
Deep Neural Networks for Visual Reasoning, Program
Induction, and Text-to-Image Synthesis

by

Scott Ellison Reed

A dissertation submitted in partial fulfillment
of the requirements for the degree of

Doctor of Philosophy
(Computer Science and Engineering)

in The University of Michigan
2016

Doctoral Committee:

Assistant Professor Honglak Lee, Chair
Professor Benjamin Kuipers
Assistant Professor Emily Mower Provost
Associate Professor Clayton Scott

c© Scott Ellison Reed 2016

All Rights Reserved

ACKNOWLEDGEMENTS

I would like to sincerely thank all of the CSE faculty and staff, and family and friends

whose support made this thesis possible. There are too many people to list all of them here,

but I will highight a few:

Dumitru Erhan, Christian Szegedy, Andrew Rabinovich, Dragomir Anguelov and many

others who were on the Photos and Brain team at Google when I was there. Their relent-

less focus on developing vision systems that actually work, motivated directly by solving

problems for millions of people, resulted in high-impact research breakthroughs in large-

scale visual recognition and detection. Although our work on large-scale object detection

is not part of my thesis, working with them had a transformative impact on my research

philosophy and subsequent productivity.

Nando de Freitas at DeepMind, who inspired me to work on neural program “libraries”,

which led to our joint work on Neural Programmer-Interpreters.

My adviser and dissertation committee chair Honglak Lee, who I have worked with

since the start of my PhD, who gave lots of valuable research advice and guidance on many

successful projects, and pushed me to accomplish more in graduate school.

Benjamin Kuipers, Emily Mower-Provost, and Clayton Scott who generously served

on my dissertation committee and provided very valuable feedback on this dissertation and

thought-provoking research discussions.

Thanks to all of my lab mates for many great collaborations and discussions: Kihyuk

Sohn, Yuting Zhang, Xinchen Yan, Lajanugen Logeswaran, Yi Zhang, Junhyuk Oh, Ruben

Villegas, Kibok Lee, Rui Zhang, Changhan Wang, Jimei Yang, Roni Mittelman, Wenling

ii

Shang, Daniel Walter, Yong Peng, Forest Agostinelli, Sami Abu-El-Haija, Kyoungah Kim,

Chansoo Lee.

Zeynep Akata and Bernt Schiele at the Max Planck Institute for Informatics, with whom

we had three very enjoyable and successful collaborations.

This work was supported mainly by a Rackham Fellowship during my first year, NSF

GRFP under Grant No. DGE 1256260 during my second and third years, and also by NSF

CAREER IIS-1453651, ONR N00014-13-1-0762 and NSF CMMI-1266184.

iii

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . ii

LIST OF FIGURES . viii

LIST OF TABLES . xiii

LIST OF APPENDICES . xv

ABSTRACT . xvi

CHAPTER

I. Introduction . 1

1.1 Motivation . 1
1.1.1 The disentangling Restricted Boltzmann Machine (Chap-

ter III) . 3
1.1.2 Deep networks for disentangling and visual analogy-

making (Chapter IV) 4
1.1.3 Learning a neural programmer and interpreter (Chapter V) 5
1.1.4 Learning to represent fine-grained visual descriptions

(Chapter VI) . 6
1.1.5 Generating images from informal text descriptions (Chap-

ter VII) . 6
1.2 Organization of the Thesis . 7
1.3 Related Publications . 7

II. Preliminaries . 9

2.1 Restricted Boltzmann machine 9
2.2 Long short-term memory (LSTM) 10

III. Disentangling factors of variation with Restricted Boltzmann Machines 11

iv

3.1 Introduction . 11
3.2 Related Work . 13

3.2.1 Energy function . 15
3.2.2 Inference and learning 16
3.2.3 Computing gradients via backpropagation 17

3.3 Training strategies for disentangling 17
3.3.1 Learning with correspondence 18

3.4 Experiments on face image data sets 19
3.4.1 Reasoning about factors of variation 20
3.4.2 Discriminative performance 21
3.4.3 Invariance and sensitivity analysis 24

3.5 Discussion . 26

IV. Deep convolutional encoder-decoder models for disentangling and vi-
sual analogy-making . 27

4.1 Introduction . 27
4.2 Related Work . 29
4.3 Deep encoder-decoder models for visual analogy-making 31

4.3.1 Making analogies by vector addition 31
4.3.2 Making analogy transformations dependent on the query

context . 32
4.3.3 Analogy-making with a disentangled feature represen-

tation . 34
4.4 Analogy-making Experiments . 36

4.4.1 Transforming shapes: comparison of analogy models . . 36
4.4.2 Generating 2D video game sprites 38
4.4.3 3D car analogies . 41
4.4.4 Evans ANALOGY program 43
4.4.5 Limitations and ambiguous analogies 44
4.4.6 Conclusions . 44

V. Learning to represent and execute programs 45

5.1 Introduction . 45
5.2 Related work . 47
5.3 Model . 49

5.3.1 Inference . 50
5.3.2 Training . 53

5.4 Experiments . 54
5.4.1 Task and environment descriptions 54
5.4.2 Sample complexity and generalization 57
5.4.3 Learning new programs with a fixed core 60
5.4.4 Solving multiple tasks with a single network 61

5.5 Conclusion . 61

v

VI. Learning to represent fine-grained visual descriptions 62

6.1 Introduction . 62
6.2 Related work . 64
6.3 Deep Structured Joint Embedding 66
6.4 Text encoder models . 68

6.4.1 Text-based ConvNet (CNN) 69
6.4.2 Convolutional Recurrent Net (CNN-RNN) 69
6.4.3 Long Short-Term Memory (LSTM) 70
6.4.4 Baseline representations 71

6.5 Experimental results . 72
6.5.1 Collecting fine-grained visual descriptions 73
6.5.2 CUB zero-shot recognition and retrieval 74
6.5.3 Effect of visual description training set size 76
6.5.4 Effect of test visual description length 77
6.5.5 Flowers zero-shot recognition and retrieval 78
6.5.6 Qualitative results . 79
6.5.7 Comparison to the state-of-the-art 80

6.6 Discussion . 81

VII. Generating Images from Text Descriptions 82

7.1 Introduction . 82
7.2 Related work . 84
7.3 Background . 86

7.3.1 Generative adversarial networks 87
7.3.2 Deep symmetric structured joint embedding 87

7.4 Method . 88
7.4.1 Network architecture 88
7.4.2 Matching-aware discriminator (GAN-CLS) 89
7.4.3 Learning with manifold interpolation (GAN-INT) 91
7.4.4 Inverting the generator for style transfer 91

7.5 Experiments . 93
7.5.1 Qualitative results . 94
7.5.2 Disentangling style and content 94
7.5.3 Pose and background style transfer 96
7.5.4 Sentence interpolation 96
7.5.5 Beyond birds and flowers 97

7.6 Conclusions . 99

VIII. Conclusion . 100

APPENDICES . 103

vi

BIBLIOGRAPHY . 124

vii

LIST OF FIGURES

Figure

3.1 Illustration of our approach for modeling pose and identity variations in
face images. When fixing identity, traversing along the corresponding
“fiber” (red ellipse) changes the pose. When fixing pose, traversing across
the vertical cross-section (blue rectangle) changes the identity. Our model
captures this via multiplicative interactions between pose and identity co-
ordinates to generate the image. 12

3.2 An instance of our model with two groups of hidden units. We can op-
tionally include label units (e.g., labels e are connected to hidden units
m). 14

3.3 Visualization of the RNN structure of our model. Arrows show the direc-
tion of the forward propagation. 17

3.4 Visualization of (a) expression and (b) pose manifold traversal. Each row
shows samples of varying expressions or pose with same identity as in
input (leftmost). 20

3.5 Identity units from left column are transferred to (a) expression units
and (b) pose units from middle column. Reconstructions shown in right
columns. 21

3.6 A) A sample of several identities with each of the 7 emotions in TFD.
We drew 100 such samples and averaged the results. B) Similarity matrix
using RBM features. C) Using our expression-related features (Expr). D)
Using our identity-related features (ID). 23

3.7 Comparison of pose transfer results between 2-way and (2+3)-way disBM
models on Multi-PIE. The task is pose transfer from faces in the second
column onto the face in the first column. 25

3.8 A scatter plot of average sensitivity of ID units (blue) and pose units
(red) on Multi-PIE. The black line through the origin has slope 1, and
approximately separates ID unit responses from pose unit responses. . . . 26

4.1 Visual analogy making concept. We learn an encoder function f mapping
images into a space in which analogies can be performed, and a decoder
g mapping back to the image space. 27

viii

4.2 Illustration of the network structure for analogy making. The top portion
shows the encoder, transformation module, and decoder. The bottom por-
tion illustrates the transformations used for Ladd, Lmul and Ldeep. The

⊗
icon in Lmul indicates a tensor product. We share weights with all three
encoder networks shown on the top left. 34

4.3 The encoder f learns a disentangled representation, in this case for pitch,
elevation and identity of 3D car models. In the example above, switches
s would be a block [0;1;1] vector. 35

4.4 Analogy-making with disentangled features. Left: Analogy transforma-
tion operates on the pose only (in blue), separated from the identity (in
green). Right: Identity units can also take the form of an attribute vector,
e.g. for 2D sprite characteristics. 36

4.5 Analogy predictions made by Ldeep for rotation, scaling and translation,
respectively by row. Ladd and Lmul perform as well for scaling and trans-
formation, but fail for rotation. The model is able to extrapolate along
scale to smaller shapes than were in the training data. 37

4.6 Mean-squared prediction error on repeated application of rotation analo-
gies. 37

4.7 Transferring animations. The top row shows the reference, and the bot-
tom row shows the transferred animation, where the first frame (in red) is
the starting frame of a test set character. 39

4.8 Few shot prediction with 48 training examples. 40
4.9 A cartoon visualization of the “shoot” animation manifold for two differ-

ent characters in different viewpoints. The model can learn the structure
of the animation manifold by forming analogy tuples during training; ex-
ample tuples are circled in red and blue above. 41

4.10 Extrapolating animations by analogy. The model is shown the reference
and output pair, and repeatedly applies the inferred transformation to the
query image, which advances the animation frame through time. Note
that this kind of inference requires learning the manifold of animation
poses, and cannot be done by simply combining and decoding disentan-
gled features. 41

4.11 3D car analogies. The column “GT” denotes ground truth. 42
4.12 Repeated rotation in forward and reverse directions, starting from frontal. 42
4.13 Concept figure from Evans’s 1964 paper. The task is to correctly predict

which of shapes 1 - 6 makes the analogy A : B :: C : D true. 43
5.1 Example execution of canonicalizing 3D car models. The task is to move

the camera such that a target angle and elevation are reached. There is
a read-only scratch pad containing the target (angle 1, elevation 2 here).
The image encoder is a convnet trained from scratch on pixels. 47

5.2 Single-digit addition. The task is to perform a single-digit add on the
numbers at pointer locations in the first two rows. The carry (row 3) and
output (row 4) should be updated to reflect the addition. At each time
step, an observation of the environment (viewed from each pointer on a
scratch pad) is encoded into a fixed-length vector. 47

ix

5.3 Example scratch pad and pointers used for computing “96 + 125 = 221”.
Carry step is being implemented. 55

5.4 Actual trace of addition program generated by our model on the problem
shown to the left. Note that we substituted the ACT calls in the trace with
more human-readable steps. 55

5.5 Example scratch pad and pointers used for sorting. 56
5.6 Excerpt from the trace of the learned bubblesort program. 56
5.7 Sample complexity. Test accuracy of sequence-to-sequence LSTM ver-

sus NPI on length-20 arrays of single-digit numbers. Note that NPI is
able to mine and train on subprogram traces from each bubblesort example. 58

5.8 Strong vs. weak generalization. Test accuracy of sequence-to-sequence
LSTM versus NPI on varying-length arrays of single-digit numbers. Both
models were trained on arrays of single-digit numbers up to length 20. . . 58

5.9 Example canonicalization of several different test set cars, of different
appearance than the train set cars. The network is able to generate and
execute the appropriate plan based on the starting car image. This NPI
was trained on trajectories starting at azimuth (−75◦...75◦) , elevation
(0◦...60◦) in 15◦ increments. The training trajectories target azimuth 0◦

and elevation 15◦, as in the generated traces above. 59
6.1 A conceptual diagram of our framework for learning visual description

embeddings. Our model learns a scoring function between images and
natural language descriptions. A word-based LSTM is shown, but we
evaluate several alternative models. 63

6.2 Our proposed convolutional-recurrent net. 70
6.3 Example annotations of birds and flowers. 72
6.4 Top: Performance impact of increasing the number of training sentences.

Bottom: Increasing the number of test sentences used at test time. 74
6.5 Zero-shot retrieval given a single query sentence. Each row corresponds

to a different text encoder. 78
6.6 t-SNE embedding of test class description embeddings from Oxford-102

(left) and CUB (right), marked with corresponding images. Best viewed
with zoom. 80

7.1 Examples of generated images from text descriptions. Left: captions are
from zero-shot (held out) categories, unseen text. Right: captions are
from the training set. 83

7.2 Our text-conditional convolutional GAN architecture. Text encoding ϕ(t)
is used by both generator and discriminator. It is projected to a lower-
dimensions and depth concatenated with image feature maps for further
stages of convolutional processing. 88

7.3 Zero-shot (i.e. conditioned on text from unseen test set categories) gener-
ated bird images using GAN, GAN-CLS, GAN-INT and GAN-INT-CLS.
We found that interpolation regularizer was needed to reliably achieve
visually-plausible results. 92

x

7.4 Zero-shot generated flower images using GAN, GAN-CLS, GAN-INT
and GAN-INT-CLS. All variants generated plausible images. Although
some shapes of test categories were not seen during training (e.g. columns
3 and 4), color is preserved. 92

7.5 ROC curves using cosine distance between predicted style vector on same
vs. different style image pairs. Left: image pairs reflect same or different
pose. Right: image pairs reflect same or different average background
color. 95

7.6 Transfering style from the top row (real) images to the content from the
text, with G acting as a deterministic decoder. The bottom three captions
are made up by us. 97

7.7 Generating images of general concepts using our GAN-CLS on the MS-
COCO validation set. Unlike the case of CUB and Oxford-102, the net-
work must (try to) handle multiple objects and diverse backgrounds. . . . 98

7.8 Left: Generated bird images by interpolating between two sentences (within
a row the noise is fixed). Right: Interpolating between two randomly-
sampled noise vectors. 98

B.1 Repeated application of analogies from the example pair (first two columns),
in both forward and reverse mode, using a model trained with Ldeep. . . . 108

B.2 Repeated application of multiple different analogies from two different
example pairs (first four columns) using a model trained with Ldeep. . . . 108

B.3 Repeated application of analogies from the example pair (first two columns),
in both forward and reverse mode, using three models trained respectively
with Ladd,Lmul,Ldeep. 109

B.4 2D PCA projections of the image embeddings along the rotation mani-
fold. Each point is marked with an image generated by the model, trained
with Ldeep. 110

B.5 Using Ldis+cls, our model can generate sprites with fine-grained control
over character attributes. The above images were generated by using f
to encode the leftmost source image for each attribute, and then changing
the identity units and re-rendering. 111

B.6 Shooting a bow. 111
B.7 Walking. 112
B.8 Casting a spell. 112
B.9 Animation analogies and extrapolation for all character animations plus

rotation. The example pair (first two columns) and query image (third
column) both come from the test set of characters. Ldeep was used for
analogy training of pose units, jointly withLdis+cls to learn a disentangled
representation. 113

C.1 Generated execution trace from our trained NPI sorting the array [9,2,5]. . 114
E.1 Zero-shot accuracies for image encoders trained on GAN samples. 118
E.2 Samples from GAN-INT-CLS (top) and end-to-end version (bottom). . . . 119
E.3 Samples from GAN-INT-CLS (top) and end-to-end version (bottom). . . . 120
E.4 Additional samples from our GAN-CLS trained on MS-COCO. 121
E.5 Comparison to samples included in the AlignDraw paper [91] 122

xi

E.6 t-SNE embedding visualization of extract style features on CUB. It ap-
pears to be insensitive to the appearance of the birds (which should be
captured by the text content), and mainly varies according to the primary
background color. 123

xii

LIST OF TABLES

Table

3.1 Control experiments of our method on Multi-PIE, with naive genera-
tive training, clamping identity-related units (ID), using labels for pose-
related units (Pose) and using the manifold-based regularization on both
groups of units. 22

3.2 Control experiments of our method on TFD, with naive generative train-
ing, clamping identity-related units (ID), using labels for expression-
related units (Expr) and using the manifold-based regularization on both
groups of units. 22

3.3 Performance comparison of discriminative tasks on Multi-PIE. RBM stands
for the second layer RBM features trained on the first layer RBM features. 23

3.4 Performance comparison of discriminative tasks on TFD. RBM stands
for the second layer RBM features trained on the first layer OMP features. 24

3.5 Comparison of face verification AUC (top) and pose estimation % ac-
curacy (bottom) between 2-way and (2+3)-way disBM with increasingly
many factors of variation (e.g., pose, jittering, illumination) on Multi-PIE. 25

4.1 Comparison of squared pixel error of Ladd, Lmul and Ldeep on shape
analogies. 37

4.2 Mean-squared pixel error on test analogies, by animation. 39
4.3 Mean-squared pixel-prediction error for few-shot analogy transfer of the

“spellcast” animation from 4 viewpoints. 40
4.4 Disentangling performance on 3D cars. Pose AUC refers to area un-

der the ROC curve for same-or-different pose, and ID AUC for same-or-
different car. 42

5.1 Per-sequence % accuracy. “+ Max” indicates performance after addition
of the additional max-finding subprograms to memory. “unseen” uses a
test set with disjoint car models from the training set, while “seen car”
uses the same car models but different trajectories. 61

6.1 Zero-shot recognition and retrieval on CUB. “DS-SJE” and “DA-SJE” re-
fer to symmetric and asymmetric forms of our joint embedding objective,
respectively. 74

6.2 Zero-shot % recognition accuracy and retrieval average precision on Flow-
ers. 78

xiii

6.3 Summary of zero-shot % classification accuracies. Note that different
features are used in each work, although [2] uses the same features as in
this work. 79

C.1 Programs learned for addition, sorting and 3D car canonicalization. Note
the ACT program has a different effect depending on the environment
and on the passed-in arguments. 115

xiv

LIST OF APPENDICES

A. Derivation of variational approximation to disBM posterior inference 104

B. Additional examples of visual analogy-making 107

C. NPI program listing and sorting execution trace 114

D. Zero-shot text-based retrieval . 116

E. Additional text-to-image results . 117

xv

ABSTRACT

Deep Neural Networks for Visual Reasoning, Program Induction,
and Text-to-Image Synthesis

by

Scott Ellison Reed

Chair: Honglak Lee

Deep neural networks excel at pattern recognition, especially in the setting of large scale

supervised learning. A combination of better hardware, more data, and algorithmic im-

provements have yielded breakthroughs in image classification, speech recognition and

other perception problems. The research frontier has shifted towards the weak side of neu-

ral networks: reasoning, planning, and (like all machine learning algorithms) creativity.

How can we advance along this frontier using the same generic techniques so effective

in pattern recognition; i.e. gradient descent with backpropagation? In this thesis I de-

velop neural architectures with new capabilities in visual reasoning, program induction and

text-to-image synthesis. I propose two models that disentangle the latent visual factors of

variation that give rise to images, and enable analogical reasoning in the latent space. I

show how to augment a recurrent network with a memory of programs that enables the

learning of compositional structure for more data-efficient and generalizable program in-

duction. Finally, I develop a generative neural network that translates descriptions of birds,

flowers and other categories into compelling natural images.

xvi

CHAPTER I

Introduction

1.1 Motivation

Deep neural networks have enabled transformative breakthroughs in speech and image

recognition in the past several years, fueled by increases in training data and computational

power in addition to algorithmic improvements. While deep networks excel at pattern

recognition, often with comparable performance to humans in some tasks, the research

frontier has shifted to the current weak side of neural networks: reasoning, planning and

creativity. In this thesis I propose several approaches to advance along this frontier.

Reasoning and planning are the subject of decades of research in artificial intelligence.

The classical approaches rely mainly on symbolic representations of the world; for search-

based problem solving and game playing, logical reasoning systems, theorem proving, and

many planning problems [129]. For problems involving high-dimensional, noisy perceptual

data such as image classification and speech recognition, connectionist approaches (i.e.

neural networks) have enjoyed the most success. Further progress in AI can likely be

found at the intersection of these fairly disparate research communities. Service robots

and digital assistants will need connectionist approaches to distill useful representations of

images, speech and text. They will also require symbolic notions; e.g. a knowledge graph

of grounded concepts and their relationships, in order to function in the real world. Many

research problems will require aspects of both; one that I consider inthis thesis is visual

1

analogy making.

In addition to reasoning and planning, the notion of creativity I refer to in the context of

this work should be specified. In this work I am only referring to the creation of something

novel and of interest to humans in the context of conditional generative models of images.

I explore this in several ways; mainly by (1) conditioning a generator network on a disen-

tangled representation of causal factors, which can be recombined arbitrarily and thereby

allow the model to generalize combinatorially, and (2) conditioning on informal text de-

scriptions. Clearly this is only a small part of what we mean colloquially by creativity, but

research progress here could apply to automatic generation of novel and useful artifacts in

other domains as well.

The first problem I study is how to reason about the relevant visual factors of variation

that give rise to an image. Given an image of an object, one would like for an image

understanding system to not only be able to robustly recognize the object under variations

in lighting, pose and scale; but also predict what the scene would look like if one or several

of those factors were changed. I develop a variant of Restricted Boltzmann Machine [135]

(RBM) that explicitly separates the latent factors into separate groups of units, and apply

the model to pose and expression transfer on human faces.

To investigate the reasoning capability of neural networks, I develop a model for visual

analogy making: given an image analogy problem A : B :: C : ?, the network predicts the

pixels of the image D that completes the analogy. For example, the analogy could involve

rotating 3D shapes or animating a video game sprite. In contrast to previous works on

analogy-making, this is the first end-to-end differentiable architecture for pixel-level anal-

ogy completion. We also show that by learning to disentangle the latent visual factors of

variation (e.g. pose and shape), our model can more effectively relate images and perform

image transformations.

To improve neural-network-based planning (e.g. mapping percepts to action sequences),

I propose a modification to recurrent neural networks that enables them to capture com-

2

positional structure in the output space. Our proposed network, the Neural Programmer-

Interpreter (NPI) is augmented with a memory of program, each consistning of environment-

dependent actions and calls to other programs. It learns to execute these programs from

example execution traces. By exploiting compositionality, we demonstrate improved data

efficiency and strong generalization compared to previous recurrent networks for program

induction. We apply our model, the Neural Programmer-Interpreter (NPI), to generating

execution trajectories for multi-digit addition, sorting arrays of numbers, and canonical-

izing the pose of 3D car models from image renderings. Notably, a single NPI can learn

and execute these programs and associated subprograms across very different environments

with different affordances.

To more accurately capture the relation between images and text, in another project I

implement and evaluate several deep architectures for encoding text descriptions of birds

and flowers. We show that using only informal text descriptions, we can learn highly dis-

criminative text features comparable in performance to carefully-engineered and domain-

specific attribute vector representations. Next, we leverage these text encoders to improve

the usefulness of neural nets for creative tasks. Specifically, I develop several new variants

of Generative Adversarial Networks capable of text-to-image synthesis; i.e. generating

plausible images from informal descriptions. For example, “a bright yellow bird with a

black head and beak”. Our system can generate plausible depictions of birds, flowers and

many other objects given only textual descriptions. By learning to invert the generator

network, we also show how to synthesize images by transferring the style of an unseen

photograph (e.g. background appearance) onto the content of a text description.

1.1.1 The disentangling Restricted Boltzmann Machine (Chapter III)

The Restricted Boltzmann Machine [135] (RBM) has gained popularity as an effective

model for natural images and image patches [85, 62], and as a fundamental building block

for stacking into deep multi-layer architectures and various deep generative models [130].

3

However, the standard RBM formulation only models the pairwise interactions between

units in a single observation vector and units in a single hidden unit vector. For the purpose

of modeling higher-order interactions among multiple factors of variation given a single

image observation, e.g. pose, expression and identity of human faces, in this project we

extend the basic RBM formulation.

We want to preserve the nice properties of the RBM; i.e. efficient and parallelizable

inference, simple procedures for generating image samples, and efficient approximation

to the likelihood gradient. In addition to preserving these properties, we want to endow

the model with new generative capabilities; namely the ability to fix a subset of factors

of variation while varying the others, thus traversing image manifolds in a controllable

way. Our main contributions are (1) an RBM formulation in which the energy function

incorporates both additive and multiplicative interactions among latent factors, (2) a new

regularizer encouraging distinct groups of hidden units to represent different concepts (i.e.

become disentangled), and (3) a simple and effective method of training the model via

backpropagation by casting its inference procedure as a recurrent neural network.

1.1.2 Deep networks for disentangling and visual analogy-making (Chapter IV)

While our disentangling extension to the RBM showed encouraging results, it did not

take advantage of recent advances in deep convolutional networks for modeling images.

Therefore, in this line of work we explore a deep convolutional model that also learns a

disentangled latent representation. Instead of directly optimizing the likelihood for training

a fully generative model, we set as the target the actual generative tasks that we would like

our model to perform: namely, making analogies [56] and traversing image manifolds [31].

For example, in analogy making we may want to transform a query face image to have

the same expression as an example face. For manifold traversal, given a query face, we

may want to repeatedly rotate the face in 3D to produce images from novel viewpoints.

Since faces were studied in our disentangling Boltzmann machine work, in this work we

4

studied several non-face datasets: a toy set of colored 2D shapes for control experiments,

a set of video game character sprites with many controllable attributes, and a set of 3D

car CAD models. We study several transformation mechanisms for our deep convolutional

encoder-decoder model: additive, multiplicative and deep multilayer. We demonstrate that

a deep multilayer transformation mechanism achieves the best performance in extrapolating

repeated image transformations along a manifold, such as repeated rotations of 2D shapes

and 3D cars and even extrapolations of sprite animations.

1.1.3 Learning a neural programmer and interpreter (Chapter V)

Visual analogies can be viewed as a form of one-shot program induction followed by

execution of that same program on a new query image. In this case, the “program”, e.g.

rotating an object by 15◦, can be represented by a difference of embeddings between the

example input and output image transformation pair, as we show in Chapter IV. However,

more complex programs with multiple steps and compositional structure are unlikely to

be solvable by such a simple approach. Recurrent neural networks (sequence-to-sequence

models) have shown some capability to learn simple programs such as sorting very short

arrays or addition of binary numbers, but have not scaled to learning more complex tasks

and suffer from poor generalization ability.

To tackle this problem, I show how to construct a recurrent neural network with a

persistent memory of program embeddings, which I call the Neural Programmer-Interpreter

(NPI). At each time step of processing, NPI outputs the next program, optional arguments,

and whether to halt the current program, conditioned on a feature representation of the

current environment state and the current program. NPI trains on program execution traces

consisting of calls of each program to its immediate subprograms (not the entire execution

subtree) conditioned on the input. I demonstrate that a single NPI can learn programs for

addition, sorting and canonicalization of 3D car models, and all 21 associated subprograms.

By exploiting compositionality, NPI achieves improved sample complexity and stronger

5

generalization performance compared to baseline sequence-to-sequence models.

1.1.4 Learning to represent fine-grained visual descriptions (Chapter VI)

State-of-the-art methods for zero-shot visual recognition formulate learning as a joint

embedding problem of images and side information. In these formulations the current best

complement to visual features are attributes: manually-encoded vectors describing shared

characteristics among categories. Despite good performance, attributes have limitations:

(1) finer-grained recognition requires commensurately more attributes, and (2) attributes

do not provide a natural language interface. We propose to overcome these limitations by

training neural language models from scratch; i.e. without pre-training and only consuming

words and characters. Our proposed models train end-to-end to align with the fine-grained

and category-specific content of images. Natural language provides a flexible and compact

way of encoding only the salient visual aspects for distinguishing categories. By training on

raw text, our model can do inference on raw text as well, providing humans a familiar mode

both for annotation and retrieval. Our model achieves strong performance on zero-shot text-

based image retrieval and significantly outperforms the attribute-based state-of-the-art for

zero-shot classification on the Caltech-UCSD Birds 200-2011 dataset.

1.1.5 Generating images from informal text descriptions (Chapter VII)

Automatic synthesis of realistic images from text would be interesting and useful, but

current AI systems are still far from this goal. However, in recent years generic and power-

ful recurrent neural network architectures have been developed to learn discriminative text

feature representations. Meanwhile, deep convolutional generative adversarial networks

(GANs) have begun to generate highly compelling images of specific categories such as

faces, album covers, room interiors and flowers. In this work, we develop a novel deep

architecture and GAN formulation to effectively bridge these advances in text and image

modeling, translating visual concepts from characters to pixels. We demonstrate the ca-

6

pability of our model to generate plausible images of birds and flowers from detailed text

descriptions. We also extend our model to a more general dataset of captioned web images.

1.2 Organization of the Thesis

This thesis is organized as follows. In chapter II, I provide background information

about restricted Boltzmann machines (RBMs) and Long short-term Memory neural net-

works (LSTMs). In chapter III, I describe an extension of the RBM that learns to disentan-

gle factors of variation from image data, resulting in improved discriminative performance

and yielding new generative capabilities. In chapter IV, I show how deep convolutional net-

works can be used to learn to disentangle visual factors of variation and also perform visual

analogies. In chapter V I show how to learn representations of compositional programs, and

demonstrate their effectiveness on addition, sorting, and camera trajectory planning for ro-

tating 3D CAD models. In chapter VI I describe our work on learning deep representations

of fine-grained visual descriptions, which achieve superior predictive performance even

compared to costly attribute annotations. These sentence embeddings are then used to help

generate images. In chapter VII I provide an overview of our text-to-image synthesis model

and show results on generating birds, flowers and common scenes.

1.3 Related Publications

The content of this thesis is mostly derived from papers that were published in top-tier

machine learning and computer vision conferences. The list that follows connects these

publications to their corresponding chapter.

• Chapter III: Scott Reed, Kihyuk Sohn, Yuting Zhang, Honglak Lee. Learning to

Disentangle Factors of Variation with Manifold Interaction. In Proceedings of the

31st International Conference on Machine Learning, Beijing, China, 2014.

7

• Chapter IV: Scott Reed, Yi Zhang, Yuting Zhang, Honglak Lee. Deep Visual Analogy-

Making. In Neural Information Processing Systems, Montreal, Canada, 2015.

• Chapter V: Scott Reed, Nando de Freitas. Neural Programmer-Interpreters. In Inter-

national Conference on Learning Representations, San Juan, Puerto Rico, 2016.

• Chapter VI: Scott Reed, Zeynep Akata, Honglak Lee, Bernt Schiele. Learning Deep

Representations of Fine-grained Visual Descriptions. In IEEE Computer Vision and

Pattern Recognition, Las Vegas, USA, 2016.

• Chapter VII: Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Logeswaran, Bernt

Schiele, Honglak Lee. Generative Adversarial Text-to-Image Synthesis. Under re-

view for Proceedings of the 31st International Conference on Machine Learning,

New York, USA, 2016.

In addition, the following co-author publications are also closely related to the material

in this thesis. These are also published at top-tier machine learning and vision conferences,

and are linked in the following list to the related chapter:

• Chapter IV: Jimei Yang, Scott Reed, Ming-hsuan Yang, Honglak Lee. Weakly-

supervised Disentangling with Recurrent Transformations for 3D View Synthesis.

In Neural Information Processing Systems, Montreal, Canada, 2015.

• Chapter VI: Zeynep Akata, Scott Reed, Daniel Walter, Honglak Lee, Bernt Schiele.

Evaluation of Output Embeddings for Fine-Grained Image Classification In IEEE

Computer Vision and Pattern Recognition, Boston, USA, 2015.

8

CHAPTER II

Preliminaries

In this section I briefly review two building blocks used in this dissertation. The first

is a type of probabilistic graphical model, the RBM, that recently gained popularity in

modeling image patches, as well as audio and text data. I extend this model in Chapter III.

The second is a version of recurrent neural network designed to mitigate the vanishing and

exploding gradients problem. This module is used in Chapters V, VI and VII.

2.1 Restricted Boltzmann machine

The restricted Boltzmann machine (RBM) is a bipartite undirected graphical model

composed of D binary visible units1 v ∈ {0, 1}D and K binary hidden units h ∈ {0, 1}K .

The joint distribution and the energy function are defined as follows:

P (v,h) =
1

Z
exp(−E(v,h)),

E(v,h) = −
D∑
i=1

K∑
k=1

viWikhk −
K∑
k=1

bkhk −
D∑
i=1

civi,

where Z is the partition function, Wik is a weight between i-th visible and k-th hidden

units, bk are hidden biases, and ci are visible biases. In the RBM, the units in the same
1The RBM can be extended to model the real-valued visible units [60].

9

layer are conditionally independent given the units in the other layer:

P (vi = 1 | h) = σ(
∑
k

Wikhk + ci),

P (hk = 1 | v) = σ(
∑
i

Wikvi + bk),

where σ(x) = 1
1+exp(−x) is a logistic function. The RBM can be trained to maximize

the log-likelihood of data using stochastic gradient descent. Although the gradient is in-

tractable, we can approximate it using contrastive divergence (CD) [58].

2.2 Long short-term memory (LSTM)

The LSTM [61] is a recurrent model designed to overcome limitations of the basic

RNN, namely the problem of exploding and vanishing gradients. The LSTM stores state

information in its memory cell c ∈ Rd, which is written to and read from via pointwise

multiplications with several gating variables: input gate i, forget gate f and output gate o,

which yields the output hidden state h ∈ Rd. Having observed input x, the overall update

step at time t proceeds as follows:

it = σ(Wixxt +Wihht−1) (2.1)

ft = σ(Wfxxt +Wfhht−1) (2.2)

ot = σ(Woxxt +Wohht−1) (2.3)

ct = ft � ct−1 + ittanh(Wcxxt +Wchht−1) (2.4)

ht = ot � ct (2.5)

where the W... are learnable weights, σ(x) = 1/(1 + e−x) is the sigmoid function and

� denotes pointwise multiplication. Intuitively, LSTMs can model very long temporal

dependences by learning to gate the memory cell updates. LSTMs are commonly used for

sequence modeling tasks such as next-word prediction. For example, one could compute

pt+1 = Softmax(Whpht) as the next-word probability over a vocabulary.

10

CHAPTER III

Disentangling factors of variation with Restricted

Boltzmann Machines

3.1 Introduction

A key challenge in understanding sensory data (e.g., image and audio) is to tease apart

many factors of variation that combine to generate the observations [15]. For example,

pose, shape and illumination combine to generate 3D object images; morphology and ex-

pression combine to generate face images. Many factors of variation exist for other modal-

ities, but here we focus on modeling images.

Most previous work focused on building [90] or learning [71, 116, 85, 83, 63, 62, 137]

invariant features that are unaffected by nuisance information for the task at hand. How-

ever, we argue that image understanding can benefit from retaining information about all

underlying factors of variation, because in many cases knowledge about one factor can

improve our estimates about the others. For example, a good pose estimate may help to

accurately infer the face morphology, and vice versa.

When the input images are generated from multiple factors of variation, they tend to lie

on a complicated manifold, which makes learning useful representations very challenging.

We approach this problem by viewing each factor of variation as forming a sub-manifold

by itself, and modeling the joint interaction among factors. For example, given face images

11

Pose manifold
coordinates

Identity manifold
coordinates

Input

Input
images

Fixed ID

Fixed Pose

Learning

Figure 3.1: Illustration of our approach for modeling pose and identity variations in face im-
ages. When fixing identity, traversing along the corresponding “fiber” (red ellipse) changes
the pose. When fixing pose, traversing across the vertical cross-section (blue rectangle)
changes the identity. Our model captures this via multiplicative interactions between pose
and identity coordinates to generate the image.

with different identities and viewpoints, we can envision one sub-manifold for identity

and another for viewpoint. As illustrated in Figure 3.1, when we consider face images of

a single person taken from different azimuth angles (with fixed altitude), the trajectory of

images will form a ring-shaped fiber. Similarly, changing the identity while fixing the angle

traverses a high-dimensional sub-manifold from one fiber to other.

Concretely, we use a higher-order Boltzmann machine to model the distribution over

image features and the latent factors of variation. Further, we propose correspondence-

based training strategies that allow our model to effectively disentangle the factors of

variation. This means that each group of hidden units is sensitive to changes in its cor-

responding factor of variation, and relatively invariant to changes in the others. We re-

fer to our model variants as disentangling Boltzmann machines (disBMs). Our disBM

model achieves state-of-the-art emotion recognition and face verification performance on

the Toronto Face Database (TFD), as well as strong performance in pose estimation and

face verification on CMU Multi-PIE.

12

3.2 Related Work

Manifold learning methods [152, 126, 54] model the data by learning low-dimensional

structures or embeddings. Existing manifold learning methods can learn low-dimensional

structures such as viewpoint manifolds from face images of a single person, but it becomes

challenging to model complex high-dimensional manifolds such as the space of face images

from millions of people. Deep learning has shown to be effective in learning such high-

dimensional data manifolds, as suggested by Rifai et al. [122]. However, it remains a

challenge to jointly model multiple factors of variation and their interacting manifolds.

Our work is related to multi-task learning [17, 6] if one views each factor as a “task”

feature to be learned jointly. However, our approach considers joint interaction among

the factors, and benefits from a synergy in which knowledge of one factor can help infer

about the others. In addition, our model is generative and can answer higher-order queries

involving the input and multiple factors.

There are several related works that use higher-order interactions between multiple la-

tent variables. For example, bilinear models [151] were used to separate style and content

within face images (pose and identity) and speech signals (vowels and speaker identity).

The tensor analyzer (TA) [150] extended factor analysis by introducing a factor loading

tensor to model the interaction among multiple groups of latent factor units, and was ap-

plied to modeling lighting and face morphology. Our approach is complementary to these,

and is also capable of exploiting correspondence information.

The higher-order spike and slab RBM (ssRBM) [28] extends the ssRBM [23] with

higher-order interactions. Our motivation is similar, but our model formulation is different

and we propose novel training strategies that significantly improve the disentangling. Fi-

nally, we show state-of-the-art performance on several discriminative tasks on face images.

The factored gated Boltzmann machine (FGBM) [94, 144] models the relation between

data pairs (e.g. translation, rotation of images, facial expression changes) via 3-way in-

teractions. Both the FGBM and disBM are variants of higher-order Boltzmann machines,

13

v

Wm Wh

Wv

U

m h

e

Figure 3.2: An instance of our model with two groups of hidden units. We can optionally
include label units (e.g., labels e are connected to hidden units m).

but the FGBM assumes two sets of visible units interacting with one set of hidden units,

whereas the disBM assumes multiple sets of hidden units interacting with a single set of

visible units.

The point-wise gated Boltzmann machine [138] is an instance of a higher-order Boltz-

mann machine that jointly learns and selects task-relevant features. Contractive discrimi-

native analysis [123] also learns groups of task-relevant and irrelevant hidden units using

a contractive penalty, but only uses additive interactions between the input and each group

of hidden units. These models are complementary to ours in that they learn to separate

task-relevant from task-irrelevant features.

The disBM is an undirected graphical model with higher-order interactions between

observations and multiple groups of hidden units, as in Figure 3.2. Each group of hidden

units can be viewed as manifold coordinates for a distinct factor of variation. Our proposed

model is shown in Figure 3.2. For simplicity, we assume two groups of hidden units h and

m, although it is straightforward to add more groups. If labels are available, they can be

incorporated with the e units.

14

3.2.1 Energy function

As shown in Figure 3.2, our model assumes 3-way multiplicative interaction between

D visible units v ∈ {0, 1}D and two groups of hidden units h ∈ {0, 1}K and m ∈ {0, 1}L.

We define the energy function as:

E(v,m,h) =−
∑
f

(
∑
i

W v
ifvi)(

∑
j

Wm
jfmj)(

∑
k

W h
kfhk)

−
∑
ij

Pm
ij vimj −

∑
ik

P h
ikvihk (3.1)

We have used factorization of 3D weight tensor W ∈ RD×L×K into three weight matrices

W v ∈ RD×F , Wm ∈ RL×F , W h ∈ RK×F with F factors as

Wijk =
F∑
f=1

W v
ifW

m
jfW

h
kf (3.2)

to reduce the number of model parameters [94]. We also include additive connections with

weight matrices Pm ∈ RD×L and P h ∈ RD×K between visible units and each group of

hidden units. We omit the bias terms for clarity of presentation. Although the hidden

units are not conditionally independent given the visible units, units in each group are

conditionally independent given units in all other groups. The conditional distributions are

as follows:1

P (vi = 1 | h,m) = σ(
∑
jk

Wijkmjhk

+
∑
j

Pm
ij mj +

∑
k

P h
ikhk) (3.3)

P (mj = 1 | v,h) = σ(
∑
ik

Wijkvihk +
∑
i

Pm
ij vi) (3.4)

P (hk = 1 | v,m) = σ(
∑
ij

Wijkvimj +
∑
i

P h
ikvi) (3.5)

1Wijk denotes factorized weights as in Equation (3.2).

15

The conditional independence structure allows efficient 3-way block Gibbs sampling.

3.2.2 Inference and learning

Inference. The exact posterior distribution is intractable since h and m are not con-

ditionally independent given v. Instead, we use variational inference to approximate the

true posterior with a fully factorized distribution Q(m,h) =
∏

j

∏
kQ(mj)Q(hk). A de-

tailed derivation is presented in Appendix A. By minimizing KL (Q(m,h)‖P (m,h | v)),

we obtain the following fixed-point equations:

ĥk = σ(
∑
ij

Wijkvim̂j +
∑
i

P h
ikvi) (3.6)

m̂j = σ(
∑
ik

Wijkviĥk +
∑
i

Pm
ij vi) (3.7)

where ĥk = Q(hk = 1) and m̂j = Q(mj = 1). Initialized with all 0’s, the mean-field

update proceeds by alternately updating ĥ and m̂ using Equation (3.6) and (3.7) until con-

vergence. We found that 10 iterations were enough in our experiments.

Learning. We train the model to maximize the data log-likelihood using stochastic gra-

dient descent. The gradient of the log-likelihood for parameters Θ = {W v,Wm,W h, Pm, P h}

can be computed as:

−EP (m,h|v)

[
∂E(v,m,h)

∂θ

]
+ EP (v,m,h)

[
∂E(v,m,h)

∂θ

]
Unlike in the RBM case, both the first (i.e., data-dependent) and the second (i.e., model-

dependent) terms are intractable. We can approximate the data-dependent term with vari-

ational inference and the model-dependent term with persistent CD [153] by running a

3-way sampling using Equation (3.3),(3.4),(3.5). A similar approach has been proposed

for training general Boltzmann machines [130].

16

v

v

h(1)

m(1)

v

v

v

v

h(2)

m(2)

h(3)

m(3)

Figure 3.3: Visualization of the RNN structure of our model. Arrows show the direction of
the forward propagation.

3.2.3 Computing gradients via backpropagation

When the training objective depends on hidden unit activations, such as correspondence

(Section 3.3.1) or sparsity [84, 59], the exact gradient can be computed via backpropaga-

tion through the recurrent neural network (RNN) induced by mean-field inference (See

Figure 3.3). The forward propagation proceeds as:

ĥ
(t+1)
k = σ(

∑
ij

Wijkvim̂
(t)
j +

∑
i

P h
ikvi) (3.8)

m̂
(t+1)
j = σ(

∑
ik

Wijkviĥ
(t)
k +

∑
i

Pm
ij vi) (3.9)

A similar strategy was rigorously developed by Stoyanov et al. [141] and was used to train

deep Boltzmann machines [48].

3.3 Training strategies for disentangling

Generative training of the disBM does not explicitly encourage disentangling, and gen-

erally did not yield well-disentangled features in practice. However, we can achieve better

disentangling by exploiting correspondences between images (e.g. matching identity, ex-

pression or pose), and by using labels.

17

3.3.1 Learning with correspondence

Clamping hidden units for pairs

If we know two data points v(1) and v(2) match in some factor of variation, we can

“clamp” the corresponding hidden units to be the same for both data points. For example,

given two images from the same person, we clamp the h units so that they focus on model-

ing the common face morphology while other hidden units explain the differences such as

pose or expression. To do clamping, we augment the energy function as follows:

Eclamp(v
(1),v(2),m(1),m(2),h)

= E(v(1),m(1),h) + E(v(2),m(2),h) (3.10)

The fixed-point equations are the same as before, except that Equation (3.6) changes to

reflect the contributions from both v(1) and v(2):

ĥk = σ(
∑
ij

Wijkv
(1)
i m̂

(1)
j +

∑
i

P h
ikv

(1)
i

+
∑
ij

Wijkv
(2)
i m̂

(2)
j +

∑
i

P h
ikv

(2)
i) (3.11)

The model is trained to maximize the joint log-likelihood of data pairs logP (v(1),v(2)).

Manifold-based training

In the manifold learning perspective, we want each group of hidden units to be a useful

embedding with respect to its factor of variation. Specifically, corresponding data pairs

should be embedded nearby, while the non-corresponding data pairs should be far apart.

Clamping forces corresponding pairs into exactly the same point within a sub-manifold,

which may be too strong of an assumption depending on the nature of the correspondence.

Furthermore, clamping does not exploit knowledge of non-correspondence. Instead, we

18

propose to learn a representation h such that

||h(1) − h(2)||22 ≈ 0 , if (v(1),v(2)) ∈ Dsim

||h(1) − h(3)||22 ≥ β , if (v(1),v(3)) ∈ Ddis

where Dsim is a set of corresponding data pairs and Ddis is a set of non-corresponding data

pairs. Formally, the manifold objective for h is written as:

||h(1) − h(2)||22 + max(0, β − ||h(1) − h(3)||2)2 (3.12)

This approach does not directly use label units, but labels can be used to construct corre-

spondence sets Dsim and Ddis. The formulation is similar to the one proposed by Hadsell

et al. [54]. However, our goal is not dimensionality reduction and we consider multiple fac-

tors of variation jointly. Furthermore, we can combine the manifold objective together with

the generative objective. Since our model uses mean-field inference to compute the hidden

units, we compute gradients via RNN backpropagation as discussed in Section 3.2.3.

3.4 Experiments on face image data sets

We evaluated the performance of our proposed model on several image databases:

• Flipped MNIST. For each digit of the MNIST dataset, we randomly flipped all pixels

(0’s to 1’s and vice versa) with 50% probability. The dataset consists of 50,000

training images, 10,000 validation images, and 10,000 test images.

• Toronto Face Database (TFD) [143]. Contains 112, 234 face images with 4, 178

emotion labels and 3, 874 identity labels. There are seven possible emotion labels.

• CMU Multi-PIE [52]. Contains 754, 200 high-resolution face images with varia-

tions in pose, lighting, and expression. We manually aligned and cropped the face

images.2

2We annotated two or three fiducial points (e.g., the eyes, nose, and mouth corners) and computed the 2-D
similarity transform that best fits them to the predefined anchor locations, which are different for each pose.
Then, we warped the image accordingly, and cropped the major facial region with a fixed 4:3 rectangular box.

19

(a) Expression manifold traversal on TFD (b) Pose manifold traversal on MPIE

Figure 3.4: Visualization of (a) expression and (b) pose manifold traversal. Each row shows
samples of varying expressions or pose with same identity as in input (leftmost).

3.4.1 Reasoning about factors of variation

A good generative model that can disentangle factors of variation should be able to

traverse the manifold of one factor while fixing the states of the others. For the case of face

images, the model should be able to generate examples with different pose or expression

while fixing the identity. It should also be able to interpolate within a sub-manifold (e.g.

across pose) and transfer the pose or expression of one person to others. Bengio et al.

[16] showed that linear interpolation across deep representations can traverse closer to the

image manifold compared to shallow representations. We would like our model to have

these properties with respect to each factor of variation separately.

To verify that our model has these properties, we constructed a 2-layer deep belief

network (DBN), where the first layer is a Gaussian RBM with tiled overlapping receptive

fields similar to those used by Ranzato et al. [117] and the second layer is our proposed

disBM. For TFD, our model has identity-related hidden units h and expression-related

hidden units m. For Multi-PIE, our model has identity-related units h and pose-related

units which we will also denote m. For some control experiments we also use label units

e, corresponding to 1-of-7 emotion labels in TFD and 1-of-15 pose labels in Multi-PIE.

We resized the cropped grayscaled images into 48× 48.

20

(a) Expr. transfer. (b) Pose transfer.

Figure 3.5: Identity units from left column are transferred to (a) expression units and (b)
pose units from middle column. Reconstructions shown in right columns.

We first examined how well the disBM traverses the pose or expression manifolds while

fixing identity. Given an input image v we perform posterior inference to compute h and

m. Then we fixed the pose or emotion label units e to the target and performed Gibbs

sampling between v and m. Example results are shown in Figure 3.4(a) and 3.4(b). Each

row shows input image and its generated samples after traversing to the specific target

emotion or pose. The identity of the input face image is well preserved across the rows

while expressing the correct emotion or pose.

We also performed experiments on pose and expression transfer. The task is to transfer

the pose or expression of one image onto the person in a second image. Equivalently, the

identity of the second image is transferred to the first image. To do this, we infer h and m

for both images. Using the pose or expression units m from the first and identity units h

from the second image, we compute the expect input v|h,m. We visualize the samples in

Figure 3.5(a) and 3.5(b).

3.4.2 Discriminative performance

To measure the usefulness of our features and the degree of disentangling, we apply

our model to emotion recognition, pose estimation and face verification on TFD and Multi-

21

Table 3.1: Control experiments of our method on Multi-PIE, with naive generative training,
clamping identity-related units (ID), using labels for pose-related units (Pose) and using the
manifold-based regularization on both groups of units.

MODEL
POSE UNITS

POSE EST.
POSE UNITS

VERIFICATION

ID UNITS

POSE EST.
ID UNITS

VERIFICATION

NAIVE 96.60 ± 0.23 0.583 ± 0.004 95.79 ± 0.37 0.640 ± 0.005
LABELS (POSE) 98.07 ± 0.12 0.485 ± 0.005 86.55 ± 0.23 0.656 ± 0.004
CLAMP (ID) 97.18 ± 0.15 0.509 ± 0.005 57.37 ± 0.45 0.922 ± 0.003
LABELS (POSE)
+ CLAMP (ID)

97.68 ± 0.17 0.504 ± 0.006 49.08 ± 0.50 0.934 ± 0.002

MANIFOLD (BOTH) 98.20 ± 0.12 0.469 ± 0.005 8.68 ± 0.38 0.975 ± 0.002

Table 3.2: Control experiments of our method on TFD, with naive generative training,
clamping identity-related units (ID), using labels for expression-related units (Expr) and
using the manifold-based regularization on both groups of units.

MODEL
EXPR. UNITS

EMOTION REC.
EXPR. UNITS

VERIFICATION

ID UNITS

EMOTION REC.
ID UNITS

VERIFICATION

NAIVE 79.50 ± 2.17 0.835 ± 0.018 79.81 ± 1.94 0.878 ± 0.012
LABELS (EXPR) 83.55 ± 1.63 0.829 ± 0.021 78.26 ± 2.58 0.917 ± 0.006
CLAMP (ID) 81.30 ± 1.47 0.803 ± 0.013 59.47 ± 2.17 0.978 ± 0.025
LABELS (EXPR)
+ CLAMP (ID)

82.97 ± 1.85 0.799 ± 0.013 59.55 ± 3.04 0.978 ± 0.024

MANIFOLD (BOTH) 85.43 ± 2.54 0.513 ± 0.011 43.27 ± 7.45 0.951 ± 0.025

PIE. For experiments on TFD, we built a 2-layer model whose first layer is constructed with

convolutional features extracted using the filters trained with OMP-1 followed by 4×4 max

pooling [20]. We used the same model in Section 3.4.1 for the tasks on Multi-PIE.

We did control experiments of our proposed training strategies and provide summary

results in Table 3.1 and 3.2. We report the performance of pose estimation and face ver-

ification for Multi-PIE, and emotion recognition and face verification for TFD. For pose

estimation and emotion recognition, we trained a linear SVM and reported the percent ac-

curacy. For face verification, we used cosine similarity for the image pair and report the

AU-ROC. Both numbers are averaged over 5 folds.

We observed that the naive training without any regularization gets mediocre perfor-

mance on both datasets. By adding pose or emotion labels, we see improvement in pose

22

B) RBM features, Expr-major order

Anger

A) Sample faces C) Expr features, Expr-major order D) ID features, ID-major order

AfraidHappy
Sad Surprise

Neutral
Disgust

Anger
AfraidHappy

Sad Surprise
Neutral

Disgust
Anger

AfraidHappy
Sad Surprise

Neutral
Disgust

Figure 3.6: A) A sample of several identities with each of the 7 emotions in TFD. We drew
100 such samples and averaged the results. B) Similarity matrix using RBM features. C)
Using our expression-related features (Expr). D) Using our identity-related features (ID).

Table 3.3: Performance comparison of discriminative tasks on Multi-PIE. RBM stands for
the second layer RBM features trained on the first layer RBM features.

MODEL
POSE

ESTIMATION

FACE

VERIFICATION

RBM 93.06± 0.33 0.615± 0.002
DISBM 98.20± 0.12 0.975± 0.002

estimation and emotion recognition as expected, but also slightly better verification per-

formance on both datasets. In addition, we observed a modest degree of disentangling

(e.g., ID units performed poorly on pose estimation). The clamping method for ID units

between corresponding image pairs showed substantially improved face verification results

on both datasets. Combined with labels connected to the pose or expression units, the pose

estimation and emotion recognition performance were improved. Finally, the best perfor-

mance is achieved using manifold-based regularization, showing not only better absolute

performance but also better disentangling. For example, while the expression units showed

the best results for emotion recognition, the ID units were least informative for emotion

recognition and vice versa. This suggests that good disentangling is not only useful from a

generative perspective but also helpful for learning discriminative features.

We provide a performance comparison to the baseline and other existing models. Ta-

ble 3.3 shows a comparison to a standard (second layer) RBM baseline using the same first

layer features as our disBM on Multi-PIE. We note that face verification on Multi-PIE is

challenging due to the pose variations. However, our disentangled ID features surpass this

23

Table 3.4: Performance comparison of discriminative tasks on TFD. RBM stands for the
second layer RBM features trained on the first layer OMP features.

MODEL
EMOTION

REC.
FACE

VERIFICATION

RBM 81.84± 0.86 0.889± 0.012
DISBM 85.43 ± 2.54 0.951± 0.025

Rifai et al. [123] 85.00± 0.47 −
Ranzato et al. [116] 82.4 −
Susskind et al. [144] − 0.951

baseline by a wide margin. In Table 3.4, we compare the performance of our model to other

works on TFD. The disBM features trained with manifold objectives achieved state-of-the-

art performance in emotion recognition and face verification on TFD.

To highlight the benefit of higher-order interactions, we performed additional control

experiments on Multi-PIE with more factors of variation, including pose, illumination and

jittering. We evaluated the performance of the disBM and its 2-way counterpart by setting

the higher-order weights to 0, where both are trained using the manifold objective. The

summary results in face verification and pose estimation are given in Table 3.5. When

the data have few modes of variation, we found that the 2-way model still shows good

pose estimation and face verification performance. However, the higher-order interactions

provide increasing benefit with the growth in modes of variation, i.e., joint configurations

of pose, lighting or other factors. Such a benefit can be verified in the pose transfer task as

well. In Figure 3.7, we visualize the pose transfer results of 2-way and (2+3)-way disBM

models. The (2+3)-way model (fourth column) predicts the pose with given identity well,

whereas the 2-way model (third column) produces significantly worse qualitative results,

showing overlapping face artifacts and ambiguous identity.

3.4.3 Invariance and sensitivity analysis

We computed a similarity matrix by randomly selecting 10 identities (that had at least

7 distinct expressions) at a time, computing the cosine similarity for all pairs across all

24

MODEL 2-WAY (2+3)-WAY

POSE 0.971± 0.002 0.975± 0.002
POSE + JITTER 0.871± 0.005 0.903± 0.006
POSE + JITTER

0.773± 0.004 0.822± 0.003
+ ILLUMINATION

POSE 97.73± 0.20 98.20± 0.12
POSE + JITTER 82.58± 0.53 83.68± 0.69
POSE + JITTER

76.42± 1.09 80.34± 1.29
+ ILLUMINATION

Table 3.5: Comparison of face verification AUC (top) and pose estimation % accuracy
(bottom) between 2-way and (2+3)-way disBM with increasingly many factors of variation
(e.g., pose, jittering, illumination) on Multi-PIE.

Figure 3.7: Comparison of pose transfer results between 2-way and (2+3)-way disBM
models on Multi-PIE. The task is pose transfer from faces in the second column onto the
face in the first column.

IDs and expressions. Then we averaged this feature similarity matrix over 100 trials. In

Figure 3.6, we show average cosine similarity of several features across expression and

identity variation. In ID-major order, the similarity matrix consists of 7 × 7-sized blocks;

for each pair of IDs we compute similarity for all pairs among 7 different emotions. In

Expr-major order, the similarity matrix consists of 10 × 10-sized blocks; for each pair of

emotions we compute similarity for all pairs among 10 different IDs.

The ID features show a clear block-diagonal structure in ID-major order, indicating that

they maintain similarity across changes in emotion but not across identity. In Expr-major

order, our Expr features show similar structure, although there are apparent off-diagonal

similarities for (anger, disgust) and (afraid, surprised) emotion labels. This makes sense

because those emotions often have similar facial expressions. For the RBM features we see

25

0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

Pose change response

ID
 c

ha
ng

e
re

sp
on

se

ID units
Pose units

Figure 3.8: A scatter plot of average sensitivity of ID units (blue) and pose units (red) on
Multi-PIE. The black line through the origin has slope 1, and approximately separates ID
unit responses from pose unit responses.

only a faint block diagonal and a strong single band diagonal corresponding to same-ID,

same-expression pairs.

To see whether our disBM features can be both invariant and sensitive to changes in

different factors of variation, we generated test set image pairs (1) with the same identity,

but different pose, and (2) with different identity, but the same pose. Then we measured the

average absolute difference in activation within pose units and within ID units. For every

unit k and image pair (v(1),v(2)), we compute the average |h(1)k − h
(2)
k |. Figure 3.8 shows

that ID units are more sensitive to change in ID than to pose, and pose units are likewise

more sensitive to pose change than ID change.

3.5 Discussion

We introduced a new method of learning deep representations via disentangling factors

of variation. We evaluated several strategies for training higher-order Boltzmann machines

to model interacting manifolds such as pose, expression and identity in face images. We

demonstrated that our model learns disentangled representations, achieving strong perfor-

mance in generative and discriminative tasks.

26

CHAPTER IV

Deep convolutional encoder-decoder models for

disentangling and visual analogy-making

4.1 Introduction

Humans are good at considering “what-if?” questions about objects in their environ-

ment. What if this chair were rotated a few degrees clockwise? What if I dyed my hair

blue? We can easily imagine roughly how objects would look according to various hy-

pothetical questions. However, current generative models of images struggle to perform

this kind of task without encoding significant prior knowledge about the environment and

restricting the allowed transformations.

Infer Relationship Transform query

Figure 4.1: Visual analogy making concept. We
learn an encoder function f mapping images into
a space in which analogies can be performed, and
a decoder g mapping back to the image space.

Often, these visual hypothetical

questions can be effectively answered

by analogical reasoning 1. Having ob-

served many similar objects rotating,

one could learn to mentally rotate new

objects. Having observed objects with

different colors (or textures), one could

learn to mentally re-color (or re-texture) new objects.

1See [11] for a deeper philosophical discussion of analogical reasoning.

27

Solving the analogy problem requires the ability to identify relationships among images

and transform query images accordingly. In this paper, we propose to solve the problem by

directly training on visual analogy completion; that is, to generate the transformed image

output. Note that we do not make any claim about how humans solve the problem, only

that in many cases thinking by analogy is enough to solve it, without exhaustively encoding

first principles into a complex model.

We denote a valid analogy as a 4-tuple A : B :: C : D, often spoken as “A is to B as C is

to D”. Given such an analogy, there are several questions one might ask:

• A ? B :: C ? D - What is the common relationship?

• A : B ? C : D - Are A and B related in the same way that C and D are related?

• A : B :: C : ? - What is the result of applying the transformation A : B to C?

The first two questions can be viewed as discriminative tasks, and could be formulated as

classification problems. The third question requires generating an appropriate image to

make a valid analogy. Since a model with this capability would be of practical interest, we

take this to be our focus.

Our proposed approach is to learn a deep encoder function f : RD → RK that maps

images to an embedding space suitable for reasoning about analogies, and a deep decoder

function g : Rk → RD that maps from the embedding back to the image space. (See

Figure 4.1.) Our encoder function is inspired by word2vec [98], GloVe [114] and other

embedding methods that map inputs to a space supporting analogies by vector addition. In

those models, analogies could be performed via

d = argmax
w∈V

cos(f(w), f(b)− f(a) + f(c))

where V is the vocabulary and (a, b, c, d) form an analogy tuple such that a : b :: c : d.

Other variations such as a multiplicative version [87] on this inference have been proposed.

The vector f(b) − f(a) represents the transformation, which is applied to a query c by

28

vector addition in the embedding space. In the case of images, we can modify this naturally

by replacing the cosine similarity and argmax over the vocabulary with application of a

decoder function mapping from the embedding back to the image space.

Clearly, this simple vector addition will not accurately model transformations for low-

level representations such as raw pixels, and so in this work we seek to learn a high-level

representation. In our experiments, we parametrize the encoder f and decoder g as deep

convolutional neural networks, but in principle other methods could be used to model f

and g. In addition to vector addition, we also propose more powerful methods of applying

the inferred transformations to new images, such as higher-order multiplicative interactions

and multi-layer additive interactions.

We first demonstrate visual analogy making on a 2D shapes benchmark, with variation

in shape, color, rotation, scaling and position, and evaluate the performance on analogy

completion. Second, we generate a dataset of animated 2D video game character sprites

using graphics assets from the Liberated Pixel Cup [1]. We demonstrate the capability of

our model to transfer animations onto novel characters from a single frame, and to perform

analogies that traverse the manifold induced by an animation. Third, we apply our model

to the task of analogy making on 3D car models, and show that our model can perform 3D

pose transfer and rotation by analogy.

4.2 Related Work

Automated systems for analogy-making have a long history. Evans [39] ANALOGY

program was able to predict completions of visual analogies consisting of 2D shape line

drawings (see also [100]), further extended to drawings of kinematics devices in [166].

Hertzmann et al. [57] developed a method for applying new textures to images by analogy.

This problem is of practical interest, e.g., for stylizing animations [13]. Our model can also

synthesize new images by analogy to examples, but we study global transformations rather

than only changing the texture of the image.

29

Dollár et al. [31] developed Locally-Smooth Manifold Learning to traverse image man-

ifolds. We share a similar motivation when analogical reasoning requires walking along a

manifold (e.g. pose analogies), but our model leverages a deep encoder and decoder train-

able by backprop.

Memisevic and Hinton [94] proposed the Factored Gated Boltzmann Machine for learn-

ing to represent transformations between pairs of images. This and related models [144,

30, 96] use 3-way tensors or their factorization to infer translations, rotations and other

transformations from a pair of images, and apply the same transformation to a new image.

In this work, we share a similar goal, but we directly train a deep predictive model for the

analogy task without requiring 3-way multiplicative connections, with the intent to scale

to bigger images and learn more subtle relationships involving articulated pose, multiple

attributes and out-of-plane rotation.

Our work is related to several previous works on disentangling factors of variation,

for which a common application is analogy-making. As an early example, bilinear mod-

els [151] were proposed to separate style and content factors of variation in face images

and speech signals. Tang et al. [149] developed the tensor analyzer which uses a factor

loading tensor to model the interaction among latent factor groups, and was applied to face

modeling. Several variants of higher-order Boltzmann machine were developed to attack

the disentangling problem, featuring multiple groups of hidden units each corresponding to

a single factor [118, 28]. Disentangling was also considered in the discriminative case in

the Contractive Discriminative Analysis model [123]. Our work differs from these in that

we train a deep end-to-end network for generating images by analogy.

Recently several works have proposed methods of generating high-quality images using

deep networks. Dosovitskiy et al. [36] used a CNN to generate chair images with control-

lable variation in appearance, shape and 3D pose. Contemporary to our work, Kulkarni

et al. [79] proposed the Deep Convolutional Inverse Graphics Network, which is a form of

variational autoencoder (VAE) [73] in which the encoder disentangles factors of variation.

30

Other works have considered a semi-supervised extension of the VAE [74] incorporating

class labels associated to a subset of the training images, which can control the label units

to perform some visual analogies. Cohen and Welling [22] developed a generative model of

commutative Lie groups (e.g. image rotation, translation) that produced invariant and dis-

entangled representations. In [21], this work is extended to model the non-commutative 3D

rotation group SO(3). Zhu et al. [176] developed the multi-view perceptron for modeling

face identity and viewpoint, and generated high quality faces subject to view changes. Che-

ung et al. [18] also use a convolutional encoder-decoder model, and develop a regularizer

to disentangle latent factors of variation from a discriminative target.

Analogies have been well-studied in the NLP community; Turney [155] used analogies

from SAT tests to evaluate the performance of text analogy detection methods. In the visual

domain, Hwang et al. [65] developed an analogy-preserving visual-semantic embedding

model that could both detect analogies and as a regularizer improve visual recognition

performance. Our work is related to these, but we focus mainly on generating images to

complete analogies rather than detecting analogies.

4.3 Deep encoder-decoder models for visual analogy-making

Suppose that A is the set of valid analogy tuples in the training set. For example,

(a, b, c, d) ∈ A implies the statement “a is to b as c is to d”. Let the input image space for

images a, b, c, d be RD, and the embedding space be RK (typically K < D). Denote the

encoder as f : RD → RK and the decoder as g : RK → RD. Figure 4.2 illustrates our

architectures for visual analogy making.

4.3.1 Making analogies by vector addition

Neural word representations (e.g., [98, 114]) have been shown to be capable of analogy-

making by addition and subtraction of word embeddings. Analogy making capability ap-

pears to be an emergent property of these embeddings, but for images we propose to di-

rectly train on the objective of analogy completion. Concretely, we propose the following

31

objective for vector-addition-based analogies:

Ladd =
∑

a,b,c,d∈A

||d− g(f(b)− f(a) + f(c))||22 (4.1)

This has the advantage of being simple to implement and train. With a modest number

of labeled relations, a large number of training analogies can be mined.

4.3.2 Making analogy transformations dependent on the query context

In some cases, a purely additive model of applying transformations may not be ideal.

For example, in the case of rotation, the manifold of a rotated object is circular, and after

enough rotation has been applied, one returns to the original point. In the vector-addition

model, we can add the same rotation vector f(b)− f(a) multiple times to a query f(c), but

we will never return to the original point (except when f(b) = f(a)). The decoder g could

(theorectically) solve this problem by learning to perform a “modulus” operation, but this

would make the training significantly more difficult. Instead, we propose to parametrize

the transformation increment to f(c) as a function of both f(b) − f(a) and f(c) itself. In

this way, analogies can be applied in a context-dependent way.

We present two variants of our training objective to solve this problem. The first, which

we will call Lmul, uses multiplicative interactions between f(b)−f(a) and f(c) to generate

the increment. The second, which we call Ldeep, uses multiple fully connected layers to

form a multi-layer perceptron (MLP) without using multiplicative interactions:

Lmul =
∑

a,b,c,d∈A

||d− g(f(c) +W×1[f(b)− f(a)]×2f(c))||22 (4.2)

Ldeep =
∑

a,b,c,d∈A

||d− g(f(c) + h([f(b)− f(a); f(c)]))||22. (4.3)

For Lmul, W ∈ RK×K×K is a 3-way tensor. 2 In practice, to reduce the number of

2For a tensor W ∈ RK×K×K and vectors v, w ∈ RK , we define the tensor multiplication W ×1 v×2w ∈
RK as (W ×1 v ×2 w)l =

∑K
i=1

∑K
j=1 Wijlviwj ,∀l ∈ {1, ...,K}.

32

weights we used a factorized tensor parametrized as Wijl =
∑

f W
(1)
if W

(2)
jf W

(3)
lf . Mul-

tiplicative interactions were similarly used in bilinear models [151], disentangling Boltz-

mann Machines [118] and Tensor Analyzers [149]. Note that our multiplicative interaction

in Lmul is different from [94] in that we use the difference between two encoding vec-

tors (i.e., f(b) − f(a)) to infer about the transformation (or relation), rather than using a

higher-order interaction (e.g., tensor product) for this inference.

Algorithm 1 Manifold traversal by analogy, with transformation T (Eq. 4.5).
Given images a, b, c, and N (# steps)
z ← f(c) . Init from query position on the manifold
for i = 1 to N do

z ← z + T (f(a), f(b), z) . Add increment along manifold
xi ← g(z) . Decode from manifold to image space

end for
return generated images xi (i = 1, ..., N)

For Ldeep, h : R2K → RK is an MLP (deep network without 3-way multiplicative

interactions) and [f(b) − f(a); f(c)] denotes concatenation of the transformation vector

with the query embedding.

Optimizing the above objectives teaches the model to predict analogy completions in

image space, but in order to traverse image manifolds (e.g. for repeated analogies) as

in Algorithm 1, we also want accurate analogy completions in the embedding space. To

encourage this property, we introduce a regularizer to make the predicted transformation

increment T (f(a), f(b), f(c)) match the difference of encoder embeddings f(d)− f(c):

R =
∑

a,b,c,d∈A

||f(d)− f(c)− T (f(a), f(b), f(c))||22 , where (4.4)

T (x, y, z) =

y − x when using Ladd

W ×1 [y − x]×2 z when using Lmul

MLP ([y − x; z]) when using Ldeep

(4.5)

The overall training objective is a weighted combination of analogy prediction and the

33

above regularizer, e.g. Ldeep + αR. We set α = 0.01 by validation on the shapes data and

found it worked well for all models on sprites and 3D cars as well. All parameters were

trained with backpropagation using stochastic gradient descent (SGD).

Increment
function T

Decoder
network g

Encoder network f

f(b)

f(a)

f(c)

f(b)

f(a)

f(c)

f(b)

f(a)

f(c)

add
mul

deep

add mul deep

a

b

c
d

Figure 4.2: Illustration of the network structure for analogy making. The top portion shows
the encoder, transformation module, and decoder. The bottom portion illustrates the trans-
formations used for Ladd, Lmul and Ldeep. The

⊗
icon in Lmul indicates a tensor product.

We share weights with all three encoder networks shown on the top left.

4.3.3 Analogy-making with a disentangled feature representation

Visual analogies change some aspects of a query image, and leave others unchanged;

for example, changing the viewpoint but preserving the shape and texture of an object.

To exploit this fact, we incorporate disentangling into our analogy prediction model. A

disentangled representation is simply a concatenation of coordinates along each underly-

ing factor of variation. If one can reliably infer these disentangled coordinates, a subset

of analogies can be solved simply by swapping sets of coordinates among a reference and

query embedding, and projecting back into the image space. However, in general, disentan-

gling alone cannot solve analogies that require traversing the manifold structure of a given

factor, and by itself does not capture image relationships.

In this section we show how to incorporate disentangled features into our model. The

disentangling component makes each group of embedding features encode its respective

34

factor of variation and be invariant to the others. The analogy component enables the

model to traverse the manifold of a given factor or subset of factors.

Identity

Pitch

 switches sIdentity

Elevation

Pitch

Elevation

a

b

c

Algorithm 2 Disentangling training update.
The switches s determine which units from
f(a) and f(b) are used to reconstruct image c.

Given input images a, b and target c
Given switches s ∈ {0, 1}K
z ← s · f(a) + (1− s) · f(b)
∆θ ∝ ∂/∂θ (||g(z)− c||22)

Figure 4.3: The encoder f learns a disentangled representation, in this case for pitch, ele-
vation and identity of 3D car models. In the example above, switches s would be a block
[0;1;1] vector.

For learning a disentangled representation, we require three-image tuples: a pair from

which to extract hidden units, and a third to act as a target for prediction. As shown in

Figure 4.3, We use a vector of switch units s that decides which elements from f(a) and

which from f(b) will be used to form the hidden representation z ∈ RK . Typically s will

have a block structure according to the groups of units associated to each factor of variation.

Once z has been extracted, it is projected back into the image space via the decoder g(z).

The key to learning disentangled features is that images a, b, c should be distinct, so

that there is no path from any image to itself. This way, the reconstruction target forces the

network to separate the visual concepts shared by (a, c) and (b, c), respectively, rather than

learning the identity mapping. Concretely, the disentangling objective can be written as:

Ldis =
∑

a,b,c,s∈D

||c− g(s · f(a) + (1− s) · f(b))||22 (4.6)

Note that unlike analogy training, disentangling only requires a 3-tuple of images a, b, c

along with a switch unit vector s. Intuitively, s describes the sense in which a, b and c are

related. Algorithm 2 describes the update used to learn a disentangled representation.

35

Figure 4.4: Analogy-making with disentangled features. Left: Analogy transformation
operates on the pose only (in blue), separated from the identity (in green). Right: Identity
units can also take the form of an attribute vector, e.g. for 2D sprite characteristics.

We can also train a single model to perform analogy-making with a disentangled fea-

ture representation. Intuitively, the analogy transformation may involve some factors of

variation but not others, e.g. a 3D rotation changes the pose but not the identity of an

object. Figure 4.4 illustrates two network architectures combining analogy-making and a

disentangled feature representation.

4.4 Analogy-making Experiments

We evaluated our methods using three datasets. The first is a set of 2D colored shapes,

which is a simple yet nontrivial benchmark for visual analogies. The second is a set of

2D sprites from the open-source video game project called Liberated Pixel Cup [1], which

we chose in order to get controlled variation in a large number of character attributes and

animations. The third is a set of 3D car model renderings [42], which allowed us to train

a model to perform out-of-plane rotation. We used Caffe [67] to train our encoder and

decoder networks, with a custom Matlab wrapper implementing our analogy sampling and

training objectives. Many additional qualitative results of images generated by our model

are presented in the appendix.

4.4.1 Transforming shapes: comparison of analogy models

The shapes dataset was used to benchmark performance on rotation, scaling and trans-

lation analogies. We generated 48 × 48 images scaled to [0, 1] with four shapes, eight

36

colors, four scales, five row and column positions, and 24 rotation angles.

ref +rot (gt) query +rot +rot +rot +rot

ref +scl (gt) query +scl +scl +scl +scl

ref +trans (gt) query +trans +trans +trans +trans

Figure 4.5: Analogy predictions made by
Ldeep for rotation, scaling and translation, re-
spectively by row. Ladd and Lmul perform as
well for scaling and transformation, but fail
for rotation. The model is able to extrapo-
late along scale to smaller shapes than were
in the training data.

Figure 4.6: Mean-squared prediction er-
ror on repeated application of rotation
analogies.

We compare the performance of our models trained with Ladd, Lmul and Ldeep objec-

tives, respectively. We did not perform disentangling training in this experiment. The

encoder f consisted of 4096-1024-512-dimensional fully connected layers, with rectified

linear nonlinearities (relu) for intermediate layers. The final embedding layer did not use

any nonlinearity. The decoder g architecture mirrors the encoder, but did not share weights.

We trained for 200K steps with mini-batch size 25 (i.e. 25 analogy 4-tuples per mini-batch).

We used SGD with momentum 0.9, base learning rate 0.001 and decayed the learning rate

by factor 0.1 every 100K steps.

Model Rotation steps Scaling steps Translation steps
1 2 3 4 1 2 3 4 1 2 3 4

Ladd 8.39 11.0 15.1 21.5 5.57 6.09 7.22 14.6 5.44 5.66 6.25 7.45
Lmul 8.04 11.2 13.5 14.2 4.36 4.70 5.78 14.8 4.24 4.45 5.24 6.90
Ldeep 1.98 2.19 2.45 2.87 3.97 3.94 4.37 11.9 3.84 3.81 3.96 4.61

Table 4.1: Comparison of squared pixel error of Ladd, Lmul and Ldeep on shape analogies.

Figure 4.5 shows repeated predictions from Ldeep on rotation, scaling and translation

test set analogies, showing that our model has learned to traverse these manifolds. Table 4.1

shows that Ladd and Lmul perform similarly for scaling and translation, but only Ldeep can

37

perform accurate rotation analogies. Further extrapolation results with repeated rotations

are shown in Figure 4.6. Though both Lmul and Ldeep both are in principle capable of

learning the circular pose manifold, we suspect that Ldeep has much better performance

due to the difficulty of training multiplicative models such as Lmul. A visualization of the

learned rotation manifold is shown in Figure B.4.

4.4.2 Generating 2D video game sprites

Game developers often use what are known as “sprites” to portray characters and ob-

jects in 2D video games (more commonly on older systems, but still seen on phones and

indie games). This entails significant human effort to draw each frame of each common

animation for each character 3. In this section we show how animations can be transferred

to new characters by analogy.

Our dataset consists of 60× 60 color images of sprites scaled to [0, 1], with 7 attributes:

body type, sex, hair type, armor type, arm type, greaves type, and weapon type, with 672

total unique characters. For each character, there are 5 animations each from 4 viewpoints:

spellcast, thrust, walk, slash and shoot. Each animation has between 6 and 13 frames. We

split the data by characters: 500 training, 72 validation and 100 for testing.

We evaluated the Ladd and Ldeep variants of our objective, with and without disen-

tangled features. We also experimented with a disentangled feature version in which the

identity units are taken to be the 22-dimensional character attribute vector, from which the

pose is disentangled. In this case, the encoder for identity units acts as multiple softmax

classifiers, one for each attribute, hence we refer to this objective in experiments asLdis+cls.

The encoder network consisted of two layers of 5 × 5 convolution with stride 2 and

relu, followed by two fully-connected and relu layers, followed by a projection onto the

1024-dimensional embedding. The decoder mirrors the encoder. To increase the spatial

dimension we use simple upsampling in which we copy each input cell value to the upper-

3In some cases the work may be decreased by projecting 3D models to 2D or by other heuristics, but in
general the work scales with the number of animations and characters.

38

left corner of its corresponding 2× 2 output.

For Ldis, we used 512 units for identity and 512 for pose. For Ldis+cls, we used 22

categorical units for identity, which is the attribute vector, and the remaining 490 for pose.

During training for Ldis+cls, we did not backpropagate reconstruction error through the

identity units; we only used the attribute classification objective for those units. When

Ldeep is used, the internal layers of the transformation function T (see Figure 4.2) had

dimension 300, and were each followed by relu. We trained the models using SGD with

momentum 0.9 and learning rate 0.00001 decayed by factor 0.1 every 100k steps. Training

was conducted for 200k steps with mini-batch size 25.

Figure 4.7: Transferring animations. The top row shows the reference, and the bottom row
shows the transferred animation, where the first frame (in red) is the starting frame of a test
set character.

Model spellcast thrust walk slash shoot average
Ladd 41.0 53.8 55.7 52.1 77.6 56.0
Ldis 40.8 55.8 52.6 53.5 79.8 56.5
Ldis+cls 13.3 24.6 17.2 18.9 40.8 23.0

Table 4.2: Mean-squared pixel error on test analogies, by animation.

Figure 4.7 demonstrates the task of animation transfer, with predictions from a model

trained on Ladd. Table 4.2 provides a quantitative comparison of Ladd, Ldis and Ldis+cls.

We found that the disentangling and additive analogy models perform similarly, and that

using attributes for disentangled identity features provides a further gain. We conjecture

that Ldis+cls wins because changes in certain aspects of appearance, such as arm color,

have a very small effect in pixel space yielding a weak signal for pixel prediction, but still

provides a strong signal to an attribute classifier.

From a practical perspective, the ability to transfer poses accurately to unseen characters

39

could help decrease manual labor of drawing (at least of drawing the assets comprising

each character in each animation frame). However, training this model required that each

transferred animation already have hundreds of examples. Ideally, the model could be

shown a small number of examples for a new animation, and transfer it to the existing

character database. We call this setting “few-shot” analogy-making because only a small

number of the analogy targets are provided.

Num. few-shot examples

Model 6 12 24 48

Ladd 42.8 42.7 42.3 41.0

Ldis 19.3 18.9 17.4 16.3

Ldis+cls 15.0 12.0 11.3 10.4

Table 4.3: Mean-squared pixel-prediction
error for few-shot analogy transfer of the
“spellcast” animation from 4 viewpoints.

Reference Output Query Prediction

Figure 4.8: Few shot prediction with 48
training examples.

Table 4.3 provides a quantitative comparison and figure 4.8 provides a qualitative com-

parison of our proposed models in this task. We find that Ldis+cls provides the best per-

formance by a wide margin. Unlike in Table 4.2, Ldis outperforms Ladd, suggesting that

disentangling may allow new animations to be learned in a more data-efficient manner.

However, Ldis has an advantage in that it can average the identity features of multiple

views of a query character, which Ladd cannot do.

The previous analogies only required us to combine disentangled features from two

characters, e.g. the identity from one and the pose from another, and so disentangling was

sufficient. However, our analogy method enables us to perform more challenging analogies

by learning the manifold of character animations, defined by the sequence of frames in

each animation. Adjacent frames are thus neighbors on the manifold and each animation

sequence can be viewed as a fiber in this manifold.
We trained a model by forming analogy tuples across animations as depicted in Fig. 4.9,

40

Figure 4.9: A cartoon visualization of the “shoot” animation manifold for two different
characters in different viewpoints. The model can learn the structure of the animation
manifold by forming analogy tuples during training; example tuples are circled in red and
blue above.

walk

thrust

rotate

ref. output query predictions

Figure 4.10: Extrapolating animations by analogy. The model is shown the reference and
output pair, and repeatedly applies the inferred transformation to the query image, which
advances the animation frame through time. Note that this kind of inference requires learn-
ing the manifold of animation poses, and cannot be done by simply combining and decod-
ing disentangled features.
using disentangled identity and pose features. Pose transformations were modeled by deep

additive interactions, and we used Ldis+cls to disentangle pose from identity units. Fig-

ure 4.10 shows the result of several analogies and their extrapolations, including character

rotation for which we created animations.

4.4.3 3D car analogies

In this section we apply our model to analogy-making on 3D car renderings subject to

changes in appearance and rotation angle. Unlike in the case of shapes, this requires the

model to perform out-of-plane rotation, and the depicted objects are more complex.

41

Features Pose AUC ID AUC

Pose units 95.6 85.2

ID units 50.1 98.5

Combined 94.6 98.4

Table 4.4: Disentangling performance on 3D
cars. Pose AUC refers to area under the
ROC curve for same-or-different pose, and
ID AUC for same-or-different car.

Pose ID Target Pred

Figure 4.11: 3D car analogies. The col-
umn “GT” denotes ground truth.

We use the car CAD models from [42]. For each of the 199 car models, we generated

64 × 64 color renderings from 24 rotation angles each offset by 15 degrees. We split the

models into 100 training, 49 validation and 50 testing. The same convolutional network

architecture was used as in the sprites experiments, other than the difference that we used

512 units for identity and 128 units for pose.

ref output query +1 +2 +3 +4-4 -3 -2 -1

Figure 4.12: Repeated rotation in forward and reverse directions, starting from frontal.

Figure 4.11 shows the analogy completion predictions of our model trained on Ldis,

where prediction images are synthesized by combining pose units for the first car image

and identity units for the second car image. Table 4.4 shows that the learned features are in

fact disentangled, and discriminative for identity and pose matching despite not being dis-

criminatively trained. Figure 4.12 shows repeated rotation analogies on test set cars using

a model trained on Ldeep, demonstrating that our model can perform out-of-plane rotation.

This type of extrapolation is difficult because the query image shows a different car from

a different starting pose. We expect that a recurrent architecture can further improve the

results, as shown in [167].

42

4.4.4 Evans ANALOGY program

In this section we discuss the relation of this chapter to Thomas Evan’s pioneering work

on visual analogy making with 2D shape line drawings [39].

Figure 4.13: Concept figure from Evans’s 1964 paper. The task is to correctly predict which
of shapes 1 - 6 makes the analogy A : B :: C : D true.

Figure 4.13 shows the concept figure from Evans’ paper. In some ways, ANALOGY

demonstrated more advanced capabilities than ours; in particular it is able to reason about

the relations between multiple objects in a single image and how they change from one

image to another. In this chapter, we only considered a single object per image, although

our objects can be more complex than simple line shapes.

The ANALOGY algorithm proceeds in two phases. First, each problem figure is de-

composed into individual objects. For each object, a specified set of geometric properties is

calculated, and the relations among each object are recorded. Second, ANALOGY searches

over all rules that would map image A to image B. It then tries to find a rule that “gener-

alizes” in the sense of also mapping image C onto one of the answer figures. The possible

transformations considered are compositions of euclidian similarity transformations (rota-

tion and uniform scale) with horizontal and vertical reflections.

Our system is distinct from ANALOGY in several advantageous ways: it learns rather

than hand-codes the image features, it learns transformations directly from pixels inputs

and outputs, and it produces the output pixels to complete an analogy rather than choos-

ing among several pre-specified options. On the other hand, ANALOGY can reason about

geometric analogies involving multiple objects with no training data; in a sense it has un-

surpassable data efficiency.

43

Comparing with Evans’ 1964 work begs the question: how can we combine the gen-

erality of connectionist end-to-end learning approaches with the power and efficiency of

search-based symbolic approaches? Certainly we could train our model on Evans-style

analogy problems involving multiple objects. Several recent works have modeled multi-

object dynamics at the pixel level, e.g. for 2D bouncing balls [96] and predicting whether

stacked blocks will fall [12, 86].

4.4.5 Limitations and ambiguous analogies

One limitation of our model is that it assumes a deterministic mapping of (A,B,C)→

D. In reality, there many be many possible D that form a true analogy. Therefore, a more

general approach would be to model the distribution of analogy completions P (D|A,B,C).

A similar network architecture could be used, but perhaps the decoder could be trained as

a Generative Adversarial Network [49] rather than with per-pixel targets.

What would happen if the present model were trained on ambiguous analogies? That

is, if there existed training tuples (A,B,C,D) and (A,B,C,D′), with D 6= D′? In that

case, the network would “hedge” its prediction to produce a blurred image. Indeed, this is

the behavior observed in other convolutional encoder-decoder networks that model noisy

natural image data such as the CelebFaces Attributes Dataset [89].

4.4.6 Conclusions

We studied the problem of visual analogy making using deep neural networks, and pro-

posed several new models. Our experiments showed that our proposed models are very

general and can learn to make analogies based on appearance, rotation, 3D pose, and vari-

ous object attributes. We connected analogy making to the notion of disentangling factors

of variation, and showed that analogy representations can overcome certain limitations of

disentangled representations.

44

CHAPTER V

Learning to represent and execute programs

5.1 Introduction

Teaching machines to learn new programs, to rapidly compose new programs from ex-

isting programs, and to conditionally execute these programs automatically so as to solve a

wide variety of tasks is one of the central challenges of AI. Programs appear in many guises

in various AI problems; including motor behaviours, image transformations, reinforcement

learning policies, classical algorithms, and symbolic relations.

In this work, we develop a compositional architecture that learns to represent and inter-

pret programs. We refer to this architecture as the Neural Programmer-Interpreter (NPI).

The core module is an LSTM-based sequence model that takes as input a learnable program

embedding, program arguments passed on by the calling program, and a feature represen-

tation of the environment. The output of the core module is a key indicating what program

to call next, arguments for the following program and a flag indicating whether the pro-

gram should terminate. In addition to the recurrent core, the NPI architecture includes a

learnable key-value memory of program embeddings. This program-memory is essential

for learning and re-using programs in a continual manner. Figures 5.1 and 5.2 illustrate the

NPI on two different tasks.

We show in our experiments that the NPI architecture can learn 21 programs, includ-

ing addition, sorting, and trajectory planning from image pixels. Crucially, this can be

45

achieved using a single core model with the same parameters shared across all tasks. Dif-

ferent environments (for example images, text, and scratch-pads) may require specific per-

ception modules or encoders to produce the features used by the shared core, as well as

environment-specific actuators. Both perception modules and actuators can be learned from

data when training the NPI architecture.

To train the NPI we use curriculum learning and supervision via example execution

traces. Each program has example sequences of calls to the immediate subprograms con-

ditioned on the input. By using neural networks to learn the subprograms from data, NPI

can generalize on tasks involving rich perceptual inputs and uncertainty.

We may envision two approaches to provide supervision. In one, we provide a very

large number of labeled examples, as in object recognition, speech and machine transla-

tion. In the other, the approached followed in this work, the aim is to provide far fewer

labeled examples, but the labels contain richer information allowing the model to learn

compositional structure. While unsupervised and reinforcement learning play important

roles in perception and motor control, other cognitive abilities are possible thanks to rich

supervision and curriculum learning; indeed the reason for sending children to school.

An advantage of our approach to model building and training is that the learned pro-

grams exhibit strong generalization. Specifically, when trained to sort sequences of up to

twenty numbers in length, they can sort much longer sequences at test time. In contrast, the

experiments will show that more standard sequence to sequence LSTMs only exhibit weak

generalization, see Figure 5.8.

A trained NPI with fixed parameters and a learned library of programs, can act both as

an interpreter and as a programmer. As an interpreter, it takes input in the form of a program

embedding and input data and subsequently executes the program. As a programmer, it uses

samples drawn from a new task to generate a new program embedding that can be added to

its library of programs.

46

INPUTGOTO

KEY ARGEND

h
Mkey Mprog

GOTO() HGOTO() LGOTO() VGOTO()LGOTO() ACT(LEFT) DGOTO() ACT(DOWN)ACT(LEFT) end state

...

... ...

...

...

...

HGOTO

1 2 1 2 1 2

GOTO()

1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2

INPUTHGOTO

KEY ARGEND

h

LGOTO

INPUTLGOTO

KEY ARGEND

h

ACT

INPUTACT

KEY ARGEND

h

ACT

INPUTLGOTO

KEY ARGEND

h

INPUTACT

KEY ARGEND

h

VGOTO

INPUTGOTO

KEY ARGEND

h

INPUTVGOTO

KEY ARGEND

h

INPUTDGOTO

KEY ARGEND

h

DGOTO

ACT

INPUTACT

KEY ARGEND

h

Figure 5.1: Example execution of canonicalizing 3D car models. The task is to move the
camera such that a target angle and elevation are reached. There is a read-only scratch pad
containing the target (angle 1, elevation 2 here). The image encoder is a convnet trained
from scratch on pixels.

9 3 4

3 4 8

9 3 4

3 4 8

2

ADD1() ACT (4,2,WRITE)

9 3 4

3 4 8

2

CARRY()

9 3 4

3 4 8

2

ACT (3,LEFT)

9 3 4

3 4 8

1

2

ACT (3,1,WRITE)

9 3 4

3 4 8

2

ADD1()

9 3 4

3 4 8

2

CARRY()

INPUTADD1

KEY ARGEND

h

ACT
Mkey Mprog

INPUTACT

KEY ARGEND

h

INPUTADD1

KEY ARGEND

h

INPUTCARRY

KEY ARGEND

h

CARRY

ACT

INPUTACT

KEY ARGEND

h

INPUTCARRY

KEY ARGEND

h

ACT

INPUTACT

KEY ARGEND

h

Figure 5.2: Single-digit ad-
dition. The task is to
perform a single-digit add
on the numbers at pointer
locations in the first two
rows. The carry (row 3)
and output (row 4) should
be updated to reflect the
addition. At each time
step, an observation of the
environment (viewed from
each pointer on a scratch
pad) is encoded into a
fixed-length vector.

5.2 Related work

Several ideas related to our approach have a long history. For example, the idea of

using dynamically programmable networks in which the activations of one network be-

come the weights (the program) of a second network was mentioned in the Sigma-Pi units

section of the influential PDP paper [127]. This idea appeared in [145] in the context of

learning higher order symbolic relations and in [35] as the key ingredient of an architec-

ture for prefrontal cognitive control. Schmidhuber [132] proposed a related meta-learning

47

idea, whereby one learns the parameters of a slowly changing network, which in turn gen-

erates context dependent weight changes for a second rapidly changing network. These

approaches have only been demonstrated in very limited settings. In cognitive science,

several theories of brain areas controlling other brain parts so as to carry out multiple tasks

have been proposed; see for example Schneider and Chein [133], Anderson [4] and Don-

narumma et al. [34].

Related problems have been studied in the literature on hierarchical reinforcement

learning (e.g., Dietterich [29], Andre and Russell [5], Sutton et al. [147] and Schaul et al.

[131]), imitation and apprenticeship learning (e.g., Kolter et al. [76] and Rothkopf and Bal-

lard [125]) and elicitation of options through human interaction [142]. These ideas have

held great promise, but have not enjoyed significant impact. We believe the recurrent com-

positional neural representations proposed in this work could help these approaches in the

future, and in particular in overcoming feature engineering.

Several recent advancements have extended recurrent networks to solve problems be-

yond simple sequence prediction. Graves et al. [50] developed a neural Turing machine

capable of learning and executing simple programs such as repeat copying, simple pri-

ority sorting and associative recall. [156] developed Pointer Networks that generalize the

notion of encoder attention in order to provide the decoder a variable-sized output space

depending on the input sequence length. This model was shown to be effective for combi-

natorial optimization problems such as the traveling salesman and Delaunay triangulation.

While our proposed model is trained on execution traces instead of input and output pairs,

in exchange for this richer supervision we benefit from compositional program structure,

improving data efficiency on several problems.

This work is also closely related to program induction. Most previous work on program

induction, i.e. inducing a program given example input and output pairs, has used genetic

programming [10] to evolve useful programs from candidate populations. Mou et al. [102]

process program symbols to learn max-margin program embeddings with the help of parse

48

trees. Zaremba and Sutskever [169] trained LSTM models to read in the text of simple pro-

grams character-by-character and correctly predict the program output. Joulin and Mikolov

[68] augmented a recurrent network with a pushdown stack, allowing for generalization to

longer input sequences than seen during training for several algorithmic patterns.

Contemporary to this work, several papers have also studied program induction with

variants of recurrent neural networks [170, 171, 69, 81, 103]. While we share a similar mo-

tivation, our approach is distinct in that we explicitly incorporate compositional structure

into the network using a program memory, allowing the model to learn new programs by

combining sub-programs.

This chapter can also be connected with decades-old work on inducing finite-state

machines from examples with recurrent neural nets [19, 160, 47] and later genetic algo-

rithms [154]. While these systems were demonstrated to be capable of extracting correct

state machines to recognize simple languages from examples, they were not designed for

induction of programs from execution traces. Also, they operated on sequences consisting

of small alphabets of symbols, rather than perceptual inputs such as images as we con-

sider in this work. Still, this earlier work on state machine induction has the remaining

advantage of producing automata that perfectly generalize; in particular they do not make

mistakes due to accumulation of small errors in a recurrent network. It may also be possi-

ble to extract discrete programs that similarly generalize perfectly; we leave this as future

work.

5.3 Model

The NPI core is a long short-term memory (LSTM) network [61] that acts as a router

between programs conditioned on the current state observation and previous hidden unit

states. At each time step, the core module can select another program to invoke using

content-based addressing. It emits the probability of ending the current program with a

single binary unit. If this probability is over threshold (we used 0.5), control is returned

49

to the caller by popping the caller’s LSTM hidden units and program embedding off of a

program call stack and resuming execution in this context.

The NPI may also write arguments (ARG) passed by reference or value to the invoked

sub-programs. For example, an argument could indicate a specific location in the input se-

quence (by reference), or it could specify a number to write down at a particular location in

the sequence (by value). The subsequent state consists of these arguments and observations

of the environment. The approach is illustrated in Figures 5.1 and 5.2.

It must be emphasized that there is a single inference core. That is, all the LSTM

instantiations executing arbitrary programs share the same parameters. Different programs

correspond to program embeddings, which are stored in a learnable persistent memory. The

programs therefore have a more succinct representation than neural programs encoded as

the full set of weights in a neural network [127, 50].

The output of an NPI, conditioned on an input state and a program to run, is a sequence

of actions in a given environment. In this work, we consider several environments: a 1-D

array with read-only pointers and a swap action, a 2-D scratch pad with read-write pointers,

and a CAD renderer with controllable elevation and azimuth movements. Note that the

sequence of actions for a program is not fixed, but dependent also on the input state.

5.3.1 Inference

Denote the environment observation at time t as et ∈ E , and the current program ar-

guments as at ∈ A. The form of et can vary dramatically by environment; for example it

could be a color image or an array of numbers. The program arguments at can also vary

by environment, but in the experiments for this work we always used a 3-tuple of integers

(at(1), at(2), at(3)). Given the environment and arguments at time t, a fixed-length state

encoding st ∈ RD is extracted by a domain-specific encoder fenc : E × A → RD. In

section 5.4 we provide examples of several encoders. Note that a single NPI network can

have encoders for multiple environments, and encoders can also be shared across tasks.

We denote the current program embedding as pt ∈ RP . The previous hidden unit

50

and cell states are h(l)t−1 ∈ RM and c(l)t−1 ∈ RM , l = 1, ..., L where L is the number of

layers in the LSTM. The program and state vectors are then propagated forward through an

LSTM mapping flstm as in [146]. How to fuse pt and st within flstm is an implementation

detail, but in this work we concatenate and feed through a 2-layer MLP with rectified linear

(ReLU) hidden activation and linear decoder.

From the top LSTM hidden state hLt , several decoders generate the outputs. The prob-

ability of finishing the program and returning to the caller 1 is computed by fend : RM →

[0, 1]. The lookup key embedding used for retrieving the next program from memory is

computed by fprog : RM → RK . Note that RK can be much smaller than RP because the

key only need act as the identifier of a program, while the program embedding must have

enough capacity to conditionally generate a sequence of actions. The contents of the argu-

ments to the next program to be called are generated by farg : RM → A. The feed-forward

steps of program inference are summarized below:

st = fenc(et, at) (5.1)

ht = flstm(st, pt, ht−1) (5.2)

rt = fend(ht), kt = fprog(ht), at+1 = farg(ht) (5.3)

where rt, kt and at+1 correspond to the end-of-program probability, program key embed-

ding, and output arguments at time t, respectively. These yield input arguments at time t+1.

To simplify the notation, we have abstracted properties such as layers and cell memory in

the sequence-to-sequence LSTM of equation (5.2); see [146] for details.

The NPI representation is equipped with key-value memory structures Mkey ∈ RN×K

and Mprog ∈ RN×P storing program keys and program embeddings, respectively, where

N is the current number of programs in memory. We can add more programs by adding

rows to memory.

1In our implementation, a program may first call a subprogram before itself finishing. The only exception
is the ACT program that signals a low-level action to the environment, e.g. moving a pointer one step left or
writing a value. By convention ACT does not call any further sub-programs.

51

During training, the next program identifier is provided to the model as ground-truth,

so that its embedding can be retrieved from the corresponding row of Mprog. At test time,

we compute the “program ID” by comparing the key embedding kt to each row of Mkey

storing all program keys. Then the program embedding is retrieved fromMprog as follows:

i∗ = arg max
i=1..N

(Mkey
i,:)Tkt , pt+1 = Mprog

i∗,: (5.4)

The next environmental state et+1 will be determined by the dynamics of the environment

and can be affected by both the choice of program pt and the contents of the output argu-

ments at, i.e.

et+1 ∼ fenv(et, pt, at) (5.5)

The transition mapping fenv is domain-specific and will be discussed in Section 5.4. A

description of the inference procedure is given in Algorithm 3.

Algorithm 3 Neural programming inference
Inputs: Environment observation e, program id i, arguments a, stop threshold α
function RUN(i, a)

h← 0, r ← 0, p←Mprog
i,: . Init LSTM and return probability.

while r < α do
s← fenc(e, a), h← flstm(s, p, h) . Feed-forward NPI one step.
r ← fend(h), k ← fprog(h), a2 ← farg(h)
i2 ← arg max

j=1..N

(Mkey
j,:)Tk . Decide the next program to run.

if i == ACT then e← fenv(e, p, a) . Update the environment based on ACT.
else RUN(i2, a2) . Run subprogram i2 with arguments a2

Each task has a set of actions that affect the environment. For example, in addition there

are LEFT and RIGHT actions that move a specified pointer, and a WRITE action which

writes a value at a specified location. These actions are encapsulated into a general-purpose

ACT program shared across tasks, and the concrete action to be taken is indicated by the

NPI-generated arguments at.

Note that the core LSTM module of our NPI representation is completely agnostic to

the data modality used to produce the state encoding. As long as the same fixed-length

52

embedding is extracted, the same module can in practice route between programs related

to sorting arrays just as easily as between programs related to rotating 3D objects. In the

experimental sections, we provide details of the modality-specific deep neural networks

that we use to produce these fixed-length state vectors.

5.3.2 Training

To train we use execution traces ξinpt : {et, it, at} and ξoutt : {it+1, at+1, rt}, t = 1, ...T ,

where T is the sequence length. Program IDs it and it+1 are row-indices in Mkey and

Mprog of the programs to run at time t and t + 1, respectively. We propose to directly

maximize the probability of the correct execution trace output ξout conditioned on ξinp:

θ∗ = arg max
θ

∑
(ξinp,ξout)

logP (ξout|ξinp; θ) (5.6)

where θ are the parameters of our model. Since traces are variable in length depending on

the input, we apply the chain rule to model the joint probability over ξout1 , ..., ξoutT :

logP (ξout|ξinp; θ) =
T∑
t=1

logP (ξoutt |ξ
inp
1 , ..., ξinpt ; θ) (5.7)

Note that for many problems the input history ξinp1 , ..., ξinpt is critical to deciding future ac-

tions because the environment observation at the current time-step et alone does not contain

enough information. The hidden unit activations of the LSTM in NPI are capable of captur-

ing these temporal dependencies. The single-step conditional probability in equation (5.7)

can be factorized into three further conditional distributions, corresponding to predicting

the next program, next arguments, and whether to halt execution:

logP (ξoutt |ξ
inp
1 , ..., ξinpt) = logP (it+1|ht) + logP (at+1|ht) + logP (rt|ht) (5.8)

where ht is the output of flstm at time t, carrying information from previous time steps. We

train by gradient ascent on the likelihood in equation (5.7).

We used an adaptive curriculum in which training examples for each mini-batch are

53

fetched with frequency proportional to the model’s current prediction error for the corre-

sponding program. Specifically, we set the sampling frequency using a softmax over aver-

age prediction error across all programs, with configurable temperature. Every 1000 steps

of training we re-estimated these prediction errors. Intuitively, this forces the model to fo-

cus on learning the program for which it currently performs worst in executing. We found

that the adaptive curriculum immediately worked much better than our best-performing

hand-designed curriculum, allowing a multi-task NPI to achieve comparable performance

to single-task NPI on all tasks.

We also note that our program has a distinct memory advantage over basic LSTMs

because all subprograms can be trained in parallel. For programs whose execution length

grows e.g. quadratically with the input sequence length, an LSTM will by highly con-

strained by device memory to train on short sequences. By exploiting compositionality, an

effective curriculum can often be developed with sublinear-length subprograms, enabling

our NPI model to train on order of magnitude larger sequences than the LSTM.

5.4 Experiments

This section describes the environment and state encoder function for each task, and

shows example outputs and prediction accuracy results. For all tasks, the core LSTM had

two layers of size 256. We trained the NPI model and all program embeddings jointly using

RMSprop with base learning rate 0.0001, batch size 1, and decayed the learning rate by a

factor of 0.95 every 10,000 steps.

5.4.1 Task and environment descriptions

In this section we provide an overview of the tasks used to evaluate our model. Ta-

ble C.1 in the appendix provides a full listing of all the programs and subprograms learned

by our model.

54

Addition

The task in this environment is to read in the digits of two base-10 numbers and produce

the digits of the answer. Our goal is to teach the model the standard (at least in the US)

grade school algorithm of adding, in which one works from right to left applying single-

digit add and carry operations.

input 1

input 2

carry

output

0 0 0 9 6

0 0 1 2 5

0 0 1 1 1

0 0 0 2 1

Figure 5.3: Example scratch
pad and pointers used for com-
puting “96 + 125 = 221”. Carry
step is being implemented.

ADD
 ADD1
 WRITE OUT 1
 CARRY
 PTR CARRY LEFT
 WRITE CARRY 1
 PTR CARRY RIGHT
 LSHIFT
 PTR INP1 LEFT
 PTR INP2 LEFT
 PTR CARRY LEFT
 PTR OUT LEFT

 ADD1
 WRITE OUT 2
 CARRY
 PTR CARRY LEFT
 WRITE CARRY 1
 PTR CARRY RIGHT
 LSHIFT
 PTR INP1 LEFT
 PTR INP2 LEFT
 PTR CARRY LEFT
 PTR OUT LEFT

 ADD1
 WRITE OUT 2
 LSHIFT
 PTR INP1 LEFT
 PTR INP2 LEFT
 PTR CARRY LEFT
 PTR OUT LEFT

Figure 5.4: Actual trace of addition program gen-
erated by our model on the problem shown to the
left. Note that we substituted the ACT calls in the
trace with more human-readable steps.

In this environment, the network is endowed with a “scratch pad” with which to store

intermediate computations; e.g. to record carries. There are four pointers; one for each of

the two input numbers, one for the carry, and another to write the output. At each time step,

a pointer can be moved left or right, or it can record a value to the pad. Figure 5.3 illustrates

the environment of this model, and Figure 5.4 provides a real execution trace generated by

our model conditioned on an example problem.

For the state encoder fenc, the model is allowed a view of the scratch pad from the

perspective of each of the four pointers. That is, the model sees the current values at

pointer locations of the two inputs, the carry row and the output row, as 1-of-K encodings,

where K is 10 because we are working in base 10. We also append the values of the input

argument tuple at:

fenc(Q, i1, i2, i3, i4, at) = MLP ([Q(1, i1), Q(2, i2), Q(3, i3), Q(4, i4), at(1), at(2), at(3)])

whereQ ∈ R4×N×K , and i1, ..., i4 are pointers, one per scratch pad row. The first dimension

of Q corresponds to scratch pad rows, N is the number of columns (digits) and K is the

55

one-hot encoding dimension. To begin the ADD program, we set the initial arguments to a

default value and initialize all pointers to be at the rightmost column. The only subprogram

with non-default arguments is ACT, in which case the arguments indicate an action to be

taken by a specified pointer.

Sorting

In this section we apply our model to a setting with potentially much longer execution

traces: sorting an array of numbers using bubblesort. As in the case of addition we can use

a scratch pad to store intermediate states of the array. We define the encoder as follows:

fenc(Q, i1, i2, at) = MLP ([Q(1, i1), Q(1, i2), at(1), at(2), at(3)])

where Q ∈ R1×N×K is the pad, N is the array length and K is the array entry embedding

dimension. Figures 5.5 and 5.6 show an example series of states and an execution trace.

t=0 3 2 4 9 1

3 2 4 9 1

2 3 4 9 1

2 3 4 9 1

t=1

t=2

t=3

array

Figure 5.5: Example scratch pad
and pointers used for sorting.

BUBBLESORT
 BUBBLE
 PTR 2 RIGHT
 BSTEP
 COMPSWAP
 SWAP 1 2
 RSHIFT
 PTR 1 RIGHT
 PTR 2 RIGHT
 …
 BSTEP
 COMPSWAP
 RSHIFT
 PTR 1 RIGHT
 PTR 2 RIGHT

 RESET …
 LSHIFT
 PTR 1 LEFT
 PTR 2 LEFT
 LSHIFT
 PTR 1 LEFT
 PTR 2 LEFT
 …
 LSHIFT
 PTR 1 LEFT
 PTR 2 LEFT

BUBBLE …
 PTR 2 RIGHT
 BSTEP
 COMPSWAP
 SWAP 1 2
 RSHIFT
 PTR 1 RIGHT
 PTR 2 RIGHT
 ...
 BSTEP
 COMPSWAP
 RSHIFT
 PTR 1 RIGHT
 PTR 2 RIGHT

Figure 5.6: Excerpt from the trace of the learned
bubblesort program.

Canonicalizing 3D models

We also apply our model to a vision task with a very different perceptual environment

- pixels. Given a rendering of a 3D car, we would like to learn a visual program that

“canonicalizes” the model with respect to its pose. Whatever the starting position, the

program should generate a trajectory of actions that delivers the camera to the target view,

e.g. frontal pose at a 15◦ elevation. For training data, we used renderings of the 3D car

56

CAD models from [41].

This is a nontrivial problem because different starting positions will require quite dif-

ferent trajectories to reach the target. Further complicating the problem is the fact that the

model will need to generalize to different car models than it saw during training.

We again use a scratch pad, but here it is a very simple read-only pad that only contains

a target camera elevation and azimuth – i.e., the “canonical pose”. Since observations here

are pixels, we use a convolutional neural network fCNN as the image encoder:

fenc(Q, x, i1, i2, at) = MLP ([Q(1, i1), Q(2, i2), fCNN(x), at(1), at(2), at(3)])

where x ∈ RH×W×3 is a car rendering at the current pose, Q ∈ R2×1×K is the pad contain-

ing canonical azimuth and elevation, i1, i2 are the (fixed at 1) pointer locations, and K is

the one-hot encoding dimension of pose coordinates. We set K = 24 corresponding to 15◦

pose increments.

Note, critically, that NPI only has access to pixels of the rendering and the target pose,

and is not provided the pose of query frames. We are also aware that one solution would

be to train a pose classifier network and then find the shortest path to canonical pose via

classical methods. That is also a sensible approach. However, our purpose here is to

show that our method generalizes beyond the scratch pad domain to detailed images of 3D

objects, and also to other environments with a single multi-task model.

5.4.2 Sample complexity and generalization

Both LSTMs and Neural Turing Machines can learn to perform sorting to a limited

degree, although they have not been shown to generalize well to much longer arrays than

were seen during training. However, we are interested not only in whether sorting can be

accomplished, but whether a particular sorting algorithm (e.g. bubblesort) can be learned

by the model, and how effectively in terms of sample complexity and generalization.

We compare the generalization ability of our model to a flat sequence-to-sequence

57

LSTM [146], using the same number of layers (2) and hidden units (256). Note that a

flat 2 version of NPI could also learn sorting of short arrays, but because bubblesort runs

in O(N2) for arrays of length N , the execution traces quickly become far too long to store

the required number of LSTM states in memory. Our NPI architecture can train on much

larger arrays by exploiting compositional structure; the memory requirements of any given

subprogram can be restricted to O(N).

Figure 5.7: Sample complexity. Test accu-
racy of sequence-to-sequence LSTM versus
NPI on length-20 arrays of single-digit num-
bers. Note that NPI is able to mine and train
on subprogram traces from each bubblesort
example.

Training
sequence
lengths

Figure 5.8: Strong vs. weak generaliza-
tion. Test accuracy of sequence-to-sequence
LSTM versus NPI on varying-length arrays
of single-digit numbers. Both models were
trained on arrays of single-digit numbers up
to length 20.

A strong indicator of whether a neural network has learned a program well is whether

it can run the program on inputs of previously-unseen sizes. To evaluate this property,

we train both the sequence-to-sequence LSTM and NPI to perform bubblesort on arrays

of single-digit numbers from length 2 to length 20. Compared to fixed-length inputs this

raises the challenge level during training, but in exchange we can get a more flexible and

generalizable sorting program.

To handle variable-sized inputs, the state representation must have some information

about input sequence length and the number of steps taken so far. For example, the main

BUBBLESORT program naturally needs to call its helper function BUBBLE a number of

times dependent on the sequence length. We enable this in our model by adding a third

2By flat in this case, we mean non-compositional, not making use of subprograms, and only making calls
to ACT in order to swap values and move pointers.

58

pointer that acts as a counter; each time BUBBLE is called the pointer is advanced by one

step. The scratch pad environment also provides a bit indicating whether a pointer is at

the start or end of a sequence, equivalent in purpose to end tokens used in a sequence-to-

sequence model. For each length, we provided 64 example bubblesort traces, for a total of

1,216 examples. Then, we evaluated whether the network can learn to sort arrays beyond

length 20. We found that the trained model generalizes well, and is capable of sorting

arrays up to size 60; see Figure 5.8. At 60 and beyond, we observed a failure mode in which

sweeps of pointers across the array would take the wrong number of steps, suggesting that

the limiting performance factor is related to counting. In stark contrast, when provided with

the 1,216 examples, the sequence-to-sequence LSTMs fail to generalize beyond arrays of

length 25 as shown in Figure 5.8.

To study sample complexity further, we fix the length of the arrays to 20 and vary the

number of training examples. We see in Figure 5.7 that NPI starts learning with 2 examples

and is able to sort almost perfectly with only 8 examples. The sequence-to-sequence model

on the other hand requires 64 examples to start learning and only manages to sort well with

over 250 examples.

GOTO 1 2
 HGOTO
 LGOTO
 ACT(LEFT)
 VGOTO
 DGOTO
 ACT(DOWN)

GOTO 1 2
 HGOTO
 RGOTO
 ACT(RIGHT)
 ACT(RIGHT)
 ACT(RIGHT)
 VGOTO
 DGOTO
 ACT(DOWN)
 ACT(DOWN)

7

GOTO 1 2
 HGOTO
 RGOTO
 ACT(RIGHT)
 VGOTO
 UGOTO
 ACT(UP)

GOTO 1 2
 HGOTO
 LGOTO
 ACT(LEFT)
 ACT(LEFT)
 ACT(LEFT)
 ACT(LEFT)
 ACT(LEFT)
 VGOTO
 UGOTO
 ACT(UP)

1 2 3

1 2 3

4 5 6

1 2 3
1 2 3

4 5 6

Figure 5.9: Example canonicalization of several different test set cars, of different appear-
ance than the train set cars. The network is able to generate and execute the appropriate
plan based on the starting car image. This NPI was trained on trajectories starting at az-
imuth (−75◦...75◦) , elevation (0◦...60◦) in 15◦ increments. The training trajectories target
azimuth 0◦ and elevation 15◦, as in the generated traces above.

59

Figure 5.9 shows several example canonicalization trajectories generated by our model,

starting from the leftmost car. The image encoder was a convolutional network with three

passes of stride-2 convolution and pooling, trained on renderings of size 128 × 128. The

canonical target pose in this case is frontal with 15◦ elevation. At test time, from an initial

rendering, NPI is able to canonicalize cars of varying appearance from multiple starting

positions. Importantly, it can generalize to car appearances not encountered in the training

set as shown in Figure 5.9.

5.4.3 Learning new programs with a fixed core

One challenge for continual learning of neural-network-based agents is that training on

new tasks and experiences can lead to degraded performance in old tasks. The learning of

new tasks may require that the network weights change substantially, so care must be taken

to avoid catastrophic forgetting[93, 110]. Using NPI, one solution is to fix the weights of

the core routing module, and only make sparse updates to the program memory.

When adding a new program the core module’s routing computation will be completely

unaffected; all the learning for a new task occurs in program embedding space. Of course,

the addition of new programs to the memory adds a new choice of program at each time

step, and an old program could mistakenly call a newly added program. To overcome this,

when learning a new set of program vectors with a fixed core, in practice we train not only

on example traces of the new program, but also traces of existing programs. Alternatively,

a simpler approach is to prevent existing programs from calling subsequently added pro-

grams, allowing addition of new programs without ever looking back at training data for

known programs. In either case, note that only the memory slots of the new programs are

updated, and all other weights, including other program embeddings, are fixed.

Table 5.1 shows the result of adding a maximum-finding program MAX to a multitask

NPI trained on addition, sorting and canonicalization. MAX first calls BUBBLESORT and

then a new program RJMP, which moves pointers to the right of the sorted array, where the

60

max element can be read. During training we froze all weights except for the two newly-

added program embeddings. We find that NPI learns MAX perfectly without forgetting

the other tasks. In particular, after training a single multi-task model as outlined in the

following section, learning the MAX program with this fixed-core multi-task NPI results

in no performance deterioration for all three tasks.

5.4.4 Solving multiple tasks with a single network

In this section we perform a controlled experiment to compare the performance of a

multi-task NPI with several single-task NPI models. Table 5.1 shows the results for ad-

dition, sorting and canonicalizing 3D car models. We trained and evaluated on 10-digit

numbers for addition, length-5 arrays for sorting, and up to four-step trajectories for canon-

icalization. As shown in Table 5.1, one multi-task NPI can learn all three programs (and 21

subprograms) with comparable accuracy compared to each single-task NPI.

Task Single Multi + Max
Addition 100.0 97.0 97.0
Sorting 100.0 100.0 100.0
Canon. seen car 89.5 91.4 91.4
Canon. unseen 88.7 89.9 89.9
Maximum - - 100.0

Table 5.1: Per-sequence % accuracy. “+
Max” indicates performance after addition
of the additional max-finding subprograms
to memory. “unseen” uses a test set with
disjoint car models from the training set,
while “seen car” uses the same car models
but different trajectories.

5.5 Conclusion

We have shown that the NPI can learn programs in very dissimilar environments with

different affordances. In the context of sorting we showed that NPI exhibits very strong

generalization in comparison to sequence-to-sequence LSTMs. We also showed how a

trained NPI with a fixed core can continue to learn new programs without forgetting already

learned programs.

61

CHAPTER VI

Learning to represent fine-grained visual descriptions

6.1 Introduction

A key challenge in image understanding is to correctly relate natural language concepts

to the visual content of images. In recent years there has been significant progress in

learning visual-semantic embeddings, e.g. for zero-shot learning [111, 124, 82, 107, 43,

136, 3] and automatically generating image captions for general web images [78, 109, 157,

70, 33]. These methods have harnessed large image and text datasets [128, 168, 88], as well

as advances in deep neural networks for image and language modeling, already enabling

powerful new applications such as auto-captioning images for blind users on the web [95].

Despite these advances, the problem of relating images and text is still far from solved.

In particular for the fine-grained regime [161, 37, 26, 172], where images of different

classes have only subtle distinctions, sophisticated language models have not been em-

ployed, perhaps due to the scarcity of large and high-quality training data. For instance on

the Caltech-UCSD birds database (CUB) [161], previous zero-shot learning approaches [44,

3, 8] have used human-encoded attributes [82], or simplified language models such as bag-

of-words [55], WordNet-hierarchy-derived features [99], and neural word embeddings such

as Word2Vec [97] and GloVE [113].

Previous text corpora used for fine-grained label embedding were either very large but

not visually focused, e.g. the entire wikipedia, or somewhat visually relevant but very

62

 The beak is yellow and pointed

Accumulate
matching score +8.56

-5.23

 0.03

CNN

Figure 6.1: A conceptual diagram of our framework for learning visual description embed-
dings. Our model learns a scoring function between images and natural language descrip-
tions. A word-based LSTM is shown, but we evaluate several alternative models.

short, e.g. the subset of wikipedia articles that are related to birds. Furthermore, these

corpora do not provide sufficient examples of specific images and their descriptions. Given

the data limitations, previous text embedding methods work surprisingly well for zero-shot

visual recognition, but there remains a large gap between the text embedding methods and

human-annotated attributes (28.4% vs 50.1% average top-1 per-class accuracy on CUB [3]).

In order to close the performance gap between text embeddings and human-annotated

attributes for fine-grained visual recognition, we hypothesize that higher-capacity text mod-

els are required. However, more sophisticated text models would in turn require more train-

ing data, in particular aligned images and multiple visual descriptions per image for each

fine-grained category. These descriptions would support both zero-shot image recognition

and zero-shot image retrieval, which are strong measures of the generalization ability of

both image and text models.

Our contributions in this chapter are as follows. First, we collected two datasets of

fine-grained visual descriptions: one for the Caltech-UCSD birds dataset, and another for

the Oxford-102 flowers dataset [106]. Second, we propose a novel extension of struc-

tured joint embedding [3], and show that it can be used for end-to-end training of deep

neural language models. It also dramatically improves zero-shot retrieval performance for

63

all models. Third, we evaluate several variants of word- and character-based neural lan-

guage models, including our novel hybrids of convolutional and recurrent networks for text

modeling. We demonstrate significant improvements over the state-of-the-art on CUB and

Flowers datasets in both zero-shot recognition and retrieval.

6.2 Related work

Over the past several years, advances in deep convolutional networks [77, 32, 148]

have driven rapid progress in general-purpose visual recognition on large-scale benchmarks

such as ImageNet [25]. The learned features of these networks have proven transferable to

many other problems [108]. However, a remaining challenge is fine-grained image clas-

sification [161, 37, 26, 172], i.e. classifying objects of many visually similar classes. The

difficulty is increased by the lack of extensive labeled images [111, 124, 82, 107, 43, 136],

which for fine-grained data sets may even require annotation by human experts.

The setting we study in this work is both fine-grained and zero-shot, e.g. we want to do

fine-grained classification of previously unseen categories of birds and flowers. This prob-

lem is not as contrived as it may at first seem: good performance would strongly indicate

the generalization ability of image and text features; in particular that our visual description

embeddings represent well the fine-grained visual concepts in images, rather than over-

fitting to known categories. Strong performance metrics for visual-semantic models are

especially apropos because of the risk of overfitting recent high-capacity captioning mod-

els, e.g. memorizing (and possibly regurgitating) training captions. We compare to previous

work on zero-shot recognition, and also report zero-shot text-based retrieval. Zero-shot re-

trieval and detection have also been studied in [24, 53, 163, 72], but no other work has

studied zero-shot text-based retrieval in the fine-grained context of CUB and flowers.

There has been a surge of progress in the field of deep multi-modal representation

learning in the past several years. In [105, 140], audio and video signals were combined in

an autoencoder framework, yielding improved speech signal classification for noisy inputs,

64

and learning a shared representation across modalities. In [140], a deep Boltzmann machine

architecture was used for multimodal learning on Flickr images and text tags. In addition

to improved discriminative performance, it was also able to hallucinate missing modalities,

i.e. generate text tags given the image, or retrieve images given text tags. In [139], a

novel information theoretic objective is developed, improving the performance of deep

multimodal learning for images and text.

Recent image and video captioning models [92, 157, 70, 164, 33] go beyond tags to

generate natural language descriptions. These models use LSTMs [61] for modeling cap-

tions at word level and focus on generating general high-level visual descriptions of a scene.

As an alternative to using LSTMs for language modeling, other works have used character-

based convolutional networks [173].

Architecturally, other vision systems have trained convolutional and recurrent com-

ponents (CNN-RNN) end-to-end, e.g. for encoding spatial dependencies in segmenta-

tion [174] and video classification [104]. Here we extend CNN-RNN to learn a visual

semantic embedding “from scratch” at the character level, yielding competitive perfor-

mance, robustness to typos, and scalability to large vocabulary.

A related line of work has been to improve label embeddings for image classifica-

tion [14, 162, 43, 2, 107]. Embedding labels in an euclidean space is an effective way to

model latent relationships between classes [14, 162]. For zero-shot learning, DeViSE [43]

and ALE [2] employ two variants of a ranking formulation to learn a compatibility between

images and textual side-information. ConSe [107] uses the probabilities of a softmax-

output layer to weigh the semantic vectors of all the classes. An evaluation of embeddings

for fine-grained and zero-shot classification [3] showed a large performance gap between

attributes and unsupervised word embeddings.

In [38] and [9], the zero-shot recognition problem is cast as predicting parameters of

a classifier given a text description of the novel category. Our work considers a similar

problem, but there are major differences. We consider multi-class zero-shot recognition

65

and retrieval, whereas those works mainly focus on one-vs-rest detection of novel cate-

gories. More importantly, our setting assumes that we have a significant amount of visual

descriptions for training high-capacity text models, whereas those works had much less

text available and used TF-IDF features.

Our contribution builds on previous work on character-level language models [173]

and fine-grained zero-shot learning [2] to train high capacity text encoders from scratch

to jointly embed fine-grained visual descriptions and images. We demonstrate that with

sufficient training data, text-based label embeddings can outperform the previous attributes-

based state-of-the art for zero-shot recognition on CUB (at both word and character level).

6.3 Deep Structured Joint Embedding

In this section we describe our approach to jointly embedding images and fine-grained

visual descriptions, which we call deep structured joint embedding. As in previous multi-

modal structured learning methods [2, 3], we learn a compatibility function of images and

text. However, instead of using a bilinear compatibility function we use the inner prod-

uct of features generated by deep neural encoders. An instantiation of our model using a

word-level LSTM is illustrated in Figure 6.1.

Intuitively, we maximize the compatibility between a description and its matching im-

age, and minimize compatibility with images from other classes.

Objective. Given data S = {(vn, tn, yn), n = 1, ..., N} containing visual information

v ∈ V , text descriptions t ∈ T and class labels y ∈ Y , we seek to learn functions fv : V →

Y and ft : T → Y that minimize the empirical risk

1

N

N∑
n=1

∆(yn, fv(vn)) + ∆(yn, ft(tn)) (6.1)

where ∆ : Y × Y → R is the 0-1 loss. Note that N is the number of image and text pairs

in the training set, and so a given image can have multiple corresponding captions.

66

Here we draw a distinction between our method from previous work on structured joint

embedding [3]; namely that our objective is symmetric with respect to images and text.

This has the benefit that by optimizing equation 6.1, a single model can learn to predict by

conditioning on both images and text. We thus name the above objective deep symmetric

structured joint embedding (DS-SJE). It is possible to use just one of the two terms in

Eq. 6.1. For example in [3] only the first term is used in order to train a zero-shot image

classifier, i.e. only image encoder fv is trained. In our experiments we refer to this as deep

asymmetric structured joint embedding (DA-SJE).

It is also possible to build an asymmetric model in the opposite direction, i.e. only train

ft in order to perform zero-shot image retrieval, although we are not aware of previous

works doing this. From a practical perspective it is clearly better to have a single model

that does both tasks well. Thus in our experiments we compare DS-SJE with DA-SJE

(training only fv) for zero-shot classification.

Inference. We define a compatibility function F : V × T → R that uses features from

learnable encoder functions θ(v) for images and ϕ(t) for text:

F (v, t) = θ(v)Tϕ(t) (6.2)

We then formulate image and text classifiers as follows:

fv(v) = arg max
y∈Y

Et∼T (y)[F (v, t)] (6.3)

ft(t) = arg max
y∈Y

Ev∼V(y)[F (v, t)] (6.4)

where T (y) is the subset of T from class y, V(y) is the subset of V from class y, and the

expectation is over text descriptions sampled uniformly from these subsets.

Since the compatibility function is shared by ft and fv, in the symmetric objective it

must learn to yield accurate predictions for both classifiers. From the perspective of the

text encoder, this means that text features must produce a higher compatibility score to a

67

matching image compared to both 1) the score of that image with any mismatching text,

and 2) the score of that text with any mismatching image. We found that both 1) and 2) are

important for accurate recognition and retrieval using a single model.

Learning. Since the 0-1 loss is discontinuous, we instead optimize a surrogate objective

function (related to equation 6.1) that is continuous and convex:

1

N

N∑
n=1

`v(vn, tn, yn) + `t(vn, tn, yn) (6.5)

where the misclassification losses are written as:

`v(vn, tn,yn) = (6.6)

max
y∈Y

(0,∆(yn, y) + Et∼T (y)[F (vn, t)− F (vn, tn)])

`t(vn, tn,yn) = (6.7)

max
y∈Y

(0,∆(yn, y) + Ev∼V(y)[F (v, tn)− F (vn, tn)])

In practice we have many visual descriptions and many images per class. During train-

ing, in each mini-batch we first sample an image from each class, and then sample one of

its ten corresponding captions. To train the model, we use SGD on Eq. 6.5 with RMSprop.

Since our text encoder models are all differentiable, we backpropagate (sub)-gradients

through all text network parameters for end-to-end training. For the image encoder, we

keep the network weights fixed to the original GoogLeNet.

6.4 Text encoder models

In this section we describe the language models that we use for representing visual

descriptions. We compare the performance on zero-shot prediction tasks in Section 6.5.

68

6.4.1 Text-based ConvNet (CNN)

Text-based convolutional neural networks were studied in depth in [173] for the task

of document classification. The text-based CNN can be viewed as a standard CNN for

images, except that the image width is 1 pixel and the number of channels is equal to the

alphabet size. The 2D convolution and spatial max-pooling are replaced by temporal (1D)

convolution and temporal max-pooling. After each convolution layer, we use rectified lin-

ear activation unit (ReLU), which is defined as relu(x) = max(0, x). The overall network

is constructed using convolution, pooling and thresholding activation function layers, fol-

lowed by fully-connected layers to project onto the embedding space. The text embedding

function is thus simply ϕ(t) = CNN(t); the final hidden layer of the CNN.

The maximum input length for character sequences is constrained by the network ar-

chitecture, but variable length sequences beneath this limit are handled by zero-padding

the input past the final input character. The Word-CNN is exactly the same as Char-CNN

except that the alphabet of the Char-CNN is replaced with the vocabulary of the Word-

CNN. Of course, the vocabulary is much larger, typically at least several thousand words

compared to a few dozen characters in an alphabet. However, the sequence length is sig-

nificantly reduced.

6.4.2 Convolutional Recurrent Net (CNN-RNN)

A potential shortcoming of convolution-only text models is that they lack a strong tem-

poral dependency along the input text sequence. However, the CNN models are extremely

fast and scale well to long sequences such as character strings. To get the benefits of both

recurrent models and CNNs, we propose to stack a recurrent network on top of a mid-

level temporal CNN hidden layer. Intuitively, the CNN hidden activation is split along the

time dimension (in our case when the dimension was reduced to 8) and treated as an input

sequence of vectors. The entire resulting network is still end-to-end differentiable.

This approach has the advantage that low-level temporal features can be learned effi-

69

The beak is yellow and pointed and the wings are blue.

Convolutional
encoding

Sequential
encoding

Figure 6.2: Our proposed convolutional-recurrent net.

ciently with fast convolutional networks, and temporal structure can still be exploited at

the more abstract level of mid-level features. This can be viewed as modeling temporal

structure at the abstract or conceptual level, not strictly dilineated by word boundaries. The

approach is well-suited to the case of character-level processing (Char-CNN-RNN). We

also evaluate a word-level version (Word-CNN-RNN).

Figure 6.2 illustrates the convolutional-recurrent approach. The final encoded feature is

the average hidden unit activation over the sequence, i.e. ϕ(t) = 1/L
∑L

i=1 hi, where hi is

the hidden activation vector for the i-th frame and L is the sequence length. The resulting

scoring function can be viewed as a linear accumulation of evidence for compatibility with

a query image (illustrated in Figure 6.1). It is also a linearized version of attention over the

text sequence. This has the advantage that at test time for classification or retrieval, one can

use the averaged hidden units as a feature, but for diagnostic purposes one can backtrace

the score computation to each time step of text processing.

6.4.3 Long Short-Term Memory (LSTM)

As opposed to the CNN models, the LSTM explicitly takes into account the temporal

structure starting from words or characters. We refer readers to [61] for full details. To

extract a text embedding from the LSTM text encoder, we take the temporal average of the

70

final layer hidden units, i.e. ϕ(t) = 1/L
∑L

i=1 hi (defined similarly as in Section 6.4.2).

6.4.4 Baseline representations

Since we gathered a significant amount of new data, traditional (e.g. non-“deep”) text

representations should also improve in performance. To evaluate whether the neural en-

coders provide an additional benefit, we compare against several classical methods.

For the BoW model, we first compute the vocabulary V of all of the unique words

appearing in the visual descriptions. Then, we encode each description as a binary vector

indicating the presence or absence of each word. The embedding function is simply the

output of a multi-layer perceptron (MLP), ϕ(t) = MLP(I(t)). where I(·) maps t to an

indicator vector in {0, 1}|V |. In practice we found a single layer linear projection was

sufficient for surprisingly good performance.

We also evaluate a baseline that represents descriptions using unsupervised word em-

beddings learned by word2vec [97]. Previous works on visual-semantic embedding have

directly used the word embedings of target classes for zero-shot learning tasks. However,

in our case we have access to many visual descriptions, and we would like to extract vector

representations of them in real time; i.e. without re-running word2vec training. A very sim-

ple way to do this is to average the word embeddings of each word in the visual description.

Although this loses the structure of the sentence, this nevertheless yields a strong baseline

and in practice performs similarly to bag of words.

Finally, an important point of comparison is attributes, which contain rich structured

information far more compactly than informal visual descriptions. As in the case of bag-

of-words, we learn a single-layer encoder function mapping attributes to the embedding

space. Since the number of attribute vectors is very small (only one per class), the risk of

over-fitting strongly limits the encoder network capacity. The CUB dataset also has per-

image attributes, but we found that using these does not improve performance compared to

using a single averaged attribute vector per class.

71

The bird has a white
underbelly, black
feathers in the wings,
a large wingspan, and
a white beak.

This bird has
distinctive-looking
brown and white
stripes all over its
body, and its brown
tail sticks up.

This swimming bird
has a black crown
with a large white
strip on its head,
and yellow eyes.

This flower has a
central white blossom
surrounded by large
pointed red petals
which are veined and
leaflike.

Light purple petals
with orange and
black middle green
leaves

This flower is yellow
and orange in color,
with petals that are
ruffled along the
edges.

Figure 6.3: Example annotations of birds and flowers.

6.5 Experimental results

In this section we describe our experiments on the Caltech-UCSD Birds dataset (CUB)

and Oxford Flowers-102 (Flowers) dataset. CUB contains 11,788 bird images from 200

different categories. Flowers contains 8189 flower images from 102 different categories.

Following [2], the images in CUB are split into 100 training, 50 validation, and 50 disjoint

test categories1. As in [9], the images in Flowers are split into 82 training + validation and

20 test classes. For the image features, we extracted 1, 024-dimensional pooling units from

GoogLeNet [148] with batch normalization [66] implemented in Torch2. For each image,

we extracted middle, upper left, upper right, lower left and lower right crops for the original

and horizontally-flipped image, resulting in 10 views per training image. At test time we

only use the original image resized to 224× 224.

For all word-level models (BoW, Word-LSTM, Word-CNN, Word-CNN-RNN), we

used all vocabulary words in the dataset. For character-level models (Char-LSTM, Char-

CNN, Char-CNN-RNN), the alphabet consisted of all lowercase characters and punctu-

ation. The CNN input size (sequence length) was set to 30 for word-level and 201 for

character-level models; longer text inputs are cut off at this point and shorter ones are zero-

1Since we evaluate in the zero-shot setting, it is critical that the validation categories be disjoint from the
training categories. Once hyperparameters have been cross-validated, the training + validation (150) classes
can be taken as the training set. For Flowers, we do not do any parameter cross-validation, we use the same
parameters found for CUB.

2github.com/soumith/imagenet-multiGPU.torch

72

github.com/soumith/imagenet-multiGPU.torch

padded. All text embeddings used a 1024-dimensional embedding layer to match the size

of the image embedding. We kept the image encoder fixed, and used RMSprop with base

learning rate 0.0007 and minibatch size 40.

6.5.1 Collecting fine-grained visual descriptions

In this section we describe the collection of our new dataset of fine-grained visual de-

scriptions. For each image in CUB and Flowers, we collected ten single-sentence visual

descriptions. We used the Amazon Mechanical Turk (AMT) platform for data collection,

using non-“Master” certified workers situated in the US with average work approval rating

above 95%. We asked workers to describe only visual appearance in at least 10 words, to

avoid figures of speech, to avoid naming the species even if they knew it, and not to describe

the background or any actions being taken. The prompt included three example sentences

and a diagram labeling specific parts of a bird (e.g. tarsus) and flower (e.g. stamen) so that

non-experts could describe many different aspects without reference to external sources

such as Wikipedia. Workers were not told the species.

Figure 6.3 shows several representative examples of the results from our data collec-

tion. The descriptions almost always accurately describe the image, to varying degrees

of comprehensiveness. Thus, in some cases multiple captions might be needed to fully

disambiguate the species of bird category. However, as we show subsequently, the data

is descriptive and large enough to support training high-capacity text models and greatly

improve the performance of text-based embeddings for zero-shot learning.

73

Top-1 Acc (%) AP@50 (%)
Embedding DA-SJE DS-SJE DA-SJE DS-SJE
ATTRIBUTES 50.9 50.4 20.4 50.0
WORD2VEC 38.7 38.6 7.5 33.5
BAG-OF-WORDS 43.4 44.1 24.6 39.6

CHAR CNN 47.2 48.2 2.9 42.7
CHAR LSTM 22.6 21.6 11.6 22.3
CHAR CNN-RNN 54.0 54.0 6.9 45.6

WORD CNN 50.5 51.0 3.4 43.3
WORD LSTM 52.2 53.0 36.8 46.8
WORD CNN-RNN 54.3 56.8 4.8 48.7

Table 6.1: Zero-shot recognition and retrieval on CUB. “DS-SJE” and “DA-SJE” refer to
symmetric and asymmetric forms of our joint embedding objective, respectively.

2 4 6 8 10
of trainining sentences

10

20

30

40

50

60

T
op

-1
 A

cc
. (

in
 %

)

Classification

2 4 6 8 10
of trainining sentences

10

20

30

40

50

60

m
A

P
 (

in
 %

)
Retrieval

Word2vec
Bag of Words
Char-CNN
Char-LSTM
Char-CNN-RNN
Word-CNN
Word-LSTM
Word-CNN-RNN
Attributes

1 2 4 8 16 32 64 128 192 512
of test sentences per class

10

20

30

40

50

60

T
op

-1
 A

cc
. (

in
 %

)

Classification

1 2 4 8 16 32 64 128 192 512
of test sentences per class

10

20

30

40

50

60

m
A

P
@

50
 (

in
 %

)

Retrieval

Figure 6.4: Top: Performance impact of increasing the number of training sentences. Bot-
tom: Increasing the number of test sentences used at test time.

6.5.2 CUB zero-shot recognition and retrieval

In this section we describe the protocol and results for our zero-shot tasks. For both

recognition and retrieval, we first extract text encodings from test captions and average

74

them per-class. In this experiment we use all test captions and in a later section we vary this

number, including using a single caption per class. In recognition, the resulting classifier

is defined by equation 6.3. Note that by linearity we can move the expectation inside the

compatibility function:

fv(v) = arg max
y∈Y

θ(v)TEt∼T (y)[ϕ(t)] (6.8)

The expectation above is estimated by the averaged per-class text embedding that we com-

pute. Hence the accuracy of the classifier is determined not only by the underlying image

and text encoders, but also by the quantity of text available at test time.

In the retrieval task, we rank all test set images according to compatibility (equation 6.2)

with the averaged text embedding for each class. We report the AP@50, i.e. the percent of

top-50 scoring images whose class matches that of the text query, averaged over the 50 test

classes. Table 6.1 summarizes our results. Both in the classification (first two columns)

and for retrieval (last two columns) settings, the symmetric (DS-SJE) formulation of our

model improves over the asymmetric (DA-SJE) formulation. Especially for retrieval, DS-

SJE performs much better than DA-SJE consistently for all the text embedding variants.

It makes the difference between working very well and failing, particularly for the high-

capacity models which likely overfit to the classification task in the asymmetric setting.

In the classification setting there are notable differences between the language mod-

els. For DA-SJE (first column), Char-CNN-RNN (54.0% Top-1 Acc) and Word-CNN-

RNN (54.3%) outperform the attributes-based state-of-the-art [3] for zero-shot classifica-

tion (50.1%). In fact we replicated the attribute-based model in [3] and got slightly better

results (50.9%, also reported in Table 6.1), probably due to training on 10 image crops

instead of a single crop. Similar observations hold for DS-SJE (second column). Notably

for DS-SJE, Char-CNN-RNN (54.0%), Word-CNN (51.0%), Word-LSTM (53.0%) and

Word-CNN-RNN (56.8%) outperform the attributes. In the case of retrieval and DS-SJE

(last column), attributes still performs the best (50.0% AP), but Word-CNN-RNN (48.7%)

75

approaches this result.

Among the character-level models, Char-CNN is significantly better than Char-LSTM.

Additionally, our proposed Char-CNN-RNN, which adds a temporal aspect to Char-CNN,

improves over the other two character-based deep methods and also over the attribute-

based state-of-the-art for classification. This is notable because it establishes that character-

level models can extract visually-discriminative text representations of previously-unseen

categories. Furthermore, combining convolutional and temporal processing appears to be a

promising approach to learn at the character level. Word-level models improve performance

further and can also significantly outperform attributes.

6.5.3 Effect of visual description training set size

In this section we investigate the effect of increasing the number of sentences used in

training on zero-shot classification and retrieval performance. Obviously having more data

is better, but with this experiment we can see which methods are best at which operating

point of data size (hence cost). We start with using one sentence per image and we increase

this number gradually to ten sentences per image for training. For testing, the protocol is

the same as in Table 6.1, and we use all available captions per class.

We show the performance of several text encoding models in Fig 6.4. In zero-shot

classification, attributes are competitive when two captions per-image are available, but

with more training captions the deep network models win. For retrieval, the crossover point

might happen with more than ten captions per image as the results seem to be increasing.

The baseline word2vec and BoW encodings do not gain much from more data. Given a

moderate number of training sentences per image, neural text encoders can improve over

the state-of-the-art attribute-based methods significantly.

Among neural text encoders, Char-LSTM fares worst and also does not appear to gain

consistently from additional data. It may be that the long training sequence length increases

the difficulty of LSTM training, relative to the word-based approach. Stacking a recurrent

76

module on top of a text convolutional network appears to avoid this problem, achieving sig-

nificantly better performance than the Word-LSTM especially with more than 4 sentences

for training. It also has the nice property of robustness to typos. Overall, Word-CNN-RNN

achieved the best performance.

6.5.4 Effect of test visual description length

In a real application relating images and text (e.g. text-based image retrieval), most

users would prefer to describe a visual concept concisely, rather than writing a detailed

article with many sentences. Thus, we evaluate the performance of our model using a

varying number of query descriptions per class at test time. The experimental protocol is a

slight modification of that used in Table 6.1.

As before, we extract text embeddings from test set captions and average them per-

class. In this case, we extract embeddings separately using {1, 2, 4, 8, 16, 32, 64, 128} and

also all descriptions available per class. For each description length, we report the resulting

zero-shot classification accuracy and zero-shot retrieval AP@50. Since we do not use all

available test captions per class, we perform 10 iterations of this procedure while randomly

sampling the descriptions used for each class.

Figure 6.4 shows the averaged results for zero-shot classification and for zero-shot re-

trieval. Both figures include error bars to ±1 standard deviation. Note that the error bars

are larger towards the left side of both figures because in the few-text case, especially dis-

criminative or especially vague (or wrong) descriptions can have a relatively larger impact

on the text embedding quality. BoW again shows a surprisingly good performance, sig-

nificantly better than word2vec and competitive with Char-CNN. However, the word-level

neural text encoders outperform word2vec and BoW at all operating points.

77

Top-1 Acc (%) AP@50 (%)
Embedding DA-SJE DS-SJE DA-SJE DS-SJE
WORD2VEC 54.6 54.2 16.3 52.1
BAG-OF-WORDS 56.7 57.7 28.2 57.3

CHAR CNN 51.1 47.3 8.3 46.1
CHAR LSTM 29.1 25.8 19.3 27.0
CHAR CNN-RNN 61.7 63.7 13.6 57.3

WORD CNN 60.2 60.7 8.7 56.3
WORD LSTM 62.3 64.5 45.9 52.3
WORD CNN-RNN 60.9 65.6 7.6 59.6

Table 6.2: Zero-shot % recognition accuracy and retrieval average precision on Flowers.

Word-
LSTM

Bag of
words

Char-
CNN-
RNN

Word-
LSTM

Bag of
words

“This is a bird with a yellow belly, black head
and breast and a black wing.”

“This is a large black bird with a pointy black beak.”

“A small bird containing a light grey throat and breast, with light
green on its side, and brown feathers with green wingbars.”

“A small bird with a white underside, greying wings and a
black head that has a white stripe above the eyes.”

Char-
CNN-
RNN

Figure 6.5: Zero-shot retrieval given a single query sentence. Each row corresponds to a
different text encoder.

6.5.5 Flowers zero-shot recognition and retrieval

To demonstrate that our results generalize beyond the case of bird images, we report the

same set of experiments on the Flowers dataset. The experimental setting here is the same

as in Sec 6.5.2, except that there is no attributes baseline due to lack of labeled attributes

for this dataset. All neural text model architectures are the same as we used for CUB, and

we used the same hyperparameters from cross-validation on CUB. Table 6.2 summarizes

our results.

Char CNN-RNN achieves competitive results to word-level models both for DA-SJE

78

Approach CUB Flowers
CSHAPH [64] 17.5 –
AHLE [2] 27.3 –
TMV-HLP [45] 47.9 –
SJE [3] 50.1 –
DA-SJE (ours) 54.3 62.3
DS-SJE (ours) 56.8 65.6

Table 6.3: Summary of zero-shot % classification accuracies. Note that different features
are used in each work, although [2] uses the same features as in this work.

and DS-SJE. The word-level models achieve the best result, significantly better than both

the shallow embeddings and character-level models. Among different models, Word LSTM

is the winner for DA-SJE both in classification and retrieval. On the other hand, Word

CNN-RNN is the winner for DS-SJE for the same. As in the case for CUB, we found that

DS-SJE achieves strong retrieval performance, and DA-SJE often fails in comparison.

6.5.6 Qualitative results

Figure D.1 shows several example zero-shot retrieval results using a single text descrip-

tion. Both the text queries and images are real data points drawn from the test set. We ob-

serve that having trained on our dataset of visual descriptions, our proposed method returns

results that accurately reflect the text, even when using only a single caption. Quantitatively,

BoW achieves 14.6% AP@50 with a single query compared to 18.0% with word-LSTM

and 20.7% with Word-CNN-RNN.

Note that although almost all retrieved images match the text query well, the actual

class of that image can still be incorrect. This is why the average precision may seem low

compared to the generally good qualitative results. The performance appears to degrade

gracefully; our model at least returns visually-consistent results if not of the correct class.

Furthermore, some queries are inherently ambiguous and could match multiple classes

equally well, so low precision is not necessarily the fault of the model. We show a t-

SNE embedding of test-set description embeddings in Figure 6.6, successfully clustering

79

Figure 6.6: t-SNE embedding of test class description embeddings from Oxford-102 (left)
and CUB (right), marked with corresponding images. Best viewed with zoom.

according to visual similarities (i.e. color, shape). Additional examples from test images

and queries are included in the supplementary material.

6.5.7 Comparison to the state-of-the-art

In this section we compare to the previously published results on CUB, including re-

sults that use the same zero-shot split. CSHAPH [64] uses 4K-dim features from the Oxford

VGG net [134] and also attributes to learn a hypergraph on the attribute space. AHLE [2]

uses Fisher vector image features and attribute embeddings to learn a bilinear compatibil-

ity function between these embeddings. TMV-HLP [45] builds a hypergraph on a multi-

view embedding space learned via CCA which uses deep image features and attributes. In

SJE [3] as in AHLE [2] a compatibility function is learned, in this case between 1K-dim

GoogleNet [148] features and various other embeddings including attributes. Our method

achieves significant improvements over all of these baselines, despite the fact that we do

not use attributes.

80

Previously-reported zero-shot results on the Flowers dataset [38, 9] do not report multi-

class classification (instead reporting binary one-vs-rest detection of unseen categories) or

do not currently have published splits. However, it will be interesting to compare these

methods of “predicting a classifier” given image descriptions in the large-data setting with

our new caption collection.

Overall, the results in Table 6.3 demonstrate that state-of-the-art zero-shot prediction

performace can be achieved directly from text descriptions. This does not require access to

any form of test label embeddings. Although attributes are richer and more compact than

text descriptions, attributes alone form a very small training set. One explanation for the

better performance of using our descriptions is that having many noisy human-generated

descriptions acts as an effective regularizer on the learned compatibility function. This is

especially important when training deep networks, which in our model are used for both

the image and text encoding components. Indeed, we observed that when training with

attributes, we had to use far fewer epochs (7 compared to 300) to avoid over-fitting.

6.6 Discussion

We developed a deep symmetric joint embedding model, collected a high-quality dataset

of fine-grained visual descriptions, and evaluated several deep neural text encoders. We

showed that a text encoder trained from scratch on characters or words can achieve state-

of-the-art zero-shot recognition accuracy on CUB, outperforming attributes. Our text en-

coders achieve a competitive retrieval result compared to attributes, and unlike attributes

can be directly used to build a language-based retrieval system.

Our visual descriptions data also improved the zero shot accuracy using BoW and

word2vec encoders. While these win in the smaller data regime, higher capacity encoders

dominate when enough data is available. Thus our contributions (data, objective and text

encoders) improve performance at multiple operating points of training text size.

81

CHAPTER VII

Generating Images from Text Descriptions

7.1 Introduction

In this work we are interested in translating text in the form of single-sentence human-

written descriptions directly into image pixels. For example, “this small bird has a short,

pointy orange beak and white belly” or ”the petals of this flower are pink and the anther are

yellow”. The problem of generating images from visual descriptions gained interest in the

research community, but it is far from being solved.

Traditionally this type of detailed visual information about an object has been captured

in attribute representations - distinguishing characteristics the object category encoded into

a vector [40, 80, 112, 82], in particular to enable zero-shot visual recognition [44, 3], and

recently for conditional image generation [165].

While the discriminative power and strong generalization properties of attribute rep-

resentations are attractive, attributes are also cumbersome to obtain as they may require

domain-specific knowledge. In comparison, natural language offers a general and flexible

interface for describing objects in any space of visual categories. Ideally, we could have

the generality of text descriptions with the discriminative power of attributes.

Recently, deep convolutional and recurrent networks for text have yielded highly dis-

criminative and generalizable (in the zero-shot learning sense) text representations learned

automatically from words and characters [120]. These approaches exceed the previous

82

this small bird has a pink
breast and crown, and black
primaries and secondaries.

the flower has petals that
are bright pinkish purple
with white stigma

this magnificent fellow is
almost all black with a red
crest, and white cheek patch.

this white and yellow flower
have thin white petals and a
round yellow stamen

Figure 7.1: Examples of generated images from text descriptions. Left: captions are from
zero-shot (held out) categories, unseen text. Right: captions are from the training set.

state-of-the-art using attributes for zero-shot visual recognition on the Caltech-UCSD birds

database [158], and also are capable of zero-shot caption-based retrieval. Motivated by

these works, we aim to learn a mapping directly from characters to image pixels.

To solve this challenging problem requires solving two sub-problems: first, learn a text

feature representation that captures the important visual details; and second, use these fea-

tures to synthesize a compelling image that a human might mistake for real. Fortunately,

deep learning has enabled enormous progress in both subproblems - natural language rep-

resentation and image synthesis - in the previous several years, and we build on this for our

current task.

However, one difficult remaining issue not solved by deep learning alone is that the dis-

tribution of images conditioned on a text description is highly multimodal, in the sense that

there are very many plausible configurations of pixels that correctly illustrate the descrip-

tion. The reverse direction (image to text) also suffers this problem but learning is made

practical by the fact that the word or character sequence can be decomposed sequentially

83

according to the chain rule; i.e. one trains the model to predict the next token conditioned

on the image and all previous tokens; a more tractable prediction problem.

This conditional multi-modality is thus a very natural application for generative adver-

sarial networks [49], in which the generator network is optimized to fool the adversarially-

trained discriminator into predicting that synthetic images are real. By conditioning both

generator and discriminator on side information (also studied by Mirza and Osindero [101]

and Denton et al. [27]), we can naturally model this phenomenon since the discriminator

network acts as a “smart” adaptive loss function.

Our main contribution in this work is to develop a simple and effective GAN archi-

tecture and training strategy that enables compelling text to image synthesis of bird and

flower images from human-written descriptions. We mainly use the Caltech-UCSD Birds

dataset and the Oxford-102 Flowers dataset along with five text descriptions per image we

collected as our evaluation setting. Our model is trained on a subset of training categories,

and we demonstrate its performance both on the training set categories and on the testing

set, i.e. “zero-shot” text to image synthesis. In addition to birds and flowers, we apply our

model to more general images and text descriptions in the MS COCO dataset [88].

7.2 Related work

Key challenges in multimodal learning include learning a shared representation across

modalities, and to predict missing data (e.g. by retrieval or synthesis) in one modality con-

ditioned on another. Ngiam et al. [105] trained a stacked multimodal autoencoder on audio

and video signals and were able to learn a shared modality-invariant representation. Srivas-

tava and Salakhutdinov [140] developed a deep Boltzmann machine and jointly modeled

images and text tags. Sohn et al. [139] proposed a multimodal conditional prediction frame-

work (hallucinating one modality given the other) and provided theoretical justification.

Many researchers have recently exploited the capability of deep convolutional decoder

networks to generate realistic images. Dosovitskiy et al. [36] trained a deconvolutional

84

network (several layers of convolution and upsampling) to generate 3D chair renderings

conditioned on a set of graphics codes indicating shape, position and lighting. Yang et al.

[167] added an encoder network as well as actions to this approach. They trained a recurrent

convolutional encoder-decoder that rotated 3D chair models and human faces conditioned

on action sequences of rotations. Reed et al. [119] encode transformations from analogy

pairs, and use a convolutional decoder to predict visual analogies on shapes, video game

characters and 3D cars.

Generative adversarial networks [49] have also benefited from convolutional decoder

networks, for the generator network module. Denton et al. [27] used a Laplacian pyramid of

adversarial generator and discriminators to synthesize images at multiple resolutions. This

work generated compelling high-resolution images and could also condition on class labels

for controllable generation. Radford et al. [115] used a standard convolutional decoder, but

developed a highly effective and stable architecture incorporating batch normalization to

achieve striking image synthesis results.

The main distinction of our work from the conditional GANs described above is that our

model conditions on text descriptions instead of class labels. To our knowledge it is the first

end-to-end differentiable architecture from characters to pixels. Furthermore, we introduce

a manifold interpolation regularizer for the GAN generator that significantly improves the

quality of generated samples, including on held out zero shot categories on CUB.

The bulk of previous work on multimodal learning from images and text uses retrieval

as the target task, i.e. fetch relevant images given a text query or vice versa. However, in the

past year, there has been a breakthrough in using recurrent neural network decoders to gen-

erate text descriptions conditioned on images [157, 92, 70, 33]. These typically condition

a Long Short-Term Memory [61] on the top-layer features of a deep convolutional network

to generate captions using the MS COCO [88] and other captioned image datasets. Xu et al.

[164] incorporated a recurrent visual attention mechanism for improved results.

Other tasks besides conditional generation have been considered in recent work. Ren

85

et al. [121] generate answers to questions about images. This approach was extended to

incorporate an explicit knowledge base [159]. Zhu et al. [175] applied sequence models to

both text (in the form of books) and movies to perform a joint alignment.

In contemporary work Mansimov et al. [91] generated images from text captions, using

a variational recurrent autoencoder with attention to paint the image in multiple steps, simi-

lar to DRAW [51]. Impressively, the model can perform reasonable synthesis of completely

novel (unlikely for a human to write) text such as “a stop sign is flying in blue skies”, sug-

gesting that it does not simply memorize. While the results are encouraging, the problem

is highly challenging and the generated images are not yet realistic, i.e., mistakeable for

real. Our model can in many cases generate visually-plausible 64× 64 images conditioned

on text, and is also distinct in that our entire model is a GAN, rather only using GAN for

post-processing.

Building on ideas from these many previous works, we develop a simple and effective

approach for text-based image synthesis using a character-level text encoder and class-

conditional GAN. We propose a novel architecture and learning strategy that leads to com-

pelling visual results. We focus on the case of fine-grained image datasets, for which we

use the recently collected descriptions for Caltech-UCSD Birds and Oxford Flowers with

5 human-generated captions per image [120]. We train and test on class-disjoint sets, so

that test performance can give a strong indication of generalization ability which we also

demonstrate on MS COCO images with multiple objects and various backgrounds.

7.3 Background

In this section we briefly describe several previous works that our method is built upon.

86

7.3.1 Generative adversarial networks

Generative adversarial networks (GANs) consist of a generator G and a discrimina-

tor D that compete in a two-player minimax game: The discriminator tries to distinguish

real training data from synthetic images, and the generator tries to fool the discriminator.

Concretely, D and G play the following game on V(D,G):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]+ (7.1)

Ex∼pz(z)[log(1−D(G(z)))]

Goodfellow et al. [49] prove that this minimax game has a global optimium precisely when

pg = pdata, and that under mild conditions (e.g. G and D have enough capacity) pg con-

verges to pdata. In practice, in the start of training samples from D are extremely poor and

rejected by D with high confidence. It has been found to work better in practice for the

generator to maximize log(D(G(z))) instead of minimizing log(1−D(G(z))).

7.3.2 Deep symmetric structured joint embedding

To obtain a visually-discriminative vector representation of text descriptions, we follow

the approach of Reed et al. [120] by using deep convolutional and recurrent text encoders

that learn a correspondence function with images. The text classifier induced by the learned

correspondence function ft is trained by optimizing the following structured loss:

1

N

N∑
n=1

∆(yn, fv(vn)) + ∆(yn, ft(tn)) (7.2)

where {(vn, tn, yn) : n = 1, ..., N} is the training data set, ∆ is the 0-1 loss, vn are the

images, tn are the corresponding text descriptions, and yn are the class labels. Classifiers

fv and ft are parametrized as follows:

fv(v) = arg max
y∈Y

Et∼T (y)[φ(v)Tϕ(t))] (7.3)

ft(t) = arg max
y∈Y

Ev∼V(y)[φ(v)Tϕ(t))] (7.4)

87

where φ is the image encoder (e.g. a deep convolutional neural network), ϕ is the text

encoder (e.g. a character-level CNN or LSTM), T (y) is the set of text descriptions of class

y and likewise V(y) for images. The intuition here is that a text encoding should have a

higher compatibility score with images of the correspondong class compared to any other

class and vice-versa.

To train the model a surrogate objective related to Equation 7.2 is minimized (see Akata

et al. [3] for details). The resulting gradients are backpropagated through ϕ to learn a

discriminative text encoder. Reed et al. [120] found that different text encoders worked

better for CUB versus Flowers, but for full generality and robustness, in this work we

always used a hybrid character-level convolutional-recurrent network.

7.4 Method

Our approach is to train a deep convolutional generative adversarial network (DC-

GAN) conditioned on text features encoded by a hybrid character-level convolutional-

recurrent neural network. Both the generator network G and the discriminator network

D perform feed-forward inference conditioned on the text feature.

This flower has small, round violet
petals with a dark purple center

φ φz ~ N(0,1)

This flower has small, round violet
petals with a dark purple center

Generator Network Discriminator Network

φ(t) x := G(z,φ(t)) D(x’,φ(t))

Figure 7.2: Our text-conditional convolutional GAN architecture. Text encoding ϕ(t) is
used by both generator and discriminator. It is projected to a lower-dimensions and depth
concatenated with image feature maps for further stages of convolutional processing.

7.4.1 Network architecture

We use the following notation. The generator network is denoted G : RZ × RT →

RD, the discriminator as D : RD × RT → {0, 1}, where T is the dimension of the text

88

description embedding, D is the dimension of the image, and Z is the dimension of the

noise input to G. We illustrate our network architecture in Figure 7.2.

In the generator G, first we sample from the noise prior z ∈ RZ ∼ N (0, 1) and we

encode the text query t using text encoder ϕ. The description embedding ϕ(t) is first

compressed using a fully-connected layer to a small dimension (we used 128) followed

by leaky-ReLU and then concatenated to the noise vector z. Following this, inference

proceeds as in a normal deconvolutional network: we feed-forward it through the generator

G; a synthetic image x̂ is generated via x̂ ← G(z, ϕ(t)). Image generation corresponds to

feed-forward inference in the generator G conditioned on query text and a noise sample.

In the discriminator D, we perform several layers of stride-2 convolution with spatial

batch normalization [66] followed by leaky ReLU. We again reduce the dimensionality of

the description embedding ϕ(t) in a (separate) fully-connected layer followed by rectifica-

tion. When the spatial dimension of the discriminator is 4× 4, we replicate the description

embedding spatially and perform a depth concatenation. We then perform a 1 × 1 convo-

lution followed by rectification and a 4× 4 convolution to compute the final score from D.

Batch normalization is performed on all convolutional layers.

7.4.2 Matching-aware discriminator (GAN-CLS)

The most straightforward way to train a conditional GAN is to view (text, image) pairs

as joint observations and train the discriminator to judge pairs as real or fake. This type of

conditioning is naive in the sense that the discriminator has no explicit notion of whether

real training images match the text embedding context.

However, as discussed also by [46], the dynamics of learning may be different from

the non-conditional case. In the beginning of training, the discriminator ignores the condi-

tioning information and easily rejects samples from G because they do not look plausible.

Once G has learned to generate plausible images, it must also learn to align them with the

conditioning information, and likewise D must learn to evaluate whether samples from G

89

meet this conditioning constraint.

In naive GAN, the discriminator observes two kinds of inputs: real images with match-

ing text, and synthetic images with arbitrary text. Therefore, it must implicitly separate two

sources of error: unrealistic images (for any text), and realistic images of the wrong class

that mismatch the conditioning information. Based on the intuition that this may compli-

cate learning dynamics, we modified the GAN training algorithm to separate these error

sources. In addition to the real / fake inputs to the discriminator during training, we add a

third type of input consisting of real images with mismatched text, which the discriminator

must learn to score as fake. By learning to optimize image / text matching in addition to

the image realism, the discriminator can provide an additional signal to the generator.

Algorithm 4 GAN-CLS training algorithm with step size α, using minibatch SGD.

Input: minibatch images x, matching text t, mismatching t̂, # steps S
for n = 1 to S do

h← ϕ(t) . Encode matching text description
ĥ← ϕ(t̂) . Encode mis-matching text description
z ∼ N (0, 1)Z . Draw sample of random noise
x̂← G(z, h) . Forward through generator
sr ← D(x, h) . real image, right text
sw ← D(x, ĥ) . real image, wrong text
sf ← D(x̂, h) . fake image, right text
LD ← log(sr) + (log(1− sw) + log(1− sf))/2
D ← D − α∂LD/∂D . Update discriminator
LG ← log(sf)
G← G− α∂LG/∂G . Update generator

end for

Algorithm 4 summarizes the training procedure. After encoding the text, image and

noise (lines 3-5) we generate the fake image (x̂, line 6). sr indicates the score of associating

a real image and its corresponding sentence (line 7), sw measures the score of associating a

real image with an arbitrary sentence (line 8), and sf is the score of associating a fake image

with its corresponding text (line 9). Note that we use ∂LD/∂D to indicate the gradient of

D’s objective with respect to its parameters, and likewise for G. Lines 11 and 13 are meant

to indicate taking a gradient step to update network parameters.

90

7.4.3 Learning with manifold interpolation (GAN-INT)

Deep networks have been shown to learn representations in which interpolations be-

tween embedding pairs tend to be near the data manifold [16, 118]. Motivated by this

property, we can generate a large amount of additional text embeddings by simply inter-

polating between embeddings of training set captions. Critically, these interpolated text

embeddings need not correspond to any actual human-written text, so there is no additional

labeling cost. This can be viewed as adding a term to the generator objective:

Et1,t2∼pdata [log(1−D(G(z, βt1 + (1− β)t2)))] (7.5)

where z is drawn from the noise distribution and β interpolates between text embeddings

t1 and t2. In practice we found that fixing β = 0.5 works well.

Because the interpolated embeddings are synthetic, D does not have “real” correspond-

ing image and text pairs to train on. However, D learns to predict whether image and text

pairs match or not. Thus, if D does a good job at this, then by satisfying D on interpolated

text embeddings G can learn to fill in gaps on the data manifold in between training points.

Note that t1 and t2 may come from different images and even different categories.1

7.4.4 Inverting the generator for style transfer

If the text encoding ϕ(t) captures the image content (e.g. flower shape and colors), then

in order to generate a realistic image the noise sample z should capture style factors such

as background color and pose. With a trained GAN, one may wish to transfer the style of a

query image onto the content of a particular text description. To achieve this, one can train

a convolutional network to invert G to regress from samples x̂ ← G(z, ϕ(t)) back onto z.

We used a simple squared loss to train the style encoder:

Lstyle = Et,z∼N (0,1)||z − S(G(z, ϕ(t)))||22 (7.6)

1In our experiments, we used fine-grained categories (e.g. birds are similar enough to other birds, flowers
to other flowers, etc.), and interpolating across categories did not pose a problem.

91

a tiny bird, with a
tiny beak, tarsus and
feet, a blue crown,
blue coverts, and
black cheek patch

this small bird has
a yellow breast,
brown crown, and
black superciliary

an all black bird
with a distinct
thick, rounded bill.

this bird is different
shades of brown all
over with white and
black spots on its
head and back

GAN - CLS

GAN - INT

GAN

GAN - INT
- CLS

the gray bird has a
light grey head and
grey webbed feet

GT

Figure 7.3: Zero-shot (i.e. conditioned on text from unseen test set categories) generated
bird images using GAN, GAN-CLS, GAN-INT and GAN-INT-CLS. We found that inter-
polation regularizer was needed to reliably achieve visually-plausible results.

GAN - CLS

GAN - INT

GAN

GAN - INT
- CLS

this flower is
white and pink in
color, with petals
that have veins.

these flowers have
petals that start off
white in color and
end in a dark purple
towards the tips.

bright droopy
yellow petals with
burgundy streaks,
and a yellow
stigma.

a flower with
long pink petals
and raised orange
stamen.

the flower shown
has a blue petals
with a white pistil
in the center

GT

Figure 7.4: Zero-shot generated flower images using GAN, GAN-CLS, GAN-INT and
GAN-INT-CLS. All variants generated plausible images. Although some shapes of test
categories were not seen during training (e.g. columns 3 and 4), color is preserved.

where S is the style encoder network. With a trained generator and style encoder, style

transfer from a query image x onto text t proceeds as follows:

s← S(x), x̂← G(s, ϕ(t))

where x̂ is the result image and s is the predicted style.

92

7.5 Experiments

In this section we present results on the CUB and Oxford-102 datasets. CUB has 11,788

images of birds belonging to one of 200 different categories. The Oxford-102 contains

8,189 images of flowers from 102 different categories.

As in Akata et al. [3] and Reed et al. [120], we split these into class-disjoint training

and test sets. CUB has 150 train+val classes and 50 test classes, while Oxford-102 has

82 train+val and 20 test classes. For both datasets, we used 5 captions per image. During

mini-batch selection for training we randomly pick an image view (e.g. crop, flip) of the

image and one of the captions.

For text features, we first pre-train a deep convolutional-recurrent text encoder on struc-

tured joint embedding of text captions with 1,024-dimensional GoogLeNet image embe-

dings [148] as described in subsection 7.3.2. For both Oxford-102 and CUB we used a

hybrid of character-level ConvNet with a recurrent neural network (char-CNN-RNN) as

described in [120]. Note, however that pre-training the text encoder is not a requirement

of our method and we include some end-to-end results in Appendix E.2. The reason for

pre-training the text encoder was to increase the speed of training the other components for

faster experimentation. We also provide some qualitative results obtained with MS COCO

images of the validation set to show the generalizability of our approach.

We used the same GAN architecture for all datasets. The training image size was set to

64×64×3. The text encoder produced 1, 024-dimensional embeddings that were projected

to 128 dimensions in both the generator and discriminator before depth concatenation into

convolutional feature maps.

As indicated in Algorithm 4, we take alternating steps of updating the generator and the

discriminator network. We used the same base learning rate of 0.0002, and used the ADAM

solver [7] with momentum 0.5. The generator noise was sampled from a 100-dimensional

unit normal distribution. We used a minibatch size of 64 and trained for 600 epochs. Our

93

implementation was built on top of dcgan.torch2.

7.5.1 Qualitative results

We compare the GAN baseline, our GAN-CLS with image-text matching discriminator

(subsection 7.4.2), GAN-INT learned with text manifold interpolation (subsection 7.4.3)

and GAN-INT-CLS which combines both.

Results on CUB can be seen in Figure 7.3. GAN and GAN-CLS get some color in-

formation right, but the images do not look real. However, GAN-INT and GAN-INT-CLS

show plausible images that usually match all or at least part of the caption. We include addi-

tional analysis on the robustness of each GAN variant on the CUB dataset in Appendix E.1.

Results on the Oxford-102 Flowers dataset can be seen in Figure 7.4. In this case, all

four methods can generate plausible flower images that match the description. The basic

GAN tends to have the most variety in flower morphology (i.e. one can see very different

petal types if this part is left unspecified by the caption), while other methods tend to

generate more class-consistent images. We speculate that it is easier to generate flowers,

perhaps because birds have stronger structural regularities across species that make it easier

for D to spot a fake bird than to spot a fake flower.

Many additional results with GAN-INT and GAN-INT-CLS as well as GAN-E2E (our

end-to-end GAN-INT-CLS without pre-training the text encoder ϕ(t)) for both CUB and

Oxford-102 can be found in Appendix E.2.

7.5.2 Disentangling style and content

In this section we investigate the extent to which our model can separate style and

content. By content, we mean the visual attributes of the bird itself, such as shape, size and

color of each body part. By style, we mean all of the other factors of variation in the image

such as background color and the pose orientation of the bird.

2https://github.com/soumith/dcgan.torch

94

https://github.com/soumith/dcgan.torch

Figure 7.5: ROC curves using cosine distance between predicted style vector on same vs.
different style image pairs. Left: image pairs reflect same or different pose. Right: image
pairs reflect same or different average background color.

The text embedding mainly covers content and typically nothing about style, e.g. cap-

tions do not mention the background or pose. Therefore, in order to generate realistic

images then GAN must learn to use noise sample z to account for style variations.

To quantify the degree of disentangling on CUB we set up two prediction tasks with

noise z as the input: pose verification and background color verification. For each task,

we first constructed similar and dissimilar pairs of images and then computed the predicted

style vectors by feeding the image into a style encoder (trained to invert the input and output

of generator). If GAN has disentangled style using z from image content, the similarity

between images of the same style (e.g. similar pose) should be higher than that of different

styles (e.g. different pose).

To recover z, we inverted the each generator network as described in subsection 7.4.4.

To construct pairs for verification, we grouped images into 100 clusters using K-means

where images from the same cluster share the same style. For background color, we clus-

tered images by the average color (RGB channels) of the background; for bird pose, we

clustered images by 6 keypoint coordinates (beak, belly, breast, crown, forehead, and tail).

For evaluation, we compute the actual predicted style variables by feeding pairs of

images style encoders for GAN, GAN-CLS, GAN-INT and GAN-INT-CLS. We verify

the score using cosine similarity and report the AU-ROC (averaging over 5 folds). As a

95

baseline, we also compute cosine similarity between text features from our text encoder.

We present results on Figure 7.5. As expected, captions alone are not informative for style

prediction. Consistent with the qualitative results, we found that models incorporating

interpolation regularizer (GAN-INT, GAN-INT-CLS) perform the best for this task. A

t-SNE visualization of the extracted style features is shown in Figure E.6.

7.5.3 Pose and background style transfer

We demonstrate that GAN-INT-CLS with trained style encoder (subsection 7.4.4) can

perform style transfer from an unseen query image onto a text description. Figure 7.6 shows

that images generated using the inferred styles can accurately capture the pose information.

In several cases the style transfer preserves detailed background information such as a tree

branch upon which the bird is perched.

Disentangling the style by GAN-INT-CLS is interesting because it suggests a simple

way of generalization. This way we can combine previously seen content (e.g. text) and

previously seen styles, but in novel pairings so as to generate plausible images very different

from any seen image during training. Another way to generalize is to use attributes that

were previously seen (e.g. blue wings, yellow belly) as in the generated parakeet-like

bird in the bottom row of Figure 7.6. This way of generalization takes advantage of text

representations capturing multiple visual aspects.

7.5.4 Sentence interpolation

Figure 7.8 demonstrates the learned text manifold by interpolation (Left). Although

there is no ground-truth text for the intervening points, the generated images appear plau-

sible. Since we keep the noise distribution the same, the only changing factor within each

row is the text embedding that we use. We observe that interpolations can accurately reflect

color changes, e.g. from blue to red, while the pose and background are invariant.

As well as interpolating between two text encodings, we show results on Figure 7.8

(Right) with noise interpolation. Here, we sample two random noise vectors. By keeping

96

The bird has a yellow breast with grey
features and a small beak.

This is a large white bird with black
wings and a red head.

A small bird with a black head and
wings and features grey wings.

This bird has a white breast, brown
and white coloring on its head and
wings, and a thin pointy beak.

A small bird with white base and black
stripes throughout its belly, head, and
feathers.

A small sized bird that has a cream belly
and a short pointed bill.

This bird is completely red.

This bird is completely white.

This is a yellow bird. The wings are
bright blue.

Text descriptions
(content)

Images
(style)

Figure 7.6: Transfering style from the top row (real) images to the content from the text,
with G acting as a deterministic decoder. The bottom three captions are made up by us.

the text encoding fixed, we interpolate between these two noise vectors and generate bird

images with a smooth transition between two styles by keeping the content fixed.

7.5.5 Beyond birds and flowers

We trained a GAN-CLS on MS-COCO to show the generalization capability of our ap-

proach on a general set of images that contain multiple objects and variable backgrounds.

We use the same text encoder architecture, same GAN architecture and same hyperparam-

eters (learning rate, minibatch size and number of epochs) as in CUB and Oxford-102. The

only difference in training the text encoder is that COCO does not have a single object

category per class. However, we can still learn an instance level (rather than category level)

image and text matching function, as in [75].

Samples and ground truth captions and their corresponding images are shown on Fig-

97

a group of
people on skis
stand on the
snow.

a table with
many plates of
food and
drinks

two giraffe
standing next
to each other
in a forest.

a large blue
octopus kite
flies above
the people
having fun at
the beach.

a man in a wet
suit riding a
surfboard on a
wave.

two plates of
food that include
beans,
guacamole and
rice.

a green plant
that is growing
out of the
ground.

there is only one
horse in the
grassy field.

a pitcher is
about to throw
the ball to the
batter.

a sheep
standing in a
open grass
field.

a picture of a
very clean
living room.

a toilet in a small
room with a
window and
unfinished walls.

GT Ours GT OursGT Ours

Figure 7.7: Generating images of general concepts using our GAN-CLS on the MS-COCO
validation set. Unlike the case of CUB and Oxford-102, the network must (try to) handle
multiple objects and diverse backgrounds.

‘Blue bird with black beak’ →
‘Red bird with black beak’

‘Small blue bird with black wings’ →
‘Small yellow bird with black wings’

‘This bird is bright.’ → ‘This bird is dark.’

‘This bird is completely red with black wings’

‘This is a yellow bird. The wings are bright blue’

‘this bird is all blue, the top part of the bill is
blue, but the bottom half is white’

Figure 7.8: Left: Generated bird images by interpolating between two sentences (within a
row the noise is fixed). Right: Interpolating between two randomly-sampled noise vectors.

ure 7.7. A common property of all the results is the sharpness of the samples, similar to

other GAN-based image synthesis models. We also observe diversity in the samples by

simply drawing multiple noise vectors and using the same fixed text encoding.

From a distance the results are encouraging, but upon close inspection it is clear that the

generated scenes are not usually coherent; for example the human-like blobs in the baseball

scenes lack clearly articulated parts. In future work, it may be interesting to incorporate

hierarchical structure into the image synthesis model in order to better handle complex

multi-object scenes.

98

A qualitative comparison with AlignDRAW [91] can be found in Appendix E.2. GAN-

CLS generates sharper and higher-resolution samples that roughly correspond to the query,

but AlignDRAW samples more noticably reflect single-word changes in the selected queries

from that work. Incorporating temporal structure into the GAN-CLS generator network

could potentially improve its ability to capture these text variations.

7.6 Conclusions

In this work we developed a simple and effective model for generating images based on

detailed visual descriptions. We demonstrated that the model can synthesize many plausible

visual interpretations of a given text caption. Our manifold interpolation regularizer sub-

stantially improved the text to image synthesis on CUB. We showed disentangling of style

and content, and bird pose and background transfer from query images onto text descrip-

tions. Finally we demonstrated the generalizability of our approach to generating images

with multiple objects and variable backgrounds with our results on MS-COCO dataset.

99

CHAPTER VIII

Conclusion

In this thesis, I developed several deep network architectures endowed with new ca-

pabilities for solving AI tasks. Here I will summarize these contributions, discuss their

limitations, and consider how to build on them in future work.

The disentangling restricted Boltzmann machine (disBM) was able to learn a feature

representation separated into distinct components for facial expression, pose and shape. We

showed that it could transfer one person’s facial expression onto another while preserving

apparent identity characteristics, and also that the learned features were highly discrimina-

tive for facial emotion recognition compared to contemporary methods. RBMs have since

gone out of fashion for generative image modeling; replaced by frameworks incoporating

a more flexible choice of function approximators, i.e. deep neural networks. However, the

idea of generating images conditioned on an explicitly disentangled latent representation

remains influential. In future work, regardless of the currently-fashionable image modeling

paradigm, we need to solve the problem of discovering what the latent factors are, and also

how to separate them with a minimal amount of supervision.

Our visual analogy making network learned to generate the pixels of an image D that

solved the visual analogy problem A : B :: C : D. Although we only trained it on

single-step analogies, we found that the learned analogy transformation could be applied

repeatedly, enabling manifold traversal, e.g. repeated rotations of a 2D or 3D shape. The

100

obvious limitation here is that our model required many examples of analogies in order to

learn to perform them on new images, and also that the model was purely deterministic.

Sometimes, an analogy completion is only approximate, or there could be multiple correct

choices for an analogy completion. In future work, it will be very interesting to explore

a probabilistic model for analogy completion, allowing one to sample multiple possible

images that make an analogy true.

The Neural Programmer-Interpreter was able to learn program embedding vectors with

compositional structure by observing execution traces, and was able to learn a library of

programs including sorting in a generalizable and data-efficient manner. However, NPI is

limited by the strong supervision (execution traces) required to train the model. Further-

more, it assumes that the sequence of actions required to implement a program conditioned

on an observation of the environment is deterministic; in reality there could be many action

sequences that correctly implement the program. In future work, it will be important to re-

lax these constraints. In particular, it could be promising to train the NPI in a reinforcement

learning setting; i.e. provide a reward signal for correctly producing the output, rather than

providing explicit execution traces.

Our text-to-image synthesis network can process an informal description of a bird or

flower and generate diverse and compelling 64× 64 image samples that fit the description.

However, text-to-image is very far from solved. Upon close inspection of the images of

birds, flowers and also general categories (MS-COCO), it becomes clear that the samples

often do not have clearly-articulated parts. Furthermore, the generator network cannot

justify its drawing choices; i.e. it cannot indicate that in a particular region it was meant

to portray a beak. In future work, it will be crucial to incorporate semantically-meaningful

structure into the generative process. This will both likely improve the quality of the results,

and also provide additional control over the generated images.

These projects are small steps outward along the research frontier of (artificial) neural

reasoning, planning and creativity. Human-like capabilities are still far out of reach. Fortu-

101

nately, data and computational resources have never been more abundant, opening the door

to exploring more complex and exotic neural network architectures. Hopefully over time

these research efforts will allow computers to be more human-like in their capabilities and

as a result more useful for solving human problems.

102

APPENDICES

103

APPENDIX A

Derivation of variational approximation to disBM

posterior inference

A.1 Derivation of disBM mean-field inference

Since we cannot directly compute the posterior P (h,m|v), we choose an approximat-

ing factorized distribution Q(h,m) = Q(h)Q(m), where Q(h) =
∏

kQ(hk), Q(hk) ∼

Bernoulli(ĥk) and similarly for Q(m). We then choose the parameters ĥk to minimize

KL(Q||P (h,m|v)) =
∑
h,m

Q(h)Q(m) log
Q(h)Q(m)

P (h,m|v)

Note that

KL(Q||P (h,m|v)) =

=
∑
h,m

Q(h)Q(m) log(Q(h)Q(m))

−
∑
h,m

Q(h)Q(m)log

(
P (h,m,v)

P (v)

)
= EQ(h,m)[logQ(h,m)]

−
∑
h,m

Q(h)Q(m) logP (h,m,v) + logP (v)

104

= −H(Q)− EQ[log P̃ (h,m,v)] + logZ + logP (v)

Rearranging the terms, we see that

logP (v) = KL(Q(h,m)||P (h,m|v))

+ EQ[log P̃ (h,m,v)]− logZ +H(Q)

≥ EQ[log P̃ (h,m,v)]− logZ +H(Q) (A.1)

Therefore, minimizing this KL-divergence is equivalent to maximizing a lower bound on

the log-likelihood of the data v. P̃ (h,m,v) is the unnormalized joint distribution, i.e.

exp(−E(h,m,v)), where

E(h,m,v) = −
∑
ijk

Wijkvihkmj

is the energy function (ignoring bias units). To arrive at the mean-field update rule, we can

differentiate the lower bound in equation A.1 with respect to the parameters ĥk and m̂j .

First note that EQ[log P̃ (h,m,v)] andH(Q) can be expressed in terms of ĥk and m̂j:

EQ[log P̃ (h,m,v)] = EQ[log(exp(−E(h,m,v)))]

= −
∑
ijk

WijkviEQ[hk]EQ[mj]

= −
∑
ijk

Wijkviĥkm̂j

H(Q) = EQ[logQ(m,h)]

=
∑
k

EQ[logQ(hk)]−
∑
j

EQ[logQ(mj)]

=
∑
k

(ĥk log ĥk + (1− ĥk) log(1− ĥk))

−
∑
j

(m̂j log m̂j + (1− m̂j) log(1− m̂j))

105

Differentiating equation A.1 with respect to each parameter and and setting to zero, we get

ĥk

1− ĥk
= exp(−

∑
ijk

Wijkvim̂j)

ĥk =
1

1 + exp(−
∑

ijkWijkvim̂j)

= σ(
∑
ijk

Wijkvim̂j)

And similarly

m̂j = σ(
∑
ijk

Wijkviĥk)

106

APPENDIX B

Additional examples of visual analogy-making

B.1 Additional examples of image analogy transformations

B.1.1 Trajectories of multiple shape analogies

Our model can apply analogies in both the forward and reversed direction. In Fig-

ure B.1, the first two columns indicate the operation, i.e., the relationship to be applied

to the query. The first row demonstrates several steps of clockwise rotation, followed by

counter-clockwise, returning to the initial orientation. The second and third rows show

that our model can perform the same feat for scaling and translation. Although we only

trained for 1-step analogies, the model is able to stay on the manifold even after repeated

transformations.

We can also interleave different kinds of transformations by supplying multiple pairs of

transformed images. Figure B.2 shows interleaving of rotation, translation and scaling in

the same sequence.

Figure B.1 and Figure B.2 are also available in video format: shape-*.avi

107

ref1 +rot (gt) query +rot +rot +rot +rot -rot -rot -rot -rot

ref1 +scl (gt) query +scl +scl +scl +scl -scl -scl -scl -scl

ref1 +trans (gt) query +trans +trans +trans +trans -trans -trans -trans -trans

Figure B.1: Repeated application of analogies from the example pair (first two columns),
in both forward and reverse mode, using a model trained with Ldeep.

ref1 +scl (gt) ref2 +trans (gt) query +scl +trans +scl +trans +scl +trans +scl +trans

ref1 +rot (gt) ref2 +trans (gt) query +rot +trans +rot +trans +rot +trans +rot +trans

ref1 +scl (gt) ref2 +rot (gt) query +scl +rot +scl +rot +scl +rot +scl +rot

Figure B.2: Repeated application of multiple different analogies from two different exam-
ple pairs (first four columns) using a model trained with Ldeep.

B.1.2 Comparing Ladd, Lmul, and Ldeep for shape analogies

Following the protocol in the previous section, we apply the models trained with Ladd,

Lmul, and Ldeep for multi-step shape analogies. As is shown in Figure B.3, the model

trained with Ladd and Lmul cannot do even 1-step rotation, while the model trained with

Ldeep can support manifold traversal. Scaling and translation are relatively simple for Ladd

andLmul, but the qualitative degradation due to multi-step analogies is still noticeably more

significant than that of Ldeep.

108

Analogy type: Rotation

Ladd
ref1 +rot (gt) query +rot +rot +rot +rot -rot -rot -rot -rot

Lmul
ref1 +rot (gt) query +rot +rot +rot +rot -rot -rot -rot -rot

Ldeep
ref1 +rot (gt) query +rot +rot +rot +rot -rot -rot -rot -rot

Analogy type: Scaling

Ladd
ref1 +scl (gt) query +scl +scl +scl +scl -scl -scl -scl -scl

Lmul
ref1 +scl (gt) query +scl +scl +scl +scl -scl -scl -scl -scl

Ldeep
ref1 +scl (gt) query +scl +scl +scl +scl -scl -scl -scl -scl

Analogy type: Translation

Ladd
ref1 +trans (gt) query +trans +trans +trans +trans -trans -trans -trans -trans

Lmul
ref1 +trans (gt) query +trans +trans +trans +trans -trans -trans -trans -trans

Ldeep
ref1 +trans (gt) query +trans +trans +trans +trans -trans -trans -trans -trans

Figure B.3: Repeated application of analogies from the example pair (first two
columns), in both forward and reverse mode, using three models trained respectively with
Ladd,Lmul,Ldeep.

109

Figure B.4: 2D PCA projections of the image embeddings along the rotation manifold.
Each point is marked with an image generated by the model, trained with Ldeep.

110

B.1.3 Fine-grained control over sprite attributes

In Figure B.5, we show how disentangling and attribute classification objectives can

help with fine-grained control on the discrete-valued attributes of generated sprites.

sex body armor

hair arms greaves weapon

Figure B.5: Using Ldis+cls, our model can generate sprites with fine-grained control over
character attributes. The above images were generated by using f to encode the leftmost
source image for each attribute, and then changing the identity units and re-rendering.

B.1.4 Animation transfer using disentangled features

When we have a model trained by Ldis or Ldis+cls, we can extract disentangled identity

and pose features for sprites. Performing pose transfer simply requires taking the pose of

a reference image and the identity of a query image, and using the decoder g to project

their combination back into the image space. In Figures B.6, B.7 and B.8, we show several

consecutive frames of pose transfer, which we call animation transfer since we can follow

the entire trajectory of an animation.

Figure B.6: Shooting a bow.

B.1.5 Sprite animation analogies with extrapolation

Below in Figure B.9, we show cross-identity animation extrapolations for each of the

five animations, plus rotation. The analogy model has learned the structure of the animation

111

Figure B.7: Walking.

Figure B.8: Casting a spell.

manifolds across variations in viewpoint and character attributes, and is able to advance

forward or backward in time based on the example image pair.

112

spellcast

walk

slash

thrust

rotate

shoot

Figure B.9: Animation analogies and extrapolation for all character animations plus rota-
tion. The example pair (first two columns) and query image (third column) both come from
the test set of characters. Ldeep was used for analogy training of pose units, jointly with
Ldis+cls to learn a disentangled representation.

113

APPENDIX C

NPI program listing and sorting execution trace

C.1 Listing of learned programs

Below in Table C.1 we list the programs learned by our model:

C.2 Generated execution trace of BUBBLESORT

Figure C.1 shows the sequence of program calls for BUBBLESORT. Pointers 1 and 2

Figure C.1: Generated execution trace from our trained NPI sorting the array [9,2,5].

BUBBLESORT
 BUBBLE
 PTR 2 RIGHT
 BSTEP
 COMPSWAP
 SWAP 1 2
 RSHIFT
 PTR 1 RIGHT
 PTR 2 RIGHT
 BSTEP
 COMPSWAP
 SWAP 1 2
 RSHIFT
 PTR 1 RIGHT
 PTR 2 RIGHT
 RESET
 LSHIFT
 PTR 1 LEFT
 PTR 2 LEFT
 LSHIFT
 PTR 1 LEFT
 PTR 2 LEFT
 PTR 3 RIGHT

 BUBBLE
 PTR 2 RIGHT
 BSTEP
 COMPSWAP

 RSHIFT
 PTR 1 RIGHT
 PTR 2 RIGHT
 BSTEP
 COMPSWAP

 RSHIFT
 PTR 1 RIGHT
 PTR 2 RIGHT
 RESET
 LSHIFT
 PTR 1 LEFT
 PTR 2 LEFT
 LSHIFT
 PTR 1 LEFT
 PTR 2 LEFT
 PTR 3 RIGHT

 BUBBLE
 PTR 2 RIGHT
 BSTEP
 COMPSWAP

 RSHIFT
 PTR 1 RIGHT
 PTR 2 RIGHT
 BSTEP
 COMPSWAP

 RSHIFT
 PTR 1 RIGHT
 PTR 2 RIGHT
 RESET
 LSHIFT
 PTR 1 LEFT
 PTR 2 LEFT
 LSHIFT
 PTR 1 LEFT
 PTR 2 LEFT
 PTR 3 RIGHT

are used to implement the “bubble” operation involving the comparison and swapping of

adjacent array elements. The third pointer (referred to in the trace as “PTR 3”) is used to

count the number of calls to BUBBLE. After every call to RESET the swapping pointers are

114

Program Descriptions Calls
ADD Perform multi-digit addition ADD1, LSHIFT
ADD1 Perform single-digit addition ACT, CARRY
CARRY Mark a 1 in the carry row one unit left ACT
LSHIFT Shift a specified pointer one step left ACT
RSHIFT Shift a specified pointer one step right ACT
ACT Move a pointer or write to the scratch pad -
BUBBLESORT Perform bubble sort (ascending order) BUBBLE, RESET
BUBBLE Perform one sweep of pointers left to right ACT, BSTEP
RESET Move both pointers all the way left LSHIFT
BSTEP Conditionally swap and advance pointers COMPSWAP, RSHIFT
COMPSWAP Conditionally swap two elements ACT
LSHIFT Shift a specified pointer one step left ACT
RSHIFT Shift a specified pointer one step right ACT
ACT Swap two values at pointer locations or move a pointer -
GOTO Change 3D car pose to match the target HGOTO, VGOTO
HGOTO Move horizontally to the target angle LGOTO, RGOTO
LGOTO Move left to match the target angle ACT
RGOTO Move right to match the target angle ACT
VGOTO Move vertically to the target elevation UGOTO, DGOTO
UGOTO Move up to match the target elevation ACT
DGOTO Move down to match the target elevation ACT
ACT Move camera 15◦ up, down, left or right -
RJMP Move all pointers to the rightmost posiiton RSHIFT
MAX Find maximum element of an array BUBBLESORT,RJMP

Table C.1: Programs learned for addition, sorting and 3D car canonicalization. Note the
ACT program has a different effect depending on the environment and on the passed-in
arguments.

moved to the beginning of the array and the counting pointer is advanced by 1. When it has

reached the end of the scratch pad, the model learns to halt execution of BUBBLESORT.

115

APPENDIX D

Zero-shot text-based retrieval

D.1 Additional retrieval results

Word-
LSTM

Bag of
words

Char-
CNN-
RNN

Word-
LSTM

Bag of
words

“This is a white bird with a black wing and an orange beak”

Char-
CNN-
RNN

Word-
LSTM

Bag of
words

Char-
CNN-
RNN

“This bird is yellow with brown on its back and has a
long, pointy beak”

“Predominantly yellow bird with black and white spotted
crown, short pointy beak, and grey secondaries”

“A vibrant colored bird of copper color, orange and blue with a
very large orange bill compared to the size of the bird”

“This small bird has a small head an beak, a white breast and
belly, and dark teal crown, nape and wings”

“This bird has a black crown, black beak, white neck area, black
feet and tarsus, a black breast and white belly and abdomen”

Word-
LSTM

Bag of
words

Char-
CNN-
RNN

“a large bird with a white breast, black, grey and white wings
and tail, and a black head”

“A short, fat bird with a black head, small bill, and grey and
white speckled chest”

116

APPENDIX E

Additional text-to-image results

E.1 Robustness of GAN variants

When training the baseline GAN on CUB, we found that simply choosing a different

random seed (affecting network initialization and also minibatch selection) could yield

results of dramatically varying quality. The classification and interpolation regularizers

improved the robustness, and GAN-CLS-INT consistently yielded good results regardless

of the random seed. To quantify this, we trained 10 instances each (varying only the random

seed) of GAN, GAN-CLS, GAN-INT and GAN-CLS-INT on the 100 CUB training classes

for 200 epochs. Using samples from each of these GAN models, we trained a zero-shot

image classifier from scratch, following the same protocol described in section 5.5.

Figure E.1 shows the result. All variants perform better than the GAN baseline, and

GAN-CLS-INT has the highest average performance and lowest variance. Our impression

is that the classification (-CLS) and especially interpolation regularizer (-INT) stabilize the

training, significantly reducing the incidence of “failed” GANs.

117

Figure E.1: Zero-shot accuracies for image encoders trained on GAN samples.

E.2 Additional text-to-image examples for birds, flowers and COCO

Many additional text-to-image examples are shown in Figures E.2, E.3 and E.4. We

include samples from both GAN-INT-CLS that uses a pre-trained text encoder, as well

as an “end-to-end” version in which the text encoder is trained from scratch jointly with

the generator and discriminator networks. The GAN-INT-CLS has a slight advantage here

because its text encoder could be trained by learning to align with image features extracted

from high resolution (224×224) images using a state-of-the-art image encoder. The end-to-

end-trained text encoder was trained using only 64×64, so it may not capture small details

as accurately. However, as computing hardware becomes faster, it will become feasible to

train end-to-end models on much higher resolution.

Comparisons to AlignDRAW are shown in Figure E.5. Our model generates higher-

resolution and more detailed images, but AlignDraw is more noticably sensitive to single-

word changes in the query text, e.g. color changes. This is likely because AlignDRAW

uses a multi-step image generation procedure, in which each word updates the canvas. In

future work, it may be beneficial to add temporal structure to our text-conditional GAN.

118

Representative sentence for each test class

[class01] this flower is white and pink in color, with petals that
have veins.

[class02] the petals of this flower are white with a short stigma

[class03] this flower has pink bell shaped petals and white
stigma.

[class04] this flower is pink in color, with petals that are wavy.

[class05] this flower is yellow in color, with petals that are
ruffled on the ends.

[class06] this flower is pink and purple in color, with petals
that are spotted.

[class07] this flower has 3 top white petals and 3 lower petals
that curve inwards, protecting the stamen and pistil.

[class08] this flower is orange and blue in color, with petals
that are pointed.

[class09] these flowers have petals that start off white in color
and end in a dark purple towards the tips.

[class10] the petals of this flower are green with a long stigma

[class11] this flower is red and white in color, with petals that
are vertically layered

[class12] this round yellow flower has hundreds of toothpick
shaped petals surrounding an inner circle full of short, ball
shaped yellow stamen.

[class13] this flower has many thin hairlike purple petals
surrounded by pointed, short pink petals.

[class14] this flower has many thin and pointy lavender petals
that look like spikes.

[class15] bright droopy yellow petals with burgundy streaks,
and a yellow stigma.
[class16] the flower has yellow petals and has a dark green
stem growing from the ground.

[class17] a flower with long pink petals and raised orange
stamen.

[class18] the petals of the plant are white in color with pink
speckles and have green buds.

[class19] the flower shown has a blue petals with a white pistil
in the center

[class20] this flower has many yellow stamen and three large
red petals.

[class21] ther are longer stamens with lager green anthers

[class22] layered lilac petals below small teardrop like lilac
petals obscuring the pistil.

[class23] this heavy, flower has long, purple and black pedals
that hang off of of its green pedicel.

[class24] the flower has petals that are large red and
overlapping.

[class25] this flower is blue and white in color, with petals that
are bell shaped.

[class26] this flower has the outer row of red color petals and
the inner trumpet shaped petals holding the red stamens inside

[class27] this flower has several small yellow petals, with
green leaves around the petals.

[class28] this flower has petals that are purple with a white
stigma

[class29] the flower has hundreds of purple anther and filament
with grey petals

[class30] this flower has five overlapping pink petals with
slightly serrated white edges.

[class31] this flower is white and pink in color, with petals that
are pink near the edges.

[class32] the pretty flower has white petals with pink at their
center.

[class33] the blue, thin overlapping petals and long green
stigmas
[class34] this flower is purple and yellow in color, with petals
that are ruffled on the edges.

[class35] this flower is green and white in color, with petals
that are spikey.

[class36] this is a white flower with ruffled edges and a purple
center.

[class37] this flower is white and pink in color, with petals that
are curled and wavy.

[class38] this flower has long white petals with purple stamen
in the middle of it

[class39] this flower is pink in color, with petals that are
closely wrapped around the center.

[class40] this flower has round pink petals and a yellow stigma.

Representative sentence for 20 train classes

Representative sentence for each test class

[class01] this flower is white and pink in color, with petals that
have veins.

[class02] the petals of this flower are white with a short stigma

[class03] this flower has pink bell shaped petals and white
stigma.

[class04] this flower is pink in color, with petals that are wavy.

[class05] this flower is yellow in color, with petals that are
ruffled on the ends.

[class06] this flower is pink and purple in color, with petals
that are spotted.

[class07] this flower has 3 top white petals and 3 lower petals
that curve inwards, protecting the stamen and pistil.

[class08] this flower is orange and blue in color, with petals
that are pointed.

[class09] these flowers have petals that start off white in color
and end in a dark purple towards the tips.

[class10] the petals of this flower are green with a long stigma

[class11] this flower is red and white in color, with petals that
are vertically layered

[class12] this round yellow flower has hundreds of toothpick
shaped petals surrounding an inner circle full of short, ball
shaped yellow stamen.

[class13] this flower has many thin hairlike purple petals
surrounded by pointed, short pink petals.
[class14] this flower has many thin and pointy lavender petals
that look like spikes.

[class15] bright droopy yellow petals with burgundy streaks,
and a yellow stigma.

[class16] the flower has yellow petals and has a dark green
stem growing from the ground.

[class17] a flower with long pink petals and raised orange
stamen.

[class18] the petals of the plant are white in color with pink
speckles and have green buds.

[class19] the flower shown has a blue petals with a white pistil
in the center

[class20] this flower has many yellow stamen and three large
red petals.

[class21] ther are longer stamens with lager green anthers

[class22] layered lilac petals below small teardrop like lilac
petals obscuring the pistil.

[class23] this heavy, flower has long, purple and black pedals
that hang off of of its green pedicel.

[class24] the flower has petals that are large red and
overlapping.

[class25] this flower is blue and white in color, with petals that
are bell shaped.

[class26] this flower has the outer row of red color petals and
the inner trumpet shaped petals holding the red stamens inside

[class27] this flower has several small yellow petals, with
green leaves around the petals.

[class28] this flower has petals that are purple with a white
stigma

[class29] the flower has hundreds of purple anther and filament
with grey petals

[class30] this flower has five overlapping pink petals with
slightly serrated white edges.

[class31] this flower is white and pink in color, with petals that
are pink near the edges.

[class32] the pretty flower has white petals with pink at their
center.
[class33] the blue, thin overlapping petals and long green
stigmas

[class34] this flower is purple and yellow in color, with petals
that are ruffled on the edges.

[class35] this flower is green and white in color, with petals
that are spikey.

[class36] this is a white flower with ruffled edges and a purple
center.

[class37] this flower is white and pink in color, with petals that
are curled and wavy.

[class38] this flower has long white petals with purple stamen
in the middle of it

[class39] this flower is pink in color, with petals that are
closely wrapped around the center.

[class40] this flower has round pink petals and a yellow stigma.

Representative sentence for 20 train classes

Figure E.2: Samples from GAN-INT-CLS (top) and end-to-end version (bottom).

119

Representative sentence for 20 test classes

[class01] a medium-sized brown bird with a long, thick bill, large
wings and a long neck compared to its body.

[class04] the bird has a small bill as well as a black breast and
belly.

[class06] this black and white bird has a small beak, and the head
is small compared to the body.

[class08] a bird with brown tones all over and a striped head with
a stout beak
[class09] a bird with a meedium sized, medium width pointed bill,
all black feathers, a small head, and yellowish eyes

[class14] this bird is all blue, the top part of the bill is blue, but the
bottom half is white.

[class23] this is a black bird with a white throat and a long pointy
beak.

[class29] this black bird has no crest and a medium pointed bill
and a short tail.

[class31] tiny brown bird with white breast and a short stubby bill.

[class33] the head wings and tail are grayish brown, the beak is
yellow and the throat and belly are white.

[class34] the bird has a yellow bill that is small and small crown.

[class35] this small bird has a speckled body with small stripes on
the wings and a short, thick beak.

[class36] a small black spotted bird with red and white hues.

[class37] this bird is brown with gray wings and retrices. the
wingbar and eye ring are white.

[class38] beautiful gray and green breasted bird with a sharp
pointy black beak

[class43] this small bird has a dark green head, a dark yellow bill,
and wings with black colored feathers.

[class49] bird with wide wing span blue top body feathers and
black face long gray beak

[class51] the bird has an eyering that is red and a small bill.

[class53] a large duck has a long pointed bill, a large white neck,
and light brown feathers.

[class66] the bird has a yellow bill, pink webbed feet, a white
body with gray wings and gray tail feathers

[class02] large bird with long orange beak, white body feathers
and black wing feathers

[class03] this bird is mostly gray with a hooked bill.

[class05] the bird's eyering is white and the bill is orange.

[class07] the bird has a small curved bill that is orange.

[class10] a bird with a large pointed bill and all black plumage
except for its bright orange coverts.

[class11] the bird is solid black with white eyes and a black beak.

[class12] the bird has a yellow breast and black belly as well as a
small bill.

[class13] a taller bird with a yellow name, black and white spotted
body, and some white on its back.

[class15] this colorful bird has blue crown, neck, throat and brown
with white belly and breast

[class16] this small bird is beautiful with color, a deep orange
body, and purple bluish head.

[class17] a small sized bird that has tones of brown and dark red
with a short stout bill
[class18] this small bird has a green and white speckled breast and
belly, gray tail feathers, and a gray bill and head.

[class19] small grey bird with black coloration on beak, tarsus,
feet, crown and tail.

[class20] this bird has a yellow breast and a dark grey face.

[class21] this small bird has a black head and throat, black and
white wings and tail, a dusty orange breast and belly, and, a short,
pointed black bill and rosy pink feet.

[class22] the small bird has very dark colored feathers, and slanty
eyes.

[class24] a distinct black bird with a red cheek, and a blue and
white rounded bill.

[class25] a bird with black plumage all over, black feet, long neck
and gray and yellow bill.

[class26] a shiny all black bird with a bright orange eyering, a
small pointed black beak and a nape that appears to be puffed out.

[class27] this black bird looks like a crow, he has velvety black
feathers.

Representative sentence for 20 train classes

Representative sentence for 20 test classes

[class01] a medium-sized brown bird with a long, thick bill,
large wings and a long neck compared to its body.

[class04] the bird has a small bill as well as a black breast and
belly.

[class06] this black and white bird has a small beak, and the
head is small compared to the body.

[class08] a bird with brown tones all over and a striped head
with a stout beak

[class09] a bird with a meedium sized, medium width pointed
bill, all black feathers, a small head, and yellowish eyes

[class14] this bird is all blue, the top part of the bill is blue, but
the bottom half is white.

[class23] this is a black bird with a white throat and a long
pointy beak.

[class29] this black bird has no crest and a medium pointed bill
and a short tail.

[class31] tiny brown bird with white breast and a short stubby
bill.

[class33] the head wings and tail are grayish brown, the beak is
yellow and the throat and belly are white.
[class34] the bird has a yellow bill that is small and small
crown.

[class35] this small bird has a speckled body with small stripes
on the wings and a short, thick beak.

[class36] a small black spotted bird with red and white hues.

[class37] this bird is brown with gray wings and retrices. the
wingbar and eye ring are white.

[class38] beautiful gray and green breasted bird with a sharp
pointy black beak

[class43] this small bird has a dark green head, a dark yellow
bill, and wings with black colored feathers.

[class49] bird with wide wing span blue top body feathers and
black face long gray beak

[class51] the bird has an eyering that is red and a small bill.

[class53] a large duck has a long pointed bill, a large white
neck, and light brown feathers.

[class66] the bird has a yellow bill, pink webbed feet, a white
body with gray wings and gray tail feathers

[class02] large bird with long orange beak, white body feathers and
black wing feathers

[class03] this bird is mostly gray with a hooked bill.

[class05] the bird's eyering is white and the bill is orange.

[class07] the bird has a small curved bill that is orange.

[class10] a bird with a large pointed bill and all black plumage
except for its bright orange coverts.

[class11] the bird is solid black with white eyes and a black beak.

[class12] the bird has a yellow breast and black belly as well as a
small bill.

[class13] a taller bird with a yellow name, black and white spotted
body, and some white on its back.

[class15] this colorful bird has blue crown, neck, throat and brown
with white belly and breast

[class16] this small bird is beautiful with color, a deep orange
body, and purple bluish head.

[class17] a small sized bird that has tones of brown and dark red
with a short stout bill

[class18] this small bird has a green and white speckled breast and
belly, gray tail feathers, and a gray bill and head.

[class19] small grey bird with black coloration on beak, tarsus,
feet, crown and tail.

[class20] this bird has a yellow breast and a dark grey face.

[class21] this small bird has a black head and throat, black and
white wings and tail, a dusty orange breast and belly, and, a short,
pointed black bill and rosy pink feet.

[class22] the small bird has very dark colored feathers, and slanty
eyes.

[class24] a distinct black bird with a red cheek, and a blue and
white rounded bill.

[class25] a bird with black plumage all over, black feet, long neck
and gray and yellow bill.
[class26] a shiny all black bird with a bright orange eyering, a
small pointed black beak and a nape that appears to be puffed out.

[class27] this black bird looks like a crow, he has velvety black
feathers.

Representative sentence for 20 train classes

Figure E.3: Samples from GAN-INT-CLS (top) and end-to-end version (bottom).

120

a man standing next to an
airplane on a runway.

a close up of a person
eating a hot dog

a soccer playing getting
ready to kick a ball during
a game.

a man sleeping next to a
dachshund puppy.

there is a small dog
sitting on the floor
playing with a toy

two giraffes that are
standing together in a field.

a large passenger plane on
a runway prepares to taxi

camera and computers
set up on a desk

a man leaping off the side
of a cliff while skiing.

a ham sandwich with
lettuce in a paper bag

a cattle runs across the
grassy field in the day.

a man looking at a child
holding a brightly
colored computer.

a person walking across
a beach next to the
ocean.

a bunch of fresh carrots
still covered with dirt in a
basket.

two men are walking
along the beach with
surfboards.

a man swinging a baseball
bat over home plate.

a tv remote control sits
on a table.

a basket of large carrots
next to a box of bell
peppers.

a sandwich on a plate
cutin half next to pasta.

there is a stop sign at
the end of this cross
walk

Figure E.4: Additional samples from our GAN-CLS trained on MS-COCO.
.

121

A yellow school bus
parked in a parking lot.

A red school bus
parked in a parking lot.

A green school bus
parked in a parking lot.

A blue school bus
parked in a parking lot.

The decadent chocolate
desert is on the table.

A bowl of bananas is
desert is on the table.

A vintage photo of a cat. A vintage photo of a dog.

A very large commercial
plane flying in blue skies

A herd of elephants
walking across a dry
grass field

A very large commercial
plane flying in rainy skies

A herd of elephants
walking across a green
grass field

Align-
Draw

GAN

A rider on a blue
motorcycle in the desert.

A surfer, a woman, and
a child walk on the bach

A rider on a blue
motorcycle in the forest.

A surfer, a woman, and
a child walk on the sun

Figure E.5: Comparison to samples included in the AlignDraw paper [91]
.

122

Figure E.6: t-SNE embedding visualization of extract style features on CUB. It appears to
be insensitive to the appearance of the birds (which should be captured by the text content),
and mainly varies according to the primary background color.

123

BIBLIOGRAPHY

124

BIBLIOGRAPHY

[1] (), Liberated pixel cup, http://lpc.opengameart.org/, accessed: 2015-
05-21.

[2] Akata, Z., F. Perronnin, Z. Harchaoui, and C. Schmid (2015), Label-embedding for
image classification, IEEE TPAMI.

[3] Akata, Z., S. Reed, D. Walter, H. Lee, and B. Schiele (2015), Evaluation of Output
Embeddings for Fine-Grained Image Classification, in CVPR.

[4] Anderson, M. L. (2010), Neural reuse: A fundamental organizational principle of
the brain, Behavioral and Brain Sciences, 33, 245–266.

[5] Andre, D., and S. J. Russell (2001), Programmable reinforcement learning agents,
in Advances in Neural Information Processing Systems, pp. 1019–1025.

[6] Argyriou, A., T. Evgeniou, and M. Pontil (2007), Multi-task feature learning, in
NIPS.

[7] Ba, J., and D. Kingma (2015), Adam: A method for stochastic optimization, in
ICLR.

[8] Ba, J., K. Swersky, S. Fidler, and R. Salakhutdinov (2015), Predicting deep zero-shot
convolutional neural networks using textual descriptions, in ICCV.

[9] Ba, J., K. Swersky, S. Fidler, and R. Salakhutdinov (2015), Predicting deep zero-shot
convolutional neural networks using textual descriptions, arXiv:1506.00511.

[10] Banzhaf, W., P. Nordin, R. E. Keller, and F. D. Francone (1998), Genetic program-
ming: An introduction, vol. 1, Morgan Kaufmann San Francisco.

[11] Bartha, P. (2013), Analogy and analogical reasoning, in The Stanford Encyclopedia
of Philosophy, edited by E. N. Zalta, fall 2013 ed.

[12] Battaglia, P. W., J. B. Hamrick, and J. B. Tenenbaum (2013), Simulation as an engine
of physical scene understanding, Proceedings of the National Academy of Sciences,
110(45), 18,327–18,332.

[13] Bénard, P., F. Cole, M. Kass, I. Mordatch, J. Hegarty, M. S. Senn, K. Fleischer,
D. Pesare, and K. Breeden (2013), Stylizing animation by example, ACM Transac-
tions on Graphics (TOG), 32(4), 119.

125

http://lpc.opengameart.org/

[14] Bengio, S., J. Weston, and D. Grangier (2010), Label embedding trees for large
multi-class tasks, in NIPS.

[15] Bengio, Y. (2009), Learning deep architectures for AI, Foundations and Trends in
Machine Learning, 2(1), 1–127.

[16] Bengio, Y., G. Mesnil, Y. Dauphin, and S. Rifai (2013), Better mixing via deep
representations, in ICML.

[17] Caruana, R. (1997), Multitask learning, Machine Learning, 28(1), 41–75.

[18] Cheung, B., J. A. Livezey, A. K. Bansal, and B. A. Olshausen (2015), Discovering
hidden factors of variation in deep networks, in ICLR Workshop.

[19] Cleeremans, A., D. Servan-Schreiber, and J. L. McClelland (1989), Finite state au-
tomata and simple recurrent networks, Neural computation, 1(3), 372–381.

[20] Coates, A., and A. Y. Ng (2011), The importance of encoding versus training with
sparse coding and vector quantization, in ICML.

[21] Cohen, T., and M. Welling (2014), Learning the irreducible representations of com-
mutative lie groups, in ICML, pp. 1755–1763.

[22] Cohen, T. S., and M. Welling (2015), Transformation properties of learned visual
representations, in ICLR.

[23] Courville, A., J. Bergstra, and Y. Bengio (2011), A spike and slab restricted Boltz-
mann machine, in AISTATS.

[24] Dalton, J., J. Allan, and P. Mirajkar (2013), Zero-shot video retrieval using content
and concepts, in CIKM.

[25] Deng, J., W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei (2009), Imagenet: A
large-scale hierarchical image database, in CVPR.

[26] Deng, J., J. Krause, and L. Fei-Fei (2013), Fine-grained crowdsourcing for fine-
grained recognition, in CVPR.

[27] Denton, E. L., S. Chintala, R. Fergus, et al. (2015), Deep generative image models
using a laplacian pyramid of adversarial networks, in NIPS.

[28] Desjardins, G., A. Courville, and Y. Bengio (2012), Disentangling factors of varia-
tion via generative entangling, arXiv preprint arXiv:1210.5474.

[29] Dietterich, T. G. (2000), Hierarchical reinforcement learning with the MAXQ value
function decomposition, Journal of Artificial Intelligence Research, 13, 227–303.

[30] Ding, W., and G. W. Taylor (2014), ” mental rotation” by optimizing transforming
distance, arXiv preprint arXiv:1406.3010.

126

[31] Dollár, P., V. Rabaud, and S. Belongie (2007), Learning to traverse image manifolds,
Advances in neural information processing systems, 19, 361.

[32] Donahue, J., Y. Jia, O. Vinyals, J. Hoffman, N. Zhang, E. Tzeng, and T. Darrell
(2013), Decaf: A deep convolutional activation feature for generic visual recogni-
tion, arXiv:1310.1531.

[33] Donahue, J., L. A. Hendricks, S. Guadarrama, M. Rohrbach, S. Venugopalan,
K. Saenko, and T. Darrell (2015), Long-term recurrent convolutional networks for
visual recognition and description, in CVPR.

[34] Donnarumma, F., R. Prevete, and G. Trautteur (2012), Programming in the brain: A
neural network theoretical framework, Connection Science, 24(2-3), 71–90.

[35] Donnarumma, F., R. Prevete, F. Chersi, and G. Pezzulo (2015), A programmerin-
terpreter neural network architecture for prefrontal cognitive control, International
Journal of Neural Systems, 25(6), 1550,017.

[36] Dosovitskiy, A., J. Springenberg, and T. Brox (2015), Learning to generate chairs
with convolutional neural networks, in CVPR.

[37] Duan, K., D. Parikh, D. J. Crandall, and K. Grauman (2012), Discovering localized
attributes for fine-grained recognition, in CVPR.

[38] Elhoseiny, M., B. Saleh, and A. Elgammal (2013), Write a classifier: Zero-shot
learning using purely textual descriptions, in ICCV.

[39] Evans, T. G. (1964), A heuristic program to solve geometric-analogy problems, in
Proceedings of the April 21-23, 1964, spring joint computer conference, ACM.

[40] Farhadi, A., I. Endres, D. Hoiem, and D. Forsyth (2009), Describing objects by their
attributes, in CVPR.

[41] Fidler, S., S. Dickinson, and R. Urtasun (2012), 3D object detection and viewpoint
estimation with a deformable 3D cuboid model, in Advances in neural information
processing systems.

[42] Fidler, S., S. Dickinson, and R. Urtasun (2012), 3d object detection and viewpoint
estimation with a deformable 3d cuboid model, in NIPS, pp. 611–619.

[43] Frome, A., G. S. Corrado, J. Shlens, S. Bengio, J. Dean, and T. Mikolov (2013),
Devise: A deep visual-semantic embedding model, in NIPS.

[44] Fu, Y., T. M. Hospedales, T. Xiang, Z. Fu, and S. Gong (2014), Transductive multi-
view embedding for zero-shot recognition and annotation, in ECCV.

[45] Fu, Y., T. M. Hospedales, T. Xiang, and S. Gong (2015), Transductive multi-view
zero-shot learning, TPAMI.

127

[46] Gauthier, J. (2015), Conditional generative adversarial nets for convolutional face
generation, Tech. rep.

[47] Giles, C. L., C. B. Miller, D. Chen, H.-H. Chen, G.-Z. Sun, and Y.-C. Lee (1992),
Learning and extracting finite state automata with second-order recurrent neural net-
works, Neural Computation, 4(3), 393–405.

[48] Goodfellow, I., M. Mirza, A. Courville, and Y. Bengio (2013), Multi-prediction deep
Boltzmann machines, in NIPS.

[49] Goodfellow, I., J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
A. Courville, and Y. Bengio (2014), Generative adversarial nets, in NIPS.

[50] Graves, A., G. Wayne, and I. Danihelka (2014), Neural Turing machines, arXiv
preprint arXiv:1410.5401.

[51] Gregor, K., I. Danihelka, A. Graves, D. Rezende, and D. Wierstra (2015), Draw: A
recurrent neural network for image generation, in ICML.

[52] Gross, R., I. Matthews, J. Cohn, T. Kanade, and S. Baker (2010), Multi-PIE, Image
and Vision Computing, 28(5).

[53] Habibian, A., T. Mensink, and C. G. Snoek (2014), Composite concept discovery
for zero-shot video event detection, in Proceedings of International Conference on
Multimedia Retrieval.

[54] Hadsell, R., S. Chopra, and Y. LeCun (2006), Dimensionality reduction by learning
an invariant mapping, in CVPR.

[55] Harris, Z. (1954), Distributional structure, Word, 10(23).

[56] Hertzmann, A., C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin (2001), Image
analogies, in SIGGRAPH.

[57] Hertzmann, A., C. E. Jacobs, N. Oliver, B. Curless, and D. H. Salesin (2001), Image
analogies, in Proceedings of the 28th annual conference on Computer graphics and
interactive techniques, pp. 327–340, ACM.

[58] Hinton, G. E. (2002), Training products of experts by minimizing contrastive diver-
gence, Neural Computation, 14(8), 1771–1800.

[59] Hinton, G. E. (2010), A practical guide to training restricted boltzmann machines,
Tech. rep.

[60] Hinton, G. E., and R. Salakhutdinov (2006), Reducing the dimensionality of data
with neural networks, Science, 313(5786), 504–507.

[61] Hochreiter, S., and J. Schmidhuber (1997), Long short-term memory, Neural Com-
put., 9(8), 1735–1780.

128

[62] Huang, G. B., H. Lee, and E. Learned-Miller (2012), Learning hierarchical repre-
sentations for face verification with convolutional deep belief networks, in CVPR.

[63] Huang, G. B., M. Mattar, H. Lee, and E. Learned-Miller (2012), Learning to align
from scratch, in NIPS.

[64] Huang, S., M. Elhoseiny, A. Elgammal, and D. Yang (2015), Learning hypergraph-
regularized attribute predictors, in CVPR.

[65] Hwang, S. J., K. Grauman, and F. Sha (2013), Analogy-preserving semantic embed-
ding for visual object categorization, in NIPS.

[66] Ioffe, S., and C. Szegedy (2015), Batch normalization: Accelerating deep network
training by reducing internal covariate shift, arXiv:1502.03167.

[67] Jia, Y., E. Shelhamer, J. Donahue, S. Karayev, J. Long, R. Girshick, S. Guadarrama,
and T. Darrell (2014), Caffe: Convolutional architecture for fast feature embedding,
arXiv preprint arXiv:1408.5093.

[68] Joulin, A., and T. Mikolov (2015), Inferring algorithmic patterns with stack-
augmented recurrent nets, in NIPS.

[69] Kaiser, Ł., and I. Sutskever (2015), Neural gpus learn algorithms, arXiv preprint
arXiv:1511.08228.

[70] Karpathy, A., and F. Li (2015), Deep visual-semantic alignments for generating im-
age descriptions, in CVPR.

[71] Kavukcuoglu, K., M. Ranzato, R. Fergus, and Y. LeCun (2009), Learning invariant
features through topographic filter maps, in CVPR.

[72] Kim, G., S. Moon, and L. Sigal (2015), Ranking and retrieval of image sequences
from multiple paragraph queries, in CVPR.

[73] Kingma, D. P., and M. Welling (2013), Auto-encoding variational bayes, arXiv
preprint arXiv:1312.6114.

[74] Kingma, D. P., S. Mohamed, D. J. Rezende, and M. Welling (2014), Semi-supervised
learning with deep generative models, in NIPS, pp. 3581–3589.

[75] Kiros, R., R. Salakhutdinov, and R. S. Zemel (2014), Unifying visual-semantic em-
beddings with multimodal neural language models, in ACL.

[76] Kolter, Z., P. Abbeel, and A. Y. Ng (2008), Hierarchical apprenticeship learning with
application to quadruped locomotion, in Advances in Neural Information Processing
Systems, pp. 769–776.

[77] Krizhevsky, A., I. Sutskever, and G. E. Hinton (2012), Imagenet classification with
deep convolutional neural networks, in NIPS.

129

[78] Kulkarni, G., V. Premraj, S. Dhar, S. Li, Y. choi, A. Berg, and T. Berg (2011), Baby
talk: understanding and generating simple image descriptions, in CVPR.

[79] Kulkarni, T. D., W. Whitney, P. Kohli, and J. B. Tenenbaum (2015), Deep convolu-
tional inverse graphics network, arXiv preprint arXiv:1503.03167.

[80] Kumar, N., A. C. Berg, P. N. Belhumeur, and S. K. Nayar (2009), Attribute and
simile classifiers for face verification, in ICCV.

[81] Kurach, K., M. Andrychowicz, and I. Sutskever (2015), Neural random-access ma-
chines, arXiv preprint arXiv:1511.06392.

[82] Lampert, C., H. Nickisch, and S. Harmeling (2013), Attribute-based classification
for zero-shot visual object categorization, in TPAMI.

[83] Le, Q. V., W. Y. Zou, S. Y. Yeung, and A. Y. Ng (2011), Learning hierarchical
invariant spatio-temporal features for action recognition with independent subspace
analysis, in CVPR.

[84] Lee, H., C. Ekanadham, and A. Y. Ng (2008), Sparse deep belief net model for visual
area V2, in NIPS.

[85] Lee, H., R. Grosse, R. Ranganath, and A. Y. Ng (2011), Unsupervised learning of hi-
erarchical representations with convolutional deep belief networks, Communications
of the ACM, 54(10), 95–103.

[86] Lerer, A., S. Gross, and R. Fergus (2016), Learning physical intuition of block tow-
ers by example, arXiv preprint arXiv:1603.01312.

[87] Levy, O., Y. Goldberg, and I. Ramat-Gan (2014), Linguistic regularities in sparse
and explicit word representations, CoNLL-2014, p. 171.

[88] Lin, T.-Y., M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and
C. L. Zitnick (2014), Microsoft coco: Common objects in context, in Computer
Vision–ECCV 2014, pp. 740–755, Springer.

[89] Liu, Z., P. Luo, X. Wang, and X. Tang (2015), Deep learning face attributes in the
wild, in ICCV.

[90] Lowe, D. G. (1999), Object recognition from local scale-invariant features, in CVPR.

[91] Mansimov, E., E. Parisotto, J. L. Ba, and R. Salakhutdinov (2016), Generating im-
ages from captions with attention, ICLR.

[92] Mao, J., W. Xu, Y. Yang, J. Wang, and A. Yuille (2014), Deep captioning with
multimodal recurrent neural networks (m-rnn), arXiv:1412.6632.

[93] Mccloskey, M., and N. J. Cohen (1989), Catastrophic interference in connection-
ist networks: The sequential learning problem, in The psychology of learning and
motivation, vol. 24, pp. 109–165.

130

[94] Memisevic, R., and G. E. Hinton (2010), Learning to represent spatial transforma-
tions with factored higher-order Boltzmann machines, Neural Computation, 22(6),
1473–1492.

[95] Metz, C. (2015), Facebooks ai can caption photos for the blind on its own, [Online;
posted 27-October-2015].

[96] Michalski, V., R. Memisevic, and K. Konda (2014), Modeling deep temporal depen-
dencies with recurrent grammar cells””, in Advances in neural information process-
ing systems, pp. 1925–1933.

[97] Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean (2013), Distributed
representations of words and phrases and their compositionality, in NIPS.

[98] Mikolov, T., I. Sutskever, K. Chen, G. S. Corrado, and J. Dean (2013), Distributed
representations of words and phrases and their compositionality, in NIPS, pp. 3111–
3119.

[99] Miller, G. A. (1995), Wordnet: a lexical database for english, CACM, 38.

[100] Minsky, M. (1982), Semantic information processing.

[101] Mirza, M., and S. Osindero (2014), Conditional generative adversarial nets, arXiv
preprint arXiv:1411.1784.

[102] Mou, L., G. Li, Y. Liu, H. Peng, Z. Jin, Y. Xu, and L. Zhang (2014), Building
program vector representations for deep learning, arXiv preprint arXiv:1409.3358.

[103] Neelakantan, A., Q. V. Le, and I. Sutskever (2015), Neural programmer: Inducing
latent programs with gradient descent, arXiv preprint arXiv:1511.04834.

[104] Ng, J. Y.-H., M. Hausknecht, S. Vijayanarasimhan, O. Vinyals, R. Monga, and
G. Toderici (2015), Beyond short snippets: Deep networks for video classification,
in CVPR.

[105] Ngiam, J., A. Khosla, M. Kim, J. Nam, H. Lee, and A. Y. Ng (2011), Multimodal
deep learning, in ICML.

[106] Nilsback, M.-E., and A. Zisserman (2008), Automated flower classification over a
large number of classes, in ICCVGI.

[107] Norouzi, M., T. Mikolov, S. Bengio, Y. Singer, J. Shlens, A. Frome, G. Corrado, and
J. Dean (2013), Zero-shot learning by convex combination of semantic embeddings,
arXiv:1312.5650.

[108] Oquab, M., L. Bottou, I. Laptev, and J. Sivic (2014), Learning and transferring mid-
level image representations using convolutional neural networks, in Computer Vision
and Pattern Recognition (CVPR), 2014 IEEE Conference on, pp. 1717–1724, IEEE.

131

[109] Ordonez, V., G. Kulkarni, and T. Berg (2011), Im2Text: Describing images using 1
million captioned photographs, in NIPS.

[110] OReilly, R. C., R. Bhattacharyya, M. D. Howard, and N. Ketz (2014), Complemen-
tary learning systems, Cognitive Science, 38(6), 1229–1248.

[111] Palatucci, M., D. Pomerleau, G. Hinton, and T. Mitchell (2009), Zero-shot learning
with semantic output codes, in NIPS.

[112] Parikh, D., and K. Grauman (2011), Relative attributes, in ICCV.

[113] Pennington, J., R. Socher, and C. D. Manning (2014), Glove: Global vectors for
word representation, in EMNLP.

[114] Pennington, J., R. Socher, and C. D. Manning (2014), Glove: Global vectors for
word representation, Proceedings of the Empiricial Methods in Natural Language
Processing (EMNLP 2014), 12.

[115] Radford, A., L. Metz, and S. Chintala (2015), Unsupervised representation
learning with deep convolutional generative adversarial networks, arXiv preprint
arXiv:1511.06434.

[116] Ranzato, M., F. J. Huang, Y. L. Boureau, and Y. LeCun (2007), Unsupervised learn-
ing of invariant feature hierarchies with applications to object recognition, in CVPR.

[117] Ranzato, M., J. Susskind, V. Mnih, and G. E. Hinton (2011), On deep generative
models with applications to recognition, in CVPR.

[118] Reed, S., K. Sohn, Y. Zhang, and H. Lee (2014), Learning to disentangle factors of
variation with manifold interaction, in ICML.

[119] Reed, S., Y. Zhang, Y. Zhang, and H. Lee (2015), Deep visual analogy-making, in
NIPS.

[120] Reed, S., Z. Akata, H. Lee, and B. Schiele (2016), Learning deep representations of
fine-grained visual descriptions, in CVPR.

[121] Ren, M., R. Kiros, and R. Zemel (2015), Exploring models and data for image ques-
tion answering, in NIPS.

[122] Rifai, S., P. Vincent, X. Muller, X. Glorot, and Y. Bengio (2011), Contractive auto-
encoders: Explicit invariance during feature extraction, in ICML.

[123] Rifai, S., Y. Bengio, A. Courville, P. Vincent, and M. Mirza (2012), Disentangling
factors of variation for facial expression recognition, in Computer Vision–ECCV
2012, pp. 808–822, Springer.

[124] Rohrbach, M., M. Stark, and B.Schiele (2011), Evaluating knowledge transfer and
zero-shot learning in a large-scale setting, in CVPR.

132

[125] Rothkopf, C., and D. Ballard (2013), Modular inverse reinforcement learning for
visuomotor behavior, Biological Cybernetics, 107(4), 477–490.

[126] Roweis, S. T., and L. K. Saul (2000), Nonlinear dimensionality reduction by locally
linear embedding, Science, 290(5500), 2323–2326.

[127] Rumelhart, D. E., G. E. Hinton, and J. L. McClelland (1986), Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1, chap. A General
Framework for Parallel Distributed Processing, pp. 45–76, MIT Press.

[128] Russakovsky, O., et al. (2015), ImageNet Large Scale Visual Recognition Chal-
lenge, International Journal of Computer Vision (IJCV), pp. 1–42, doi:10.1007/
s11263-015-0816-y.

[129] Russell, S. J., P. Norvig, J. F. Canny, J. M. Malik, and D. D. Edwards (2003), Artifi-
cial intelligence: a modern approach, vol. 2, Prentice hall Upper Saddle River.

[130] Salakhutdinov, R., and G. E. Hinton (2009), Deep Boltzmann machines, in AISTATS.

[131] Schaul, T., D. Horgan, K. Gregor, and D. Silver (2015), Universal value function
approximators, in International Conference on Machine Learning.

[132] Schmidhuber, J. (1992), Learning to control fast-weight memories: An alternative
to dynamic recurrent networks, Neural Computation, 4(1), 131–139.

[133] Schneider, W., and J. M. Chein (2003), Controlled and automatic processing: be-
havior, theory, and biological mechanisms, Cognitive Science, 27(3), 525–559.

[134] Simonyan, K., and A. Zisserman (2015), Very deep convolutional networks for
large-scale image recognition, in International Conference on Learning Representa-
tions.

[135] Smolensky, P. (1986), Information processing in dynamical systems: Foundations of
harmony theory.

[136] Socher, R., M. Ganjoo, H. Sridhar, O. Bastani, C. Manning, and A. Ng (2013), Zero-
shot learning through cross-modal transfer, in NIPS.

[137] Sohn, K., and H. Lee (2012), Learning invariant representations with local transfor-
mations, in ICML.

[138] Sohn, K., G. Zhou, C. Lee, and H. Lee (2013), Learning and selecting features jointly
with point-wise gated Boltzmann machines, in ICML.

[139] Sohn, K., W. Shang, and H. Lee (2014), Improved multimodal deep learning with
variation of information, in NIPS.

[140] Srivastava, N., and R. Salakhutdinov (2012), Multimodal learning with Deep Boltz-
mann machines, in NIPS.

133

[141] Stoyanov, V., A. Ropson, and J. Eisner (2011), Empirical risk minimization of graph-
ical model parameters given approximate inference, decoding, and model structure,
in AISTATS.

[142] Subramanian, K., C. Isbell, and A. Thomaz (2011), Learning options through hu-
man interaction, in IJCAI Workshop on Agents Learning Interactively from Human
Teachers.

[143] Susskind, J., A. Anderson, and G. E. Hinton (2010), The Toronto Face Database,
Tech. rep., University of Toronto.

[144] Susskind, J., R. Memisevic, G. E. Hinton, and M. Pollefeys (2011), Modeling the
joint density of two images under a variety of transformations, in CVPR.

[145] Sutskever, I., and G. E. Hinton (2009), Using matrices to model symbolic relation-
ship, in Advances in Neural Information Processing Systems, pp. 1593–1600.

[146] Sutskever, I., O. Vinyals, and Q. V. Le (2014), Sequence to sequence learning with
neural networks, in Advances in neural information processing systems, pp. 3104–
3112.

[147] Sutton, R. S., D. Precup, and S. Singh (1999), Between MDPs and semi-MDPs: A
framework for temporal abstraction in reinforcement learning, Artificial Intelligence,
112(1-2), 181–211.

[148] Szegedy, C., W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, and A. Rabinovich (2015), Going deeper with convolutions, in Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–9.

[149] Tang, Y., R. Salakhutdinov, and G. Hinton (2013), Tensor analyzers, in ICML, pp.
163–171.

[150] Tang, Y., R. Salakhutdinov, and G. E. Hinton (2013), Tensor analyzers, in ICML.

[151] Tenenbaum, J. B., and W. T. Freeman (2000), Separating style and content with
bilinear models, Neural computation, 12(6), 1247–1283.

[152] Tenenbaum, J. B., V. De Silva, and J. C. Langford (2000), A global geometric frame-
work for nonlinear dimensionality reduction, Science, 290(5500), 2319–2323.

[153] Tieleman, T. (2008), Training restricted Boltzmann machines using approximations
to the likelihood gradient, in ICML.

[154] Tsarev, F., and K. Egorov (2011), Finite state machine induction using genetic algo-
rithm based on testing and model checking, in Proceedings of the 13th annual con-
ference companion on Genetic and evolutionary computation, pp. 759–762, ACM.

[155] Turney, P. D. (2006), Similarity of semantic relations, Computational Linguistics,
32(3), 379–416.

134

[156] Vinyals, O., M. Fortunato, and N. Jaitly (2015), Pointer networks, Advances in Neu-
ral Information Processing Systems (NIPS).

[157] Vinyals, O., A. Toshev, S. Bengio, and D. Erhan (2015), Show and tell: A neural
image caption generator, in CVPR.

[158] Wah, C., S. Branson, P. Welinder, P. Perona, and S. Belongie (2011), The caltech-
ucsd birds-200-2011 dataset.

[159] Wang, P., Q. Wu, C. Shen, A. v. d. Hengel, and A. Dick (2015), Explicit knowledge-
based reasoning for visual question answering, arXiv preprint arXiv:1511.02570.

[160] Watrous, R. L., and G. M. Kuhn (1992), Induction of finite-state languages using
second-order recurrent networks, Neural Computation, 4(3), 406–414.

[161] Welinder, P., S. Branson, T. Mita, C. Wah, F. Schroff, S. Belongie, and P. Perona
(2010), Caltech-UCSD Birds 200, Tech. Rep. CNS-TR-2010-001, Caltech.

[162] Weston, J., S. Bengio, and N. Usunier (2010), Large scale image annotation: Learn-
ing to rank with joint word-image embeddings, ECML.

[163] Wu, S., S. Bondugula, F. Luisier, X. Zhuang, and P. Natarajan (2014), Zero-shot
event detection using multi-modal fusion of weakly supervised concepts, in CVPR.

[164] Xu, K., J. Ba, R. Kiros, A. Courville, R. Salakhutdinov, R. Zemel, and Y. Bengio
(2015), Show, attend and tell: Neural image caption generation with visual attention,
in ICML.

[165] Yan, X., J. Yang, K. Sohn, and H. Lee (2015), Attribute2image: Conditional image
generation from visual attributes, arXiv preprint arXiv:1512.00570.

[166] Yaner, P. W., and A. K. Goel (2007), Understanding drawings by compositional
analogy., in IJCAI, pp. 1131–1137.

[167] Yang, J., S. Reed, M.-H. Yang, and H. Lee (2015), Weakly-supervised disentangling
with recurrent transformations for 3d view synthesis, in NIPS.

[168] Young, P., A. Lai, M. Hodosh, and J. Hockenmaier (2014), From image descrip-
tions to visual denotations: New similarity metrics for semantic inference over event
descriptions, Trans. of the Assoc. for Comp. Ling., 2, 67–78.

[169] Zaremba, W., and I. Sutskever (2014), Learning to execute, arXiv preprint
arXiv:1410.4615.

[170] Zaremba, W., and I. Sutskever (2015), Reinforcement learning neural turing ma-
chines, arXiv preprint arXiv:1505.00521.

[171] Zaremba, W., T. Mikolov, A. Joulin, and R. Fergus (2015), Learning simple algo-
rithms from examples, arXiv preprint arXiv:1511.07275.

135

[172] Zhang, N., J. Donahue, R. Girshick, and T. Darrell (2014), Part-based R-CNNs for
fine-grained category detection, in ECCV.

[173] Zhang, X., and Y. LeCun (2015), Text understanding from scratch,
arXiv:1502.01710.

[174] Zheng, S., S. Jayasumana, B. Romera-Paredes, V. Vineet, Z. Su, D. Du, C. Huang,
and P. H. Torr (2015), Conditional random fields as recurrent neural networks, in
ICCV.

[175] Zhu, Y., R. Kiros, R. Zemel, R. Salakhutdinov, R. Urtasun, A. Torralba, and S. Fi-
dler (2015), Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books, in ICCV.

[176] Zhu, Z., P. Luo, X. Wang, and X. Tang (2014), Multi-view perceptron: a deep model
for learning face identity and view representations, in NIPS, pp. 217–225.

136

