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ωy Pitch angular velocity [rad/s]
ωz Yaw angular velocity [rad/s]
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φ Roll angle [rad]
θ Pitch angle [rad]
ψ Yaw angle [rad]

Pc Shape factor for lateral force [-]
Pd,z Variation of lateral friction with load [-]
Pd Lateral friction [-]
Pe,z Variation of lateral curvature with load [-]
Pe Lateral curvature [-]
Pk,z Load at which stiffness reaches maximum value [-]
Pk Maximum value of stiffness [-]

αf Front tire slip angle [rad]
αr Rear tire slip angle [rad]
α• Slip angle of the tire [rad]
κ• Slip ratio [-]
δf Front wheel steering angle [rad]
δ? Steering angle [rad]
ηf Front wheel steering acceleration [rad/s2]
γf Front wheel steering rate [rad/s]

ax Longitudinal acceleration [m/s2]
Jx Longitudinal jerk [m/s3]
U0 Constant reference longitudinal velocity [m/s]
U Longitudinal velocity in BFCF [m/s]
V Lateral velocity in BFCF [m/s]
W Vertical velocity in BFCF [m/s]
ws,• Vertical velocities at the suspension corner

in BFCF [m/s]
uu,•/vu,•/wu,• Longitudinal/lateral/vertical velocities of

the unsprung mass in BFCF [m/s]
ut,• Longitudinal velocity at tire contact patch [m/s]
vt,• Lateral velocity at tire contact patch [m/s]

xsusp,• Suspension spring compression [m]
(x, y) Vehicle front center location in inertial coordinates [m]
X Longitudinal location of the sprung mass

in inertial frame [m]
Y Lateral location of the sprung mass

in inertial frame [m]
Z Vertical location of the sprung mass

in inertial frame [m]
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Algorithm Parameters and Variables

()(i) Functions or variables of i-th sub-region, i = 1, . . . , N [-]
()max Upper bound value [-]
()min Lower bound value [-]
()load Most likely smallest vertical load scenario [-]
()traj Most likely stiffest trajectory scenario [-]

F(·) Generic terminal constraint [-]
G(·) Generic path constraint [-]
I(·) Integrand of generic integral cost [-]
J (·) Generic cost function [-]
M(·) Generic model function [-]
P(·) Pacejka tire model function [-]
R(·) Generic safe region constraint [-]
S(·) Generic dynamical safety constraint [-]
T (·) Generic terminal cost [-]
V(·) Generic vehicle model function [-]

Ctraj Curvature of trajectory [1/m]
Econtrol Control effort [circ-s]
Icurvature Integral of curvature of trajectory [s/m]
Ttotal Total navigation time to reach the target [s]

Fz,a Small vertical load penalty parameter [-]
Fz,b Small vertical load penalty parameter [-]
ψdiff Difference between the vehicle final heading angle

and the desired heading angle [rad]
s0 Distance between the vehicle current position and the target [m]
sf Distance between the end of the prediction and the target [m]
vcf Control effort metric value [-]
vdt Heading direction metric value [-]
wψ Cost function weighting term [-]
wcf Cost function weighting term [-]
wdt Cost function weighting term [-]
wδ Cost function weighting term [-]
wt Cost function weighting term [-]
wfz Cost function weighting term [-]
wγ Cost function weighting term [-]
wJ Cost function weighting term [-]

c1, . . . , c8 Polynomial fitting coefficients for acceleration bounds [-]
Fz,threshold The vertical load threshold [N]
Rσ Prediction distance relaxation constant [m]
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σ Target arrival margin [m]
Uthreshold The maximum terminal velocity [m/s]

ε LIDAR angular resolution [◦]
Lmax Maximum obstacle size [m]
RLIDAR LIDAR maximum detection range [m]

np Number of intervals over the prediction horizon [-]
ns Number of elements in the steering angle pool [-]

A
(i)
L(i)×1 Vectors used for the representation of the i-th sub-region [-]

B
(i)
L(i)×1 Vectors used for the representation of the i-th sub-region [-]

C
(i)
L(i)×1 Vectors used for the representation of the i-th sub-region [-]

L(i) Total number of lines bounding the i-th sub-region [-]
Madjacency Adjacency matrix [-]
N Total number of sub-regions to transverse [-]

ξ0 State vector initial value [-]
ξ∗ Optimal state vector [-]
ξ State vector [-]
ζ∗ Optimal control vector [-]
ζ Control vector [-]

t0 Initial time [s]
Te Execution horizon [s]
Tp Prediction horizon [s]
t time [s]
T i Time for transitioning from one sub-region to the next [s]

ψt Desired final heading angle [deg]
(xt, yt) Target location in inertial coordinates [m]
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ABSTRACT

High Speed Obstacle Avoidance at the Dynamic Limits for Autonomous
Ground Vehicles

by

Jiechao Liu

Chair: Jeffrey L. Stein and Tulga Ersal

Enabling autonomy of passenger-size and larger vehicles is becoming increas-

ingly important in both military and commercial applications. For large autonomous

ground vehicles (AGVs), the vehicle dynamics are critical to consider to ensure vehicle

safety during obstacle avoidance maneuvers especially at high speeds. This research

is concerned with large-size high-speed AGVs with high center of gravity (CoG) that

operate in unstructured environments. The term ‘unstructured’ in this context de-

notes that there are no lanes or traffic rules to follow. No map of the environment

is available a priori. The environment is perceived through a planar light detection

and ranging sensor. The mission of the AGV is to move from its initial position to a

given target position safely and as fast as possible.

In this dissertation, a model predictive control (MPC)-based obstacle avoidance

algorithm is developed to achieve the objectives through an iterative simultaneous

optimization of the path and the corresponding control commands. MPC is chosen

because it offers a rigorous and systematic approach for taking vehicle dynamics and

safety constraints into account.

xxiv



Firstly, this thesis investigates the level of model fidelity needed in order for a

MPC-based obstacle avoidance algorithm to be able to safely and quickly avoid ob-

stacles even when the vehicle is close to its dynamic limits. Five different representa-

tions of vehicle dynamics models are considered: four variations of the two Degrees

of-Freedom (DoF) representation as lower fidelity models and a fourteen DoF rep-

resentation with combined-slip Magic Formula tire model as a higher fidelity model.

It is concluded that the two DoF representation that accounts for tire nonlinearities

and longitudinal load transfer is necessary for the MPC-based obstacle avoidance

algorithm in order to operate the vehicle at its limits within an environment that

includes large obstacles. For less challenging environments, however, the two DoF

representation with linear tire model and constant axle loads is sufficient.

Secondly, existing MPC formulations for passenger vehicles in structured environ-

ments do not readily apply to this context. Thus, a novel nonlinear MPC formulation

is developed. First, a new cost function formulation is used that aims to find the short-

est path to the target position, since no reference trajectory exists in unstructured

environments. Second, a region partitioning approach is used in conjunction with a

multi-phase optimal control formulation to accommodate the complicated forms the

obstacle-free region can assume due to the presence of multiple obstacles along the

prediction horizon in an unstructured environment. Third, the no-wheel-lift-off con-

dition, which is the major dynamical safety concern for high-speed, high-CoG AGVs,

is established offline using a fourteen DoF vehicle dynamics model and is included in

the MPC formulation. A formulation is first developed by assuming a constant-speed

operation. It is then extended with the capability of simultaneous optimization of

both steering angle and reference longitudinal speed commands. Simulation results

show that the proposed algorithm is capable of safely exploiting the dynamic limits

of the vehicle while navigating the vehicle through sensed obstacles of different size

and number.

xxv



Thirdly, in the algorithm, a model of the vehicle is used explicitly to predict

and optimize future actions, but in practice the model parameter values are not

exactly known. Thus, the robustness of the algorithm to parametric uncertainty

is also evaluated. It is demonstrated that using nominal parameter values in the

algorithm leads to safety issues in about one fourth of the evaluated scenarios with

the considered parametric uncertainty distributions. To improve the robustness of the

algorithm, a novel double-worst-case formulation is developed that simultaneously

accounts for the robust satisfaction of the two safety requirements of high-speed

obstacle avoidance: collision-free and no-wheel-lift-off. Results from simulations with

stratified random scenarios and worst-case scenarios show that the double-worst-

case formulation considering both the most likely worst-case scenarios and the less

likely worst-case scenarios renders the algorithm robust to all uncertainty realizations

tested. The trade-off between the robustness and the task completion performance

of the algorithm is also quantified.

Finally, in addition to simulation-based validation, preliminary experimental val-

idation is also performed. These results demonstrate that the developed algorithm is

promising in terms of its capability of avoiding obstacles. Limitations and potential

improvements of the algorithm are discussed.
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CHAPTER 1

Introduction

1.1 Motivation

[1, 2, 3, 4, 5, 6, 7, 8]

Autonomous ground vehicles (AGVs) hold great potential for increased safety,
performance, and convenience and thus have attracted interest for both military and
commercial applications. In the military field, the extensive use of remotely con-
trolled ground robots over the past decade has demonstrated the benefits of unmanned
ground vehicles [9] and motivated the transition to fully autonomous large vehicles
as a natural extension. As an example, the Autonomous Platform Demonstrator is
a 9-ton vehicle that has been used to develop, integrate, and test many next gen-
eration unmanned ground vehicle mobility technologies. It is capable of performing
maneuvers at speeds up to 22.4 m/s [10]. In the commercial field, almost all major
automobile manufactures and some technology companies are pursuing autonomous
passenger vehicles to achieve improved safety, reduced congestion, increased conve-
nience and many other potential advantages [11].

The development of AGVs for military versus commercial applications poses dif-
ferent research challenges due to the contextual differences. Military AGVs need the
capability to operate in unstructured environments and maneuver at high speeds to
respond rapidly to changing threats and priorities [12]. Thus, operating the AGVs at
their dynamic limits is a critical research problem for military applications [13]. Com-
mercial AGVs, on the other hand, need to be able to navigate in urban and highway
environments safely. Within that context, operating the AGV at its dynamic limits is
less relevant; instead, the traffic and its rules become critical considerations. Hence,
the main research focus for commercial AGVs is on perception and localization [14].

Obstacle avoidance is a critical capability for both military and commercial AGVs.
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It refers to the task of sensing the vehicle’s surroundings and generating control com-
mands to navigate the vehicle safely around the obstacles [15] as demonstrated in
Figure 1.1. Obstacle avoidance for small ground robots is a relatively more mature
research area. Many obstacle avoidance algorithms have been developed in the litera-
ture that allow for fast, continuous, and smooth motion of small AGVs among unex-
pected obstacles. Some early examples include the Artificial Potential Field method
[16, 17], the Vector Field Histogram method [18, 19], the Dynamic Window approach
[20, 21], and the Curvature-Velocity method [22]. Reviews and comparisons of these
algorithms can be found in [23, 24, 25]. These algorithms were originally developed
for small ground robots and mainly focus on finding collision-free paths.

However, for large vehicles at high speed, stability or handling issues such as ex-
cessive side slip, wheel lift-off or rollover may be induced by the obstacle avoidance
maneuver if the controller does not take into account the dynamic constraints prop-
erly [26]. One intuitive approach to avoid these failures is to operate at speeds that
minimize the impact of the vehicle dynamics. However, it is not good from a mission
performance perspective because mission completion time and mobility are key per-
formance issues for military applications. It is preferred to operate the vehicle at its
dynamical limits during emergency situations, which means that the vehicle should
travel as fast as possible and steer as sharp as possible if needed, while still main-
taining its dynamic safety. Thus, for military AGVs, obstacle avoidance algorithms
are needed that can exploit the vehicle dynamics to avoid collisions even when the
vehicle is operating at its handling limits.

Figure 1.1: Graphical illustration of obstacle avoidance.
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1.2 Objective and Scope of the Study

The objective of this thesis is to develop and test an obstacle avoidance algorithm
for large AGVs at high speeds that avoids sensed obstacles in unstructured, unknown
environments. The term ‘unstructured environment’ in this context denotes that
there are no roadways to follow and no traffic rules to obey as shown in Figure 1.2.
The term ‘unknown environment’ is used in the sense that no map of the environment
is available. Thus, the location, size, and shape of obstacles are unknown a priori
but rather are detected when they come into range of the planar light detection
and ranging (LIDAR) sensor. To limit the scope of the problem, it is assumed that
the vehicle moves on flat terrain and all the obstacles are static. The obstacles are
assumed to be detected through a LIDAR sensor as shown in Figure 1.3.

(a) Structured environment (b) Unstructured environment

Figure 1.2: Comparison of structured and unstructured environments.

The mission of the AGV is to move from its initial position to a given target
position safely and as quickly as possible. The safety requirement is not only to
prevent collisions but also to ensure the vehicle’s dynamical safety. Thus the vehicle
is expected to be traveling at high speed with no unnecessary deceleration.

A typical military truck is considered as a representative large-size, high-speed
AGV with significant vehicle dynamics. For the particular vehicle of interest, the
vehicle dynamical safety requirement is defined as avoiding single-wheel lift-off, be-
cause wheel lift-off occurs before excessive sideslip [27]. This is due to the fact that
the truck has a high center of gravity (CoG). In addition, single-wheel lift-off is a
conservative criterion for preventing rollover as illustrated in Figure 1.4.
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Figure 1.3: Example scene illustrating how the vehicle perceives the environment
using a LIDAR sensor.

(a) Single-wheel lift-off 1 (b) Two-wheel lift-off 2

(c) Rollover 3

Figure 1.4: Violations of vehicle dynamical safety.

1Single-wheel lift-off. http://www.ft86club.com/forums/showthread.php?t=40003&page=2
2Two-wheel lift-off. http://www.jk-forum.com/forums/jeep-xj-cherokee-grand-cherokees-35/

2012-jeep-grand-cherokee-rollover-risks-chrysler-engineers-invited-new-testing-241707/
3Rollover. http://turbozens.com/safetytechnologyautomobiles/

4

http://www.ft86club.com/forums/showthread.php?t=40003&page=2
http://www.jk-forum.com/forums/jeep-xj-cherokee-grand-cherokees-35/2012-jeep-grand-cherokee-rollover-risks-chrysler-engineers-invited-new-testing-241707/
http://www.jk-forum.com/forums/jeep-xj-cherokee-grand-cherokees-35/2012-jeep-grand-cherokee-rollover-risks-chrysler-engineers-invited-new-testing-241707/
http://turbozens.com/safetytechnologyautomobiles/ 


1.3 Overview of Motion Generation Algorithms

The online obstacle avoidance algorithm is often used in complement to a global path
planning algorithm in motion generation for autonomous vehicles. The global path
planning algorithm is used to generate some coarse way-points and online obstacle
avoidance algorithm is used to navigate the vehicle between the selected way-points
safely. Table 1.1 summarizes the differences between the two categories of the algo-
rithms [24, 28].

Table 1.1: Comparison of global path planning and online obstacle avoidance algo-
rithms

Global Path Planning Online Obstacle Avoidance

Primary task

Allows the vehicle to
avoid being trapped with
large obstacles, undesir-
able terrain or dead ends

Allows the vehicle to travel stably
and safely

Obstacles
concerned

Large scale obstacles:
hills, rivers, buildings,
etc.

Small scale obstacles and obsta-
cles that are not in the original
map

Information Complete map Real-time sensing data

Plan range Plans for long distance
and time period

Plans for immediate vicinity for a
short time ahead

Computation
time

No requirement to run in
real-time Must run in real-time

Vehicle
dynamics
considered

None / Non-holonomic
and kinodynamic con-
straints

Non-holonomic and kinodynamic
constraints / Complex dynamics
model

The algorithm developed in this thesis is an online obstacle avoidance algorithm.
However, because a complete map of the environment is not available, a reference
trajectory that accounts for large obstacles cannot be generated. Thus, relatively large
obstacles, such as buildings, need to be avoided using the online obstacle avoidance
algorithm and a long distance and time period planning is required.

Numerous motion planning algorithms for different types of AGVs have been de-
veloped in the literature. They can be classified into the following four categories
[29].

The first category is methods based on geometrical model searching [15, 30]. A
geometrical model of the environment including the obstacles is first constructed.
Then, based on the resulting graph or tree model, these methods leverage the mature
graph search algorithms from the computer science to search for a feasible or near-
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optimal solution. Some of the techniques include cell decomposition [31], visibility
graph [32], Voronoi diagram [33], probabilistic roadmaps [34]. However, this type
of algorithms is focused only on finding a collision-free path and it is difficult to
incorporate the dynamic safety constraints.

The second category is methods based on potential field and navigation func-
tion [16, 26]. The fundamental idea of this approach is to use repulsive potential
fields around the obstacles and forbidden regions to force the vehicle away and use
an attractive potential field around target to attract the vehicle. Then, the vehicle
experiences a generalized force equal to the negative of the total potential gradient.
This force drives the robot towards the target position until it reaches a minimum
point [35]. The advantage is that they require very low computation time. However,
the algorithm only generates instantaneous commands, thus, the actions are not an-
ticipative. Some of the techniques in this category include artificial potential field
[16], harmonic function field [36], and flow field [37].

The third category is methods based on meta-heuristic algorithms [38]. A meta-
heuristic is formally defined as an iterative generation process which guides a subordi-
nate heuristic by combining intelligently different concepts for exploring and exploit-
ing the search space. Learning strategies are used to structure information in order to
find efficiently near-optimal solutions [39]. Thus, the algorithms combine heuristics
and randomness to find efficiently near-optimal solutions with the presence of com-
plex non-structured constraints. However, because the search space is discretized, the
generated trajectories are not smooth and the computational loads are high. Some
of the techniques include particle swarm [40], ant colony [41], and genetic algorithm
[42].

The last category is methods based on mathematical optimization [43]. Mathe-
matical optimization deals with the problem of finding numerically a minimum of a
function, which is called the cost function, or objective function. For the application
of path planning, it could be used to generate optimal solutions in a rigorous way.
Also, dynamic constraints can be included, although a differentiable mathematical
representation of all constraints is required. The computation time required is higher
than the potential field and navigation function-based methods. But it is typically
lower than the computation time required in the meta-heuristic algorithms. However,
a collection of methods exist to improve the computational performance [44].

Among these categories, mathematical optimization based methods are partic-
ularly attractive for this application because they offer a rigorous and systematic
approach for taking vehicle dynamics and safety constraints into account.
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A mathematical optimization approach can be used either in open-loop, planning
an optimal path from an initial point to a target point offline and following the path
with a feedback controller online, or in closed loop, performing the optimization online
with regular vehicle state information updates and environmental information updates
from sensors. Regarding the latter, the model predictive control (MPC) approach
is the most widely adopted technique [45]. In this approach, an optimal control
problem (OCP) is solved repeatedly over a receding finite horizon. The resulting
control strategy from the OCP solution at the current step is executed until a new
OCP is solved with updated information. The concept of MPC is reviewed in the
next Section.

1.4 Basic Principle of MPC

MPC is an advanced control technique that utilizes a model of the system to predict
and optimize future system behavior over a receding finite time horizon. It is an
optimal control based state-feedback controller. Only the initial portion of the control
command optimized over the prediction horizon is applied to the plant. A new OCP is
solved over a shifted finite time horizon at the next time step using the state feedback
received from the plant. This process is explained in detail below.

The basic principle of MPC is illustrated in Figure 1.5. At time t0, starting from
the current state measurements, an optimal control sequence ζ∗(t), t ∈ [t0, t0 +Tp], is
computed by solving an open-loop, constrained, finite-time OCP over the prediction
horizon Tp. Thus, the control command generation is based on both future predictions
and current measurements. The general form of the OCP formulation is given by

minimize
ξ, ζ, Tp

J [ξ (t) , ζ (t), ξ (t0) , ξ (t0 + Tp) , Tp] (1.1)

subject to ξ̇ (t) = M [ξ (t) , ζ (t)] (1.2)

G [ξ (t), ζ (t)] ≤ 0 (1.3)

F [ξ (t0) , ξ (t0 + Tp)] ≤ 0 (1.4)

ξmin (t) ≤ ξ (t) ≤ ξmax (t) (1.5)

ζmin (t) ≤ ζ (t) ≤ ζmax (t) (1.6)

t ∈ [0, Tp], 0 < Tp,min ≤ Tp ≤ Tp,max (1.7)

By minimizing the cost function Equation (1.1) subject to constraints Equation (1.2)
- Equation (1.7), the optimal control sequence ζ∗(t) is bounded by the control in-

7



put saturation, and the resulting estimated optimal states ξ∗(t) satisfy the state
constraints. Regarding the constraints, Equation (1.2) is the model of the system
represented by a set of first-order ordinary differential equations. Equation (1.3) is
the path constraint, which limits the state and control variables over the entire pre-
diction horizon, whereas Equation (1.4) is the terminal constraint, which is applied
to only the initial and final values of the state variables. Equation (1.5) and Equa-
tion (1.6) denote the set of feasible state and control variable values, respectively.
Equation (1.7) limits the prediction horizon.

The optimal control sequence ζ∗(t) is bounded by input saturations, and the
resulting estimated optimal state sequence ξ∗(t) satisfies the state constraints. A
cost function is also minimized. Although the optimal control sequence is calculated
over the horizon t ∈ [t0, t0 + Tp], only the initial portion of the computed control
sequence ζ∗(t), t ∈ [t0, t0 + Te], is sent to the plant and executed, where Te is called
the execution horizon. Due to model simplification, model parametric uncertainty,
measurement noise, and other disturbances, the actual values of the system states
ξ(t), t ∈ [t0, t0 + Te], are likely to be different from their predicted values ξ∗(t),
t ∈ [t0, t0 + Te]. Therefore, in the next time step t0 + Te the OCP is solved again
over a shifted horizon [t0 + Te, t0 + Te + Tp] based on the new state measurements
at t0 + Te. Thus, the control law is updated every Te seconds. The feedback of the
measured state values to the optimization endows the procedure with a robustness
typical of feedback systems. This process is thus repeated at each step until the
terminal requirements are satisfied.
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Figure 1.5: Basic principle of MPC.
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1.5 Literature Review on MPC-based Obstacle
Avoidance Algorithms

One of the early applications of the MPC framework in the vehicle motion control
domain is path following. The goal is to stabilize a vehicle along a desired path while
fulfilling its physical constraints. Obstacle avoidance is not explicitly considered in
the control design. For example, Borrelli et. al. [46] used an MPC-based approach to
develop a feedback controller to compute the front steering angle in order to follow
a double lane change maneuver on slippery surfaces such as snow covered road with
the highest possible entry speed. Simulation results showed that complex steering
maneuvers are relatively easily obtained as a result of the MPC feedback policy.
They later developed a computationally efficient suboptimal MPC controller based on
successive online linearization of the nonlinear vehicle model [47]. The vehicle model
is linearized around the current operating point at each time step and a linear MPC
controller is designed for the resulting linear time-varying system. In another work
[48], they also extended the formulation to simultaneously optimize both the front
steering angle and the tire slip ratios at the four wheels. Performance enhancement
is observed when combined braking and steering are used instead of steering only.
Moreover the capability of the controller of slowing down the vehicle in order to
perfectly follow the desired path has been shown. Some other examples are [49] and
[50].

Two types of architectures can be used for taking into account the obstacle infor-
mation. The first scheme directly computes the commands for the actuator controller
based on the available information as shown in Figure 1.6a, which is referred to as the
one-level controller. Discussions on the variations of the actuator controller inputs
can be found in [51]. The second scheme decomposes the problem into two sub-
problems, which is referred to as the two-level controller. Thus, two controllers are
used as shown in Figure 1.6b. The first one computes a reference trajectory taking
into account the obstacle information, which is referred to as the higher-level con-
troller or the path planner. The second one is designed to compute the commands
for actuator controller to track the generated trajectory, which is referred to as the
lower-level controller or path follower.

When all the controllers are implemented in the MPC framework, the two-level
MPC is more computationally efficient [52]. However, when it becomes necessary to
push the vehicle to its dynamical limits by either minimizing time-to-target or maxi-
mizing progress-on-track, as in racing situations [53, 54] or with military applications,
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the higher-level path planner may create dynamically infeasible trajectories because
only simple vehicle dynamics are considered. Additionally, collisions with obstacles
may occur if the vehicle deviates from the reference trajectory, since lower-level path
follower does not generally constrain the vehicle to avoid obstacles.

Next, several representative works are reviewed.
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(a) One-level architecture
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Figure 1.6: Two architectures for obstacle avoidance.

Earlier research on MPC-based obstacle avoidance for AGVs include Ogren and
Leonard [55], and Tahirovic and Magnani [56, 57]. They use the one-level formulation
and guarantee the completion of the task using different techniques. However, the first
method is limited to a unicycle robot and the second method requires the complete
knowledge of the environment.

In particular, Ogren and Leonard [55] proposed a way to combine the convergence-
oriented potential field method [17] and the global dynamic window approach [21] by
casting these two approaches in an MPC and control Lyapunov function framework
[58]. They proved the algorithm’s convergence properties. They worked on a unicycle
robot and its dynamics model is simple. However, with this framework, a control
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action that decreases the value of Lyapunov function has to be found in advance,
which is difficult, if not impossible for complex vehicle models [57].

Tahirovic and Magnani [56, 57] then provided a framework incorporating a
passivity-based constraint to obtain a MPC scheme with guaranteed closed-loop sta-
bility for nonlinear systems [59]. It guarantees task completion and has the potential
to work with a broad class of vehicles and terrains. A virtual vehicle model is gener-
ated by energy-shaping technique using a navigation function, which is constructed
for the obstacle field to be transversed. This virtual vehicle model is then used to
find the optimal trajectory along the prediction horizon. In this framework, the infor-
mation on the obstacles and target position are included into the optimization setup
and the target position is a stable equilibrium point. However, they assume that the
environment is completely known, that is, the locations of all the obstacles that the
vehicle may ever encounter are known a priori. In reality, only local information from
onboard sensors will be available and the vehicle will not be aware of the environment
beyond the sensor range.

Yoon et. al. [60] developed a system for obstacle avoidance of autonomous ground
vehicles as an active safety procedure in an unknown environment. They used the
two-level scheme and used only the local obstacle information. Safe trajectories are
generated using the nonlinear MPC (NLMPC) framework, in which the simplified
dynamics of the vehicle are used. For the local path regeneration upon detecting
new obstacles, the cost function is augmented using the obstacle information using
two methods. The first method uses the distance from the AGV to the nearest
detected obstacle, and the second method uses the parallax information from the
vehicle about the detected obstacles. Simulation results in cluttered and dynamic
environments show that the modified parallax method is more effective. Park et. al.
[61] continued this work and developed controllers to track the generated trajectory to
compensate for the dissimilarity between the simplified model and the actual vehicle.
In particular, the longitudinal dynamics of the vehicle are controlled using the inverse
dynamics of the vehicle powertrain model, and the lateral dynamics are controlled
using a linear quadratic regulator. However, these works [60, 61] use soft constraints
for taking into account the obstacle information. Thus, even when a feasible solution
is obtained, obstacle avoidance is not guaranteed.

Nanao and Ohtsuka [62] developed a one-level MPC-based collision avoidance
method. In this work, to consider whether it is possible to avoid an obstacle physically,
an unavoidable region (UR) is constructed as the region in which the vehicle cannot
avoid the obstacle owing to physical limitations. A barrier function is added to the
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cost function for satisfying the constraints of avoiding the UR and staying within the
road bounds. The UR is constructed approximately by finding a trajectory with the
shortest avoidable distance considering the vehicle’s current speed and assuming that
the theoretical maximum force is applied. However, the approach of finding the UR
is limited to considering only one obstacle within the vicinity of the vehicle.

Gao et. al. [52] designed a two-level MPC scheme for autonomous obstacle avoid-
ance and lane keeping. The path planner uses an MPC with a point mass vehicle
model to plan obstacle free paths with a long prediction horizon. The path follower
uses an MPC with a higher fidelity vehicle model to follow the planned path with a
shorter prediction horizon. The decomposition of the problem reduces the computa-
tional complexity compared to a single level MPC approach. However, the trajectories
generated by the point-mass vehicle model are not always feasible for the actual ve-
hicle due to oversimplification. Gray et. al. [63] follow the same hierarchical MPC
scheme. Differently, for the higher level path planner, they use a clothoid to plan
obstacle avoiding maneuvers. The use of clothoid makes it possible to plan feasible
trajectories with few parameters and thus with low computational speed. However,
the vehicle maneuverability is limited to only a subset of motions since the path plan-
ner selects a sequence of primitives from an offline computed look-up table. Another
update to the scheme is presented in [64]. The higher level uses a nonlinear bicycle
vehicle model and utilizes a coordinate transformation that uses the vehicle position
along a path as the independent variable. The resulting trajectories are more track-
able for the real vehicles. However, in these works, it is assumed that a reference
trajectory, longitudinal speed, and yaw rate exist.

Frasch et. al. [65] addressed the problem of real-time obstacle avoidance on low-
friction road surfaces using single-level spatial NLMPC. Different from the previously
introduced work, they used a nonlinear four-wheel vehicle dynamics model that in-
cludes wheel dynamics and load transfer. The formulation of the load transfer used in
this work leads to an algebraic loop through the tire model, which is relaxed by intro-
ducing first order models with a time constant. Similar to [64], the time-dependent
vehicle dynamics is transformed into a track-dependent (spatial) dynamics. This al-
lows a natural formulation of obstacles and general road bounds under varying vehicle
speed. However, this work requires reference values of all states.

Table A.1 summarizes some main features of the five representative MPC-based
obstacle avoidance algorithms that are reviewed above. These features include the
vehicle model and tire model used, the control inputs to be optimized, the way of
accounting obstacle information, maximum vehicle speed, the optimizer used and
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other relevant information for the discussion of this thesis.
It would be impossible to cover all existing work in this field in detail here. It is

worth noting several other relevant works. A summary to distinguish the scope of
this work from the literature can then be given.

Katriniok and Abel [66] developed a linear time-varying MPC approach for lat-
eral vehicle guidance through successive linearizations over the prediction horizon.
Ali et. al. [67] developed a multi-objective predictive controller for prevention of
unintended vehicle collisions, which is capable of identifying and avoiding unintended
collisions with stationary and moving road obstacles, vehicle control loss as well as
unintended roadway departures. Jeon et. al. [68] developed a RRT∗-based fast mo-
tion planner that incorporates the half-car dynamical model for wheeled vehicles.
They introduced a fast local steering algorithm. Beal and Gerdes [69] developed a
driver assistant algorithm used affine force input model to account for nonlinear tire
model and phase portrait based envelope boundaries to prevent vehicle from becom-
ing unstable. Liniger et. al. [70] developed a two-level NLMPC-based algorithm for
autonomous racing, where the objective is to maximum progress-on-track subject to
the requirement of staying on the track and avoiding opponents. Obstacle avoidance
is incorporated by means of a high-level corridor planner based on dynamic program-
ming, which generates convex constraints for the controllers according to the current
position of opponents and the track layout.

However, these MPC based obstacle avoidance algorithms are for on-road applica-
tion, where the environment is structured. In contrast, this thesis is concerned with
AGVs in unstructured environments, such as military applications.

There are three considerations that distinguish the scope of this work from the lit-
erature and motivate a new MPC formulation. First, in a structured environment, the
lane provides a reference trajectory and obstacle avoidance is achieved by perturbing
the given reference path, for example, as in [71, 72]. In an unstructured environment,
besides avoiding obstacles, finding an optimal path from the initial position to the
target position is also part of the OCP, because no reference trajectory exists. This
requires a longer prediction horizon to achieve successful navigation in directions that
may deviate significantly from the ‘current’ direction. A new cost function formula-
tion is also necessary, which includes terms to navigate the vehicle to the target as
fast as possible.

Second, for on-road applications it is sufficient to use box constraints or constant
bounds on position variables to represent the obstacle-free region; e.g., as in [73, 74].
However, in an unstructured environment, the obstacle-free region typically has a
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more complicated form especially when multiple obstacles are present within the
prediction horizon. This obstacle-free region cannot be simply represented using the
type of constraints utilized in on-road applications. Thus, a systematic approach is
required to include complex obstacle-free regions in the MPC formulation.

The third consideration is related to the vehicle’s dynamical safety, which is an
important constraint during obstacle avoidance at high speed. Existing algorithms
focus on vehicle platforms where the major dynamical safety concern is excessive
sideslip [75], such as passenger vehicles on slippery road or race cars [52]. Instead,
this thesis focuses on vehicles with higher CoG location, such as military vehicles, in
which the major dynamical safety concern is wheel lift-off. Current obstacle avoidance
algorithms do not take wheel lift-off into consideration explicitly. Therefore, it is
important to develop a new formulation to ensure the dynamical safety for AGVs
with high CoG in terms of avoiding wheel lift-off.

1.6 Problem Statement

This work aims to develop and test a novel NLMPC-based obstacle avoidance algo-
rithm for large-size high-speed AGVs to address the aforementioned considerations.
The MPC framework relies on the iterative solution of an OCP. The cost function
and constraints are formulated to reflect the following requirements. The resulting
optimal trajectory should be 1) dynamically feasible; 2) collision free; 3) dynamically
safe in terms of no wheel lift-off; and 4) shortest in terms of traveling time.

In particular, this thesis achieves its goal by addressing the following tasks.

1. A model of the platform is required to evaluate the obstacle avoidance algorithm
in a closed-loop manner. The model should be with enough details so that it
can predict the vehicle’s responses accurately.

2. The level of fidelity of the model that needs to be used in the MPC formulation
for best performance is to be addressed.

3. A new cost function formulation is needed that aims to find the shortest path to
the target position in addition to approaching the target from a desired direction
and minimizing the control effort.

4. An obstacle-free region (safe region) can be established using the LIDAR data.
To accommodate the complicated form of the obstacle-free region in the OCP
formulation, systematically partitioning of the safe region is necessary, enabling
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a differentiable mathematical representation of the obstacle-free region and its
inclusion in the OCP through a multi-phase approach.

5. Explicit consideration of the vehicle dynamical safety in terms of avoiding single-
wheel lift-off is required for the vehicle with relatively high CoG location.

6. The prediction-correction characteristic allows the MPC to tolerate uncertain-
ties to a certain level. However, to further improve the robustness of the algo-
rithm, parametric uncertainty needs to be considered explicitly in the algorithm.

7. Experimental validation is essential in demonstrating the effectiveness of the
proposed algorithm.

1.7 Closed-Loop System Schematic

Fig. 1.7 shows the schematic of the NLMPC obstacle avoidance algorithm with the
AGV in closed loop. This section gives an overview of this framework and explains
its basic flow at a high level.

In this simulation-based study, the AGV is represented using a fourteen degrees-of-
freedom (DoF) vehicle dynamics model that includes suspension dynamics, combined-
slip nonlinear tire dynamics, powertrain dynamics, and brake dynamics; the vehicle
model is introduced in detail in Chapter 2. The inputs to the AGV are the steering,
throttle, and braking commands. This model represents the real system and is referred
as the plant model in this paper. The development of a high-fidelity model is not the
focus of this paper. Thus, models that are developed and validated in the literature
are directly used without additional validation.

The NLMPC obstacle avoidance algorithm consists of two parts: the LIDAR data
processor and the control commands generator.

The LIDAR data processor first simplifies the obstacle shape given by the raw
LIDAR data, adds a safety margin, and partitions the obstacle-free region to aid with
the mathematical formulation of constraints. It is discussed in detail in Chapter 4.
The outputs of the LIDAR data processor, the task information, and the estimated
vehicle states are used in the formulation of the OCPs.

Different formulations of OCPs are then introduced under different assumptions.
In Chapter 5, an OCP formulation is presented that can optimize the steering an-
gle sequence under the assumption that the longitudinal speed is maintained to be
a constant. In Chapter 6, the OCP formulation is extended to enable simultane-
ous optimization of steering angle and reference longitudinal speed commands. In
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Chapter 7, the formulation is further extended to explicitly take into account the
parametric uncertainty to further improve the robustness of the algorithm. The for-
mulated OCPs are then solved and the control commands associated with the lowest
cost solution are executed by the AGV.

The algorithm presented in this thesis is within the NLMPC framework. At each
step, one or more multi-phase OCPs are solved. Thus, throughout the thesis, the term
‘nonlinear MPC algorithm’ and the term ‘multi-phase optimal control algorithm’ are
used interchangeably.

Optimality in this work refers to the optimality of the solution within the pre-
diction horizon, taking into account all the information available at that moment in
time, and not to the optimal solution that would have resulted if all environmental
information was available for all times. Because the formulated OCP is non-convex, it
is not guaranteed that the solution from the OCP solver is the unique global optimal
solution over the prediction horizon. Thus, the terms ‘optimal trajectory’, ‘optimal
states’, and ‘optimal control’ in this thesis refer to the local optimal solution generated
by the OCP solver, which is the first minimum it finds.

1.7.1 Algorithm Inputs and Outputs

Three external inputs to obstacle avoidance algorithm are required: task information,
obstacle information, and estimated states.

Within the scope of this paper, the task information is the specified target location,
final heading angle requirement, and the desired final vehicle speed at the target
position.

The obstacle information is obtained through a planar LIDAR sensor that is
mounted in front of the vehicle. It provides information about the range and ge-
ometrical characteristics of the closest objects to the vehicle. The LIDAR returns the
distance to the closest obstacle boundary in each radial direction at an angular reso-
lution of ε. The angular range is [0◦, 180◦], with the vehicle heading direction being
the 90◦ direction. For a direction without obstacles within the detection range, the
LIDAR returns the maximum detection range RLIDAR. Figure 1.8 shows an obstacle
field with three obstacles and the output of the LIDAR for the particular vehicle
position and orientation. It is assumed that all obstacles of interest are static and at
least the height of where the LIDAR is mounted. The vehicle is assumed to travel
on a planar surface; hence, a 2D representation as shown in Figure 1.8b is sufficient
for this study. The sensor data is not a complete description of the obstacles because
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not all boundaries of the obstacle can be detected. This fact limits the region that
can be considered as the safe area as illustrated in Figure 1.8b.

Vehicle states are needed to properly initialize the vehicle model used in the al-
gorithm. In a physical implementation of the proposed system, a state estimator is
needed to estimate the states with the available sensor measurements, since not all
states can be directly measured. However, in this thesis, the AGV is simulated and,
therefore, implementation of the state estimator is not warranted.

1.8 Dissertation Organization

This thesis is organized as follows. Chapter 2 presents the details of the vehicle model
used as the plant in the simulation-based study and the vehicle models that are used in
the MPC formulation. The study on model fidelity for MPC-based obstacle avoidance
in high-speed AGVs is discussed in Chapter 3. Chapter 4 describes the LIDAR data
processor in detail. In particular, the procedure of partitioning the obstacle-free
region and formulating position constraints is discussed. It is first assumed that
the vehicle longitudinal speed is maintained constant. Chapter 5 presents the OCP
formulation and the simulation results under this assumption. Chapter 6 extends
the formulation to simultaneously optimize both the steering angle command and
reference longitudinal speed. A variety of simulation results are used to demonstrate
the effectiveness of the algorithm. Chapter 7 improves the robustness of the algorithm
to parametric uncertainty by introducing a double-worst-case formulation. Chapter 8
shows the experiment setup and results. Chapter 9 concludes the dissertation with a
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summary, and a list of contributions and a list of possible extensions of this work.
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CHAPTER 2

Vehicle Modeling

2.1 Introduction

A vehicle is a complex multi-DoF nonlinear system. For a kinematic and dynamic
analysis of the vehicle, an appropriate mathematical model that can reflect the ac-
tual operating conditions is needed. For different purposes, a different vehicle model
with adequate complexity for the respective application should be used for a balance
between accuracy and efficiency [76].

The modeling of vehicle dynamics has been extensively studied in the literature. A
variety of vehicle models has been developed [77, 78]. For the work of this thesis, first
of all, a model of the vehicle is required to represent the plant (AGV in Figure 1.7) in
the simulation-based study. To conduct successful dynamic simulations of vehicle with
extreme maneuvers, six DoF [79], eight DoF [80, 81], fourteen DoF [82, 83, 84, 85],
and eighteen DoF [86] dynamic models have been considered to better represent the
vehicle lateral and yaw dynamics and to take into account the coupling of yaw-roll
motion due to the transient lateral load transfer. A six DoF model is the simplest
full-car model, which neglects the effects of wheels and suspension systems. In an
eight DoF model, pitch and heave motions are ignored but the wheel spin dynamics
at each wheel are considered compared to a six DoF model. A fourteen DoF model
considers the suspension at each corner. The effects of the suspension longitudinal
elasticity on the vehicle dynamic performance is taken into account in an eighteen DoF
model. In addition, more complex and accurate representations of vehicle can be
constructed in multi-body dynamic software packages. For example, the vehicle model
presented in [87] is built in ADAMS/Car and has 76 bodies and 101 DoF, which
results in a set of 1895 equations that are solved at every integration step. Thus, the
computational time required is significantly longer than the models with only tens of
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ordinary differential equations (ODEs). According to [85], the fourteen DoF model is
sufficient to represent the vehicle motions that are important in most active chassis
control systems, even though that it has lower number of degrees of freedom and
consequently certain limitations when compared with a multi-body dynamics model.
Thus, the fourteen DoF developed in [83, 84, 85] is adopted in this thesis to represent
the real system and is referred to as the plant model. In Section 2.2, the dynamic
equations of the fourteen DoF vehicle model are given.

Secondly, in an MPC-based algorithm, a model of the system is used to predict
and optimize future actions. In the literature, a wide range of vehicle dynamic models
has been used [88], for example, a relatively complex four wheel model with nonlinear
tire model [65], a nonlinear bicycle model [52], a linear bicycle model [61, 62, 89],
and the simplest point mass model with no tire model but only a friction circle
constraint on tire forces [52]. The prediction accuracies and computational times of
the models vary with respect to their complexities. Thus, there exists a trade-off
in the model based controller design [88]. When a higher fidelity model is used in
the MPC controller, even though the prediction accuracy is higher, the update rate
could be slow, which may result in lack of correction and hence limit the controller
performance. When a lower fidelity model is used, the algorithm can be updated
more frequently. However, the large model mismatch may also lead to poor controller
performance. Thus, the selection of model to be used in the MPC is critical. For
certain applications, the differences between the prediction accuracies of different
models can be small, for example, in small and low-speed ground robots. In this case,
a simpler model could be sufficient for the control purpose. For large and high-speed
platforms, the differences of the dynamic responses could be dramatic between the
models and a more complex model might be required to provide satisfactory controller
performance despite the increased computational load. For the context of this thesis,
a two DoF or a three DoF nonlinear bicycle model with proper details is used in
the MPC. In this chapter, the possible variations of these models are discussed in
detail in Section 2.3. The study of the model fidelity requirement is presented later
in Chapter 3.

2.2 Full Model

In this section, the vehicle full model that represents the plant is presented. The
block diagram is given by Figure 2.1. The components are described in detail in the
rest of this section.
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Figure 2.1: Block diagram of the full vehicle model.

Suspension systems play an important role in vehicle handling behavior. To pre-
dict wheel lift-off accounting for suspension systems, at least a fourteen DoF vehicle
(body) model is necessary, which consists of a single sprung mass connected to four
unsprung masses [85] and is illustrated in Figure 2.2. The sprung mass is represented
as a plane and is allowed to pitch, roll, and yaw, as well as displace in longitudinal,
lateral, and vertical directions. The suspensions, which are modeled as passive spring
and damper elements, are allowed to bounce vertically with respect to the sprung
mass. Each wheel is also allowed to rotate about its horizontal axis and only the
two front wheels are free to steer. In summary, this model consists of six DoF at the
vehicle CoG, and two DoF at each of the four wheels, including vertical tire stiffness
and wheel spin. The dynamic equations are presented in Section 2.2.1.

Without a good tire model, the simulated handling responses will not be realistic.
Of the many different tire models that are available today, the Pacejka Magic Formula
tire model [90] is one of the most widely used and has proven to be very accurate
when compared to experimental data. Thus, the version that takes into account the
coupling of slip ratio and slip angle is used with the fourteen DoF vehicle model to
predict the longitudinal and lateral behaviors of the tires. The details of the tire
model are discussed in Section 2.2.2.

In addition, powertrain and brake dynamics are also modeled to simulate the
vehicle speed and acceleration capabilities. In particular, powertrain dynamics are
modeled according to [91, 92, 93, 94, 95]. They include the flywheel, engine, torque
converter, transmission, drive shafts, and differential. The dynamics of the hydrauli-
cally actuated brake is modeled using the single state model in [96] that produces a
good representation of the dynamics from the master cylinder to vehicle deceleration.
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Figure 2.2: Schematic of the fourteen DoF vehicle (body) model.

These components are introduced with more details in Section 2.2.3.
Note that the powertrain and brake dynamics are considered only when the vehicle

longitudinal speed is varying. Thus, they are not included in the plant model that is
used to generate the constant-speed obstacle avoidance results presented in Chapter 3
and Chapter 5. The driving torques and brake torques are used directly as the inputs
to the full vehicle model. When the reference longitudinal speed is also optimized, the
simulations are conducted with powertrain and brake dynamics taken into account
as in Chapter 6 and Chapter 7.

Finally, the steering system is modeled as a constant ratio and the effect of steering
inertia is thus ignored. It is assumed that only the steering angle at the front wheels
can be controlled. In addition, the front left and front right steering angles are
assumed to be the same. Rolling resistance due to passive stabilizer bar and body
flexibility are also neglected. No electronic stability control systems are considered.

2.2.1 Dynamic Equations

In this section, the dynamic equations of the fourteen DoF vehicle model is presented,
which includes the dynamics of roll center and nonlinear effects due to vehicle geom-
etry changes. This model is adopted from [83, 84, 85]. Thus, the detailed derivations
and explanations are omitted and only the final equations are included.
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The sprung mass is represented by a rigid plane with a body-fixed coordinate frame
(BFCF) attached to the center of gravity and aligned with the principal directions
as shown in Figure 2.2. U , V , W are the longitudinal, lateral and vertical velocities
of the sprung mass, respectively. ωx, ωy, and ωz are the roll, pitch, and yaw angular
velocities, respectively. The equations of motion for the sprung mass can be derived
by applying the Newton’s laws to the system, which are given by

Ms

(
U̇ + ωyW − ωzV

)
=
∑

(Fsx,•) +Msgsin θ − Faero (2.1)

Ms

(
V̇ + ωzU − ωxW

)
=
∑

(Fsy,•)−Msgsinφcos θ (2.2)

Ms

(
Ẇ + ωxV − ωyU

)
=
∑

(Fsz,• + Fdz,•)−Msgcosφcos θ (2.3)

Ixxω̇x = 1
2 (Fsz,fl + Fsz,rl − Fsz,fr − Fsz,rr)Lt (2.4)

Iyyω̇y = (Fsz,rl + Fsz,rr)Lr − (Fsz,fl + Fsz,fr)Lf (2.5)

Izzω̇z = (Fsy,fl + Fsy,fr)Lf − (Fsy,rl + Fsy,rr)Lr

+ 1
2 (Fsx,fr + Fsx,rr − Fsx,fl − Fsx,rl)Lt

(2.6)

where Ms is the sprung mass. Ixx, Iyy, and Izz are the roll, pitch, and roll inertia of
the sprung mass, respectively. Lf is the distance between the front axle and the CoG
location. Lr is the distance between the rear axle and the CoG location. Lt is the
track width. Fsx,•/Fsy,•/Fsz,• are the longitudinal/lateral/vertical forces transferred
to the sprung mass in the BFCF and the subscript ()• denotes front left (fl), front
right (fr), rear left (rl), and rear right (rr) corners. Faero is the aerodynamic resistance.

The forces transmitted to the sprung mass, Fsx,•/Fsy,•/Fsz,•, are obtained by con-
sidering coordinate transformations of the forces generated at the tire-ground contact
path, Ftx,•/Fty,•/Ftz,•, and taking into account the unsprung mass weight and inertial
forces. Ftx,• and Fty,• are calculated using the tire model discussed in Section 2.2.2.
Ftz,• is calculated using the tire stiffness and the instantaneous tire deflection.

The Cardan angles roll (φ), pitch (θ), and yaw (ψ) are obtained by

φ̇ = ωysinφ
cos θ + ωzcosφ

cos θ (2.7)

θ̇ = ωycosφ− ωzsinφ (2.8)

ψ̇ = ωx + ωysinφtan θ + ωzcosφtan θ (2.9)

The attitude (Z) and position (X, Y ) of the body with respect to the inertial
frame can be derived by performing coordinate transformation between the inertial
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frame and the BFCF.

Ẋ = U (cos θ cosψ) + V (− cosφ sinψ + sinφ sin θ cosψ)

+W (sinφ sinψ + cosφ sin θ cosψ)
(2.10)

Ẏ = U (cos θ sinψ) + V (cosφ cosψ + sinφ sin θ sinψ)

+W (− sinφ cosψ + cosφ sin θ sinψ)
(2.11)

Ż = U (− sin θ) + V (sinφ cos θ) +W (cosφ cos θ) (2.12)

The dynamics of the unsprung mass vertical velocity wu,• are expresses as

m• (ẇu,• + ωxvu,• − ωyuu,•) = Fuz,• − Fdz,• − ksusp,•xsusp,• − bsusp,•ẋsusp,•
−m•gcosφcos θ

(2.13)

ẋsusp,• = wu,• − ws,• (2.14)

where m• is the unsprung mass. ksusp,• and bsusp,• are the suspension spring stiff-
ness and damping coefficient, respectively. The following forces and velocities are
defined in the BFCF. uu,•/vu,•/wu,• are the longitudinal/lateral/vertical velocities of
the unsprung mass. ws,• is the vertical velocity at the suspension corner. xsusp,• is the
suspension spring compression. Fuz,• is the vertical force transmitted to the unsprung
mass, and Fdz,• is the jacking force, which is the link load transfer force when the roll
center is considered.

The wheel rotational speeds are calculated by

Iwω̇• = τ• − Ftx,•Rt (2.15)

where Iw is the wheel rotational inertial. Rt is the radius of the tire. Positive τ•
denotes driving torque while negative τ• denotes braking torque.

2.2.2 Tire Modeling

The longitudinal and lateral forces acting from road to tire, as shown in Figure 2.3,
for the condition of combined slip are calculated using the Pacejka Magic Formula
tire model, which is a nonlinear, semi-empirical model and is compactly written as:

25



F
tx

F
ty

x”

y”

z”

Figure 2.3: Illustration of tire forces generated at the tire-ground contact patch.

Ftx,• = Pc,x (α•, κ•, Ftz,•) (2.16)

Fty,• = Pc,y (α•, κ•, Ftz,•) (2.17)

where α• is the slip angle and κ• is the slip ratio.
Figure 2.4 defines the notions related to the front left tire. The tire slip angle α•

is the angle between the tire velocity direction and its longitudinal direction. Thus,
it is given by

α• = arctan−ut,•sin δ? + vt,•cos δ?
ut,•cos δ? + vt,•sin δ?

(2.18)

where ut,• and vt,• are the longitudinal and lateral velocities at the tire contact patch,
respectively. δ? is the steering angle and the subscript ()? denotes front (f) or rear
(r). In this work, the rear wheels are not steerable. Thus, δr = 0.

The slip ratio is expressed as:

κ• = rwω• − ut,•cos δ? + vt,•sin δ?
|ut,•cos δ? + vt,•sin δ?|

(2.19)

The tire normal force is calculated using the tire stiffness and instantaneous tire
deflection.

The detailed equations of the combined-slip Pacejka Magic Formula tire model
can be found in [97]. Figure 2.5 shows the tire forces generated using the model when
the normal force is 5000 N.
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Figure 2.5: Example longitudinal and lateral tire forces as functions of slip ratio and
slip angle in combined cornering and braking/driving condition, respectively, for a
vertical load of 5 kN. The functions are described by the Pacejka Magic Formula tire
model.
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Figure 2.6: Block diagram of the powertrain model.

2.2.3 Powertrain and Brake Modeling

The powertrain generates power and delivers it to the road surface. A high fidelity
modeling of the powertrain dynamics is important for the simulation of vehicle longi-
tudinal dynamics, because it determines the vehicle’s maximum speed and accelera-
tion performance. The powertrain dynamics model describes the applied torques and
angular speeds transmitted through all components, which consists of the flywheel,
engine, torque converter, transmission, and differential. This model is adopted from
[91, 92, 93, 94, 95] and thus only a brief description is presented below.

Figure 2.6 shows the inputs and output of the powertrain system. The inputs are
the average wheel speed and the throttle command. The output of the powertrain
system is the driving torque, which is then distributed evenly to the four wheels.

The flywheel is modeled as an inertia element that takes the load torque τpump

and the engine torque τengine as inputs and determines the engine speed ωengine as the
output. This speed signal is fed to the driveline model as the pump speed and to the
engine as the engine speed.

ω̇engine = τengine − τpump

Iengine
(2.20)

where Iengine is the engine inertia.
A map-based engine model is used as shown in Figure 2.7. The input to the map is

the fuel rate and the engine speed, and the output is the engine torque. The fuel rate
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Figure 2.7: Block diagram of the engine model.

is given by the fuel controller, which takes into account the first order turbo-charge
delay and a linear cutoff logic which controls the amount of fuel injected to be above
the idle speed. Fig. 2.8 shows the engine map.

The driveline model includes the torque converter, transmission gear set, and
driveshaft as shown in Figure 2.9.

The torque converter is a fluid clutch by which the engine is coupled to the trans-
mission. The typical three element converter consists of pump, stator, and turbine.
The pump is connected rigidly to the engine flywheel. Thus, pump speed ωpump and
engine speed ωengine are the same. The turbine side, on the other hand, is connected
to the transmission. The torque converter is approximated by a static model that
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Figure 2.9: Block diagram of the drivetrain model.

takes pump and turbine speeds as inputs and generates pump and turbine torques.

τpump =
[
ωpump

κ(ωr)

]2

sign(1− ωr) (2.21)

τturbine = α(ωr)τpump (2.22)

ωr = ωturbine

ωpump
(2.23)

ω̇turbine = τturbine
Iturbine

(2.24)

where κ(ωr) is a piecewise function approximating a desired capacity factor curve,
and α(ωr) is a piecewise linear function approximating a desired torque ratio curve.
Iturbine is the turbine inertia.

The transmission is represented by a set of shift logic, which determines whether
or not an upshift or downshift is to be initiated based on the shaft speed and throttle
demand. It is assumed that the speed reduction in each gear is ideal, while the torque
multiplication is assumed to be scaled by an efficiency factor.

In addition, the shaft inertia, stiffness, and damping, as well as the gear inefficien-
cies and torque losses due to fluid churning are modeled to calculate the shaft torque
transmitted to the differential. The schematic of the components considered is shown
in Figure 2.10.
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Finally, the differential is modelled using the following equations.

τdriving = τshaftrdifferentialedifferential (2.25)

ωshaft = ωdrivingrdifferential (2.26)

where τshaft and τdriving are the shaft and driving torques, respectively. ωshaft and
ωdriving are the corresponding rotational speeds. rdifferential is the differential speed
ratio and edifferential is the differential efficiency.

A schematic of the hydraulically actuated brake model is given by Fig. 2.11. A
single state model that produces a good representation of the dynamics from the mas-
ter cylinder to vehicle deceleration is used [96]. The vacuum booster is a pneumatic
servo mechanism used to amplify the input force from the brake pedal. The pressure
in the master cylinder, Pmc, is calculated by subtracting the master cylinder pre-load
and the seal friction from the output of the vacuum booster. The state equation for
the cylinder volume Vbrake is modeled using the Bernoulli’s equation:

V̇brake = Cqsgn(Pmc − Pw)
√
|Pmc − Pw| (2.27)

where Cq is the effective flow coefficient, and the wheel cylinder pressure is modeled
as a cubic polynomial function, Pw = Pw(Vbrake), which is obtained from experimental
data. The braking torque τbrake is then assumed to follow from this pressure

τb = Kb (Pw − Ppo) (2.28)

where Ppo is the push-out pressure and Kb denotes the brake gain.
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Figure 2.11: Schematic of the hydraulically actuated brake system.

2.3 Bicycle Model

In this section, the single-track vehicle model or the “bicycle" model is presented,
which is widely used for the purpose of vehicle controller design. It is assumed that
the left and right wheels can be lumped together for both the vehicle front and rear
axles. Figure 2.12 shows the schematic of the bicycle model. The variations of the
bicycle model is discussed in detail below.

2.3.1 Two DoF Vehicle Model

It is first assumed that the longitudinal velocity U of the vehicle is constant during
the simulation. Thus, a two DoF is sufficient for this application, which is given by
the following first-order ODEs.

L f

L r

U
V

α f

α r

δ f

ω
z

F yf

F yr

x

y0

Ψ

Figure 2.12: Schematic of the bicycle model.
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V̇ = (Fy,f + Fy,r) /Mv − Uωz (2.29)

ω̇z = (Fy,fLf − Fy,rLr) /Izz (2.30)

ẋ = U cosψ − (V + Lfωz) sinψ (2.31)

ẏ = U sinψ + (V + Lfωz) cosψ (2.32)

ψ̇ = ωz (2.33)

where Mv is the vehicle mass. (x, y) is the vehicle front center location in global
coordinates. U is the longitudinal velocity in the BFCF and is constant. Thus,
U = U0 and U̇ = 0. Fy,f and Fy,r are the tire lateral forces generated at the front and
rear axles, respectively. The model used for the calculations of the lateral tire forces
is the key component that has a significant impact on the prediction accuracy. Thus,
it is discussed in detail in Section 2.3.3. Several possibilities are presented.

Thus, the five states of the two DoF vehicle model are the lateral velocity in the
BFCF V , the yaw rate ωz, the vehicle front center location in inertia frame (x, y),
and the yaw angle ψ. The input to the system is the front steering angle δf .

2.3.2 Three DoF Vehicle Model

When the vehicle longitudinal velocity is varying, one more ODE and one more control
input are added to the previous two DoF vehicle model to account for the longitu-
dinal dynamic. In addition to Equations (2.29) to (2.33), the following ODE is also
considered.

U̇ = ax (2.34)

where ax is the longitudinal acceleration, which is another control input in addition
to the front wheel steering angle.

Thus, the six states of the three DoF vehicle model are the longitudinal and lateral
velocities in the BFCF V , the yaw rate ωz, the vehicle front center location in inertia
frame (x, y), and the yaw angle ψ. The inputs to the system are the front steering
angle δf and the longitudinal acceleration ax.

2.3.3 Tire Modeling

The tire lateral forces can be calculated as a function of the tire slip angle and the
tire vertical load. Two different tire models are considered in this thesis: the pure-
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slip Pacejka Magic Formula tire model, which is also referred to as the nonlinear tire
model, and the linear tire model.

With a Pacejka Magic Formula tire model, the lateral forces used in Equa-
tions (2.29) and (2.30) are calculated using the following equations

Xf = B (Fz,f )αf (2.35)

Fy,f = D (Fz,f ) sin {C (Fz,f ) atan [Xf − E (Fz,f )Xf + E (Fz,f ) atan (Xf )]}

= P (Fz,f , αf )
(2.36)

Xr = B (Fz,r)αr (2.37)

Fy,r = D (Fz,r) sin {C (Fz,r) atan [Xr − E (Fz,r)Xr + E (Fz,r) atan (Xr)]}

= P (Fz,r, αr)
(2.38)

where Fz,f , and Fz,r are the vertical loads at the front axle and rear axle, respectively.
αf and αr are the tire slip angles. B(·), C(·), D(·), and E(·) are functions of the
tire vertical load. These functions define the tire-ground interaction properties. The
details of these relationships can be found in [97]. Figure 2.13 shows the relationship
between the tire lateral forces and the slip angle at different vertical loads described
by the Pacejka Magic Formula tire model.
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Figure 2.13: Lateral tire force described by the Pacejka Magic Formula tire model in
pure cornering condition.

For a single-track model, the following two assumptions are made in calculating
the tire lateral forces in Equations (2.35) to (2.38).

Assumption 1 :
αfl ≈ αfr , αf , αrl ≈ αrr , αr
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which means that the slip angles on the left and right tires are assumed to the same.
Assumption 2 :

P (Fa, α) + P (Fb, α) ≈ P (Fa + Fb, α)

which means the tire lateral force is approximately a linear function with respect to
tire vertical load. This assumption allows for neglecting the lateral load transfer in
the calculation of the lateral force.

Under the Assumption 1, the slip angles of the front and rear tires are obtained
using

αf = tan−1
(
V + Lfωz

U

)
− δf (2.39)

αr = tan−1
(
V − Lrωz

U

)
(2.40)

As for the linear tire model, the constant cornering stiffness Cα (Fz) is found as
the slope at the origin for different tire vertical loads.

Fy,f = Cα (Fz,f ) · αf (2.41)

Fy,r = Cα (Fz,r) · αr (2.42)

Figure 2.14 shows the comparison between the linear tire model and the Magic
Formula tire model at a fixed tire vertical load. The two models agree well when the
slip angle is less than 5 degrees.
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Figure 2.14: Comparison of the linear and nonlinear tire models for a vertical load of
7 kN.

For a single-track vehicle model, a typical assumption is that there is no longi-
tudinal load transfer, so that the vertical loads on each axle are constant, which are
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calculated using the following equations.

Fz,f = Fz,f0 = MsgLr
Lf + Lr

+mfg (2.43)

Fz,r = Fz,r0 = MsgLf
Lf + Lr

+mrg (2.44)

When the vehicle travels at high speed, it is important to account for the longitu-
dinal load transfer. Thus, the following relationships are used to calculate the vertical
loads on the front and rear axles taking into account the longitudinal load transfer
effects [85, 98].

Fz,f = Fz,f0 −
(
MshCG +mfhu,f +mrhu,r

Lf + Lr

)(
U̇ − V ωz

)
(2.45)

Fz,r = Fz,r0 +
(
MshCG +mfhu,f +mrhu,r

Lf + Lr

)(
U̇ − V ωz

)
(2.46)

where hCG is the height of the vehicle CoG location above the ground. hu,f and
hu,r are the CoG heights of the front and rear unsprung mass above the ground,
respectively.

Furthermore, Equations (2.45) and (2.46) can be approximated using the following
two equations

Fz,f ≈ Fz,f0 −Kz,x

(
U̇ − V ωz

)
(2.47)

Fz,r ≈ Fz,r0 +Kz,x

(
U̇ − V ωz

)
(2.48)

where Kz,x is the longitudinal load transfer coefficient, which can be empirically
estimated. More discussions are presented in Section 6.2.4.
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CHAPTER 3

Model Fidelity Evaluation

3.1 Introduction

Based on the literature review, several research questions still remain to be addressed
in terms of MPC-based obstacle avoidance. This chapter focuses on one of them;
namely, the level of fidelity of the model that needs to be used in the MPC formulation
for best performance. In most of the research, simple vehicle dynamics models such
as the two DoF or three DoF representations are considered as the dynamic model
included in the MPC formulation. The sole justification provided in the literature for
this choice is the low computational load required by these models. As pointed out
by Park et al. [61], only when the assumptions used to derive the simplified model are
satisfied can the actual vehicle track the trajectory generated based on this simplified
model. However, a justification does not yet exist in the literature for the level of
detail included in the vehicle model from the point of view of providing a satisfactory
predictive capability within an MPC framework.

Thus, the specific goal of this chapter is to determine the model fidelity require-
ment of the vehicle model used for predicting the vehicle trajectory online in an
MPC-based obstacle avoidance algorithm. The answer to this research question de-
pends on the context [99].

To pursue its specific goal, this chapter considers five different representations
of vehicle dynamics models in the MPC-based obstacle avoidance algorithm: four
variations of the two DoF representation as lower fidelity models and a fourteen
DoF representation with combined-slip Magic Formula tire model as a higher fidelity
model. In the two DoF representation, either a linear tire model or a pure-slip Magic
Formula tire model can be used. For each tire model, the axle loads can be assumed
constant or varying due to longitudinal load transfer. The details of these vehicle
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dynamics models are presented in Chapter 2.
The performance of the obstacle avoidance algorithm is measured by several met-

rics including time to target, control effort, and integral of curvature. The best
performance is achieved when the vehicle reaches the target safely in minimum time
with smallest control effort and integral of curvature. Note that even though it is
obvious that increasing the complexity of the model by adding, for example, tire
nonlinearities or load transfer effects would increase its accuracy, it is not obvious
whether those additional considerations would lead to a significant increase in MPC
performance, because it is unknown how much robustness to unmodeled dynamics
closing the loop would provide.

It is important to emphasize that the purpose of this chapter is not to present a
new MPC algorithm. A very simplistic, exhaustive search-based MPC formulation
is chosen for the purposes of this work to enable ease of implementation of vehicle
dynamics models of various levels of complexity without worrying about convergence
issues when higher fidelity models are used. The cost function and constraints for-
mulation, as well as the dynamic optimizer components of the MPC-based obstacle
avoidance algorithm used in this chapter are explained in Appendix B, since the
algorithm itself is not the main focus of this chapter.

3.2 Open-Loop Comparisons

It has been assumed that the fourteen DoF vehicle model is an accurate representation
of the AGV. Thus, in this section, the responses of the two DoF vehicle model with
different tire models are checked against the fourteen DoF vehicle model in an open-
loop simulation.

The following three combinations are compared:

1. Combo. 1: fourteen DoF vehicle model with combined-slip Magic Formula tire
model

2. Combo. 2: two DoF vehicle model with pure-slip Magic Formula tire model

3. Combo. 3: two DoF vehicle model with linear tire model

When the axle vertical loads are assumed constant and given by Equations (2.43)
and (2.43), using the steering profile in Figure 3.1a as the input and considering a
vehicle speed of 30 m/s, the trajectories predicted by the two DoF vehicle model
with the linear and Magic Formula tire models are compared to the trajectory of the
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fourteen DoF vehicle model in Figure 3.1b. The responses generated by the three
combinations are significantly different because of two reasons. First, the linear tire
model is not a good approximation because the maximum slip angle is about 9 degrees
as shown in Figure 3.1c. Second, there exists significant longitudinal load transfer
when the vehicle moves at this speed as shown in Figure 3.1d.

After taking into account the longitudinal load transfer by incorporating Equa-
tions (2.45) and (2.46), the two DoF vehicle model with Magic Formula tire model
becomes a very good approximation to the fourteen DoF vehicle model under this test
condition as shown in Figure 3.2a. However, the prediction of the two DoF vehicle
model with the linear tire model is still not as good, because the magnitudes of the
slip angles are still larger than 5 degrees at some points in time as shown in Fig-
ure 3.2b and hence the differences between the linear and Magic Formula tire models
are significant. Equations (2.45) and (2.46) can predict the axle vertical load well
with either tire model as illustrated by Figure 3.2c.

In conclusion, tire nonlinearity and longitudinal load transfer are both important
factors to be included in a two DoF vehicle model in order to predict vehicle trajec-
tory accurately. Based on this set of comparisons, the two DoF vehicle model with
the nonlinear tire model and longitudinal load transfer can be expected to yield bet-
ter performance in terms of online vehicle trajectory predictions for obstacle avoid-
ance. Note, however, that the comparisons provided in this section are open-loop
only. In the following comparative study, all combinations of tire model and axle
load equations are used to test the differences in the closed-loop obstacle avoidance
performance, as well.

3.2.1 Computational Time

In this section, the open-loop simulation times for the five models are compared.
The vehicle models are implemented in MATLABr. The simulation times of these
vehicle models are obtained using a 50 s sinusoidal steering maneuver on an Intelr

Xeonr processor. Ten runs are performed for each model. Table 3.1 summarizes
the average simulation time of different vehicle models. Using a nonlinear tire model
or considering the longitudinal load transfer adds complexity to the model. Thus,
simulation time is expected to increase, but the increment is less than 10%. The
fourteen DoF vehicle model requires more than 20 times of the computational time
of a two DoF vehicle model. Hence, the fourteen DoF model may not be feasible for
a real-time implementation within MPC; nevertheless, it will still be considered in
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Figure 3.1: Comparison of responses when the longitudinal load transfer effect is
ignored in the two DoF vehicle model.
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Figure 3.2: Comparison of responses when the longitudinal load transfer effect is
considered in the two DoF vehicle model.
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the closed-loop evaluations in the next section as a benchmark. On the other hand,
the computational cost for all variations of the two DoF models is approximately the
same. Therefore, closed-loop evaluations are performed in the next section to further
elicit the performance differences between these models.

Table 3.1: Average simulation time of a 50 s sinusoidal steering maneuver.

Vehicle model 2 DoF 2 DoF 2 DoF 2 DoF 14 DoF
Tire model Linear Linear Nonlinear Nonlinear Nonlinear

Load transfer No Yes No Yes Yes
Average running time (s) 0.6048 0.6209 0.6492 0.6541 14.172
Standard deviation (s) 0.00379 0.00722 0.00712 0.0124 0.346

3.3 Simulation Results and Discussion

To study the effect of the fidelity of the vehicle model used in the MPC formulation,
comparative simulation studies are conducted. The performance of the algorithm
is characterized by several metrics including the time to target, control effort, and
integral of curvature.

3.3.1 Evaluation Metrics

Three metrics are used to evaluate obstacle avoidance performance. First, time to
target, Ttotal, is the total time required to navigate through the obstacle field and
reach the target. A smaller Ttotal is desired.

Second, the control effort Econtrol is given by Equation (3.1) and a smaller value
is preferred because it means less steering maneuver is performed.

Econtrol =
∫ Tp

0
|δf (t)|dt (3.1)

Third, the integral of curvature Icurvature is given by

Icurvature =
∫ Tp

0
Ctraj (t)dt (3.2)

where Ctraj is the curvature of the trajectory. A smaller Ctraj means a relatively
straighter trajectory, which is favored. The integral is used to evaluate the curvature
over the entire maneuver.
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3.3.2 Simulation Settings and Results

Obstacle avoidance simulations are performed using three obstacle fields denoted as
MAP A, MAP B, and MAP C. MAP A is an obstacle field with two large obstacles.
The vehicle needs to perform large turns to avoid obstacles on this map. MAP B
is a small field with high density of obstacles. The obstacles have the same size,
which is 2 m by 2 m. The vehicle speed is maintained at 20 m/s on these two
maps. MAP C contains one long obstacle that is perpendicular to the vehicle’s initial
heading direction. The vehicle speed is maintained at 30 m/s on this map in order
to push the vehicle to its dynamical limits. These simulations are used to study the
effect of vehicle model and tire model combinations used in the MPC formulation to
predict vehicle trajectory. The simulation settings and obtained results for MAP A
and MAP B are given in Table 3.2.

Figure 3.3 shows the simulation results with MAP A. For this map, MPC with
all five combinations are successful in terms of avoiding the obstacles safely. The
performances are very close in terms of time to target. The two DoF model with
Magic Formula tire model and varying axle loads requires the smallest control effort
in this case and the largest control effort required is about 16% more. The largest
difference in the integral of curvature is about 14%. Besides these statistical data,
all trajectories are visually close to each other as shown in Figure 3.3a. This is
within our expectations due to the basic idea of MPC that only part of the calculated
optimal steering sequence is implemented even if the prediction is made over a longer
time. More specifically, although the responses predicted by the first three models
are significantly different from the responses predicted by the fourteen DoF vehicle
model, the prediction error accumulates only with time. The predictions of all five
models are closer to each other in the beginning of the prediction horizon than at
the end. Hence, when the predicted horizon is not significantly long, the differences
at the end of the prediction will not lead to different steering angle selections for the
first step. The results show that the two DoF model with linear or Magic Formula
tire model can perform comparable to the fourteen DoF model.

Figure 3.4 shows the simulation results with MAP B. For this map, MPC with
all five combinations are again successful in terms of avoiding the obstacles safely.
However, the two DoF vehicle model with nonlinear tire model and constant axle
loads takes a different route than the other four models. This is not surprising on an
obstacle field with multiple obstacles because only local information is available to
the controller and the local information depends on the location and heading of the
vehicle. With different vehicle models in the MPC, different steering commands can
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Table 3.2: Simulation settings and results for MAP A and MAP B

Parameter Value
U0 (m/s) 20

np 4
ns 5

Tp,min (s), Lmax unknown 5.98
Te (s) 0.5
Tp (s) 6.98

RLIDAR (m) 129.6
Vehicle model 2 DoF 2 DoF 2 DoF 2 DoF 14 DoF
Tire model Linear Linear Nonlinear Nonlinear Nonlinear

Longitudinal load transfer No Yes No Yes Yes

MAP A: Ttotal (s) 32.6 32.6 33.0 32.5 32.8
MAP A: Econtrol (◦-s) 44.6 44.4 47.2 39.9 42.7
MAP A: Icurvature (s/m) 0.2037 0.2006 0.2135 0.1850 0.1909

MAP B: Ttotal (s) 18.4 18.3 18.5 18.5 18.4
MAP B: Econtrol (◦-s) 19.1 16.5 20.2 16.8 18.1
MAP B: Icurvature (s/m) 0.0793 0.0671 0.0929 0.0812 0.0768
Note: numbers in red indicates largest value in the corresponding row, and numbers in blue
indicates smallest value. Numbers in gray are excluded from the comparisons.

be generated, which leads the vehicle to different locations. This model is excluded
from the following comparisons. For the four models taking approximately the same
route, the performances are again very close in terms of time to target. The two DoF
model with linear tire model and varying axle loads requires the smallest control effort
and the largest control effort required is about 14% more. The integrals of curvature
are also very close; the largest difference is less than 18%.

However, when the vehicle moves at the higher speed of 30 m/s, a vehicle model
using linear tire model or ignoring longitudinal load transfer can fail to navigate the
vehicle safely while a two DoF vehicle model with nonlinear tire model and varying
axle loads still yields a satisfactory performance. The simulation setting for such a
case is given in Table 3.3 and simulation results are shown in Figure 3.5. As shown in
Figure 3.6, the two DoF vehicle model with linear tire model and constant axle loads
turns at a smaller radius with the same steering angle. Thus, the algorithm decides
not to turn initially and this results in the failure of this combination of models.
The simulation using fourteen DoF vehicle model shows that it is capable of steering
around this obstacle safely with the same simulation settings if the prediction within
MPC is made more accurately. MPC with the vehicle model using linear tire model
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Figure 3.3: Simulation results to study the effect of model fidelity with MAP A.
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Figure 3.4: Simulation results to study the effect of model fidelity with MAP B.
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or ignoring longitudinal load transfer fails when the vehicle moves at a higher speed
and the obstacle field includes significantly large obstacles. Hence, even though the
feedback property of MPC provides certain robustness against prediction errors, a
two DoF vehicle model with linear tire model or constant axle loads is not sufficient
for extreme conditions, and at least a two DoF vehicle model with Magic Formula
tire model and varying axle loads is needed.

Table 3.3: Simulation settings and results for MAP C

Parameter Value
U0 (m/s) 30

np 4
ns 5

Tp,min (s), Lmax unknown 8.69
Te (s) 0.5
Tp (s) 9.19

RLIDAR (m) 275.7
Vehicle model 2 DoF 2 DoF 2 DoF 2 DoF 14 DoF
Tire model Linear Linear Nonlinear Nonlinear Nonlinear

Longitudinal load transfer No Yes No Yes Yes

MAP C: Ttotal (s)
Fail Fail Fail

40.0 41.6
MAP C: Econtrol (◦-s) 40.8 43.3
MAP C: Icurvature (s/m) 0.1356 0.1422

3.4 Conclusion

This thesis considers MPC-based obstacle avoidance for large AGVs at high speed
that maneuver within unknown, unstructured environments. The vehicle dynamics
are critical to consider in this situation. Within this context, this chapter investigates
the fidelity requirement of the vehicle model used for predicting vehicle trajectory in
the MPC formulation. First, open-loop simulations suggest that tire nonlinearity and
longitudinal load transfer are both important factors to be included in the two DoF
vehicle model in order to predict vehicle trajectory accurately. Closed-loop simu-
lations with the MPC-based obstacle avoidance algorithm are also conducted using
various obstacle fields. The performance is characterized by several metrics including
the time to target, control effort, and integral of curvature. The results show that
a two DoF vehicle model with linear tire model and constant axle loads can per-
form comparable to the fourteen DoF model when the vehicle travels at lower speed.
However, a two DoF model with linear tire model or constant axle loads can fail to
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Figure 3.5: Simulation results to study the effect of model fidelity with MAP C.
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navigate the vehicle safely when the vehicle moves at higher speed within an obsta-
cle field including large obstacles. It is concluded that the two DoF representation
that accounts for tire nonlinearities and longitudinal load transfer is necessary for the
MPC-based obstacle avoidance algorithm in order to operate the vehicle at its limits
within an environment that includes large obstacles. For less challenging environ-
ments, however, the two DoF representation with linear tire model and constant axle
loads is sufficient.

Future research opportunities are summarized as follows. The study pertains to
the specific four-wheeled truck; for a different vehicle, the procedures presented in this
chapter can be repeated. However, it would be beneficial if the model fidelity require-
ment can be determined easily for a series of platforms with different weight and CoG
location. In addition, the model fidelity requirement also needs to be re-evaluated
when the vehicle parameter and state measurements uncertainties are accounted for
or when the environment is non-flat.
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CHAPTER 4

LIDAR Data Processing

4.1 Introduction

The LIDAR data processor part of the obstacle avoidance algorithm shown in Fig-
ure 1.7 processes a sequence of points defining the obstacle-free region into specifi-
cations of constraints that can be used in the OCP formulation. The obstacle-free
region is considered as the safe region in which the vehicle can operate, hence the
terms ‘obstacle-free region’ and ‘safe region’ are used interchangeably in this context.
In this thesis, a planar LIDAR sensor is used and the set of points defining the safe
region is simply the points generated by the LIDAR. The instantaneous LIDAR data
are used in this work for simulation simplicity. In real world, it is beneficial to utilize
LIDAR data from multiple steps and maintain a continuously updated map of the
environment to provide more accurate and more complete obstacle information. This
exploitation of prior measurements can be achieved by augmenting the algorithm
presented in this session with SLAM algorithms [100]. Nevertheless, this extension
would not change the safe region partitioning approach presented below, as it takes
as the input a set of points describing the obstacle boundaries regardless of how these
points are obtained.

4.2 Line Simplification

The first step of the data processing is to reduce the number of points that defines
the obstacle boundaries for further processing because the raw points obtained from
the LIDAR can be noisy because the obstacle boundaries are not smooth and the
detection results are not exact. In this work, the LIDAR noise is simulated by a
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LIDAR Points

Simplified Obstacle Boundaries

Actual Obstacle Boundaries

Figure 4.1: An illustration of the line simplification algorithm.

uniform distribution of range [−0.1, 0.1] m. An algorithm is then required to identify
the minimum number of lines for approximating the sequence of points considering
the noise. The Ramer-Douglas-Peucker algorithm is used for reducing the number
of points in a curve that is approximated by a series of points, which is widely used
to perform simplification and denoising of range data acquired by a LIDAR sensor
[101] and has been adopted in this work, as well. As illustrated in Figure 4.1, the
numerous detected points, which are generated using a simulated LIDAR sensor with
added noise, can be simplified into two line segments represented by three points,
which provide a good approximation to the boundaries of the obstacle.

4.3 Safety Margin

A safety margin, lSM, is added to the safe region to account for the size of the vehi-
cle, detection noise, and differences between the predicted trajectory and the actual
trajectory. Adding a safety margin allows for ignoring the vehicle size in the OCP
formulation.

The safe area is a polygon in general and it is a simple polygon when the safe
region boundary is from a planar LIDAR sensor. Thus, algorithms for performing
polygon offsetting (inflating/deflating) in computer graphics can be adopted to add
the safety margin to the safe region. Specifically, the Vatti’s clipping algorithm [102]
implemented in the Clipper library [103] is used in this work.

The safety margin needs to be added to only specific segments of the safe region
boundary. As shown in Figure 4.2, which corresponds to the example in Figure 1.8,
the boundary of the safe region consists of three types of segments:

• LIDAR data segments, which specify the boundaries of the obstacles and are
called ‘obstacle boundaries’.

• Maximum LIDAR detection range segments, which are directions free from
obstacles and are called ‘openings’.
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Figure 4.2: Three types of segments bounding the safe region.
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Figure 4.3: Safe region in Figure 4.2 with safety margin included.

• Obstacle’s laser shadow lines, which are along the rays from the LIDAR and are
called ‘hypothetical openings’. These lines are called ‘hypothetical openings’,
because in its current position and orientation the vehicle cannot know whether
they are actual openings or not because of the blocked view by the obstacles.

The safety margin is to be applied to the obstacle boundaries and hypothetical
openings only, but the Clipper library shrinks all the boundaries. Hence, the openings
are first expanded by the same amount as the safety margin. The expanded region
is then shrunk with the Clipper library, which effectively results in applying the
safety margin only to the obstacle boundaries and hypothetical openings, and not
to the openings. As an example, Figure 4.3 is the safe region with safety margin
corresponding to Figure 4.2.

4.4 Region Partitioning

The safe region exemplified in Figure 4.3 is very difficult, if not impossible, to be
represented mathematically using a single inequality. Even when the function exists,
it is not differentiable at the connection points of the line segments from the first
step. This would cause problems in the OCP solver that requires all functions to be
twice continuously differentiable.
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In order to represent the safe region in a mathematically suitable form for the
OCP formulation, it is partitioned into several sub-regions, where each sub-region
can be specified by a set of inequalities that are not piecewise functions and are
differentiable. Two partitioning approaches are discussed below that can efficiently
yield such sub-regions. Other partitioning approaches can be used, as well, as long
as they provide efficient means for obtaining sub-regions that can be mathematically
defined using non-piecewise and differentiable functions.

One approach is named the ‘polar partitioning’. The safe area is divided into sec-
tors and triangles, where sectors are regions including an opening and triangles are
regions including an obstacle boundary. Figure 4.4a is the partitioning of the safe
region shown in Figure 4.3 using this approach, where OP and OB denote the regions
that terminate with an opening and obstacle boundary, respectively. As an exam-
ple, Region OB4 is a triangle, which can be specified using three linear inequalities,
whereas Region OP3 is a sector, which is bounded by two lines. The third boundary
of Region OP3 is an arc, which is specified by the prediction horizon. Thus, no ad-
ditional inequality is required. Polar partitioning is easy to implement, because the
original LIDAR data is in polar coordinates.

The second approach is called the ‘optimal convex partitioning’ or simply ‘convex
partitioning’. The interior of the safe area is decomposed into a minimum number of
convex regions without introducing additional points inside the polygon. Specifically,
the dynamic programming algorithm in [104] is incorporated into this work, which
is very efficient in decomposing simple polygons. In this approach, OP denotes the
regions that terminate with an opening, whereas OB denotes all other regions. Fig-
ure 4.4b is an example partitioning for the safe region in Figure 4.3 using the convex
partitioning approach. Similar to the polar partitioning approach, all the regions
can be specified using a set of linear inequalities after partitioning. This approach is
capable of partitioning a safe region in a more general form. Thus, the algorithm is
not limited to be used only with a planar LIDAR sensor. As long as a safe region can
be deduced from the sensor data, the algorithm is applicable.

In either approach, a sub-region can be defined by


... ...
aj bj
... ...


(i) x(i)

y(i)

 ≤

...
cj
...


(i)

, j = 1, . . . , L(i) (4.1)

where i is the sub-region index and L(i) is the total number of line segments bounding
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Figure 4.4: Example partitioning of the safe region in Figure 4.3 using two approaches.

that sub-region; aj, bj and cj are coefficients calculated based on the two end points
of the corresponding line segments; (x, y) is a position in Cartesian coordinates.

Equation (4.1) can be compacted in the following form:

A
(i)
L(i)×1x

(i) +B(i)
L(i)×1y

(i) ≤ C(i)
L(i)×1 (4.2)

where A(i)
L(i)×1 is a vector with the jth entry being aj. The definitions of B(i)

L(i)×1 and
C

(i)
L(i)×1 are similar.
After partitioning, the entire safe region can be specified by a structure variable

SafeRegion, whose definition is given by the following pseudo-code.

int N; //number of sub-regions
int L[N]; //vector of number of line segments

struct SafeRegion {
double AM[N][N]; //adjacency matrix
SubRegion SR[N]; //subregion specifications

};

struct SubRegion {
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char Type; //type of the subregion: `OP', `OB'
int Index; //index of the subregion
int HPNum; //number of hypothetical openings
double EndPoints [L(Index )][4];
//end points of line segments (xs, ys, xe, ye)
double HPIndex [HPNum ];
//index of line segments representing hypothetical openings

};

An adjacency matrixMadjacency can be used to represent the partitioning shown
in Figure 4.4b. When two sub-regions have a common edge, the corresponding entry
in the matrix is set to 1; otherwise, it is set to 0.

Madjacency =



OP1 OP2 OP3 OP4 OB1 OB2 OB3

OP1 1 0 0 0 1 0 0
OP2 0 1 0 0 0 0 1
OP3 0 0 1 0 0 0 1
OP4 0 0 0 1 0 1 0
OB1 1 0 0 0 1 1 0
OB2 0 0 0 1 1 1 1
OB3 0 1 1 0 0 1 1



Once the partitioning is performed, a mixed integer nonlinear programming ap-
proach [105, 106, 107] can be pursued for the OCP formulation. Using this approach,
the optimal sequence of sub-regions that generates the optimal solution can be ob-
tained. However, this approach is computationally intensive. Thus, an alternative
strategy is pursued in this work. In particular, the feasible sequences of the sub-
regions are first obtained. The number of the feasible sequences is often limited.
Then, multiple OCPs are formulated using the multi-phase nonlinear programming
approach [108, 109, 110]. The general form of the OCP formulation given by Equa-
tion (1.1) - Equation (1.7) has one set of constraints that are applied to the entire
prediction horizon. In a multi-phase OCP formulation, the prediction horizon is di-
vided in N -segments, where N is the number of phases. The constraints on the state
and control variables over each segment can be different. Thus, this formulation
is used because the position constraints of different sub-regions are different. Addi-
tional constraints are added to ensure the continuity of the state and control variables
between the phases. These concepts are further illustrated in Figure 4.5.
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Figure 4.5: An illustration of multi-phase OCP formulation.

In particular, for each feasible opening, a sequence of sub-regions the vehicle needs
to move through is obtained using the Dijkstra’s algorithm. Thus, a multi-phase OCP
is formulated for each of the feasible openings. These formulated problems are solved
in parallel. The final solution is obtained by comparing the solutions of these problems
and picking the one that gives the minimum cost. In summary, one or more OCPs
are formulated and solved at each step. Moreover, it may be possible to use some
heuristics to choose the best feasible opening based on the vehicle state and target
position, however, a rigorous approach is used in this work.

To avoid collision with the obstacles and move towards the target, the trajectory
should stay within the safe region and the last part of the predicted trajectory should
lie within the sub-region of type OP. The following list presents the procedures of using
the structure variable SafeRegion to form the constraints in the OCP formulation
to meet the above requirement. The safe region partitioning shown in Figure 4.4b is
used as an example to elaborate.

(a) Identify the first region to traverse, SR (starting region). Region OB1 is the SR
in this example, because the current position of the vehicle is located on one of
its boundaries.

(b) Identify all regions with a feasible opening, TRs (terminal regions). A feasi-
ble opening is an arc segment, which can have an intersection with a feasible
trajectory over a slightly longer period than the prediction horizon. When the
longitudinal speed of the AGV is maintained constant, the TRs can be identi-
fied using the two extreme trajectories, which are shown in Figure 4.6. The two
extreme trajectories are obtained by simulating a two DoF vehicle model using
steering controls that are at the limits of handling at each step with the mea-
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sured initial states. In the example, the arc segments in OP2 and OP3 are feasible
openings and hence they are TRs, whereas, OP1 and OP4 are not TRs, because
the vehicle cannot make a sharp enough turn to move into those partitions safely.
When the longitudinal speed of the AGV is also to be optimized, all openings are
considered as TRs.

(c) Find the sequence of regions from the SR to a TR for all TRs. This is a shortest
path problem, where many algorithms can be used, including Dijkstra and A*.
Dijkstra’s algorithm [111] is chosen here, because it is one of the simplest solu-
tions. For example, with OP3 being the TR, the region sequence is identified as
OB1 → OB2 → OB3 → OP3. Figure 4.6 highlights this region sequence. With
OP2 being the TR, the region sequence is identified as OB1 → OB2 → OB3 →
OP2.

For a region sequence from the ‘polar partitioning’ as exemplified in Figure 4.7a,
a different region partition as shown in Figure 4.7b can be obtained easily. This
alternative partition approach is preferred when one of the boundaries separating two
regions is almost along the vehicle heading direction.

The specifications of the regions with this partitioning approach are given by

R
(i)
min ≤

√
[x(i) − x(i)

0 ]2 + [y(i) − y(i)
0 ]2 ≤ R(i)

max

Φ(i)
min ≤ atan2(y(i) − y(i)

0 , x(i) − x(i)
0 ) ≤ Φ(i)

max

(4.3)

where R(i)
min, R(i)

max, Φ(i)
min, and Φ(i)

max are bounds calculated from the coordinates of end
points specifying a region.

In the simulations presented in this thesis, the convex partition approach is used
primarily, and the polar partition approach is used secondarily as a failsafe approach
in case the optimal solution to the problem formulated using the convex partition
cannot be obtained.
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Figure 4.6: An example of extreme trajectories and region sequence.
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Figure 4.7: Regions from the polar partitioning approach and its variance.
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CHAPTER 5

Constant Speed Formulation and
Results

5.1 Introduction

In this chapter, a novel nonlinear MPC-based algorithm is developed for obstacle
avoidance of AGVs that can achieve an optimal and smooth operation of the vehicle
through the obstacle field at high speed while ensuring vehicle safety; i.e., without
wheel lift-off. As a starting point, the vehicle longitudinal speed is first maintained
to be constant and is provided to the algorithm as an input in this chapter.

The novelty of the chapter compared to works such as [57, 61, 62, 63, 65, 68, 73, 89]
is three-fold: (1) This work focuses on unstructured environments without a reference
trajectory. A new cost function formulation is used that aims to find the shortest path
to the target position in addition to approaching the target from a desired direction
and minimizing the control effort. (2) The differentiable mathematical representation
of the obstacle-free region obtained in Chapter 4 is included in the OCP formulation
through a multi-phase approach. (3) The algorithm considers vehicles with relatively
higher CoG and explicitly accounts for the vehicle dynamical safety in terms of avoid-
ing single-wheel lift-off. This is achieved by limiting the steering angle within a range
obtained offline using a fourteen DoF vehicle dynamics model. Simulations of an
AGV in three different obstacle fields are given to demonstrate the effectiveness of
the proposed algorithm.
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5.2 OCP Formulation

As discussed in Chapter 4, one or more OCPs are formulated and solved at each step of
the MPC. The formulation in general form is given by Equation (5.1) - Equation (5.8)
below.

minimize
ξ, ζ, T 1,··· ,TN

J = T
[
ξ(N)

(
TN

)
, ξ(1)

(
T 0
)
, TN

]
+

N∑
i=1


T i∫

T i−1

I(i)
[
ξ(i) (t) , ζ(i) (t)

]
dt


(5.1)

subject to
∀i=1,··· ,N

ξ̇
(i) (t) = V

[
ξ(i) (t) , ζ(i) (t)

]
(5.2)

ξ(i)
(
T i−1

)
= ξ(i−1)

(
T i−1

)
(5.3)

R(i)
[
x(i) (t) , y(i) (t)

]
≤ 0 (5.4)

δf,min (U0) ≤ δ
(i)
f (t) ≤ δf,max (U0) (5.5)

γf,min ≤ γ
(i)
f (t) ≤ γf,max (5.6)

subject to ξ(0)
(
T 0
)

= ξ0 (5.7)

T 0 = 0, TN = Tp, Tp,min ≤ Tp ≤ Tp,max (5.8)

By minimizing the cost function specified in Equation (5.1), subject to con-
straints defined by Equations (5.2) - (5.6) for all phases and constraints given
by Equations (5.7) and (5.8) for the initial and final state and time values, the
optimal state trajectories ξ∗(i)(t), t ∈ [T i−1, T i], the optimal control trajectories
ζ∗(i)(t), t ∈ [T i−1, T i], and the time points T i−1, T i, i = 1, . . . , N for transitioning
from one sub-region to the next are obtained, where N is the total number of phases,
which is the number of regions from SR to the TR.

It is helpful to explain the constraints in the formulation at a high level before
delving into the details of the formulation. Equation (5.2) is the dynamic model of
the vehicle represented as a set of first order ODEs. Equation (5.3) sets the initial
state values of each phase as the final state values of the previous phase. For the first
phase, the initial states are the measured states, which is defined as Equation (5.7).
All states are continuous at the boundaries of the phases. Equation (5.4) defines
the position constraints due to the obstacles perceived by the LIDAR sensor. A
general form is given here. Equation (5.5) and Equation (5.6) represent the bounds
on the steering angle and the steering rate, respectively. Equation (5.8) specifies the
prediction horizon, which is given by t ∈ [0, Tp]. The following sub-sections define the
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variables and explain the problem formulation in detail. The constraints are discussed
first, and the cost function formulation is explained next.

5.2.1 Equation (5.2): Vehicle Dynamics Model

The two DoF vehicle dynamics model with longitudinal load transfer and tire non-
linearity is used in the MPC to predict vehicle trajectories.

The steering rate γf is used as the control command to be optimized and the
steering angle δf is set as an additional state variable of the system. The reason
for choosing the steering rate as the control input instead of the steering angle is to
obtain a smooth steering angle sequence and impose a limit on the steering rate.

By setting the state vector as ξ = [ x y ψ V ωz δf ]> and the control vector
as ζ = γf , the state-space equation for the two DoF nonlinear vehicle model can be
written as

ξ̇ = f 2DoF(ξ) +B2DoFζ (5.9)

where

f 2DoF(ξ) =



U0 cosψ − (V + Lfωz) sinψ
U0 sinψ + (V + Lfωz) cosψ

ωz

(Fy,f + Fy,r)/M − U0ωz

(Fy,fLf − Fy,rLr)/Izz
0


BT

2DoF =
[
0 0 0 0 0 1

]

5.2.2 Equation (5.4): Safe Region Constraints

Obstacle avoidance is enforced through the constraint that the vehicle trajectory
must lie within the safe region. For each of the phases in the multi-phase OCP, the
vectors A(i)

L(i)×1, B
(i)
L(i)×1, and C

(i)
L(i)×1 or the bounds R(i)

min, R(i)
max, Φ(i)

min, and Φ(i)
max can

be calculated using the values stored in the structure variable SafeRegion defined
in Section 4.4. The specific form of Equation (5.4) is either given by Equation (4.2)
or Equation (4.3) depending on the situation.

5.2.3 Equation (5.5): Dynamical Safety Constraints

In this study, ensuring the vehicle’s dynamical safety is defined as avoiding single-
wheel lift-off. This is a conservative criterion used to prevent rollover [27]. With
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the specified dynamical safety requirement, all four tire vertical loads should be
greater than a specified threshold value during the whole process as described in
Equation 5.10.

Fz,i(t) ≥ Fz,threshold, ∀i = fl, fr, rl, rr, t ∈ [0, Tp] (5.10)

Only when a vehicle model with the capability of predicting all four tire vertical
loads is used in the OCP formulation, the criterion described by Equation (5.10)
can be directly used. The simple vehicle representation used to predict the vehicle
trajectory in the MPC does not offer this capability at its current form. In order to use
Equation (5.10) as a constraint for ensuring dynamical safety, additional complexity
needs to be added to the MPCmodel, which is not desired. Thus, another conservative
approximation of the dynamical safety requirement is considered for the assumed
constant-speed application; namely, an upper bound on the steering angle magnitude
as expressed by the following inequality constraint

|δf (t)| ≤ δf,max(U0) (5.11)

where the maximum steering angle δf,max is a function of the vehicle speed U0, which
has no analytical expression and is represented using a look-up table that is described
below. In general, there exist other factors that can affect the maximum steering
angle, such as the slope of the terrain, or the location of the CoG of the vehicle.
However, in this work, the vehicle is assumed to move on a constant-friction surface
and all parameter values remain constant. Therefore, the maximum steering angle is
only a function of vehicle speed.

For all combinations of longitudinal speed ranging from 10 m/s to 30 m/s and
maximum steering angle ranging from 0◦ to 14◦, the corresponding minimum tire
vertical loads are obtained using the fourteen DoF vehicle model. The relationship
is shown in Figure 5.1. If a minimum vertical load threshold is set, the relation-
ship between the maximum steering angle and longitudinal speed can be extracted.
Figure 5.2 shows the relationship when Fz,min is set as 500 N.

5.2.4 Equation (5.1): Cost Function

The cost function defines the soft requirement, that is, in what sense the trajectory
is optimal. Since a reference trajectory does not exist in this work, the cost function
aims to find the shortest path. If the task is only to pass a target location without
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a specific direction requirement, the trajectory is optimal when the end point of the
predicted trajectory is close to the target, and the final heading angle is pointing to
the target, because a shorter distance-to-go is preferred to minimize travel time. The
cost function for this case is defined as

J = sf
s0

+ wψψ
2
diff + wcfvcf (5.12)

where

s0 =
√

[xt − x(0)]2 + [yt − y(0)]2 (5.13)

sf =
√

[xt − x(Tp)]2 + [yt − y(Tp)]2 (5.14)

ψfrg = atan2 [yt − y(Tp), xt − x(Tp)] (5.15)

ψdiff = atan2 [sin(ψ(Tp)− ψfrg), cos(ψ(Tp)− ψfrg)] (5.16)

vcf =
∫ Tp

0

[
γ2
f (t) + wδδ

2
f (t)

]
dt (5.17)

Specifically, the cost function formulation includes three terms that are linearly com-
bined using relative weights, wψ and wcf.

The first term is a ratio between sf and s0, where s0 is the distance between the
initial position [x(0), y(0)] and the target position [xt, yt] as defined in Equation (5.13),
and sf is the distance between the end point of the predicted trajectory [x(Tp), y(Tp)]
and the target as defined in Equation (5.14). Visual representations of all variables
are shown in Figure 5.3. The second term is the difference between the final heading
angle ψ(TP ) and the angle of the target relative to the end point of the predicted
trajectory ψfrg as defined in Equation (5.16). The weighted sum of the first two
terms is used to lead the vehicle to the specified target position from its current
position. This weighted sum captures the distance-to-go with the assumption that
there exist no obstacles beyond the sensed horizon. The third term is a regularization
term minimizing the control effort vcf as defined in Equation (5.17), where γf is the
steering rate, which is the control command to be optimized, δf is the front wheel
steering angle, and wδ is a weight.

If a particular direction of passing the target location in global coordinates is also
required, the following cost function is used

J = sf
s0

+ wψψ
2
diff + wdtvdt + wcfvcf (5.18)
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where
vdt =

∫ Tp

0
[lax(t) + lby(t) + lc]2 dt (5.19)

la = sin(ψt), lb = − cos(ψt)

lc = − sin(ψt)xt + cos(ψt)yt
(5.20)

The cost function specified by Equation (5.18) has one more term than Equa-
tion (5.12). This term represents the integral of the distance to the line given by
lax + lby + lc = 0 over the prediction horizon. This line passes through the target
position [xt, yt] along the desired direction ψt.

When the target position is within the sensor’s detection range, the term sf/s0

and wψψ2
diff are removed from the cost functions given in Equation (5.12) and Equa-

tion (5.18). Instead the following constraints are added to the OCP formulation.

xt − σ ≤ x(Tp) ≤ xt + σ

yt − σ ≤ y(Tp) ≤ yt + σ
(5.21)

where σ is a small margin. If the vehicle is within this margin from the target position,
then the target is considered to be reached.

5.2.5 Solution Techniques

The nonlinear multi-phase OCPs formulated specified by Equation (5.1) - Equa-
tion (5.8) are solved using a two-step procedure. First, the continuous-time OCP
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is transcribed into to a nonlinear programming (NLP) problem using a direct method
called hp-pseudospectral method [108, 109, 110]. Second, the resulting NLP problem
is solved using the interior point method [112].

The hp-pseudospectral method discretizes a continuous-time OCP into an NLP
problem by approximating the state and control variables using a variable number
of approximating intervals and variable-degree polynomial approximations of them
within each interval. The differential-algebraic constraints of the OCP are enforced
at a finite set of collocation points, where the collocation points are Legendre-Gauss-
Radau (LGR) quadrature points. This method has been shown to be able to accu-
rately approximate the solution to a general continuous-time OCP in a computation-
ally efficient manner [110].

After transforming from the time interval t ∈ [0, Tp] to the time interval τ ∈ [−1, 1]
via the following variable transformation

t = (Tp/2)(τ + 1) (5.22)

the state ξ is approximated by a polynomial of degree at most n as follows

ξ(τ) ≈
n∑
p=1

ΞpLp(τ), Lp(τ) =
n∏

q=1,q 6=p

τ − τq
τp − τq

(5.23)

where τp(p = 1, . . . , n) are the LGR collocation points, Lp(τ)(p = 1, . . . , n) are the
bases of the Lagrange polynomials, and Ξp is the state approximation at τp.

For example, after discretization, Equation (5.2) that represents the dynamic
model of the vehicle using a set of first-order ODEs can be converted into the following
sets of equality constraints to ensure the dynamical feasibility of the results

Ξ(i)
p −Ξ(i)

0 −
T (i−1) − T (i)

2

n∑
q=1

A(i)
pqV

[
Ξ(i)
q ,Z

(i)
q

]
= 0, p = 1, . . . , n (5.24)

where A is called the integration matrix, which is defined by the selected LGR collo-
cation points and the corresponding weights [110].

To solve the NLP problem, a primal-dual interior-point algorithm with a filter line
search method implemented in IPOPT is used [112]. The basic idea of the interior
point method is to decompose the NLP problem with both equality and inequality
constraints into a sequence of equality constrained problems by introducing a barrier
function and barrier parameter. The NLP problem with only equality constraints
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Figure 5.4: The trajectory iterations from the initial guess to the optimal solution for
the example in Figure 4.6.

can then be solved iteratively. The search direction is determined using the Newton-
Raphson method and the step size is obtained using the backtracking line search.

The interior point method converts the general NLP problem given by Equa-
tion (5.25) to a series of NLP problems with only equality constraints given by Equa-
tion (5.26).

minimize
X∈Rn

g(X) (5.25)

subject to C(X) = 0

X ≥ 0

minimize
X∈Rn

g(X) + µkB(X) (5.26)

subject to C(X) = 0

where µ is a small positive scalar called ‘barrier parameter’. As µ converges to zero,
the solution to Equation (5.26) should converge to a solution to Equation (5.25). B(�)
is a barrier function.

As an example, Figure 5.4 shows the trajectory iterations in solving the problem
given in Figure 4.6. This is a four-phase problem. The initial guess is a straight line
assuming equal length at each phase, which is not a feasible solution. Nevertheless,
after 77 iterations, the solution converges to the optimal solution. Figure 5.5 shows
the corresponding objective value and maximum constraint violation at all steps.
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5.3 Simulation Results

This section presents numerical simulations of the developed nonlinear MPC obstacle
avoidance algorithm with a fourteen DoF vehicle model as the plant. The algorithm
is implemented in MATLABr for proof-of-concept.

Three test cases are considered in this section. In the first test case, the vehicle is
required to move from its initial position to a target position with the final heading
angle required to be the same as the initial heading angle. Two obstacles are between
the two locations. Vehicle speeds ranging from 10 m/s to 30 m/s are considered.

In the second test case, the vehicle has to traverse a dense obstacle field to reach
the target position. There are 50 obstacles and each of them is 10 m × 10 m in size.
The vehicle longitudinal speed is maintained at 20 m/s and there is no constraint on
the final heading angle.

In the third test case, the vehicle performs a NATO double lane change maneuver
at 15 m/s using the obstacle avoidance algorithm.

Table 5.1 summarizes the weighting parameters in the cost function used for all
test cases. If there is no constraint on the final heading angle, the weight wdt is not
used. Thus, in the first and third test cases, all four weighting parameters are used.
However, in the second test case, wdt is omitted.
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Table 5.1: Weighting Parameters

Parameter Value
wψ 1
wcf 10
wδ 0.1
wdt 10−4

Table 5.2: Algorithm Parameters

U0 (m/s) 10 15 20 25 30 30
lSM (m) 3 3 3 3 3 3

RLIDAR (m) 100 100 100 100 100 140
Tp,max (s) 10.0 6.7 5.0 4.0 3.3 4.7
Te (s) 0.67 0.44 0.33 0.27 0.22 0.31

ςf,max (◦/s) 10 10 10 10 10 10
δf,max (◦) 10.5 5.14 3.18 2.24 1.72 1.72

5.3.1 Test Case 1: Various Speeds

Table 5.2 summarizes the parameters of the nonlinear MPC algorithm, including
the safety margin, LIDAR detection range, length of prediction horizon, length of
execution horizon, and maximum steering angle. The cost function given by Equa-
tion (5.18) is used, because the angle of passing the target position is specified in this
test case. In the settings, the following relationship is used, which ensures that all
the predicted trajectories lie within the LIDAR detection range.

Tp,max = RLIDAR/U0 (5.27)

The execution horizon specifies the update rate of the algorithm. In this work, it
is defined as one fifteenth of the prediction horizon. In Table 5.2, the values of the
execution horizon in terms of time are different at different vehicle speeds. However,
for a given sensor detection range, the execution horizon in terms of distance is fixed.

The first set of simulations uses a LIDAR with a detection range of 100 m. The
results of the simulations are presented in Figure 5.6.

These results show that the developed algorithm can successfully navigate the
vehicle through the specified obstacle field at 10 m/s, 15 m/s, 20 m/s, and 25 m/s.
At these speeds, the vehicle avoids all obstacles, passes the target from the desired
direction, and is dynamically safe as shown in Figure 5.6c. However, the vehicle
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Figure 5.6: Results of simulations with various longitudinal speed.

hits the second obstacle when the longitudinal speed is maintained at 30 m/s. This
is because at this speed, the vehicle is not capable of making a turn at a smaller
radius safely. A threshold of 500 N is set on the minimum tire vertical load and
the corresponding maximum steering angle is set as a hard constraint in the OCP
formulation. This constraint is active at most of the time during the maneuver as
shown in Figure 5.6b.

The navigation at 30 m/s fails because the LIDAR detection range is not long
enough to accommodate that speed and hence the prediction horizon is too short
to prepare the vehicle to avoid the obstacles sufficiently early. Figure 5.7 shows the
results of simulations with different LIDAR detection ranges. When a longer detection
range of 140 m and a longer prediction horizon are used, the vehicle travels through
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the field safely.

5.3.2 Test Case 2: Dense Obstacle Field

This simulation is to test the capability of the algorithm within a dense obstacle
field. In this simulation, the vehicle speed is maintained at 20 m/s and there is no
constraint on the final heading angle. Hence, Equation (5.12) is used as the cost
function and the algorithm parameters are the same as the ones corresponding to 20
m/s in Table 5.2. Figure 5.8 shows the simulation results. The vehicle clears the
obstacle field and reaches the target successfully using the algorithm.

In this test case, at most of the steps, there are multiple feasible openings as
exemplified by Figure 5.9. For each of the feasible openings, an OCP is formulated
and solved. After all of them are solved, their objective function values are compared
and the one with the smallest value is considered the best solution. In this example,
the objective values of the calculated trajectories from right to left are 0.76, 0.74,
0.92, respectively. The smallest one is 0.74 and the control commands corresponding
to the trajectory in the middle is sent to the plant.

5.3.3 Test Case 3: Double Lane Change

Although this thesis is concerned with unstructured environments, the proposed al-
gorithm can also work for structured environments. The last simulation is to demon-
strate the capability of the algorithm in a structured environment. The vehicle per-
forms a double lane change maneuver at 15 m/s using the nonlinear MPC algorithm.
Table 5.3 summarizes the parameters used.

Figure 5.10 shows the generated trajectory and the corresponding steering angle.
Figure 5.10a shows the trajectory of the CoG of the plant and the corresponding
trajectories of the four corners of the vehicle. It can be seen that all the trajecto-
ries are within the white space, which means that the vehicle is free from collision.
Figure 5.10b is the corresponding steering sequence.

In this test case, in most of the steps, there are no ‘openings’ as defined in Fig-
ure 4.2. However, there are ‘hypothetical openings’ as defined in Section 4.3. The
TRs are then defined as all regions with a feasible hypothetical opening. Figure 5.11
shows the use of a hypothetical opening.
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Figure 5.7: Results of simulations with different LIDAR detection ranges at 30 m/s.

Table 5.3: Algorithm Parameters for the Double Lane Change Test

Parameter Value
lSM (m) 1.6

RLIDAR (m) 50
Tp,max (s) 3.0
Te (s) 0.3

ςf,max (◦/s) 10
δf,max (◦) 5.14
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Figure 5.8: Simulation results of navigation within a dense obstacle field.
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5.4 Discussion

It is assumed that the obstacles are static. This assumption is suitable for the context
of this work considering the fact that in an unstructured environment AGVs typically
encounter static obstacles more often. Nevertheless, extension to moving obstacles
would certainly broaden the utility of the algorithm and is a recommended direction
for further research.

It is also that the vehicle speed is provided to the algorithm as an input. The ob-
stacle avoidance algorithm as presented in this chapter is not capable of determining
the maximum speed that can be used to safely navigate through an obstacle field,
because the on-board sensors provide information about the environment within only
the close proximity of the vehicle. However, a conservative lower bound on the pre-
diction horizon or a conservative lower bound on the sensor detection range can be
imposed to ensure that the obstacle avoidance maneuver is performed early enough.
These limits could be obtained from the trajectory for making a 90◦ turn when the
initial steering angle is at the minimum bound, which is considered as the most ex-
treme maneuver. For example, the trajectories from speeds ranging from 10 m/s to
30 m/s are shown in Figure 5.12. The time of completing this maneuver is considered
as the minimum prediction time, which is summarized in Figure 5.13a. According to
Equation (5.27), the minimum detection range is given by Figure 5.13b. As shown
in the figure, the speed should be limited below 17 m/s when the LIDAR detection
range is 100 m if this conservative bound is used. The third option is to let the
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Figure 5.13: Limits on parameters to ensure early maneuver.

MPC algorithm control both the steering and vehicle speed. It is worth noting that
the OCP formulation presented can be extended to include the vehicle longitudinal
speed as another control variable in addition to steering angle, which is presented in
Chapter 6.

In real systems, there may be several locations where time delays are introduced.
Such delays can be lumped into two groups: the sensing delay and the control delay.
These delays can have significant impact on the performance of the algorithm and
hence need to be captured in the control loop. In a separate work, we have proposed
methods to explicitly take delays into account to increase the robustness of the al-
gorithm [2]. Specifically, the sensing delay is compensated by taking into account
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Table 5.4: Five Sets of Weighting Parameters Used for Evaluation

wψ wdwcf wδ wdt
Set 1 1 10 0.1 10−4

Set 2 10 10 0.1 10−4

Set 3 1 100 0.1 10−4

Set 4 1 10 1.0 10−4

Set 5 1 10 0.1 10−3

the differences of vehicle position and heading between the time when the LIDAR
sensor is obtained and the time when the sensor data is used. The control delay is
compensated by simulating a delayed control sequence, predicting the vehicle states
after the delay with a vehicle model, and using the predicted states as initial states
for planning.

To generate a differentiable mathematical representation of the safe region from
the LIDAR data, the region is first partitioned as described in Section 4.4. If the
safe region could be used directly in the OCP formulation, the resulting optimal
solution is expected to be the same as the optimal solution of the multi-phase OCP.
Although a formal proof is not available, the fact that the same solution is obtained
with different partitioning approaches could be a support for this argument. For
example, the trajectories shown in Figure 4.6, Figure 4.7a, and Figure 4.7b are the
same, although they are obtained using three different partitioning approaches.

There are four weighting parameters in the cost function. Note that all test cases
presented in this chapter are run with the same set of weighting parameters, indicating
that the algorithm can cover different test cases with the same set of weights. It is also
interesting to point out how different choices of weights can affect the performance
in a given test case. As an example, the test case 1 with vehicle speed at 20 m/s is
ran with five sets of weighting parameters listed in Table 5.4.

As shown in Figure 5.14a and Figure 5.14b, all vehicle trajectories are collision
free and all steering angle trajectories are within the maximum allowed bounds, which
means that the vehicle is dynamically safe for all cases. Thus, the algorithm can be
utilized with a wide range of weighting parameters.

Because all terms in the cost function have intuitive meanings, it is easy to adjust
the value of the weighting parameters for different purposes. If the weight wcf is
increased, a smaller control effort is expected, which will result in turns with larger
turning radius. If the weight wdt is increased, the trajectory will tend to follow
the line passing through the target location from the specified heading direction.
Thus, sharper turns are expected. Simulation results in Figure 5.14 agree with these
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expectations.
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Figure 5.14: Simulation results to study the weighting parameters in the cost function.

5.5 Conclusion

This chapter presents a novel nonlinear MPC algorithm for obstacle avoidance in
high-speed, large-size autonomous ground vehicles with high center of gravity that
operate in unstructured environments, such as military vehicles. A multi-phase op-
timal control problem formulation is then adopted to accommodate the different po-
sition constraints introduced by each sub-region. The no-wheel-lift-off requirement,
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which is the main dynamical safety concern for high-speed vehicles with a high CoG,
is satisfied by limiting the steering angle within a range that is a function of vehicle
speed. This range is obtained by simulating a fourteen DoF vehicle dynamics model
offline. The cost function is formulated in a way to allow the vehicle reach the target
position faster and, if needed, from a desired angle, and with minimal control effort.
Simulation results show that the method can yield a satisfactory performance in a va-
riety of test cases. The conclusion is that the method can enable a safe navigation of
high-speed AGVs through an unstructured obstacle field, where safety is understood
in terms of avoiding not only the obstacles, but also wheel lift-off.
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CHAPTER 6

Variable Speed Formulation and
Results

6.1 Introduction

The constant speed algorithm presented in Chapter 5 can achieve an optimal and
smooth operation of AGVs at high speed through unstructured environments with-
out collision while ensuring vehicle dynamical safety. However, the formulation as-
sumes that the vehicle longitudinal speed is maintained constant, which can limit the
mobility performance and the obstacle fields that can be cleared with this algorithm.

In this chapter, we extend the algorithm and develop a novel MPC formulation
that simultaneously optimizes both the longitudinal speed and steering control com-
mands for high speed obstacle avoidance taking into account dynamical safety. The
novelty of the formulation includes

(1) A varying prediction horizon MPC is used to achieve a fixed distance prediction.
This is prompted by two features of the proposed system. First, the terminal
point of the planned trajectory is constrained at the LIDAR’s maximum detec-
tion range in an effort to fully utilize as much information from the LIDAR as
possible. Second, the variable vehicle speed necessarily leads to a variable pre-
diction horizon with the previous constraint.

(2) The effects of powertrain and brake systems are taken into account through the
relationship between acceleration and speed and the bounds on longitudinal jerk,
acceleration, and speed. The vehicle’s acceleration capability varies with the
speed resulting from the powertrain and brake systems. To generate a speed
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profile that can be tracked by the vehicle, the algorithm uses an offline generated
look-up table to account for the acceleration and deceleration limitations.

(3) The no-wheel-lift-off requirement is considered through both hard and soft con-
straints using equations with empirical parameters that can predict tire vertical
loads. A hard constraint bounds the vertical loads to be greater than a specified
minimum threshold. A soft constraint is also used to provide a smooth approach
to this threshold to prevent overshoot.

6.2 OCP Formulation

At each step of the MPC, one or more multi-phase OCPs are set up and solved
to simultaneously optimize the steering angle and the reference speed profile. The
formulation of the optimal control problem for obstacle avoidance in general form is
given by:

minimize
ξ, ζ, T 1,··· ,TN

J = T
[
ξ(N)

(
TN

)
, ξ(1)

(
T 0
)
, TN

]
+

N∑
i=1

{∫ T i

T i−1
I(i)

[
ξ(i) (t) , ζ(i) (t)

]
dt
} (6.1)

subject to
∀i=1,··· ,N

ξ̇
(i) (t) = V

[
ξ(i) (t) , ζ(i) (t)

]
(6.2)

ξ
(i)
min (t) ≤ ξ(i) (t) ≤ ξ(i)

max (t) (6.3)

ζ
(i)
min (t) ≤ ζ(i) (t) ≤ ζ(i)

max (t) (6.4)

R(i)
[
ξ(i) (t)

]
≤ 0 (6.5)

S(i)
[
ξ(i) (t)

]
≤ 0 (6.6)

ξ(i)
(
T i−1

)
= ξ(i−1)

(
T i−1

)
(6.7)

t ∈
[
T i−1, T i

]
, T i−1 < T i (6.8)

subject to F
[
ξ(N)

(
TN

)
, ξ(1)

(
T 0
)]
≤ 0 (6.9)

T 0 = 0, Tp,min ≤ TN = Tp ≤ Tp,max (6.10)

By minimizing the cost function specified in Equation (6.1), subject to constraints
defined in Equation (6.2) - Equation (6.8) for all phases, and constraints defined in
Equation (6.9) - Equation (6.10) for the initial and end points of the prediction,
the optimal state trajectories ξ∗(i)(t), t ∈ [T i−1, T i], the optimal control trajectories
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ζ∗(i)(t), t ∈ [T i−1, T i], and the instants of time T i, i = 1, . . . , N , for transitioning from
one sub-region to the next are obtained, where N is the total number of phases; i.e.,
the number of sub-regions in a given sequence. The following sub-sections define the
variables and explain the problem formulation in detail. The constraints are discussed
first, and the cost function formulation is explained next.

6.2.1 Equation (6.2): Vehicle Dynamics Model

In the MPC framework, a model of the AGV is included in the OCP formulation
explicitly to predict its behavior over the prediction horizon. In particular, a three
DoF single track vehicle model is used with the longitudinal load transfer and tire
nonlinearities taken into account. The state space equations can be written in the
following form:

ξ̇ = f 3DoF (ξ) +B3DoFζ (6.11)

with

f 3DoF(ξ) =



U cosψ − (V + Lfωz) sinψ
U sinψ + (V + Lfωz) cosψ

ωz

ax

(Fy,f + Fy,r)/Mt − Uωz
(Fy,fLf − Fy,rLr)/Izz

0
0



BT
3DoF =

0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1


where the state vector is ξT = [ x y ψ U V ωz δf ax ] and the control vector
is ζT = [ γf Jx ].

6.2.2 Equation (6.3) and (6.4): State and Control Bounds

The steering rate γf is used as the control command to be optimized and the steering
angle δf is set as an additional state variable of the system. The reason for choosing
the steering rate as the control input instead of the steering angle is to obtain a
smooth steering angle sequence and to facilitate implementing a limit on the steering
rate. The same argument applies to the longitudinal jerk and speed. Although the
control commands to be optimized are steering rate and longitudinal jerk, the outputs
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of the algorithm are still the steering angle and the longitudinal speed.
Due to the mechanical limits of steering and actuator limits, constant bounds are

imposed on the two variables δf and γf as follows.

δf,min ≤ δf (t) ≤ δf,max (6.12)

γf,min ≤ γf (t) ≤ γf,max (6.13)

In addition, the longitudinal vehicle speed, acceleration, jerk values are bounded
in accordance with the powertrain and brake dynamics of the real system.

Umin ≤ U (t) ≤ Umax (6.14)

ax,min [U (t)] ≤ ax (t) ≤ ax,max [U (t)] (6.15)

Jx,min ≤ Jx (t) ≤ Jx,max (6.16)

Figure 6.1a and Figure 6.1b are the longitudinal speed and acceleration profiles,
respectively. These are the simulation results obtained with the plant model that
considers the powertrain and brake dynamics. First, a full throttle command is
applied until the vehicle reaches and maintains the maximum speed. Then, a full
braking command is applied until the vehicle stops. Thus, Figure 6.1b shows the
vehicle acceleration capability.

As shown in Figure 6.2, the acceleration capability depends on the instantaneous
speed. The upper bound and lower bound that are used in the MPC are approximated
using fourth order polynomials as follows:

ax,max (U) = c1U
3 + c2U

2 + c3U + c4 (6.17)

ax,min (U) = c5U
3 + c6U

2 + c7U + c8 (6.18)

where c1, · · · , c8 are parameters obtained from polynomial fitting to the simulation
data.

Constant upper and lower bounds are imposed on the longitudinal jerk to achieve
a smooth acceleration profile. No bounds on lateral speed and yaw rate are included
explicitly because the closed-form representations of the bounds as a function of the
steering angle and the longitudinal speed could not be obtained. Thus, the implicit
limits are directly included as constraints to ensure dynamical safety as discussed in
the next Section.
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Figure 6.1: Vehicle longitudinal speed and acceleration profiles of the plant model for
a full throttle - full brake cycle.
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6.2.3 Equation (6.5): Safe Region Constraints

Avoiding collision with obstacles is enforced through position constraints; the vehicle
trajectory must stay within the safe region that is obtained after the LIDAR data is
processed. For each phase in the OCP, a set of position constraints is specified by
Equation 4.2, which can be abbreviated into the following form.

R(i)
(
x(i), y(i)

)
≤ 0 (6.19)

6.2.4 Equation (6.6): Dynamical Safety Constraints

In this study, ensuring the vehicle’s dynamical safety is defined as avoiding single-
wheel lift-off. This is a conservative criterion used to prevent rollover [27]. Prior work
enforced this constraint through steering angle bounds [2, 52], or lateral acceleration
bounds [113]. However, these approaches ignore the effect of longitudinal acceleration,
which is an important factor to consider in the variable speed case. Hence, in this
work, the no-wheel-lift-off requirement is taken into account directly by constraining
the load on all four tires to be always positive.

The following equations are used to predict the tire vertical loads taking into
account the vehicle’s lateral load transfers [98].

Fz,fl = 1
2 (Fz,f0 −∆Fz,x)−∆Fz,yf (6.20)

Fz,fr = 1
2 (Fz,f0 −∆Fz,x) + ∆Fz,yf (6.21)

Fz,rl = 1
2 (Fz,r0 + ∆Fz,x)−∆Fz,yr (6.22)

Fz,rr = 1
2 (Fz,r0 + ∆Fz,x) + ∆Fz,yr (6.23)

where ∆Fz,x is the longitudinal load transfer; ∆Fz,yf is the front axle lateral load
transfer; and ∆Fz,yr is the rear axle lateral load transfer.

These load transfers are approximated by the following relationships

∆Fz,x ≈ Kz,x

(
U̇ − V ωz

)
(6.24)

∆Fz,yf ≈ Kz,yf

(
V̇ + Uωz

)
(6.25)

∆Fz,yr ≈ Kz,yr

(
V̇ + Uωz

)
(6.26)

where Kz,x is defined as the longitudinal load transfer coefficient; and Kz,yf and Kz,yr

are defined as the front and rear lateral load transfer coefficients, respectively. These
coefficients are obtained from several sets of simulations with the plant model.
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Figure 6.3: Longitudinal load transfer as a function of longitudinal acceleration of
the plant model. A linear model is used to fit the obtained data.

Figure 6.3 and Figure 6.4 show the simulation results for the longitudinal and
lateral load transfers with the plant model and the straight line fittings, whose slopes
represent the constant load transfer coefficients.

To obtain the longitudinal load transfer coefficient, two sets of simulations are
conducted. In the first set of simulations, the throttle command is maintained con-
stant at different levels with zero braking command and zero steering angle. The
results are used to study the longitudinal load transfer during vehicle acceleration.
In the second set of simulations, the braking command is maintained constant at
different levels with zero throttle command and zero steering angle. The results can
then be used to study the longitudinal load transfer during vehicle deceleration. The
black dashed line in Figure 6.3 is a line that passes through the origin with a slope
estimated from these two sets of data. The deviation from this line to the upper left
side is caused by aerodynamic drag.

The data for estimating the lateral load transfer coefficients is generated by follow-
ing the maneuver specified by Figure 6.5a and Figure 6.5b. The vehicle is steered with
a sinusoidal steering angle profile. In the meantime, the speed is changing at a slower
frequency. Figure 6.4 shows the simulation data points and the fitted lines. Simula-
tions with other maneuvers generated similar results, thus showing these results are
independent of the maneuvers tested.

Even though the results from the simulations are not perfectly affine, the approx-
imations in Equation (6.20) - (6.23) are considered sufficient for the purposes of this
work, because the error introduced by these estimated coefficients is on the order of
5% as the comparative simulation results in Figure 6.5 illustrate.
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Figure 6.5: A sample open-loop simulation used to validate the accuracy of vertical
load prediction. The vehicle performs the maneuver specified by subplots (a) and
(b). The blue solid line in subplot (c) is the vertical load of rear left tire of the plant
model. The red dashed line is the prediction using Equation (6.22) with state values
from the plant model simulation. The two lines overlap with each other and are
indistinguishable, indicating that the vertical load prediction is sufficiently accurate.
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With Equation (6.20) - (6.23), the no-wheel-lift-off requirement is taken into ac-
count directly by constraining the load on all four tires to be always positive. For
the particular set of vehicle parameters considered, Fz,f0 > Fz,r0, and Kz,yr > Kz,yf ,
vertical loads of the two tires on the back are constrained to be greater than a pos-
itive threshold value. In Figure 6.6, when the vehicle accelerations are within the
entire shaded region, the vertical loads of the two front tires will be greater than
Fz,threshold = 1000 N. However, to make sure that the vertical loads of the two rear
tires are greater than this threshold, the vehicle accelerations need to stay within
the light gray region. Thus, the range of vehicle accelerations for limiting rear tire
vertical loads is smaller than the range for limiting front tire vertical loads. Thus, it
is sufficient to include only the vertical load limits of the two rear tires.

1
2 (Fz,r0 + ∆Fz,x)±∆Fz,yr ≥ Fz,threshold (6.27)

where Fz,threshold is a positive minimum vertical load constant.
By substituting Equation (6.24) and Equation (6.26) into the above equation

and substituting the dynamical equations for calculating U̇ and V̇ and rearranging
the terms, the following inequalities as functions of the vehicle state variables are
obtained.

Mt (2Fz,threshold − Fz,ro)−Kz,xMt (ax − V ωz)±

2Kz,yrFy,f (U, V, ωz, δf , ax) +

2Kz,yrFy,r (U, V, ωz, δf , ax) ≤ 0

(6.28)

They can be abbreviated into the following form.

S (U, V, ωz, δf , ax) ≤ 0 (6.29)

6.2.5 Equation (6.7) and (6.8): Continuity Constraints

The initial states of each phase are set to be the same as the final states of the previous
phase as constrained by Equation (6.7).

Equation (6.8) specifies the requirement that time increases monotonically as the
vehicle moves through the sub-regions. This enforces that the vehicle moves to the
terminal region.
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6.2.6 Equation (6.9) and (6.10): Terminal Constraints

The terminal constraints are functions of only the initial states at T 0, and the final
states at the end of the prediction horizon, Tp.

Three terminal constraints are included. The first terminal constraint specifies
the initial states. For the first phase, the initial values of the states x, y, ψ, V , and
ωz are from the measurements. To maintain a smooth reference speed and a smooth
steering sequence, the initial values of U, ax, and δf are the values from the end of
the execution horizon of the previous step.

ξ(0)
(
T 0
)

= ξ0 (6.30)

The second terminal constraint limits the vehicle speed at the end of the prediction
horizon. This limit is introduced to prepare for potential obstacles in the future.
Specifically, the vehicle is allowed to accelerate at the beginning of the prediction
horizon, but then is required to decelerate to a threshold speed at the end of the
prediction horizon, since no obstacle information such as location, shape, and size are
known a priori.

UN
(
TN

)
≤ Uthreshold (6.31)

The third terminal constraint ensures that the end of the vehicle trajectory is
close to the LIDAR detection range. This constraint is active only when the target
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is outside the LIDAR’s detection range.

RLIDAR −Rσ ≤

√√√√√√
[
xN

(
TN

)
− x1

(
T 0
)]2

+
[
yN

(
TN

)
− y1

(
T 0
)]2 ≤ RLIDAR (6.32)

where Rσ is a relaxation constant.
These three constraints can be lumped in the form of Equation (6.9).
Finally, the initial time T0 is specified as 0. Equation (6.10) specifies the limits

on the prediction horizon. Because the longitudinal speed of the vehicle is to be
optimized and can be varying and the third terminal constraint limits the distance
between the initial position and the end position, the prediction horizon is not a
constant parameter in terms of time. Instead, it is a design variable to be optimized.
The upper bound, Tp,max, and lower bound, Tp,min relate to the Umax, and Umin,
respectively.

6.2.7 Equation (6.1): Cost Function

The cost function defines in what sense a trajectory is considered to be optimal. It
consists of two parts: terminal cost and integral cost. In this work, the cost function
formulation includes six terms, three terminal cost terms and three integral cost terms,
that are linearly combined using relative weights as follows:

J =sf
s0

+ wψψ
2
diff + wtTp+

wdt

∫ Tp

0
[sin (ψt) (x− xt)− cos (ψt) (y − yt)]2 dt+

wfz

∫ Tp

0

[
tanh

(
−Fz,rl − Fz,a

Fz,b

)
+ tanh

(
−Fz,rr − Fz,a

Fz,b

)]
dt+

wcf

∫ Tp

0

[
wδδ

2
f + wγγ

2
f + wJJ

2
x

]
dt

(6.33)

where s0 is given by Equation 5.13, sf is given by Equation 5.14, ψdiff is given by
Equation 5.16, and Tp is the prediction horizon. If proper weighting factors are
selected, the first three terms will result in a trajectory in which the end point of the
predicted trajectory is close to the target, the final heading angle is pointing to the
target, and the time used to cover the prediction distance is small.

Furthermore, three integral terms are included in the cost function.
The first term is used to minimize the integral over the prediction horizon of the

square of distance to the line that is passing through the target [xt, yt] along a desired
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direction φt. This term is used to have the vehicle pass through the target from the
desired direction. The term is included when there is a desired heading angle to pass
the target.

The second term penalizes the cost when the tire vertical load is close to the
specified threshold, Fz,threshold, and is used to provide a smooth approach to this
threshold and prevent vehicle from operating at the limit unnecessarily. This is a soft
constraint to ensure vehicle dynamical safety and is in addition to the hard constraints
specified in Equation (6.6). The parameters Fz,a and Fz,b used in the definition are
given by

Fz,a = Fz,threshold + 3Fz,off
Fz,b = Fz,off

(6.34)

where Fz,off relates to the transition of cost value as shown in Figure 6.7.
The third term is a regularization term minimizing the control effort that is defined

as the integral of the weighted sum of δ2
f , γ2

f , and J2
x .

The variables wψ, wt, wdt, wfz, wcf , wδ, wγ, and wJ are corresponding weighting
parameters.

When the target position is within the sensor’s detection range, the terms sf/s0

and wψψ2
diff are removed from the cost functions. Instead, Equation 5.21 is added to

the OCP formulation.
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6.3 Simulation Results

This section presents numerical simulations of the developed nonlinear MPC obsta-
cle avoidance algorithm with the fourteen DoF model as the plant. The generated
reference speed profile from the MPC is tracked using a speed controller, which is a
PI controller with saturation and anti-windup as shown in Figure 6.8. It takes the
difference between the reference speed and actual vehicle speed as input and generates
an output within the interval [−1, 1], with positive values corresponding to throttle
command and negative values corresponding to the brake command.

Three test cases are considered with three different obstacle fields. The first two
test cases are simulated with both the constant speed formulation and variable speed
formulation for comparison. These simulations are run with a vehicle initial speed
of 20 m/s. These two sets of simulations are used to show the advantage of the
combined steering and longitudinal speed optimization based MPC over the constant
speed formulation. The third test case is used to show that the algorithm is capable
of navigating the vehicle through a complex obstacle field, where complexity is un-
derstood in terms of obstacle density and variations in obstacle size. This simulation
is run with a vehicle initial speed of 15 m/s.

The LIDAR detection range is RLIDAR = 100 m. The goal is to pass through
the specified target from the 90 degrees direction in the global coordinate. At each
step of the MPC, the optimization generates a trajectory within the 100 m LIDAR
detection range. Only the first 0.5 s of the planned control command is executed
by the vehicle. A new trajectory is planned every 0.5 s using the updated vehicle
state information and obstacle information from the sensors. Note that the command
within the 0.5 s is not constant; the sample rate for the control commands is 0.05 s.
Table 6.1 summarizes the value of the parameters used in the simulation.

91



Table 6.1: Simulation Parameters

Symbol Value Unit
Mt 2689 kg
Izz 4110 kg-m2

Lf , Lr 1.58, 1.72 m
Kz,x 806 N/(m/s2)
Kz,yf 675 N/(m/s2)
Kz,yr 1076 N/(m/s2)
Fz,threshold 1000 N
[δf,min, δf,max] [-30, 30] ◦

[ςf,min, ςf,max] [-5, 5] ◦/s
[Umin, Umax] [5, 29] m/s
[Jx,min, Jx,max] [-5, 5] m/s3

c1, c2, c3, c4 -1.28e-4, 8.59e-3, -0.2257, 3.0828 -
c5, c6, c7, c8 -1.38e-4, 6.85e-3, -0.1204, -3.5589 -
RLIDAR 100 m
Rσ 5 m
wψ, wt 0.01, 0.05 -
wdt, wfz, wcf 1e-5, 0.5, 1 -
wδ, wγ, wJ 0.1, 1, 0.01 -
Fz,a, Fz,b 1300, 100 N

6.3.1 Test Case 1: Less Challenging Case

The results of the first test case are shown in Fig. 6.9. In this case, both the constant
speed algorithm and variable speed algorithm navigate the vehicle through the obsta-
cle field safely; i.e., collision-free as shown in Fig. 6.9a and without wheel lift-off as
shown in Fig. 6.9d and Fig. 6.9e. In the constant speed case, because the speed con-
troller used does not take the steering input into account, the speed has a maximum
deviation of 0.3 m/s from the desired value of 20 m/s. In the variable speed case,
the speed of the vehicle gradually increases from 20 m/s up to 22 m/s and decreases
back towards 20 m/s within the final 3.5 s as desired. In this case, the vehicle arrives
the target 1.7 s earlier out of the 25 s trajectory; i.e., about 7% faster. Hence, even
though enforcing the speed to be constant can greatly simplify the control problem,
the variable speed algorithm can better take advantage of the mobility capability of
the AGV and avoid an unnecessarily conservative operation.
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Figure 6.9: Simulation results for test case 1. Both constant speed and variable
speed navigations are successful; however, in the variable speed case, the vehicle
arrives the target earlier. In the subplots (d) and (e), the black dashed lines indicate
the minimum allowable vertical tire force.
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6.3.2 Test Case 2: More Challenging Case

Not having a systematic way of determining the vehicle speed in the constant speed
algorithm not only is a concern for causing an overly conservative vehicle operation,
but, more importantly, can inadvertently cause safety problems as the second test
case illustrates. The test case as shown in Fig. 6.10 is chosen to make it necessary
to slow down to avoid the obstacle. Using the constant speed algorithm, the vehicle
cannot avoid the obstacles safely as the simulation result confirms. With the constant
speed algorithm, the vehicle collides with the obstacle after 11.5 s. However, with the
variable speed algorithm, the vehicle is safely navigated through the obstacle field by
decelerating to a speed around 10 m/s. The vehicle starts accelerating again after the
obstacle is cleared. As shown in Fig. 6.10a and Fig. 6.10d, the trajectory is collision
free. Fig. 6.10f shows that the tire vertical loads are all above the specified minimum
threshold; hence, dynamical safety of the vehicle is ensured, as well. Fig. 6.11 shows
the difference between the reference speed profile and the actual speed profile, which
demonstrates the performance of the speed controller. The difference is relatively
larger when the steering angle is large. Finally, Fig. 6.12 shows that the prediction
time is varying at different steps.

6.3.3 Test Case 3: Dense Obstacle Field

The third test case is the vehicle moving in an obstacle field with 40 obstacles of
different sizes. Even though the vehicle speed is initialized at 15 m/s, the algorithm
can recognize that the vehicle is actually capable of navigating through this complex
obstacle field at a higher speed. Thus, it accelerates the vehicle to about 20 m/s while
it navigates the vehicle through the field before it decelerates again to the desired final
speed as it approaches the target position. The maximum speed is constrained by
the acceleration capability and the sensor detection range.

6.4 Conclusion

This chapter considers high-speed AGVs in unstructured environments without a pri-
ori information about the obstacles and presents a newMPC-based obstacle avoidance
algorithm that optimizes the longitudinal speed and steering angle simultaneously to
navigate the AGV safely and as quickly as possible to the target location. To this end,
the algorithm is capable of exploiting the dynamic limits of the vehicle to maximize
the vehicle’s mobility performance. A multi-stage OCP formulation is used to incor-
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Figure 6.10: Simulation results for test case 2. The constant speed navigation fails
while the variable speed navigation is successful.
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Figure 6.10: (continued) Simulation results for test case 2. The constant speed navi-
gation fails while the variable speed navigation is successful.
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Figure 6.13: Simulation results for test case 3. The algorithm is capable of navigating
the vehicle through a complex obstacle field while increasing the speed to exploit the
vehicle’s mobility capability.
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porate the obstacle data obtained from the on-board LIDAR sensor. The time length
of the prediction horizon of the MPC is varying because a variable-speed trajectory
is planned till the end of the sensor range. The powertrain and brake dynamics are
taken into consideration through the bounds on the vehicle longitudinal speed, ac-
celeration and jerk. The dynamical safety requirement is accounted for by enforcing
a positive vertical load on all four tires as hard constraints. One term in the cost
function also aims to provide a smooth approaching to the vertical load threshold.
Three sets of numerical simulations are conducted to demonstrate the effectiveness
of the algorithm. The conclusion is that the newly developed algorithm with variable
speed and steering commands not only improves the performance of the vehicle by
allowing it to operate closer to its dynamical limits, but also enables the safe clearance
of obstacle fields that may not be cleared with steering control alone.
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CHAPTER 7

Robust Formulation against
Parametric Uncertainty and

Results

7.1 Introduction

The goal of this chapter is to study the effect of parametric uncertainty on the ob-
stacle avoidance algorithm and improve the robustness of the algorithm presented in
Chapter 6. The parameter values used in previous simulations were assumed to be ac-
curate, but in reality they are uncertain. This uncertainty can affect the effectiveness
and task completion performance of the obstacle avoidance algorithm. To be more
specific, parametric uncertainty denotes that the value of a parameter is constant but
unknown. However, the probability distribution or bounds of the parameter value are
assumed to be known a priori [114]. Robustness of this obstacle avoidance algorithm
to parametric uncertainty and how it can be improved are research questions that
have not yet been addressed in the literature and are thus the focus of this chapter.

The literature presents many methods to improve the robustness of an MPC al-
gorithm by accounting for the given distributions of uncertainty within robust or
stochastic MPC formulations [115, 116, 117], which have been applied in the context
of automated driving and vehicle active safety [118]. There exist algorithms to han-
dle general additive uncertainty, which can be applied to parametric uncertainty by
approximating it as an additive uncertainty. Those algorithms are classified into the
following three categories: i) open-loop min-max optimization based approach, where
the satisfaction of the constraints for all possible uncertainty realizations are consid-
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ered, e.g. [119]; ii) auxiliary-controller based approach, where a robustifying feedback
control action is used to ensure that the actual state trajectories would not deviate
from the feedforward trajectories beyond a specified bound, e.g. [120, 121]; and iii)
scenario-based approach, where chance constraints are transformed into deterministic
counterparts by evaluating them at a large number of uncertainty samples, e.g. [122].
In the latter approach, a scenario denotes a particular realization or sample of the
uncertainty distributions. The same terminology is adopted throughout this chapter,
as well.

Most of the algorithms from the first two categories, which are analytical robust
or stochastic MPC algorithms, are restricted to linear systems and Gaussian distri-
butions for the propagation of uncertain system states over the prediction horizon
and/or the calculation of invariant tubes and auxiliary controller gains. However,
Chapter 3 has concluded that model nonlinearity is essential for the application of
interest. Although iterative online linearization of the model nonlinearity is possible
[123], the linearized model is a good approximation only in a small region around
the reference state and input vectors about which the linearization is performed. For
obstacle avoidance in an unstructured environment, finding an optimal path is also
part of the task besides avoiding obstacles, because no reference trajectory exists.
This requires a long prediction horizon to achieve successful navigation in directions
that may deviate significantly from the “current" direction. Thus, the assumption for
the use of linearization may not hold.

In contrast to the first two categories, the scenario-based approach can be applied
to any kind of model and uncertainty distribution, as long as a sufficient number
of random samples are evaluated. However, the major drawback is that the problem
size grows exponentially with the number of uncertain parameters and range of values
that these parameters can take [124].

Besides the literature that considers the general additive uncertainty, some re-
search efforts focus specifically on parametric uncertainty. For example, Walton [114]
considers the uncertain parameter as an optimization variable and uses a cost func-
tional that integrates the original cost multiplied by the probability density function
over the parameter range. However, the application is limited to parametric uncer-
tainty in both the cost function and dynamic model constraints of OCPs, excluding
parametric uncertainty in path constraints. Xiong et. al. [125] transforms the orig-
inal stochastic trajectory optimization problem into an equivalent deterministic one
in the expanded higher-dimensional state space by the polynomial chaos expansion
method. Path constraints can be handled in this approach. However, the number
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of states in the expanded deterministic state equations is equal to the number of
original states, ns, multiplied by the total number of state-expansion coefficients, nr.
Furthermore, the total number of state-expansion coefficients is nr := (ne+np)!/ne!np!,
where np is the number of unknown parameters and, ne is the order of the polyno-
mial chaos expansion [126]. This number grows rapidly as the polynomial order ne
and/or the number of parameters np increases. Thus, this approach is not applicable
to the problem space of this thesis due to a large number of parameters. Thus, the
existing approaches to handle parametric uncertainty are not readily applicable to
the problem of interest, which includes a nonlinear dynamics model, nonlinear path
constraints, and a large number of parameters.

Therefore, in this chapter, a novel approach is developed to improve the robust-
ness of the obstacle avoidance algorithm to parametric uncertainty. In particular, a
double-worst-case formulation is developed for a robust satisfaction of the two safety
requirements for high-speed obstacle avoidance in AGVs: collision-free and no-wheel-
lift-off. Similar to the scenario-based approach, the proposed method also makes the
constraints in the OCP formulation in the MPC algorithm robustly safe in all of the
considered scenarios. However, instead of using hundreds of randomly generated sce-
narios, only two scenarios are considered, which are the two most likely worst-case
scenarios corresponding to the two types of identified unsafe scenarios. In addition,
instead of applying all the scenarios to check all the constraints, each scenario is only
used to check the satisfaction of the relevant constraints, which helps to minimize
the number of constraints in the augmented OCP formulation for robustness. The
results show that the proposed formulation improves the robustness of the algorithm,
albeit it cannot be guaranteed for all possible realizations of parametric uncertainty
distributions because of the non-uniqueness and the approximation of the worst-case
scenarios. The chapter also quantifies the trade-off between the robustness and task
completion performance of the MPC-based obstacle avoidance algorithm.

The list of parameters used in the MPC model and the associated uncertainty
levels are summarized in Table 7.1. It is assumed that the uncertainty distributions
are independent and follow a uniform distribution with given upper and lower bounds.
In particular, it is assumed that the mass and inertia terms have ±10% uncertainty
around their nominal values; the CoG location measurements have ±20% uncertainty;
and the tire parameters have ±30% uncertainty. The uncertainty levels are estimated
based on the difficulty of measuring the parameter value. In general, the parameter
values used in the tire model have large uncertainty, especially in the unstructured
environment, which is often off-road. The vehicle CoG location measurements have
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larger uncertainty compared to the mass and inertia measurements because the CoG
location can easily shift. It is assumed that the uncertainty associated with the
distance between the two axles, Lv, and the tire radius, Rt, are negligible because
they can be easily and directly measured. The uncertainty range of the mass and
inertia may include small changes due to fuel consumption but to account for the large
changes is not intended, for example, due to additional payload. The results presented
in the following sections are based on these assumptions of the uncertainty levels.
When different assumptions are made, the particular results in terms of numerical
values obtained, for example, the percentage of failure scenarios, may not hold, but
the same methodology can be followed.

Table 7.1: List of parameters used in the MPC model.

Parameter Symbol Nominal Unit Error
Value Bounds[%]

Sprung mass Ms 2251.5 kg ±10
Unsprung mass Mu 109.3 kg ±10
Yaw inertia Izz 4110.1 kg·m2 ±10
Front axle to rear axle distance Lv 3.30 m 0
Front axle to CoG distance Lf 1.58 m ±20
CoG height hCG 0.99 m ±20
Tire radius Rt 0.55 m 0
Shape factor for lateral forces Pc 1.5874 - ±30
Lateral friction Pd 0.73957 - ±30
Variation of friction with load Pd,z -0.075004 - ±30
Lateral curvature Pe 0.37562 - ±30
Variation of curvature with load Pe,z -0.069325 - ±30
Maximum value of stiffness Pk -10.289 - ±30
Load at which stiffness

Pk,z 3.3343 - ±30reaches maximum value

7.2 Evaluation of Robustness to Parametric Un-
certainty

In previous simulations, it was assumed that there is no parametric uncertainty.
Thus, the parameter values used in the MPC model were the nominal ones listed
in Table 7.1. These nominal values were also used in the plant model, which was
then used to demonstrate the effectiveness of the obstacle avoidance algorithm in
closed-loop simulations. When there is parametric uncertainty, it is necessary to first
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evaluate the robustness of the algorithm when nominal parameter values are used,
because the MPC framework has inherent robustness due to feedback and re-planning
over a moving horizon. Thus, it is possible that the MPC algorithm is already robust
to parametric uncertainty and no additional strategies are needed. To perform this
task, closed-loop simulations are conducted where each simulation uses a different
set of parameter values in the plant model sampled from the parametric uncertainty
distributions. The MPC model parameters, on the other hand, are kept at their
nominal values in all simulations.

Because there are twelve parameters with uncertainty, proper sampling of the
parameter values is necessary to cover most of the parametric uncertainty domain
with a limited number of expensive simulations. In particular, Latin Hypercube
Design (LHD) is used to generate a tractable collection of near-random samples of
parameter values from the multidimensional distribution [127]. An LHD is performed
in such a way that each of the nd dimensions is divided into nl equal levels and that
there is only one sample at each level. A random procedure is used to determine the
sample locations. Specifically, for this problem, there are 12 dimensions, and each of
them is divided into 50 equal levels. The LHD used in this paper is optimized so that
it has good space filling quality and low correlation between samples [128]. Thus, 50
sets of parameter values, in other words, 50 scenarios, are obtained.

Because there are two safety requirements for obstacle avoidance, namely,
collision-free and no-wheel-lift-off, two obvious safety issues are collision and wheel
lift-off, which are hard violations of the safety requirements. In addition, safety mar-
gins are included in the constraint formulations in the OCP. The violations of the
plant to these constraints, i.e., moving into the safety margins without collision or
wheel lift-off are soft violations. Both hard and soft violations are unacceptable in the
simulation-based robustness study. In other words, when the distance to obstacle or
tire vertical load is smaller than the corresponding safety margin, the AGV is consid-
ered as unsafe. The task of the AGV in these simulations is also to move from its start
position to pass through a given target position from a specified direction. Thus, task
completion is defined as moving through the final target position and heading in the
specified direction. Thus, safety and task completion are both important. When the
AGV passes through the target position from a different direction that has a greater
than or equal to 10-degree difference compared to the specified one, it is considered
as a failure even with no safety violations.

Fig. 7.1 shows the simulation results from the 50 scenarios with an obstacle map
that consists of two obstacles. In this test, the final heading angle is required to be
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(a) Trajectory profiles of the 38 scenarios with no safety issues.
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(b) Smallest vertical load profiles of the 38 scenarios with no safety issues.

Figure 7.1: Closed-loop simulation results with the LHD scenarios using the obstacle
avoidance algorithm with nominal parameter values.

the same as the initial heading direction. In summary, the AGV in 38 out of the
50 scenarios successfully completes the task without any soft or hard violations of
the safety requirements as shown in Fig. 7.1a and 7.1b. The remaining 12 scenarios
lead to hard or soft violations. Soft violations are observed with 10 scenarios as
shown in Fig. 7.1c and 7.1d. All the soft violations are the violation of the minimum
vertical load threshold. No violation of the minimum distance to obstacle threshold is
observed. One of the 10 scenarios results in a trajectory that moves very close to the
obstacle before slowing down to avoid collision that leads to a significantly different
and much longer route. Moreover, the task is not successfully completed with this
scenario, because the final heading angle requirement is not met. Hard violations
are observed with 2 scenarios. These simulations are terminated before the AGV
reaches the target position, because wheel lift-off is observed as shown in Fig. 7.1e,
and 7.1f. Therefore, it is concluded that the algorithm is not highly robust to the
assumed parametric uncertainty distributions. Violations of the safety requirements
are observed in 24% of the tested scenarios.
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(c) Trajectory profiles of the 10 scenarios with violations of the vertical load
threshold.
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(d) Smallest vertical load profiles of the 10 scenarios with violations of the
vertical load threshold.
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(e) Trajectory profiles of the 2 scenarios with single-wheel lift-off.
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(f) Smallest vertical load profiles of the 2 scenarios with single-wheel lift-off.

Figure 7.1: (continued) Closed-loop simulation results with the LHD scenarios using
the obstacle avoidance algorithm with nominal parameter values.
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Figure 7.2: Closed-loop simulation results with state measurement uncertainty.

7.3 Evaluation of Robustness to State Measure-
ment Uncertainty

Besides parametric uncertainty, there are other sources of uncertainty. For example,
one source of uncertainty is the errors in the knowledge of vehicle’s locations, and
current and future locations of the obstacles. Another source of uncertainty is the
external disturbances due to wind and other factors. These sources might also cause
problems and need to be considered [121].

In this section, the effect of the state measurement uncertainty on the robustness
of the obstacle avoidance algorithm is evaluated. It is assumed that the estimation
uncertainties of all states are independent and they follow uniform distributions.
Thus, the upper and lower bounds are known. In particular, the vehicle position in
global coordinates (x, y) has a ±2.5 m error in each direction. The vehicle heading
angle ψ has an error of ±3◦.

In the simulation, at each step of the MPC update, the initial value of each state
variable passed to the algorithm includes error sampled from the corresponding dis-
tribution. The parameter values used in the MPC model were the nominal ones listed
in Table 7.1. The simulation is repeated 50 times. Figure 7.2 shows the simulation
results with an obstacle map that consists of two obstacles.
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Neither soft nor hard violations of the safety requirements are observed. It is
concluded that the MPC-based obstacle avoidance algorithm is robust to the consid-
ered state measurement uncertainty distributions. Thus, when studying the effect of
parametric uncertainty, the state measurement uncertainty is not considered so that
the focus can be put specifically on the parametric uncertainty.

7.4 Improvement of Robustness to Parametric
Uncertainty

A novel approach is proposed in this section to improve the robustness of the obstacle
avoidance algorithm to parametric uncertainty. As mentioned in Section 7.1, the
scenario-based approach can be applied to the considered problem with a nonlinear
dynamics model. However, because the MPCmodel has a large number of parameters,
hundreds of randomly generated scenarios are needed to provide a relatively high
confidence level of the chance constraint, which is computationally intractable. To
overcome this challenge, a double-worst-case formulation is developed. Systematic
off-line simulations with various scenarios are performed to identify the scenarios
that will lead to active constraints. Thus, the computational burden is shifted off-
line. As a result, only two scenarios are considered in the proposed formulation,
which are the two worst-case scenarios of different types corresponding to the two
safety requirements for high-speed obstacle avoidance in AGVs: collision-free and no-
wheel-lift-off. To further reduce the number of constraints in the augmented OCP
formulation for robustness, each scenario is only used to check the satisfaction of the
relevant constraints instead of applying all the scenarios to check all the constraints.
The details of the proposed approach are discussed comprehensively in this section
starting with a brief overview.

To give a definition of the worst-case scenario, the unsafe scenario is first de-
fined. If the closed-loop results with a particular scenario reveal safety issues, that
is, either soft or hard violations, the scenario is considered as unsafe. However, the
justification of whether a scenario is unsafe or not depends on the obstacle field and
the vehicle model and parameter values used in the MPC algorithm, because the
control commands for the AGV with that scenario are generated by the algorithm
in reaction to the given obstacle field. To reduce the number of inter-dependencies
in the analysis and make it tractable, open-loop simulation results generated using
constant-steering constant-acceleration maneuvers with the unsafe scenarios obtained
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in Section 7.2 are used to analyze the characteristics of the unsafe scenarios in terms
of vehicle responses. In Section 7.4.1, two types of unsafe scenarios are identified.
Each of them is qualitatively defined based on a metric, which is a function of the
AGV state variables, but no quantitative thresholds are set in the definition because
of the inter-dependencies. For each type of unsafe scenario, the scenario that results
in the smallest metric value is the worst-case scenario for a particular maneuver. It is
essential to identify the worst-case scenarios, because if the worst-case scenarios can
be made robustly safe, all the other scenarios will be safe, too. Open-loop simulations
using a set of constant-steering constant-acceleration maneuvers that approximately
covers the entire operation space of the AGV are used to obtain the worst-case sce-
nario. However, the worst-case scenario of each type of unsafe scenario is not unique
for all maneuvers because of model nonlinearities. Thus, the term most likely worst-
case scenario is used to refer to the worst-case scenario that results in the smallest
metric value for most of the considered maneuvers. If a scenario results in a smaller
metric value than that from the most likely worst-case scenario with at least one ma-
neuver, it is categorized as a less likely worst-case scenario. There may be multiple
less likely worst-case scenarios for each type of unsafe scenarios. The procedure for
obtaining the two most likely worst-case scenarios is presented in Section 7.4.2 in
detail.

The procedure presented in Section 7.4.2 ignores the effects of interactions between
the parameters because of the difficulty caused by the large number of parameters.
To validate the obtained most likely worst-case scenarios and to identify the less
likely worst-case scenarios that are noticeably different than the most likely worst-
case scenarios, further open-loop simulations are performed with all the scenarios
that consist of the upper or lower bound of all parameters using maneuvers picked
according to the previous analysis. The results are presented in Section 7.4.3.

With the obtained most likely worst-case scenarios and less likely worst-case sce-
narios, two double-worst-case formulations are presented in Section 7.5. The first one
considers only the two most likely worst-case scenarios and each of them is used to
check only the relevant constraints. The second one also accounts for the less likely
worst-case scenarios approximately in a way such that no additional scenarios are
introduced in the formulation besides the two most likely worst-case scenarios.
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7.4.1 Unsafe Scenarios

The scenarios corresponding to the closed-loop simulation results shown in Fig-
ure 7.1c, 7.1d, 7.1e, and 7.1f are unsafe scenarios for the considered obstacle field
and the MPC algorithm using nominal parameter values. Open-loop simulation re-
sults using two representative constant-steering constant-acceleration maneuvers with
these unsafe scenarios are shown in Figure 7.3 to assist the analysis of the charac-
teristics of the unsafe scenarios in terms of vehicle responses. Figure 7.3a - 7.3c are
results with constant acceleration; and Figure 7.3d - 7.3f are results with constant
deceleration. These two maneuvers are selected because the longitudinal acceleration
affects significantly the longitudinal load transfer and the sensitivity of a vehicle to
steering.

As shown in Figure 7.3a, and 7.3d, in 11 out of the 12 open-loop results with the
unsafe scenarios, the predicted tire vertical load values are almost always smaller than
the values predicted with the nominal scenario along the prediction horizon. Thus,
because of the differences between the vertical load value predictions, even when the
control commands generated by the MPC algorithm with nominal parameter values
satisfy the dynamical safety constraints in the OCP formulation, the AGV with these
scenarios still encounters violations of the minimum-tire-vertical-load threshold or
even wheel lift-off after the control commands are executed. Thus, the first type of
unsafe scenario is characterized by the tire vertical load value. Because the vertical
load profile is a timed sequence of data, the minimum tire vertical load value is used as
the evaluation metric. A smaller value means a larger chance of being unsafe. As an
example, the metric value of the nominal scenario with the given control commands
for tire vertical load prediction is Mload = 1.72 kN, which is the value indicated by
the circle in Figure 7.4a.

For the one case that does not belong to the previous type, its trajectory is the
“stiffest” of the 12 scenarios as shown in Figure 7.3b and 7.3e. In other words, the
AGV with this scenario cannot turn as sharp as with the nominal scenario using the
same control commands. Thus, the steering command generated by the MPC model
with nominal parameter values is not large enough to steer the AGV with this scenario
away from the obstacle early enough, and the AGV moves very close to obstacles due
to lack of sufficient turning, which leads to the need for a large correction effort
and a significant detour, and results in task incompletion. With a different obstacle
field, violation of minimum-distance-to-obstacle threshold or even collision is possible.
Thus, the second type of unsafe scenario is characterized by the trajectory “stiffness”
that is defined as the area under the trajectory profile. The smaller the metric value is,
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the “stiffer” the trajectory is. As an example, the metric value of the nominal scenario
with the given control commands for trajectory prediction isMtraj = 128 m2, which
is the area of the shaded region in Figure 7.4b.

In summary, the two types of unsafe scenarios identified are named as the small
vertical load type and the “stiff" trajectory type. Note that these two types of unsafe
scenarios are distinct; i.e., a small vertical load scenario is not a “stiff" trajectory
scenario and vice versa as illustrated by the results in Figure 7.3.

7.4.2 Most Likely Worst-Case Scenarios

The approach used to obtain the most likely worst-case scenario for each type of
unsafe scenarios is presented in this section. Because of the model nonlinearities, it
is difficult, if not impossible, to obtain the most likely worst-case scenarios analyt-
ically; hence, a numerical approach is used. Because there are twelve parameters,
the interactions between the parameters are ignored because of the large number of
combinations. The effect of each parameter value on the metrics is studied indepen-
dently using off-line open-loop simulation results. A set of constant-steering constant-
acceleration maneuvers is used for the evaluation, because this type of maneuver can
be easily parameterized. Different combinations of steering angle, acceleration, and
initial speed values are considered to approximately cover the entire operation space
of the AGV. The sequence of values considered for each of the commands is listed in
Table 7.2. The pairs of initial speed and acceleration shown in Figure 7.5 are used,
where the pairs that generate speed less than 5 m/s or greater than 29 m/s along a 2
seconds simulation are eliminated. These two speed limits are used because a speed
slower than 5 m/s does not pose any challenge and the maximum speed of the vehicle
is 29 m/s. For each pair, the sequence of steering angle values specified in Table 7.2
is considered.

Table 7.2: Values of the commands used in the parameterized evaluation maneuvers.

Command Symbol Unit Minimum Maximum Interval
Acceleration ax m/s2 -5 2 0.5
Steering angle δf

◦ 1 10 0.5
Initial speed U0 m/s 5 29 2

For each of the Np parameters, Nv values within its uncertainty range,
[vmin,i, vmax,i], are considered, where i is the index of the parameter. In other words,
Nv scenarios are evaluated, in which only one parameter value is varied and the other
parameter values are maintained at their reference values. The initial reference values
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Figure 7.3: The corresponding open-loop simulation results with unsafe scenarios
from the closed-loop simulations compared with results with the nominal scenario.
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are the nominal parameter values. For each type of unsafe scenarios, after obtaining
the most likely worst-case scenario using the initial reference values, Algorithm 1 is
repeated to update the most likely worst-case scenario with the previously obtained
most likely worst-case scenario as the new reference values. If the updated most likely
worst-case scenario is the same as the previous one, the most likely worst-case sce-
nario is finalized. Otherwise, Algorithm 1 is repeated again with the updated most
likely worst-case scenario as the new reference values until it converges.

In Algorithm 1, for each of the considered parameters, the vehicle model is simu-
lated for all the combinations of the Nv scenarios and Nm maneuvers. Two matrices
are generated. The first one, Isafe, records whether the maneuver is safe or not with
the considered scenario. The second one, M, records the metric value calculated
based on the vehicle response. Both of the matrices are of size Nm by Nv. Only when
the maneuver is safe for all the considered scenarios, are the corresponding metric
values used for the determination of most likely worst-case scenario. For example,
Figure 7.6a illustrates the effects the parameter hCG has on the trajectory stiffness
metric value with 1127 safe maneuvers, where the relationships are all monotonic and
approximately linear. Each line corresponds to one maneuver. The normalized metric
is displayed, in which the median of each line is set to 0. Using these results, the
value of the parameter that results in the smallest metric value is obtained. However,
the value is not unique because it depends on the maneuver. In this example, the
smallest metric value is achieved with the lower bound value of hCG for 333 out of
the 1127 maneuvers (about 30%). For the remaining 794 maneuvers, it is achieved
with the upper bound value. Figure 7.6b shows corresponding maneuvers by the pro-
jected views of the operation space. In general, when the AGV accelerates, a larger
hCG value leads to a “stiffer" trajectory. In addition, it is observed that the variation
range of the metric value also depends on the maneuver. When a “stiffer” trajectory
is given by a larger hCG value, the maximum variation range is 18.9, whereas when a
“stiffer” trajectory is given by a smaller hCG value, the maximum variation range is
6.3. Taking into account both the number of maneuvers and the value of the maxi-
mum deviation range, it is concluded that the upper bound value of hCG is in the set
of parameter values for most likely “stiffest” trajectory.

For the considered vehicle model and parametric uncertainty distributions, after
repeating the Algorithm 1 two or three times, the most likely worst-case scenario
of each type converges. Figure 7.7 summaries the effects of all parameters in the
last run of the algorithm on the trajectory stiffness and vertical load metrics, respec-
tively. In each figure, the top subfigure shows, the percentage of maneuvers that lead
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Algorithm 1 Obtaining the most likely worst-case scenarios

1: procedure DataCollection(type, vmax, vmin, scenarioref, maneuver)
2: for i← 1 to Np do . Np parameters
3: vseq,i ← linspace (vmax,i, vmin,i, Nv)
4: Nin(i)← 0, Nde(i)← 0, Not(i)← 0 . Counters initialization
5: Rin(i)← 0, Rde(i)← 0, Rot(i)← 0 . Ranges initialization
6: for j ← 1 to Nm do . Nm maneuvers
7: scenario ← scenarioref . Reference scenario
8: for k ← 1 to Nv do . Nv scenarios
9: scenario(i)← vseq,i(k) . Current scenario

10: [Fz, x, y]← Model(maneuverj , scenario) . Model simulation
11: if Fz ≥ Fz,threshold then
12: Isafe(j, k)← 1 . Safe maneuver
13: else
14: Isafe(j, k)← 0 . Unsafe maneuver
15: end if
16: if type = “load” then
17: M(j, k)← fload(Fz) . Trajectory stiffness metric
18: end if
19: if type = “traj” then
20: M(j, k)← ftraj(x, y) . Vertical load metric
21: end if
22: end for
23: if sum(Isafe(j, :)) = Nv then . Array of all ones
24: if length(find(diff(M(j, :)) < 0)) = 0 then
25: . Monotonic increasing
26: Nin(i)← Nin(i) + 1
27: Rin(i)← max(Rin(i),max(M(j, :))−min(M(j, :)))
28: else if length(find(diff(M(j, :)) > 0)) = 0 then
29: . Monotonic decreasing
30: Nde(i)← Nde(i) + 1
31: Rde(i)← max(Rde(i),max(M(j, :))−min(M(j, :)))
32: else . Otherwise
33: Not(i)← Not(i) + 1
34: Rot(i)← max(Rot(i),max(M(j, :))−min(M(j, :)))
35: end if
36: end if
37: end for
38: if max(Nin(i) ·Rin(i), Nde(i) ·Rde(i)) ≥ ·Not(i) ·Rot(i) then
39: if Nin(i) ·Rin(i) ≥ ·Nde(i) ·Rde(i) then
40: scenarioworst(i)← vmin,i . Lower bound value
41: else if Nde(i) ·Rde(i) ≥ ·Nin(i) ·Rin(i) then
42: scenarioworst(i)← vmax,i . Upper bound value
43: else
44: scenarioworst(i)← NaN . Detailed study needed
45: end if
46: else
47: scenarioworst(i)← NaN . Detailed study needed
48: end if
49: end for
50: end procedure
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Figure 7.6: Evaluation of the effects of the hCG value and the maneuver on the
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to a monotonically increasing relationship between the parameter value and metric
value (Nin/Nin+Nde+Not), a monotonically decreasing relationship (Nde/Nin+Nde+Not), and
a non-monotonic relationship (Not/Nin+Nde+Not). The maximum deviation range of the
metric value for each relationship (Rin, Rde, and Rot) is summarized in the second
subfigure. The last subfigure combines the above information by introducing a voting
metric, N• · R•, and normalizing it so that the maximum voting metric for each of
the parameter is 1. The voting metric values are then used to determine the most
likely worst-case scenario of each type. For each parameter, if the voting metric of
the monotonic increasing relationship is the largest, the parameter lower bound value
is in the set of parameter values for most likely worst-case scenario, whereas if the
voting metric of the monotonic decreasing relationship is the largest, the parameter
higher bound value is in the set. However, if the non-monotonic relationship has
the largest voting metric value, a more detailed discussion of the results is needed as
exemplified below.

For the trajectory prediction, as shown in Figure 7.7a, besides the parameter
hCG that has been discussed in detail above, the effects of other parameters on the
trajectory stiffness metric are almost independent of the maneuvers. Thus, it is
straightforward to assemble the most likely worst-case scenario for “stiffest” trajectory
based on the results, which is summarized in Table 7.3.

For the vertical load prediction, the effects of maneuvers are larger, but dominant
trends still exist as shown in Figure 7.7b. Two parameters that need a more detailed
discussion are Lf and Pd. For more than half of the maneuvers, the vertical load
metric does not change monotonically with respect to the parameter value for both
parameters. However, in 309 out of 356 maneuvers (about 87 %), the lower bound
value of Lf results in the smallest vertical load metric. In 308 out of 355 maneuvers
(about 87 %), the higher bound value of Pd results in the smallest vertical load metric.
Thus, it is determined that the lower bound value of Lf and the higher bound value
of Pd are in the set of parameter values for most likely smallest vertical load scenario.
With the voting metric values and further analysis of the detailed results from the
Algorithm 1, the most likely worst-case scenario for smallest vertical load is also
determined and given in Table 7.3.

In addition, it is observed that the steering angle command does not have a sig-
nificant effect on the metric values for both trajectory prediction and vertical load
prediction. For the trajectory prediction, it is clear that the most likely worst-case
scenario would be the actual worst-case scenario only with positive acceleration com-
mands due to the fact that hCG is monotonically decreasing only during acceleration.
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Table 7.3: Parameter values of the nominal scenario and the most likely worst-case
scenarios.

Parameter Nominal “Stiffest" Smallest UnitTrajectory Vertical Load
(Scenario 0) (Scenario 1) (Scenario 2)

Ms ×1.0 ×0.9 ×0.9 kg
Mu ×1.0 ×1.1 ×0.9 kg
Izz ×1.0 ×1.1 ×0.9 kg-m2

Lf ×1.0 ×0.8 ×0.8 m
hCG ×1.0 ×1.2 ×1.2 m
Pc ×1.0 ×0.7 ×1.3 -
Pd ×1.0 ×0.7 ×1.3 -
Pd,z ×1.0 ×0.7 ×1.3 -
Pe ×1.0 ×1.3 ×0.7 -
Pe,z ×1.0 ×1.3 ×0.7 -
Pk ×1.0 ×0.7 ×1.3 -
Pk,z ×1.0 ×1.3 ×0.7 -

For the vertical load prediction, determining when the most likely worst-case scenario
would be the actual worst-case scenario is more complicated. For the two most sig-
nificant parameters in terms of deviation range besides Lf , which are Pk and Pk,z, the
monotonicity of the vertical load metric value with respect to the parameter value
as a function of the control commands are shown in Figure 7.8. It is observed that
the most likely worst-case scenario would not be the actual worst-case scenario with
high deceleration maneuvers starting from a high initial speed. Thus, the follow-
ing three sets of control commands are used for the following open-loop simulations,
which include acceleration, moderate deceleration, and hard deceleration maneuvers.
The initial speeds of the three maneuvers are the same. The steering commands are
selected to make the smallest vertical load approximately the same.

• Maneuver A: U0 = 16 m/s, ax = +1 m/s2, δf = 3.0◦

• Maneuver B: U0 = 16 m/s, ax = −1 m/s2, δf = 2.5◦

• Maneuver C: U0 = 16 m/s, ax = −3 m/s2, δf = 1.5◦
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(a) Trajectory prediction.

Figure 7.7: Summary of the effects of all parameters on the prediction metrics using
bar charts.
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(b) Vertical load prediction.

Figure 7.7: (continued) Summary of the effects of all parameters on the prediction
metrics using bar charts.
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Figure 7.8: The monotonicity of the vertical load metric value with respect to the
parameter value as a function of the control commands.
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7.4.3 Open-Loop Simulation Results and Less Likely Worst-
Case Scenarios

With Algorithm 1, the interactive effects between parameters are not considered.
Although the algorithm is repeated several times to account for the interactive effects,
it does so only in a limited sense. Therefore, to validate the obtained most likely worst-
case scenarios, open-loop simulations are performed with the LHD scenarios used in
Section 7.2 and with all the scenarios that consist of the upper or lower bound of all
parameters. The latter set of results are also be used to identify the less likely worst-
case scenarios that are noticeably different from the most likely worst-case scenarios.

In Figure 7.9 and 7.10, open-loop simulation results with the scenarios listed
in Table 7.3 are plotted on top of the open-loop simulation results with the LHD
scenarios. All the trajectories from the LHD scenarios are more “flexible” than the
trajectory from the most likely “stiffest” trajectory scenario. The smallest vertical
loads from all of the LHD scenarios are also larger than the value from the most likely
smallest vertical load scenario. However, it is possible that smallest vertical load
scenario is not always the worst with hard deceleration as suggested by Figure 7.10c
when a different set of initial state values is used.

As shown in Figure 7.7, most of the relationships between the parameter values
and metric values are monotonic. Even if they are not, the smallest metric values
are almost always achieved with either the upper bound or the lower bound of the
parameter value. To exploit this observation, another set of open-loop simulations is
then performed by assuming that each of the parameters can take only two values,
which are the upper bound and the lower bound values. Thus, 212 = 4096 scenarios
are considered. The results are shown in Figure 7.11 and Figure 7.12.

It is observed that, when the AGV accelerates, these two most likely worst-case
scenarios are the actual worst-case scenarios among all the considered scenarios. How-
ever, when the AGV decelerates, they are not necessarily the actual worst-case sce-
narios and the differences become larger with harder deceleration. For the trajectory
prediction, the smallest metric value is achieved with the lower bound value of hCG for
decelerating maneuvers. However, the upper bound value is used in the most likely
worst-case scenario. Thus, there exists a worse scenario as shown in Figure 7.11c.
Because the effect of hCG on the trajectory prediction only ranks 6th as shown in
the second subfigure of Figure 7.7a, the difference between the trajectories from the
most likely worst-case scenario and the actual worst-case scenario is small and can be
neglected. To confirm this inference, the less likely worst-case scenario for trajectory
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Figure 7.9: Trajectory profiles of the open-loop simulation results with the nominal
scenario, the obtained most likely worst-case scenarios, and the LHD scenarios.
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Figure 7.10: Vertical load profiles of the open-loop simulation results with the nominal
scenario, the obtained most likely worst-case scenarios, and the LHD scenarios.
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prediction is listed in Table 7.4 and it is used in the closed-loop simulation in the
next Section.

For the vertical load prediction, with acceleration and moderate deceleration,
the most likely worst-case scenario is the actual worst-case scenario as shown in
Figure 7.12a and 7.12b, respectively. However, it is not with hard deceleration as
shown in Figure 7.12c. It would be beneficial if the vertical load profile generated by
the scenario that results in the smallest metric value is the lower bound for vertical
load along the entire simulation horizon. However, this is not the case; the lower
bound consists of results from multiple scenarios as shown in Figure 7.13b and 7.13c.
These scenarios are considered the less likely worst-case scenarios for vertical load
prediction and are listed in Table 7.4.

In summary, based on these two sets of open-loop results, it is concluded that the
two most likely worst-case scenarios are at least very close to the actual worst-case
scenarios. However, with hard deceleration, the differences between these scenarios
are more significant. Thus, less likely worst-case scenarios are obtained with this
type of maneuvers. These results provide an important part of the foundation for the
proposed robust optimal control problem formulation.

7.5 OCP Formulation

To improve the robustness of the obstacle avoidance algorithm, two approaches are
considered. The first approach keeps the formulation as is and uses either of the
two most likely worst-case scenarios in the MPC formulation. The second approach
considers both types of the worst-case scenarios simultaneously, which is named as
double-worst-case formulation. In this work, two double-worst-case formulations are
proposed. The first one considers only the two most likely worst-case scenarios and
each of them is used to check only the relevant constraints. The second one also
accounts for the less likely worst-case scenarios approximately in a way such that no
additional scenarios are introduced in the formulation besides the two most likely
worst-case scenarios.

7.5.1 Original Formulation

Because of the inherent robustness of the MPC framework, the original formulation
with the nominal scenario, which is referred to as MPC0, can tolerate the parametric
uncertainty to a certain degree. The results shown in Figure 7.1 are used as bench-
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(a) Maneuver A.

(b) Maneuver B.

(c) Maneuver C.

Figure 7.11: Trajectory profiles of the open-loop simulation results with the nomi-
nal scenario, the obtained most likely worst-case scenarios, and all combinations of
parameter lower and upper bound values.
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(a) Maneuver A.

(b) Maneuver B.

(c) Maneuver C.

Figure 7.12: Vertical load profiles of the open-loop simulation results with the nom-
inal scenario, the obtained most likely worst-case scenarios, and all combinations of
parameter lower and upper bound values.
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(a) Maneuver A.

(b) Maneuver B.

(c) Maneuver C.

Figure 7.13: Vertical load profiles of the open-loop simulation results with the most
likely and less likely worst-case scenarios for vertical load prediction and all combi-
nations of parameter lower and upper bound values.
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Table 7.4: Parameter values of the less likely worst-case scenarios.

Parameter
“Stiffest” Smallest

UnitTrajectory Vertical Load
(Scenario 3) (Scenario 4)

Ms ×0.9 ×1.1 kg
Mu ×1.1 ×0.9 kg
Izz ×1.1 ×0.9 kg-m2

Lf ×0.8 ×0.8 m
hCG ×0.8 ×1.2 m
Pc ×0.7 ×0.7 -
Pd ×0.7 ×0.7 -
Pd,z ×0.7 ×0.7 -
Pe ×1.3 ×1.3 -
Pe,z ×1.3 ×1.3 -
Pk ×0.7 ×1.3 -
Pk,z ×1.3 ×0.7 -

Parameter
Smallest Smallest

UnitVertical Load Vertical Load
(Scenario 5) (Scenario 6)

Ms ×1.1 ×1.1 kg
Mu ×0.9 ×0.9 kg
Izz ×0.9 ×0.9 kg-m2

Lf ×0.8 ×0.8 m
hCG ×1.2 ×1.2 m
Pc ×0.7 ×0.7 -
Pd ×0.7 ×0.7 -
Pd,z ×0.7 ×0.7 -
Pe ×1.3 ×1.3 -
Pe,z ×1.3 ×1.3 -
Pk ×1.3 ×0.7 -
Pk,z ×1.3 ×1.3 -
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marks for evaluating the effectiveness and studying the trade-off in improving the
robustness to parametric uncertainty.

Two other MPC implementations that are also considered are the original for-
mulation with the most likely “stiffest” trajectory scenario (MPC1), or the original
formulation with the most likely smallest vertical load scenario (MPC2). These two im-
plementations don’t increase the complexity of the OCP formulation but only change
the parameter values used in the MPC model. The term most likely “stiffest” tra-
jectory scenario is used to refer the most likely worst-case scenario based on the
trajectory “stiffness”. The term most likely smallest vertical load scenario is used
similarly.

7.5.2 Double-Worst-Case Formulation

The first double-worst-case formulation (MPC3) considers the two most likely worst-
case scenarios simultaneously and each of them is used to check only the relevant
constraints, which requires the augmentation of the original OCP formulation. The
augmented MPC model is specified by Equation (7.1) - Equation (7.12).

The control commands to be optimized are the longitudinal jerk, Jx, and steering
acceleration, ηf , which are used to provide a smooth control of the vehicle.

U̇ = ax (7.1)

ȧx = Jx (7.2)

δ̇f = γf (7.3)

γ̇f = ηf (7.4)

where U is the longitudinal speed, ax is the longitudinal acceleration, δf is the steering
angle, and γf is the steering rate.

Two sets of lateral dynamics and yaw dynamics are calculated simultaneously
with the parameter values from the two most likely worst-case scenarios, respectively.
The first set of dynamic equations uses the parameter values, ptraj, of the most likely
“stiffest" trajectory scenario, and the subscript traj is used to indicate the correspond-

129



ing parameters and variables.

V̇traj = (Fy,f,traj + Fy,r,traj) /Mt,traj − Uωz,traj (7.5)

ω̇z,traj = (Fy,f,trajLf,traj − Fy,r,trajLr,traj) /Izz,traj (7.6)

Fy,f,traj = Pf (U, Vtraj, ωz,traj, δf , ax; ptraj) (7.7)

Fy,r,traj = Pr (U, Vtraj, ωz,traj, ax; ptraj) (7.8)

where Vtraj is the lateral speed in the BFCF, ωz,traj is the yaw rate, Fy,f,traj and Fy,r,traj
are the tire lateral forces generated at the front axle and the rear axle, respectively,
which are calculated using the pure-slip Pacejka Magic Formula tire model P as a
function of vehicle state and control variables. The subscripts f , and r are used to
represent front axle and rear axle, respectively.

The second set of dynamic equations uses the parameter values, pload, of the most
likely smallest vertical load scenario.

V̇load = (Fy,f,load + Fy,r,load) /Mt,load − Uωz,load (7.9)

ω̇z,load = (Fy,f,loadLf,load − Fy,r,loadLr,load) /Izz,load (7.10)

Fy,f,load = Pf (U, Vload, ωz,load, δf , ax; pload) (7.11)

Fy,r,load = Pr (U, Vload, ωz,load, ax; pload) (7.12)

This set of equations, Equations (9) - (12), is the same as Equations (5) - (8)
except that the subscript load is used to indicate that the parameter values are from
the most likely smallest vertical load scenario and the variables are calculated using
these parameter values.

Thus, two sets of vehicles state predictions from the vehicle dynamics model with
two sets of parameter values are obtained. Each set is used to check the satisfaction
of only the relevant constraints.

The vehicle heading angle and trajectory profile are calculated using the parameter
values and the state predictions of the most likely “stiffest" trajectory scenario, which
are then used in the cost function to drive the vehicle to the specified target position
and are also used in the position constraints to keep the vehicle within the safe region
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established using the LIDAR data.

ψ̇ = ωz,traj (7.13)

ẋ = U cos(ψ)− (Vtraj + Lf,trajωz,traj) sin(ψ) (7.14)

ẏ = U sin(ψ) + (Vtraj + Lf,trajωz,traj) cos(ψ) (7.15)

where (x, y) is the vehicle’s front center position in global coordinates and ψ is the
yaw angle.

The constraints used to prevent wheel lift-off are given by:

Fz,rl,load ≥ Fz,threshold (7.16)

Fz,rr,load ≥ Fz,threshold (7.17)

where Fz,threshold is the minimum vertical load threshold, Fz,rl,load and Fz,rr,load are
the rear left and rear right tire vertical loads and are calculated as functions of
the parameter values and state predictions of the most likely smallest vertical load
scenario.

Fz,rl,load = 1
2 (Fz,r0,load + ∆Fz,x,load)−∆Fz,yr,load (7.18)

Fz,rr,load = 1
2 (Fz,r0,load + ∆Fz,x,load) + ∆Fz,yr,load (7.19)

∆Fz,x,load ≈ Kz,x,load (ax − Vloadωz,load) (7.20)

∆Fz,yr,load ≈ Kz,yr,load (Fy,f,load + Fy,r,load) /Mt,load (7.21)

where Fz,r0,load is the static rear axle load; ∆Fz,x,load is the load transferred between the
front and rear axles due to longitudinal acceleration; ∆Fz,yr,load is the load transferred
between two rear wheels due to lateral acceleration; Kz,x,load is the longitudinal load
transfer coefficient; and Kz,yr,load is the lateral load transfer coefficient of the rear
axle.

The details of the two constraints introduced above and the rest of the OCP
formulation are omitted here because they remain the same as and are discussed
thoroughly in Section 6.2.

The second double-worst-case formulation (MPC4) also accounts for the less likely
worst-case scenarios approximately in a way such that no additional scenarios are
introduced in the formulation besides the two most likely worst-case scenarios. As
discussed in Section 7.4.2 and demonstrated in Section 7.4.3, for vertical load pre-
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diction, the discrepancy between the most likely worst-case scenario and the actual
worst-case scenario becomes larger with higher deceleration. Three less likely worst-
case scenarios are obtained, in which the sprung mass value is at its upper bound
and the tire parameter values are at the opposite bounds besides the two stiffness
related parameters compared to Scenario 2. It is possible to consider all three less
likely worst-case scenarios in the formulation by further augmenting the state vector
and increasing the number of constraints. However, this augmentation would increase
the computational load for solving the OCP, which is not desired.

An alternative approach is developed as follows. As shown in Figure 7.13b and
7.13c, it is observed that the results of Scenario 2 and Scenario 4 are very close to
each other, and the results of Scenario 5 lie in between the results of Scenario 4 and
the results of Scenario 6. Thus, if only one less likely worst-case scenario is to be
considered, it would be Scenario 6. Furthermore, Scenario 6 and Scenario 1 are the
same besides three mass and inertia related terms, which have less impact on the
metric value as shown in the second subfigure of Figure 7.7b. Therefore, Scenario 6
can be approximated by Scenario 1. Thus, to further improve the robustness of the
algorithm, MPC3 can be augmented by considering the following additional constraints
for preventing wheel lift-off, which becomes MPC4 that accounts for the less likely
worst-case scenarios approximately.

Fz,rl,traj ≥ Fz,threshold (7.22)

Fz,rr,traj ≥ Fz,threshold (7.23)

where Fz,rl,traj and Fz,rr,traj are the rear left and rear right tire vertical loads and are
calculated as functions of the parameter values and state predictions of the most likely
“stiffest” trajectory scenario. They are calculated used the following set of equations,
which is the same as Equations (18) - (21) except that a different set of parameter
values is used.

Fz,rl,traj = 1
2 (Fz,r0,traj + ∆Fz,x,traj)−∆Fz,yr,traj (7.24)

Fz,rr,traj = 1
2 (Fz,r0,traj + ∆Fz,x,traj) + ∆Fz,yr,traj (7.25)

∆Fz,x,traj ≈ Kz,x,traj (ax − Vtrajωz,traj) (7.26)

∆Fz,yr,traj ≈ Kz,yr,traj (Fy,f,traj + Fy,r,traj) /Mt,traj (7.27)

Table 7.5 summarizes the number of variables, number of equality constraints, and
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Table 7.5: Size of the OCP in the MPC formulations.

MPC0/MPC1/MPC2
Number of variables Nvar = Nph [9 (Nno + 1) + 2Nno + 3]
Number of equality constraints Ncon,eq = Nph [9Nno + 1]
Number of inequality constraints Ncon,neq = ∑Nph

n=1 N
n
ptNno +Nev +Nph

MPC3
Number of variables Nvar + 2Nph (Nno + 1)
Number of equality constraints Ncon,eq + 2NphNno

Number of inequality constraints Ncon,neq

MPC4
Number of variables Nvar + 2Nph (Nno + 1)
Number of equality constraints Ncon,eq + 2NphNno

Number of inequality constraints Ncon,neq +∑Nph

n=1 2Nno

number of inequality constraints, in the transcribed NLPs of the original formulation
with different scenarios (MPC0, MPC1, MPC1) and the two double-worst-case formu-
lations (MPC3 and MPC4) in terms of number of phases of the OCP, Nph, number of
nodes for discretization, Nno, number of path constraints, Npt, and number of event
constraints, Nev. Thus, MPC4 is the most computationally expensive formulation.

7.6 Simulation Results and Discussion

Two sets of simulations are conducted with all five MPC formulations. The first set
uses the 50 LHD scenarios, whereas the second set uses the seven scenarios listed
in Table 7.3 and Table 7.4, which are the nominal scenario and the six worst-case
scenarios.

7.6.1 Latin Hypercube Design Scenarios

Fig. 7.14 shows the results with the LHD scenarios using the four MPC formulations
that take into account the worst-case scenarios. The number of scenarios with safety
issues of different types and the total number of failure scenarios are summarized in
Table 7.6. Although a single simulation may have multiple safety issues, this only
counts as one failure case. Therefore, the total number of failure scenarios is not the
summation of the number of safety issues of all type in Table 7.6.

It is concluded that MPC1 improves the robustness to parametric uncertainty
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slightly compared with MPC0. However, MPC2 worsens the robustness significantly.
Although none of the scenarios has wheel lift-off and the number of violations of the
minimum-vertical-load threshold decreases, the number of violations of the minimum-
distance-to-target threshold increases dramatically and consequently leads to task in-
completion in terms of not satisfying the final heading angle requirement. Both MPC3
and MPC4 increase the robustness significantly, because all the results are dynami-
cally safe and meet the task requirements. It is worth emphasizing that although
the robustness is improved, it is not guaranteed for all possible scenarios with either
MPC3 or MPC4, because only most likely worst-case scenarios are considered in the
formulations.

It is expected that improving robustness to parametric uncertainty would sacrifice
task completion performance. To evaluate this trade-off, four metrics are used to
evaluate the task completion performance of the obstacle avoidance algorithm: time-
to-target, average speed, acceleration effort, and steering effort. Besides the average
speed, for which a larger metric value is preferred, smaller values are desired for the
other three metrics. Only when the scenarios do not contain failure scenarios with all
the considered controllers, are the comparisons of the metrics meaningful. Thus, only
the 38 scenarios with no safety issues using MPC0 are considered, because besides
MPC2, the other three controllers also do not lead to safety issues with these 38
scenarios. Table 7.7 summarizes the average metric values for each MPC formulation
besides MPC2.

Comparing the results of using MPC1 to that of using MPC0, the first three per-
formance metrics are slightly worse and the last one is slightly better. With MPC3

and MPC4, the first three performance metrics are moderately worse compared with
those of both MPC0 and MPC1. Thus, it is concluded that there is a trade-off between
robustness and task completion performance. Improving the robustness by consider-
ing the worst-case scenarios degrades the task completion performance. To be more
specific, the average speed with MPC3 and MPC4 is about 11% slower than that
with MPC0 because of the conservativeness of the formulation. The time-to-target
with MPC3 and MPC4 is about 11% longer than that with MPC0 due to slower speed
and/or longer route. Also, about 50% more acceleration effort is used with MPC3

and MPC4 than with MPC0. The steering effort required is almost the same with
these three controllers. In summary, MPC3 and MPC4 both significantly improve the
robustness of the obstacle avoidance algorithm to parametric uncertainty, however,
at the cost of task completion performance degradation as discussed above.

The results generated using MPC2 are the worst among all the considered formu-
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Table 7.6: Number of observed safety issues and failures scenarios with the LHD
scenarios

MPC0 MPC1 MPC2 MPC3 MPC4
Collision 0 0 0 0 0
Wheel lift-off 2 0 0 0 0
Soft collision 1 0 0 31 0 0
Soft wheel lift-off 2 10 9 4 0 0
Task incompletion 1 0 39 0 0
Total number of failure
scenarios

12 9 40 0 0

1 Soft collision indicates violation of minimum-distance-to-obstacle threshold.
2 Soft wheel lift-off indicates violation of minimum-vertical-load threshold.

Table 7.7: Task completion performance evaluation metrics with the 38 LHD scenarios
that are successful with MPC0.

MPC0 MPC1 MPC3 MPC4
Time-to-target [s] 27.1 27.7 30.2 30.2
Average speed [m/s] 20.8 20.1 18.6 18.6
Acceleration effort 11.3 12.8 16.7 16.8
Steering effort 29.4 27.1 29.0 29.3

lations in every aspect. The reason is that the trajectory generated using the most
likely smallest vertical load scenario is significantly “flexible” as shown in Fig. 7.9
and 7.11. Thus, the steering command generated with MPC2 is not large enough for
almost all the scenarios to steer the AGV away from the obstacle. The AGV moves
very close to obstacle before a sharp turn is made by hard deceleration, which leads
to large control effort, significant detour, and task incompletion.

7.6.2 Worst-Case Scenarios

Fig. 7.15 shows the closed loop simulation results with the nominal scenario and
the six worst-case scenarios using MPC0. Besides the simulation with the nominal
scenario, the other six simulations lead to safety issues. Scenarios 2, 4, and 6 result
in wheel lift-off. Results for scenarios 1 and 5 are with violations of the minimum-
vertical-load threshold. Scenarios 1 and 3 lead to violations of minimum-distance-
to-target threshold and fail to complete task. Thus, MPC0, which is the original
formulation with nominal parameter values, is not robust to the worst-case scenarios.

Fig. 7.16 shows the results with the other four MPC formulations. The number
of scenarios with safety issues of different types and the total number of failure sce-
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Figure 7.14: Close-loop simulation results with the 50 LHD scenarios using different
controllers.
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Figure 7.14: (continued) Close-loop simulation results with the 50 LHD scenarios
using different controllers.
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narios are summarized in Table 7.8. It is shown that these four controllers are more
effective than the MPC0, although different levels of success are observed. Only when
MPC4 is used, which is the most complex formulation out of the five, there are no
safety issues or task completion issues in the simulation results with worst-case sce-
narios. With MPC1, scenario 2 leads to wheel lift-off, and results for scenarios 4 and
5 have violations of the minimum-vertical load threshold. With MPC2, only results
for scenarios 2 and 4 are without safety issues or task completion issues. With MPC3,
scenarios 1 and 6 result in violations of the minimum-vertical load threshold. Thus,
MPC4 is the formulation that is robust to the parametric uncertainty in all considered
scenarios among all the five considered formulations when the worst-case scenarios
are considered. It is also concluded that the approach for approximately accounting
for the less likely worst-case scenarios of the smallest vertical load type is effective.

Finally, this set of results is not used to study the trade-off between the robustness
and the task completion performance because the benchmark controller (MPC0) fails
all the worst-case scenarios. In addition, if the task completion performance of MPC1,
MPC3, and MPC4 are to be compared, only scenario 0 and scenario 3 can be used,
because the three controllers do not lead to safety issues only with these two scenarios
among the seven considered scenarios. However, these two scenarios are too few in
number to generate statistically meaningful results.

In conclusion, results from simulations with stratified random scenarios and worst-
case scenarios show that only the second double-worst-case formulation (MPC4) ren-
ders the algorithm robust to all uncertainty realizations tested. From the comparison
of performance evaluation metrics of simulations with stratified random scenarios,
it is also concluded that the improvement of robustness degrades performance, but
arguably, to an acceptable level.

It is expected that the conclusions are generalizable to other obstacle fields, be-
cause the most likely worst-case scenarios are obtained independent of the obstacle
configurations. The two sets of simulations discussed herein have also been repeated
with another even more challenging obstacle field as discussed in Section 6.3.

7.7 Conclusion

Chapter 6 focused on large-size, high-speed autonomous ground vehicles within un-
known and unstructured environments and developed a nonlinear model predictive
control based obstacle avoidance algorithm that can simultaneously optimize both the
reference longitudinal speed and the steering control command to navigate the vehicle
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Figure 7.15: Closed-loop simulation results with the nominal scenario and the worst-
case scenarios using MPC0.
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Figure 7.16: Closed-loop simulation results with the nominal scenario and the worst-
case scenarios using different controllers.
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Figure 7.16: (continued) Closed-loop simulation results with the nominal scenario
and the worst-case scenarios using different controllers.
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Table 7.8: Number of observed safety issues and failures scenarios with the nominal
scenario and the worst-case scenarios

MPC0 MPC1 MPC2 MPC3 MPC4
Collision 0 0 0 0 0
Wheel lift-off 3 1 0 0 0
Soft collision 1 2 0 5 0 0
Soft wheel lift-off 2 2 2 1 2 0
Task incompletion 2 0 3 0 0
Total number of failure
scenarios

6 3 5 2 0

1 Soft collision indicates violation of minimum-distance-to-obstacle threshold.
2 Soft wheel lift-off indicates violation of minimum-vertical-load threshold.

as quickly as possible to the target position while taking into account its dynamical
safety.

In this chapter, the robustness of the algorithm with nominal parameter values to
parametric uncertainty is first evaluated. Because there are twelve parameters with
uncertainty, Latin Hypercube design is used to generate a tractable collection of pa-
rameter values from the multidimensional distribution. It is demonstrated that using
the nominal parameter values in the algorithm leads to safety issues for 24% of the
time with the considered parametric uncertainty distributions. Thus, improvement of
robustness is necessary. The approach developed in this chapter uses a concept simi-
lar to the scenario-based approach, which makes the constraints in the MPC problem
robustly safe in all of the considered scenarios. However, instead of using hundreds of
randomly generated scenarios, only two scenarios are considered, which are the two
most likely worst-case scenarios corresponding to the two types of identified unsafe
scenarios (stiffest trajectory and minimum vertical load). In addition, instead of ap-
plying all the scenarios to check the satisfaction of all the constraints, each scenario
is only used to check the relevant constraint. This helps to reduce the number of
constraints in the extended formulation for robustness. In particular, two double-
worst-case formulations are developed and both of them account for the robustness of
the two safety requirements for obstacle avoidance simultaneously: collision-free and
no-wheel-lift-off. The first one considers only the two most likely worst-case scenarios
and each of them is used to check only the relevant constraints. In the second formu-
lation the stiffest trajectory scenario is also used to check the vertical load constraints
to account for the less likely worst-case scenarios in an approximate way without the
need to introduce another scenario to the formulation. The task completion perfor-
mance of the proposed double-worst-case formulations are compared to the original
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formulation with different sets of scenarios. Results from simulations with stratified
random samples and worst-case scenarios show that the second double-worst-case
formulation renders the algorithm robust to all uncertainty realizations tested. The
trade-off between the robustness and task completion performance is discussed based
on the results with stratified random samples. It is concluded that the proposed
double-worst-case formulations can improve the robustness of the algorithm at the
cost of some acceptable reduction in task completion performance.

The approach presented in this chapter is a passive one. An active approach
can be used in complement that reduces the uncertainty through an online nonlinear
adaptive estimator to obtain more accurate estimations of the parameter values based
on the difference between the model predictions and actual data collected from the
vehicle. To this end, existing adaptive observer schemes such as the Extended Kalman
Filter can be leveraged [129]. Future research could include adding such capability
into the closed-loop system to reduce the task completion performance degradation
due to conservativeness caused by large uncertainty ranges.

Besides parametric uncertainty and state measurement uncertainty, there are
other sources of uncertainty. For example, one source of uncertainty is the external
disturbances due to wind and other factors. These sources might also cause problems
and need to be considered [121]. The robustness of the algorithm subject to all types
of uncertainties is another topic requiring additional research.
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CHAPTER 8

Preliminary Experimental
Validation

Preliminary experimental tests are performed to validate the obstacle avoidance ca-
pability of the developed constant-speed algorithm in a limited way. These tests are
conducted with the support of Quantum Signal, LLC.

8.1 Platform and Software

The vehicle platform is a four-wheeled, Kawasaki 4010 Mule utility vehicle [130] aug-
mented with drive-by-wire capability. The maximum speed of the vehicle is about
10 m/s. The steering, throttle, and brake commands of the vehicle can be specified
by a computer, which are then executed by the actuators. Fig. 8.1 is a picture of
the frontal view of the vehicle. The vehicle parameter values are given in Table 8.1.
A high-performance GPS-aided Inertial Navigation System (GPS/INS) [131] and an
eight-layer scanning LIDAR sensor [132] are also installed on the platform. An on-
board Linux PC processes the sensing data, runs the obstacle avoidance algorithm,
and sends the motor commands to the vehicle.

Table 8.1: Parameter values of the vehicle platform

Parameter Symbol Value Unit
Vehicle Mass M 842 kg
Yaw moment-of-inertia Izz 628.7 kg-m2

Front axle to CoG distance Lf 1.01 m
Rear axle to CoG distance Lr 0.86 m
Corning Stiffness Cα 2542 N/deg
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Figure 8.1: Kawasaki Mule

The constant-speed obstacle avoidance algorithm is used, in which only the steer-
ing angle sequence is optimized. The longitudinal speed of the vehicle is maintained
at a specified constant value using a separate controller. In addition, in the obsta-
cle avoidance algorithm, a linear tire model is used instead of the nonlinear Pacejka
Magic Formula tire model because of the difficulty in obtaining parameter values.
More discussions about the selection of tire model are included in Section 8.3.1.

Fig. 8.2 shows the schematic of the computer program running on a Linux PC. Five
modules are evaluated in parallel, those are, INS interface, LIDAR interface, speed
controller, obstacle avoidance algorithm, and DRIVER system. The INS interface
connects to the GPS/INS sensor, parses the sensor outputs, and interprets the parsed
data into desired vehicle state information, which includes the position and heading
angle values in the global coordinates, the longitudinal and lateral speeds, and the yaw
rate. Similarly, the LIDAR interface connects to the LIDAR sensor, parses the sensor
outputs, and sends the obstacle information to the obstacle avoidance algorithm. The
longitudinal speed of the vehicle is controlled to be a specified constant value using a
PID controller. The speed controller generates the instantaneous throttle and brake
commands. The obstacle avoidance algorithm takes all the sensor measurements as
inputs and generates the desired steering angle sequence over the specified prediction
horizon. Finally, the DRIVER system [133] translates the throttle, brake, and steering
commands into corresponding motor commands, which control the maneuver of the
vehicle. These modules run at different sampling frequencies, which are listed in
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Table 8.2.
The obstacle avoidance algorithm module is implemented in MATLAB. The frame-

work and the rest of the four modules of the computer program are implemented in
C++. Thus, MATLAB engine API for C/C++ [134] is used to call the obstacle
avoidance algorithm within the C++ framework. The computer program is run on a
Linux PC with a 2.7 GHz i7 2620M processor and 8 GB RAM.

INS Interface LIDAR Interface

Speed Controller Obstacle Avoidance Algorithm

DRIVER system

Mule

Actual speed Obstacle informationReference speed

Estimated states

Steering

Motor commands

BrakeThrottle Task information

Figure 8.2: Schematic of the computer program running on-board the Kawasaki Mule

Table 8.2: Sampling frequency of different modules

Module Sampling Frequency [Hz]
INS interface 8
LIDAR interface 25
Speed controller 100
Obstacle avoidance algorithm 1 or 2
DRIVER system 100

8.2 Results

The tests were conducted on a rough gravel ground with the size of about 60 × 50 m
as shown in Fig. 8.3 [135]. In these tests, the speed of the vehicle was maintained at 3
m/s (6.7 mph) or 4 m/s (8.9 mph). Thus, the vehicle did not operate at its dynamical
limit. The results are only used to demonstrate the obstacle avoidance capability of
the algorithm in a limited way.
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Figure 8.3: Satellite view of the test field.

8.2.1 Test Case: Steer-to-Target

The steer-to-target test is first performed. No obstacles are placed in the environ-
ment. The algorithm is used to drive the vehicle to move towards the specified target
position.

Fig. 8.4 shows one set of experimental results. The vehicle initial position is at (0,
0) m with the initial heading angle in the positive-y direction. The target position is
located at (50, 100) m. As shown in Fig. 8.4a, the algorithm is capable of steering
the vehicle to change its heading direction and move towards the specified target
position. The MPC algorithm updates the optimal trajectory and optimal steering
angle sequence over a 5 s prediction horizon every 0.5 s. Thus, the execution horizon
is 0.5 s. In Fig. 8.4b, the planned trajectories of all MPC update steps are plotted on
top of each other. At each time step, starting from the estimated state information
from the INS sensor, an optimal trajectory is predicted to move towards the target
position. It is demonstrated that the vehicle follows the predicted path well in this
test because the predictions are overlapped. Fig. 8.4c is the vehicle longitudinal
speed profile and Fig. 8.4d shows the histories of the throttle and brake commands.
The desired speed is 3 m/s. After a smooth transient period, the speed controller is
capable of maintaining the speed at the desired value with a maximum error of 0.4
m/s in this test. No braking is used during the process. In Fig. 8.4e, the red-dashed
line is the steering angle sequence generated by the MPC algorithm and the blue-solid
line is the actual steering angle profile. The difference and significant oscillation are
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likely due to the disturbances from the rough gravel terrain. More discussions about
this problem can be found in Section 8.3.2. Finally, the lateral speed and yaw rate
profiles are shown in Fig. 8.4f, which are the two state variables of the vehicle model
used in the MPC algorithm.

The test was repeated and similar results were generated. In addition, a different
target location was used and the tests were also successful completed.

In summary, the performance of the speed controller is at an acceptable level.
With the state information from the INS sensor, the obstacle avoidance algorithm gen-
erates a smooth steering command. Albeit the fact that the actual steering sequence
is rough and oscillatory because of the disturbances from the rough test ground, the
vehicle can be successfully navigated to move towards the specified target position.

8.2.2 Test Case: Obstacle Avoidance

The obstacle avoidance tests are then performed. A plastic barrel is first used as the
obstacle in the field as shown in Fig. 8.5.

Fig. 8.6 shows one set of experimental results. The vehicle initial position is at
(0, 0) m with the initial heading angle along the positive-x direction. The target
position is located at (150, 0) m. The reference longitudinal speed is 3 m/s. The
prediction horizon of the MPC algorithm is 5 s and the execution horizon is 1 s.
The effective LIDAR detection range used is 10 m although the sensor is capable
of detecting obstacles up to 100 m, which means that the algorithm only reacts to
obstacles within 10 m range relative to the vehicle current position.

As shown in Fig. 8.6a, the algorithm is capable of navigating the vehicle to avoid
the sensed obstacle and to move towards the target position. Fig. 8.6b shows the
optimal trajectories of all MPC update steps. It is observed that although the task
is completed successfully, the algorithm did not work perfectly as expected. Firstly,
for the optimal control problem originating at around (11.5, 0) m, the computation
time consumed was longer than the execution horizon. Steering command from the
previous step was executed as a fail-safe approach. The discussion on the compu-
tational speed is presented in detail in Section 8.3.3. Secondly, it is also observed
that the speed tracking performance is worse when the vehicle steers as shown in
Fig. 8.6c. Section 8.3.5 includes more discussions on the issue of speed controller.
More discussions about the use of LIDAR data can be found in Section 8.3.4.

Fig. 8.7 is another set of experimental results, which has the same settings as the
previous test. The only difference is that the relative initial position of the vehicle
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Figure 8.4: Steer-to-target test results.
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Figure 8.5: Illustration of the obstacle used in the test

with respect to the obstacle was different. The vehicle also avoided the obstacle
successfully. Fig. 8.8 shows a few snapshots of the video recorded during the test.
The vehicle turned to the left to avoid the obstacle in front. Fig. 8.7a is the trajectory
profile. It is observed that the vehicle did not move towards the target position after
the avoidance maneuver. However, the planned trajectories from the MPC algorithm
all tried to navigate the vehicle to the target position as shown in Fig. 8.7b. This
discrepancy is likely due to the terrain, which is rough and non-flat. However, it is
assumed that the terrain is uniform and flat in the algorithm. Hence, the vehicle
would not follow the planned trajectory exactly. Moreover, the algorithm is updated
only at frequency of 1 Hz, which seems to be not sufficient for this test case. The
detailed discussions on the terrain effect and computation speed can be found in
Section 8.3.2 and 8.3.3, respectively.

The third set of experimental results with the plastic barrel is shown in Fig. 8.9.
The settings are still the same as the previous tests besides the target position and
the execution horizon. The target position is changed from (0, 150) m to (50, 100)
m. The execution horizon is reduced to 0.5 s from 1 s. In this test, the vehicle first
changed its heading direction to move towards the target position. The obstacle was
placed on its way to the target position. The vehicle avoided the obstacle by turning
to the left. Thus, the task is successfully completed.

A larger obstacle as shown in Fig. 8.10 was also used. One set of experimental
results with this obstacle is given in Fig. 8.11. In this test, the reference longitudinal
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Figure 8.6: Obstacle avoidance test results.
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Figure 8.7: Obstacle avoidance test results.
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(a) t = 4 s (b) t = 6 s

(c) t = 8 s (d) t = 10 s

(e) t = 12 s (f) t = 14 s

Figure 8.8: Snapshots of video.
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Figure 8.9: Steer-to-target test results.
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Figure 8.10: Illustration of the obstacle used in the test

speed is set to be 4 m/s. The prediction horizon of the MPC algorithm is still 5 s,
but the execution horizon is reduced to 0.5 s. The task is also successfully completed.
Thus, it is shown that the algorithm is capable of handling a larger obstacle and a
higher speed.

Repeated tests with the single plastic barrel and the larger obstacle were per-
formed. Similar observations are obtained as discussed above. It is concluded that
the constant-speed obstacle avoidance is capable of avoiding the detected obstacle
when the AGV moves at a speed of 3 or 4 m/s.

8.3 Current Issues and Future Work

Through conducting the tests and analyzing the results, some issues of the obsta-
cle avoidance algorithm itself and other issues related to the program used in the
experimental validation are identified.

8.3.1 Tire Modeling

Due to time and resource limitations, this experimental validation excludes the char-
acterization of the tire-terrain interaction relationships. Thus, parameter values of
the nonlinear Pacejka Magic Formula tire model are not available. Instead, a simple
linear tire model is used in the MPC model. Because the vehicle does not operate near
its dynamical limit, a linear tire model could be sufficient. However, this statement
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Figure 8.11: Obstacle avoidance test results.
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is not experimentally validated. In addition, the corning stiffness used in the linear
model is only a rough estimation.

For future work, characterization of the tire-terrain interaction in the particular
experimental setup is needed in order to use the nonlinear tire model. More open-loop
tests are also necessary to thoroughly validate the accuracy of the model prediction.

8.3.2 Terrain Effect

The algorithm is developed for an AGV on a uniform and flat terrain. However, the
tests are conducted on a rough gravel ground. Three major issues are introduced by
relaxing this assumption. Firstly, the MPC model uses a constant corning stiffness,
whereas in reality, the parameter value changes as the vehicle moves. In other words,
there exists parametric uncertainty. Secondly, the slope of the terrain has noticeable
effects on the vehicle’s responses. However, it is not captured in the MPC model.
Thirdly, the steering command cannot be executed accurately on a gravel terrain.
Large deviations and oscillatory behaviors are observed, which are likely to increase
as the speed increases.

To address these issues, future work is needed. Regarding the first problem,
the developed algorithm for handling parametric uncertainty can be incorporated. In
addition, an online adaptive estimator can be used to obtain more accurate estimation
of the parameter values. To address the second problem, assuming that the slope of
the terrain can be estimated, the MPC model can be augmented to account for the
slope information. For the third problem, the effect of the terrain roughness on
the steering command execution needs to be thoroughly studied. In this way, the
input uncertainty could be characterized. The effect of the input uncertainty on the
performance of the algorithm also needs to be analyzed. If the effect is significant,
the algorithm needs to be updated to incorporate this effect.

8.3.3 Computational Speed

The robustness of the MPC algorithm increases with a higher frequency. However,
in this work, the execution horizon used is 0.5 s or 1.0 s due to the limitation of
the computational speed, which might not be small enough. With longer execution
horizon, the difference between the predicted and actual trajectories can become large
before a correction effort is applied. In addition, if the optimal control problem is not
solved within the desired interval, a fail-safe command need to be applied.

To improve the computational performance of the algorithm, three strategies can
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be pursued. Firstly, the most straightforward approach is to use a more powerful com-
puting device. Secondly, a MATLAB-free version of the algorithm would also help.
Although mex functions are used in MATLAB to improve the computational perfor-
mance, the use of mex functions leads additional time due to overhead. In addition,
the use of MATLAB engine also introduces overhead. Thirdly, a more computation-
ally efficient NLP solver that leverages techniques such as parallel implementation is
the ultimate approach to pursue.

8.3.4 LIDAR Sensor

For future work, the detected data points from all 8 layers could be used, which would
require object identification to exclude data points due to the ground. In addition,
in this work, only instantaneous LIDAR data is used. Accounting for the LIDAR
data from multiple consecutive steps would improve the accuracy and robustness
of obstacle detection. This would require additional algorithm to keep track of the
detected obstacles.

8.3.5 Speed Controller

As observed in some of the examples, the performance of the speed controller is not
perfect. Large deviations from the reference speed are observed, especially when the
vehicle steers.

In the future, a more advanced speed controller can be implemented to improve
the speed tracking performance. The obstacle avoidance performance might also be
improved because the collision-free and no-wheel-lift-off can only be guaranteed when
the resulting control commands are executed precisely.

8.4 Conclusion

These preliminary results show that the developed algorithm is promising in terms
of its capability of avoiding obstacles as demonstrated in Section 8.2. However, the
experimental validation is not complete due to time and resource limitations. There
are also many issues remain to be addressed as discussed in Section 8.3. Significant
efforts are still required to thoroughly validate the algorithm.
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CHAPTER 9

Conclusion

9.1 Summary

AGVs are attractive not only for reducing accidents and improving mobility in civilian
applications, but also for increasing personnel safety and task completion performance
in military applications. Realizing the full potential of AGVs relies on the development
and successful deployment of many algorithms, including obstacle avoidance.

Obstacle avoidance refers to the task of generating control commands to navigate
a vehicle safely around obstacles based on sensor measurements and/or an a priori
map of the environment. Many obstacle avoidance algorithms have been developed
in the literature for different AGV platforms and applications.

Different from most of the prior work, the context of interest for this paper is
obstacle avoidance in large-size, high-speed AGVs within unknown and unstructured
environments. This context is motivated by military applications, in which task com-
pletion performance is critical and hence high-speed maneuvering is desired. However,
for large vehicles at high speeds, obstacle avoidance maneuvers can induce stability or
handling issues, such as excessive sideslip, wheel lift-off, or even rollover. To this end,
obstacle avoidance algorithms are needed that can utilize the knowledge of vehicle
dynamics to maximize the task completion performance while guaranteeing the safety
of the AGVs.

Specifically, a typical military truck on a flat terrain is considered in this work
as a representative large-size AGV. Its mission is to move from an initial position
to a given target position safely and as quickly as possible. Thus, the AGV is de-
sired to be operated at high speed and close to its dynamic limits if necessary. The
environment is unstructured, which means that there are no lanes or traffic rules to
follow. In addition, between the initial and target positions, there exist obstacles,
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whose locations, sizes, and shapes are unknown a priori, but are detected when they
come into the range of a planar LIDAR sensor.

This work achieves its objective by developing a NLMPC-based obstacle avoidance
algorithm. In the algorithm, a model of the AGV is used explicitly to predict and
optimize future actions.

As a starting point, the vehicle longitudinal speed is first maintained to be a
constant value and is provided to the algorithm as an input. The fidelity requirement
of the vehicle model used for predicting vehicle trajectory in the MPC formulation is
investigated.

First, open-loop simulations suggest that tire nonlinearity and longitudinal load
transfer are both important factors to be included in the two DoF vehicle model in
order to predict vehicle trajectory accurately. Closed-loop simulations with the MPC-
based obstacle avoidance algorithm are also conducted using various obstacle fields.
The performance is characterized by several metrics including the time to target,
control effort, and integral of curvature. The results show that a two DoF vehicle
model with linear tire model and constant axle loads can perform comparable to the
fourteen DoF model when the vehicle travels at lower speed. However, a two DoF
model with linear tire model or constant axle loads can fail to navigate the vehicle
safely when the vehicle moves at higher speed within an obstacle field including large
obstacles.

An OCP formulation is developed that optimizes the steering angle command to
achieve a smooth operation of the vehicle through the obstacle field at high speed
while ensuring vehicle safety. The novelty of the formulation is three-fold: 1) This
work focuses on unstructured environments without a reference trajectory. A new
cost function formulation is used that aims to find the shortest path to the target
position in addition to approaching the target from a desired direction and minimizing
the control effort. (2) To accommodate the complicated form of the obstacle-free
region in the OCP formulation, the region is systematically partitioned, enabling a
differentiable mathematical representation of the obstacle-free region and its inclusion
in the OCP through a multi-phase approach. (3) The algorithm considers vehicles
with relatively higher CoG and explicitly accounts for the vehicle dynamical safety
in terms of avoiding single-wheel lift-off. This is achieved by limiting the steering
angle within a range obtained offline using a fourteen DoF vehicle dynamics model.
Simulations of an AGV in three different obstacle fields are given to demonstrate the
effectiveness of the proposed algorithm.

The constant speed algorithm can achieve an optimal and smooth operation of
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AGVs at high speed through unstructured environments without collision while en-
suring vehicle dynamical safety. However, the formulation assumes that the vehicle
longitudinal speed is maintained constant, which can limit the mobility performance
and the obstacle fields that can be cleared with this algorithm. Thus, the formulation
is later extended to simultaneously optimize both the longitudinal speed and steering
control commands. The novelty of the formulation includes: (1) A varying prediction
horizon MPC is used to achieve a fixed distance prediction. This is prompted by two
features of the proposed system. First, the terminal point of the planned trajectory
is constrained at the LIDAR’s maximum detection range in an effort to fully utilize
as much information from the LIDAR as possible. Second, the variable vehicle speed
necessarily leads to a variable prediction horizon with the previous constraint. (2) The
effects of powertrain and brake systems are taken into account through the relation-
ship between acceleration and speed and the bounds on longitudinal jerk, acceleration,
and speed. The vehicle’s acceleration capability varies with the speed resulting from
the powertrain and brake systems. To generate a speed profile that can be tracked
by the vehicle, the algorithm uses an offline generated look-up table to account for
the acceleration and deceleration limitations. (3) The no-wheel-lift-off requirement
is considered through both hard and soft constraints using equations with empirical
parameters that can predict tire vertical loads. A hard constraint bounds the vertical
loads to be greater than a specified minimum threshold. A soft constraint is also
used to provide a smooth approach to this threshold to prevent overshoot. Three
sets of numerical simulations are conducted to demonstrate the effectiveness of the
algorithm.

The parameter values in the previous simulation-based validations were assumed
to be accurate, but in reality they are uncertain. This uncertainty can affect the
effectiveness and task completion performance of the obstacle avoidance algorithm.
Thus, the effect of parametric uncertainty on the obstacle avoidance is studied. It is
demonstrated that using nominal parameter values in the algorithm leads to safety
issues in about 25% of the evaluated scenarios with the considered parametric uncer-
tainty distributions. Therefore, a novel approach is developed to improve the robust-
ness of the obstacle avoidance algorithm to parametric uncertainty. In particular, a
double-worst-case formulation is developed for a robust satisfaction of the two safety
requirements for high-speed obstacle avoidance in AGVs: collision-free and no-wheel-
lift-off. Similar to the scenario-based approach, the proposed method also makes the
constraints in the OCP formulation in the MPC algorithm robustly safe in all of the
considered scenarios. However, instead of using hundreds of randomly generated sce-
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narios, only two scenarios are considered, which are the two most likely worst-case
scenarios corresponding to the two types of identified unsafe scenarios. In addition,
instead of applying all the scenarios to check all the constraints, each scenario is only
used to check the satisfaction of the relevant constraints, which helps to minimize
the number of constraints in the augmented OCP formulation for robustness. The
results show that the proposed formulation improves the robustness of the algorithm,
albeit it cannot be guaranteed for all possible realizations of parametric uncertainty
distributions because of the non-uniqueness and the approximation of the worst-case
scenarios. The trade-off between the robustness and task completion performance of
the NLMPC-based obstacle avoidance algorithm is also quantified.

Finally, experimental validations are conducted with the constant speed algorithm.
It is shown that the developed algorithm is promising in terms of its capability of
avoiding obstacles. Some issues are identified to help improve the quality of the
algorithm and future experimental validation.

9.2 Contributions

The original contributions of this thesis are listed as follows:

Evaluation of model fidelity requirement in the MPC formulation

A four-wheel truck driving at constant speed is considered as an example AGV
platform. The AGV is navigated within an unstructured flat environment by the
obstacle avoidance algorithm. To investigate the level of model fidelity needed in
order for a MPC-based obstacle avoidance algorithm to be able to safely and quickly
avoid obstacles even when the vehicle is close to its dynamic limits, five different
representations of vehicle dynamics models are considered: four variations of the two
DoF representation as lower fidelity models and a fourteen DoF representation with
combined-slip Magic Formula tire model as a higher fidelity model. It is concluded
that the two DoF representation that accounts for tire nonlinearities and longitudinal
load transfer is necessary for the MPC-based obstacle avoidance algorithm in order to
operate the vehicle at its limits within an environment that includes large obstacles.
For less challenging environments, however, the two DoF representation with linear
tire model and constant axle loads is sufficient. The details of the evaluation are
presented in [1, 4].
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Multi-phase OCP formulation taking into account sensory information

A planar LIDAR sensor is used to provide information about range and geomet-
rical characteristics of the closest objects to the vehicle. The LIDAR returns the
distance to the closest obstacle boundary in each radial direction. It is assumed that
all obstacles of interest are at least the height of where the LIDAR sensor is mounted.
The data from the sensor is used to form a safe region for the vehicle. However, in
order to formulate an OCP, the mathematical representation of this safe region is
required. In addition, all functions involved should be twice continuously differen-
tial so that the formulated OCP can be solved efficiently. To address this challenge,
the safe region is partitioned into sub-regions and a multi-phase OCP formulation is
used. After partitioning, each sub-region can be specified by a set of inequalities. The
functions involved in these inequalities are not piecewise functions and are twice con-
tinuously differentiable. The formulation is first presented in [2] and is substantially
extended in [5].

Optimization of steering and speed simultaneously taking into account
vehicle dynamics

To develop an algorithm that simultaneously optimizes the steering and speed
commands, the powertrain and brake dynamics are taken into consideration through
the bounds on vehicle longitudinal speed, acceleration and jerk. In this study, ensur-
ing the vehicle’s dynamical safety is defined as avoiding single-wheel lift-off, which
is a conservative criterion used to prevent rollover. Prior work enforced this con-
straint through steering angle bounds, or lateral acceleration bounds. However, these
approaches ignore the effect of longitudinal acceleration, which is an important fac-
tor to consider in the variable speed case. Hence, in this work, the no-wheel-lift-off
requirement is taken into account directly by enforcing a positive vertical load on
all four tires at all times. The tire vertical loads are predicted using the three DoF
vehicle model and estimated load transfer coefficients. In the cost function, a term
is added to prevent the vehicle from operating at the limit unnecessarily. A detailed
description is provided in [3] and [6].

Improvement of the algorithm robustness to parametric uncertainty.

The robustness of the MPC-based obstacle avoidance algorithm is improved.
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Specifically, parametric uncertainties in the vehicle and tire models that are used
in the MPC are considered and it is first demonstrated in simulation that using
nominal parameter values does not yield a robust performance under the considered
parametric uncertainty distributions; in about 25% of the cases the vehicle violates
the no-collision or no-wheel-lift-off constraints. Then, a probabilistic analysis is per-
formed on parameter value combinations that are most likely to cause collision or
wheel lift-off, and a novel optimal control formulation is developed that uses two dif-
ferent sets of parameter values that represent the two most likely worst-case scenarios
(collision and wheel lift-off). It is demonstrated that with the new formulation, MPC
yields a robust performance in all the cases tested. Compared to other approaches
in the literature that can be employed to increase robustness of MPC, the developed
approach has the unique capability of handling the nonlinear optimal control prob-
lem with a high number of uncertain parameters in a more computationally efficient
manner. The trade-off between the robustness and the task completion performance
of the algorithm is also quantified. The formulation and results are summarized in
[7] and [8].

Preliminary experimental validation of constant speed formulation.

Preliminary experimental tests are performed to validate the obstacle avoidance
capability of the developed constant speed algorithm. The vehicle platform is a four-
wheeled utility vehicle augmented with drive-by-wire capability. A high-performance
GPS-aided Inertial Navigation System and an eight-layer scanning LIDAR sensor
are also installed on the platform. An onboard Linux PC processes the sensing data,
runs the obstacle avoidance algorithm, and sends the motor commands to the vehicle.
The constant speed obstacle avoidance algorithm is used, in which only the steering
angle sequence is optimized. The longitudinal speed of the vehicle is maintained
at a specific constant value using a separate controller. Several sets of tests are
conducted. First, the steer-to-target tests are performed. No obstacles are placed
in the environment. The algorithm is used to drive the vehicle to move towards
the specified target position. Second, the obstacle avoidance tests are performed.
Obstacles of different sizes are used in the validation. It is shown that the developed
algorithm is promising in terms of its capability of navigating to the target and
avoiding obstacles. Some issues are identified to help improve the quality of the
algorithm and future experimental validations.
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9.3 Real-Time Implementation

The algorithm is currently implemented in MATLABr for proof-of-concept. Thus, it
does not yet run in real-time for all cases. Specifically, with the current implementa-
tion, it is estimated to be about 10 times slower than real-time for the constant speed
algorithm and about 30 times slower for the variable speed algorithm in the worst
case with a 3.5 GHz Intelr Xeonr processor. However, when fully implemented in a
compiled language with an optimized code, the algorithm is expected to run in real
time.

Because the real-time feasibility is an important consideration in the development
of the obstacle avoidance algorithm, detailed discussions of the efforts made and
the potential directions to be pursued in improving the computational efficiency are
included below.

As presented in Chapter 1.7, the NLMPC obstacle avoidance algorithm consists
of two parts: the LIDAR data processor and the control commands generator. Thus,
the computational efficiencies of both parts are considered.

The high computational efficiency of the LIDAR data processor is achieved by
adopting C/C++ implementation of several sub-functions.

The computation time of the control commands generator is mostly spent on solv-
ing the formulated OCPs. Regarding the solution technique, the hp-pseudospectral
method is implemented partially in MATLABr and partially in C++. The open
source software library IPOPT [112] is used, which is implemented in C++.

The hp-pseudospectral method is used because it utilizes unevenly spaced collo-
cation points. High accuracy can be achieved with a much less number of collocation
points compared to evenly spaced discretization, which results in much reduced com-
putational load [136].

The selection of the IPOPT is based on a study of computation performance
comparison of different NLP solvers [137]. In this study, the effect of the linear
solvers used with the IPOPT on the computation performance is also considered. In
particular, MUMPS [138] and MA27 from the HSL mathematical software library
[139] are considered. According to the study, on average, IPOPT with MA27 as the
linear solver is about 40% faster than IPOPT with MUMPS as the linear solver.
Thus, MA57, which is an updated version of MA27, is used in this work.

Due to their inefficiency, numerical derivatives are not used with IPOPT. Instead,
analytical representations of all first and second derivatives of all functions are man-
ually provided to increase computational efficiency and accuracy. An order of mag-
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nitude increase in computational speed was observed with the analytical derivatives
compared to the numerical derivatives.

One example is presented to demonstrate the computation efficiency of the current
partial MATLABr and partial C++ implementation of the algorithm and to point
out the bottleneck for further improvements. Figure 9.1b gives the computational
time required at each step of the calculation for the given obstacle map shown in
Figure 9.1a. The vehicle is navigated through this obstacle field at a constant speed
of 20 m/s. The prediction horizon is 5 s and the execution horizon is 0.5 s. As
shown in Figure 9.1b, the total computation time at all steps are below the execution
horizon, which means that real-time performance is achieved for this test case.
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Figure 9.1: Computation time of constant speed algorithm with a simple test case

In this example, the LIDAR data processor is not called when it is safe to ignore
the obstacles and directly steer to the target. When it is called, the computation
time is around 50 ms, which is about 10% of the execution horizon and thus is not
significant. The variation of the computation time from step to step is small. The
computation time of the control commands generator is about 10% to 70% of the
execution horizon. The variation of the computation time from step to step is also
significant.

Figure 9.2a shows the comparison of the computation times of two implemen-
tations of variable speed algorithm. One implementation is pure MATLABr and
another implementation is partial MATLABr and partial C++. Neither of these
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implementations could achieve real-time computation of all 95 OCP examples. With
partial MATLABr and partial C++ implementation, the percentage of examples that
can be completed within real-time is improved from 43% to 64%. This is because of
the 1.5 times computation performance improvement as shown in Figure 9.2b.

Thus, further increase of the computational efficiency of the LIDAR data processor
might not be necessary. More efforts are needed to further improve the computation
performance of the control command generator. In particular, the following strategies
can be considered.

First of all, the most straightforward approach is to use a more powerful com-
puting device. However, the improvement of computation performance might not be
significant. Thus, other approaches are necessary.

Secondly, being an interpreted language, MATLABr is not a computationally
efficient platform. A pure C++ implementation of the algorithm needs to be pursued.
In addition, in the current partial MATLABr and partial C++ implementation, mex
functions are used, which lead to additional time due to overhead. Thus, a pure C++
implementation is helpful in two aspects: improving the computation performance of
the current MATLABr functions and eliminating the overhead time.

Thirdly, a better initial guess of the solution would be helpful to reduce the number
of iterations needed to converge to the optimal solution. Because the computation
time is highly proportional to the number of iterations, the use of proper initial guess
could improve the computation performance. One promising approach to generate
the initial guess is to use motion primitives.

Finally and most importantly, a more computationally efficient NLP solver that
leverages techniques such as parallel implementation on GPUs is the ultimate ap-
proach to pursue. For example, parallel speedup can be achieved by exploiting prob-
lem structure and decomposing the internal linear algebra operations performed by
the NLP algorithm [140]. The use of GPUs can significantly decrease the computation
time.

9.4 Future Work

As pointed out throughout this thesis, this work presents many possible directions
for further work. They can be summarized as follows:

1. Regarding the study of the model fidelity requirements, future research oppor-
tunities are summarized as follows. First, the model fidelity requirement when
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the vehicle speed is added as a second control variable needs to be investigated.
When the vehicle speed is varying, there are other important factors to consider,
such as engine limits, brake limits, combined-slip tire model, etc. Second, this
study pertains to the four-wheel truck. For a different vehicle, the procedures
presented in this paper can be repeated. However, it would be beneficial if the
model fidelity requirement can be determined easily for a series of platforms
with different weight and CoG location. Last, the model fidelity requirement
also needs to be re-evaluated when the vehicle parameter and state measure-
ments uncertainties are accounted for or when the environment is non-flat.

2. The instantaneous LIDAR data are used in this work for simulation simplicity.
Prior data are not stored. Even though this approach is sufficient to navigate
the vehicle safely in the test cases presented in this thesis, tracking the LIDAR
data in time could improve performance. In real world, it is beneficial to utilize
LIDAR data from multiple steps and maintain a continuously updated map of
the environment to provide more accurate and more complete obstacle informa-
tion. This exploitation of prior measurements can be achieved by considering
SLAM algorithms.

3. It is assumed that all obstacles can be detected. When only one planar LIDAR
sensor is used, it is assumed that all obstacles are at least the height of where
the LIDAR is mounted, which is in front of the vehicle. It is obvious that this
assumption needs to be guaranteed because the algorithm cannot react to an
obstacle that it is not aware of. In reality, a practical approach to ensure this
assumption is to use multiple planar LIDAR sensors that face to different direc-
tions or a 3D LIDAR sensor. In this case, a data fusion algorithm that combines
measurements from multiple number and/or types of sensors, is required to re-
generate the obstacle-free region. As long as a safe region can be deduced from
the sensor data, the algorithm is applicable. It is because that the algorithm
presented in this thesis is not limited to be used with a planar LIDAR sensor.

4. Regarding the region partitioning approach, any partitioning technique can be
used with the multi-phase optimal control problem formulation as long as it
meets the following criteria: (1) computationally efficient; (2) easy to gener-
ate inequality representation of all sub-regions, where the functions involved
in these inequalities are twice continuously differentiable. Two approaches are
presented. It is demonstrated that the same solution is obtained with different
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partitioning approaches. However, it is observed that the use of different parti-
tioning approaches could affect the computational time. However, it is not clear
yet what the fundamental reasons are. Thus, the following three questions need
to be answered: (1) what the characteristics of a good partition are; (2) how
to evaluate the quality of the partition; (3) how to generate a good partition
systematically and efficiently.

5. A suitable cost function is essential for any optimization problem. It defines
the performance measures of solutions. It should represent exhaustively and
concisely the goals of the optimization task. The cost function of the variable
speed algorithm includes eight terms and requires seven weighting factors. The
weights selected based on engineering intuitions work well for the obstacle fields
presented in the thesis and some others that are not included here. However, it
is worth to investigate further on the formulation of cost function and selection
of weighting factors.

6. The assumption of the obstacle being static is a limitation of the present work.
Moving obstacles should be considered in the obstacle avoidance simulation
that will represent a more generic and realistic application [141]. Time-varying
position constraints could be used to handle moving obstacles. The difficulties
are from two aspects: how to predict the motions of the moving obstacles along
the prediction horizon and how to incorporate these motions as time-varying
constraints in the OCP formulation efficiently.

7. The extension to applications on non-flat terrain is an important task. First,
the term ‘non-flat’ needs to be defined. There are various types of non-flat
terrains. It is very difficult, if not impossible, to handle all the situations with
one algorithm. Thus, it is critical to prioritize the situations to be considered.
One approach to classify the terrain is to use the relationship between the
‘wavelength’ of the terrain and the size of the vehicle. Second, the plant model
that is used in to simulation-based study should be augmented so that it can be
used as a benchmark for evaluating the performance of the vehicle in the defined
non-flat terrain application. Third, an appropriate vehicle model to be included
in the MPC formulation is to be selected. It should be able to take into account
the terrain information, for example, the slope. Finally, it can be assumed that
all required terrain information is available a priori. However, it is more realistic
if the required information is estimated based on sensor measurements.
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8. The approach presented in this thesis to handle parametric uncertainty is a
passive one. An active approach can be used in complement that reduces the
uncertainty through an online nonlinear adaptive estimator to obtain more ac-
curate estimations of the parameter values based on the difference between the
model predictions and actual data collected from the vehicle. To this end,
existing adaptive observer schemes such as the Extended Kalman Filter can
be leveraged. Future research could include adding such capability into the
closed-loop system to reduce the task completion performance degradation due
to conservativeness caused by large uncertainty ranges.

9. Besides parametric uncertainty, there are other sources of uncertainty. For
example, one source of uncertainty is the errors in the knowledge of vehicle’s
locations, and current, and future locations of the obstacles. Another source of
uncertainty is the external disturbances due to wind and other factors. These
sources might also cause problems and need to be considered. However, when
studying the effect of parametric uncertainty, the other sources of uncertainties
are not considered so that the focus can be put specifically on the parametric
uncertainty. Separately, the effect of the state measurement uncertainty on
the robustness of the algorithm is also evaluated. However, the robustness of
the algorithm subject to all types of uncertainties is another topic requiring
additional research.

10. The experimental results show that the developed algorithm is promising in
terms of its capability of avoiding obstacles. However, the experimental valida-
tion is not complete due to time and resource limitations. There are also many
issues remain to be addressed as discussed in Section 8.3. Significant efforts are
still required to thoroughly validate the algorithm.
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APPENDIX A

Summary of Main Features of Five
Representative MPC-based

Obstacle Avoidance Algorithms
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Table A.1: Summary of main features of five representative algorithms

Reference [61] [62] [52] [65] [89]
Vehicle model
(# of states)

3 DoF
(6)

3 DoF
(6)

3 DoF
(5)

7 DoF
(12)

2 DoF
(5)

Control
(# of inputs)

γf , U
(2)

δf , Fd,f , Fd,r
(3)

δf , Fd,left, Fd,right
(3)

δf , Tengine, Tbrake,?
(6)

δf
(1)

Tire model Linear Simplified
Magic formula

Pure-slip
Magic formula

Combined-slip
Magic formula Linear

Levels of
controller Two-level One-level Two-level One-level One-level

Optimization
goal

Minimize
deviation from
reference
trajectory, x, y

Minimize
deviation from
reference
trajectory, y

Minimize
deviation from
tracking
states, y, ψ, ψ̇

Minimize
deviation from
tracking
states (all 12 states)

Minimize
deviation from
reference
trajectory, x, y

Obstacle
constraints

Soft constraints:
potential function
based on
parallax value

Soft constraints:
barrier function
based on
road bounds and
unavoidable region

Soft constraints:
potential function
based on minimum
distance

Hard constraints:
lower and upper
road bounds

Soft constraints:
point-wise,
repulsive
potential function

Dynamic
constraints

Fixed minimum
turning radius

Maximum road
force based on
road friction

Maximum road
force based on
road friction

None None

Max. speed
[m/s] 5.5 20 20 10 5.5

Optimizer Gradient search
method

Generalized
minimum
residual method

NPSOL qpOASES Gradient search
method

Control horizon/
prediction horizon 1/40 1/100 2/15 1/20 1/20

Sampling time [s] 0.05 0.002 0.05 0.1 0.05
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APPENDIX B

The OCP Formulation and
Dynamic Optimizer for Model

Fidelity Evaluation

This Appendix presents the cost function and constraints formulation, as well as the
dynamic optimizer components of the MPC-based obstacle avoidance algorithm used
in Chapter 3 in detail.

B.1 Cost Function and Constraints

The cost function and constraints need to be specified properly to achieve the objective
of avoiding the locally detected obstacles while guaranteeing vehicle dynamical safety
and minimizing travel time. Thus, the OCP to be solved at each step of the MPC is
formulated as

minimize
ξ,ζ

J = sf + wcf · vcf (B.1)

subject to ξ̇(t) = V [ξ(t), ζ(t)] (B.2)

ξ(0) = ξ0 (B.3)

R̃ [x(t), y(t)] ≤ 0 (B.4)

|δf (t)| ≤ δ̃f,max(U0) (B.5)

|γf (t)| ≤ γf,max (B.6)

t ∈ [0, Tp] (B.7)
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Equation (B.1) is the cost function. Equation (B.2) is the dynamic model of the
vehicle represented as a set of first-order ODEs. Equation (B.3) specifies the vehicle
initial condition. Equation (B.4) defines the position constraints due to the obstacles
perceived by the LIDAR sensor. Equations (B.5) and (B.6) represent the bounds on
the steering angle and steering rate, respectively. Equation (B.7) is the prediction
horizon over which the optimal control problem is solved.

B.1.1 Cost Function

The cost function defines the soft requirement; that is, in what sense the trajectory
is optimal. In this work, the cost function is formulated as

J = sf + wcf · vcf (B.8)

where

sf =
√

[xt − x(Tp)]2 + [yt − y(Tp)]2 (B.9)

vcf =
∫ Tp

0
|γf (t)|dt (B.10)

Specifically, the cost function formulation includes two terms that are linearly com-
bined using a relative weight wcf. The first term is the distance sf between the end
point of the predicted trajectory [x (Tp) , y (Tp)] and the target [xt, yt] as defined in
Equation (B.9). A visual representation of this term is shown in Figure 5.3. Due
to the constant speed assumption for the model fidelity evaluation study, this term
also aims to minimize the remaining travel time. The second term is a regulation
term minimizing the integral of magnitude of the steering rate as defined in Equa-
tion (B.10), where γf is the front wheel steering rate.

B.1.2 Constraints

The constraints represent the hard requirements for avoiding collision and ensuring
vehicle dynamical safety. These requirements are hard in the sense that their violation
is not allowed under any circumstances.

To avoid collision with obstacles, the vehicle should completely lie within the safe
area detected by the LIDAR as exemplified in Figure 1.8b. The safe area can be
considered as the inside of a simple polygon and can be defined using an inequality
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compacted in the following form

R [x(t), y(t)] ≤ 0,∀t ∈ [0, Tp] (B.11)

where the function R(·, ·) has no explicit form and is specified by a set of points
from the LIDAR data because the safe area typically is non-convex. For a particular
trajectory, point-in-polygon test is used to decide whether Equation (B.11) is satisfied
or not.

To allow for some additional safety margin, a minimum acceptable distance be-
tween the center of gravity of the vehicle along the trajectory and any detected points
by the LIDAR sensor (i.e., the boundaries of the obstacles) is included. Thus, the in-
equality describing the safe region, Equation (B.4), becomes Equation (B.12). If this
requirement is satisfied, then the vehicle is considered as safe, that is, collision-free.

R̃ [x(t), y(t)] ≤ 0,∀t ∈ [0, Tp] (B.12)

where the function R̃(·, ·) indicates the safe region with safety margin included.
The second type of constraint is related to the dynamical safety of the vehicle. An

upper bound on the steering angle magnitude as expressed by the following inequality
constraint is used to prevent single-wheel lift-off.

|δf (t)| ≤ δ̃f,max(U0) (B.13)

where the maximum steering angle δ̃f,max is a function of the vehicle speed U0, which
has no analytical expression and is represented using a look-up table that is described
Section 5.2.3.

B.2 Dynamic Optimizer

Many high efficiency optimization algorithms have been considered in the literature
to enable real-time operation with MPC. However, when the system dynamics are
represented using the fourteen DoF formulation, this optimization problem will be
very difficult to solve using standard optimization algorithms and is therefore subject
to ongoing research. Instead, an exhaustive search approach is used here to solve this
optimization problem approximately for the purpose of the model fidelity evaluation
study. This approach is not a standard method for solving OCPs and is used solely
for the purpose of evaluating model fidelity.

176



Towards this end, the search space is discretized; that is, instead of considering
the entire continuous search space, only some discrete steering angles that include
the maximum value, the minimum value, and zero are considered. The set of discrete
steering angles is called the steering angle pool and is given by Equation (B.14). The
entire prediction horizon is divided into intervals of the same length. At each interval,
a steering angle is selected from the steering angle pool. The zero-order hold approach
is used at each interval to form the steering angle sequence. Ramp transition is used
between two different steering angles, where the slope is the maximum steering rate.
Figure B.1a shows an example possible steering sequence. If the prediction horizon
is divided into np intervals and the number of elements in the steering angle pool is
ns, the size of the search space will be nns

p . Note that the execution horizon, Te, can
be shorter than the interval length, Tp/np. The control commands can be changed at
the end of the execution horizon.

©pool =
[
−δ̃f,max (U0) · · · 0 · · · δ̃f,max (U0)

]
(B.14)

Note that Equation (B.10) in the cost function is then approximated by the fol-
lowing equation.

d =
np∑
i=1
|δi − δi−1| (B.15)

The optimal control sequence that can minimize the cost function and satisfy
the constraints is selected from the discrete steering command pool defined as Equa-
tion (B.14). Starting from the initial state, the control commands from the pool are
applied to the vehicle and the resulting trajectories are checked for constraint vio-
lation. If constraints are not satisfied, the search branch is terminated. Otherwise,
next step prediction is performed by using the end state of last simulation as the
initial state and applying all the steering commands from the pool. This process is
repeated until a predetermined number of steps in the prediction horizon is reached.
Once all the feasible steps are thus determined, their costs are evaluated and the
control sequence with minimum cost is considered as the optimal control sequence.
The control command over the execution horizon is applied to the vehicle, and the
process is iterated in the next simulation step. This idea is illustrated in Figure B.1b
with ns = 3 and np = 4 for clarity.
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Figure B.1: Exhaustive search.

B.2.1 Algorithm Parameters

There are six parameters included in the algorithm as listed in Table B.1. Vehicle
speed is maintained constant during the whole maneuvering process.

Number of intervals over the prediction horizon and number of elements in the
steering angle pool determine the size of search space. Three different combinations
of np and ns are tested under the same condition: np = 4, ns = 5; np = 4, ns = 7; and
np = 5, ns = 5. The results are very close and thus the combination of np = 4 and
ns = 5 is used in the study presented in Chapter 3.

Table B.1: Parameters in algorithm for model fidelity evaluation

Parameter Symbol Unit
Vehicle speed U0 m/s

Number of intervals over the prediction horizon np -
Number of elements in the steering angle pool ns -

Prediction horizon Tp s
Execution horizon Te s

LIDAR detection range RLIDAR m

The LIDAR detection range should be larger than the maximum travel distance
along the vehicle’s initial heading angle. This maximum distance is achieved when
the vehicle moves straight in its initial heading angle. If the inequality

U0 · Tp ≤ RLIDAR (B.16)
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is satisfied, then all possible trajectories are covered by the LIDAR detection. This
is required because if the trajectories are not totally covered by the LIDAR detec-
tion, it is unclear whether the trajectories are safe in terms of obstacle avoidance or
not. This inequality can help with the selection of the appropriate sensor based on
the specification of maximum detection range, or the vehicle velocity and prediction
horizon combination for a given LIDAR range.

There is a lower bound on the prediction horizon to make sure that the vehicle
detects and takes action to avoid the obstacle early enough.

Tp ≥ Tp,min (U0, Lmax) + Te (B.17)

The lower bound consists of two parts. The first part corresponds to the minimum
time for the vehicle to avoid hitting an obstacle of a fixed length. It is a function of
vehicle speed and maximum obstacle size in the field as depicted in Figure B.2, which
is created by simulating the fourteen DoF vehicle model. Note that even though the
detailed obstacle information is detected using a planar LIDAR sensor, the maximum
obstacle size can be assumed known a priori. The second part is the execution time,
which is the duration of the computed command that is implemented.
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