably more correction

factors, since more MoC planes were used. Rather than the three planes used in the one-

way method, the two-way cases used 18 planes, resulting in a memory requirement of
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Table 5.20: C5G7 plane memory storage requirements for CDD correction factors.

Number of angles 256
Number of pin cells 2,601

Number of groups 7
Number of CDD factors 2

Bytes per factor 8

Memory per plane 74,575,872 Bytes
71.12 MB

1,280 megabytes. This constitutes a much larger memory burden, though it is by no means

prohibitive. Extrapolating to a real quarter-core, 3-D reactor simulation such as AMA

Problem 5 [12] with realistic cross sections would require about 86 gigabytes of memory.

Table 5.21 shows the values used to arrive at this estimate. Under most reasonable spatial

decompositions for such a problem, on the order of a thousand processors [23], the resultant

memory per node becomes quite tractable at tens of megabytes per processor.

Table 5.21: Quarter-core memory storage requirements for CDD correction factors.

Number of assemblies 49
Number of pin cells 14,200

Number of angles 144
Number of planes 60
Number of groups 47

Number of CDD factors 2
Bytes per factor 8

85.9 GB

Comparing the time requirements between the 2-D/3-D and 2-D/1-D methods using

MOCC and MPACT is difficult. MPACT is a mature, well-profiled code, upon which many

person-hours have been devoted to optimizing performance. MOCC, on the other hand

is considerably newer, and much less effort has been spent on this type of optimization.

This is not to imply that comparable performance could not be achieved with sufficient ef-

fort. Furthermore, the primary approach to parallelism in MPACT is MPI-based distributed

memory, while MOCC relies on a shared-memory OpenMP threading approach. While
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MPACT does implement a thread-based parallel model, it is poorly-supported at the time

of this writing. As a result, direct comparisons of run times between the two codes, while

fair, would not constitute an effective comparison of the underlying methods themselves.

The MoC sweep algorithm is the same for both methods, and calculation of the CDD

correction factors imposes no appreciable overhead beyond what is otherwise required to

calculate currents for CMFD or radial transverse leakage for a 2-D/1-D method.

A more effective comparison lies in the proportional time required to perform the axial

solve (in the case of 2-D/1-D) or the SN sweeps (in the case of 2-D/3-D) to the MoC sweep

time. With the settings used in the above cases, it was found that the SN sweeps in the

2-D/3-D methods required about 25-27% of the time spent in the MoC sweeps. In contrast,

the SP3 2-D/1-D method required about 12% of the MoC to perform the nodal solution.

NEM required a meager 2% of MoC to perform the axial solve; being a diffusion-based

solver, its relative cheapness is to be expected. The time required to perform the SN sweeps

is highly dependent upon the particular SN implementation used, as well as the number of

inner iterations performed. In the above cases, 10 SN iterations were used per outer itera-

tion, which was selected because it appeared to perform well. The optimal number of SN

inner iterations is problem-dependent, affected by physical characteristics such as the scat-

tering ratio. Future work will investigate more sophisticated methods of determining the

optimal number of SN sweeps to perform, or whether more advanced iterative techniques

could reduce the number of SN iterations needed to achieve good performance. Either way,

many possible improvements are possible to the SN sweeper, and it is likely within easy

striking distance of SP3, performance-wise.

5.2 Inner iteration convergence behavior

To examine the convergence behavior of the 2-D/3-D method in more detail, a smaller test

case was used. This case was very similar to the C5G7 rodded A configuration, with a
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Figure 5.18: Small C5G7 core layout. Axial mesh is identical to C5G7 rodded configura-
tion cd A.

much smaller radial geometry as depicted in Fig. 5.18. The middle 3-by-3 rod assembly

contains a control rod inserted one third of the way into the active core regions, as in rodded

A, and the peripheral 3-by-3 assemblies contain control rod guide tubes with their rods

extracted into the axial reflector region. This case was run using the TW CDD-DD method

for various combinations of SN and MoC inner iterations, and the resultant convergence

behavior is plotted against iteration index in Figs. 5.19 and 5.21 and against outer iteration

index in Figs. 5.20 and 5.22.

Varying the number of MoC iterations uncovers some very interesting behavior. It was

found that increasing from one inner MoC iteration per outer iteration to three resulted

in improved convergence rate, but increasing further had no appreciable benefit. This is

best illustrated by Fig. 5.20. As shown in Fig. 5.19, the improved iteration-for-iteration

convergence rate of three MoC translated to an improved wall time convergence, though

increasing from there ended up costing more time.

Similar behavior was found for the SN iterations. Exceeding 20 inner iterations per
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Figure 5.19: Convergence behavior with varying MoC inner iterations for small 3-D case,
by time.
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Figure 5.20: Convergence behavior with varying MoC inner iterations for small 3-D case,
by iteration.
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Figure 5.21: Convergence behavior with varying SN inner iterations for small 3-D case, by
time.

0 5 10 15 20
Iteration

10-8

10-7

10-6

10-5

10-4

10-3

10-2

Fi
ss

io
n 

so
ur

ce
 re

si
du

al

MoC: 5 Sn: 10
MoC: 5 Sn: 20
MoC: 5 Sn: 30
MoC: 5 Sn: 40
MoC: 5 Sn: 50

Figure 5.22: Convergence behavior with varying SN inner iterations for small 3-D case, by
iteration.
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outer iteration posed little benefit, though more than the MoC inner iterations. Comparing

Figs. 5.20 and 5.22 implies that convergence is limited sooner by the SN sweeper, providing

further incentive to emphasize SN performance.
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CHAPTER 6

Conclusions and Future Work

6.1 Brief Summary

This work developed a class of techniques for solving 3-D reactor neutronics problems,

which joins a coarse-mesh, 3-D SN sweeper with a collection of fine-mesh, 2-D Method

of Characteristics (MoC) sweepers. We called these 2-D/3-D methods, after the 2-D/1-D

methods that inspired and preceded them. A major motivation for the development of

such an approach stemmed from the impressive computational performance of orthogonal-

mesh SN , as well as its suitability for modern high-performance computing architectures.

Another motivation was that using a fully 3-D transport solver to obtain transverse leakages

for the MoC sweepers would prove more accurate than the 1-D nodal diffusion methods

typically used with 2-D/1-D methods.

The development of the 2-D/3-D scheme began by introducing the neutron transport

equation along with various discretization and solution methods of import, namely the

SN and MoC methods. The concept of SN auxiliary equations was discussed, and it was

demonstrated that existing SN schemes are too impractical to be used for pin-resolved trans-

port on an orthogonal mesh. A new differencing scheme to the SN equations, Corrected

Diamond Difference (CDD), was proposed which maintains accuracy on a very coarse

grid by using information from an underlying fine-mesh solver. This was performed by

extracting correction factors from the fine-mesh solver which preserve streaming and col-
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lision behavior. It was then demonstrated that the CDD equations are capable of yielding

equivalent coarse-mesh solutions to the fine-mesh solution that generated the corrections.

The CDD scheme was then extended to 3-D using the Diamond Difference (DD) and Step

Characteristics (SC) differencing schemes to treat the axial dimension. A one-way and a

transverse leakage-based two-way coupling scheme were described for applying CDD to

3-D problems.

These methods were implemented in a new MoC-based transport code, MOCC, and ap-

plied to the C5G7 benchmark problems, as well as some other test cases to study their effi-

cacy. It was found that the 2-D/3-D methods (especially the two-way methods) were capa-

ble of making very good predictions of system eigenvalue and pin power distributions, es-

pecially compared to the nodal diffusion-based 2-D/1-D Nodal Expansion Method (NEM)

method. In most cases 2-D/3-D outperformed the transport-based 2-D/1-D SP3 method as

well from an accuracy standpoint.

6.2 Conclusions and Proposed Future Work

The 2-D/3-D method was capable of producing very accurate results for the C5G7 bench-

marks on all measures of interest. While 2-D/3-D did not outperform 2-D/1-D on all mea-

sures, overall it produced results closer to the reference solution. The most consistent area

where the 2-D/1-D SP3 method performed better was in the top region of the core, where

the active core region interfaces with the axial reflector region. The one-way 2-D/3-D

methods performed rather horribly in there area, while the two-way methods performed

better but not as well as the SP3 method. In most other regions of the core 2-D/3-D outper-

formed SP3. Specifically, among the 2-D/3-D methods studied, the DD axial treatment was

generally capable of producing the best results. Unfortunately, due to its difficult behavior

and propensity to generate negative fluxes, in many cases it prevented the use of Coarse

Mesh Finite Difference (CMFD) acceleration, which is a virtual necessity to obtain solu-
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tions in reasonable time. A negative flux fix-up was applied to the DD equations which

rendered the CMFD iteration robust. This fix-up performed admirably for the unrodded

and rodded A cases, but it introduced large errors in the rodded B case. The SC differ-

encing scheme, while positive and well-behaved, tended to produce poor results owing to

its first-order error convergence properties. The difficulties presented by the DD equations

and the lack of accuracy from SC motivates the development of a 2-D/3-D method that

employs a higher-order or more sophisticated axial treatment.

As discussed in Chapter 5, the memory burden of the CDD correction factors appears

large at first blush, but under most circumstances ought not to pose a challenge. Even

though storage of these factors requires nearly one hundred gigabytes of memory for a

typical 3-D quarter-core problem, such large-scale calculations are performed on thousands

of CPUs, requiring only tens of megabytes per core. That being said, compression of these

correction factors to save memory would prove valuable.

The computational cost of the 3-D SN solver was found to be larger than that of the SP3

method to which it was compared. Configured as it was, the SN sweeps constituted about a

quarter of the time spent performing MoC sweeps, whereas the SP3 solver required 10-15%

of the MoC time. That being said the SN algorithm that was used was fairly rudimentary,

with little effort having been spent on optimization. Implementation of more advanced par-

allel algorithms, such as Koch-Baker-Alcouffe (KBA), and a more efficient implementation

overall could see a large reduction in the SN overhead. Furthermore, orthogonal-mesh SN

is particularly well-suited for being offloaded to massively-parallel co-processors, such as

general-purpose GPUs, Intel MICs, or similar. Doing so effectively would make the SN

iterations virtually free.
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6.3 Future Work

Based on the conclusions discussed above, the following make for promising topics of

future work:

• Memory consumption is a negative aspect of of the CDD equations. For this work,

the correction factors were stored explicitly in angle, requiring two double-precision

floating-point values per angle per region per energy group. While not prohibitive,

memory savings would leave more space for other uses, such a multi-physics cou-

pling, depletion analysis, or other potentially memory-intensive tasks. At the expense

of accuracy, the corrections factors could be stored as moments of a functional ex-

pansion. A Fourier series expansion could be used for each polar angle of a product

quadrature, or a spherical harmonics expansion could be used in the more general,

level-symmetric quadrature case. Examining the angular behavior of the correction

factors (Section 3.3.1), it appears that capturing the angular dependence of the high-

energy groups might be difficult, while the lower energy groups might be well ap-

proximated with few moments. Furthermore, advantage may be taken of common

features of the angular variation of the correction factors, such as the tendency of

the corrections to assume their largest magnitude in angles most orthogonal to the

direction of travel being corrected.

• The other challenge to 2-D/3-D is the speed performance of the SN solver used.

Implementing a better SN sweeper in MOCC/MPACT would go a long way towards

making 2-D/3-D more attractive.

• 2-D/3-D could be used to assist in control rod “decusping”. 2-D/1-D methods have

difficulty treating situations in which a control rod is inserted partially into an MoC

plane. The use of a finer axial mesh for the SN sweeper could be used to resolve the

axial flux shape through an MoC plane, potentially providing better plane-homogenized

cross sections.
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• Implementing the SN sweep on a co-processor such as a GPU would expose the

possibility of developing adaptive algorithms in which the SN and MoC sweepers

operate in conjunction, further reducing the overhead of the 3-D SN solution.

• While the 2-D/3-D method managed to produce more accurate results than 2-D/1-D

for the C5G7 benchmark problems, the error associated with the transverse leak-

age source becomes the limiting factor in many planar synthesis methods, 2-D/1-D

included. This work used the isotropic-in-angle, flat-in-space transverse leakage ap-

proximation, which is very crude. Applying angular and/or spatial shape functions to

the transverse leakage is likely to further increase the accuracy of the method. Refin-

ing the SN mesh in the radial directions could provide an intra-pin transverse leakage

shape to the MoC sweeper, though the interaction of the coarse and fine meshes at

the sub-pin level may be complicated.
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