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ABSTRACT

Time-resolved measurements of shock-compressed matter using x-rays

by

Michael J. MacDonald

Chair: R. Paul Drake

Thermonuclear fusion occurs at extremely high pressures and densities. Producing

thermonuclear fusion in the laboratory requires a detailed understanding of mate-

rial properties beyond the scope of condensed matter or classical plasma physics,

requiring experimental data to improve models describing matter in these extreme

states. This thesis reports the development of two improved methods to probe

highly compressed matter using x-ray diagnostics.

The first method uses time-resolved x-ray diffraction to infer the stresses in

compressed polycrystalline materials. X-ray diffraction is capable of measuring

strain states and densities in shock-compressed materials with significantly higher

accurately than existing shock timing and velocimetry diagnostics. The analysis

discussed in this thesis calculates Debye-Scherrer diffraction patterns from highly

stressed polycrystalline samples in the Reuss (iso-stress) limit. In this limit, elastic

anisotropy and sample texture effects are directly modeled using elastic constants

to calculate lattice strains for all initial crystallite orientations. Example diffraction

patterns showing the effects of probing geometry, deviatoric stresses, and sample

texture are presented to highlight the versatility of the technique. Finally, I present

xv



the design of a recent experiment conducted at the Linac Coherent Light Source to

measure the strength of polycrystalline diamond whose data can be analyzed using

this technique.

The second method uses x-ray fluorescence (XRF) to measure density, ioniza-

tion state populations, and electron temperature in shocked materials. Spatially

resolved K-α intensity measurements enable measurements of ion density profiles.

Ionization state distributions and electron temperatures are constrained by com-

paring K-α spectra to spectra from atomic-physics simulations using the computer

code CRETIN. Analysis of experimental data from the Trident laser facility mea-

suring Ti K-α emission spectra from shock-compressed foams demonstrates the use

of the technique. This work shows that XRF spectroscopy is a useful technique to

complement prior diagnostics to make equation of state measurements of shocked

materials containing a suitable tracer element.
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CHAPTER I

Introduction

Matter exists at a vast range of densities and temperatures throughout the uni-

verse. Familiar solids and liquids are typically at densities on the order of 1 g/cm3

and temperatures of a few hundred Kelvin. A large fraction of the interstellar

medium contains only a few particles per cubic centimeter at temperatures of a

fraction of an electron volt [6]. The core of the sun is at a temperature of 15

million Kelvin and has a density of 150 g/cm3 [7]. Theoretical models have been

developed to describe different states of matter based on the physical processes

that determine their properties. For example, matter can be classified into groups

by comparing the kinetic or potential energies of the particles in the system. Con-

densed matter physics describes typical solids and liquids, where potential energies

dominate. In contrast, plasma physics concerns itself with the opposite case, where

kinetic energies are large compared to potential energies and atoms are at least

partially ionized. The intermediate states, where kinetic and potential energies are

comparable, demand more sophisticated theoretical descriptions. Further devel-

opment of theoretical models and validation of simulation codes require improved

experimental techniques to study these conditions. This thesis reports on experi-

mental methods to probe highly compressed matter using x-ray diagnostics.
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1.1 Warm dense matter and high-energy-density physics

Warm dense matter (WDM) is a state of matter that is too hot to be considered

condensed matter and too dense to be modeled by classical plasma physics. WDM

exists in astrophysical bodies, is created in energetic astrophysical events, and can

be produced on Earth in high-energy-density (HED) physics experiments. HED is

generally defined by pressures above 1 Mbar, or one million times atmospheric

pressure, which can also be written as an energy density of 1011 J/m3. WDM exists

in a state of partial ionization with significant ion-ion coupling, where thermal,

Coulomb, and Fermi energies are comparable. Although the conditions of WDM

are not present in everyday life, understanding the physics governing the regime is

important to accurately model inertial confinement fusion implosions [8], planetary

interiors [9], and the origin of planetary magnetic fields [10].

Two parameters are useful in quantifying the relative importance of internal

energies in systems to determine which theoretical models are applicable: the

Coulomb coupling parameter and degeneracy parameter. The Coulomb coupling

parameter, Γee, gives the ratio of the Coulomb energy (EC) to the thermal energy

Γee =
EC
kBT

, EC =
e2

4πε0rs
(1.1)

where rs = (4πne/3)−1/3 is the Wigner-Seitz radius, which gives the mean separa-

tion of free electrons, ne is free electron density, T is temperature, kB is the Boltz-

mann constant, e is the elementary charge, and ε0 is the vacuum permittivity. When

Γee � 1 the Coulomb energy dominates and the system can be considered cold,

while if Γee � 1 the thermal energy dominates and the system is weakly coupled.

The degeneracy parameter, Θ, is given by the ratio of the thermal energy and

the Fermi energy (εF )
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Θ =
kBT

εF
, εF =

~2

2me

(
3π2ne

)2/3 (1.2)

where ~ is the reduced Planck constant andme is the electron mass. The degeneracy

parameter is closely related to the deBroglie wavelength, λdB of thermal electrons

in the system, given by

λdB =
~√

2mekBT
. (1.3)

When Θ� 1 the deBroglie wavelength of the electrons is much less than the aver-

age spacing of the ions and the system is non-degenerate. If Θ >> 1 the deBroglie

wavelength is large compared to the average interatomic spacing, resulting in sig-

nificant overlap of the electron wave functions and a highly-degenerate system.

Using these two parameters, we can loosely define WDM by requiring Γee and Θ are

both near unity.

A characteristic property of an ideal plasma its ability to screen electromagnetic

fields as the free charges in plasmas naturally redistribute themselves to cancel the

fields. Plasmas screen fields at a length scale quantified by the Debye length

λD =

√
ε0kBT

nee2
. (1.4)

Effective screening of electromagnetic fields requires the redistribution of a large

number of charges. If a small number of charges are present in the volume of a

sphere on the scale of the Debye sphere, fields cannot be effectively screened and

long-range order can arise in the system. This condition requires neλ3D � 1, or

ne �
(
ε0kBT

e2

)3

, (1.5)

which is fulfilled for ideal plasmas at high temperatures and low densities, but is

3



often not the case in WDM. For this reason, long-range order and collective effects

can play a significant role in the dynamics of WDM.

1.2 Fusion energy

Nearly all life on Earth depends on energy from the Sun, whether in the form

of direct energy conversion in the case of photosynthesis in plants or by consuming

other living organisms. The amount of energy received by the Earth from the Sun is

approximately 1360 W/cm2 [11]. After accounting for absorption and scattering in

the atmosphere, this corresponds to a total power received by the Earth of approx-

imately 89,000 TW. Assuming a global energy usage of 105,000 TWh per year, the

Sun provides enough power for an entire year in under an hour and a half. A great

deal of effort has gone into harnessing this energy using solar panels and thermal

conversion. An alternative to capturing the energy released by the Sun is to produce

fusion power directly by means of controlled thermonuclear fusion reactions.

Thermonuclear fusion occurs when the short-range attraction of the strong nu-

clear force overcomes electrostatic repulsion of two nuclei. Overcoming this repul-

sion, known as the Coulomb barrier, requires the plasma to be extremely well con-

fined. The deuterium-tritium (DT) fusion cycle has the lowest confinement thresh-

old and is thus the focus of nearly all major experimental fusion power efforts. The

three relevant fusion reactions in a DT cycle are

D + T→ 4He (3.5 MeV) + n (14.1 MeV) (1.6)

D + D→ 3He (0.82 MeV) + n (2.45 MeV) (1.7)

D + D→ T (1.01 MeV) + H (3.02 MeV). (1.8)

The first reaction is the primary source of energy, while the latter two will also occur
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in a burning DT plasma. The majority of the energy released in the DT fusion cycle

is in the form of energetic neutrons. Because neutrons do not have electric charge,

extracting this energy requires a method to convert their kinetic energy to heat,

which can be used to generate power with a steam turbine.

Another interesting fusion cycle is

D + 3He→ 4He (3.6 MeV) + H (14.7 MeV), (1.9)

where the two products of the fusion event are both charged particles. Energy ex-

traction from charged particles does not require the use of a heat cycle, significantly

improving power conversion efficiency [12].

The majority of experimental efforts to achieve controlled thermonuclear fusion

fall into one of two categories: inertial confinement fusion (ICF) or magnetic con-

finement fusion (MCF). ICF uses a spherical implosion to rapidly compress the fuel,

initiating a fusion reaction in the central hotspot when the material converges at

the center of the sphere. MCF reactors create a steady-state plasma confined using

powerful magnetic fields, where the rate of fusion is controlled by adjusting the

inputs of the reaction.

There are several active experimental campaigns to achieve fusion power. The

National Ignition Facility (NIF) at Lawrence Livermore National Lab (LLNL) is the

largest facility for ICF, with 192 laser beams producing a total of 1.8 MJ to drive

fusion implosions. NIF has been in operation since 2009 (with all 192 beams)

and continues to conduct experiments in an attempt to reach ignition. ITER, the

International Thermonuclear Experimental Reactor, is the largest MCF facility and

is currently under construction. Although ITER does not aim to be an operational

power plant, the goal is to produce 500 MW of power for hundreds of seconds while

only needing 50 MW to heat the plasma. At the time of this writing, the first plasma

at ITER is scheduled for December 2025 [13].
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a) b) c) d) 

Irradiation of surface Ablation and compression Stagnation Fusion 

Figure 1.1: Schematic showing the basic principle of ICF. A spherical shell of fuel is
a) heated by external radiation b) causing the outer material to rapidly
expand, launching the remaining material inwards, resulting in c) stag-
nation at the center of the sphere and d) thermonuclear fusion of the
remaining fuel. Adapted from wikipedia.org

1.2.1 Inertial confinement fusion

The aim of ICF is to produce the conditions required for thermonuclear fusion

by compressing the fuel using converging shockwaves. Figure 1.1 shows the basic

principle of ICF, where a) the outer layer of a spherical shell of fuel is heated by

an intense external radiation source and b) material near the outer surface rapidly

expands, acting as a rocket to force the remaining material inwards. Next, the

converging material c) stagnates near the center, producing a dense core which

d) ignites the fusion reaction, releasing a vast quantity of energy. The external

radiation source can be in the form of direct laser irradiation (direct drive) or from

thermal x-rays from a surrounding surface (indirect drive). The current design at

NIF uses an indirect drive geometry, with a spherical fuel capsule placed inside a

small gold cylinder, known as a hohlraum.

Early predictions for the requirements suggested that as little as 1 kJ of laser

energy may be sufficient to achieve breakeven, defined by when the input energy

and fusion energy output are equal, and > 100 kJ for electrical gain in a function-

ing power plant [14]. Following these predictions, several large laser facilities were
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built to explore the physics of ICF and attempt to achieve ignition. LLNL, in par-

ticular, has built several Nd:glass laser systems since the early 70s, starting with

the Long path laser, followed by the Argus, Shiva, Novette, and Nova lasers. The

lessons learned from these systems ultimately led to the development of NIF.

ICF experiments at NIF have encountered several difficulties preventing ignition.

Four primary areas of concerns include implosion symmetry, implosion velocity, the

implosion adiabat, and fuel and hotspot mix. Achieving sufficient implosion sym-

metry requires careful control of the drive beam temporal and spatial profiles, both

of which are complicated by the indirect drive geometry. Drive asymmetries cre-

ated by the tent holding the spherical capsule in place have been especially difficult

to overcome. Implosion velocity and adiabat are closely related, as operating at

a higher adiabat generates higher implosion velocities at the expense of creating

more entropy in the compressed fuel. The high foot campaign at NIF [15] used

this approach, reaching higher compressions and neutron yields, but the additional

entropy created by the higher adiabat ultimately prevents ignition. Nevertheless,

probing the conditions created using this technique may prove to be useful in un-

derstanding fusion-relevant WDM physics. Finally, hydrodynamic instabilities result

mixing of the layers of the target in the fuel and hotspot. This deviation from the

ideal case of spherical symmetry reduces compression of the fuel and prevents igni-

tion.

A report published in May 2016 on the status of the ignition campaign at NIF has

questioned whether ignition is possible with the current configuration [16]. The re-

port emphasizes the need to improve our understanding of the fundamental physics

at play in WDM. Specifically, improved diagnostics to measure the conditions at

stagnation and cross-platform data to validate theoretical models and simulation

codes will be critical for the future success of ICF. The goal of the work presented

in this thesis is to contribute to these areas of research.
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1.3 X-ray sources

Since their discovery in 1985 by German physicist Wilhelm Röntgen, x-rays have

been used to study the properties of matter. Within months of their discovery, x-rays

were used to image a broken wrist [17]. Medical and dental x-ray devices use x-ray

tubes to produce x-rays with energies of 30 keV or higher. X-ray tubes accelerate

electrons through a vacuum tube towards an anode using a strong electric field. The

accelerated electrons impact the anode, producing line emission and a broad spec-

trum of bremsstrahlung emission. Filters are added to attenuate low-energy x-rays

to minimize the radiation dose the patient receives. X-ray tubes provide a reliable

source of x-rays, but the intensity of x-rays emitted is far too low for measurements

on the timescales of dynamic compression. Many x-ray diagnostics in HED physics

experiments use a time-integrated detector, where the x-ray source duration de-

termines the time resolution of the measurement. Time-resolved measurements of

HED systems require high brightness x-ray sources with a sufficient flux of x-rays to

probe the system in the timescale of interest.

1.3.1 He-α x-ray sources

Materials irradiated by intense laser light are common x-ray sources in HED ex-

periments. Irradiation of materials by intense laser light on nanosecond timescales

creates an ablation plasma that thermalizes on the timescale of 100s of picosec-

onds and the atoms become highly ionized. The laser can be tuned to create a

plasma dominated by ions in the He-like state, where only two electrons are bound.

Even in this highly charged state, inner-shell vacancies are quickly filled, resulting

in characteristic line emission. The brightest emission line from these systems is

He-α, corresponding to radiative decay with an electronic transition from the 2p to

1s orbital. He-α x-ray sources are most efficient below ∼10 keV, corresponding to
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materials that can be efficiently ionized to the He-like state with laser irradiances

on the order of 1015–1016 W/cm2 [18]. Because He-α x-ray energies correspond to

the energies of specific electronic transitions, only specific energies are available.

1.3.2 K-α x-ray sources

For x-ray energies above ∼10 keV, He-α x-ray sources become inefficient due to

the conditions required to ionize higher-Z atoms to the He-like state in a thermal

plasma. In order to create significant K-shell emission from these higher-Z elements,

higher laser intensities are needed. Ultra-high intensity pulses from short pulse

lasers create a population of fast electrons, which stream through the material and

create K-shell vacancies in the otherwise near-neutral atoms in the bulk material.

Electrons from higher orbitals fill the K-shell vacancies, resulting in primarily K-α

and K-β x-ray emission. K-α x-ray sources have better temporal resolution than He-

α x-ray sources, as the duration of each is related to the duration of the laser. A

primary drawback of K-α x-ray sources is that they produce fewer x-rays compared

to He-α sources because short pulse lasers have lower energies than long pulse

lasers. As with He-α sources, the x-ray energies from K-α sources are limited to the

transition energies of available elements.

1.3.3 X-ray free electron lasers

X-ray free electron lasers (x-ray FELs) oscillate relativistic electron bunches to

produce synchrotron radiation. By adjusting the parameters of the electron bunch

and the alternating magnetic field structure, known as an undulator, the charac-

teristics of the photon beam can be precisely tuned. X-ray FELs provide a bright,

monochromatic, collimated source of x-rays with durations ranging from a few to

100s of fs at peak powers of 10 to 100 GW. A detailed review of the history and

physics of x-ray FELs has recently been published by C. Pellegrini et al. [19].
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1.4 Facilities

This dissertation reports on experiments conducted at two facilities: the Linac

Coherent Light Source (LCLS) at SLAC National Accelerator Laboratory and the

Trident laser facility at Los Alamos National Laboratory.

1.4.1 Linac Coherent Light Source

The Linac Coherent Light Source (LCLS) uses the accelerated electron beam

from one-third of the linac at SLAC National Accelerator Laboratory to produce a

bright, monochromic x-ray beam with photon energies ranging from 270 eV to 11.2

keV. Figure 1.2 shows a top view of LCLS. Electrons are injected at sector 20 (where

Sector 0 is at the far end of the linac and each sector is 100 m in length) and

accelerated by the linac in sectors 21–30. The electron beam enters the undulator

hall where powerful magnetics oscillate the relativistic electron bunch to produce a

coherent pulse of x-rays.

Two modes of operation are available for the x-ray beam at LCLS: self-amplified

spontaneous emission (SASE) and self-seeded mode. SASE mode provides the high-

est total pulse energy with a few mJ per pulse for photon energies of 1.5–10 keV,

where the x-ray pulse energy drops for photon energies outside this range. The

bandwidth of the SASE beam is typically 0.2–0.5% for hard x-rays and 0.2–2.0%

for soft x-rays [20]. The self-seeded beam has much higher peak brightness, re-

ducing the spectral bandwidth in the hard x-ray regime by a factor of 40–50 [21].

This increase in peak brightness comes at the cost of total pulse energy, averaging

0.3 mJ per pulses, and much higher intensity fluctuations compared to SASE mode.

For additional details about LCLS the reader is referred to an in-depth review of the

facility published by C. Bostedt et al. [20].

There are currently seven hutches in operation at LCLS, three in the near exper-

10



LCLS injector
(Sector 20)

Far experimental hall

Near experimental hall

Undulator hall
Linac

(Sectors 21-30)

Figure 1.2: Top view of LCLS. The electrons are injected into the accelerating struc-
ture at sector 20 and accelerated by the linac in sectors 21-30. The
relativistic electron bunch enters the undulator hall, where an alternat-
ing magnetic field oscillates the electron bunch to produce a coherent
x-ray beam, which is then sent to the near or far experimental hall.
Adapted from lcls.slac.stanford.edu

imental hall (NEH) and four in the far experimental hall (FEH). The Materials in

Extreme Conditions (MEC) instrument [22, 23], located in the FEH, was designed

to study HED physics and the properties of WDM. The FEL can be operated at 2.5–

11.2 keV (in the first harmonic) at MEC and is focused with compound refractive

beryllium lenses. MEC has an Nd:glass laser system, providing two beams (referred

to as AB and EF) with approximately 1 J/ns with a maximum pulse energy of 25 J

per beam. The cooling rate of the final amplifiers limits the repetition rate of these

beams, requiring 7–10 minutes between shots (depending on the stability require-

ments of the experiment). The amplified beam is 40 mm in diameter and hybrid

phase plates with focal spot sizes of 100, 150, 250, and 500 µm are available, or

the system can be operated without phase plates or with phase plates provided by

users. MEC also has a Ti:sapphire laser system with an output of 1 J in 50 fs at a

repetition rate of 5 Hz. The Ti:sapphire system can also be fed into the final ampli-

fier of the glass laser system to increase the energy to 7 J, although this reduces the

repetition rate to the 7–10 minutes of the glass laser system.
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1.4.2 Trident laser facility

The Trident laser facility at LANL is a kJ class laser with two long pulse beams

and one short pulse beam. Each long pulse beam can deliver up to 200 J in a 1 ns

pulse and can be frequency doubled to a wavelength of 527 nm. The experiment

described in Chapter VI used the two long pulse beams and was conducted in the

south target chamber.

1.5 Chapter summary

This chapter introduced WDM, a unique state of matter not accurately described

by classical models. Thermonuclear fusion and the current technological challenges

at NIF were discussed, motivating experiments to study the properties of WDM to

directly benefit ICF research and the quest for a viable controlled thermonuclear fu-

sion reactor. Chapter II discusses absorption of intense laser radiation by matter to

model laser-driven compression and the interactions of x-rays with matter. Chapter

III gives an introduction to shock physics and includes a discussion of equation of

state models and material properties relevant to dynamic compression. The chap-

ter concludes with an overview of diagnostic techniques used to study dynamically

compressed matter. Chapter IV presents a method to predict and analyze x-ray

diffraction patterns from highly stressed polycrystalline materials to measure dy-

namic material strength. Chapter V describes an experimental platform used to

measure the dynamic strength of shock-compressed diamond at MEC. Chapter VI

presents experimental measurements of x-ray fluorescence from shock-compressed

foams at the Trident Laser Facility. Chapter VII concludes with a summary and a

discussion of future work.
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1.6 Role of the author

The work presented in this thesis would not have been possible without the

contributions from collaborators at the University of Michigan, SLAC National Ac-

celerator Laboratory, Los Alamos National Laboratory, Livermore National Labora-

tory, and others. This section has been included to clarify the author’s role in each

chapter. Specific contributions from others are clearly referenced when presented.

• Chapters II and III: These chapters are summaries of the background physics

needed for the following chapters and have been taken from a variety of ref-

erences as cited throughout the text.

• Chapter IV: The author developed the method presented in this chapter under

the guidance of Luke Fletcher and Siegfried Glenzer. Density functional theory

calculations used in this chapter were provided by Jan Vorberger.

• Chapter V: The experiment was designed and planned by the author and Luke

Fletcher and conducted with assistance from the High Energy Density Science

group and the instrument scientists at the MEC instrument at SLAC National

Accelerator Laboratory.

• Chapter VI: The experimental effort was led by the author under the super-

vision of Paul Keiter and David Montgomery with assistance from members

of the Center for Laser Experimental Astrophysics group at the University of

Michigan and the laser operations staff at the Trident Laser Facility. The au-

thor performed the analysis presented in this chapter with input from the

experimental team.
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CHAPTER II

Direct laser irradiation of materials and x-ray physics

2.1 Introduction

This thesis describes shock compression experiments carried out at high power

laser facilities using direct laser irradiation to drive shock waves in materials. The

compressed states of matter are probed with a variety of time-resolved x-ray di-

agnostics. It is therefore worthwhile to discuss the absorption of the intense laser

light by matter and provide an overview of x-ray physics relevant to the diagnostic

techniques used in these experiments.

2.2 Direct laser irradiation of materials

Direct irradiation of a material by a laser creates a layer of hot plasma on the

surface, known as an ablation plasma. Here we consider irradiances of 1012–1016

W/cm2, which are high enough to readily create a thermal ablation plasma, but low

enough that multi-photon absorption leading to direct ionization is not a significant

mechanism of ionization. As the laser ionizes the material, the free electron density

of the plasma rises, increasing the electron plasma frequency, ωpe, given by

ωpe =

√
4πnee2

me

(cgs) =

√
nee2

meε0
(SI), (2.1)
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where ne is the free electron density and c is the speed of light.

Light can propagate in a plasma when the laser frequency is less than the elec-

tron plasma frequency. When the electron plasma frequency is greater than or equal

the laser frequency the free electrons can oscillate at the laser frequency, forming

a reflecting surface. The depth at which the plasma frequency is equal to the fre-

quency of the laser is known as the critical surface. The critical electron density, nc,

is the electron density of the critical surface, given by

nc =
πmec

2

e2
1

λ2
(cgs) =

4π2ε0mec
2

e2
1

λ2
(SI) (2.2)

where λ is the wavelength of the laser, or in typical units

nc = 1.1× 1021λ−2µm cm−3, (2.3)

where λµm is the wavelength of the laser in microns. Eq. (2.3) shows that reducing

the wavelength of the drive laser increases the critical electron density. This effect

allows lasers with shorter wavelengths to penetrate deeper into a plasma with a

density gradient, such as an ablation plasma, resulting in increased coupling effi-

ciency and higher ablation pressures.

Dynamic compression experiments using lasers to drive the pressure wave typi-

cally involve irradiating a flat surface to produce a planar disturbance in the mate-

rial. When irradiating a flat surface, the critical surface defines the maximum depth

the laser energy can penetrate into the plasma. Beyond this depth, electron heat

transport carries a fraction of the energy to the shock front.

2.2.1 Ablation pressure and electron heat transport

The rapid expansion of an ablation plasma exerts pressure on the remaining

material. This pressure created by the rapidly expanding plasma is known as the
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Figure 2.1: Ablation pressure for 1st, 2nd, and 3rd harmonic of Nd:glass laser sys-
tems with a fundamental wavelength of 1054 nm. Doubling or tripling
the laser frequency (2ω and 3ω) can significantly increase the ablation
pressure for a given driving intensity.

ablation pressure. Using a flux-limited transport model with reasonable assump-

tions for laboratory systems, the ablation pressure can be estimated by [24]

Pabl = 2nckBTe
Z + 1

Z
(2.4)

For the case of Z = 3 and Te/Ti = 3, which one might expect for an ablation plasma

from a plastic surface, we can estimate the ablation pressure using the empirical

formula

Pabl = 8.0 I
2/3
14 λ

−2/3
µm MBar, (2.5)

where I14 is the laser irradiance in units of 1014 W/cm2. Figure 2.1 shows ablation

pressures calculated using Eq. (2.5) for a range of irradiances for the 1st, 2nd, and

3rd harmonic of Nd:glass laser systems.

Laser energy can only directly penetrate to the critical surface of the ablation

plasma, after which the delivery of energy to the shock front occurs primarily by

electron heat transport. Consequently, electron heat transport in a material plays a
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Figure 2.2: X-ray cross sections for unionized Ti. Photoelectric absorption is the
dominant interaction for photon energies below ∼80 keV.

vital role in the ability to drive steady shocks using laser systems. The interaction of

the laser and the material can be divided into the absorption region and the electron

transport region. The absorption region has the lowest electron density, with the

boundary defined by the depth with the critical electron density. This zone is where

the laser heats the material, directly depositing energy into the system. Electron

thermal transport dominates the dynamics in the electron transport region, where

the electron density too high for the laser light to propagate.

2.3 X-ray physics

For x-ray energies below ∼100 keV the three primary mechanisms of interac-

tion with matter are photoelectric absorption, coherent scattering, and incoherent

scattering. Figure 2.2 shows the energy-dependent cross sections of these mecha-

nisms for unionized titanium. At low photon energies, photoelectric absorption is

the dominant interaction mechanism. At energies far above the highest electron

binding energies incoherent and coherent scattering become significant.
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2.3.1 Photoelectric absorption

Photoelectric absorption describes the absorption of an x-ray by an electron,

destroying the x-ray and transferring its energy to the electron. Photoelectric ab-

sorption has the highest cross section at x-ray energies below ∼50 keV for mid-Z

elements. The photoelectric absorption characteristics depend on the electronic

structure of the elements in the material. This makes the cross section highly sensi-

tive to bonding in cold matter and ionization state in plasma conditions.

2.3.1.1 Shells and edges

Photoelectric absorption cross sections have characteristic edges (abrupt changes

in the cross section) corresponding to binding energies of electrons in atomic or-

bitals. The most prominent edge is the K-edge, corresponding to the energy re-

quired to remove a K-shell electron from an atom. The K-edge can be seen in the

cross section of unionized Ti at 4.97 keV in Figure 2.2. For higher ionization states,

the screening of the nuclear charge is reduced and the inner-shell electrons are

bound more tightly. The change in K-shell binding energy shifts the K-edge, as

shown for the case of Ti in Figure 2.3. X-rays just below the energy of an absorption

edge do not have enough energy to remove an electron from the atomic shell and

are unable to interact with those electrons. X-rays just above an absorption edge

couple strongly to the electrons in the corresponding shell and are readily absorbed,

resulting in the removal of an electron and the creation of the vacancy in that shell.

2.3.1.2 Radiative decay of excited states

A number of decay mechanisms can fill inner-shell electron vacancies. Radiative

decay and Auger decay compete to fill vacancies in the K shell and L3 subshell.

Radiative decay occurs when an electron from a higher orbital fills the vacancy,

resulting in the emission of an x-ray with energy equal to the difference in binding
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Figure 2.3: Ti K-edge energies as a function of ionization state calculated using
CRETIN. Credit: Howard Scott.

energies of the two states. In the case of Auger decay, the transition energy is

transferred to an electron in a higher orbital, ejecting it from the atom. The Coster-

Kronig nonradiative process [25] further complicates the filling of vacancies in the

L1 and L2 subshells, where the vacancy can move within the same subshell (e.g.

L1 → L2, L1 → L3, or L2 → L3) before radiative or Auger decay occur. The work

presented here is only concerned with K-shell vacancies, where only radiative and

Auger decay need to be considered.

Lower-Z elements with a K-shell vacancy have higher probabilities of decaying

via Auger decay, while higher Z elements tend to decay via radiative decay. The

fluorescence and Auger yields define the probabilities of each decay mode and have

been calculated using a number of methods [26, 27]. Figure 2.4 shows tabulated

fluorescence and Auger yields [1] for atoms with a single K-shell vacancy.

2.3.1.3 Effects of screening and bonding

The presence of bound electrons reduces the binding energy of other bound

electrons. This phenomenon, known as the screening or shielding effect, alters the

electronic structure of the atom and affects K-shell emission energies. Ionization
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reduces the screening of the nuclear charge and the K-shell electrons are bound

more tightly, as shown for Ti in Figure 2.3. X-ray fluorescence energies are related

to binding energies and therefore also affected by reduced screening. For example,

He-α emission is simply K-α emission from an ion in the He-like state. In cold

material, bonding and chemical properties such as oxidation state can affect x-ray

fluorescence energies [28].

2.3.2 Coherent scattering and x-ray diffraction

Coherent scattering is defined as a scattering event that preserves the phase re-

lationship of the incident wave. X-ray diffraction is an example of coherent elastic

scattering of x-rays, where the periodic nature of crystal lattices can give rise to con-

structive interference of scattered radiation. The spacing between atoms in solids

is on the order of Angstroms, corresponding to the wavelength of x-rays. The con-

dition for constructive interference is satisfied when an incident beam reflecting off

two crystal planes have a path length difference equal to an integer multiple of the

wavelength of the radiation. The path length difference for reflections from two
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Figure 2.5: Two incident beams with equal wavelength and phase reflect off two
atomic planes in a crystal. a) The beam reflecting off the lower surface
travels an additional distance equal to 2d sin θ. When this length is equal
to an integer multiple of the x-ray wavelength the beams constructively
interfere. b) In the Laue formulation, the condition for constructive
interference is satisfied when k− k0 = G.

planes with separation d is given by d sin θ, where θ is the angle between the beam

and the plane normal as shown in Figure 2.5a. This leads to the Bragg condition

for x-ray diffraction, given by

nλ = 2d sin θ, (2.6)

where n is an integer and λ is the wavelength of the incident radiation. Diffraction

can also be considered in reciprocal space using the Laue diffraction condition,

k− k0 = G, (2.7)

where k0 and k are the probe and scattered x-ray wave vectors, respectively, and G

is the reciprocal lattice vector, as shown in Figure 2.5b. The magnitude of the probe

wave vector is given by k0 = 2π/λ and x-ray diffraction is an elastic scattering pro-

cess, requiring |k0| = |k|. The reciprocal lattice vector is normal to the diffracting

plane (in real space) with a magnitude of
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G =
2π

d
. (2.8)

The Bragg condition is often more intuitive because it is formulated in real space,

but the Laue condition is often more powerful in the analysis of diffraction patterns.

Although these two formulations are equivalent, it is common to refer to diffraction

in the reflecting geometry as Bragg diffraction and diffraction in the transmission

geometry as Laue diffraction, for historical reasons.

There are two common diffraction configurations used in dynamic compression

experiments for crystalline materials, which probe either single crystals or polycrys-

talline materials. Experiments on single crystals use a broadband x-ray source, such

as a capsule implosion. The wide bandwidth of the x-ray source meets the diffrac-

tion condition for several planes in the sample and diffraction spots are recorded.

This measurement is typically referred to as a Laue diffraction pattern. The orienta-

tion and compression of each plane in the compressed state are calculated from the

locations of the diffraction spots. Monochromatic x-ray sources, such as an x-ray

FEL, require polycrystalline samples. A polycrystalline material contains crystallites

at a wide range of orientations, some fraction of which can meet the diffraction

condition for a given state. In this case, diffraction rings, known as Debye-Scherrer

diffraction rings, are produced by the polycrystalline sample.

2.3.2.1 Miller indices

Three primitive lattice vectors define the unit cell for a crystal lattice in real

space, denoted a, b, and c. For the simplest case of a cubic unit cell, the primitive

lattice vectors are mutually orthogonal and their magnitudes are equal (a = b = c).

Miller indices are the standard form of notation for planes and directions within

a crystal system. Specific planes are denoted (hkl), while families of equivalent

planes (by symmetry) are denoted {hkl}. Similarly, specific crystallographic direc-
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Figure 2.6: Examples of crystal planes defined using Miller indices, showing the a)
(111) and b) (220) planes in a cubic crystal system.

tions are written [hkl] and sets of equivalent directions are written 〈hkl〉. The plane

(hkl) intersects the three primitive lattice vectors at points a/h, b/k, and c/l, as

shown for the (111) and (220) planes in a cubic system in Figure 2.6. An overbar

denotes negative Miller (e.g. 11̄1) and if any of the Miller indices are 0 for a given

plane, the corresponding primitive lattice vector is parallel to the plane. The vector

[hkl] is defined by

v = ha + kb + lc. (2.9)

The d spacing in crystal planes can be defined in terms of Miller indices and

lattice parameters. For the common cases of cubic and hexagonal crystals, the d

spacings are given by

1

d2
=
h2 + k2 + l2

a2
(cubic) (2.10)

1

d2
=

4

3

(
h2 + hk + k2

a2

)
+
l2

c2
(hexagonal) (2.11)

where a = b for the hexagonal lattice.

Calculating d spacings for other unit cells becomes increasingly complicated,
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making it useful to work in reciprocal space where all unit cells can be treated in

the same way. The primitive lattice vectors in reciprocal space are given by

a∗ =
2π

V
b′ × c′ (2.12)

b∗ =
2π

V
c′ × a′ (2.13)

c∗ =
2π

V
a′ × b′, (2.14)

where V is the volume of the unit cell. The reciprocal lattice vector for plane (hkl)

is defined by

G = ha∗ + kb∗ + lc∗, (2.15)

and the d spacing of any plane is calculated using d = 2π/G.

2.3.3 X-ray Thomson scattering

X-ray Thomson scattering (XRTS) can be used to infer electron temperature,

free electron density, and ionization state in HED plasmas from spectral shifts in

scattered x-rays [29]. To provide a brief overview of XRTS, we begin with the

double-differential cross section for a locally isotropic plasma, given by

∂2σ

∂ω∂Ω
= σT

ωs
ω0

1

2

(
1 + cos2 θ

)
S(k, ω), (2.16)

where σT is the Thomson scattering cross section, ωi (ωs) is the frequency of the

incident (scattered) radiation, ω = ω0−ωs is the frequency shift, and k = |k0−ks| =

2ω0 sin(θ/2)/c is the scattering wave number at angle θ, and S(k, ω) is the dynamic

structure factor (DSF).

The DSF contains all information about the time-dependent electron-electron
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correlations in the system. It can be decomposed into two terms, accounting for

elastic and inelastic scattering

S(k, ω) = Sel(k, ω) + Sin(k, ω), (2.17)

where the elastic and inelastic DSFs are given by

Sel(k, ω) = |f(k) + q(k)|2Sii(k, ω) (2.18)

and

Sin(k, ω) = ZfS
0
ee(k, ω) + Zb

∫
dω′Sce(k, ω − ω′)Ss(k, ω′), (2.19)

where Zf (Zb) is the number of free (bound) electrons per atom. In the elastic

term, f(k) is the atomic form factor, q(k) represents the weighting from the elec-

tron screening cloud, and Sii(k, ω) is the ionic DSF. The first term in the inelastic

DSF describes inelastic scattering from free electrons, where S0
ee(k, ω) is the free

electron DSF. The second term describes inelastic scattering from bound-free elec-

tronic transitions, Sce, modulated by the motion of the ions, Ss. Plasma parameters

such as the electron temperature, free electron density, and ionization state affect

the DSF and can be inferred by fitting XRTS spectra.

2.4 Chapter summary

This chapter presented an overview of the interaction between photons (optical

and x-rays) with matter needed for shock-compression experiments. The absorp-

tion of laser light drives compression waves in materials, producing states of high

pressure, density, and temperature. Adjusting the parameters of the laser drive en-

able precise control of the conditions in the compressed state. X-rays provide an
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excellent tool to probe the dense matter created in these experiments.
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CHAPTER III

Shock physics and relevant material properties

3.1 Introduction

Shock waves are the result of a disturbance moving through a medium faster

than the material can respond. Although shocks are usually associated with chaotic

events, such as explosions or impacts, they are present in systems all around us.

Shocks exist on a vast range of spatial scales, including light years in the case of

collisionless shocks in the interstellar medium, more familiar scales in sonic booms

created by fighter jets, and down to microscopic scales in shock waves created by

cavitation of bubbles in a fluid. The behavior of materials under dynamic com-

pression is of interest to several fields including the modeling of planetary interiors

and meteor impact events [9], exploring high-pressure phase changes [30–32], and

understanding the initial compression phase of inertial confinement fusion implo-

sions [8]. By studying the response of materials to powerful shock waves in the

laboratory we are able to better understand the physical processes in such events.

Excellent texts exist on shock physics including Zel’dovich and Raizer [33], Asay

and Shahinpoor [2], and Drake [24]. This chapter presents a brief summary of

shock physics along with an overview of material properties relevant to compressed

solids and diagnostics for dynamic compression experiments.
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Figure 3.1: Diagram showing how a strong compression wave in a material steep-
ens to form a shock by examining two points on the compression wave.
The sound speed in most materials increases with pressure, so cs,2 > cs,1
and the trailing point catches up to the leading edge creating a single,
sharp interface moving at velocity D.

3.2 Fundamentals of shock physics

A shock is a disturbance in a material that moves faster than the sound speed

(cs) in the unperturbed material. This results in an abrupt change in the state of

the medium, compressing and heating material as it propagates. The sound speed

in the shocked material is higher due to the increased pressure, making the motion

of the shocked material subsonic relative to the shock front. For most materials

and pressure ranges, cs increases with increasing pressure, causing an initial pres-

sure gradient to steepen into a shock as shown in Figure 3.1. In this example, we

consider two points on the initial pressure gradient, each with a local sound speed

and particle velocity. Because cs increases with pressure, cs,2 > cs,1 and the trailing

material at higher pressure moves faster than the leading edge of the disturbance.

This results in the steepening of the shock and the creation of an abrupt interface

traveling at a single shock velocity, D. In this thesis shock velocities are denoted by

D and particle velocities by u to minimize confusion.

Although shocks are defined by an abrupt change in material conditions, the
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disturbance is still subject to the Euler equations, enforcing conservation of mass,

momentum, and energy. The conservation equations are given in differential form

by

∂ρ

∂t
= −∇ · (ρu) (3.1)

∂

∂t
(ρu) = −∇ · (ρuu)−∇p (3.2)

∂

∂t

(
ρu2

2
+ ρε

)
= −∇

[
ρu

(
ε+

u2

2

)
+ pu

]
(3.3)

where ρ is material density, u is the fluid velocity, p is the pressure of the fluid, and

ε is specific internal energy. Here we have ignored radiation terms, which can be

important in the case of strong shocks in low-density, high-Z materials.

The continuity equations given by Eqs. (3.1)–(3.3) can be written for a general-

ized conserved quantity, Q, as

∂ρQ
∂t

= −∇ · ΓQ. (3.4)
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If we consider a planar shock and move to the inertial frame where the shock front

is stationary, as shown in Figure 3.2, we can define a Gaussian pillbox spanning

the discontinuity. In this frame, known as the shock frame, the material ahead of

the shock is referred to as the upstream material, and the post-shock material is

downstream. Integrating over the pillbox yields

∫ x2

x1

∂

∂t
ρQdx

′ = −
∫ x2

x1

∂

∂x
ΓQ(x′)dx′ = ΓQ(x2)− ΓQ(x1). (3.5)

In the limit of a discontinuity, where x1 − x2 → 0, the first term goes to 0 and the

fluxes are equal: ΓQ(x2) = ΓQ(x1). Applying this to the continuity equations, the

jump conditions for a shock in one dimension are given by

ρ1u1 = ρ2u2 (3.6)

ρ1u
2
1 + p1 = ρ2u

2
2 + p2 (3.7)

ρ1u1

(
ε1 +

u21
2

)
p1u1 = ρ2u2

(
ε2 +

u22
2

)
p2u2 (3.8)

An ideal material obeying the Euler equations would have an infinitely sharp

discontinuity at the shock front. Real materials have a finite shock thickness, de-

termined by viscosity and thermal conduction. The Swagle-Grady relationship [34]

is an empirical fit to experimental data, showing that strain rate is proportional to

the applied stress to the fourth power. For this reason, shocks in typical HED exper-

iments have extremely high strain rates, forming a narrow shock front and can be

considered to be a discontinuity.

3.2.1 Rankine-Hugoniot relation

Shock compression can reach a wide range of material states by varying the

initial conditions and shock strength. The Rankine-Hugoniot relation defines the
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set of states attainable from a given initial condition, commonly referred to as the

shock Hugoniot, or simply the Hugoniot. This function depends on the initial state

of the material, where the principal Hugoniot is the function with ambient initial

conditions. Although the Hugoniot can be defined for a variety of state variables,

here we consider the relationship between pressure and density, p2(p1, 1/ρ1, 1/ρ2),

or using the more common form with specific volume, p2(p1, V1, V2), where V = 1/ρ.

The jump conditions given by Eqs. (3.6)–(3.8) are calculated in the shock frame,

while measurements of shock velocity and postshock fluid velocity are made in

the laboratory frame, where the upstream material is typically at rest. For the

simple case of a shock moving through a medium initially at rest, the postshock

fluid velocity is up = u1 − u2. The jump conditions (3.6)–(3.8) can be solved to

calculate ρ2, p2, and ε2 from measurements of D and up

ρ2
ρ1

=
D

D − up
(3.9)

p2 − p1 = ρ1Dup (3.10)

ε2 − ε1 =
p1up
ρ1D

+
u2p
2

(3.11)

The change in pressure across the shock front is calculated by combining Eqs. (3.9)

and (3.10) to eliminate the postshock particle velocity, giving

p2 − p1 = ρ1D
2

(
1− ρ1

ρ2

)
=
D2

V1

(
1− V2

V1

)
. (3.12)

If the shock Hugoniot for a material is known, the velocity of a shock can be

calculated using Eq. (3.12)

D =
1

ρ1

√
p2 − p1

1/ρ1 − 1/ρ2
= V1

√
p2 − p1
V1 − V2

(3.13)
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The line connecting the initial and final states in p-V space is known as the Rayleigh

line, with a slope given by

Slope = −
(
D

V1

)2

(3.14)

as illustrated in Figure 3.3. This demonstrates the importance of knowing the shock

Hugoniot to a high degree of accuracy for applications that require precise shock

timing.

3.2.2 Shock stability

As shown in Figure 3.1, a shock is formed when the disturbance steepens and

forms a discontinuity as a result of the sound speed increasing with pressure. In or-

der for a sharp discontinuity to be maintained, disturbances behind the shock (trav-

eling at cs,2 + u2) must move at least as fast as the shock, otherwise they would lag

behind and the discontinuity would dissipate. Similarly, small disturbances ahead of

the shock must move slower than the shock or they would outrun the shock. These

32



conditions lead to three requirements for shock stability: the sound speed increases

with increasing pressure, the disturbance is subsonic in the shocked material, and

the shock is supersonic in the unshocked material

dcs
dp

> 0 (3.15)

cs,2 + u2 ≥ D (3.16)

D > cs,1 (3.17)

where cs is the adiabatic sound speed, given by

cs =

√(
∂p

∂ρ

)
s

= V

√(
− ∂p
∂V

)
s

. (3.18)

Substituting Eq. (3.13) and (3.18) into Eq. (3.17) yields

p2 − p1
V1 − V2

> −
(
δp

δV

)
s,1

. (3.19)

The left side of the inequality is the (negative) slope of the Rayleigh line and the

right side is the slope of the isentrope centered at the initial state, where the isen-

trope is the curve through phase space for a material under isentropic compression.

Although the isentrope and Hugoniot are different curves in phase space, it can be

shown that the isentrope and Hugoniot are tangent at the initial state [2]. There-

fore, the slope of the Rayleigh line must be steeper than the Hugoniot at the initial

state. Similarly, it can be shown that the slope of the Rayleigh line must be less than

the slope of the Hugoniot at the final state

p2 − p1
V1 − V2

≤ −
(
δp

δV

)
H,2

. (3.20)

The conditions given by Eqs. (3.19) and (3.20) specify that the Hugoniot must
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be concave up over the region spanned by the shock. This condition can also be

shown by considering the requirement that the sound speed increases with pressure,

and therefore with density as well. For simplicity, we work with c2s, which must

follow the same trend.

∂c2s
∂ρ

> 0 (3.21)

Eq. (3.18) can be rewritten in the form

∂c2s
∂ρ

=
∂2p

∂ρ2
= 2V 3 ∂

2p

∂V 2
(3.22)

and inserted into Eq. (3.21), demonstrating that Eq. (3.21) is equivalent to

∂2p

∂V 2
> 0. (3.23)

This condition is a good rule of thumb, but not entirely general. In the cases of

elastic-plastic failure (discussed in Section 3.6) or shock-induced phase transitions,

the p-V curve may have additional features and the behavior in the intermediate

region needs to be considered.

3.3 Equation of state

The equation of state (EOS) of a material specifies the relationship between

two or more thermodynamic state variables, such as pressure, density, and tem-

perature. Solving the jump conditions given by Eqs. (3.9)–(3.11) for a shocked

system requires this additional constraint. It is often difficult to study the EOS at

WDM conditions due to the small volumes of material created and short timescales

the conditions exist in the laboratory. Additionally, EOS data is generally given

for materials at thermodynamic equilibrium, while many WDM experiments create
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conditions far from equilibrium.

3.3.1 Ideal gas EOS

The ideal gas EOS is often used for weakly coupled, non Fermi-degenerate sys-

tems, or as a first approximation due to its simplicity. In this model, the pressure of

an ionized plasma is given by

p = NkBT =
ρ(1 + 〈Z〉)kBT

Amp

, (3.24)

where 〈Z〉 is the mean ionization state in the plasma, A is the average atomic mass

number of the ions in the plasma, mp is the proton mass, and N = 1 + 〈Z〉 is the

number of particles in the system.

The specific energy in an ideal gas is given by

ρε =
p

γ − 1
, (3.25)

where γ is the polytropic index of the material, defined by the ratio of specific heats

at constant pressure and volume, γ = Cp/CV . The number of degrees of freedom

for each element in the system, ν, is related to the polytropic index by

γ = 1 +
2

ν
. (3.26)

For a monatomic gas with only three degrees of freedom γ = 5/3, which is a good

approximation for highly ionized, weakly coupled plasmas. The sound speed in an

ideal gas is given by

cs =

√
γp

ρ
. (3.27)

In the strong shock limit, it can be shown that the compression of an ideal gas
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is given by [24]

ρ2
ρ1

=
γ + 1

γ − 1
. (3.28)

For γ = 5/3, this gives a maximum compression of 4. The fact that larger compres-

sions are often created in HED experiments can be interpreted in two ways. First,

most materials have more than three degrees of freedom (such as rotational or vi-

brational modes), which reduces γ and increases the maximum compression for a

single shock. γ can then be fit to compression measurements and arguments can be

made to justify the choice of γ. More likely, the ideal gas EOS is not an appropriate

model for detailed analysis of many HED systems where the assumption of weakly

coupled matter is not appropriate.

3.3.2 Tabular EOS

The wide range of conditions present in HED systems often makes them difficult

to describe using a single EOS model. For example, in a typical laser-driven com-

pression experiment, the laser heats an initially solid-density ablator material, cre-

ating a weakly coupled ablation plasma and compressed material that may be in the

WDM regime. In the case of multi-shock systems, each shock encounters material at

a different initial condition. While the first shock may encounter ambient material

with a well-understood EOS, the shocked material upstream of the second shock

may be in an entirely different regime. In particular, complex materials such as the

low-density foams used in the x-ray fluorescence experiments described in a later

chapter provide a unique challenge for EOS models. The porous nature of the foams

creates complicated behavior, such as the collapse of the internal microstructure un-

der strong compression, resulting in different compressions and temperatures than

would be predicted by simple analytical models assuming a homogeneous material.

A common solution to this problem is to create a table of EOS data for a given
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material, containing experimental and computational data for a variety of condi-

tions. This method does not depend on a single model and can incorporate both

experimental and theoretical data. Additionally, tabular data can be easily loaded

into simulation packages, providing detailed EOS data without requiring additional

computation.

The SESAME EOS library [35], maintained by Los Alamos National Laboratory,

is widely used in the HED physics community, providing EOS data over a vast range

of parameter space. The SESAME database currently contains data for around 150

materials, including elements, compounds, metals, polymers, and mixtures. Tables

are populated with various theoretical models to fit experimental data with inter-

polation where necessary.

3.4 Blast waves

Blast waves are the inevitable result of a shock wave driven with a finite amount

of initial energy. Blast waves are formed when a release wave, referred to as a

rarefaction, from the driven surface overtakes the shock front. This occurs when the

pressure source for the shock decays and can no longer maintain a steady shock. As

material releases from the drive surface, the rarefaction approaches the shock front

and eventually overtakes it, creating a sharp spike in pressure. Figure 3.4 shows

the evolution from a strong shock to a blast wave.

3.4.1 Self-similar analysis of blast wave profiles

A self-similar model can greatly simplify the analysis of systems where the ρ0 and

R have the same functional form. The density, pressure, and fluid velocity profiles

in blast waves can be calculated by assuming time-invariant profiles using similarity

solutions. In this analysis, similarity variables are used to convert the partial dif-
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Figure 3.4: Diagram showing the transition from a strong shock to a blast wave.
When the driving force maintaining the steady shock is removed ma-
terial begins to release from the rear surface, creating a rarefaction.
The rarefaction moves through the shocked material until it reaches the
shock front and a sharp spike in pressure and density is created, known
as a blast wave.

ferential equations of (3.1)–(3.3) into a set of ordinary differential equations. This

derivation closely follows that from Drake [24], with a minor change in the final

result to account for different symmetries. We begin by considering a blast wave

traveling through an ideal gas and rewrite Eq. (3.3) in the form

(
∂

∂t
+ u · ∇

)
p− γp

ρ

(
∂

∂t
+ u · ∇

)
ρ = 0. (3.29)

In order for the continuity equations to be converted to a self-similar form u,

ρ, and p must be written as functions of a dimensionless similarity variable. Here,

we use the similarity variable ξ = r/R, describing the spatial profile of the fluid

parameters. The fluid velocity, density, and pressure are given by

u = ṘU(ξ) (3.30)

ρ = ρ0(r, t)Ω(ξ) (3.31)

p = ρ0(r, t)Ṙ
2P (ξ) (3.32)
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Eqs. (3.30)–(3.32) are then substituted into Eqs (3.1), (3.2), and (3.29) to give

ρ̇0
ρ0

R

Ṙ
Ω(ξ) +

ρ′0
ρ0
U(ξ)Ω(ξ) + [U(ξ)− ξ] Ω′(ξ) + Ω(ξ)U ′(ξ) +

s

ξ
U(ξ)Ω(ξ) = 0 (3.33)

ρ′0R

ρ0
P (ξ) +

RR̈

Ṙ2
U(ξ)Ω(ξ) + [U(ξ)− ξ]U ′(ξ)Ω(ξ) + P ′(ξ) = 0 (3.34)

ρ̇0
ρ0

R

Ṙ
(1− γ)P (ξ) +

ρ′0R

ρ0
U(ξ)(1− γ)P (ξ) + 2

RR̈

Ṙ2
P (ξ) +

[U(ξ)− (ξ)]

(
P ′(ξ)− γP (ξ)

Ω′(ξ)

Ω(ξ)

)
= 0

(3.35)

where the primed state functions represent derivatives with respect to ξ, ρ′0 is the

spatial derivative of ρ0, and s = 0, 1, 2 for planar, cylindrical, and spherical sym-

metry, respectively. The case of a uniform initial density profile, where ρ̇0 = ρ′0 = 0,

simplifies these equations, yielding

[U(ξ)− ξ] Ω′(ξ) + Ω(ξ)U ′(ξ) +
s

ξ
U(ξ)Ω(ξ) = 0 (3.36)

RR̈

Ṙ2
U(ξ)Ω(ξ) + [U(ξ)− ξ]U ′(ξ)Ω(ξ) + P ′(ξ) = 0 (3.37)

2
RR̈

Ṙ2
P (ξ) + [U(ξ)− (ξ)]

(
P ′(ξ)− γP (ξ)

Ω′(ξ)

Ω(ξ)

)
= 0 (3.38)

Next, we assume a power-law solution and write the spatial function

R = R0t
α, (3.39)

where the units involved in the system define the exponent α, determined by the

form of the energy of the initial impulse. For a spherical blast wave, the energy is

the total energy of the initial explosion, while in a planar blast wave the energy is

given in units of energy per unit area. For planar and spherical symmetry one finds

the following exponents for r and t to make the quantity dimensionless

39



E0,pt
2

ρ0r3
= constant (planar) and

E0,st
2

ρ0r5
= constant (spherical), (3.40)

where E0,p is the initial energy per unit area for the planar case and E0,s in the

initial energy in the spherical case. α and s are thus related by

α =
2

3 + s
, (3.41)

and the functional form for the spatial extent of the blast waves becomes

R =
1

Q

(
E0

ρ0

)α/2
tα, (3.42)

where Q is a constant that can be calculated by integrating over the blast wave

profile and normalizing to the initial energy.

By taking time derivatives of Eq. (3.39), we find

RR̈

Ṙ2
= 1− 1

α
= −

(
1 + s

2

)
, (3.43)

which can be inserted into Eqs. (3.36)–(3.38) to obtain the equations for a blast

wave propagating through a uniform medium assuming self-similar motion:

[U(ξ)− ξ] ξΩ′(ξ) + [ξU ′(ξ) + sU(ξ)] Ω(ξ) = 0 (3.44)

−
(

1 + s

2

)
Ω(ξ)U(ξ) + [U(ξ)− ξ] Ω(ξ)U ′(ξ) + P ′(ξ) = 0 (3.45)

− (1 + s) Ω(ξ)P (ξ) + [U(ξ)− ξ] [Ω(ξ)P ′(ξ)− γP (ξ)Ω′(ξ)] = 0 (3.46)

Solving these equations requires three boundary conditions. We assume the case

of a strong shock and set the boundary conditions at the shock front, given by
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Figure 3.5: Calculated density profiles for self-similar blast waves showing the ef-
fect of a) symmetry and b) adiabatic index.

U(1) = P (1) =
2

γ + 1
(3.47)

Ω(1) =
γ + 1

γ − 1
(3.48)

Figure 3.5a shows density profiles of blast waves for planar, cylindrical, and

spherical symmetry calculated for γ = 5/3. Figure 3.5b shows the effect of changing

γ for a planar blast wave, where reducing γ results in a larger compression at the

shock front and a narrower density profile near the leading edge of the blast wave.

The flexibility provided by adjusting γ enables a wider range of experimental data

to be fit using this model, but as discussed in Section 3.3.1 it is important to keep in

mind that this is a simple model and a good fit does not guarantee that the correct

physics is being modeled.

3.5 Shocks in solids

3.5.1 Stress-strain relationship

Before investigating the response of materials to shocks, it is worthwhile to dis-

cuss how materials respond to forces in more general terms. A stress-strain relation-
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ship characterizes the response of materials to an applied stress. Stress is a measure

of the pressure on the system and strain is a dimensionless quantity defining the de-

formation of a sample.

Several definitions of strain exist for various applications. Perhaps the most

ubiquitous definition is the engineering strain, which is valid in the limit of small

strains, given by

εe =
l

l0
− 1, (3.49)

where l0 and l are the lengths of the sample before and after the deformation,

respectively. True strain provides a more accurate measure of strain for large defor-

mations, taking into account higher order strain terms, given by

εt = ln
l

l0
(3.50)

= ln(1 + εe) = εe −
ε2e
2

+
ε3e
3
− ... (3.51)

Eq. (3.51) shows that the engineering strain is a good approximation for small

strains, where higher order terms can be neglected.

The stress-strain relationship of materials can be quantified by the bulk modulus,

shear modulus, Young’s modulus, and Poisson’s ratio. The bulk modulus, K, is a

measure of the ability of a material to resist hydrostatic compression and can be

thought of as the stiffness of the material. It is defined by the change in pressure

with respect to volume or density

K = −V dp

dV
= ρ

dp

dρ
. (3.52)

Characterizing the stress-strain relationship for directional stresses requires two
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moduli. Young’s modulus, E, is a measure of the ability of a material to resist

compressive or tensile stresses and the shear modulus, µ, for shear stresses, defined

by

E =
∂σ

∂ε
and µ =

∂τ

∂γ
, (3.53)

where σ is a normal stress, ε is normal strain, τ is shear stress, and γ is shear strain.

Poisson’s ratio quantifies the strain in the transverse directions when a material

is strained in one direction

Poisson’s ratio, ν, is another important material property, which describes the

relationship between strains in the loading and transverse directions. Poisson’s ratio

quantifies the transverse expansion of a material under uniaxial compression. It is

defined by the negative ratio of transverse to axial strain,

ν = − dεtr
dεax

. (3.54)

For a more rigorous understanding of stresses and strains, it is necessary to use

their tensor forms. Working in the small strain limit, the components of the strain

tensor are defined by

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (3.55)

where x defines a Cartesian coordinate system and u is the displacement vector

created by the strain. This definition makes it clear that the strain tensor must be

symmetric and can, therefore, be written

ε =


εx γxy γxz

γxy εy γyz

γzx γyz εz

 . (3.56)
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The diagonal terms (εii = εi) are normal strains and the off-diagonal terms are shear

strains.

Similarly, the Cauchy stress tensor defines the applied stresses

σ =


σx τxy τxz

τxy σy τyz

τxz τyz σz

 , (3.57)

where σi is a compressive stress in the i direction and τij is a shear stress applied

to the i face in the j direction. Here, we use the convention of using τij to denote

shear stresses to clearly differentiate between compressive and shear stresses, but

σij is also common in the literature.

3.5.2 Vinet EOS

The Vinet EOS is a commonly used model to predict the isothermal compression

of various solids [36, 37]. The Vinet EOS model takes advantage of the fact that the

compressibility of solids is generally dominated by the interaction of overlapping

electron orbitals, allowing a single functional form to fit compressibility data for all

classes of solids. The model only applies to materials under compression, as this

assumption is not valid for materials in tension.

The pressure is given in as a function of strain, where X = (V/V0)
1/3, and tem-

perature, T , by

p(X,T ) = 3K0
1−X
X2

exp [η(1−X)] , (3.58)

where K0 is the bulk modulus in the uncompressed state and η is a function of the

pressure derivative of the bulk modulus, given by

η =
3K ′0 − 1

2
, (3.59)
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where K ′0 = (∂K0/∂p)p=0. Eq. (3.58) can be used to plot p(X,T ) if K and K ′ are

known. For example, the hydrostatic compression of diamond has been fit using

K0 = 438 GPa and K ′0 = 3.38 [38].

3.5.3 Linear elastic theory

Linear elastic theory is valid in the small strain limit, where the stress-strain

relationship obeys the generalized form of Hooke’s law

σ = Cε, (3.60)

where C is the elastic stiffness tensor. This equation can be rewritten using the

elastic compliance tensor, S, where S = C−1, yielding

ε = Sσ. (3.61)

For the work presented here, elastic constants refer to elastic stiffness coefficients.

The general form of the elastic stiffness tensor is a 6 × 6 matrix with 36 terms.

This tensor must be symmetric [39], reducing the maximum number of indepen-

dent terms to 21:



C11 C12 C13 C14 C15 C16

C12 C22 C23 C24 C25 C26

C13 C23 C33 C34 C35 C36

C14 C24 C34 C44 C45 C46

C15 C25 C35 C45 C55 C56

C16 C26 C36 C46 C56 C66


. (3.62)

Although linear elastic coefficients are only valid for small strains, if they are

calculated for highly-stressed initial conditions, the pressure range of their validity
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can be greatly increased. This is the method used in the diffraction analysis pre-

sented in Chapter IV, where density functional theory (DFT) calculations were used

to calculate linear elastic coefficients for diamond at hydrostatic pressures up to

700 GPa.

3.5.3.1 Cubic crystal systems

For crystal systems, symmetries reduce the number of independent elastic coef-

ficients. Cubic systems, for example, have independent elastic constants: C11, C12,

and C44. The stress-strain relationship for a cubic system is thus



σxx

σyy

σzz

τyz

τzx

τxy


=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





εxx

εyy

εzz

γyz

γzx

γxy


. (3.63)

The bulk elastic parameters described in Section 3.5.1 can be written in terms

of the elastic constants. For cubic crystal systems, they are given by

K =
C11 + 2C12

3
(3.64)

E =
C2

11 + C11C12 − 2C2
12

C11 + C12

(3.65)

µ =
C11 − C12

2
(3.66)

ν =
C12

C11 + C12

. (3.67)

46



3.5.4 Elastic anisotropy

Elastically isotropic materials have the same elastic properties regardless of ori-

entation with respect to an applied stress. In the case of isotropic cubic crystals, two

independent stiffness coefficients fully describe the material, C11 and C12, where the

third coefficient, C44, is defined by C44 = (C11 − C12)/2. The Zener anisotropy ratio

[39], A, quantifies the elastic anisotropy of a material, defined by the ratio

A =
2C44

C11 − C12

. (3.68)

If A = 1 the material is isotropic and will have identical elastic properties in all

directions. When A deviates from unity the stress-strain relationship of the material

becomes directionally dependent. Table 3.1 gives the elastic constants for a variety

of solids at ambient conditions along with the calculated anisotropy factor. Most

cubic metals have A > 1, meaning they are softer when compressed along the 〈100〉

direction than along 〈111〉. Tungsten is an interesting case, where A = 1.00, and is

therefore elastically isotropic at ambient conditions.

3.5.5 Reuss and Voigt limits

Modeling the stress-strain behavior of polycrystalline materials poses an inter-

esting challenge due to interactions of crystal grains within the sample in addition

to the interaction of atoms within each crystallite. Analytical models of the stress-

strain relationship for polycrystalline materials require assumptions on the behav-

ior at the grain boundaries. The Voigt limit [41] assumes continuous strain across

grain boundaries while the Reuss limit [42] assumes continuous stress. This behav-

ior is shown schematically for two crystallites with equal initial lengths but different

Young’s moduli in Fig 3.6, where in the a) Voigt limit both crystallites experience

identical strain and in the b) Reuss limit each crystallite is exposed to the same
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C11 C12 C44 A
Class Material (1010 N/m2) (1010 N/m2) (1010 N/m2) 2C44/(C11 −C12)

Metals Ag 12.4 9.3 4.6 2.94
Al 10.8 6.1 2.9 1.23
Au 18.6 15.7 4.2 2.86
Cu 16.8 12.1 7.5 3.23
α-Fe 23.7 14.1 11.6 2.44
Mo 46.0 17.6 11.0 0.78
Na 0.73 0.63 0.42 8.33
Ni 24.7 14.7 12.5 2.50
Pb 5.0 4.2 1.5 3.70
W 50.1 19.8 15.1 1.00

Covalent Si 16.6 6.4 8.0 1.56
solids Diamond 107.6 12.5 57.6 1.20

TiC 51.2 11.0 17.7 0.88
Ionic LiF 11.2 4.6 6.3 1.92
solids MgO 29.1 9.0 15.5 1.54

NaCl 4.9 1.3 1.3 0.72

Table 3.1: Stiffness coefficients and Zener anisotropy ratios for selected cubic ma-
terials [40].

stress.

The Voigt limit simplifies modeling diffraction from polycrystalline materials due

to the geometrical nature of the compression. All crystallites are assumed to com-

press the same, making it possible to construct analytical models the final positions

of all initial crystallite planes. Applied stresses are calculated using the applied

strains and the bulk elastic properties from Section 3.5.1. The Voigt limit is a reason-

able model for polycrystalline materials consisting of a single, elastically isotropic

material.

The Reuss limit requires an understanding of how crystals respond to forces in

various directions, which can be calculated using the elastic stiffness tensor. This is

important when materials have large elastic anisotropies, where strains depend on

crystallite orientation, or in mixtures of materials with different elastic properties.

In this limit, strains are calculated directly from an applied stress field, but a brute

force method to apply the correct stress tensor to crystallites with each initial ori-

48



Voigt limit Reuss limit a) b) 

Applied load 

E2 > E1 E1 

L2 = L1 L1 

E2 > E1 E1 

L2 > L1 L1 

Applied load 

L0 L0 L0 L0 

Figure 3.6: Comparison of the a) Voigt and b) Reuss limits used to model the be-
havior of compressed polycrystalline materials. Here we consider the
simple case of two crystallites with the same initial length, L0, but with
different Young’s moduli (E2 > E1). The Voigt limit assumes all crys-
tallites experience identical strains and therefore the final lengths are
equal (L1 = L2). The Ruess limit applies equal stresses to each crystal-
lite, thus accounting for the Young’s modulus of each crystallite, result-
ing in different final strain states (L1 < L2).

entation present in the sample is required. The distribution of strains created by a

single stress field in the Reuss limit is not present in Voigt limit models.

3.6 Elastic-plastic response of solids

The ability of solids to support shear stresses has a profound impact on shock

propagation. Shocks at low driving pressures create elastic waves that move through

the material without rearrangement of the crystal structure. If the shock strength is

above a threshold where the crystal structure begins to fail, known as the Hugoniot

elastic limit (HEL), a plastic deformation wave is created. This two-wave structure

can be understood by considering the Rayleigh lines for a material with an elastic

compression region, as shown in Figure 3.7. The plastic deformation wave creates

disorder in the crystal and relieves shear stresses in the lattice, reducing the dif-

ference in stresses between the shock and transverse directions. If the pressure is
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Figure 3.7: Example shock Hugoniot and pressure profiles. a) Example shock-
compression curve for a solid with strength, with a linear elastic re-
gion below the HEL and the overdrive stress defined by the intersec-
tion of the elastic Rayleigh line with the shock-compression curve. b)
Stress profiles for shocks with varying driving pressures. Pressures be-
low the HEL or above the overdrive stress result in a single-wave struc-
ture, while intermediate driving pressures create a two-wave structure.
Figure adapted from Asay and Shahinpoor [2].

above the overdrive stress threshold, defined by the point where the elastic Rayleigh

line intercepts the Hugoniot, the plastic wave overtakes the elastic wave, forming a

single-wave structure. If the driving pressure is between the HEL and the overdrive

stress threshold, a two-wave structure will form with an elastic precursor followed

by a plastic deformation wave.

3.6.1 Elastic waves

Elastic waves do not allow for stress relief within the crystal via dislocations or

slip planes, resulting in a state of uniaxial strain, where all compression is in the

direction of the shock. The elastic wave is a precursor in the system, encountering

unperturbed material. Using Eq. 3.12 and using the specific volume of the com-

pressed material, the pressure of the postshock material in the elastic wave is given

by
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Pel = ρ0D
2 (1− ρ0Vel) = − (ρ0D)2 Vel + ρ0D

2. (3.69)

The shock velocity of the elastic wave is independent of pressure, making this a

linear equation in Vel with the slope given by − (ρ0D)2 and intercept of ρ0D2.

3.6.2 Plastic waves

If the shock pressure is above the HEL and below the overdrive stress, the line

connecting the initial and final states does not meet the stability conditions given

by Eq. (3.19). This results in an elastic wave being launched at the HEL with a

slower plastic wave trailing behind. The plastic wave creates disorder in the crystal

structure and allows for stress relief within the lattice. The dislocation model of

plasticity considers stress relief via movement of defects in the crystal, which have a

lower threshold than the movement of entire crystal planes. The flow of dislocations

is thought to be the primary method of stress relaxation in uniaxially compressed

materials. Dislocations in the crystal can be preexisting within a material or created

spontaneously in a process known as homogeneous nucleation.

The plastic deformation wave propagates through material perturbed by the

elastic precursor. To calculate the pressure of this wave we consider a two-shock

system where we assume the velocity of each shock is known. Solving for the

particle velocities in each shock we find

u1 = D1

(
1− ρ0

ρ1

)
(3.70)

u2 = D2

(
1− ρ1

ρ2

)
+D1

(
ρ1 − ρ0
ρ2

)
, (3.71)

where the subscripts 0, 1, and 2 refer to the unshocked material, elastic precursor,

and plastic regions, respectively. The stress in the shock (z) direction is given by
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σz2 = ρ0D1u1 + ρ1 (D2 − u1) (u2 − u1) , (3.72)

which is a function of D1, D2, and ρ1. This gives a value for the stress in the shock

direction, leaving the stresses in the transverse directions unconstrained. Chapter

IV discusses a method to infer applied stresses from x-ray diffraction patterns.

3.6.3 Material strength

The strength of a material describes its ability to support shear stresses and de-

viate from the hydrostatic response when subjected to an anisotropic stress. When

modeling the stress applied to a material it is convenient to separate the stress ten-

sor into hydrostatic and deviatoric components. The hydrostatic component pro-

vides the mean stress and the deviatoric component allows additional stress to be

applied in the direction of compression. The decomposed stress tensor in the labo-

ratory frame is written [43]

σ = σh + σd =


σh 0 0

0 σh 0

0 0 σh

+


−t/3 0 0

0 −t/3 0

0 0 2t/3

 , (3.73)

where σh and σd are the hydrostatic and deviatoric stress tensors and t is the uni-

axial stress component. Using the von Mises yield criterion, the yield strength, σY ,

and shear strength, τY , are given by

σY = 2τY = t. (3.74)

The yield strength is the maximum difference in stresses the crystal can support be-

tween any two directions. For dynamic compression experiments, this corresponds

to the difference between stresses in the loading direction and stresses in the trans-
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Figure 3.8: The effect of material strength in diamond, showing a) the change in
overdrive stress calculated by the intersection of the elastic Rayleigh
line and the Hugoniot and b) the calculated plastic wave velocity as a
function of driving pressure for an example yield strength of σY = 65
GPa.

verse directions.

At pressures above the HEL, there are two cases of crystal failure to consider: the

elastic-hydrostatic and elastic-plastic responses. Complete loss of material strength

defines the elastic-hydrostatic limit, creating a state of hydrostatic compression

where the shocked material is unable to support any shear stresses. Alternatively,

the elastic-plastic response is characterized by the retention of strength after initial

yielding. Materials with high HELs are often brittle solids with low thermal conduc-

tivity, which tend to exhibit significant loss of strength under inelastic compression.

This is thought to be a result of heat localized in shear zones, softening the lattice

and possibly melting upon failure. Meanwhile, materials with lower HELs and high

thermal conductivity, such as metals, typically retain more strength after the onset

of plastic deformation. These materials allow thermal energy to dissipate before a

catastrophic failure of the lattice occurs.

Figure 3.8a shows the shock-compression curve for diamond for the cases of no

strength (the elastic-isotropic response, σY = 0) and for the elastic-plastic case with

σY = 65 GPa. Rayleigh lines can be drawn to calculate the plastic wave velocity as
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a function of driving pressure, using the HEL conditions as the initial state. Figure

3.8b shows the calculated plastic wave velocities as a function of driving pressure

for each case.

3.7 Dynamic compression of materials using lasers

A number of experimental methods have been developed to produce shock

waves to study the behavior of materials at high pressure. Early methods used

high explosives, gas guns, and electromagnetic guns to launch projectiles at high

speed to impact sample materials [2]. This thesis describes experiments conducted

at high-energy laser facilities, and discussion of experimental methods is restricted

to laser-driven dynamic compression.

3.7.1 Spatial drive considerations

Driving shocks using lasers requires a smooth spatial profile of the laser focus to

create homogenous conditions that can be well characterized. Fluctuations in the

spatial profile of the beam result in intensity variations on the irradiated surface,

driving localized regions at higher pressures. In order to create uniform conditions,

the laser drive must drive a planar shock.

Because drive pressure is a function of irradiance, the maximum power of the

laser sets constraints on the pressures achievable for a minimum acceptable area of

shock planarity. As the shock travels through the material the width of the planar re-

gion shrinks as rarefactions enter from the sides. Carefully considering the required

spatial extent of the planar region to make accurate measurements with these con-

straints in mind is critical in performing well-characterized dynamic compression

experiments.

Several approaches exist to increase the spot of the drive beam to increase the
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Figure 3.9: Example of a focal spot using a phase plate at the Trident laser facil-
ity [3]. The left side shows an image of the focal spot after a random
phase plate with 2 mm hexagonal elements, focused with an f/6 lens
and the right side shows intensity lineouts along the horizontal and ver-
tical directions. The overlapping beamlets from the phase plate smooth
the overall profile of the focal spot at the expensive of introducing high
frequency structure. The high frequency spikes can be removed by al-
lowing the shock front to anneal as it propagates.

spatial extent of the planar drive. A simple way to produce a larger focal spot is

to defocus the beam on the target surface. This can help remove some spatial fluc-

tuations, but it is not an ideal method to drive planar shocks because the intensity

profile will have significant spatial structure created by phase variations introduced

by optical components in the laser chain.

The experiments described in this thesis at LCLS and the Trident laser facility

used phase plates to improve the spatial profiles of the drive beams. Phase plates

smooth the spatial profile of laser beams by overlapping a large number of beams

in the same region with different phases [44]. Phase plates consist of an array

of elements with varying thicknesses, inducing phase delays in each transmitted

beamlet. The apertures of the beamlets define a new length scale for the optic,
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increasing the f -number of the optical system and setting the minimum spot size

of the focused beam. Smaller spot sizes require larger phase plate elements, and

therefore a beam with a given input diameter passes through fewer elements. The

limited number of phase plate elements for small focal spots can lead to significant

spatial structure in the focused beams. The overlapping profiles from the focused

beamlets help to smooth the envelope of the focal spot, but they introduce high-

frequency spatial structure in the beam. Figure 3.9 shows an image of a focal

spot at the Trident laser facility using a random phase plate with 2 mm hexagonal

elements and a f/6 focusing lens showing the high-frequency spatial structure in the

intensity lineouts on the right. The high-frequency spatial structure introduced by

phase plates can be removed by allowing the shock front to anneal as it propagates.

This is usually done by allowing the shock to propagate through a separate ablator

material before entering the sample layer.

3.7.2 Temporal pulse shape considerations

By varying the temporal profile of the drive laser, dynamic compression exper-

iments can access a wide range of p-V space. These include accessing Hugoniot

states via shock compression, as well as off-Hugoniot states using carefully designed

pulse shapes.

The simplest case is that of a strong shock driven into a sample, with a constant

driving force creating a uniform post-shock state. Over short timescales, a simple

square pulse laser drive can achieve this. For steady shocks, the drive intensity must

be increased throughout the drive to compensate for loss of driving pressure as the

critical surface moves farther away from the shock front. Reaching off-Hugoniot

states requires a more complicated pulse shape. By slowly ramping up the intensity

of the drive laser, near isentropic compression can be achieved. Ramp compression

experiments at the NIF reached pressures as high as 5 TPa [45].
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3.8 Diagnostics for high pressure physics

3.8.1 Shock timing diagnostics

Early diagnostics for shock compression experiments measured the arrival time

of the shock at various locations, allowing shock velocities to be calculated if the

precise locations of the probes were known. Two examples of shock timing diagnos-

tics are electrical pins and fiber optic pins. Charged electrical pins are discharged

by the arrival of the shock and the resulting signal can be measured using an oscil-

loscope. Fiber optic pins work in a similar manner, but changes in optical behavior

are recorded instead.

A more advanced technique, known as VISAR, or Velocity Interferometer System

from Any Reflector [46, 47], simultaneously measures shock timing and surface ve-

locities. VISAR works by using reflecting surfaces on the target in an interferometer

setup and records interference fringes on an optical streak camera. Surface veloc-

ity histories and shock timing are encoded in the streaked interference fringes. By

imaging a strip of the target, spatial structure in the shock can be measured and

multiple surfaces within a target can be monitored simultaneously.

If the only goal of the VISAR system is to measure shock timing and planarity,

the reference beam in the VISAR system can be blocked. This provides a streaked

image with no fringes, where the shock arrival at a surface can be measured by a

change in reflectivity. The lack of fringes removes the ability to measure surface

velocities, but the absence of fringes provides much better spatial resolution while

still measuring shock timing.

3.8.2 X-ray diagnostics

A variety of x-ray diagnostics have been developed to study shock-compressed

matter. Here the discussion is limited to the techniques directly related to the work
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presented in this thesis: x-ray diffraction (XRD), x-ray Thomson scattering (XRTS),

and x-ray fluorescence (XRF).

XRD, discovered by Max von Laue in 1912, is a powerful diagnostic used to di-

rectly measure atomic structure by probing lattice dimensions [48]. XRD has been

the standard technique to study statically compressed materials in diamond anvil

cells. The nature of static compression experiments does not require a bright x-

ray source for XRD studies, provided enough time for data collection. Diagnosing

dynamic compression experiments with x-ray diffraction does not have this luxury,

requiring bright x-ray sources capable of producing a sufficient flux of x-rays in the

timescale of interest. The first time-resolved study of shock-compressed matter us-

ing XRD at a large-scale laser facility was published in 1987 [49], achieving time

resolution of 100 ps using a He-α x-ray source. With the advent of x-ray free elec-

tron lasers, such as LCLS, dynamic compression experiments can now be diagnosed

with XRD with time resolution of tens of femtoseconds. This timescale is shorter

than the smallest phonon period in shocked systems, allowing lattice dynamics to

be studied without temporal smearing.

XRTS can measure plasma conditions in dynamically compressed materials, such

as density, temperature, and ionization. By using an imaging spectrometer these

measurements can be made along the shock profile to infer density profiles [50] as

well as plasma conditions in each layer of a shocked system [51].

XRF provides a measurement of ion density and ionization states present in the

plasma system. An external source of x-rays induces XRF and the emission is imaged

to measure the density of fluorescing ions [52]. Additionally, the ionization state of

the fluorescing ions can be calculated from the spectral shift in the emission lines.

Atomic kinetic models can then be used to infer plasma conditions via spectroscopic

modeling. Chapter VI describes an XRF experiment and the detailed analysis of

these measurements.
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3.9 Conclusions

This chapter discussed the fundamentals of shock physics and the properties of

compressed materials. EOS models were introduced as a method to relate ther-

modynamic properties of a system. Accurate EOS data are critically important

for reliable models to be created for compressed states of matter. The chapter in-

cluded a brief discussion of experimental considerations and diagnostics for shock-

compression experiments.
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CHAPTER IV

Calculation of diffraction patterns from highly

stressed polycrystalline materials

4.1 Introduction

This chapter describes a method to calculate Debye-Scherrer diffraction patterns

from highly stressed polycrystalline materials, the development of which was mo-

tivated by the capabilities of LCLS to probe shock-compressed matter. This work

represents the first method to calculate Debye-Scherrer diffraction patterns for uni-

axially compressed materials in the Reuss (iso-stress) limit beyond the small-stress

limit and has been published in the Journal of Applied Physics [53].

Accurate measurements of the strength of materials at high strain rate are criti-

cal in predicting their response to the dynamic loading conditions present in these

studies. X-ray diffraction provides a powerful technique for probing the structure of

crystalline materials, enabling direct measurements of lattice strains and material

strength. X-ray FELs, such as LCLS, are ideal x-ray sources to probe compressed

states of matter with sufficient peak brightness for single shot measurements with

∼40 fs time resolution [54, 55]. The pulse duration of these x-ray pulses is shorter

than the smallest phonon period in shocked systems, allowing lattice dynamics to

be studied without temporal smearing. The monochromatic x-ray beams produced
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by x-ray FELS require polycrystalline samples to produce Debye-Scherrer diffraction

rings from a compressed lattice.

Diffraction from compressed crystalline materials has commonly been analyzed

using a method originally presented by Singh [43] in the small-strain limit. For the

highly strained conditions present in dynamic compression experiments, a method

to model diffraction in the Voigt limit has been presented [56].

As discussed in Section 3.5.5, a Reuss limit model is particularly important for

polycrystalline materials with elastic anisotropy, which have directionally depen-

dent stress-strain relationships. In these cases, a distribution of strain states is

present for a nonhydrostatic stress applied to the sample. This behavior is not in-

cluded in Voigt limit models, which assume that the same strain tensor is applied to

all crystallites, regardless of orientation within the sample. Additionally, the com-

pression of polycrystalline materials consisting of multiple crystal structures with

different elastic properties is better modeled in the Reuss limit, as illustrated in

Figure 3.6.

Here, we present a method to calculate the diffraction pattern and lattice strains

polycrystalline samples in the Reuss limit for highly stressed materials. This method

takes the set of all initial crystallite orientations, defined by the initial texture of

the sample, and applies the transformed stress tensor to each orientation before

calculating the resulting diffraction pattern. With this method, we fit the applied

stress tensor to diffraction data, enabling direct comparison to pressures measured

experimentally or calculated using equation-of-state models. Examples illustrating

the effect of probing geometry, deviatoric stresses, and sample texture on Debye-

Scherrer diffraction patterns are given to show the versatility of this technique.
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Figure 4.1: Definition of the coordinate systems used in this paper. The laboratory
frame is unprimed and the coordinate system of the crystal lattice for
a given crystallite within the sample is primed. The x-ray probe and
diffracted wave vectors are k0 and k and the angle between them is
defined as 2θ. The stress directions for the Cauchy stress tensor in the
crystallite coordinate system, where shear stresses are nonzero after
transformation from the laboratory frame, are also shown.

4.2 Application of the stress field

The critical component of the method presented here is the proper application

of the stress tensor to each crystallite within the polycrystalline material. This re-

quires the stress tensor, which is defined in the laboratory frame, to be properly

transformed into the frame of each crystallite. To do this, we define three coordi-

nate systems: the unprimed laboratory frame coordinates and the primed crystal

lattice coordinate system as shown in Figure 4.1, as well as a diffraction coordinate

system denoted by double primes described in the diffraction calculation section.

The applied stress tensor is defined in the laboratory frame by the Cauchy stress

tensor, introduced in Section 3.5.1,
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σ =


σx τxy τxz

τyx σy τyz

τzx τzy σz

 . (4.1)

These stresses are illustrated in the crystallite coordinate system in Figure 4.1.

Transforming the stress tensor from the laboratory frame to the crystallite frame

is required to correctly predict the lattice strains for materials with elastic anisotropy

and enables the use of elastic constants to calculate lattice strains. A rotation matrix,

R, defined between the two frames transforms the tensor to the crystallite frame.

The Cauchy stress tensor is transformed between coordinate systems by

σ′ = RσRT . (4.2)

Here, we chose a rotation matrix using proper Euler angles and a z-y-z rotation,

R(α, β, γ) = Rz(γ)Ry(β)Rz(α), (4.3)

where Ry and Rz are the standard rotation matrices about the y and z axes,

Ry(φ) =


cosφ 0 sinφ

0 1 0

− sinφ 0 cosφ

 (4.4)

and

Rz(φ) =


cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 . (4.5)

where the angles between the coordinate systems depend on the orientation of each

crystallite.
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Calculating the lattice strains created by the stress tensor in the crystallite frame

requires knowledge of the stress-strain relationship for the material. In principle,

if this relationship is known for all stress states (including for all rotations) this

method can be used to calculate the diffraction patterns for any stress. In practice,

the stress-strain relationship is only known for specific conditions. In this chapter,

we assume a known stress-strain relationship for the material under hydrostatic

compression and calculate lattice strains for deviatoric stresses about the hydro-

static condition using elastic constants.

4.3 Diffraction calculation

For each compressed crystallite, the Laue diffraction condition determines which

crystal planes will contribute to the diffraction signal. Working in reciprocal space,

the reciprocal lattice vectors are given by

a∗ =
2π

V
b′ × c′ (4.6)

b∗ =
2π

V
c′ × a′ (4.7)

c∗ =
2π

V
a′ × b′, (4.8)

where a′, b′, and c′ are crystal lattice vectors in real space (in the crystallite coor-

dinate system) and V is the volume of the unit cell. The reciprocal lattice vector

for a crystal plane with Miller indices (hkl) in the crystallite frame is defined as

G′ = ha∗ + kb∗ + lc∗ and d spacing of the crystal plane is given by d = 2π/G′.

As discussed in Section 2.3.2, the condition for Bragg scattering for a crystal

plane with spacing d is given by nλ = 2d sin θB and the Laue diffraction condition

is given in the laboratory frame by k − k0 = G. The scattering intensity from
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Figure 4.2: Rocking curves for diamond layers with thicknesses of 50, 100, and 500
nm for a 10 keV x-ray probe calculated using the XCRYSTAL package
in XOP [4]. Thinner crystals have fewer layers to produce constructive
interference, resulting in a) reduced reflectivity and b) increased FWHM
for the diffraction peak.

a compressed diffraction plane is evaluated by sampling the rocking curve of the

material at angle of incidence of the probe. The deviation from the ideal Bragg

angle, ∆θB, is calculated by transforming G′ to the laboratory frame (G = RT ·G′)

and using the Bragg and Laue diffraction conditions, yielding

∆θB = arcsin

(
n
G

2k0

)
+ arcsin

(
n
k0 ·G
k0G

)
. (4.9)

Figure 4.2 shows example rocking curves for reflections from the (111) plane of un-

compressed diamond at a probe energy at 10 keV, calculated using the XCRYSTAL

package in XOP [4]. When the crystallite size is reduced the reflectivity of the plane

decreases while the full width at half maximum (FWHM) of the diffraction peak

increases. The diffracted in intensity for each plane is calculated by sampling these

curves at the value given by Eq. (4.9). To improve the accuracy of the rocking

curves, they should be calculated for the compressed unit cells. The spectral band-

width and divergence of the probe source can be modeled in this step by sampling

a distribution of k0 vectors.
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Diffraction patterns can be visualized by plotting the intersection of the diffracted

rays and the detector plane. For simplicity, we consider the plane normal to k0 at

a distance L from the scattering point. The coordinates in the detector plane are

denoted by double primes. Scattered wavevectors, k, transformed into this frame

are used to calculate the angular position around the diffraction ring, given by

φ = arctan(k′′y/k
′′
x). The diffraction pattern is converted to Cartesian coordinates

using

x′′/L = tan 2θ cosφ (4.10)

y′′/L = tan 2θ sinφ. (4.11)

For the compressed crystallites contributing to the diffraction pattern, the lattice

strains, diffraction angles, and diffracted intensities can be recorded.

4.4 Uniaxial compression

4.4.1 Strain calculation

Uniaxial compression is a common way to study materials at high pressure and

is relevant to both diamond anvil cell and dynamic compression experiments. In

uniaxial compression, off-diagonal stress tensor components in the laboratory frame

can be disregarded and the Cauchy stress tensor is decomposed into hydrostatic and

deviatoric components, as explained in Section 3.6.3,

σ = σh + σd =


σh 0 0

0 σh 0

0 0 σh

+


−t/3 0 0

0 −t/3 0

0 0 2t/3

 . (4.12)
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The compression of the crystallites is calculated in two steps. First, we apply

the hydrostatic stress component to all crystallites, scaling the crystal lattice by

the compression calculated using a hydrostatic compression curve, which does not

depend on crystallite orientation. For this step, each crystal lattice vector transforms

as

v′h =

(
ρ0
ρh

)1/3

v′0, (4.13)

where vh and v0 are the hydrostatically compressed and uncompressed lattice vec-

tors and ρh and ρ0 are the hydrostatically compressed and initial densities. For

high-pressure conditions or materials with low strength, this will provide the ma-

jority of the compression of the crystal lattice. It is important to do this step before

applying the deviatoric component, which requires the use of elastic constants and

therefore should be treated as a perturbation on the compressed cell to minimize

error.

Next, we apply the deviatoric component to the hydrostatically compressed unit

cell. The resulting strains are calculated using elastic constants, which can be cal-

culated using density functional theory (DFT) as a function of hydrostatic pressure.

For a linear system, the lattice strains are calculated using

σ′d = Cε′d (4.14)

where εd
′ is the deviatoric strain tensor and C is the elastic stiffness tensor. For

high-strength materials the deviatoric strains can be large and higher order elastic

constants may be needed to properly model the system.

The strain tensor is applied to each crystal lattice vector in the hydrostatically

compressed system by
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Figure 4.3: Diagram showing a) the direction of the reciprocal lattice vector, G,
which is normal to the diffracting planes in real space and b) the di-
rection of G for diffraction observed at φ = 0◦ and 180◦. The uniaxial
compression of lattice planes for materials with strength is proportional
to G · ẑ, resulting in higher compression at φ = 180◦ in this example.

v′ =


1 + ε′xx ε′xy ε′xz

ε′yx 1 + ε′yy ε′yz

ε′zx ε′zy 1 + ε′zz


d

v′h (4.15)

Combining the two steps, the lattice vectors transform following

v′ =

(
ρ0
ρh

)1/3 (
C−1σ′d

)
v′0. (4.16)

4.4.2 Diffraction calculation

The direction of the probe vector in uniaxial compression experiments using

a collimated x-ray source can be defined by a single parameter, χ, which is the

angle between the direction of compression and the probe vector. In this case,

the diffracted rays are transformed into the diffraction coordinate system by k′′ =

Ry(−χ) · k.

For off-normal probing (χ 6= 0◦), the 2θ diffraction angle for a given plane can
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vary as a function of φ. This dependence is a direct result of material strength and

can be used to infer strength from diffraction measurements. Figure 4.3 shows a)

the physical representation of the reciprocal lattice vector, G, which is normal to the

diffraction plane and b) the direction of G for a given diffraction plane at φ = 0◦

and 180◦. If the uniaxial compression is along the z direction, the compression of

a plane is proportional to G · ẑ, which varies as a function of φ. In this example,

it is clear that the planes contributing to diffraction at φ = 180◦ would be in a

higher state of compression than those contributing to φ = 0◦ due to this effect.

If a material has no strength compression is equal in all directions and this effect

vanishes.

4.5 Example: shock compressed diamond

The response of diamond to shock compression is of particular interest to ICF

because it is a candidate for the ablator material at NIF [57]. Diamond is also an

interesting material to study because it has the highest strength of any elemental

solid, and is thought to exist in large quantities in the ice layers of giant planets

[58]. For these reasons, diamond has been the subject of a number of dynamic

compression studies [38, 45, 59–61]. We consider the case of polycrystalline dia-

mond uniaxially compressed to σh = 200 GPa probed with a collimated 10 keV x-ray

probe to illustrate how this analysis is applied.

4.5.1 Coordinate transformation

First, we calculate the rotation matrix between the sample coordinate system

and a crystallite with the vector [hkl]′ aligned along the z direction. Figure 4.7

shows this geometry and the orientations sampled. The rotation of the crystallite

about this vector is given by the angle α, where we define α = 0 when x′ lies in the
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xz plane, fully constraining the coordinate system without loss of generality. Given

these conditions, the rotation angles between the two coordinate systems for cubic

unit cells (such as diamond) are

β = cos−1
(

l√
h2 + k2 + l2

)
(4.17)

γ = cos−1
(

h√
h2 + k2

)
. (4.18)

and α ranges from 0 to 2π radians to account for rotations of the crystallite about

the [hkl]′ vector.

4.5.2 Lattice strain calculations

Here we assume a sample compressed to a mean stress of 200 GPa shocked in

the z direction. The corresponding applied stress tensor is given by

σ =


200 0 0

0 200 0

0 0 200

GPa +


−t/3 0 0

0 −t/3 0

0 0 2t/3

 , (4.19)

where the uniaxial stress component, t, has been left as a variable to demonstrate

how the deviatoric stress affects the diffraction pattern.

We assume the initial properties of polycrystalline diamond, ρ0 = 3.515 g/cm3

and a0 = 3.56683 Å. Following the method described for uniaxial compression,

we apply the hydrostatic component, which gives the new lattice parameter of the

cell. Using the hydrostatic DFT results shown in Figure 4.4, the density is 4.55

g/cm3, or a compression of 1.29, corresponding to a compressed lattice vector of

a = a0(ρ0/ρ)1/3 = 3.27 Å.

Next, we apply the deviatoric stress tensor to the hydrostatically compressed di-
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Figure 4.4: DFT calculations of the a) hydrostatic cold curve and b) elastic constants
as a function of hydrostatic pressure for diamond. DFT calculations
performed by Jan Vorberger.

amond crystallites. The symmetry of cubic crystal systems reduces the number of

independent elastic constants to three: C11, C12, and C44. The stress-strain relation-

ship is thus



σ′xx

σ′yy

σ′zz

τ ′yz

τ ′zx

τ ′xy


=



C11 C12 C12 0 0 0

C12 C11 C12 0 0 0

C12 C12 C11 0 0 0

0 0 0 C44 0 0

0 0 0 0 C44 0

0 0 0 0 0 C44





ε′xx

ε′yy

ε′zz

γ′yz

γ′zx

γ′xy


. (4.20)

The elastic constants from DFT as a function of hydrostatic pressure shown in

Figure 4.4 can then be used to calculate the lattice stains and compressed lattice

vectors. Accounting for shearing, the strained cubic unit cell is a parallelepiped,

with a volume given by V = a′ ·b′× c′ and the compression of the unit cell for each

initial orientation can be calculated using ρ/ρ0 = a30/V .
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4.5.3 Density functional theory calculations

The DFT calculations presented in this chapter were performed by Jan Vorberger

and are not the work of the author. Here the details of the calculations are presented

for completeness. The computation of the elastic constants of diamond at various

hydrostatic pressures is performed using the DFT implementation as available in

the package abinit [62]. All calculations were performed with a parallel imple-

mentation of abinit at the National Energy Research Scientific Computing Center

(NERSC) [63]. Figure 4.4 shows the results of these calculations.

The actual calculation of the elastic constants relies on a linear response formal-

ism [64]. We have used norm-conserving Troullier-Martins type pseudopotentials

from the Fritz-Haber-Institute (FHI) database with four electrons taken into ac-

count explicitly [65]. The electronic wave function was represented using plane

waves with a cutoff of Ecut = 35 Ha. The self-consistency loop for the electronic

density was enforced to 10−18 in the residual of the potential and 10−20 in the wave

function convergence, respectively. The exchange correlation potential was taken

in PBE parametrization of the generalized gradient approximation [66]. Standard

Monkhorst-Pack k-point sampling with 32×32×32 k-points was invoked. The lattice

constant was adjusted so as to give the desired hydrostatic pressure on the diamond

unit cell consisting of two atoms (space group Fd3̄m) before invoking the response

function calculation of the elastic constants.

For diamond at σh = 200 GPa the values calculated were C11 = 1670 GPa, C12 =

446 GPa, and C44 = 1090 GPa.

4.5.4 Diffraction calculation

With the compressed lattice vectors defined, diffraction patterns can be calcu-

lated. Figure 4.5 shows examples of the diffraction patterns calculated for poly-

crystalline diamond with no texture under uniaxial compression with σh = 200 GPa
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Figure 4.5: Debye-Scherrer diffraction patterns calculated for uniaxially com-
pressed diamond with σh = 200 GPa and t = 100 GPa probed with a
collimated 10 keV x-ray source a) aligned with the direction of compres-
sion (χ = 0◦) and b) at 30◦ off-normal. When χ 6= 0◦ the compression of
the diffracting planes depends on φ and the diffraction pattern becomes
asymmetric.

and t = 100 GPa probed with a collimated 10 keV x-ray source a) aligned with the

direction of compression (χ = 0◦) and b) for χ = 30◦. When χ 6= 0◦ the compres-

sion of the diffracting planes depends on φ as a result of the distribution G vector

orientations satisfying the diffraction condition.

Next, the diffraction is calculated with t as a parameter to show the effect of

strength on Debye-Scherrer diffraction patterns. Figure 4.6 shows the calculated

diffraction for diamond compressed to a hydrostatic pressure of 200 GPa and t =

0, 50, and 100 GPa. When t = 0 (hydrostatic compression) all crystallites are com-

pressed identically, resulting in a single 2θ diffraction angle with no φ dependence.

When t is nonzero the compression of the crystallites depends on initial orientation,

creating a φ dependence and broadening diffraction in 2θ. This broadening is a re-

sult of the distribution of strain states created by the anisotropic stress applied to

the polycrystalline sample. The Voigt limit prediction is shown for the strain tensor

calculated for the unrotated stress tensor using the DFT results. The strains used in

the Voigt calculations are εz = εx = 0.0937 for t = 0 GPa, εz = 0.121 and εx = 0.0805
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Figure 4.6: Diffraction calculations for polycrystalline diamond for σh = 200 GPa
and t = 0, 50, and 100 GPa probed with 10 keV x-rays with χ = 30◦.
2θ plotted as a function of φ for a) {111} and b) {220} diffraction. The
width of the peaks in 2θ broadens with increasing t as a result of the
distribution of strain states created by the increasingly anisotropic stress
on the range of initial crystallite orientations, which is not present in the
Voigt limit prediction (dashed).

for t = 50 GPa, and εz = 0.148 and εx = 0.0667 for t = 100 GPa, where all strains are

given in compression and it is assumed that the strains in the transverse directions

are equal (εx = εy).

4.5.5 Texture effects

The texture of a polycrystalline material defines the distribution of crystallite

orientations within the sample. Methods used to produce polycrystalline materi-

als, such as chemical vapor deposition growth or rolling, often create characteristic

textures. The properties of a crystalline material, such as strength and wave propa-

gation, can be significantly affected by texture [67].

Including texture in the prediction of diffraction from highly strained polycrys-

talline materials has been explored in the Voigt limit [68]. Here we work in the

Reuss limit, thereby including the effects of elastic anisotropy when calculating the

response of each crystallite orientation within the sample. In doing so, we avoid

having to measure or calculate the bulk and shear moduli for each texture case to
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Figure 4.7: Crystallites with different initial orientations are sampled to calculate
the diffraction from the polycrystalline sample. a) Each iteration cal-
culates diffraction from a crystallite with lattice vector [hkl]′ aligned
with z. Three texture cases were analyzed and their orientation distri-
bution functions were represented by inverse pole figures. The three
cases were: b) no texture, where all crystallite orientations are sam-
pled equally, c) preferred [001] texture, and d) preferred [111] texture
where the shaded regions represent the orientations included in each
case.
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accurately model the stress-strain relationship of the material. In this method, the

elastic constants are calculated only once and can be applied to any texture case.

Material texture can be characterized using an orientation distribution func-

tion (ODF), defining the probability distribution of crystallite orientations. In this

method, we use the ODF to weight the scattering intensity from each initial crys-

tallite orientation. We define crystallite orientation by the [hkl]′ vector aligned with

the surface normal, z.

The cubic symmetry of diamond reduces the possible crystallite orientations to

the projection into a space bound by [001], [011], and [111] directions. Figure

4.7 shows inverse pole figures illustrating the three example textures examined in

this study: b) no texture, defined by a completely random distribution of crystallite

orientations, c) a sample with [001] texture, and d) a sample with [111] texture

where the shaded regions indicate the initial orientations present in each texture

case. The diffraction from the complete set of equivalent planes must be calculated

when utilizing crystal symmetry to reduce the set of initial orientations. For ex-

ample, diffraction from the {111} family of planes in a cubic system must include

diffraction from (111), (111̄), (11̄1), (1̄11), etc.

Figure 4.8 shows diffraction from 10 keV probe x-rays at χ = 30◦ for each of

these texture cases with σh = 200 GPa and t = 100 GPa. Diffraction patterns are

plotted in Cartesian coordinates for a) the [001] and b) [111] texture cases. These

plots show gaps in the diffraction patterns, demonstrating the importance of know-

ing the initial texture of the sample when choosing detector locations. Diffraction

from the {220} planes is shown as a function of φ for each texture case as well as

the Voigt limit for the untextured case, showing the differences in 2θ from the elas-

tic anisotropy of diamond. The [111] texture case has a larger range of 2θ angles,

suggesting that compressing diamond along the [111] direction creates a larger

distribution of strains than when compressed along the [001] direction.

76



−2

0

2

y
′′ /
L

{111}

{220}
a)

b)

c)

−2 0 2

x ′′/L

−2

0

2

y
′′ /
L

{111}

{220}

−180 −90 0 90 180

φ (deg)

64

66

68

70

72

2
θ

(d
e

g
)

{220}

Uncompressed

[001] texture

[111] texture

Voigt limit (no texture)

Figure 4.8: Diffraction patterns from {111} and {220} planes for polycrystalline
diamond under uniaxial compression with σh = 200 GPa and t = 100
GPa probed with 10 keV x-rays at χ = 30◦ shown in detector coordi-
nates for a) [001] sample texture and b) [111] sample texture and c)
{220} diffraction plotted for both texture cases as a function of φ and
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two texture cases results from different final compression states for the
initial textures.
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4.5.6 Strength calculations

Material strength is an important material property that can be studied using

dynamic compression. If the stress tensor applied to a material can be determined

using time-resolved x-ray diffraction the strength is obtained by calculating t in Eq.

(4.12). The deviations in 2θ scattering as a function of φ provide a direct measure

of material strength, as illustrated in Figure 4.6. If the material is probed at χ =

0◦, the Rankine-Hugoniot shock conditions can be used to supplement diffraction

measurements to infer material strength.

Here, we consider a shock compression experiment where the time-resolved x-

ray diffraction from the {111} planes at a probing angle of χ = 0◦ and the plastic

deformation wave velocity are measured. Assuming known elastic precursor condi-

tions (pressure and shock velocity), the Rankine-Hugoniot shock conditions can be

used to calculate the post-shock stress of the plastic wave in the shock direction as

a function of plastic wave velocity from Eq. (3.72)

σz2 = ρ0D1u1 + ρ1 (D2 − u1) (u2 − u1) . (4.21)

Figure 4.9 shows the pressure-density curve for a plastic wave velocity of 16

km/s with elastic precursor conditions of D1 = 20 km/s and σz1 = 80 GPa, which

have been previously measured in shock-compressed diamond [61]. The dashed

line shows the elastic response of diamond and the solid line is defined by Eq (4.21).

The solid blue line in Figure 4.9 shows the hydrostatic behavior of diamond

calculated using DFT. The hydrostatic response gives σh and Eq. (4.21) defines

the stress in the shock direction, which is σh + 2t/3. These two stress values fully

define the stress tensor in the laboratory frame given by Eq. (4.12) as a function of

material density.

In the case of normal probe incidence (χ = 0◦), 2θ has no φ dependence and the
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Figure 4.9: Pressure-density relationships for hydrostatically compressed diamond,
calculated using DFT (blue) and planar shock Hugoniot calculations
using Eq. (4.21) for an elastic precursor with D1 = 20 km/s and σz1 =
80 GPa and a plastic deformation wave with D2 = 16 km/s (orange).
For a given material density, σh and t are known and the stress tensor
for uniaxial compression defined by Eq. (4.12) is fully defined.

Debye-Scherrer diffraction ring can be represented by a plot of scattered intensity as

a function of 2θ. Figure 4.10 shows the mean 2θ diffraction angle for each density.

The measured 2θ diffraction peak from the {111} planes can be compared to Figure

4.10 and the material density can be inferred. The difference in density inferred

with strength compared to hydrostatic compression can be rather large as illustrated

by the example of a measured 2θ of 37.9◦, resulting in a 5.5% difference in density.

The stress tensor applied to produce the inferred density state is known from Figure

4.9 and the yield strength and distribution of lattice strains can be calculated for

the applied stress tensor. In this example we calculate the yield strength to be

σY = t = 68 GPa and σh = 200 GPa.

4.6 Conclusion

This chapter presented a method to calculate Debye-Scherrer diffraction pat-

terns from highly stressed polycrystalline materials. Example diffraction patterns
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Figure 4.10: Calculated {111} diffraction from polycrystalline diamond probed at
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diffraction angles calculated for a plastic deformation wave velocity of
D2 = 16 km/s and an elastic precursor with D1 = 20 km/s and σz1 =
80 GPa (orange). The difference in inferred density for a measured 2θ
of 37.9◦ with and without strength is illustrated.

for cases with different probe geometries, deviatoric stresses, and initial sample

textures illustrate the robust nature of this method. Comparisons to the Voigt limit

show where the Voigt and Reuss limits differ and the validity of these models could

be tested. By working in the Reuss limit and applying stresses to all initial crystallite

orientations, peak widths resulting from elastic anisotropy can be calculated. This

flexible analysis predicts diffraction from materials with any texture and a wide

variety of stress conditions in the Reuss limit.

This technique can be applied to the case of polycrystalline diamond under

uniaxial compression. Using the elastic constants calculated with DFT and shock

Hugoniot equations, we demonstrated how this analysis can calculate strength from

diffraction measurements using data from a single diffraction plane. These results

illustrate how strength can have a significant impact on material density inferred

from diffraction measurements.
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CHAPTER V

Dynamic strength measurements of

shock-compressed diamond at LCLS

5.1 Introduction

Diamond is a candidate material for the ablator in ICF implosion capsules. Ac-

curately modeling the initial compression phase of these implosions requires a de-

tailed understanding of the strength of diamond. In particular, the behavior of

shock-compressed diamond near the HEL is not well understood and additional

data in this regime would be extremely useful to improve existing models and simu-

lation codes. For this reason, an experiment was carried out at the MEC instrument

at LCLS to study the behavior of shock-compressed polycrystalline diamond near

the HEL. The experiment was conducted in May 2016, receiving VISAR-only prepa-

ration time to test the experimental configuration and two 12-hour x-ray shifts to

collect diffraction data. This experiment was conducted shortly before the writing

of this thesis, and thus this chapter will only describe the experimental platform de-

veloped to make strength measurements using x-ray diffraction and VISAR at LCLS

and present preliminary results.
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Figure 5.1: Experimental setup for the experiments conducted at MEC. The long
pulse beams drove planar shocks into layered foil targets consisting of a
Mylar ablator and polycrystalline diamond. CSPADs measured diffrac-
tion of the 10 keV probe from several crystallographic planes in dia-
mond. VISAR measured shock and free-surface velocities and XRTS was
fielded at a scattering angle of 130◦ to measure the temperature of the
shocked diamond.

5.2 Experimental setup

The experiment was performed using the standard configuration for diffraction

measurements at the MEC instrument. Figure 5.1 shows a schematic of the exper-

imental setup. The two Nd:glass lasers at MEC were overlapped on the target to

increase the drive intensity and smooth out spatial uniformities in the beam pro-

files. Both beams were 10 ns in duration in the second harmonic (λ = 527 nm) with

a square temporal pulse shapes to drive a steady shock. Phase plates producing 150

and 250 µm focal spots were used to drive planar shocks with planar regions larger

than the focal spot of the FEL. The 250 µm phase plates were used for low pressure

shots and the 150 µm phase plates were used to extend the pressure range of the

study. Typical shots had combined laser energies of ∼25 J, yielding irradiances up

to 1.5× 1013 W/cm2.

The FEL was operated in SASE mode at 10 keV and tuned for maximum pulse

energy of ∼2 mJ, corresponding to a pulse duration of ∼50 fs. The FEL was 30◦
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Figure 5.2: Schematic of the target design used in the MEC experiments. Two 10
ns laser beams irradiated a Mylar ablator to drive planar shocks with
varying intensities. 10 keV x-rays from LCLS probed the compressed di-
amond layers and an internal aluminum reflector was used for shock
timing with VISAR with a field of view (FOV) of 265 µm. A half-
aluminized rear surface provided a second timing fiducial to measure
the shock transit time through the diamond layer for each shot.

off-normal from the target surface (χ = 30◦), allowing strength to be inferred from

variations in diffraction angle as a function of φ, as illustrated in Figure 4.6. The

spot size of the FEL was varied from 10–50 µm, depending on the expected extent

of the planar shock region for each drive condition.

5.2.1 Target design

The targets consisted of polycrystalline diamond, a Mylar ablator, and one or two

thin layers of 100nm aluminum to act as reflecting surfaces for the VISAR beam.

The diamond foils were provided by Applied Diamond Inc. and were synthesized

using chemical vapor deposition (CVD). This experiment used diamond foils with

thicknesses of 20 and 40 µm to measure shock velocities using transit times over

the two lengths. Figure 5.3 shows an example scanning electron microscope (SEM)

image of the CVD diamond. The SEM measurements show that the average grain

size less than 50 nm.
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Figure 5.3: Scanning electron microscope image showing the surface of a polycrys-
talline diamond foil supplied by Applied Diamond Inc. Analysis of this
image yields an average grain size of less than 50 nm in diameter. Image
taken by Lauren Barmore.

The purpose of the Mylar ablator was to reduce the amplitude of the small-scale

structure in the focal spot created by the phase plates. Three ablator thicknesses

were chosen: 13, 25, and 50 µm, where the thicker ablators provided more time

for the shock front to anneal, while the thinner ablators produced a larger planar

shock region in the diamond. The width of the planar region required by the x-

ray probe sets a maximum thickness of the ablator and diamond foil. The angle at

which the edges converge is typically assumed to be 45◦ [69]. Figure 5.4 shows

the predicted width of the planar shock front using 150 and 250 µm phase plates

assuming converging angles of 45◦ and 60◦ for the Mylar ablator thicknesses. From

this analysis, it is evident that the 150 µm phase plate should not be used with the

50 µm ablator, as the shock is no longer planar when it reaches the rear surface,

even in the case of a 45◦ converging angle.

Aluminum layers added to the targets served as reflecting surfaces for the VISAR
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Figure 5.4: Predicted widths of the planar regions for shocks driven with 150 and
250 µm phase plates for a) 13 µm and b) 50 µm Mylar ablators. Widths
are plotted in each case for the converging angles of 45◦ and 60◦. This
analysis shows that the 150 µm phase plates do not provide a large
enough drive to be used with the 50 µm Mylar ablator targets.

diagnostic. Each target had a 100 nm layer of Al between the Mylar ablator and

the diamond foil to precisely measure the time at which the shock entered the

diamond. This layer was also used to measure shock planarity during VISAR-only

shifts to determine the required Mylar thickness for each drive condition. Many

targets included a 100 nm Al layer covering half the rear surface of the diamond

to measure the shock breakout time. The half layer was oriented such that edge

was perpendicular to the VISAR imaging direction, as shown in Figure 5.2, imaging

both reflecting surfaces for each shot.

5.2.2 Diagnostics

The primary diagnostics for the experiment were Cornell-SLAC Pixel Array De-

tectors (CSPADs) [70, 71], placed around the target to detect scattered x-rays over

the range 2θ = 25◦ to 100◦. This coverage area of the CSPADs included diffraction

from the {111}, {220}, and {311} planes in diamond using the 10 keV probe. Fig-

ure 5.5 shows predicted Debye-Scherrer diffraction patterns for σh = 200 GPa and

t = 0 and 100 GPa, where the shaded regions indicate the coverage of the CSPADs.
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Figure 5.5: Calculated Debye-Scherrer diffraction patterns for compressed diamond
from the (111), (220), and (311) planes for σh = 200 GPa and a) t = 0
GPa (hydrostatic compression) and b) t = 100 GPa. The shaded regions
show the area covered by the CSPADs in the standard configuration.
The colored lines are calculated in the Reuss limit using the method de-
scribed in Chapter IV and the solid black lines show the corresponding
Voigt limit calculations.

Low energy x-rays produced by the ablation plasma were attenuated by placing 100

µm of aluminum over each CSPAD.

The standard VISAR setup at MEC provided shock timing and free-surface ve-

locity measurements. Two VISAR streak cameras (V1 and V2) used 10 ns sweep

windows and fused silica etalons of thicknesses 8.087 and 5.072 mm. Photodiodes

measured the pulse shapes and energies of the drive beams using leakage through

mirrors after the final amplifiers.

The XRTS spectrometer measured scattering at 130◦ with 200 µm Be, 2.5 µm Al,

and 27 µm polyimide filtering. The XRTS used a curved HOPG (Highly Oriented

Pyrolitic Graphite) crystal in the von Hamos geometry. XRTS was included as an

additional diagnostic to measure the temperature of the shocked diamond. This

information can be used in future DFT simulations to quantify the effect of the

increased temperature in the plastic wave.
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5.3 Hydrodynamic simulations

HYADES simulations provided estimates of the pressures and densities achiev-

able using the available drive conditions. Figure 5.6 shows an example HYADES

run, predicting compressed densities around 5 g/cm3 and pressures approaching

300 GPa. This simulation assumed a drive intensity of 60% the actual drive inten-

sity, which has been shown to be a good value to compare HYADES simulations

to experimental data of planar shocks [72]. This value will clearly depend on a

number of factors, but here we are mostly interested in the approximate conditions

we will achieve in the experiment. Additionally, HYADES is a hydrodynamic code

and does not account for strength effects, as seen by the lack of an elastic precur-

sor in the simulation. These simulations predict pressure gradients that increase as

the shock propagates through the diamond layers. Pressure gradients are modeled

by integrating diffraction calculations from a distribution of stress states, weighting

contributions from each state appropriately. This gradient could be reduced by care-

fully tuning the drive pulse shape, increasing the intensity over time to maintain a

constant driving pressure.

5.4 Results

5.4.1 VISAR data

Figure 5.7 shows an example of the VISAR results obtained using a target with

a half-aluminized rear surface. At t1 the shock enters the diamond layer, changing

the reflecting surface from the first Al layer to the rear surface of the diamond.

The diamond has a lower reflectivity than Al, reducing the interference effect and

lowering the contrast in the fringes. The top half of the image is not changed at

t1 because the rear-surface Al is not affected. The elastic wave reaches the rear

surface at t2, accelerating the surface and causing a fringe shift. Slightly later, at t3,
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Figure 5.6: Example HYADES simulation of shock-compressed diamond with a My-
lar ablator. The simulation modeled a target irradiated using the 150
µm phase plates and for the case of a 25 µm Mylar ablator and 40 µm
diamond foil. The contour plots show the results for a) material density
and b) pressure as a function of time.

the plastic wave reaches the rear surface, creating a release wave and destroying

the reflecting surface.

After a few shots it became apparent that the half-aluminized surface was not

needed to obtain a transit time measurement because the breakout time was easily

measured by the change in reflectivity at t1. We concluded that it would be more

beneficial to see the full extent of the shock entering the diamond and the majority

of the shots were taken with a slight offset towards the bare diamond side to remove

the aluminized surface from the VISAR field of view.

Figure 5.8 shows example VISAR data and calculated free-surface velocity his-

tories for two runs, showing a) a low-pressure run with only an elastic wave and b)

a high-pressure shot with an elastic wave followed by a plastic wave. The loss of

reflectivity when the shock enters the diamond causes the noise in the free-surface

velocity around t = 3 ns for the low-pressure data and is not a real surface velocity.

These data provide transit time measurements, yielding shock velocities that can

be used to calculate strength as described in Section 4.5.6. Both runs shown are
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Timing legend 
1: Shock enters diamond 
2: Elastic wave breaks out at rear surface 
3: Plastic wave breaks out at (moving) rear surface 
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Figure 5.7: Example VISAR trace for a target with both layers of aluminum. The
VISAR image shows three important times used to characterize the
shock: 1) the initial loss of reflectivity on the bottom half of the im-
age when the shock enters the diamond, 2) the loss of reflectivity in the
top half when the elastic precursor reaches the rear surface, which can
also be detected in the bottom half by the shift in the fringes, and 3)
a second shift in the fringes on the bottom half when the plastic wave
overtakes the elastic wave.
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Figure 5.8: Example VISAR data and calculated free-surface velocities for runs with
drive pressures a) below and b) above the HEL. The breakout times are
labeled on the top of each figure, where t1 corresponds to the shock
entering the diamond, t2 is the elastic wave breakout time, and t3 is the
plastic wave breakout time. When the drive pressure is below the HEL
only the elastic wave is present. Above the HEL, crystal failure creates
a plastic wave that propagates behind the elastic wave, creating a two
wave structure. VISAR analysis by Emma McBride.

for targets with 25 µm Mylar ablators and 40 µm diamond foils. As expected, the

transit time of the shock through the Mylar ablator is longer for the lower drive

pressure while the elastic transit time through the diamond layers is nearly iden-

tical (the elastic wave velocity should be independent of drive pressure). These

results show that the conditions of shock-compressed diamond were probed above

and below the HEL.

5.5 X-ray scattering results

Figure 5.9 shows example x-ray diffraction data recorded by the CSPADs, plot-

ted in 2θ-φ space. The initial analysis of the data is done in the Voigt limit, which

is shown to be a good approximation by the fitting in Figure 4.6 for uniaxially com-

pressed diamond. Voigt limit calculations followed the method presented by Higgin-

botham and McGonegle [56]. The data were fit by varying the strains in the shock
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Figure 5.9: Example x-ray diffraction data, showing shock-compressed diamond
with fitting curves plotted in the Voigt limit. The solid curves cor-
respond to the diffraction angles of uncompressed diamond and the
dashed curves are calculated for a compressed lattice in the Voigt limit.
The strains in the shock and transverse directions used in these calcula-
tions are 0.078 and 0.028, respectively.

and transverse directions and minimizing the error in the fit for each diffraction

line using least squares analysis. The diffraction angles for uncompressed (solid)

diamond and a compressed (dashed) cell in the Voigt limit with strains in the shock

and transverse directions of εzz = 0.078 and εxx = 0.028, respectively, are plotted.

The compression of the sample with these strains is given by

ρ

ρ0
=

1

(1− εzz)(1− εxx)2
= 1.15. (5.1)

The density of the compressed diamond is 4.03 g/cm3, corresponding a hydro-

static pressure of 84 GPa using the DFT calculations in Section 4.5.3. From the

same calculations, the elastic constants for diamond at this hydrostatic pressure are

C11 = 1340 GPa, C12 = 262 GPa, and C44 = 801 GPa. To estimate the deviatoric

strain we work with engineering strain and write the hydrostatic and deviatoric
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strains as


εxx 0 0

0 εxx 0

0 0 εzz

 =


εh 0 0

0 εh 0

0 0 εh

+


−εd/3 0 0

0 −εd/3 0

0 0 2εd/3

 , (5.2)

from which one finds

εh = (εzz + 2εxx)/3 (5.3)

εd = εzz − εxx. (5.4)

Next, we calculate the deviarotic stress using σd = Cεd, where the deviatoric

stresses are given by σzz = 2t/3 and σxx = −t/3. These equations lead to an

expression for the yield strength

σY = t = (C11 − C12)(εzz − εxx). (5.5)

Plugging in the values from the fit gives a yield strength of σY = 54 GPa and a

stress in the shock direction of σz = 120 GPa, which compares well with previous

results [61]. These values are quoted without uncertainties and are presented only

to demonstrate the application of the analysis described in the preceding chapters.

A more rigorous fitting procedure will be used to improve the results and quan-

tify the error of the x-ray diffraction measurements. Eq. (5.5) does not depend on

C44 as a consequence of working in the Voigt limit, which assumes elastic isotropy

where C44 = (C11 − C12)/2, or equivalently, A = 1. The diffraction data will be fit

in the Reuss limit to account for the effects of elastic anisotropy and compared to

Voigt limit calculations to compare the models. X-ray diffraction data will be used

in conjunction with the VISAR data to constrain the stress state of the compressed
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diamond.

5.6 Conclusion

This chapter presented the design and initial results from an experiment to mea-

sure the strength of shock-compressed diamond near the HEL. This chapter dis-

cussed design considerations, including drive conditions and target design, and pre-

sented initial results from x-ray diffraction and VISAR. Measurements were made

for driving pressures above and below the HEL. Careful analysis will be required

to obtain high-precision measurements of the strength of diamond near the HEL.

These results will shed light on the dominant failure mechanisms in diamond and

can be used to improve predictive capabilities of simulation codes used to model

ICF implosions with diamond ablators.
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CHAPTER VI

X-ray fluorescence measurements of

shock-compressed foams

6.1 Introduction

This chapter presents experiments demonstrating the use of XRF to measure ion

density profiles, ionization state populations, and electron temperatures in shocked

aerogel foams, conducted at the Trident laser facility. A paper on these experiments

has been published in the Review of Scientific Instruments [52] and a detailed

paper describing the spectral analysis of K-α fluorescence has been accepted for

publication in the Journal of Applied Physics [73].

Low-density foams are attractive materials for scaled laboratory astrophysics

experiments [74] because they can be produced in a wide range of densities. EOS

measurements of shocked foams have been made using shock timing experiments

[75–77], x-ray absorption spectroscopy [78], spectrally resolved x-ray scattering

[51], velocity interferometry [79, 80], and streaked optical pyrometry [80].

XRF [81] is capable of measuring material properties in a wide range of condi-

tions, ranging from chemical properties at ambient conditions [28] to experiments

at HED. In the context of HED experiments, imaging of XRF was first proposed to

diagnose hydrodynamic experiments at large-scale laser facilities [82]. It was sub-
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sequently demonstrated using a pinhole imaging system [83], and more recently to

infer fast-electron transport in fast-ignition targets [84]. Spectral analysis of XRF

has been used to measure radiative heating [85] and infer temperatures of metals

directly irradiated by high-intensity short-pulse lasers [86–90]. The experiments

presented in this chapter combine these useful aspects of XRF to simultaneously

measure ion density, ionization state distributions, and electron temperatures in

shocked foams.

XRF has several properties that make it a useful measurement technique for

HED systems. First, XRF measurements provide significantly higher signal levels

than x-ray scattering measurements, as photoelectric absorption dominates x-ray

interaction cross sections in the few to tens of keV energy range, as explained in

Section 2.3.1. Next, XRF involves two photon energies: the probe x-ray energy

used to produce electron vacancies and the resulting XRF energy. The probe x-ray

energy is chosen to be above an atomic absorption edge and is readily absorbed by

the target material. Meanwhile, the XRF energy is below the absorption edge and

easily escapes the target. For example, the mean free paths of the V He-α probe and

Ti K-α XRF x-rays (at 5.2 and 4.5 keV, respectively) in the uncompressed foam used

in this experiment are 7.7 mm and 20.8 mm, respectively.

Furthermore, XRF spectra are not sensitive to small variations in the probe spec-

trum, provided the x-ray energy is above the absorption edge of interest. Unlike

x-ray Thomson scattering [29], which interprets energy shifts in inelastic x-ray

scattering, XRF spectra depend only on the energy of atomic transitions. Thus,

the bandwidth and energy of the probe x-rays affect the absorption of the probe,

but not the XRF spectrum. This property of XRF allows for a wider range of probe

sources to be used and does not require x-ray sources with narrow spectral band-

widths.

Despite its useful properties, XRF has two significant requirements that must
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be met for it to be used as a diagnostic technique in HED experiments. First, the

material must contain a sufficient quantity of the element producing XRF, which

may require doping the material with a suitable tracer element. The conditions

inferred from XRF measurements will correspond to the tracer element, which may

not be in equilibrium with the bulk material. Second, inferring temperature from

XRF requires the tracer element to be partially ionized. At low ionization states the

shift in the XRF energies will be negligible and at very high ionization states He-like

and H-like emission will dominate the XRF spectrum.

6.2 X-ray fluorescence imaging

X-ray radiography is the standard diagnostic to image hydrodynamic experi-

ments at HED. Radiography is best suited to diagnose experiments in simple ge-

ometries, where the structures are either two-dimensional or the three-dimensional

structure can be reconstructed from path-integrated measurements. For geomet-

rically complex targets, hydrodynamic structures are obscured by path-integrated

measurements, limiting the usefulness of radiography. Imaging complex geome-

tries with high spatial resolution requires a technique capable of measuring local

conditions.

One method to probe internal structure is to use a technique that only produces

signal from a specific region within the target. For example, if a target is probed

with a sheet of x-rays, the resulting scattering or emission from the exposed layer

can be imaged without three-dimensional effects degrading the resolution of the

measurement. Figure 6.1 shows this concept for the case of a hemispherical tar-

get. X-ray radiography integrates the density along the line-of-sight through the

target, while a technique utilizing a sheet of x-rays will only produce signal from

a layer of the target. In this case, the probe x-rays produce XRF, which is imaged

perpendicular to the exposed layer.
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Figure 6.1: Comparison of a a) path-integrated measurement and b) a measure-
ment from a specific region within a target. In this case, a hemispherical
target is probed with a transmission diagnostic, such as x-ray radiogra-
phy, and XRF imaging. XRF emission from a thin layer exposed to a
sheet probe x-rays and imaged normal to the sheet to optimize spatial
resolution.

Suter et al. [82] previously explored two methods to produce XRF from a local-

ized region within a target: doping the target uniformly and collimating the probe

x-ray source or confining the tracer material to the desired region of the target and

irradiating the entire target with a probe x-ray source. Both methods are essentially

equivalent, but we chose the former option for these experiments because the local-

ization of dopant within the target material is more challenging than collimating an

x-ray source. Additionally, interfaces created by doping a specific region of a target

can affect the hydrodynamic evolution of the system.

6.3 Expected signal levels

The XRF signal from a volume element within a target can be estimated by

accounting for x-ray attenuation and the experimental geometry. The number of

detected XRF photons, γdet, from a volume element with length dx is given by

γdet = Npe
−αpxp

(
1− e−αp,pedx

)
fKαe

−αfxfηsys, (6.1)
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Figure 6.2: Diagram showing the dimensions used to calculate the signal levels for
XRF. Probe x-rays enter the target from the right and are absorbed by
the Ti-doped foam over a length xp. The photoelectric absorption in the
volume element dx creates K-shell vacancies, resulting in XRF emission.
The XRF emission travels a distance xf through the foam along the path
to the detector.

where Np is the number of probe x-rays produced, e−αx is the absorption of x-rays

by the target material with attenuation coefficient α over distance x, where the

subscripts p and f refer to the probe and fluorescence x-rays respectively, fKα is

the fraction of excited atoms decaying via K-α fluorescence, and ηsys is a factor to

account for the geometry of the system and various losses in the system. Figure 6.2

shows the dimensions used in this calculation for the simple case of a shock tube.

It is important that the photoelectric absorption term, 1 − e−αp,pedx, only uses

the photoelectric absorption attenuation coefficient and the density of the tracer

element, while the other absorption terms account for all absorption and scattering

mechanisms for all elements in the target. We estimate the number of probe x-ray

photons, Np, with energy Eγ produced by a laser-irradiated backlighter using

Np =

(
EL
Eγ

)
ηγ. (6.2)

where EL is the energy of laser and ηγ is the conversion efficiency of the source.

The system loss parameter, ηsys, accounts for the fraction of probe x-rays reaching

the volume element (ignoring absorption), the collection efficiency of the detector,
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and any losses due to filtering

ηsys =

(
Ωelem

4π

)(
Ωdet

4π

)
tf , (6.3)

where Ωelem is the solid angle of the volume element as seen by the probe source,

Ωdet is the solid angle of the detector as seen from the element, and tf is the trans-

mission of all filters in the system. The probability of radiative decay for each ele-

ment is tabulated in the literature [1]. For Ti with a K-shell vacancy the probability

of K-α emission is 0.17.

6.3.1 Pump-dopant pair selection

Optimizing the XRF signal requires careful selection of the tracer element and

probe x-ray energy. Lower-Z backlighters provide more probe photons at the cost

of a reduced mean free path within the target. As a result, the density and spatial

extent of the target set a lower bound on the probe x-ray energy. The mean free

path of the pump x-rays is calculated using the mass absorption coefficient for the

bulk material, tabulated in the XCOM database [91], and the target density. The

mean free path is given by

l̄p =
1

µpρ
, (6.4)

where µp is the mass attenuation coefficient at the energy of the probe x-rays and ρ

is material density. The probe x-ray energy should be chosen such that the mean free

path is large compared to the spatial extent of the region to be probed to prevent

significant attenuation of the probe. The tracer element should be the highest-Z ma-

terial with the K-edge below the probe x-ray energy to maximize photoabsorption

of the probe and thus require the lowest density of dopant in the target material.

As shown in Figure 2.3, the binding energy of K-shell electrons increases with ion-
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Figure 6.3: Schematic of the targets used in this experiment. The drive beam irradi-
ated a Mylar ablator to drive a shock in the Ti aerogel foam. The probe
beam irradiated a V foil to produce He-α x-rays at 5.2 keV. A gold pin-
hole collimator with a diameter of 375 µm restricted the volume of the
target exposed to probe x-rays for a limited number of shots. The IXS
provided spatially resolved spectral measurements of Ti K-α emission
along the axis of the shock tube.

ization state, requiring higher probe energies for ionized materials.

This study measured Ti K-α emission using a V He-α source to create K-shell

vacancies in Ti. The V He-α x-ray energy is 5.2 keV is and K-shell binding energy

for unionized Ti is 4.966 keV. The K-α doublet energies for unionized Ti are 4.505

and 4.511 keV. In this analysis, we assume that the mass attenuation coefficients

for photoelectric absorption are unaffected by the conditions in the shocked foam.

This is justified because the bound K and L shell electrons in the Ti and Si atoms

dominate the photoelectric absorption cross section for 4.5–5.2 keV.

6.4 Experimental setup

In this experiment, shown schematically in Figure 6.3, a 1 ns, 220 J beam at 2ω

(527 nm) from the Trident laser system drove a shock in a cylindrical foam target,

compressing and heating the foam. The laser was focused, using a random phase
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plate (RPP), to a 600 µm spot on a 6-µm-thick Mylar ablator on the drive side of

the target. The ablator prevented direct irradiation of the low-density foam. The

foam targets were 2000 µm in length and 940 µm in diameter, inside a polyimide

tube with a 53 µm wall thickness.

A 1 ns, 180 J, 527 nm laser beam focused to 150 µm using a RPP irradiated

a 5 µm V foil 1.0 mm from the foam on the side opposite of the drive in order

to produce a bright He-α x-ray source. A small number of targets included a gold

collimator with a 375 µm diameter pinhole placed between the foam and the V foil

to restrict the region exposed to the probe x-rays.

6.5 Target design

6.5.1 Ti-doped foams

Two types of foams were used in these experiments: 3.4 mg/cm3 Ti-doped aero-

gel foams and 195 mg/cm3 Ti-doped CRF foams. The low material density and

relatively high fraction of Ti in these foams produced bright XRF emission when

exposed to probe x-rays. All results presented in this chapter are from the aerogel

foams with the exception of the spatial profiles showing the effect of the collimator.

The Ti-doped aerogel foams consisted of a 1.0 mg/cm3 SiO2 scaffolding coated

with 2.4 mg/cm3 of TiO2 for a total density of 3.4 mg/cm3. The detailed charac-

terization of these the aerogel foams can be found in a separate publication [92],

where this experiment used foams coated using 30 atomic layer deposition cycles.

Because the Ti is uniformly distributed on the scale of the spatial resolution of the

detector, the XRF intensity directly correlates to material density. The low density

of the aerogel foams enabled temperatures in the postshock material to be high

enough to observe shifts in the Ti K-α emission from the ionized material. Ruther-

ford Backscattering Spectrometry (RBS) measurements provided the relative atomic
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Figure 6.4: The probe intensity reaching a point in the foam target is proportional
to the area of the probe foil with direct line-of-sight to the point. This
area is equal to the overlap of the projected collimator apertures and
the laser focal spot on the foil.

fractions of TiO2/SiO2 = 1.8 in the aerogel foams, corresponding to a mass ratio of

2.4. The Ti-doped CRF foams were composed of 190 mg/cm3 CRF with 5 mg/cm3

Ti dispersed throughout the material.

6.5.2 Collimator

A 375 µm diameter pinhole collimator restricted the region of the foam irra-

diated by the probe for a limited number of shots to demonstrate the ability to

selectively probe the tube axis. The probe intensity is proportional to the area of

the probe laser spot on the V foil with direct line-of-sight to each point in the foam.

For an arbitrary point in the foam, this area is calculated by projecting the aperture

on each side of the collimator onto the foil plane and calculating the overlap area,

Aovl, of the projection both apertures and the laser spot, as shown in Figure 6.4.

The pump intensity at each point in the foam, neglecting absorption, is given by
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Ipump(r, z)

I0
=

R2
s

R2
s + (L+D − z)2

(
Aovl
πR2

s

)
(6.5)

where I0 is the intensity of the probe emission, Rs is the radius of the probe emis-

sion area, defined by the laser spot on the foil, and Figure 6.3 defines the other

dimensions. The first term in Eq. (6.5) assumes a Lambertian emission profile from

the probe x-ray source and is only strictly valid on axis, but is sufficient to estimate

the intensity in this case. Figure 6.5 shows calculated probe intensities at each point

in the foam for a 375 µm diameter pinhole collimator and for no collimator. Below

each contour plot is a lineout showing the total probe flux through the tube along

the axis, calculated by performing a radial integral of the intensity. As expected, the

probe intensity is constant for most of the shock tube with the collimator, while it

quickly decays with no collimator.

6.6 Imaging x-ray spectrometer

The primary diagnostic on the experiment was an imaging x-ray spectrometer

(IXS) [93], which measured spatially resolved spectra along the axis of the shock

tube. This diagnostic used a toroidally bent Ge(400) crystal with radii of curvature

of 400 and 200 mm in the spectral and imaging directions, respectively. The crystal

was placed 139.9 mm from target chamber center. X-rays were detected using

Fuji BAS-SR image plate located 388.8 mm from the crystal, satisfying the imaging

condition for the crystal optic with a magnification of 2.78 centered at the Ti K-α

energy of 4.5 keV.

The spectral dispersion of the IXS was calibrated using the Ti K-α doublet and

the spectral resolution of 2.1 eV was calculated by fitting a Voigt profile to the Ti

K-α doublet produced by unshocked material. Transmission of line emission from

laser-irradiated Sc foils through Au grids with 35 µm bar thickness and 125 µm
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Figure 6.5: Calculations showing the probe intensity for each point in the shock
tube for a probe x-ray source created by a 150 µ spot at z = 3000 µm
for the cases of a) a 375 µm pinhole collimator and b) no collimator.
Below each contour plot is a lineout of the integrated probe flux through
the shock tube along the axis. The collimated has a constant flux for
much of the length of the tube, while the flux with no collimator quickly
decays as the probe radiation escapes out the walls of the tube.
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Figure 6.6: a) Raw IXS data for an Au grid with 35 µm bar thickness and 125 µm
pitch backlit by emission from a laser-irradiated Sc foil and b) a cali-
brated spatial lineout of the IXS data with a fit for an ideal grid with 80
µm spatial resolution. The transmission of an ideal grid was convolved
with a Gaussian instrument function with a FWHM of 80 µm to produce
the fit.

pitch determined the spatial resolution. Spatial profiles measured using these grids

were fit using a Gaussian instrument function to determine the spatial resolution

of 80 µm. Figure 6.6 shows raw IXS data for the backlit Sc foil and the fit to the

transmission of the grid used to define the instrument function of the IXS.

6.7 Simulations

HYADES [94], a Lagrangian radiation hydrodynamic model with laser absorp-

tion and electron heat conduction, simulated the experimental conditions for each

target design. The simulations helped guide the experimental design and were used

to set the probe delays for the initial shots. The simulations also provided an estima-

tion of the decay of the shock velocity over time to account for temporal smearing

over the 1 ns duration of the probe. After tuning Hyades to match the measured

shock location at 15 ns, the simulated velocity at that time is 60 µm/ns. On this

basis, we estimate the motion blurring in 1 ns at a time of 15 ns to be 60 µm. This

effect was included in the modeling of the spatial information by integrating the
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Figure 6.7: HYADES results for Ti-doped aerogel foam after tuning the drive inten-
sity to match the measured shock position at t = 15 ns, showing a)
material density and b) pressure as a function of time. From these cal-
culations the shock velocity was estimated to be 60 µm/ns at t = 15
ns.

shock profiles with 1 µm steps. The total signal was then normalized to the inten-

sity of the unshocked region. Figure 6.7 shows the simulated a) material density

and b) pressure for the aerogel target.

6.8 Experimental results

The IXS provided simultaneous density and K-α emission measurements of the

shocked foam. Figure 6.8 shows an overview of the XRF data obtained from a single

measurement.

6.8.1 Unshocked region

The initial density of the foam was measured using the spatial data from the IXS

in the unshocked region from z = 1200–1700 µm, as illustrated in the inset of Fig-

ure 6.6. For the targets without a collimator, fits to the unshocked data determined

ρ0. The calculated XRF signal as a function of z is given by
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Figure 6.8: a) Raw image plate data from the IXS showing the shifted spectrum at
the shock interface, b) the spatial lineout summing over spectral com-
ponents at t = 15 ns, and c) the spectral data for the two regions high-
lighted in the spatial lineout showing the shifted K-α fluorescence in the
shocked foam as compared to the Ti in the unshocked foam.

I

I0
= exp [−µρ0(L− z)]

(
R2
s

R2
s + (L+D − z)2

)
, (6.6)

The first term accounts for attenuation of the probe x-rays by the foam and the

second term accounts for the distance from the probe source. Once again, this

formula is strictly valid only on the axis of the shock tube, but the experimental

geometry makes this a reasonable approximation.

At the probe energy of 5.2 keV the total mass attenuation coefficient of the

foam is µp = 322.0 cm2/g. The density of the unshocked foam was found to be

ρ0 = 4.1 ± 1.5 mg/cm3, where the error bars represent the maximum deviations

from the best fit deemed plausible by the authors, as shown in Figure 6.9. Knowing

the mass ratio of the TiO2 and SiO2 from RBS measurements, we conclude that the

foam used in this experiment consisted of 1.2 ± 0.4 mg/cm3 SiO2 and 2.9 ± 1.1

mg/cm3 TiO2. The density calculated using this technique agrees with the density

measured during foam production of 3.4 mg/cm3 within error.
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Figure 6.9: Results of fitting Eq. 6.6 to the unshocked region of the spatially re-
solved data (illustrated in the inset), yielding an initial foam density of
ρ0 = 4.1± 1.5 mg/cm3.

6.8.2 Driven foams

The IXS provides an integrated measurement of all material in a spatial element

(dz) along the axis of the shock tube. The shock profile produced by the 600 µm

drive beam was expected to be curved and only approximate a planar shock near

the axis of the tube, with the width of the planar region decreasing as the shock

propagates. To account for this effect, the XRF signal was calculated using a simple

two-region model, consisting of a shocked inner region and an unshocked outer

region. We assume a strong shock profile with no release for the shocked aerogel

foam. This model was used because the mass of the 6-µm-thick ablator was greater

than the total mass of the shocked aerogel at the time it was probed. This suggests

that the ablator density was still greater than the shocked aerogel density and acted

as a piston compressing the foam.

The inset of Figure 6.11 shows the contributions to the XRF signal from each of

the two regions. As predicted by the piston model, only the outer, unshocked region

contributes to the signal well behind the shock front (z < 700 µm). This feature

allowed the fraction of unshocked material to be determined and it was found that
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Figure 6.10: Reduced χ2 values for a range of shock thicknesses and postshock den-
sities for z = 850–1500 µm. The quoted uncertainty in the postshock
density was calculated by requiring χ2 < 2, as shown by the dashed
contour, yielding ρ1 = 14.4± 1.3 mg/cm3.

74% of the signal came from the unshocked region.

The peak in the spatial data was fit by varying the width (in z) of the shocked

region and postshock density. Bounds were set on the postshock material density

by fitting the spatial profile in the range z = 850 − 1500 µm using reduced χ2

analysis. This region was chosen to fit shock front and minimize the error from the

edge effects of the curved shock front. The reduced χ2 (χ2
r) value for each fit was

calculated using

χ2
r =

1

ν

∑
i

(si − fi)2

σ2
, (6.7)

where si and fi are the values for the signal and fit at each measured position, σ2

is the variance of the signal, and ν is the number of degrees of freedom in the fit.

Here, we estimate the variance from signal fluctuations in the unshocked region

(z = 1250 − 1750 µm) and assumed to be constant and the degrees of freedom

is equal to the number of data points in the fit region minus the number of fit

parameters (shock thickness, postshock density, and estimated variance). Figure

109



400 600 800 1000 1200

z (µm)

0.0

0.2

0.4

0.6

0.8

X
-r

a
ys

d
e

te
c

te
d

(n
o

rm
a

liz
e

d
)

a) b)

IXS data

ρ1 = 13.1 mg/cm3

ρ1 = 14.4 mg/cm3

ρ1 = 15.7 mg/cm3

400 600 800 1000 1200

z (µm)

0.0

0.2

0.4

0.6

0.8

X
-r

a
ys

d
e

te
c

te
d

(n
o

rm
a

liz
e

d
) IXS data

Combined

Unshocked

Shocked

Figure 6.11: a) Fits to the spatial data at the shock location at t = 15 ns. XRF
signals from strong shock density profiles with contributions from un-
shocked material are plotted for ρ1 = 14.4±1.3 mg/cm3. b) XRF signal
contributions from the shocked and unshocked regions.

6.10 shows the value of χ2
r for a range of postshock densities and shock thicknesses.

The global minimum corresponds to the best fit at ρ1 = 14.4 mg/cm3 and a shock

thickness of 185 µm. The error bounds on the postshock density were set by plotting

the contour of χ2
r = 2, yielding ρ1 = 14.4± 1.3 mg/cm3.

Figure 6.11 shows the calculated spatial signal and the measured postshock den-

sity of ρ1 = 14.4 ± 1.3 mg/cm3. The calculated signals for the upper and lower

bounds of the density with the corresponding shock thicknesses determined by the

χ2
r = 2 contour for these densities are also plotted. The slight disagreement be-

tween the fit and the IXS data in the region behind the shock is most likely a result

of the simple two-region model not accounting for additional material on the edges

of the curved shock front. This measurement could be significantly improved by

selectively probing the planar shock region by using a collimator [51] or by probing

with an x-ray FEL.
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Figure 6.12: Spatial lineouts of XRF data for runs with and without a 375 µm gold
collimator to restrict the region exposed to probe x-rays. a) Raw data
and b) data normalized by the fluxes calculated in Figure 6.5 (only ac-
counting for geometrical effects and not absorption) are shown. The
width of the shocked layer is much narrower with the collimator be-
cause the edge effects near the walls of the shock tube do not con-
tribute to the XRF signal.

6.8.3 Selectively probing the tube axis

Figure 6.12 shows A comparison of spatial XRF signals obtained with and with-

out a collimator for Ti-doped CRF foam. The improvement in spatial resolution is

clear when the raw spatial lineouts are normalized by the probe fluxes calculated in

Section 6.5.2. The edges effects are not present in the shot with a 375 µm collima-

tor and the shock front is much narrower. The density of the Ti-doped CRF resulted

in low postshock temperatures and no shifts in the Ti K-α spectra were measured,

preventing temperature measurements for targets with a collimator. These results

demonstrate the ability to restrict the probed region using a collimator. For a 2D

imaging diagnostic, a slit collimator can create a sheet of x-rays to image the hydro-

dynamic evolution of the system. This ability to selectively probe specific regions is

a useful property of XRFI that may enable complex geometries to be imaged with

high resolution.
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Figure 6.13: Spectral fitting results for shock heated aerogel using spectra from
CRETIN [5] simulations. Contributions from three regions were used
to model the curved shock produced in this experiment. Although
three regions are required to accurately model the full range of the
IXS spectral data, the shocked region dominates the line shape in the
range of 4515–4540 eV.

6.8.4 Inferring Te from K-α spectra

CRETIN [5] calculated the K-α spectra for the density and temperatures reached

in this experiment. CRETIN is a multi-species atomic kinetics and radiation code,

which provided a self-consistent model for spectral emission from the shocked re-

gion. Screened-hydrogenic atomic models [95] were used for Si and O, while more

detailed atomic data for Ti were calculated using the Flexible Atomic Code (FAC)

[96]. The atomic model for Ti incorporated data describing all singly and doubly

excited states within each ionization state up to a maximum principal quantum

number of 8, averaged over configurations while maintaining a spectral resolution

of 1 eV. The detailed atomic data for Ti used in these calculates were provided by

Howard Scott.

Calculations of XRF spectra were performed for a range of electron tempera-

tures and material densities to fit the IXS spectral data in the heated region. To

fit XRF spectra, we include contributions from the shocked and unshocked regions,
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as well as a small component from material at an intermediate temperature to ac-

count for edge effects in the curved shock front. Properly fitting the spectra in the

4500–4510 eV range requires the addition of the intermediate component, but has

a negligible effect on the spectra in the 4515–4540 eV range where the contribution

from the hottest region dominates. These three regions are labeled 0, 1, and 2 for

the unshocked, intermediate, and shocked regions, respectively.

Figure 6.13 shows the spectral contributions from the three regions along with

the combined fit to the IXS data, where an electron temperature of T1e = 10.0 eV

in the intermediate region produced the best fit. In reality, this intermediate region

consists of material at a range of temperatures, but this simple model is reasonable

considering the small spectral contribution of this region.

For the conditions present in this experiment, the mean ionization state in-

creases with decreasing density. This requires the lower and upper bounds on the

electron temperature to be calculated at the lower and upper density bounds, re-

spectively. Using this method, the post-shock electron temperature was found to be

T2e = 22.5 ± 2.5 eV. Figure 6.14 shows the results of the spectral fitting, with the

relative ionization state populations present in each condition shown in the inset.

This fit could be improved by probing a more homogeneous region in the ma-

terial. The 80 µm integration region, set by the spatial resolution of the IXS, and

the curved shock front result in a measurement from a range of densities and tem-

peratures. Here we have made an attempt to account for these effects with a three-

region model, but high-precision EOS measurements should probe a homogeneous

region in the system.

6.9 Evaluation of postshock conditions

The state of matter reached in the postshock material is determined by calculat-

ing the Coulomb coupling parameter and the degeneracy parameter from Section
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Figure 6.14: Ti K-α fluorescence from shock-heated aerogel using CRETIN [5] used
to infer an electron temperature in the post-shock material of T2e =
22.5 ± 2.5 eV. Bounds on electron temperature were set by fitting to
measurements from the IXS. The inset shows the relative ionization
states of Ti present in each case. The spectra for the upper and lower
electron temperature bounds were calculated at the upper and lower
bounds of material densities.

1.1. These parameters are functions of free electron density and temperature, which

are calculated from the IXS measurements and CRETIN simulations. The free elec-

tron density is ne = 1.5 × 1021 cm−3 and the temperature is T = 22.5 eV, where it

is assumed that the electrons and ions are in thermodynamic equilibrium. These

values give

Γee = 0.12 and Θ = 47, (6.8)

which describe a state of matter that is weakly coupled and non-degenerate, and

thus not WDM. Reaching WDM conditions in a similar experiment would require a

higher free electron density and would require using tracer elements with higher

XRF energies. Such experiments could be performed at the Omega laser facility

or at NIF, where significantly higher laser energies are available to drive stronger

shocks and produce sufficiently bright probe sources at higher x-ray energies.
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6.10 Conclusion

The experiments presented in this chapter demonstrated the ability to use XRF

to simultaneously measure ion density profiles, ionization-state distributions, and

electron temperatures of shocked foams. Fits to spatial data from an imaging x-

ray spectrometer provided measurements of the initial and post-shock foam den-

sity. Spectral data constrained the Ti ionization-state distribution and electron tem-

perature using K-α spectra calculated with CRETIN. XRF measurements provide

a high-brightness diagnostic tool for shock-compression experiments. Combined

with other diagnostic techniques, XRF measurements can improve EOS models for

shocked materials.
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CHAPTER VII

Conclusions and future directions

This thesis described two experiments and a theoretical model to study the prop-

erties of compressed matter using time-resolved x-ray diagnostics. Each project con-

tributes in some way to the advancement of the ICF program, whether in the form

of improved EOS measurements, modeling capabilities, or diagnostics for HED con-

ditions. Beyond the scope of ICF, the properties of materials at HED are important

to other fields, including planetary interiors and astrophysical dynamics. The vastly

different properties of the materials studied in these experiments — solid diamond

vs. low-density aerogel foam — speaks to the versatility of x-ray diagnostics. To

conclude, a brief summary of each topic presented in this thesis is provided along

with possible future directions.

7.1 Modeling x-ray diffraction from shocked materials

Chapter IV described a method to model x-ray diffraction patterns from highly-

stressed polycrystalline materials. The method presented is formulated in the Reuss

limit, where all crystallites within a polycrystalline sample are exposed to a single

stress tensor defined in the laboratory frame. Unlike the Voigt limit, where a single

strain tensor is applied, the Reuss limit accounts for the effects of elastic anisotropy.

Example diffraction patterns were shown to illustrate the effects of sample texture
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and material strength.

The validity of the Voigt and Reuss limits remains an open question in the dy-

namic compression community for materials with high strength. Although the ex-

amples presented in Chapter IV do not show a significant difference between the

two models for diamond, materials with more pronounced anisotropic elasticity

could be investigated to compare the two models. The availability of models in both

limits enables such cases to be identified. Experiments investigating these cases will

improve our understanding of the stress-strain relationship at grain boundaries in

polycrystalline materials under dynamic compression.

Regarding the Reuss limit, the work presented in this thesis assumed that the

deviations from the hydrostatic condition are small perturbations, justifying the use

of elastic coefficients. The effect of nonlinear elasticity can be included to extend

the range of states this technique can accurately model.

7.2 Dynamic strength of polycrystalline diamond

Chapter V presented the design and initial results from an experiment to study

the behavior polycrystalline diamond under shock compression. This chapter fo-

cused on the experimental design and discussed various considerations to consider

when planning a shock-compression experiment. An example diffraction pattern

and an initial fit in the Voigt limit were shown to compare the measurements to

previously published data on the yield strength of diamond. Further analysis will

improve the accuracy of these measurements and quantify their uncertainty. Fits in

the Reuss and Voigt limits will be compared to conditions inferred from VISAR data.

With strains approaching 10%, nonlinear elastic constants will likely be needed to

accurately model the stresses in the shocked diamond. The results obtained from

these experiments will shed light on the failure mechanisms of diamond near the

Hugoniot elastic limit.
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7.3 X-ray fluorescence imaging and spectroscopy

Chapter VI demonstrated a technique to measure the EOS of shock-compressed

foams using XRF. The experiments conducted at the Trident laser facility required

only a few hundred joules of laser energy to drive shocks into foam targets and mea-

sure the conditions using XRF with high brightness. Density profiles were obtained

using an imaging spectrometer to infer the compression of the shocked material

and spectral analysis combined with spectroscopic modeling provided ionization

state and electron temperature data. EOS models for shocked materials can use

these data to improve the predictive capabilities of codes for future HED physics

experiments.

Future studies using XRF could be conducted at larger laser facilities, such as

Omega or NIF, where significantly higher drive pressures can drive planar shocks

creating WDM. With the additional laser energy available at these facilities, shocks

with larger drive areas can be created and probed using a collimated source to

remove edge effects from the measurements. Alternatively, shocks can be probed

by an x-ray free electron laser to achieve the same result.

The high brightness and ability to selectively probe specific regions of a target

using XRF make it a promising diagnostic for HED experiments in complex geome-

tries. One example is the study of hydrodynamic instabilities in a diverging explo-

sion [97]. Such an experiment could be diagnosed by exposing a thin layer of the

target to probe radiation and placing the imaging diagnostic normal to the probed

plane. 2D images with high signal-to-noise could be obtained by using a spherical

crystal x-ray optic, such as the Cu K-α spherical crystal imaging diagnostic currently

available at OMEGA [98].

118



APPENDIX

119



APPENDIX A

High-dynamic range XRTS measurements of rare gas

clusters

Atomic clusters can serve as ideal model systems for exploring ultrafast (∼100

fs) laser-driven ionization dynamics of dense matter on the nanometer scale. Res-

onant absorption of optical laser pulses enables heating to temperatures on the

order of 1 keV at near solid density conditions. To date, direct probing of tran-

sient states of such nano plasmas was limited to coherent x-ray imaging. Here

we present the first measurement of spectrally-resolved incoherent x-ray scatter-

ing from clusters, enabling measurements of transient temperature, densities, and

ionization. Single-shot x-ray Thomson scatterings signals were recorded at 120

Hz using a crystal spectrometer in combination with a single-photon counting and

energy-dispersive pnCCD. A precise pump laser collimation scheme enabled record-

ing near background-free scattering spectra from Ar clusters with an unprecedented

dynamic range of more than 3 orders of magnitude. Such measurements are impor-

tant for understanding collective effects in laser-matter interactions on femtosecond

timescales, opening new routes for the development of schemes for their ultrafast

control.
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A.1 Introduction

Atomic clusters readily absorb intense laser radiation due to their extremely

large cross section [99, 100], resulting in the emission of high energy electrons

[101], ions [102] and x-rays. Previous measurements of ionization dynamics in

such nano plasmas relied on the analysis of final reaction products and direct prob-

ing of transient nano plasmas was limited to coherent x-ray imaging [103]. Here we

present a proof-of-principle experiment using incoherent XRTS to measure electron

velocity distributions in clusters, which will ultimately enable time-resolved mea-

surements of temperature, ionization, and collective electron dynamics on <100 fs

time scales.

The small Thomson scattering cross section (σT = 6.65×10−25cm2) in combi-

nation with the low average particle density in cluster jets poses a particular chal-

lenge for XRTS measurements. Being in the single photon counting regime, effi-

cient mitigation of background signals is required. Furthermore, mid- or high-Z

elements require high-dynamic range spectra to resolve inelastic Compton scatter-

ing near the strong elastic scattering component. Here we describe the setup for

the infrared (IR) laser driven experiment and present the measurement of a high-

dynamic range, near background-free XRTS spectrum from Ar clusters using an

energy-dispersive pnCCD detector [104] in single-photon counting mode to inte-

grate up to 200,000 shots.

A.2 Experimental setup

The experiment was conducted using the LAMP endstation at the AMO instru-

ment [105, 106] at the Linac Coherent Light Source (LCLS) [107]. The clusters

were created using an Even-Lavie source [108] with nozzle diameter of 150 µm

and opening angle of 40◦, operated at room temperature with a backing pressure
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Figure A.1: a) Experimental geometry, b) pump-probe timing of IR pulses and FEL
probe, and c) example raw pnCCD data showing the active regions of
the detector for the forward (FXRTS) and backward (BXRTS) scattering
spectra. Arrows indicate the respective energy axis of each spectra.

of 80 bar. Based on common scaling, we expect argon clusters, ArN , of mean size

N = 60, 000 and atomic density of nat ∼1017 cm−3 in the jet at 2 mm from the

nozzle.

Figure A.1 shows a schematic of the experimental setup. The gas clusters are

manipulated using a pump-probe system with two 40 fs IR pulses at 800 nm from a

Ti:Sapphire laser system with intensities up to 1015 W/cm2. The free electron laser

(FEL) was operated at 1811 eV to measure XRTS spectra from Ar. An incoupling

mirror with a central hole for the FEL probe to pass through was used to make the IR

and FEL beams colinear, interacting with the clusters 2 mm from the nozzle where

the diameter of the cluster jet was ∼1 mm. The relative delay between the pump

and probe IR pulses was set using a mechanical delay stage and the IR-FEL timing

was measured for each shot using a spectrally-encoded time tool system [109].

Two cylindrically curved PET (002) crystal spectrometers measured XRTS of

the FEL probe in forward (FXRTS) and backward (BXRTS) scattering geometries
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at scattering angles of 28◦ and 152◦, respectively. The details of the spectrometer

design, setup, and characterization are described in detail in a separate publication

[110].

Single photon counting was enabled by the low noise pnCCD detector [104].

Two layers of aluminized polyimide film (700 nm polyimide + 100 nm Al each)

were used to stop optical light and an x-ray block was in the direct line-of-sight

between pnCCD and interaction region. Background was further reduced by the

use of light baffles to limit diffuse IR reflections within the chamber.

A.3 Removal of IR laser background

Figure A.2 shows a histogram of detected pixel intensity values, measured in

analog digital units (ADU), normalized by the number of shots for each run. Three

runs are presented to show the contribution of each source: a dark run, an IR only

run, and an IR + FEL run, containing 8,280, 12,067, and 190,784 shots, respec-

tively. The histogram shows that the IR laser contributes the vast majority of the

signal, ∼0.1 IR photons/pixel/shot, but this contribution can be easily removed

by setting a minimum threshold above ∼500 ADU. The scattered x-ray peak is lo-

cated above 1800 ADU, where a minimum threshold is set to remove additional

background as shown in the inset, where the counts per shot are shown on a linear

scale. A small peak appears near 1750 ADU, which is most likely Al K-α fluorescence

at 1486 eV from the pnCCD filtering or other Al components in the chamber. In ad-

dition to the XRTS measurements made by the pnCCD, the slope of the histogram

data can be used to infer a temperature for the hot plasma.

123



Figure A.2: Histogram of pnCCD ADU values for a dark run, an IR only run, and
an IR + FEL run to show the contributions from each source. Counts
from scattered x-rays are shown in the inset with the threshold used to
remove background.

A.4 FEL energy jitter correction

The FEL at LCLS has an RMS photon energy jitter of ∼ 0.1% at 1.8 keV. These

variations reduce the spectral resolution of scattering measurements when inte-

grating over many shots by convoluting the output spectrum with this distribution.

This broadening can be avoided by measuring the centroid of the input spectrum

for each shot.

To make this correction, the energy of the electrons before the undulator was

recorded for each shot, which is directly correlated to the photon energy of the FEL.

A contour plot of the measured BXRTS spectral intensity as a function of electron

energy is shown in the inset of Figure A.3. The peak of the scattered intensity,

which is dominated by elastic scattering, as a function of electron energy, was fit

using a linear regression with the best fit line shown in the inset of Figure A.3, with

Ephoton(eV ) = 604.9Ee−(GeV)− 2027.

To remove the effect of electron energy jitter the photon energy of each detected

photon was corrected according to this formula and centered at 1811 eV. This cor-
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Figure A.3: Comparison of scattering spectra with and without input photon energy
correction. The elastic peak of the scattering is a linear as a function of
electron energy (inset), which can be used to correct for variations in
probe photon energy.

rection reduced the full width at half maximum of the BXRTS spectrum by 18% (1.7

eV) as shown in Figure A.3.

A.5 High throughput data collection

A key requirement of this experiment was the ability to collect data at a high

repetition rate to obtain scattering spectra with sufficient signal to noise. The ex-

periment was conducted at 120 Hz, allowing the ∼150,000 shots required to obtain

high-quality spectra to be obtained in 20-minute runs. By creating reduced data set

files containing only the relevant parameters for each event, manageable files with

files sizes ∼0.1% of the full data set were used for rapid analysis. These files con-

tained key parameters such as the IR and FEL energies, timing information, and the

pixel coordinate and ADU value for each detected photon.

Psana, the Python interface to the LCLS data system, was used to process the

data. Each event produced ∼10 MB of data between the pnCCD image, time tool

image, IR laser diagnostics, and other relevant parameters such as event identifiers
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and stage positions. At 120 Hz, this translates to ∼72 GB/min or ∼1.4 TB per 20-

minute run. In order to expedite analysis, selected pieces of the data were written

to HDF5 files, while the full data set was written to the SLAC storage servers. For

example, rather than save each pnCCD image to the HDF5 file, only the pixel co-

ordinates and intensity of detected photons were saved. These reduced files were

∼140 MB per 20-minute run, or 0.1% of the full data set.

A.6 XRTS spectrum from cold argon clusters

Figure 4 shows the result for an XRTS spectrum from argon clusters at a scatter-

ing angle of 152◦, integrated over 175,000 shots. On average, 1 photon is detected

within the spectral window shown in Figure 4 every 2 shots. For this measurement

the FEL was defocused to a 200 µm spot, delivering 0.25 mJ per shot onto the

target. We estimate that on average an energy of 0.2 eV per atom is absorbed in

the clusters, which can thus be considered cold. The data are shown on an abso-

lute scale based on spectrometer efficiency and its spectral sensitivity [110]. The

spectral bandwidth of 10 eV was chosen as it is close to the spectral resolution of

the measurement (7.7 eV). The spectrum is fit using elastic scattering from bound

electrons and an inelastic scattering contribution from ionization of M-shell elec-

trons [111], where the ratio of elastic to inelastic scattering of 215 is found in the

data. There is some uncertainty on the exact FEL spectrum in the lower wings of

the elastic scattering profile. Here we assumed exponential functions that are con-

sistent with the slope at high elastic scattering signal levels. This assumption might

explain the deviation of the data from the fit at energies above 1835 eV. The noise

floor for this measurement is almost four orders of magnitude below the peak sig-

nal. Because of the near background-free measurement, the noise floor could be

further lowered by increasing the number of shots used for signal integration.
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Figure A.4: Scattering spectrum at θ = 152◦ and fit from unheated Ar clusters
demonstrating the ability to measure elastic and inelastic features with
high-dynamic range using single photon counting and a high repetition
rate system.

A.7 Conclusion

We have presented a proof-of-principle experiment to measure x-ray Thomson

scattering from a cluster jet target at LCLS. Background signals were successfully

mitigated by selecting a narrow range of ADU values from the energy-dispersive

pnCCD detector. Despite a very low count rate, we demonstrated the ability to mea-

sure high-dynamic range scattering spectra with a clear inelastic scattering compo-

nent from Ar clusters. XRTS spectra collected from laser-heated clusters will be

analyzed using the method presented here to investigate the behavior of heated

clusters on ultrafast timescales. These results show great promise for future exper-

iments that will use XRTS to study laser-driven ionization and relaxation dynamics

in clusters with sub-100 fs time resolution.
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