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ABSTRACT

 

Anthropogenic N Deposition and Decomposer Fungi: Altered Composition and Function Fosters 

Greater Soil C Storage 

 

by 

 

Elizabeth Mae Entwistle 

 

Chair: Donald R. Zak 

 

The anthropogenic deposition of reactive nitrogen (N) onto terrestrial ecosystems has accelerated 

dramatically in the last 160 years as the result of human activity, with future rates of deposition 

projected to increase further.  In some temperate forests, experimental increases in N deposition 

have reduced decomposition and concomitantly increased soil carbon (C) storage.  One 

mechanism proposed to explain this response is that experimental N deposition negatively affects 

fungal decomposers of lignin, a recalcitrant constituent of plant cells which limits the overall rate 

of plant litter decay.   More specifically, anthropogenic N deposition is hypothesized to reduce 

fungal lignolysis, and, as a result, reduce the representation of lignolytic fungi while favoring 

fungal taxa which are less efficient lignin decomposers.  I tested this mechanism by examining 

the composition and diversity of fungi and the lignolytic genes that they express in a long-term 

field experiment in a series of northern hardwood forests, which have received experimental N 

deposition (3 g N m
-2

 y
-1

) for nearly 20 years.  First, I found that experimental N deposition 

altered the composition of the active fungal community in the forest floor, whereas it had 
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miminal effect on fungal richness and diversity.  In my second experiment, experimental N 

deposition reduced the abundance of lignolytic fungi occurring on high-lignin and wood 

substrates; this appeared to be part of an overall change in fungal community composition in 

response to experimental N deposition, wherein lignolytic taxa declined and cellulolytic fungi 

increased in relative abundance.  In Chapter 3, I found that experimental N deposition altered the 

composition, but not the richness or diversity, of expressed class II fungal peroxidases in the 

forest floor.  Together, my results revealed that experimental N deposition reduces 

decomposition of plant litter and increases soil C storage by altering the composition and activity 

of fungal decomposers.  This research improves our understanding of the biological mechanism 

through which an agent of global change alters biogeochemical cycling in temperate forest 

ecosystems. 
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CHAPTER 1 

Introduction 

 

Nitrogen deposition as an agent of global change 

Nitrogen (N) makes up ~80% of the Earth’s atmosphere as inert N2 gas.  However, N2 is 

not a biologically available form of this nutrient, which essential to all life.  For most of Earth’s 

history, the transfer of N from the atmospheric pool to the biosphere was limited by the rates of 

microbial nitrogen fixation, and, to a lesser extent, fixation by lightening.  Nitrogen fixation is an 

energetically expensive process restricted to specialized groups of bacteria.  Moreover, N 

availability within ecosystems depended upon transfers between biological pools until N was 

returned to the atmosphere via denitrification (Schlesinger 1997, Ward 2011).   

However, human activity has dramatically altered fluxes of N between atmospheric, 

terrestrial, aquatic, and marine pools.  Anthropogenic inputs of reactive N (Nr) now exceed those 

provided by natural processes (Vitousek et al. 1997a, Vitousek et al. 1997b).  During the last 

century, Nr emissions have increased between three-fold and five-fold as a result of human 

activities (Denman and Brasseur 2007).  Anthropogenic emissions of ammonia (NH3), nitric 

oxide (NO), and nitrogen dioxide (NO2) gases are returned to the surface of the Earth via wet and 

dry N deposition.  Volatilization of ammonia fertilizer to NH3 has led to increased NH4
+
 

deposition.  Internal combustion of fossil fuels has been a major source of increased NOx 

emissions in the industrialized world; biomass burning and volatization of NOx gases from 

agricultural systems also contribute increased NOx fluxes to the atmosphere (Galloway et al. 
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2004, Chapin et al. 2011).  The majority of atmospheric N deposition occurs in terrestrial and 

coastal ecosystems (Galloway et al. 2004).  In terrestrial ecosystems, atmospheric N deposition is 

predicted to increase by a factor of 2.5 over the next century (Lamarque et al. 2005).  This 

represents a major biogeochemical change for terrestrial ecosystems.    

Nitrogen deposition and N retention in temperate forests 

Ecosystem response to increased levels of N deposition depends upon whether the 

amount and duration of deposition has exceeded the ecosystem’s capacity to retain N (Aber et al. 

1989, Fenn et al. 1998).  Nitrogen is retained in terrestrial ecosystems through plant uptake, 

microbial immobilization, and abiotic immobilization (Zak et al. 1990, Johnson 1992, 

Nadelhoffer et al. 1995, Fenn et al. 1998).  Most retention of nitrogen is biotic (Davidson et al. 

1992, Johnson 1992); however, the presence of high quantities of soil organic matter (SOM) can 

contribute to abiotic retention of N (Mortland and Wolcott 1965, Nõmmik 1965).   

Factors such as stand age, overstory composition, and soil properties affect biotic 

retention and, therefore, total ecosystem N retention (Vitousek and Reiners 1975, Vanmiegroet 

and Cole 1984, Aber et al. 1995, Högberg 2012).  Land-use and disturbance history can 

influence these factors and indirectly affect the ability of a system to retain N (Magill et al. 1996, 

Magill et al. 1997).  Historic land-use that removed large amounts of N deposition can be a better 

predictor of ecosystem N status than current N deposition levels (Aber et al. 1998).  While 

disturbed ecosystems lack the biomass to retain additional N, early successional ecosystems are 

accumulating N as biomass increases following disturbance and would be expected to internally 

retain additional N from atmospheric deposition.  However, late-successional systems with large 

internal N pools in which there is efficient N cycling may have limited ability to retain any 
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additional N within the system (Vitousek and Reiners 1975, Aber et al. 1989, Fenn et al. 1998).  

Moreover, ecosystems in which N is in steady-state through cycling, rather than accumulating N, 

will be those most likely to reach N saturation via additional anthropogenic inputs of N (Aber et 

al., 1989).  However, increasing NPP in the Earth’s forests suggests that many forests are not yet 

N-saturated (Magnani et al. 2007, Chapin et al. 2011).  The effects of N deposition on 

ecosystems may change over time as an ecosystem moves from N limited to N saturated (Aber et 

al., 1989).   

Effects of increased N deposition on temperate forest ecosystems 

Increases in the atmospheric deposition of N can have far-reaching consequences on 

forest ecosystems.  One well-known consequence of elevated N deposition is its potential to 

affect soil cation nutrient concentrations, soil pH and, thus, plant health.  Excess N from 

atmospheric deposition is often leached from soil as nitrate (NO3
-
) (MacDonald et al. 2002). The 

negatively charged NO3
-
 can co-leach positively charged ions (Ca

2+
, Mg

2+
, K

+
) which are 

important plant nutrients (Currie et al. 1999).  Additionally, wet deposition of N  as HNO3 is part 

of acid rain (Likens et al. 1996).  Increased soil acidity from acid deposition can further 

exacerbate losses of these nutrients in poorly-buffered soils with a limited capacity for cation 

retention (Likens et al. 1996).  This can have a deleterious effect on plants requiring high 

amounts of these nutrients, growing on soils in which availability of these nutrients was already 

limited (Zaccherio and Finzi 2007).  Furthermore, reductions in soil pH can release Al
3+

 in soil, 

which can be toxic for plants (Johnson et al. 1991, Matzner and Murach 1995).  However, the 

effects of co-leaching and acidity are not as pronounced on well-buffered soils with large cation 

exchange capacities and high nutrient concentrations, conditions which are present in the forest 

stands studied in this dissertation (Patterson et al. 2012).    
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However, increased rates of N deposition also impact temperate forest ecosystems by 

increasing N availability.  Plant growth in terrestrial ecosystems is often N limited (LeBauer and 

Treseder 2008).  Because of this, elevated N deposition leads to increases in net primary 

productivity (NPP) (Nadelhoffer et al. 1999, Magnani et al. 2007).  Together, increased N 

availability and increased productivity can lead to changes in carbon (C) allocation within plant 

tissues.  Increased root turnover, lower root biomass, increased foliar biomass, and increased 

woody biomass were originally proposed as possible plant physiological responses to rising N 

deposition in forests (Peterson and Melillo 1985, Aber et al. 1989).  Furthermore, plant allocation 

to mycorrhizal fungi and rhizosphere microbes are likely to decline as anthropogenic N 

deposition increases (Aber et al. 1989).  Such potential changes in plant allocation to tissues and 

to microbes have the potential to further impact ecosystem C storage and nutrient cycling.   

The increase in plant available N that results from elevated N deposition also causes an 

increase in N concentrations in foliage (Koerselman and Meuleman 1996, Verhoeven et al. 

1996).  This, in turn, leads to leaf litter which is enriched in N because not all N is translocated 

from the foliage upon leaf senescence (Flanagan and Vancleve 1983).  Foliar increases in N can, 

therefore, impact not only productivity, but also the process of microbial N mineralization and 

decomposition.  Decomposer microbes carry out N mineralization, the process of converting 

organic N in plant litter into NH4
+
, which makes N available for plant assimilation; microbial N-

mineralization is thus coupled with the C-cyling process of decomposition.  However, 

microorganisms can also directly assimilate inorganic N and compete with plants for this 

resource (Zak et al. 1990, Zogg et al. 2000).  Therefore, N deposition has the ability to alter 

microbial N and C cycling by changing the availability of inorganic and organic N in litter and 

soil pools. 
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Initially, it was predicted that increases in N deposition would stimulate decomposition 

by either 1) reducing the C:N ratio in plant litter and, thereby, increasing its lability to microbes 

or 2) increasing the amount of N available in the soil and, thus, allowing for increased microbial 

decomposition of litter with high C:N ratios. (Aber et al. 1989, Taylor et al. 1989, Prescott 1995).    

For example, under conditions of N limitation, N-rich leaf litter decomposes more rapidly than 

litter with low N content (Gosz 1981, Taylor et al. 1989).  However, others suggested that 

increases in inorganic N availability, resulting from elevated rates of N deposition, would instead 

inhibit microbial decomposition by reducing N-mineralization rates (Fog 1988).  Indeed, 

increased N availability tends to stimulate early stages of decomposition, but retard the later 

stages of litter decomposition (Berg and Staaf 1980, Berg and Staaf 1981, Berg et al. 1987, Fog 

1988, Nilsson 1995).  Similarly, increasing rates of N deposition can stimulate microbial 

decomposition of labile litter, but slow the decomposition of recalcitrant litter (Waldrop et al. 

2004); thus, the effects of increased N deposition on plant litter decomposition can vary across 

forest ecosystems (Waldrop et al. 2004).  Nevertheless, after decades of study, metaanalyses 

suggest that N deposition often has an inhibitory effect on this ecosystem process, rather than a 

stimulating one (Janssens et al. 2010, Liu and Greaver 2010).   

Efforts to understand the effects of N deposition on decomposition have often focused 

specifically on lignin decay because lignin is the constituent of plant litter which limits the rate 

of decomposition (Fogel and Cromack 1977, Berg and Staaf 1980, Melillo et al. 1982).  Lignin is 

a recalcitrant plant compound composed of phenolpropane units linked by carbon-carbon and 

ether linkages.  Lignin makes up 15-30% of the mass of lignocellulose, a complex formed from 

cellulose, lignin, and hemicelluloses.  Together, cellulose and lignin constitute the two most 

abundant biopolymers on Earth (Lee 1997, Kogel-Knabner 2002, Yadav and Malanson 2007).    
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Fungi mediate critical processes during lignin decay in terrestrial ecosystems (de Boer et 

al. 2005, Bugg et al. 2011, Floudas et al. 2012).  Saprotrophic fungal decomposers break down 

lignin in order to access the energy-rich cellulose and hemicellulose which are protected by 

lignin; lignin alone is not a substrate for fungal growth.  However, fungi also attack lignin to 

obtain N which would otherwise be unavailable because it is protected by lignin or complexed 

with partially-decomposed lignin derivatives in soil organic matter (Cairney and Burke 1994, 

Bending and Read 1997, Martin and Selosse 2008, Courty et al. 2009). For example, some 

ectomycorrhizal fungi possess lignolytic genes (Bodeker et al. 2009, Courty et al. 2009) and it 

has been suggested that ectomycorrhizae might express these genes in order to obtain N (Burke 

and Cairney 2002).    

Experimental evidence suggests that increasing N availability reduces fungal lignin 

decomposition.  High levels of inorganic N levels can suppress lignin degradation by the wood-

rotting basidiomycete Phanerochaete chrysoporium (Weinstein et al. 1980, Fenn and Kirk 1981), 

although this response is not always consistent across fungal taxa (Leatham and Kirk 1983, 

Boyle et al. 1992).  Furthermore, N concentrations may regulate fungal production of lignin 

degrading enzymes and their activity in some situations (Boominathan et al. 1990, Vanderwoude 

et al. 1993, Soden and Dobson 2001, 2003).  Declines in the enzyme activity and gene 

expression of laccase, an enzyme involved in lignin depolymerization, have been reported under 

field conditions (Carreiro et al. 2000, DeForest et al. 2004b, a, Waldrop et al. 2004, Edwards et 

al. 2011).  These changes in fungal activity may underlie observed reductions in decomposition 

under higher rates of N deposition. 

If atmospheric N deposition suppresses the production and activity of fungal lignolytic 

enzymes, then fungi that decompose lignin might have less access to energy-souces (i.e., 
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cellulose, hemicelluloses) that are protected by lignin.  These fungi could be placed at a 

competitive disadvantage, relative to other fungi that target accessible cellulose and 

hemicellulose without first breaking-down the protective lignin. If lignolytic fungal taxa are at a 

disadvantage under higher rates of N deposition, this could result in a decline of their 

representation within the saprotrophic fungal community and a change in fungal community 

composition.  Determining the underlying mechanism of this response was the primary focus of 

my dissertation research. 

Summary of previous findings of a long-term atmospheric N deposition experiment in 

northern hardwood forests of Michigan 

A long-term field study in Michigan has been examining the effects of experimental N 

deposition on northern hardwood forests, and I used this experiment to test my ideas regarding 

the effect of anthropogenic N depositon on fungal decomposers.  Since 1994, a series of northern 

hardwood stands have received N additions at a rate predicted to occur in the near future (3 g 

NO3
-
-N m

-2
 y

-1
).  These forest stands span a gradient of temperature, precipitation, and ambient 

atmospheric N deposition (Figure 1.1, Table 1.1).   

This long-term experiment has produced some results consistent with hypotheses for N 

deposition on forests (Aber et al. 1989, Aber et al. 1998) and some findings that run counter to 

those expectations.  For example, as predicted, both NPP and foliar N have increased in response 

to experimental N deposition (Zak et al. 2004, Pregitzer et al. 2008).  The biomass of wood, but 

not foliage, has increased under experimental N deposition (Pregitzer et al. 2008).  Additionally, 

the biomass, turnover, or respiration of fine roots does not appear to have changed under 

experimental N deposition (Burton et al. 2004).   
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This experiment has provided many insights into the effect of N deposition on the process 

of decomposition.  Chronic experimental N deposition has slowed plant litter decay and 

increased soil organic matter (Pregitzer et al. 2008, Zak et al. 2008).  Forest floor biomass has 

increased under experimental N deposition, a result which is due to decreased decomposition 

rather than increased leaf production (Pregitzer et al. 2008, Zak et al. 2008).  Furthermore, the 

production of phenolic dissolved organic carbon has increased under experimental N deposition, 

suggesting that elevated N deposition might be leading to incomplete microbial lignin decay 

(Pregitzer et al. 2004, Smemo et al. 2006).  In addition to biogeochemical changes, N deposition 

has caused observable changes in the activity of fungal decomposers.  For example, experimental 

N deposition has decreased both the activity of lignolytic enzymes (DeForest et al. 2004b) and 

the abundance of mRNA transcripts for lignolytic enzymes (Edwards et al. 2011).  

This long-term N deposition experiment offered me a unique opportunity to investigate 

whether changes in decomposer community composition are co-occurring with decreases in 

decomposer activity.  I have conducted several experiments to examine the response of the 

fungal community to long-term experimental N deposition.  While this long-term experiment 

consists of four replicate sites, for logistical reasons,  the experiments outlined in Chapter 2 were 

conducted in only two of the four sites (Sites D & B, Figure 1.1, Table 1.1), and the experiments 

described in Chapter 3 were conducted for the southernmost site only (Site D, Figure 1.1, Table 

1.1).  The experiments in Chapter 4, however, include all four of the experimental sites (Figure 

1.1, Table 1.1). 

Chapter 2 asks “Does atmospheric N deposition alter the diversity, composition, or 

structure of the active fungal community in the forest floor?”  To help me understand whether 

changes in the fungal community under N deposition are related to lignin decomposition, 
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Chapter 3 asks “Does experimental N deposition reduce the abundance of lignolytic fungi?”  The 

experiments in this chapter examined the fungal communities on decomposing substrates that 

vary in their initial lignin, cellulose, and hemicellulose content over the course of decomposition.  

Chapter 4 focuses on potential effects of experimental N deposition on the function of fungal 

communities by asking “Does experimental N deposition alter the composition, richness, or 

diversity of expressed lignolytic genes?” Specifically, this chapter examines fungal class II 

peroxidases, an important fungal enzyme for lignin decay.  If experimental N deposition alters 

the composition or diversity of expressed fungal lignolytic peroxidases, this could reflect 

reduced enzymatic capabilities of the fungal community to attack lignin.   
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TABLES 

Table 1.1. Climatic, floristic, and edaphic properties of two northern hardwood forests 

receiving experimental N deposition.  Both of these sites were included in Chapter 1.  Field 

experiments for Chapters 2 and 3 were conducted in Site D only.  Two other sites, A and C, 

are also part of this long-term N depositional field experiment.  However, they are not 

included in this table because they were not included in the studies proposed here. 

Characteristic Site 

 B D 

Location   

   Latitude (N) 4533′ 4340′ 

   Longitude (W) 8452′ 8609′ 

Climate   

   Mean annual precipitation (mm)
†
 874 824 

   Mean annual temperature (C)
‡
 6.2 7.7 

   Wet + dry total N deposition (g N m
-2

 yr 
-1

)
§
 0.91 1.18 

Vegetation   

   Overstory age (2008) 95 100 

Soil Chemistry
¶
   

   Exchangeable calcium (cmol(+) kg
-1

) 3.43 2.36 

   Exchangeable magnesium (cmol(+) kg
-1

) 0.49 0.44 

   Exchangeable aluminum 0.19 0.63 

   Base Saturation (%) 69 82 

   pH (10 cm mineral soil) 4.92 4.60 

†
Mean annual precipitation, for the years 1994 to 2008, was recorded using weighing rain 

gages (Model 5-780, Belfort Instrument Co., Baltimore, MD) located in open areas within 5 

km of each site. 

‡
Mean annual temperature, for the years 1994 to 2008, was recorded on site at 2 m using 

thermistors which were read every 30 minutes throughout the year, with averages recorded 

every 3 h using data loggers (EasyLogger Models 824 and 925, Data Loggers, Inc., Logan 

UT). 

§
MacDonald et al. 1992  

¶
D.R. Zak, unpublished data 
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FIGURES 

 

 

 

Figure 1.1.  Map of four replicate northern hardwood forests part of a long-term N deposition 

experiment.  These four forests lie along a gradient of climate and ambient N deposition.  

Temperature and ambient N deposition decrease across this gradient from south to north.  

Precipitation increases along the gradient from south to north.  Chapter 1 experiments were 

conducted in Sites B and D; experiments in Chapters 2 and 3 were conducted in Site D only. 
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CHAPTER 2 

Long-term experimental nitrogen deposition alters the composition of the active fungal 

community in the forest floor 

ABSTRACT 

Global increases in the rate of atmospheric nitrogen deposition have the potential to alter the 

composition and function of soil microbial communities.  Here, we tested the hypothesis that 

experimental N deposition has altered the composition of active communities of Dikarya fungi.  

Such a change may underlie previously observed reductions in decomposition and increases in 

soil organic matter in a long-term field experiment.  The actively metabolizing forest floor fungal 

community was characterized from cDNA clone libraries constructed from 28S fungal rRNA 

extracted from the forest floor of two northern hardwood stands in the lower peninsula of 

Michigan, USA.  We demonstrate that long-term experimental N deposition altered the 

composition of the active communities of Dikarya fungi in the forest floor in each of these forest 

stands.  Because forest floor fungi are important decomposers, the alteration of forest floor 

fungal communities by increasing N deposition may have implications for the cycling and 

storage of C in forest ecosystems. 
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INTRODUCTION 

Emissions of reactive nitrogen (N) have increased 300-500% over the last century, a 

biogeochemical change that directly results from anthropogenic activities (Denman et al., 2007).  

Moreover, atmospheric N deposition in terrestrial ecosystems has been projected to further 

increase by 250% over the next century (Lamarque et al., 2005).  Temperate forests are a 

globally important carbon (C) sink, and future rates of atmospheric N deposition have the 

potential to influence their function.  However, the majority of attention has focused on how 

atmospheric N deposition may enhance net primary productivity in these N-limited ecosystems 

(Nadelhoffer, 1999; Currie et al., 2004; LeBauer and Treseder, 2008), albeit there remains 

considerable debate regarding this response (Magnani et al., 2007).  Nevertheless, ecosystem C 

storage is determined not only by rates of net primary production, but also by rates of 

decomposition and the formation of soil organic matter.  Soils globally contain ~75% of the C 

stored in terrestrial ecosystems (Prentice et al., 2001); mounting evidence indicates that soil 

organic matter accumulation may be a widespread response to increasing N deposition in forests 

(Janssens et al., 2010).  Thus, understanding the mechanisms through which C storage in forest 

soils may be affected by increasing rates of N deposition is of importance for understanding 

ecosystem function under global change. 

One mechanism through which increasing rates of N deposition could reduce the rate or 

extent of decomposition is by inducing a change in the composition or diversity of the microbial 

community.  Decomposition is a microbially-mediated process which can be altered by changes 

in the composition and diversity of the microbial decomposer community (Strickland et al., 

2009a, 2009b; Fukami et al., 2010; McGuire et al., 2010; Wallenstein et al., 2010).  Fungi are 

especially important decomposers of plant litter in terrestrial ecosystems.  The majority of forest 
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floor fungal saprotrophs belong to the fungal phyla Basidiomycota and Ascomycota, which 

together make up the subkingdom Dikarya.  These organisms exhibit considerable variation in 

the number and type of genes they possess which encode for enzymes involved in the 

degradation of plant litter (Baldrian, 2006; Hoegger et al., 2006; Morgenstern et al., 2008; 

Hofrichter et al., 2010; Kellner et al. 2010; Floudas et al., 2012).  Additionally, fungal taxa have 

been observed to vary in the efficiency in which they decompose plant litter and its constituents 

(Osono and Takeda, 2001, 2002, 2006; Osono et al., 2003, 2009; Osono, 2007; Valášková et al., 

2007; Šnajdr et al., 2010).  Thus, a change in the diversity or composition of the fungal 

decomposer community could have important functional consequences for decomposition.   

Particular attention has been given to the idea that fungi that decompose lignin could 

become less competitive under elevated N deposition, leading to a change in fungal community 

composition (Fog, 1988; DeForest et al., 2004b; Blackwood et al., 2007; Hassett et al., 2009).  

Lignin is a decay-resistant component of plant cell walls that protects the more energy-rich 

cellulose and hemicellulose constituents from microbial attack.  Lignin decay limits the overall 

rate of forest litter decomposition (Osono and Takeda, 2005), and accumulating evidence 

indicates that atmospheric N deposition may negatively influence lignin decay in forest 

ecosystems (Berg and Matzner, 1997; Waldrop and Zak, 2006).  Additionally, evidence from 

laboratory and field studies suggests that higher N conditions can reduce the expression and 

activity of fungal enzymes involved in lignin decomposition, as well as the rate of lignin 

decomposition by some fungal species (Weinstein et al., 1980; Fenn and Kirk, 1981; 

Boominathan et al., 1990; Vanderwoude et al., 1993; Carreiro et al., 2000; Soden and Dobson, 

2001, 2003; DeForest et al., 2004a, 2004b; Waldrop et al., 2004; Edwards et al., 2011). 
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If atmospheric N deposition does change fungal community composition, there are 

several different ways in which such a change could proceed.  A reduction in species richness or 

a decline in taxonomic diversity (α-diversity) under higher rates of N deposition could occur.  

Alternatively, richness and α-diversity could be unaffected by increasing N deposition, but 

increasing rates of N deposition could alter the taxonomic composition (β-diversity) of the 

community (Whittaker, 1972; Lozupone and Knight, 2008).  Lastly, the composition of taxa 

present could be unaffected by increasing N deposition, but a change in community composition 

could occur if the relative abundances of taxa change. 

 To test the hypothesis that long-term increases in N deposition alter the composition of 

an important group of decomposers, we have examined the composition of the active community 

of Dikarya fungi in a long-term field study in which northern hardwood stands have received N 

additions at a rate predicted to occur in the near future (3 g NO3
-
-N m

-2
 y

-1
).  In this long-term 

field experiment, plant litter decay has slowed and the accumulation of soil organic matter has 

increased under experimental N deposition (Zak et al., 2008; Pregitzer et al., 2008).  

Furthermore, the production of phenolic dissolved organic carbon has increased under 

experimental N deposition, suggesting that elevated N deposition might be leading to incomplete 

microbial lignin decay (Pregitzer et al., 2004; Smemo et al., 2006).  Additionally, the activity of 

lignolytic enzymes (DeForest et al., 2004b) and abundance of mRNA transcripts for lignolytic 

enzymes (Edwards et al., 2011) has been reduced under experimental N deposition in our study.  

We have reasoned that changes in the community composition of Dikarya fungi, which are 

active in the forest floor, are occurring alongside these previously observed declines in 

extracellular enzyme activity and gene expression.  Our objective was to characterize and 

compare the active forest floor fungal community.   Here, we constructed and sequenced cDNA 
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clone libraries of the conserved fungal 28S rRNA extracted from the forest floor in order to 

examine the richness, diversity, composition, and structure of the active Dikarya fungi.   

METHODS 

Site Description 

Our study sites consisted of two northern hardwood forest stands that are dominated by sugar 

maple (Acer saccharum Marsh.) in Michigan, USA (Table 2.1).  These two sites are two of the 

four sites in the Michigan Gradient Experiment, a long-term elevated atmospheric N deposition 

experiment spanning a climatic and ambient N deposition gradient in Michigan, USA.  The 

southern Site D experiences higher mean annual temperatures, longer growing seasons, and 

higher annual inputs of ambient atmospheric N deposition than the northern Site B (Table 2.1).  

Soils are well-drained sandy typic Haplothords of the Kalkaska series.  The sites have similar 

overstory ages and floristic compositions.  Sites do not significantly differ in soil pH (Table 2.1).  

The Oi horizon at each site is dominated by sugar maple leaf litter.  

Each site contains six 30-m x 30-m plots; three plots receive ambient N deposition, 

whereas the other 3 receive ambient N deposition plus 3 g NO3
-
 -N m

-2
 y

-1
.  This amount has 

been added since 1994 and is consistent with levels expected to be reached in northeastern North 

America and portions of Europe by 2050 (Galloway et al., 2004).   Treatments are applied as 

NaNO3 pellets in 6 equal additions of 0.5 g N m
-2

 during the growing season (April-September).  

Each treatment plot is surrounded by a 10-m treated buffer zone to reduce edge effect, which 

also receives the aforementioned N deposition treatments. 

Sample Collection 

Forest floor from the Oe and Oa horizons was collected from 3 plots receiving ambient N 

deposition and 3 plots receiving experimental N deposition at both sites.  Samples were 
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composited at the plot level. Within each plot, the Oe and Oa horizons were manually collected 

from 10 random 100-cm
2
 subplots, after the Oi horizon was removed.  The Oe and Oa material 

from these ten random subplots was combined and homogenized with sterilized scissors.  For 

each plot, duplicate 50-mL sterile polypropylene tubes were filled with as much of this 

homogenized material as they could contain and immediately flash frozen in the field in liquid 

N2.  Samples were kept frozen while transported to the laboratory, where they were stored at -80 

°C.   

RNA Extraction and Purification 

For each composite sample from each plot, total RNA was extracted from 3 g of forest floor 

using an initial Tris-phenol extraction to separate nucleic acids from contaminants, followed by 

subsequent extraction of the aqueous phase using a Qiagen RNA/DNA Midi kit following a 

previously published method (Luis et al., 2005).  Extracted RNA solutions were treated with 

DNase I to remove any DNA that may be present in the RNA solution and were then stored at -

80° C.  Prior to reverse transcription, samples were purified using the Plant RNAeasy Mini 

column kit (Qiagen, Venlo, Netherlands).  Purification was performed according to a modified 

manufacturer’s protocol for isolation of RNA directly from tissue with 2.5 mg of activated 

charcoal added to 350 µL of the manufacturer supplied “RLC” buffer.  Purified RNA was 

quantified using a Quant-iT Ribogreen kit (Invitrogen, Carlsbad, CA ) and Molecular Devices 

Fmax fluorescent microplate reader (Sunnyvale, CA), according to Ribogreen manufacturer 

instructions. 

Reverse Transcription and Amplification of cDNA 

The primers LR3 (5’CCG TGT TTC AAGAC GGG 3’) and LR0R (5’ ACCC GCT GAA CTT 

AAGC 3’) were selected to target the 28S rRNA region of interest 
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(http://biology.duke.edu/fungi/mycolab/primers.htm ).  First strand cDNA was synthesized from 

28S rRNA via a reverse transcription reaction using the reverse primer LR3, 65 ng of purified 

extracted total RNA, and SuperScript II reverse transcriptase, according to the manufacturer’s 

protocol (Invitrogen, Carlsbad, CA).  Following first strand synthesis, cDNA of fungal 28S 

rRNA was amplified via PCR on a Robocycler 96 thermocycler (Stratagene, La Jolla, CA) with 

initial denaturation at 95 °C for 3 min, followed by 10 cycles of denaturing at 94 °C for 30 sec, 

annealing at 50 °C for 45 sec, and elongation at 72 °C for 90 sec, and a final elongation at 72 °C 

for 10 minutes.  The PCR mixtures each contained 1 µL of first strand cDNA, 0.625 µL forward 

primer of 10 µM LR0R, 0.625 µL 10 µM reverse primer LR3, 2.5 µL dNTPs (2 µM),  2.5 µL 

10X PCR buffer (1.5 mM MgCl2), and 16.5 µL molecular grade water.  Duplicate 25-µL 

reactions were performed and combined for a total of 50 µL PCR product per plot.  PCR 

products were purified using a MoBio Ultraclean PCR Clean-up kit (MoBio, Carlsbad, CA) and 

stored at -20°C.  

Clone Library Construction and Sequencing 

Amplified 28S cDNA segments were cloned into vector PCR 2.1 TOPO using a TOPO TA 

Cloning kit, with manufacturer’s protocol modified to reduce all reagents to one half of 

recommended volume (Invitrogen, Carlsbad, CA).  Vectors containing inserts were transformed 

into TOPO TA Cloning TOP10 chemically competent cells.  Ninety-six positive colonies were 

selected for each sample and grown overnight at 37 °C in Luria-Bertani broth containing 10% 

glycerol, 0.025 g L
-1

 ampicilin, 0.0125 g L
-1

 kanamycin.  Libraries were screened and frozen at -

80 °C until sequencing could occur.  For each sample, 96 sequences were submitted for 

bidirectional sequencing.  Sequencing was performed at the DNA Sequencing Lab at the 

University of Georgia (Athens, GA) and Seqwright (Houston, TX).  

http://biology.duke.edu/fungi/mycolab/primers.htm
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Sequence editing and alignment 

Sequences were edited and contiguous sequences were constructed in Geneious version 5.5.7 

(Biomatters, http://www.geneious.com/).  All high quality sequences were aligned in MAFFT 

v.6.814b plug-in for Geneious (Katoh et al., 2002) Neighbor-joining trees were constructed using 

the Geneious Tree-Builder.  Sequences that were non-fungal, fungal but neither ascomycetes nor 

basidiomycetes, or incomplete sequences were identified using the neighbor-joining trees to 

identify sequences that did not group with fungal sequences and by performing searches in the 

NCBI BLAST database; these sequences were removed from subsequent analyses.   

Assessment of sampling effort and subsampling 

The remaining sequences were realigned in MAFFT with 181 Dikarya reference sequences that 

had been previously identified from NCBI databases (Appendix A).  Within MAFFT, the FFT-

NS-2 algorithm was selected because the size of the data set exceeded 200 sequences.  This 

alignment was imported into MOTHUR v.1.27.0 and converted into a distance matrix (Schloss et 

al., 2009).  Sampling effort was assessed by creating rarefaction curves and calculating Good’s 

coverage estimator (Good, 1953) in MOTHUR.  Sequences were clustered into 99% sequence 

similarity OTUs in MOTHUR and a representative sequence from each OTU was randomly 

selected using the get.oturep command.  These are available in GenBank under accession 

numbers KC701765 - KC701965 (Appendix B). 

An unequal number of Dikarya sequences were recovered among sites and N deposition 

treatments.  Therefore, it was necessary to subsample sequences prior to estimating richness, 

calculating diversity indices, and performing β-diversity analyses.  We subsampled each 

treatment to contain the same number of Dikarya sequences as that in the treatment with the 

lowest recovery.  For each N deposition treatment within sites B and D, a set of 121 sequences 

http://www.geneious.com/
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were selected using the sub.sample command in MOTHUR.  A separate subsampling procedure 

was conducted prior to examining the relative abundance of different taxonomic groups because 

this required comparisons of the relative abundance of taxa among plots within each treatment.  

The number of sequences recovered was uneven across plots, so subsampling of 36 sequences 

per plot for Site B and 49 sequences per plot for Site D was conducted on the original set of 626 

recovered sequences in MOTHUR.  These values represent the number of recovered sequences 

in the smallest sample at each site.  Subsampling for Sites B and D was conducted separately, 

because the number of sequences per plot between the sites was significantly different (Student’s 

t-test, 2-tailed, P = 0.001).  Clustering of OTUs and random selection of representative 

sequences on subsampled sets of sequences was also performed in MOTHUR.  

Phylogenetic tree construction and taxonomic assignment 

Phylogenetic trees were created by aligning randomly-selected representative sequences from 

each 99% sequence similarity OTU in the manner described above, but with the additional 

inclusion of a Glomeromycota reference sequence as an outgroup (Appendix A).  Maximum-

likelihood trees were created using the PhyML plug-in (Guindon and Gascuel, 2003) for 

Geneious with a GTR substitution model (Tavaré, 1986).  The trees were manually rooted in 

MEGA version v.5.05 (Tamura et al., 2011).  A phylogenetic tree was created prior to 

subsampling for assigning taxonomy to sequences.  A second phylogenetic tree was created after 

subsampling as described above for use in β-diversity analysis (Supplemental Fig. S2.1). 

Richness estimation and diversity indices 

Chao1 richness (Chao, 1984), Shannon diversity (Shannon, 1948), and Simpson diversity 

(Simpson, 1949) were calculated in MOTHUR for 99%, 95%, and 90% sequence similarity 

OTUs.  Chao1 richness uses the low frequency count OTUs to estimate the number of missing 
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OTUs (Chao, 1984; Chao and Shen, 2012).  The Shannon index provides us with a measure of 

the uncertainty in predicting the OTU to which the next randomly-selected sequence belongs 

(Shannon, 1948).  Simpson diversity was calculated to examine the probability that any two 

sampled sequences would belong to the same OTU (Simpson, 1949).  Simpson diversity is 

calculated in the original form in MOTHUR.  Because of this, the Simpson values (λ) calculated 

in MOTHUR were inversed to obtain the more commonly used inverse form of the Simpson 

index (1/λ).  Examining three OTU levels was a proxy for examining these measures over a 

range of taxonomic levels.  

β-Diversity analyses 

Analyses of β-diversity were performed using the online Unifrac portal at 

http://bmf2.colorado.edu/unifrac/ (Lozupone and Knight, 2005; Lozupone et al., 2006, 2007).  

These analyses include Unifrac significance, weighted Unifrac significance, and Martin’s P-test 

(Martin, 2002; Lozupone and Knight, 2005, 2008; Lozupone et al., 2006, 2007).  The “each pair 

of environments” option was selected to determine if experimental N deposition libraries were 

significantly different than ambient N deposition libraries; this option removes sequences which 

are not found in either of the two libraries being compared.  Analyses were run for 100 

permutations. 

The Unifrac metric measures the fraction of unique phylogenetic branch length leading to 

sequences found in one environment, but not in others.  Significantly different communities are 

those in which less than 5% of trees in which sequences were randomly assigned to 

environments had a higher Unifrac metric (i.e. fraction of unique branch length) than the real tree 

(Lozupone and Knight, 2005).  Unifrac is a useful tool for comparing microbial communities 

because it incorporates phylogenetic relatedness by using branch length.  The degree of 

http://bmf2.colorado.edu/unifrac/
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relatedness is an important consideration because more closely related sequences share more 

evolutionary history, and perhaps ecological characteristics.   Unifrac significance determines if 

communities contain more unique lineages than would be expected by chance based on presence/ 

absence of those lineages (Lozupone et al., 2007).  Weighted Unifrac significance, which 

incorporates abundance information, examines whether individuals in a community are more 

phylogenetically similar to each other than to those in another community (Lozupone et al., 

2007). 

Unlike Unifrac, Martin’s P-test does not examine branch length or unique lineages 

(Martin, 2002; Lozupone et al., 2006).  Instead, Martin’s P-test examines the covariation of 

sequence distribution and phylogeny.  The relationships between sequences are randomized to 

estimate the number of switches between communities that would occur under the null 

hypothesis that phylogeny and sequence distribution between communities do not covary.  The 

results are significant if the number of switches between communities needed to explain the 

observed distribution of sequences is less than the number of changes estimated to occur when 

sequence distribution is randomized.  Martin’s P-test can inform us if taxa present under ambient 

and experimental N deposition are distinctly separated in a phylogenetic tree. 

Abundance of taxonomic groups 

Taxonomy was assigned to each recovered sequence based on construction of a phylogenetic tree 

with reference sequences, BLAST searches, and through consulting recent literature.  We were 

able to assign most ascomycete sequences to class and most basidiomycete sequences to order.  

We used a subsampled set of sequences to examine the relative abundances of different 

taxonomic groups under experimental N deposition.  Student’s 1-tailed t-test was used to test the 

hypothesis that the abundance of particular taxonomic groups would be suppressed under 
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experimental N deposition.  However, it is also possible that other taxonomic groups might 

increase in abundance, either in response to the decline of another group or because they are 

favored under high nitrogen conditions.  Therefore, we used the Student’s 2-tailed t-test to 

address the hypothesis that the abundances of taxonomic groups would differ in libraries from 

ambient and experimental N deposition plots.  T-tests were performed in Microsoft Excel 2007.  

We compared the relative abundance of Ascomycota and Basidiomycota sequences under 

experimental N deposition at Sites B and D.  We also tested the abundance of taxonomic groups 

within the Ascomycota and Basidiomycota; these taxa included several ascomycete classes from 

the subdivision Pezizomycotina (Dothideomycetes, Eurotiomycetes, Leotiomycetes, 

Orbiliomycetes, Pezizomycetes, Sordariomycetes), several orders from the basidiomycete 

subdivision Agaricomycotina and the class Agaricomycetes (Agaricales, Amylocorticiales, 

Auriculariales, Cantharellales, Gomphales, Polyporales, Trechisporales), two basidiomycete 

classes from subdivision Agaricomycotina and class Tremellomycetes (Cystofilobasidiales, 

Tremellales), and the basidiomycete order Microbotryomycetes in the subdivision 

Pucciniomycotina.  We also examined the abundance of a basal clade of ascomycetes with 

unknown taxonomy mostly known from uncultured, environmental clones.  Relative abundance 

testing of these taxonomic groups (Student’s t-tests) was performed separately for sequences 

from Site B and from Site D. 

RESULTS 

 Dikarya Sequence Recovery  

Of the 1152 clones submitted for sequencing, 1086 clones contained inserts that produced 

readable sequences containing both primer regions.  Of these, 626 sequences represented 

Dikarya.   The other 460 sequences were removed from analysis because they were nonfungal 
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(385), represented fungi but not Dikarya (69) or were of insufficient length to cover the entire 

amplified region (6). Rarefaction curves for ambient and experimental N deposition treatments 

are presented in Supplemental Fig. S2.2.   Good’s coverage varied across both the sites and N 

deposition treatments before subsampling, with Site D showing higher coverage than Site B 

(Supplemental Table S2.1).    

Richness estimation and diversity indices  

Chao1 richness and inverse Simpson diversity were not significantly affected by experimental N 

deposition in either Site B or Site D (Tables 2.2 & 2.3).  Shannon diversity was not significantly 

different under ambient and experimental N deposition at Site B (Table 2.4).  At Site D, Shannon 

diversity was significantly lower under experimental N deposition for 90% sequence similarity 

OTUs (P < 0.05), but there was no significant difference in Shannon diversity for either 99% or 

95% sequence similarity OTUs under experimental N (Table 2.4). 

β Diversity analyses 

Pair-wise UniFrac significance tests indicated that there was less shared branch length between  

fungal communities from ambient and experimental N deposition treatments in Site D than 

would be expected by chance (Unifrac, P = 0.02, Table 2.5).  There was no significant difference 

in the amount of shared branch length between ambient and experimental N deposition 

environments at Site B (Unifrac, P = 0.15, Table 2.5).  When branches were weighted with 

abundances, ambient N deposition and experimental N deposition libraries differed significantly 

in the amounts of shared branch length at Site B (weighted Unifrac, P = 0.02, Table 2.5), but not 

at Site D (weighted Unifrac, P = 0.76, Table 2.5).  Phylogeny and sequence distribution covaried 

for ambient and experimental N deposition environments at Site D (Martin’s P-test, P < 0.0001, 

Table 2.2), but this was not true at Site B (Martin’s P-test, P = 0.15, Table 2.5).  
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Relative abundance of taxonomic groups 

The proportion of basidiomycete sequences declined significantly under experimental N 

deposition at site B (Student’s t-test, 1-tail, P = 0.03); however, this response did not occur in 

Site D.  At site B, Agaricales declined significantly under experimental N deposition (Student’s 

t-test, 1-tail, P = 0.03, Fig. 2.1a).  No other taxonomic groups responded significantly to N 

deposition at Site B (Fig. 2.1a).  At Site D, the Cantharellales (Student’s t-test 1-tail, P = 0.02) 

and Tremellales (Student’s t-test, 1-tail,  P = 0.03) declined significantly under experimental N 

deposition (Fig. 2.1b);  Cantharellales were also lower in relative abundance under experimental 

N deposition at Site D when a two-tailed Student’s t-test was applied (P = 0.04, Fig. 2.1b).  The 

Agaricales (Student’s t-test, 2-tail, P = 0.02) and Gomphales (Student’s t-test, 2-tail, P = 0.02) 

were relatively more abundant in the active community under experimental N deposition at Site 

D (Fig. 2.1b). 

DISCUSSION 

Atmospheric N deposition will continue to increase over the next century (Galloway et al., 

2004).  It is important to understand the response of litter-decaying fungi to long-term increases 

in atmospheric N deposition because these organisms transform plant detritus into soil organic 

matter (Osono, 2007), thereby mediating the process of soil C storage in forests.  Here, we 

document different compositional changes in the active communities of Dikarya fungi in two 

forest stands in response to long-term experimental N deposition.  In our long-term field study, 

experimental N deposition has reduced plant litter decay and increased soil organic matter 

accumulation (Zak et al., 2008; Pregitzer et al., 2008), but these consistent biogeochemical 

responses appear to have arisen from disparate compositional shifts between our study sites.  
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By targeting rRNA instead of rDNA, we have examined the members of the fungal 

community which were metabolically active.   In a spruce (Picea abies) forest, Baldrian et al., 

(2012) observed that the composition of the active fungal community (RNA) differed from that 

of the total community (DNA), with some OTUs exclusively recovered from the active 

community.  Furthermore, when functions were assigned to these OTUs, Baldrian et al., (2012) 

found that saprotrophic and parasitic fungi were more abundant in the active community than the 

total community.  In a beech-oak forest, Kellner et al., (2009) similarly observed that the 

composition of expressed cellulose-degrading genes formed a distinct population from the 

cellulose-degrading genes present based on DNA.  These observations (Kellner et al., 2009; 

Baldrian et al, 2012) further suggest that organisms with a low abundance can be active and 

important in soil processes.  Targeting the active community, rather than the total community, is 

important in our study because the active community is mediating the function (i.e., 

decomposition) which we seek to understand.   

Richness and diversity indices 

Experimental N deposition did not impact Chao1 richness estimates in the active community.  

Furthermore, experimental N deposition only had a significant effect on Shannon diversity for 

90% sequence similarity OTUs at Site D.  Shannon and inverse Simpson diversity were 

unaffected by experimental N deposition for all other comparisons (Table 2.3 &2. 4).  Thus, 

experimental N deposition appears to have only a limited effect on the α-diversity of the active 

Dikarya community.  However, Site B exhibited higher Shannon and inverse Simpson diversity 

than Site D in several of the comparisons (Table 2.3 & 2.4).  The differences in ambient 

atmospheric N deposition between the sites are small relative to our experimental N deposition 

treatment (Table 2.1) and are unlikely the cause of site-to-site variation.  However, the higher 
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diversity of the active Dikarya in Site B compared to Site D could be related to the climatic 

differences between these two sites (Table 2.1).  That Site B and D exhibited differences in α-

diversity indices is interesting because these two sites responded in a site-specific manner to 

experimental N deposition in the other measures which we examined, e.g., β-diversity and OTU 

abundances. 

β diversity 

Experimental N deposition significantly altered the β-diversity of active fungal communities in 

both sites, albeit in different ways.   We had hypothesized experimental N deposition could alter 

the composition of active Dikarya fungi through through the loss or gain of lineages under 

experimental N deposition (Unifrac), the covariation of lineages with N deposition treatment 

(Martin’s P-test), or the individuals of a single N deposition treatment being more closely related 

to each other than they are to members of the other N deposition treatment (weighted Unifrac).  

A significant response to even one of these β-diversity metrics would be consistent with our 

prediction that experimental N deposition alters active fungal community composition; which 

metric responded simply informs us about the nature of the observed compositional changes 

taking place in response to experimental N deposition.   

When the ambient and experimental N deposition treatments were compared at Site B, 

neither a significant Unifrac nor a significant Martin’s P-test result were obtained; however, 

weighted Unifrac was significant.  Weighted Unifrac can be significant even when Unifrac, 

which is based solely on presence-absence of unique lineages is not, because it incorporates 

abundance information to weight the branches (Lozupone et al., 2007).  The fungi in each N 

deposition treatment at Site B were phylogenetically more similar to one another than to those in 

the other N deposition treatment.  A higher degree of phylogenetic relatedness with an N 
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deposition treatment suggests that these individuals share traits that may be favored under 

different N regimes. 

In contrast, the active fungal communities under ambient N deposition and experimental 

N deposition at Site D were significantly different according to both Martin’s P-test and Unifrac 

significance tests, but not according to weighted Unifrac (Table 2.5).  Martin’s P-test indicated 

that the sequences from the ambient N deposition treatment were clustered distinctly from those 

of the experimental N deposition treatment.  Further, Unifrac indicated that there was more 

unique branch length than would be expected by chance leading to sequences from one N 

deposition treatment, but not the other.  The presence of a significant Unifrac and Martin’s P-test 

result together indicates that the monophyletic lineages not shared between the N deposition 

treatments contribute substantial branch length or, in other words, that the unique lineages are 

rooted deeper within the tree and not near the tips (Lozupone et al., 2006).  This suggests that the 

compositional differences between the ambient and N deposition treatments at Site D are more 

than superficial and that different evolutionary lineages with potentially different traits are 

present in each.  Weighted Unifrac was not significant for comparisons between the N deposition 

treatments at Site D.  This suggests that perhaps the significant result for Unifrac (unweighted) 

was driven by the presence-absence of rare taxa and not by the dominant taxa, because 

significance disappeared when abundance weights were incorporated.  We observed that no 

sequences for the Gomphales (Basidiomycota) or Eurotiomycetes (Ascomycota) were recovered 

in the ambient treatment at Site D, but these taxa were present in the experimental N deposition 

treatment (Fig. 1b).  The absence of these groups from the ambient N deposition treatments may 

have influenced differences in unique branch length and clustering measured with Unifrac and 

Martin’s P-test.  
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It is interesting that the composition of active fungal communities at Sites B and D was 

altered by long-term experimental N deposition, but that different metrics of β-diversity were 

significant at each site.  It is important to note, however, that the ambient communities at Sites B 

and D were also different from each other in terms of diversity indices (Tables 2.2-2.4) and β-

diversity measures (Table 2.5).  Thus, it is not surprising that we did not obtain consistent 

changes in the active community in response to long-term experimental N deposition because the 

ambient communities present at these sites are different from each other.  

Taxa which responded to experimental N deposition 

Dikarya taxonomic groups at Sites B and D did not respond to experimental N deposition in a 

similar manner.  The Agaricales was the only taxonomic group to respond significantly at both 

sites, but experimental N deposition had a negative effect on its relative abundance at Site B and 

a positive effect at Site D.  Furthermore, several groups responded to experimental N deposition 

at Site D which did not respond significantly at Site B, limiting our interpretation of the 

universality of the responses of these groups to increasing rates of atmospheric N deposition.   

Furthermore, there was a decline in the basidiomycete: ascomycete ratio under experimental N 

deposition at Site B, but no significant change in the proportions of basidiomycete and 

ascomycete sequences at Site D.  It should be noted that the communities under ambient N 

deposition at each of these sites contained different proportions of Dikarya taxa (Fig. 2.1).  

Ecological role of fungi responding to N deposition 

We had hypothesized that, not only would the composition of the Dikarya community shift, but 

that the composition of the community would change in such a way that lignolytic fungi would 

decline and less lignolytic fungi would increase in relative representation.  The most effective 

litter decomposers with lignolytic capacities are found in the basidiomycete order Agaricales, 
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particularly in the  Marasmius, Gymnopus, Mycena,  Clitocybe and Collybia (Osono and Takeda, 

2006; Osono, 2007; Valášková et al., 2007; Šnajdr et al., 2010).  The basidiomycete class 

Agaricales declined in relative abundance in the active community under experimental N 

deposition at Site B, but counter to our expectations, Agaricales increased in relative abundance 

in Site D.  Because these organisms responded in an opposing manner to N deposition at each of 

the sites, we cannot conclude whether increasing rates of N deposition have a positive or 

negative effect on a group that are important mediators of lignin decay. 

Other groups responding to experimental N deposition at Site D have multiple nutritional 

modes, with little being known about their role in decomposition.  For example, the 

Cantharellales declined significantly under experimental N deposition at Site D and were 

primarily composed of sequences associated with Sistotrema and Ceratobasidium.  These genera 

include saprotrophs, mycorrhizal associates, and pathogens (Olive, 1957; Nilsson et al., 2006; 

Yurchenko, 2006; Di Marino et al., 2008; Mosquera-Espinosa et al., 2013).  Saprotrophic 

Ceratobasidium and Sistotrema species have not been included in the majority of studies 

quantifying the decomposition abilities of other common saprotrophs (i.e. Osono and Takeda, 

2002; Osono, 2007; Steffen et al., 2007), so relatively little is known about their capacity to 

degrade lignin.  A related fungus, a Sistotrema/Clavulina strain, efficiently decomposed 

cellulose, but did not decompose lignin in Pinus sylvestris needles (Boberg et al., 2011).  Thus, 

the ecological role of one of major taxonomic groups recovered in this study which was 

significantly affected by experimental N deposition is unclear.  Similarly, the Gomphales 

recovered here were all associated with the genus Ramaria.  Ramaria species can be 

ectomycorrhizal or saprotrophs on wood or litter (Agerer et al., 2012).  Thus, what the increase 

in Gomphales under experimental N deposition at Site D means in terms of ecological function is 
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undeterminable, because the nutritional mode of the recovered Ramaria-associated sequences is 

not known. 

Finally, basidiomycete yeasts in the order Tremellales declined under experimental N 

deposition at Site D, but these organisms do not play a role in lignin decomposition.  Instead, soil 

yeasts assimilate carbon from both root-exudates and from compounds produced during plant 

litter decay through the action of enzymes of other fungi and bacteria (Botha, 2006, 2011).  More 

recently, however, it has been suggested that Tremellales yeasts are cellulolytic (Štursová et al., 

2012).   

Thus, only Site B showed a decline in representation of fungi implicated in lignin 

decomposition (Agaricales).  Interestingly, it is Site B which has responded most strongly in 

terms of increased soil C under experimental N deposition (Pregitzer et al., 2008).  At Site D, we 

observed an increase in fungi important in lignin decomposition (Agaricales) as well as 

responses by taxonomic group whose role in lignin decomposition is either unknown or 

negligible.  Therefore, experimental N deposition did not consistently suppress lignolytic fungi 

in our study system. 

Summary and Conclusions 

Atmospheric N deposition is an important agent of global change which has the potential to 

affect C cycling and storage in terrestrial ecosystems by slowing decomposition.  Experimental 

N deposition had negatively affected plant litter decay and enhanced soil organic matter 

accumulation in this long-term experiment (Pregitzer et al., 2008; Zak et al., 2008), a response 

that may be widespread in forests (Janssens et al., 2010).  A shift in decomposer community 

composition has been put forward as one possible mechanism which could explain this response 

(Fog, 1988; Waldrop et al., 2004; Janssens et al., 2010).  Previous research examining microbial 
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response to experimental N deposition has found either alterations (Allison et al., 2007; 

Eisenlord and Zak, 2010; Edwards et al., 2011) or no changes (DeForest et al., 2004b; Hassett et 

al., 2009) in the composition of decomposer communities.  In our study, long-term experimental 

N deposition has not altered richness and has had only minor effects on fungal diversity.  We 

have also demonstrated that long-term experimental N deposition has altered the β-diversity in 

each of these two forests, albeit in different ways.  While each site contained Dikarya taxonomic 

groups that responded to long-term experimental N deposition, the responses of particular 

taxonomic groups were not consistent between the two sites.  These results suggest that local 

fungal community composition plays an important role in how these communities shift in 

response to increasing rates of N deposition.  Although experimental N deposition has 

cumulatively reduced forest floor decay and increased organic matter accumulation in a long-

term experiment (Pregitzer et al., 2008; Zak et al., 2008), these biogeochemical responses have 

been mediated locally by different groups of active saprotrophic fungi.   
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TABLES 

 

Table 2.1. Climatic, floristic, and edaphic properties of two northern hardwood forests 

receiving experimental N deposition.  

Characteristic Site 

 B D 

Location   

   Latitude (N) 4533 4340 

   Longitude (W) 8452’ 8609’ 

Climate   

   Mean annual precipitation (mm)
†
 874 824 

   Mean annual temperature (C)
‡
 6.2 7.7 

   Wet + dry total N deposition (g N m
-2

 yr 
-1

)
§
 0.91 1.18 

Vegetation   

   Overstory age (2008) 95 100 

Soil Chemistry
¶
   

   Exchangeable calcium (cmol(+) kg
-1

) 3.43 2.36 

   Exchangeable magnesium (cmol(+) kg
-1

) 0.49 0.44 

   Exchangeable aluminum 0.19 0.63 

   Base Saturation (%) 69 82 

   pH (10 cm mineral soil) 4.92 4.60 

†
Mean annual precipitation, for the years 1994 to 2008, was recorded using weighing rain 

gages (Model 5-780, Belfort Instrument Co., Baltimore, MD) located in open areas within 5 

km of each site. 

‡
Mean annual temperature, for the years 1994 to 2008, was recorded on site at 2 m using 

thermistors which were read every 30 minutes throughout the year, with averages recorded 

every 3 h using data loggers (EasyLogger Models 824 and 925, Data Loggers, Inc., Logan 

UT). 

§
MacDonald et al. 1992  

¶
D.R. Zak, unpublished data 
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Table 2.2.  Chao1 richness for Dikarya 28S rRNA cDNA libraries from two hardwood forest 

stands (B and D) under ambient and experimental N deposition.  Libraries were subsampled to 

equalize sample sizes across stands and N deposition treatments prior to clustering.  Clustering 

of operational taxonomic units (OTUs) at three sequence similarity levels (99%, 95%, 90%) and 

calculation of Chao1 richness were performed in MOTHUR v. 1.27.0. Values for the lower-

upper confidence intervals are presented in parentheses.  There were no significant differences ( 

P < 0.05) for comparisons between N deposition treatments within a site and OTU level. 

Site OTU similarity level N deposition treatment 

  Ambient Experimental 

B 99% 243  

(132-526) 

151 

(105-251) 

95% 183 

(98-422) 

84 

(59-156) 

90% 87 

(47-221) 

36 

(29-64) 

D 99% 213 

(119-445) 

136 

(87-257) 

95% 111 

(74-203) 

86 

(57-167) 

90% 50 

(38-86) 

69 

(37-181) 
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Table 2.3.  Inverse Simpson diversity for Dikarya 28S rRNA cDNA libraries from two 

hardwood forest stands (B and D) under ambient and experimental N deposition.  Libraries were 

subsampled to equalize sample sizes across stands and N deposition treatments prior to 

clustering.  Clustering of operational taxonomic units (OTUs) at three sequence similarity levels 

(99%, 95%, 90%) and calculation of Simpson diversity were performed in MOTHUR v. 1.27.0. 

Values for the lower-upper confidence intervals are presented in parentheses.  There were no 

significant differences ( P < 0.05) for comparisons between N deposition treatments within a site 

and OTU level. 

Site OTU similarity level N deposition treatment 

  Ambient Experimental 

B 99% 48 

(36-72) 

55 

(39-98) 

95% 30 

(23-44) 

30 

(24-41) 

90% 5 

(4-8) 

9 

(7-13) 

D 99% 7 

(5-12) 

15 

(11-28) 

95% 7 

(5-12) 

13 

(9-20) 

90% 6 

(4-9) 

3 

(3-5) 
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Table 2.4.  Shannon diversity for Dikarya 28S rRNA cDNA libraries from two hardwood forest 

stands (B and D) under ambient and experimental N deposition.  Libraries were subsampled to 

equalize sample sizes across stands and N deposition treatments prior to clustering.  Clustering 

of operational taxonomic units (OTUs) at three sequence similarity levels (99%, 95%, 90%) and 

calculation of Shannon diversity were performed in MOTHUR v. 1.27.0. Values for the lower-

upper confidence intervals are presented in parentheses. Comparisons between N deposition 

treatments within a site and OTU level for which confidence intervals do not overlap ( P < 0.05 ) 

are marked with an asterisk (*). 

Site OTU similarity level N deposition treatment 

  Ambient Experimental 

B 99% 3.8 

(3.7-4.0) 

4.0 

(3.8-4.1) 

95% 3.5 

(3.4-3.7) 

3.5 

(3.3-3.6) 

90% 2.4 

(2.2-2.7) 

2.7 

(2.4-2.9) 

D 99% 3.0 

(2.7-3.4) 

3.4 

(3.1-3.6) 

95% 3.0 

(2.7-3.3) 

3.0 

(2.8-3.2) 

90% 2.5 

(2.3-2.8) 

1.9 * 

(1.6-2.2) 
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Table 2.5.  Significance values for pair-wise Unifrac, weighted Unifrac, and Martin’s P-

test for cDNA clone libraries of 28S rRNA for Dikarya fungi from two northern hardwood 

forests (Sites B and D) receiving ambient and experimental N deposition.   

Pair-wise comparisons    

Site, N deposition 

treatment 

Site, N deposition 

treatment 

Unifrac 

significance 

weighted 

Unifrac 

significance 

Martin’s 

P-test 

signficance 

B, ambient B, experimental 0.15 0.02* 0.15 

D, ambient D, experimental 0.02* 0.76 <0.0001*** 

B, ambient D, ambient 0.03* 0.68 <0.0001*** 

B, experimental D, experimental 0.46 0.09 0.98 

B, ambient D, experimental 0.21 0.99 0.21 

B, experimental D, ambient 0.02* 0.49 <0.0001*** 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



57 
 

FIGURES 

 

Figure 2.1.  Relative abundances (%) of taxa in Dikarya communities under ambient N 

deposition and experimental N deposition ( + 3 g NO3
-
 -N m

-2
 y

-1
) in two northern hardwood 

forests, a) Site B and b) Site D.  More information on these sites is provided in Table 2.1.  Taxa 

for which a significant change  (P < 0.05)  in abundance occurred are marked with an asterisk 
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(*).  A significant decline in relative abundance under experimental N deposition according to a 

one-tailed Student’s t-test is denoted with an †.  A significant difference in abundance between 

ambient and experimental N deposition treatments according to a two-tailed Student’s t-test is 

denoted with a ††.  Dothideomycetes through uncultured group (Ascomycota) represent 

taxonomic groups from the Ascomycota, while Agaricales through Microbotryomycetes 

represent taxonomic groups from the Basidiomycota. 
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Supplemental Table S2.1.  Estimation of Good’s coverage for Dikarya sequences 

recovered in fungal 28S rRNA cDNA clone libraries from two northern hardwood 

forest stands under ambient and experimental N deposition. 

Site, N 

deposition 

treatment 

OTU similarity level 

 100% 99% 95% 90% 

B, ambient 0.38 0.64 0.72 0.83 

B, experimental 0.34 0.65 0.78 0.92 

D, ambient 0.46 0.74 0.82 0.93 

D, experimental 0.52 0.77 0.87 0.93 
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Supplemental Figure S2.1.  Maximum likelihood tree of Dikarya fungi from two northern 

hardwood forests receiving ambient and experimental N deposition.  Tree includes randomly 

selected representatives of subsampled 99% sequence similarity OTUs, 183 Dikarya reference 

sequences from GenBank, and a Glomeromycota outgroup sequence.  Branches have been 



61 
 

collapsed and labeled so that the tree can be displayed on a single page.  Most Leotiomycetes 

formed a single clade in our tree, however, Rhizocladosporium & Cudonia, Collophora, 

Mollisia, and Microglossum clades were separate from the main Leotiomycetes clade.  We 

labeled these clades as Leotiomycetes here because they have been considered Leotiomycetes in 

the literature.  In Crous et al., 2007, Rhizocladosporium formed a clade separate, but related to 

Helotiales; Cudonia has been placed in the Rhystimataceae (Wang et al., 2002; Wang et al., 

2006b) which is considered part of the Leotiomycetes (Wang et al., 2006b; Lantz et al., 2011).  

Mollisia has been placed in the Helotiales (Crous et al., 2003; Wang et al., 2006a).  Collophora 

has been placed in the Leotiomycetes (Damm et al., 2010).  Microglossum has also been 

included in the Leotiomycetes (Spatafora et al., 2006; Wang et al., 2006a). 
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Supplemental Figure S2.2. Rarefaction curve of observed OTU richness in northern hardwood 

forest stands at Site B (panels A-B) and Site D (panels C-D) receiving ambient (panels A & C) 

and experimental (panels B & D) rates of N deposition.   Rarefaction curves were generated by a 

re-sampling without replacement approach in MOTHUR.   Points on the curve represent average 

richness obtained for 1000 iterations.  Lines represent rarefaction curves for unique sequences, 

99% similarity OTUs, 97% similarity OTUs, 95% similarity OTUs, 90% similarity OTUs, 

respectively.   
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CHAPTER 3 

Anthropogenic N deposition increases soil C storage by reducing the relative abundance of 

lignolytic fungi 

 

ABSTRACT 

The rate of atmospheric nitrogen (N) deposition has increased dramatically since preindustrial 

times and continues to increase across many regions of the Earth.  In temperate forests, this agent 

of global change has increased soil carbon (C) storage, but the mechanisms underlying this 

response is not understood.  One long-standing hypothesis proposed to explain the accumulation 

of soil C proposes that higher inorganic N availability may suppress both the activity and 

abundance of fungi which decay lignin and other polyphenols in soil.  In field studies, elevated 

rates of N deposition reduce the activity of enzymes mediating lignin decay, but a decline in the 

abundance of lignolytic fungi has not been definitively documented to date.  Here, we tested the 

hypothesis that elevated rates of anthropogenic N deposition reduce the abundance of lignolytic 

fungi. We conducted a field experiment in which we compared fungal communities colonizing 

low-lignin, high-lignin, and wood substrates in a northern hardwood forest that is part of a long-

term N deposition experiment.  We reasoned that, if lignolytic fungi decline under experimental 

N deposition, this effect should be most evident among fungi colonizing high-lignin and wood 

substrates. Using molecular approaches, we provide evidence that anthropogenic N deposition 

reduces the relative abundance of lignolytic fungi on both wood and a high-lignin substrate.  

Furthermore, experimental N deposition increased total fungal abundance on a low-lignin 

substrate, reduced fungal abundance on wood, and had no significant effect on a high-lignin 
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substrate.  We simultaneously examined these responses in the surrounding soil and forest floor, 

in which we did not observe significant reductions in the relative abundance of lignolytic fungi 

or in the size of the fungal community; however, we did detect a change in community 

composition in the forest floor that appears to be driven by a shift away from lignolytic fungi and 

towards cellulolytic fungi.  Our results provide direct evidence that reductions in the abundance 

of lignolytic fungi are part of the mechanism by which elevated rates of anthropogenic N 

deposition increase soil C storage. 

INTRODUCTION 

Human activity has dramatically increased the production of reactive N (Nr) compounds, 

with global Nr emissions projected to further double by mid-century (Galloway et al. 2004).  As 

a result, the annual amount of atmospheric Nr deposition in terrestrial and coastal ecosystems has 

increased dramatically over historical levels and continues to rise in some parts of the Earth 

(Galloway et al. 2004).  Rising rates of Nr deposition reduce soil respiration (Janssens et al. 

2010) and increase soil C content (Frey et al. 2014) in temperate forest soils.  Therefore, 

atmospheric N deposition has the potential to influence the storage of C in soils, which are a 

large and globally important C pool (Prentice et al. 2001).   

Field studies have suggested that elevated rates of N deposition may increase soil C 

content by depressing the rate of lignin decay (Berg and Matzner 1997, Waldrop and Zak 2006).  

Lignin is a recalcitrant, protective compound found in plant secondary cell walls which limits the 

rate of plant litter decay (Melillo et al. 1989).  Fungi are the primary mediators of lignin decay in 

terrestrial ecosystems (de Boer et al. 2005, Bugg et al. 2011, Floudas et al. 2012) and changes in 

soil fungal communities, mediated by greater rates of N deposition, may be one plausible 

mechanism by which soil C storage has increased. For example, high inorganic N concentrations 
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can suppress fungal lignin decay in culture (Fenn and Kirk 1981, Leatham and Kirk 1983) as 

well as on inoculated natural substrates (Osono et al. 2006); however this effect is not universal 

among fungal species (Kaal et al. 1995).  Similarly, increasing rates of N deposition reduce 

lignolytic enzyme activity in forest leaf litter, suggesting that high inorganic N availability also 

suppresses fungal lignolytic enzyme activity under field conditions (Carreiro et al. 2000, 

DeForest et al. 2004a).  Furthermore, it has been hypothesized that, by reducing the activity of 

lignolytic fungi, anthropogenic N deposition will weaken the competitive advantage of these 

organisms over other decomposers and result in a decrease in their abundance within the 

microbial community (DeForest et al. 2004b).  The biological mechanism proposed to explain 

increased soil C storage under elevated N deposition posits that higher N availability reduces 

both the activity and abundance of fungi involved in lignin decay (DeForest et al. 2004b, a).   

However, it has remained uncertain whether lignolytic fungi actually decline under 

elevated rates of N deposition.  For example, elevated N deposition has been observed both to 

significantly alter (Eisenlord et al. 2013, Entwistle et al. 2013, Hesse et al. 2015) and to have no 

effect (Edwards et al. 2011, Freedman et al. 2015) on fungal community composition.  

Furthermore, even when elevated N deposition has been observed to alter fungal community 

composition, it is not clear whether these changes involve a decline in lignolytic fungi.  

However, these previous studies of fungal response to N deposition examined fungal taxonomy 

only at only the order, class, or phylum level; because these higher taxonomic groupings contain 

fungi with multiple nutritional modes and diverse abilities to decay lignin, this has thus far 

limited the degree of insight into the physiology and ecology of fungal taxa affected by 

anthropogenic N deposition that has been obtained.  For some of these studies (Edwards et al. 

2011, Entwistle et al. 2013), small library sizes necessitated grouping sequences at higher 
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taxonomic levels, a limitation which we have overcome in this study by employing next-

generation sequencing.  Additionally, we have taken advantage of improved tools for classifying 

fungal sequences (Liu et al. 2012, Schloss et al. 2016) and recent advances in our understanding 

of the phylogenomic distribution of fungal genes involved in lignin decay (Floudas et al. 2012, 

Nagy et al. 2015) in order to achieve a better understanding of how experimental N deposition 

has affected lignolytic fungi.  

One way to directly observe the role of lignin and its decomposers in response to N 

deposition is to compare fungal communities colonizing low-lignin and high-lignin substrates 

under ambient and elevated rates of N deposition.  We hypothesized that anthropogenic N 

deposition slows decomposition by reducing the abundance of fungi that mediate the process of 

lignin decay, specifically the abundance of fungi with known lignolytic physiologies.  If 

increasing rates of N deposition alter fungal community composition in a manner consistent with 

our proposed mechanism, we reasoned that these effects should be more evident in fungal 

communities colonizing lignified substrates than on those colonizing low-lignin substrates.  

Furthermore, we hypothesized that these effects would become more apparent with time because, 

over the course of decomposition, cellulose and hemicellulose are decomposed more rapidly than 

lignin, rendering partially decayed materials relatively enriched in lignin.  Additionally, if 

lignolytic fungi are suppressed by higher rates of N deposition, we would anticipate that a greater 

percentage of plant carbohydrates would remain protected by unmetabolized lignin and, 

therefore, would be unavailable as energy resources to most fungi; for this reason, we 

hypothesize that the overall size of the fungal community will be smaller under higher rates of N 

deposition. 
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  To test our hypotheses, we allowed low-lignin, high-lignin, and wood substrates to be 

colonized by fungi in in a northern hardwood forest that has received experimental N deposition 

since 1994.  We investigated whether experimental N deposition altered fungal community 

composition on decomposing substrates that vary in their biochemical composition, and 

subsequently examined which types of fungal physiologies primarily account for dissimilarities 

in fungal community composition under experimental N deposition.  Furthermore, we directly 

tested whether fungal groups involved in lignin decay, specifically Agaricomycetes, as well as 

highly lignolytic taxa within the Agaricomycetes, decline in response to experimental rates of N 

deposition.  Lastly, we assessed fungal abundance on each of our substrates over time using 

quantitative PCR (qPCR). We also assessed these responses for fungal communities in the 

mineral soil and the forest floor. 

METHODS 

Site Description.  Our study site consists of a sugar maple (Acer saccharum Marsh.) dominated 

northern hardwood forest in Lower Michigan, located at 43°40' N, 86°09' W.  This site 

represents one of the four sites in the Michigan Gradient Experiment, a long-term elevated 

atmospheric N deposition experiment in Michigan, USA.  Soils are well-drained sandy typic 

Haplothords of the Kalkaska series; the forest floor (Oi) is dominated by sugar maple leaf litter.  

The site contains six 30-m x 30-m plots; three plots receive ambient N deposition, 

whereas the other 3 receive ambient N deposition plus 3 g NO3
-
 -N m

-2
 y

-1
.  This amount has 

been added since 1994 and is consistent with future levels expected portions of northeastern 

North America and Europe by 2050 (Galloway et al. 2004). Treatments are applied as NaNO3 

pellets in 6 equal additions of 0.5 g N m
-2

 from April to September.  Each treatment plot is 

surrounded by a 10-m treated buffer to reduce edge effect, which also receives the 
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aforementioned N deposition treatments.  Experimental N application has not altered soil pH, 

base saturation, matric potential, or forest floor conductivity (Patterson et al. 2012). 

Substrate selection and deployment.  Different products of the forest industry provided us with 

materials which vary in their biochemistry, enabling us to test our hypotheses.  For example, 

newsprint is produced by mechanical pulping, with the resulting paper having a high lignin 

content (Ragnar et al. 2000).  In contrast, kraft paper is subjected to chemical pulping processes 

which removes 50% of its lignin (Kleppe 1970), as well as breaking bonds between lignins, 

cellulose, and hemicelluloses (Ragnar et al. 2000).  Wood, by contrast, has not been subject to 

any form of physical or chemical alteration; it has intact cell walls and intact lignocellulose. In 

our study, we use birch wood (Betula spp.; Woodsies, Loew Cornell, Cincinnati, OH), a high-

lignin paper substrate (newsprint, white 3401, Pacon Corp., Appleton, WI), and a low-lignin 

paper substrate (kraft paper;  #60, Caremail, ShurTech Brands, LLC Avon, OH) in a field 

decomposition experiment to make comparisons between fungal communities targeting weakly 

and highly lignified substrates.  To measure the initial biochemistry of these materials, we 

submitted dried, ground kraft paper, newsprint, and wood samples to the Soil & Forage Lab at 

the University of Wisconsin-Madison for analysis of lignin, cellulose, hemicelluloses, and 

nitrogen content (Table 3.1).   

Bags of nylon screen with a mesh size of 1.13 mm x 1.30 mm were filled with ~6 g of 

either kraft paper or newsprint, an amount represented by four pieces kraft paper or eight pieces 

of newsprint (10.8 cm x 13.97 cm), in order to give the low and high lignin paper substrates 

similar initial mass and surface area.  The wood substrate consisted of a stick 15 cm x 2 cm x 

0.15 cm; we drilled a hole near one of the stick to attach a tether. We recorded the initial mass of 
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each substrate sample. One substrate of each type was tethered to a single plastic stake with < 0.5 

m of monofilament. 

Our decomposition experiment was initiated in November 2011.  Within each ambient 

and experimental N deposition plot, substrates were placed at 5 points: 3 m from each corner of 

the rectangular plot and within 1 m of the plot center.  At each of these five locations, we placed 

2 stakes each with the 3 tethered substrates, enabling us to collect decomposing substrates over 

two dates.  We removed the O horizon and placed the substrates on top of the mineral soil, and 

then covered the substrates by returning the O horizon.   

Field collection. We collected substrates from the field after 7 and 18 months of decay.  During 

our first collection date, we also collected the forest floor (Oi,Oe,Oa horizons) from a 100 cm
2
 

area and a 5 cm-deep mineral soil core from within 1 m of each substrate location to assess the 

initial composition and abundance of soil fungi.  We transported collected substrates and 

environmental samples to the lab on ice.  Samples were stored -80 °C prior to DNA extraction.   

Sample preparation, homogenization, moisture content, and mass loss.  Post-collection, 

samples were weighed to determine mass loss.  Soil cores were manually homogenized inside a 

sterile plastic bag.  We cut leaf litter and high and low-lignin substrates with sterilized scissors 

into ~25-mm
2
 pieces and manually homogenized the material.  Wood was first cut into ~8 mm

2
 

pieces with sterilized pruning shears, which were then placed inside a sterile plastic bag, mixed, 

and pulverized with a hammer.  A subsample was dried for 24 h at 105 ° C to determine moisture 

content.  Another subsample of homogenized samples was taken for DNA extraction. 

DNA extraction.  We extracted DNA from each sample in triplicate using a MoBio 

PowerLyzer® PowerSoil® DNA isolation kit.  We added ~0.125 g forest floor, ~0.18 g wood, or 

~0.25 g soil, ~0.25 g high-lignin substrate, or ~0.25 g low-lignin substrate to a MoBio 
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Powerlyzer® Glass Bead Tube with 0.1 mm glass beads. We bead-beat the material for 

extraction on a MoBio PowerLyzer® 24 bench top bead-based homogenizer for 45s at 2500 rpm 

for soil, 1 min at 3500 rpm for forest floor, 1 min at 4500 rpm for wood, or 45s at 4500 rpm for 

the low-lignin and high-lignin substrates.  We followed manufacturer’s instructions with the 

several modifications.  Specifically, we increased the time for incubations at 4 °C from 5 to 10 

minutes, added two centrifugations in new microcentrifuge tubes to remove residual wash buffer 

and ethanol, and introduced a 10 minute ethanol evaporation step prior to DNA elution.  

Furthermore, DNA elution buffer was allowed to sit on the membrane for one minute before 

centrifugation; the supernatant containing eluted DNA was placed on the membrane for an 

additional minute and spun through a second time to maximize the quantity of DNA obtained.  

We measured the quality of the extracted DNA on a ThermoScientific NanoDrop™ 8000 UV-

Vis Spectrophotometer.  Triplicate DNA extractions were pooled prior to amplification. 

Fungal 28S rDNA amplification and sequencing.  We amplified the 28S rRNA gene using 10 

barcoded pairs of fungal primers LR0R (5'  ACCCGCTGAACTTAAGC 3') and LR3 (5' 

CCGTGTTTCAAGACGGG 3') (http://sites.biology.duke.edu/fungi/mycolab/primers.htm 

).  Barcode pairs 1, 42, 3, 40, 7, 33, 11, 17, 20, and 24 were selected from among 96 paired 

barcodes available for multiplexing on the Pacific BioSciences® RS II sequencer 

(https://github.com/PacificBiosciences/Bioinformatics-

Training/blob/master/barcoding/pacbio_barcodes_paired_nopadding.fasta).   Reactions contained 

2.5 µL dNTPs (2 mM each), 2.5 µL Roche Expand™ High Fidelity (10x concentrated) Buffer 

with 15 mM MgCl2, 0.5 µL bovine serum albumin (20 mg mL
-1

), 0.5 µL of barcoded LR0R (20 

µM), 0.5 µL barcoded LR3 (20 µM), 16 µL molecular biology-grade water, 0.5 µL Roche 

Expand™ High Fidelity enzyme mix, and 2 µL of 10x diluted target DNA.  For samples that 

http://sites.biology.duke.edu/fungi/mycolab/primers.htm
https://github.com/PacificBiosciences/Bioinformatics-Training/blob/master/barcoding/pacbio_barcodes_paired_nopadding.fasta
https://github.com/PacificBiosciences/Bioinformatics-Training/blob/master/barcoding/pacbio_barcodes_paired_nopadding.fasta
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amplified weakly, PCR was repeated with template DNA with a lower dilution factor or no 

dilution until products of satisfactory concentration were obtained.  Thermocycling conditions 

were: initial denaturation (5 min, 95 ˚C), followed by 25 cycles consisting of denaturation (30 s, 

95 ˚C), primer annealing (30 s, 54 ˚C), extension (75 s, 72 ˚C), with cycling followed by a final 

extension (7 min, 72 ˚C).  Each sample was amplified in triplicate and these triplicate products 

were pooled prior to purification. 

We purified the PCR products using a Qiagen MinElute PCR Purification Kit.  The 

quality of PCR DNA was measured with ThermoScientific NanoDrop™ 8000 UV-Vis 

Spectrophotometer, while the concentration of PCR products was measured fluorometrically 

using a Quant-IT™ PicoGreen® dsDNA kit on a BioTek® Synergy HT microplate reader.  We 

combined 10 barcoded samples in equimolar concentrations for multiplexing on a PacBio® 

SMRT® chip.  These were submitted to the University of Michigan sequencing core for analysis 

on a PacBio® RS II sequencer with P6-C4 chemistry.   

28S rDNA sequence data processing.  We processed our 28S rDNA sequences in mothur 

v.1.31.2 (Schloss et al. 2009). Briefly, we removed low quality sequences (qwindowsize=50, 

qwindowaverage=25), sequences with > 1 mismatch to the primer or barcode, sequences with > 

1 ambiguous nucleotide, sequences with homopolymers of > 8 nucleotides, and sequences longer 

or shorter than our expected amplicon size (550-750 bp).  We aligned sequences with the 

Ribosomal Database Project (RDP) version 7 fungal 28S rRNA (LSU) training set (Liu et al. 

2012, Cole et al. 2014), which had been previously obtained from 

http://mothur.org/wiki/RDP_reference_files and aligned (Freedman et al. 2015) in Clustal 

Omega (Sievers et al. 2011) according to default parameters.  Chimeras were identified with 

UCHIME (Edgar et al. 2011) and were removed.  Sequences were classified using the mothur-

http://mothur.org/wiki/RDP_reference_files
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compatible taxonomy file that accompanied the RDP v.7 LSU fungal training set (available at: 

http://mothur.org/wiki/RDP_reference_files) using a bootstrap cutoff of 51.  Non-fungal 

sequences and sequences that were not able to be classified beyond kingdom were removed.  We 

clustered operational taxonomic units (OTUs) using the cluster.split command with sequences 

split for clustering at the class level.  In order to help us identify the taxonomy of our OTUs, we 

selected the most abundant sequence in each OTU as a representative sequence which we could 

use to help us identify the OTU by conducting searches with National Center for Biotechnology 

Information (NCBI) BLAST®.   

Fungal community composition and dissimilarity analyses.  To test the hypothesis that 

experimental N deposition alters fungal community composition, we compared fungal 

communities from our ambient and experimental N deposition treatments with permutational 

multivariate analysis of variance (PERMANOVA) (Anderson 2001). We followed 

PERMANOVA with  similarity percentages (SIMPER) analyses (Clarke 1993) to test whether 

changes in fungal community composition in response to experimental N deposition observed 

with PERMANOVA were consistent with a shift in community composition from strong lignin 

decomposers towards weaker decomposers of lignin. We examined the composition of fungal 

communities under ambient and experimental N deposition on our substrates as well as in soil 

and forest floor using OTUs clustered at 97% sequence similarity.  We removed singleton OTUs 

from the data set before calculating the proportional abundance of each OTU.  We performed 

multivariate statistical analyses in the PRIMER-E, version 6, with the PERMANOVA+ add-on 

(Clarke and Gorley 2006).  To prepare the data for analysis, we restricted analysis to include 

OTUs that comprised ≥ 0.5% of at least one sample, applied the square root transformation, and 

calculated a Bray-Curtis similarity index.   

http://mothur.org/wiki/RDP_reference_files
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We ran two-factor PERMANOVA with 9999 permutations and the default options for 

sum of squares and permutation of residuals.  We were unable to perform individual 

comparisons for samples for which we have data for only one time-point (i.e., the low-lignin 

substrate, soil, and forest floor) because the statistical power of our experiment (n = 3) is too low 

for PERMANOVA to be able to detect differences between communities even where they are 

present.  Therefore, we analyzed all samples collected after 7 months of decay together with 

sample type and N deposition treatment as factors.  For the high-lignin and wood substrates, we 

had data for samples collected at 7 and 18 months, allowing us to analyze communities on these 

substrates individually with N deposition treatment and time as factors.   

We performed one-factor SIMPER analyses and considered each sample type and 

collection date separately. For each comparison, we reported the results for the ten OTUs 

accounting for the highest amount of dissimilarity between fungal communities under ambient 

and experimental N deposition.  For each of these OTUs, we identified the closest known species 

for each OTU with a megablast search through the NCBI BLAST® portal.  Based on our 

knowledge of the biology of the species identified by BLAST®, we assigned each OTU as 1) 

white-rot and lignolytic litter decay fungi, 2) soft-rot & cellulolytic/hemicelluloytic litter decay 

fungi, 3) brown-rot fungi, 4) weakly lignolytic fungi, or 5) mycorrhizal & biotrophic; we 

summarize which taxa were assigned to each of these categories in Appendix C.  In order to 

determine whether fungi from each of these physiologies were responding positively or 

negatively to elevated rates of N deposition, we calculated the mean abundance of each of these 

physiologies under ambient and experimental N deposition, the 95% confidence intervals around 

those means, and the change in relative abundance for these physiologies under experimental N 

deposition.     
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Relative abundance of Agaricomycetes and highly lignolytic taxa.  We hypothesized that 

experimental N deposition would reduce the relative abundance of lignolytic fungi, especially on 

high-lignin and wood substrates.  To test this hypothesis, we examined the relative abundance of 

Agaricomyetes, because this class contains the most important lignin decomposers, and the 

relative abundance and of a subset of Agaricomycete taxa with highly lignolytic physiologies.  

We identified this suite of highly lignolytic Agaricomycete fungi a priori (Table 3.2 & Appendix 

D) based on the following criteria: 1) taxa had consistently demonstrated high lignin loss and/or 

selectivity for lignin in published studies and 2) were represented in our data by > 20 sequences.  

Highly lignolytic taxa are described in Table 3.2 and Appendix D, while a list of taxa excluded 

and our justifications for their exclusion are provided in Appendix E.  Highly lignolytic taxa 

were summed together, rather than considered individually.   

We examined the relative abundance of Agaricomycetes and highly lignolytic taxa under 

ambient and experimental N deposition on the three substrates, as well as in soil and forest floor.  

For each sample, we calculated the relative abundance of Agaricomycetes as a proportion of total 

fungal sequences and the relative abundance of highly lignolytic taxa as a proportion of 

Agaricomycete sequences.  Statistical analysis of this data is described below. 

Fungal ITS1 qPCR.  Because experimental N deposition suppresses lignin decay, we reasoned 

that a greater proportion of cellulose and hemicellulose would remain protected by undecayed 

lignin and would thus remain inaccessible to the fungal community as an energy source.  We 

hypothesized, then, that the overall size of the fungal community would be smaller under 

experimental N deposition, particularly on substrates with intact lignocellulose (i.e., the wood 

and high-lignin substrate).  Because leaf and root litter also contain lignocellulose, and because 

experimental N deposition reduces energy flow from detrital and microbial pools (Gan et al. 
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2013), we anticipated that experimental N deposition would reduce fungal abundance in soil and 

forest floor. We tested these hypotheses by conducting qPCR on the fungal ITS1 region to 

measure fungal abundance.   

We selected the fungal ITS1 region for fungal qPCR because it is short (~300 bp) and it 

does not vary significantly in length among fungal phyla (Bellemain et al. 2010, Toju et al. 

2012). Fungal primers ITS1f (5' CTTGGTCATTTAGAGGAAGTAA 3') and 5.8s (5' 

CGCTGCGTTCTTCATCG 3') used to amplify this region (Gardes and Bruns 1993, Vilgalys 

undated).  We calculated ITS1 copy number for each sample as both number of copies per μg of 

extracted DNA and number of copies per g of soil, which enabled us to assess both the 

abundance of fungi as a proportion of the total microbial community DNA and total fungal 

abundance in soil, forest floor, and decomposing substrate biomass, respectively.   

A qPCR standard was prepared by cloning the ITS1 region of Agaricus bisporus with the 

TOPO® TA Cloning ® Kit for Sequencing and the insert was subsequently amplified with M13 

primer to create a linear target appropriate for qPCR (Hou et al. 2010).  Standard DNA 

concentration was quantified fluorometrically as previously described and copy numbers were 

calculated according to manufacturer instructions (AppliedBiosystems 2013).  Quantitative PCR 

was calibrated with a standard curve ranging from ranging from 1.71 x 10
3
 to 1.03 x 10

6
 

copies/μL.   

Prior to qPCR, we quantified initial DNA concentrations of all samples fluorometrically 

as previously described and diluted samples as necessary to bring target DNA concentration into 

the range of 0.8 – 11 ng μL
-1

.  Each 25 μL qPCR consisted of 1 μL of template DNA from 

samples or standards, 0.625 μL of each primer (20 μM), 0.375 μL ROX reference dye (500x 

dilution), 0.5 μL bovine serum albumin (20 mg mL
-1

),  9.375 μL molecular biology-grade water, 
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and 12.5 μL Brilliant III Ultra-Fast SYBR® Green qPCR master mix (Agilent Technologies, cat. 

#600882).  We amplified qPCRs on an Agilent Technologies Stratagene Mx3000P qPCR System 

using the following thermocycling program:  initial denaturation (10 min, 95 ˚C), followed by 40 

cycles of denaturation (45s, 95 ˚C), annealing (30s, 53˚C), and extension (30s, 72 ˚C), followed 

by a final dissociation curve set at manufacturer default settings.  We ran all standards and no 

template controls in triplicate and all unknown samples in duplicate, allowing us to run to run all 

samples from the same set (i.e., same sample type & collection date) in a single 96-well run.  

Each run was performed three times for quality control. All qPCRs used for data generation had 

efficiencies of 80 to 94% and R
2
 values of 0.991 to 0.999.  

Statistical analyses.  We performed statistical analyses for substrate mass loss, the relative 

abundances of Agaricomycetes and highly lignolytic taxa, and qPCR data with IBM SPPS 

Statistics v. 23 software. Prior to analysis, values for individual samples were averaged across 

each plot.  No data transformations were applied to either mass loss or relative abundance data, 

but qPCR data were log10 transformed. We conducted independent sample t-tests for 

comparisons with only one factor (i.e., N deposition treatment) and two-way ANOVA for 

comparisons with two factors (i.e., N deposition treatment and either collection date or sample 

type).  For comparisons in which there was a significant interaction between N deposition and 

collection date, we also considered collection dates separately with independent-sample t-tests.  

RESULTS 

Field collection and mass loss.  After 7 months of decay, low-lignin substrates exhibited high 

mass loss and showed evidence of faunal grazing (e.g., distinct holes in substrate).  The high-

lignin substrate, by contrast, was entirely intact after 7 months of decay, with visible evidence of 

fungal colonization, but no apparent damage by soil fauna. Wood samples at 7 months were 
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intact with only some showing visible evidence of fungal colonization. We were able to collect 

high-lignin and wood substrates after 18 months of decay, but relatively rapid decay of the low-

lignin substrate prevented collection at this second time-point. At 18 months, the high-lignin 

substrate was still intact, but visible evidence of fungal colonization was more extensive.  After 

18 months of decay, many wood samples were structurally weak, suggesting more extensive 

decay had occurred.   

After 7 months of decay, the low-lignin (61%), high-lignin (26%), and wood substrates 

(10%) displayed a range of mass loss and these differences among substrates types were 

significant (two-way ANOVA, F = 218.947, P < 0.001).  This result validated that our selection 

of substrates of varying biochemistry did, in fact, represent a range of decomposability in the 

field, with the wood and high-lignin substrates decomposing at much slower pace than the low-

lignin substrate.  After 18 months of decay, the high-lignin substrate had lost 30% of its mass, an 

additional loss of only 4% compared to that at 7 months, demonstrating that the high-lignin 

substrate was highly resistant to decay.   

Because decomposition is reduced under experimental N deposition in our long-term 

experiment (Zak et al. 2008), we anticipated that experimental N deposition would also 

significantly slow the rate of decomposition of our substrates.  Mass losses from the low-lignin (-

8.3%), high-lignin (-3.6%), and wood (+0.4%) substrates were not significantly lower under 

experimental N deposition after 7 months of decay in the field (Figure 3.1). After 18 months, 

mass loss of the high lignin substrate was lower (-4.5%), but again not significantly so under 

experimental N deposition. We were unable to accurately assess mass loss of wood after 18 

months of decay because a number of the wood substrate samples were broken prior to or during 

collection of samples for this time-point.   
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Fungal 28S sequencing.  Sequencing produced a total of 575,339 reads with 5x circular 

consensus coverage.  Forty-seven percent of sequences were removed during quality-control 

steps.  Ninety-five percent of the resulting sequences were fungal, yielding a total of 289,920 

high quality fungal sequences; of these, 126,371 sequences were unique.  These fungal 

sequences clustered to 9115 operational taxonomic units (OTUs) at the 97% sequence similarity 

level; of these, 2589 OTUs were represented by more than a single sequence, while 861 and 247 

OTUs were represented by >10 and >100 sequences, respectively.  Mean Good’s coverage for 

97% sequence similarity OTUs was 94% for substrates and 88% for soil and forest floor 

samples. 

Fungal community composition.  Experimental N deposition significantly altered fungal 

community composition on both wood and the high-lignin substrate (Table 3.3).  Fungal 

community composition changed over time on the high-lignin substrate (Table 3.3), but time did 

not have a statistically significant effect on fungal community composition of wood (P = 0.0553, 

Table 3.3).   However, the interaction of N deposition treatment and time was not a significant 

factor affecting fungal community composition for either wood nor the high-lignin substrate 

(Table 3.3), suggesting that experimental N deposition altered fungal community composition 

across time.   

When we compared community composition across all substrates collected after 7 

months of decay, as well as in the soil and forest floor co-collected on the same date, 

experimental N deposition significantly altered fungal community composition across sample 

types (Table 3.3).  Unsurprisingly, fungal community composition was significantly different 

among substrates, soil, and forest floor (Table 3.3); however, there were no significant 

interactions between N deposition treatment and sample type, suggesting that a change in 
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community composition occurred in all substrates as well as in the soil and forest floor under 

experimental N deposition.  We anticipated that change in community composition would be 

greatest on high-lignin and wood substrates; instead, it appears experimental N deposition caused 

changes in in fungal community composition broadly across our samples, irrespective of the 

degree to which they are protected by lignin.   

Fungal community dissimilarity.  We followed PERMANOVA with SIMPER analyses to 

determine whether the changes in fungal community composition that occurred in response to 

experimental N deposition were driven by a decline in lignolytic fungi (Appendix F). For 

communities on the high-lignin substrate, wood, and forest floor, many of the OTUs were white-

rot and lignolytic litter decay taxa (Table 3.4) and, overall, these white-rot and lignolytic litter 

decay fungi were less abundant under experimental N deposition (Figure 3.2); this response was 

significant on wood after 7 months of decay, while a negative but nonsignificant trend was 

observed for wood after 18 months of decay, the high-lignin substrate, and the forest floor 

(Figure 3.2).  In contrast, no white-rot or lignolytic litter decay fungi were among the top ten 

SIMPER results for the low-lignin substrate (Table 3.4, Figure 3.2).  The only positive response 

of white-rot and lignolytic litter decay taxa occurred in mineral soil in which a single OTU 

(Table 3.4) slightly, but significantly, increased in response to experimental N deposition (Figure 

3.2).   

At the same time, the OTUs that were associated with fungi that decompose cellulose and 

hemicellulose, but that decay little to no lignin, increased in abundance under experimental N 

deposition. For example, the relative abundances of OTUs associated with soft-rot and 

cellulolytic and hemicelluloytic litter decay fungi significantly increased on wood and in forest 

floor under experimental N deposition. There were also several comparisons for which the mean 
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abundance of OTUs associated with fungi specializing in cellulose and hemicellulose decay, but 

not lignin, were higher under experimental N deposition than under ambient N deposition,  

although not siginificantly so.  For example, on the low-lignin substrate there were more brown-

rot fungi as well as a small and nonsignficant increase in soft rot & cellulolytic and 

hemicellulolytic litter decay fungi.  On wood, there was a nonsignificant increase in weakly 

lignolytic fungi.  Thus, experimental N deposition appears to stimulate a variety of cellulose-

decomposing fungi on substrates and in the forest floor.   

In soil, most of the OTUs identified by SIMPER as highly dissimilar under experimental 

N deposition were associated with biotrophic or mycorrhizal species (Table 3.4, Figure 3.2); 

overall, their abundance in soil declined, but not significantly (Figure 3.2).   While there is 

evidence that ectomycorrhizal (ECM) fungi may decay organic matter (Shah et al. 2015), there is 

presently little is known regarding the extent to which ECM species might contribute to this 

function.  Because of this, we were unable to ecologically interpret SIMPER results for 

biotrophic and mycorrhizal fungi in terms of their implications for lignin decay.   

These SIMPER results suggest that the changes in fungal community composition under 

experimental N deposition which we had previously detected with PERMANOVA are consistent 

with the mechanism proposed to explain reduced lignin decay under elevated N deposition: a 

decline in the relative abundance of lignolytic fungi and a shift toward fungal groups which are 

largely not capable of decaying lignin.  While the examination of the top-ten OTUs identified by 

SIMPER suggests that experimental N deposition negatively affected lignolytic fungi, it was 

necessarily to perform relative-abundance analyses to determine whether declines in lignolytic 

fungi were broadly occurring in the fungal community.   
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Relative abundance of Agaricomycetes.  Consistent with our hypothesis, experimental N 

deposition reduced the relative abundance of Agaricomycetes on wood across both collection 

dates (-46%, two-way ANOVA, F = 18.368, P = 0.003, Figure 3.3a).  On the high-lignin 

substrate, however, experimental N deposition had no effect on the relative abundance of 

Agaricomycetes (Figure 3.3c), a finding inconsistent with our hypothesis and our results for 

wood.  On the low-lignin substrate, the relative abundance of Agaricomycetes was higher under 

experimental N deposition (Figure 3.3c), although this increase was not statistically significant 

(independent-samples t-test, P = 0.057).  Because the low-lignin substrate had low amounts of 

intact lignocellulose, this result is more likely to reflect an increase in cellulolytic 

Agaricomycetes than an increase in lignolytic taxa and is, therefore, not necessarily inconsistent 

with our hypothesis.  Finally, mean relative abundance of Agaricomycetes was also lower under 

experimental N deposition in both soil (-15%) and forest floor (-19%), but these differences also 

were not significant (Figure 3.4a,c). 

We had further hypothesized that reductions in Agaricomycete abundance under 

experimental rates of N deposition would be enhanced with time.  Instead, we found the opposite 

was true in wood for which Agaricomycete relative abundance was significantly higher (37%) at 

7 months of decay than at 18 months of decay (two-way ANOVA, F = 10.757, , P = 0.011) on 

wood. On the high-lignin substrate, we found no change in Agaricomycete abundance over time; 

there also was no interaction between N deposition and time with a two-way ANOVA.  Thus, the 

negative effects of experimental N deposition on Agaricomycete abundance does not appear to 

be enhanced with time. 

Relative abundance of highly lignolytic taxa.  We hypothesized that experimental N deposition 

would reduce the relative abundance of fungi with highly lignolytic physiologies, with this effect 
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anticipated to be most evident on lignified substrates.  Experimental N deposition significantly 

reduced the proportion of highly lignolytic fungi present on wood across both collection dates 

(Figure 3.3b, two-way ANOVA, F = 8.254, P = 0.021), with no significant N deposition by time 

interaction.  Experimental N deposition did not have a significant main effect on the abundance 

of highly lignolytic taxa on the high-lignin substrate (Figure 3.3d), but there was a significant 

interaction between N deposition treatment and collection date (two-way ANOVA, F = 8.641, P 

= 0.019).  When we analyzed collection dates separately, the relative abundance of highly 

lignolytic taxa on the high-lignin substrate was significantly lower (-67%, independent samples 

t-test, P = 0.015) under experimental N deposition at 7 months of decay, but this was no longer 

true after 18 months of decomposition (Figure 3.5).  By contrast, highly lignolytic taxa were not 

abundant (~9% of Agaricomycetes) on our low-lignin substrate and their relative abundance was 

not significantly affected by experimental N deposition (Figure 3.3f).  Consistent with our 

hypothesis, experimental N deposition reduced the abundance of high lignolytic taxa on both 

lignin-rich substrates, wood (for both time points) and the high-lignin substrate (for one time 

point), while having no effect on their abundance on the low-lignin substrates. Moreover, we 

found that the relative abundance of highly lignolyic taxa in the forest floor was lower (-20%) 

under experimental N deposition, but that this decline was not statistically significant (Figure 

3.4b).  Taxa which we had identified as highly lignolytic were uncommon in mineral soil (~3% 

of fungi, ~6% of Agaricomycetes) and their relative abundance was not significantly altered by 

experimental N deposition (Figure 3.4d).   

We had further hypothesized that experimental N deposition would have the strongest 

negative effects on the abundance of highly lignolytic taxa at later points in decay, when 

substrates become relatively enriched in lignin compared to their initial state.  Our results, 
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however, did not support this hypothesis.  In contrast to our expectations, experimental N 

deposition only reduced the abundance of highly lignolytic taxa on the high-lignin substrate after 

7 months (Figure 3.5).  By 18 months, experimental N deposition no longer had a negative effect 

on the relative abundance of highly lignolytic taxa inhabiting the high-lignin substrate (Figure 

3.5).   On wood, neither time nor the interaction between time and N deposition had significant 

effects on the abundance of highly lignolytic taxa.  While experimental N deposition 

significantly suppressed the relative abundance of highly lignolytic taxa on wood, this effect was 

not any stronger after 18 months of decay than after 7 months of decay.  Thus, the suppression of 

highly lignolytic taxa under experimental N deposition does not appear become greater over the 

course of decay.  

Fungal abundance.  We hypothesized that experimental N deposition would reduce fungal 

biomass on substrates with intact lignocellulose (i.e., the wood and high-lignin substrate) and in 

soil and forest floor as a result of reduced availability of energy to the fungal community under 

experimental N deposition.  Consistent with this hypothesis, experimental N deposition reduced 

fungal ITS1 copy number per μg of extracted DNA on wood (Figure 3.6a, two-way ANOVA, F 

= 8.309,  P = 0.020); when we calculated fungal ITS1 copy number per g of substrate, this trend 

was still the same for wood, although this difference was not significant (Figure 3.6b).  However, 

experimental N deposition did not alter fungal ITS1 copy number on the high-lignin substrate 

(Figure 3.6c,d).  For the low-lignin substrate, experimental N deposition significantly increased 

fungal ITS1 copy number per g of substrate (Figure 3.6f, independent samples t-test, P = 0.003), 

while having no significant effect on fungal ITS1 copy number per μg of extracted DNA (Figure 

3.6e); this is not inconsistent with our hypothesis because the low-lignin substrate is largely 

unprotected cellulose (Table 3.1).   
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In contrast to our expectations, experimental N deposition did not significantly reduce 

fungal ITS1 copy number in either forest floor or soil (Figure 3.7).  However, there were non-

significant trends toward reduced fungal ITS1copy numbers under experimental N deposition in 

soil both per μg of extracted DNA (Figure 3.7c) and per g of sample (Figure 3.7d), as well as for 

forest floor when copy number was expressed per g of sample (Figure 3.7b). 

Fungal ITS1 copy number (per μg of extracted DNA) on wood was higher after 7 months 

than after 18 months of decomposition in the field (two-way ANOVA, F = 16.263, P = 0.004), 

but time did not significantly affect fungal ITS1 copy number on the high-lignin substrate.  The 

interactions of time and N deposition treatment did not significantly affect fungal ITS1 copy 

numbers for either wood or the high-lignin substrate.   

DISCUSSION 

Here, we demonstrate that the experimental deposition of N, at rates predicted to occur by 

midcentury (Galloway et al. 2004), reduced the relative abundance of fungi with lignolytic 

physiologies on both wood and a high-lignin substrate.  Furthermore, a decline in lignolytic fungi 

under experimental N deposition was accompanied by a shift toward cellulolytic fungi on wood, 

as well as in the forest floor.  Experimental N deposition changed fungal community 

composition overall across substrates, soil, and forest floor and across time on both the high-

lignin and wood substrates.  These findings are consistent with a longstanding mechanism which 

posits that high rates of N deposition can reduce lignolytic fungal activity, leading to a decline in 

the abundance of lignolytic fungi and a shift toward fungal species with limited capacities for 

lignin decay, thereby increasing soil C storage (Fog 1988, DeForest et al. 2004b, DeForest et al. 

2005).  Finally, we found that experimental rates of N deposition decreased fungal abundance on 

wood, but increased the abundance of fungi on a low-lignin, cellulose-rich substrate.  These 
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observations are consistent with previous studies wherein elevated rates of N deposition 

suppressed lignin decay, but stimulated cellulose decay (Berg and Matzner 1997, Carreiro et al. 

2000, Talbot and Treseder 2012).  The evidence we have accumulated is consistent with the 

hypothesis that greater soil C storage under chronic N deposition arises from a decline in the 

abundance of soil fungi with lignolytic physiologies. 

In our long-term experiment, experimental N deposition reduced decay and increased soil 

organic matter (Pregitzer et al. 2008, Zak et al. 2008).  Several lines of evidence demonstrate that 

these responses are the result of reduced microbial decomposition under elevated rates of N 

deposition.  First, changes in plant litter production under experimental N deposition can be 

excluded from consideration, because experimental N deposition has not substantially altered the 

production or recalcitrance of leaf and root litter (Burton et al. 2004, Xia et al. 2015).  Further 

evidence that microbial activity has been suppressed under experimental N deposition comes 

from the observations that this treatment has reduced soil respiration without altering root 

respiration (Burton et al. 2004, Burton et al. 2012).  Finally, stable isotope tracing with 
13

C-

labelled plant litter has further revealed that experimental N deposition reduced the amount of C 

transferred from plant litter into the soil microbial community (Gan et al. 2013).  Thus, reduced 

decomposition under experimental N deposition results from reduced microbial decay, not from 

increases in either the amount or recalcitrance of plant litter produced. 

Collectively, the evidence presented and summarized above points toward a reduction in 

the decay of lignin by microorganisms as the explanation for increased soil C storage under 

experimental N deposition. Lignin is a recalcitrant, aromatic compound that limits the rate of 

decay of plant litter; because of this, it stands to reason a reduction in its decay could affect the 

overall rate of decomposition as well as the accumulation of SOM.  Furthermore, elevated rates 
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of N deposition have been observed to retard lignin decay in plant litter in other field 

experiments (Berg and Matzner 1997).  In our long-term field experiment, elevated rates of N 

deposition have increased the phenolic and aromatic content of dissolved organic C (DOC), with 

partially modified lignin thought to be the source of these additional compounds (Smemo et al. 

2007). Moreover, accumulation of lignin in soil in response to increased N deposition has been 

observed in another northern hardwood forest ecosystem (Frey et al. 2014) and may, in fact, be a 

widespread response to experimental N deposition (Liu et al. 2016).  Finally, elevated rates of N 

deposition reduced lignolytic enzyme activity both in our long-term experiment (DeForest et al. 

2004a, Freedman and Zak 2014) as well as in other systems (Carreiro et al. 2000).  When we 

consider these results in combination with the observations we present here, it appears that 

reduced microbial decay of lignin is a general mechanism through which elevated N deposition 

slows plant litter decomposition and leads to greater accumulation of SOM.   

While enzyme assays assess both bacterial and fungal enzymatic activity, molecular 

examination has disentangled the effects of N deposition on fungi and bacteria and has revealed 

that N deposition positively affects saprotrophic bacteria (Freedman and Zak 2014, Freedman et 

al. 2016).  For example, experimental N deposition has increased the abundance of genes 

associated with pathways for saprotrophic bacterial metabolism in soil metagenomes (Freedman 

et al. 2016), suggesting an overall positive effect of experimental N deposition on the abundance 

of bacterial metabolisms for plant cell-wall decay.  Furthermore, the abundance of bacteria with 

laccase-like multicopper oxidase (LMCO) genes increased in response to experimental N 

deposition, indicating that the potential for bacteria to decay lignin increases with rising rates of 

anthropogenic N deposition (Freedman and Zak 2014).  However, such an expanded role of 

bacteria in lignin decay under experimental N deposition would likely not offset reductions in 
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fungal lignin decay because, while both bacteria and fungi share laccase or laccase-like enzymes 

that act upon polyphenolics (Baldrian 2006, Ausec et al. 2011, Lu et al. 2014), fungi additionally 

possess other, more powerful lignolytic enzymes (e.g., fungal class II peroxidases) which 

bacteria do not, giving fungi greater oxidative capacity in lignin decay than bacteria (Kirk and 

Farrell 1987, Floudas et al. 2012). 

According to our working mechanism (DeForest et al. 2004a, DeForest et al. 2005), the 

abundance of microorganisms which are less efficient at lignin decay may increase under 

experimental N deposition as a result of reduced competition with lignolytic fungi, which have 

declined due to N-inhibition of their lignolytic enzymes.  However, it is also possible that an 

alternative mechanism in which N stimulates fungi which primarily target labile- C but which 

also are capable of lignin decay, albeit with lower efficiency,  and that that these fast-growing 

microorganisms outcompete slower-growing specialists on lignified substrates  (Fontaine et al. 

2003).  Experimental N deposition reduced the relative abundance of lignolytic fungi after 7 

months of decay when 74% of the high-lignin and 90%wood substrate still remained; in light of 

this, it seems more plausible than an increase in bacteria with LMCOs is more likely an effect, 

rather than a cause, of the reduced abundance of lignolytic fungi under experimental N 

deposition.  Regardless of the mechanism at work, this shift appears to be co-occurring alongside 

the decline in lignolytic fungi observed in this study and previously observed increases in SOM 

and phenolic DOC production.  However, increased bacterial potential for plant cell-wall decay 

cannot alone account for the decreases in lignin decay under experimental N deposition in our 

study system. 

Instead, several pieces of evidence from our field study suggest that experimental N 

deposition is suppressing fungal lignin decay.  For example, experimental rates of N deposition 
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reduced the diversity of fungal lignocellulolytic genes, indicating that experimental N deposition 

has reduced fungal functional potential for lignin decay (Eisenlord et al. 2013).  Furthermore, 

long-term increases in experimental N deposition have reduced the number of transcripts for 

fungal laccase, an enzyme involved in the depolymerization of lignin, especially those 

originating from the Basidiomycota, which includes many lignin-decaying fungi and all of the 

most powerful lignin decomposers (Edwards et al. 2011, Hesse et al. 2015).  In this study, 

experimental N deposition had a negative effect on the relative abundance of lignolytic fungi and 

appeared to shift fungal community composition towards fungi which are poor lignin-

decomposers.     

Substrate-specific responses 

We observed the most consistent and significant negative responses to experimental N deposition 

on wood. Many of the most powerful lignolytic fungi are wood-decomposers, making wood an 

excellent substrate on which to observe the effects of N deposition on lignin decomposers.  

Because experimental N deposition simultaneously reduced the relative abundance of lignolytic 

fungi (Figure 3.3) and the size of the fungal community (Figure 3.6) on wood, the absolute 

abundance of lignolytic fungi on wood was lower under elevated rates of N deposition.  Our 

results are consistent with recent observations that experimental N deposition has slowed the 

decay of coarse woody debris in our long-term experiment (B. Lyons, unpublished data).  

Furthermore, experimental N deposition has also increased woody biomass production (Pregitzer 

et al. 2008, Ibáñez et al. 2016).  If higher rates of N deposition both increase the production and 

slow the decay of wood in temperate forests, this could dramatically increase ecosystem C 

storage. 
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Even though the high-lignin substrate contains twice as much lignin as wood (Table 3.1), 

experimental N deposition reduced the relative abundance of highly lignolytic taxa only early in 

its decay (7 months) and not at later stages of decay (18 months, Figure 3.5).  This may partially 

reflect that, at later stages of decay (i.e., 18 months), experimental N deposition had negative 

effects on lignolytic fungi which were not included among our list of highly lignolytic taxa.  In 

community dissimilarity analyses, several OTUs associated with Sphaerobolus and Trechispora 

had high contributions to community dissimilarity at 18 months of decay on the high-lignin 

substrate (Appendix F) and these genera are likely important for lignin decay (Nobles 1958, 

Harkin et al. 1974, Robinson et al. 1993, Worrall et al. 1997, Nagy et al. 2015, Kreetachat et al. 

2016).  However, few studies exist which measure their ability to decay lignin and, as a result, 

these taxa were not included in our relative abundance analyses of highly lignolytic taxa which 

we restricted to include only taxa for which high amounts of lignin decay have been well-

documented.      

Experimental N deposition had few significant effects on fungal communities in the 

forest floor, an unexpected result given the responses of fungal communities on wood and the 

high-lignin substrate.  We did observe a significant increase in soft-rot and celluolytic and 

hemicellulolytic litter decay fungi among fungi which contributed highly to community 

dissimilarity under experimental N deposition (Figure 3.2), but while there appeared to be a 

concurrent decrease in the mean abundance of white-rot and lignolytic litter fungi under 

experimental N deposition, this was not significant (Figure 3.2).  Experimental N deposition did 

not significantly decrease the relative abundance of Agaricomycetes (Figure 3.4), the relative 

abundance of highly lignolytic taxa (Figure 3.4), or total fungal abundance in the forest floor 

(Figure 3.7). We have recently learned that, in our study system, fine roots provide the majority 
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of plant-litter lignin (Xia et al. 2015) and are the greatest source of lignin-derived SOM (Thomas 

et al. 2012).  In other temperate forest systems, experimentally elevated N deposition has slowed 

root decomposition (Sun et al. 2015).  If experimental N deposition increases soil C storage by 

suppressing lignolytic fungi on naturally occurring plant litter, this change is more likely 

occurring on root-litter than on leaf litter and this may explain why the forest floor did not 

respond in the manner which we had anticipated.   

On the low-lignin substrate, experimental N deposition had little to no effect on lignin-

decaying fungi (Figures 3.2 & 3.3).  This is not surprising given the low-lignin substrate is 

cellulose-rich resource which is largely unprotected by lignin and on which highly lignolytic taxa 

were rare (Figure 3.3).  Experimental N deposition increased overall fungal abundance (Figure 

3.6) and may have had slight positive effects on cellulolytic & hemicellulolytic fungi and brown-

rot fungi (Figure 3.2) on the low-lignin substrate.  These results are consistent with previous 

observations that elevated N deposition stimulates cellulose decay by removing microbial N 

limitation (Talbot and Treseder 2012). 

Fungal communities in mineral soil have few saprotrophs and are dominated by 

mycorrhizal species (Lindahl et al. 2007).  Unsurprisingly, then, there was little effect of N 

deposition on saprotrophic fungi which decay either lignin or cellulose in mineral soil (Figures 

3.2 & 3.4).  In community dissimilarity analysis, mycorrhizal and biotrophic fungi in soil were 

less abundant, but not significantly so, under experimental N deposition (Figure 3.2, Table 3.2).  

Long-term increases in N deposition have previously been observed to alter the composition of 

ECM fungi (Avis et al. 2003, Frey et al. 2004).  Interestingly, ectomycorrhizal fungi (ECM) may 

use lignolytic enzymes to obtain N complexed with soil organic matter (Talbot et al. 2013, Shah 

et al. 2015).  Therefore, ECM species may be potentially sensitive to rising rates of N deposition 
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and may also play an important role in SOM decomposition in mineral soil.  However, little is 

known yet about what roles individual ectomycorrhizal species may play in lignin decomposition 

in nature. 

Effects of experimental N deposition over time 

Contrary to our expectations, we found no evidence to support the hypothesis that there 

would be greater disparities in the relative abundance of Agaricomycetes or highly lignolytic 

taxa between ambient and experimental N deposition treatments at later stages of decay, when 

decomposing materials should be relatively more enriched in lignin compared to their initial 

state.  Instead, we observed either no change with time or, surprisingly, larger disparities in 

abundance of lignolytic fungi early in decay.  This is surprising in light of the fact that elevated 

N deposition has been observed to retard lignin decay at later stages of decomposition, while 

stimulating cellulose decay early on (Berg and Matzner 1997, Talbot and Treseder 2012).  

Interestingly, community dissimilarity analysis indicated experimental N deposition had a 

positive effect on the abundance of cellulose-decomposing fungi in our experiment (Figure 3.2).  

If cellulose is removed at higher rates early in decay under experimental N deposition, this may 

remove the energy-rich C sources needed to “prime” lignin decay at later stages (Fontaine et al. 

2003), which could ultimately lead to lower amounts of lignin being decayed under elevated 

rates of N deposition. 

Fungal responses to experimental N deposition 

In order to explain why fungi decompose lower amounts of lignin in response to higher 

rates of N deposition, it has been proposed that higher N availability may lead to reduced fungal 

foraging for organic N compounds that are only obtainable through the activity of lignolytic 

enzymes, i.e., organic N which is either protected by lignin  or complexed with SOM (Craine et 
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al. 2007).  However, this mechanism is unlikely to explain the reductions in lignolytic fungi that 

we have observed on wood and on the high-lignin substrate in this study.  Wood and high-lignin 

substrates were both N-poor, but energy-rich resources for fungi (Table 3.1), yet experimental N 

deposition still led to lower abundance of lignolytic fungi on these low-N substrates.  Therefore, 

reduced fungal foraging for litter-N does not seem to explain this response because it is unlikely 

that that lignolytic taxa were principally mining these substrates for N.  This is consistent with 

the findings of another plant litter decomposition experiment conducted in a boreal forest in 

which elevated N deposition reduced lignin decay, but had no effect on  N loss from plant litter 

(Talbot and Treseder 2012).   

Furthermore, we found no evidence to suggest that this mechanism explains declines in 

lignolytic saprotrophs under experimental N deposition.  Foraging for organic N in SOM is 

primarily an activity associated with ectomycorrhizal fungi in soil, not with the saprotrophic 

decomposer fungi commonly found in the litter layer (Lindahl et al. 2007, Talbot et al. 2013).  

The lignolytic fungi on our substrates which were negatively affected by experimental N 

deposition were all saprotrophs and our substrates were primarily colonized by saprotrophic 

fungi, with few ECM fungi present.  ECM fungi, by contrast, were only abundant in mineral soil 

samples.  While it is possible that experimental N deposition could reduce foraging for 

recalcitrant forms of organic-N by ECM fungi in soil, we were unable to further examine 

whether experimental N deposition has had effects on ECM fungi which would be consistent 

with this hypothesis because the role of ECM fungi in the decomposition of organic matter is still 

poorly understood.  Regardless, reduced fungal mining for SOM-N does not appear to explain 

the declines in the relative abundance of lignolytic saprotrophs that we observed in this study. 
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It is not clear then why saprotrophic lignolytic fungi would reduce lignin decay in 

response to experimental N deposition, particularly when doing so would seem to limit their 

ability to obtain energy.  However, for at least some species of fungi, suppression of lignin decay 

appears to be a physiological responses to high inorganic N concentrations (Leatham and Kirk 

1983, Commanday and Macy 1985), with white-rot wood decay fungus Phanerochaete 

chrysosoporium being the most extensively studied species in this regard. In culture, lignolytic 

activity can be induced by N starvation in the absence of lignin (Keyser et al. 1978) and 

suppressed by high N conditions even when lignin is present (Jeffries et al. 1981).  Furthermore, 

the addition of lignin alone, without addition of a carbohydrate, does not induce lignolytic 

activity in P. chrysosporium (Kirk et al. 1976).  Low N conditions in culture may stimulate 

lignin decay because those conditions are similar to those of its natural environment, i.e. wood 

(Keyser et al. 1978).  It is possible inorganic N concentration may serve as an indicator of 

environmental conditions appropriate for lignin decay.  However, leaf litter is a more N-rich 

substrate than wood, yet some litter decay fungi also reduce their rate lignin decay when N is 

added during decomposition (Kuyper and Bokeloh 1994, Osono et al. 2006).  Thus, there is 

evidence that N availability has physiological effects on fungal lignolytic activity, although the 

physiological and ecological reasons as to why this might be so remain unclear. 

It is possible that fungal communities experiencing high rates of N deposition could 

regain lignolytic function through ecological or evolutionary processes.  For some species of 

fungi, lignolytic activity is either unaffected or increases under high N conditions (Leatham and 

Kirk 1983, Kaal et al. 1995).  Such nitrotolerant or nitrophilic lignolytic species could become 

more abundant through competitive release.  It is also possible that lignolytic fungal species that 

are sensitive to N may evolve higher nitrogen tolerance under pressure from chronically higher 
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rates of N deposition.  However, after nearly 20 years of chronic N deposition, we were able to 

observe significant decreases in lignolytic fungi colonizing our wood and high-lignin substrates, 

indicating that these responses have not yet occurred.   

Conclusions 

 In temperate forests, experimental additions of N often increase soil C content (Nave et 

al. 2009, Janssens et al. 2010, Frey et al. 2014).  If elevated N deposition has widespread 

negative effects on lignin-decomposing fungi in temperate forests, like those observed here, then 

shifts in fungal community composition may underlie the accumulation of soil C.  Since rates of 

N deposition are projected to increase further in some parts of the world, this response could 

influence future rates of soil C storage in temperate forests.  Furthermore, as large increases in 

atmospheric N deposition have also occurred globally over the past century and a half, it is 

possible that anthropogenic N deposition may have already had widespread effects on fungal 

biodiversity as well as elicited increases in soil C in temperate forests. 
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TABLES 

 

Table 3.1.  Summary of results of biochemical analysis of low-lignin, high-lignin, and wood 

substrates.  Measurements were performed by the Soil & Forage Lab, UW-Madison.  Results 

are reported as a percentage of dry weight. 

Substrate Material Lignin (%) Cellulose 

(%) 

Hemicellulose 

(%) 

Nitrogen (%) 

Low-lignin Kraft paper 14.1
† 64.1 14.1 0.14 

High-lignin Newsprint 27.6 46.7 23.1 0.09 

Wood Birch wood 11.8 52.4 28.9 0.13 

†
Because chemical pulping breaks bonds between lignins, cellulose, and hemicelluloses (Ragnar et al. 2000), the 

low-lignin substrate is more labile than its lignin content alone suggests.  

 

  



111 
 

Table 3.2.  Agaricomycete taxa selected as highly lignolytic.  All taxa are represented by >20 

sequences in our data set.  More details on taxa selected below as well as those we excluded are 

provided in the Appendices D & E. 

Order Family or genera 

included from this 

order 

Citations documenting lignolytic activity  

Agaricales   

 Marasmius
1
 (Osono and Takeda 2002, Steffen et al. 2007) 

 Gymnopus
2
 (Osono et al. 2003, Osono and Takeda 2006, Valaskova et 

al. 2007, Šnajdr et al. 2010, Cline and Zak 2015) 

 Mycena
3
 (Worrall et al. 1997, Osono and Takeda 2002, Steffen et 

al. 2007, Liers et al. 2011, Cline and Zak 2015) 

 Clitocybe
4
 (Osono et al. 2003, Osono et al. 2011) 

 Crepidotaceae (Gutiérrez et al. 1999, Del Rıo et al. 2001, Martínez 

Ferrer et al. 2005) 

Polyporales
5
   

 Ganodermataceae (Blanchette 1984) 

 Antrodiella (Patel and Rao 1993) 

 Phanerochaete
6
 (Kirk and Farrell 1987, Hatakka 1994, Del Rıo et al. 

2002) 

 Scopuloides
6
 (Kuuskeri et al. 2015) 

Russulales
7,8

   

 Lachnocladiaceae (Cline and Zak 2015) 

 Auriscalpiaceae (Miller and Stewart 1971, Miller and Methven 2000) 
1. Also included sequences that were assigned to the closely related genus Amyloflagellula (Douanla-Meli and 

Langer 2008). 

2. Some Gymnopus species were formerly Collybia.  

3. Also included sequences assigned to closely related genus  Poromycena (Moncalvo et al. 2002).   

4. Also included sequences classified to closely related genus Lepista  (Matheny et al. 2006). 

5. White-rot Polyporales are broadly highly lignolytic (Campbell 1932, Ander and Eriksson 1977, Ruiz-

Duenas et al. 2013).  The selected Polyporales taxa above are simply the white-rot Polyporales present in 

our data set (Binder et al. 2013). 

6. Sequences in our data set which were assigned to the “Aphyllophorales” by the RDP v7 actually represent 

these genera (see Appendix D for more details).  “Aphyllophorales” is no longer a recognized taxonomic 

group (Hibbett and Donoghue 1995, Binder and Hibbett 2002). 

7. These families now recognized as saptroptrophic Russulales (Hibbett and Donoghue 1995, Larsson and 

Larsson 2003, Miller et al. 2006), but are placed in Polyporales by RDP v7 fungal LSU classifier. 
8. Saprotrophic Russulales are white-rot and have broadly been observed to be highly lignolytic (Blanchette 

1984, Otjen and Blanchette 1984, Del Rıo et al. 2002, Speranza et al. 2009, Floudas et al. 2012, Nagy et al. 

2015).  The selected Russulales taxa above are the saprotrophic Russulales present in our data set. 
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Table 3.3.  PERMANOVA results for comparisons of fungal communities under ambient 

and experimental rates of N deposition.  Comparisons for wood and the high-lignin 

substrate are across both time-points.  Comparisons for all substrates plus soil and forest 

floor are across sample types for substrates collected after 7 months of decomposition and 

soil and forest floor samples co-collected on the same date.  Columns represent 

PERMANOVA values for the degrees of freedom (df), sum of squares (SS), mean square 

(MS), pseudo-F statistic and permutational P value (P(perm)). 

Samples 

included 

Factors df SS MS Pseudo-

F 

P(perm

) 

 

Wood 

N deposition treatment 1 2686.7 2686.7 1.8946 0.0476 

Time 1 2443.4 2443.4 1.723 0.0553 

N deposition treatment x 

Time 

1 994.72 994.72 0.70145 0.7487 

High-lignin 

substrate 

N deposition treatment 1 2600.9 2600.9 1.7597 0.0266 

Time 1 4405.4 4405.4 2.9806 0.0023 

N deposition treatment x 

Time 

1 1362 1362 0.92149 0.6118 

Low-lignin, 

high-lignin, & 

wood 

substrates; soil, 

forest floor 

N deposition treatment 1 2856.8 2856.8 2.5307 0.0001 

Sample type 4 39395 9848.7 8.7244 0.0001 

N deposition treatment x 

Sample type 

4 4807.8 1202 1.0647 0.2909 
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Table 3.4.  SIMPER results for the ten OTUs with the highest average dissimilarity between fungal communities under 

ambient and experimental N deposition, including their cumulative contribution to total dissimilarity and the fungal 

physiologies they represent.  Detailed results for individual OTUs can be found in Appendix F. 

 
Months of 

decomposition 

Sample 

type 

Cumulative 

contribution 

to 

dissimilarity 

(%) 

Number of OTUs assigned to each fungal physiology 

    

White-

rot & 

lignolytic 

litter 

decay  

Soft-rot & 

cellulolytic/ 

hemicellulolytic 

litter decay  

Brown-

rot 

Weakly 

lignolytic 

Mycorrhizal/ 

biotrophic 

Substrates 

7 

low-lignin  24.39 0 6 1 1 2 

high-lignin  30.25 4 3 2 0 1 

wood 44.74 5 2 0 2 1 

18 
high-lignin  33.18 7 1 1 1 0 

wood 47.19 3 3 0 4 0 

Environmental 

samples 
NA 

forest floor 33.11 7 3 0 0 0 

soil 18.92 1 1 0 3 5 

NA, not applicable 
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FIGURES 

 

 

 

Figure 3.1.  Mass loss of wood, high-lignin, and low-lignin substrates under ambient (open bars) 

and experimental N deposition (filled bars) after 7 months of decomposition in the field.  Error 

bars represent 2 SE.  Experimental N deposition did not significantly alter mass loss any 

substrate (independent sample t-tests). 
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Figure 3.2.  The response (% change in relative abundance) of fungi of different physiologies to 

experimental N deposition among the ten OTUs with the largest dissimilarity scores according to 

SIMPER analysis.  Significant comparisons (marked with an asterisk) are those for which the 

95% confidence intervals for relative abundance under ambient and experimental N deposition 

did not overlap.    
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Figure 3.3.  Relative abundance of Agaricomycetes (left) and highly lignolytic taxa (right) in 

fungal communities on a wood (top), high-lignin (middle), and low-lignin (bottom) substrates 

which after 7 and 18 months of decomposition in the field.  Relative abundance of 

Agariomycetes was calculated as a proportion of fungi, while relative abundance of highly 



117 
 

lignolytic taxa was calculated as a proportion of Agaricomycetes.  Error bars indicate 2 SE.  

Fungal communities on the low-lignin substrate paper, for which we have only one time point, 

were analyzed with independent sample t-tests.  High-lignin and wood were analyzed across 

collection dates with a two-way ANOVA.  Significance is indicated by * P < 0.05, ** P < 0.01. 
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Figure 3.4.  Relative abundance of Agaricomycetes (left) and highly lignolytic taxa (right) of 

fungal communities in forest floor (top) and soil (bottom).  Relative abundance of 

Agariomycetes was calculated as a proportion of fungi, while relative abundance of highly 

lignolytic taxa was calculated as a proportion of Agaricomycetes.  Error bars indicate 2 SE.   

 

 

 

 



119 
 

 

Figure 3.5.  Relative abundance of highly lignolytic taxa on the high-lignin substrate collected 

after 7 and 18 months of decomposition under ambient (open bars) and experimental (solid bars) 

rates of N deposition.  Relative abundance of highly lignolytic taxa was calculated as a 

proportion of Agaricomycetes.Error bars indicate 2 SE.  Each collection date was analyzed with 

independent samples t-tests, for which significance is indicated with * P < 0.05.    
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Figure 3.6.  Fungal abundance as  measured by quantitative PCR and presented as ITS1 copies 

μg
-1

  DNA (left) and ITS1 copies g
-1

 sample mass (right) on decomposing substrates of varying 

recalcitrance (wood, high-lignin, low-lignin) collected after 7 and 18 months of decomposition in 
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the field.  We compared ITS1 copy number on the wood (top) and high-lignin (middle) between 

time points and N deposition treatments with two-way ANOVAs; we present data across time-

points because there was no significant time-by-N deposition interaction.  Differences in ITS1 

copy number under experimental N deposition for the low-lignin substrate (bottom), for which 

we have only one time-point, were tested with an independent samples t-test.  Error bars 

represent 2 SE.  Significant comparisons are indicated with * P < 0.05. 
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Figure 3.7.  Fungal abundance as  measured by quantitative PCR and presented as ITS1 copies 

μg
-1

  DNA (left) and ITS1 copies g
-1

 sample mass (right) in forest floor (top) and soil (bottom).  

Error bars indicate 2 SE. ITS1 copy numbers under ambient and experimental N deposition were 

compared with with independent samples t-tests, but no comparisons were significant.
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CHAPTER 4 

Anthropogenic N deposition alters the composition, but not the diversity of expressed class II 

fungal peroxidases 

ABSTRACT 

Here, we present evidence that ca. 20 yrs of experimental N deposition did not halt the 

expression of class II fungal peroxidases, despite the fact that it has slowed decay in a long-term 

field experiment in northern hardwood forest stands.  Importantly, experimental N deposition 

altered the composition of expressed class II fungal peroxidases.  Such a change in composition 

could potentially reflect differences in the substrate specificities of the enzymes being expressed 

under experimental N deposition or a change in the taxonomy or ecology of the fungi responsible 

for expressing these enzymes.  However, the potential effects this may have on function are not 

obvious as transcripts for enzymes capable of oxidizing the phenolic bonds of lignin (MnPs) 

appear to be abundant under both ambient and experimental N deposition, while transcripts for 

enzymes capable of oxidizing the nonphenolic bonds of lignin (LiPs) or simple phenols (GPs) 

were uncommon but present in both N deposition treatments.   
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INTRODUCTION 

 Class II fungal peroxidases are important enzymes for the ecosystem process of 

decomposition because they play a key role in mineralizing lignin to carbon dioxide (Kirk and 

Farrell 1987, Hofrichter 2002, Floudas et al. 2012).  Peroxidase activity has long been studied in 

relation to soil C cycling (Sinsabaugh et al. 1992, Waldrop and Firestone 2004);  however, the 

diversity of fungal peroxidases expressed in nature has only recently received attention (Barbi et 

al. 2014, Bödeker et al. 2014, Kellner et al. 2014).  Because of their pivotal role in the 

decomposition of lignin, a change in the richness, diversity, or composition of expressed fungal 

peroxidases could change soil C cycling and storage.  

High rates of reactive nitrogen (N) deposition reduce peroxidase enzyme activity in soil 

(Sinsabaugh 2010) and negatively affect the relative abundance of fungi which express these 

oxidative enzymes (Chapter 2); furthermore, experimental N deposition retards the 

decomposition of lignin in plant litter and increase soil C storage (Frey et al. 2014).  Rates of 

atmospheric N deposition have increased dramatically over historical levels and continue to 

increase in some parts of the Earth as the result of human activity (Galloway and Cowling 2002).  

This important agent of global change has the potential to increase soil C storage by negatively 

affecting the enzymes and organisms responsible for lignin decay.  For example, if elevated rates 

of N deposition induce a change in either the diversity or composition of the expressed fungal 

peroxidases, this change could elicit changes in plant litter decomposition.   

Fungal class II peroxidases occur in the Agaricomycetes and the type and number of 

these genes vary widely among taxa in this class (Morgenstern et al. 2008, Nagy et al. 2015).  

The major types of class II peroxidases are manganese (MnP), lignin (LiP), versatile (VP), and 

generic (GP) peroxidases.  With the exception of GPs, all class II peroxidases decay  lignin and 
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other polyphenols in soil organic matter (Ruiz-Duenas et al. 2013); however, some evidence 

suggests that GPs may play a role in oxidizing simple phenols (Ruiz-Duenas et al. 2009).  MnPs, 

LiPs, and VPs vary in the types of reactions which they catalyze.  MnPs oxidize manganese, 

which diffuses away to oxidize phenolics (Hofrichter 2002).  LiPs, by contrast, directly oxidize 

the nonphenolic bonds of lignin, whereas VPs have the enzymatic capabilities of both MnPs and 

LiPs (Hofrichter et al. 2010).  MnPs are ancestral to LiPs and VPs, and they are the most 

widespread among lignolytic taxa and the most diverse (Morgenstern et al. 2008, Floudas et al. 

2012).  Furthermore, a recent study of peroxidases in the environment have documented novel 

clades of class II peroxidases, demonstrating that the diversity of this enzyme in nature is greater 

than was previously known (Kellner et al. 2014).  Because these enzymes may target different 

compounds and types of bonds, a change in the diversity or composition of expressed fungal 

class II peroxidases could have important functional consequences for the decay of plant litter,as 

well as polyphenols in soil organic matter. 

In this study, we examined the composition and diversity of fungal peroxidase transcripts 

in the forest floor collected from an ongoing long-term field experiment in a series of northern 

hardwood stands in which atmospheric N deposition has been experimentally increased to 

simulate a rates of atmospheric N deposition predicted for midcentury (Galloway et al. 2004).    

In these study sites, transcripts of fungal peroxidases have been detected under both ambient and 

experimental rates of N deposition (Kellner et al. 2010, Kellner et al. 2014); however, this study 

is the first widespread survey of expressed peroxidases under experimental N deposition.  We 

have hypothesized that experimental N deposition will reduce the richness and diversity of 

peroxidases.  We have also hypothesized that experimental N deposition will change the 

composition of fungal peroxidases expressed. Here, we used a targeted functional gene approach 
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to gain unique insight into how an agent of global change affects the expressed diversity and 

composition of an enzyme that plays a critical role in a biologically-mediated ecosystem process. 

METHODS 

Site Description.  Our study sites consists of four northern hardwood forests stands stretching 

across the lower and upper peninsulas of Michigan, USA. This long-term field experiment was 

designed to study the effects of chronic elevated levels of N deposition in a widespread type of 

temperate forest ecosystem.  These four sites span a gradient of temperature, precipitation, and 

ambient atmospheric deposition of N (Figure 4.1).  The overstory is dominated by sugar maple 

(Acer saccharum Marsh.).  Soils are well-drained sandy typic Haplothords of the Kalkaska 

series.   Plant community composition and soil chemical characteristics are similar across sites 

(Burton et al. 1991, Macdonald et al. 1991). 

At each site, six 30-m x 30-m plots were established in 1994.  Three plots receive 

ambient deposition of N from the atmosphere.  The other three plots receive ambient 

atmospheric N deposition plus an additional application of 3 g NO3
-
 -N m

-2
 y

-1
, which is applied 

as NaNO3
-
 pellets in 6 equal additions of 0.5 g N m

-2
 during the growing season (April-

September).  This experimental N deposition treatment is consistent with levels of atmospheric N 

deposition predicted for northeastern North America and portions of Europe by 2050 (Galloway 

et al. 2004). Each treatment plot is surrounded by a 10-m treated buffer zone to reduce edge 

effect, which also receives the aforementioned N deposition treatments.  Treated plots in this 

experiment have been receiving this rate of additional N annually since 1994.  The long-term 

experimental application of N has not changed soil pH, base saturation, matric potential, or forest 

floor conductivity (Patterson et al. 2012). 
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Sample collection and processing.  The Oe/Oa horizons were collected from ten random 10 cm
2
 

quadrats in each plot during September 2014.  Collected forest floor samples were homogenized 

with sterile scissors and immediately immersed in liquid N2 in the field.    Samples were stored at 

-80˚C until nucleic extraction. 

Nucleic acid extraction.  For each experimental plot, we performed ten replicate nucleic acid 

extractions.  For each extraction, we added ~0.25 g of forest floor material into a MoBio 

Powerlyzer® Glass Bead Tube with 0.1 mm glass beads.  We extracted nucleic acids according 

to a previously published method (Freedman et al. 2015) using an initial phenol-chloroform 

extraction followed by extraction with a MoBio PowerLyzer® PowerSoil® DNA Isolation kit 

and an overnight ethanol precipitation.  Extracted nucleic acids were purified with a MoBio 

PowerClean® DNA Clean-Up Kit.  Purified nucleic acids were subsequently treated with DNase 

I enzyme in order to remove DNA from the total nucleic acids and obtain a solution containing 

RNA only.   

Synthesis of random-hexamer cDNA.  For each sample, we performed ten replicate reverse 

transcription (RT) reactions.  For each RT reaction, we added 5 μL of extracted RNA to generate 

cDNA with random hexamer (RH) primers according to the manufacturer protocol for the 

SuperScript Vilo Master Mix (cat. #11755-010).  The resulting first strand cDNA from RT with 

RH primers is subsequently referred to as random-hexamer cDNA (RH-cDNA). 

PCR and cloning of fungal peroxidases from forest floor RH-cDNA.  Prior to next generation 

sequencing, we initially amplified and cloned RH-cDNA in order to verify that PCR products 

represented fungal peroxidases.  We recently modified an existing pair of class II peroxidase 

primers (Bodeker et al. 2009) to create primers fpxF (5' GGWGGWGCYGAYGGITC 3') and 

fpxR (5' GGRGTYGARTCGAAIGG 3'), which are more appropriate for use in environmental 
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samples. We first used these primers to amplify and clone expressed fungal peroxidases from a 

subset of our samples.   

Each PCR contained 0.5 µL dNTPs (20 mM each), 2.5 µL SigmaAldrich® JumpStart™ 

10x buffer, 1.5 µL MgCl2 (25 mM), 1.5 µL bovine serum albumin (25 mg mL
-1

), 1.5 µL fpxF (20 

µM), 1.5 µL fpxR (20 µM), 13.5 µL molecular biology-grade water, 0.5 µL JumpStart™ Taq 

DNA polymerase, and 2 µL RH-cDNA template.  In order to verify that all genomic DNA was 

removed at the DNase I treatment step, we also included PCRs in which the template was nucleic 

acid extractions that had been treated with DNase I, but which were not subsequently reverse 

transcribed.  Reactions were assembled on a cold block, immediately transferred to a 

thermocycler block that had been preheated to 95 ˚C, and run with the following thermocycler 

protocol: initial denaturation (5 min, 95 ˚C), followed by 35 cycles of amplification which 

included denaturation (30 s, 95 ˚C), primer annealing (30 s, 51 ˚C), extension (75 s, 72 ˚C), and a 

final extension (7 min, 72 ˚C) to complete the protocol.   

We excised a ~400 bp band from each product, removed agarose and contaminants with a 

Qiagen QIAquick® Gel Extraction Kit, and then cloned the amplicons with an Invitrogen 

TOPO® TA Cloning® kit.  We selected colonies and prepared the plasmids with a Promega 

Wizard® Plus SV Miniprep kit which were submitted for Sanger sequencing at the University of 

Michigan sequencing core.  After obtaining results of sequencing, we conducted discontinuous 

megablasts using the NCBI BLAST portal to determine whether inserts represented fungal 

peroxidases.  We selected 10 of these plasmids, each of which contained a unique insert which 

had produced BLAST matches to one or more fungal peroxidases.  We pooled these plasmids in 

equal proporotions (10
11 

copies each) to make a multigene mixture that would serve as a “mock 
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community” (Highlander 2014, Lluch et al. 2015), in order to help us assess sequencing error 

rate.   

PCR and sequencing of peroxidases from forest floor RH-cDNA.  We performed PCR on all 

samples, as well as on our mock community DNA, using barcoded primers which allowed us to 

multiplex multiple samples on a single PacBio SMRT chip for sequencing on a PacBio RSII 

sequencer.  Barcodes selected were pairs 1, 2, 3, 8, and 9 from among 96 pairs of barcodes 

designed by the manufacturer for multiplexing on the PacBio RSII instrument 

(https://github.com/PacificBiosciences/Bioinformatics-

Training/blob/master/barcoding/pacbio_barcodes_paired_nopadding.fasta).   For each sample, 

we performed hot-start PCR in triplicate according to the conditions described above, ran the 

products on a 2% agarose gel, and excised the appropriate band from each lane with a clean, 

sterilized scalpel.   

We removed agarose and other contaminants from the excised gel bands using a Qiagen 

QIAquick® Gel Extraction Kit with products from triplicate PCRs pooled prior to the elution 

step.  We repeated the PCR and gel extraction process again for each sample and pooled 

products from both rounds prior to purifying the PCR products using a Qiagen MinElute PCR 

Purification Kit, and concentrated the samples by eluting with a volume of 20 μL of water.  For 

most samples, it was necessary to repeat the entire PCR, gel extraction, and purification 

procedures twice in order to obtain enough product to sequence.  PCR products from the mock 

community did not require gel excision and were purified with the Qiagen MinElute PCR 

Purification Kit.  We measured quality of our final products on a ThermoScientific NanoDrop™ 

8000 UV-Vis Spectrophotometer and quantity with an Invitrogen Quant-IT™ PicoGreen® 

dsDNA kit on a BioTek® Synergy HT microplate reader. 

https://github.com/PacificBiosciences/Bioinformatics-Training/blob/master/barcoding/pacbio_barcodes_paired_nopadding.fasta
https://github.com/PacificBiosciences/Bioinformatics-Training/blob/master/barcoding/pacbio_barcodes_paired_nopadding.fasta
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  For multiplex sequencing, we pooled products to be sequenced on the same PacBio® 

SMRT® chip. For pooled products that had less than < 350 ng total DNA, we spiked the pooled 

products with PCR product from the mock community to bring it up to 350 ng and ensure 

sufficient DNA quantity for sequencing.  Pooled PCR products were submitted to the University 

of Michigan sequencing core where they received two rounds of sequencing with magnetic-bead 

loading on the PacBio® RS II sequencer using P6-C4 chemistry.  The resulting data files from 

each of these rounds of sequencing were combined during sequence processing in mothur.  We 

obtained sequence files with 10X circular consensus sequence (CCS) coverage. 

cDNA sequence processing.  We processed our cDNA sequences in mothur (Schloss et al. 

2009).  First, we removed sequences with low quality scores (qwindowsize=50, 

qwindowaverage=25), sequences with mismatches to the barcode or primer regions, sequences 

with ambiguous nucleotides, sequences with homopolymers of > 9 nucleotides, and sequences 

below 350 bp and exceeding 450 bp in length.  We trimmed primers and barcodes from 

sequences prior to downstream processing.  The cDNA sequences were aligned in mothur using 

a reference alignment that consisted of 445 fungal class II peroxidase sequences which we had 

previously obtained from GenBank, Fungene (Fish et al. 2013), and MycoCosm (Grigoriev et al. 

2014) and had aligned with MAFFT (Katoh et al. 2002).  Following alignment of the cDNA 

sequences, we removed sequences which began or ended at inappropriate positions within the 

alignment.  Finally, we removed chimeras which had been identified with UCHIME (Edgar et al. 

2011).  Unique sequences were preclustered in order to denoise the data set.  Following the 

precluster step, we either exported unique sequences for translation or, for nucleotide-based OTU 

analyses, proceeded to distance matrix calculation and clustering.  For the mock community, we 

calculated the error rate using the seq.error function. 
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Translation of cDNA sequences.  In order to translate cDNA nucleotide sequences into amino 

acid sequences, we uploaded unique, preclustered, and degapped nucleotide sequences in a fasta-

formatted file to the FunGene FrameBot (Fish et al. 2013) online interface 

(http://fungene.cme.msu.edu/FunGenePipeline/framebot/form.spr).  To guide the translation, we 

provided a fasta file of 323 reference fungal class II peroxidases protein sequences;  we had 

obtained these reference sequences from FunGene (Fish et al. 2013) and Mycocosm (Grigoriev 

et al. 2014) and had trimmed off the conserved amino acids of the primer regions (Bodeker et al. 

2009) to create the reference file.   

We downloaded our translated cDNA sequences from Fungene Framebot, imported them 

into Geneious 6.1.8, and aligned them with these same 323 fungal peroxidase protein reference 

sequences using MAFFT (Katoh et al. 2002).  We inspected sequences to determine if they 

contained the conserved catalytic residues associated with Mn
2+

 oxidation (Asp-175) or LiP-like 

activity (Trp-171) as described by others (Morgenstern et al. 2008, Kellner et al. 2014).  We 

trimmed the alignment to the last nucleotide position for which no sequences in our data set had 

a gap and manually removed the reference protein sequences from the alignment.  We then 

exported aligned amino acid sequences for downstream use in either distance matrix calculation 

or Unifrac analysis.   

OTU clustering and analyses.  For cDNA nucleotide sequences, we were able to calculate 

distance matrices in mothur.  However, mothur will not calculate distances for amino acid 

sequences, so we calculated distances for amino acid sequences by using the seqinr package for 

R and subsequently imported a column-formatted matrix into mothur to cluster sequences into 

operational taxonomic units (OTUs).  We initially clustered our mock community nucleotide 

sequences at levels up to 0.10 and examined the number of OTUs obtained at the unique, 96%, 

http://fungene.cme.msu.edu/FunGenePipeline/framebot/form.spr
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and 90% sequence similarity levels.  Distances for amino acid sequences were very large and 

mothur was not able to cluster sequences beyond the unique level.  However, we were able to 

cluster nucleotide sequences beyond this level and selected 96% and 90% OTUs for analysis.  

Prior to downstream analyses, singleton OTUs were removed. 

We initially determined how many OTUs were present at an abundance of ≥ 1% of all 

sequences under both ambient and experimental N deposition across the entire data set using the 

get.coremicrobiome command in mothur.   Following this, we removed all plots with < 100 

sequences, normalized the number of sequences across the remaining plots by subsampling, and 

subsequently repeated core microbiome analysis.  Using the subsampled data set, we calculated 

observed richness, Shannon diversity, and inverse Simpson diversity and created shared files for 

analysis of OTU composition. 

We manually calculated evenness (EH) from Shannon diversity (H) as EH = 

H/ln(observed richness).  We assessed the effect of N deposition treatment and site on observed 

richness, Shannon diversity, and inverse Simpson diversity were assessed with two-way 

ANOVAs in SPSS statistical package v. 23.  Because the Venn diagrams created in mothur are 

not scaled, we created scaled diagrams using the VennDiagram package for R. 

To statistically assess whether experimental N deposition altered the composition of 

expressed peroxidases, we performed one-factor permutational multivariate ANOVA 

(PERMANOVA) and PERMDISP in the PRIMER-E statistics program. A one-factor rather than 

a two-factor analysis was performed because we had an insufficient number of replicates to 

successfully examine the main effect of site with permutational analyses.  We analyzed both 

untransformed data and data to which a presence-absence transformation had been applied; by 

not transforming data, the most abundant OTUs are heavily weighted and will most strongly 
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influence results, whereas with a presence-absence transformation all OTUs have the same 

weight regardless of their abundance (Anderson 2001). We calculated a Bray-Curtis distance 

matrix based on OTU abundances and performed PERMANOVA and PERMDISP with 9999 

iterations with PERMDISP distances calculated from centroids.   We report permutational P 

values for these analyses. 

Phylogenetic composition of expressed peroxidases.  OTU-based analyses treat closely and 

distantly related to OTUs the same, making it desirable to also examine peroxidase composition 

and structure with analyses that take the phylogenetic relationship between the sequences present 

into account.  To that end, we performed both unweighted and weighted Unifrac analyses to test 

the hypotheses that experimental rates of N deposition altered the phylogenetic composition and 

structure of the expressed peroxidases.   

Prior to translating our cDNA sequences, we excluded plots that had yielded fewer than 

81 sequences. Prior to analyzing data, we subsampled all plots to normalize the number of 

sequences across plots and performed two analyses: one for all sites and a separate analysis for 

Sites B & C only; because we did not have a balanced design (i.e., equal n for ambient and 

experimental N deposition) across all sites as a result of several low-yielding plots at Sites A & 

D which we had excluded, we performed an additional analysis restricted to Sites B & C in order 

to have a test with a balanced design with which to additionally consider the effects of Site and 

N-deposition-by-Site for on Unifrac metrics.  For our analysis across all sites, an additional 

subsampling step was necessary in order to obtain an equal number of sequences in each N 

deposition treatment, which we accomplished by first merging plots by N deposition treatment 

and then further subsampled to normalize the number of sequences in each treatment.  For 

analysis of Sites B & C only, no additional subsampling was necessary because we had already 
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normalized sequences at the plot level and the number of plots in each N deposition treatment 

was equal. 

We exported unique nucleotide sequences, translated with Framebot, aligned the resulting 

amino acid sequences with MAFFT, and trimmed the alignment in the same manner described 

above.  To perform Unifrac analysis, we reimported the alignment of our translated peroxidase 

sequences into mothur.  In mothur, we created a relaxed neighbor-joining phylogenetic tree with 

clearcut (Evans et al. 2006) and ran the unweighted and weighted Unifrac commands.   

In order to further examine lineages of peroxidases present under ambient and 

experimental N deposition, we performed a neighbor-joining analysis to identify peroxidases in 

our data set which were closely related to each other and to our selected reference sequences.  To 

reduce the number of sequences to a feasible number for this analysis, we clustered peroxidase 

cDNA nucleotide sequences to 0.10, selected the most abundant sequence in each OTU as a 

representative sequence, manually removed singletons, and translated the representative 

sequences with Framebot as previously described.  We aligned the resulting amino acid 

sequences as described previously with the additional inclusion of an outgroup sequence, 

Magnaporthe oryzae ligninase C (GenBank accession number ELQ39692.1), which was selected 

based on previously published phylogenies of class II fungal peroxidases (Morgenstern et al. 

2008).  While both neighbor-joining and maximum likelihood techniques were able to resolve 

the relationships of closely related sequences with high bootstrap support, the relationships 

between distantly related sequences remained unresolved with both techniques (data not shown); 

therefore, we did not attempt to resolve deep nodes of the tree, but instead constructed a 

neighbor-joining tree in Geneious Tree Builder with 100 bootstraps and imposed a bootstrap 

minimum of 25 in order to identify clades of closely related sequences only without attempting 
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to determine the relationships between distantly related clades.  We number OTUs from most to 

least abundant.  OTUs were considered to be as LiPs if they possessed Trp-171, but not Asp -175 

and GPs if they possessed neither Trp-171 or Asp-175.  All OTUs which were not LiPs or GPs 

possessed the conserved Asp-175 for oxidation of Mn
2+

. We identified OTUs and lineages which 

occurred under ambient N deposition, under experimental N deposition, or both. 

RESULTS 

Error rate.  The error rate of the raw sequences was 0.14%, meaning that ~21% of sequences 

contained 1 or more errors.  Denoising with a precluster step reduced the error rate to 0.08%, 

meaning ~11% of sequences contained 1 or more errors.  Because of this, the OTU count for our 

mock community was highly inflated compared to the ~10 OTUs we anticipated observing based 

on the initial ten sequences which we used to assemble it.  However, OTUs resulting from 

sequencing error were also of low abundance.  Therefore, by removing singletons and 

subsequently subsampling the mock community at a similar number of sequences (i.e., 100) as 

used for our analyses of richness, diversity, and composition, we obtained 17 OTUs at the unique 

level, 12 OTUs at the 96% sequence similarity level, and 9 OTUs at the 90% sequence similarity 

level in the mock community.   

Sequencing yield.  Following our sequencing pipeline, we obtained 24,472 total fungal 

peroxidase cDNA sequences across our data set.  Sequence yield varied highly across plots, with 

five plots yielded fewer than 100 sequences.  However, 19 out of 24 plots in our experiment 

yielded >100 sequences and 6 plots yielded >1000 sequences. These 24,472 nucleotide 

sequences represented 3810 unique sequences and clustered to 380 and 185 OTUs at the 96% 

and 90% sequence similarity levels, respectively.  Translation of the unique cDNA nucleotide 

sequences, subsequently yielded 3809 unique amino acid OTUs.   
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Singletons in our data set made up a small portion of our total sequences, but a large 

portion of our OTUs.  For amino acid sequences clustered to the unique level, 13% of total 

sequences in our data set were singletons, but these represented 81% of all OTUs.  For 

nucleotide sequences clustered to the 96% sequence similarity level, singletons accounted for 

only 0.7% of all sequences, but comprised 47% of all OTUs.  For nucleotide sequences clustered 

at 90% similarity, singletons represented 0.2% of all sequences, but still represented 31% of 

OTUs.  When singletons were removed, the total number of OTUs in the data set dropped to 718 

for the unique amino acid OTUs, and 193 and 127 for the 96% and 90% nucleotide sequence 

similarity OTUs, respectively. 

Inspection of the unique translated cDNA sequences revealed nearly all (99%) of these 

unique sequences possessed the conserved residue (Asp-175) for Mn
2+

 oxidation (Kellner et al. 

2014). Very few of these sequences (0.3%) contained the conserved residue (Trp-171) for LiP-

like activity associated with lignin and versatile peroxidases (Kellner et al. 2014).  Thus, it 

appears that nearly all transcripts obtained in our study represent enzymes which can oxidize 

Mn
2+

, whereas only a few may possess LiP-like activity.  Therefore, transcripts obtained in our 

study largely appear to represent MnPs. 

Richness and diversity indices.  To address our hypothesis that experimental N deposition 

would reduce richness and diversity of expressed peroxidases, we calculated richness, the 

Shannon diversity index, the Shannon evenness index, and the inverse Simpson diversity index 

for each plot receiving ambient and experimental N deposition.  Following removal of singletons 

and subsampling, we obtained a total richness of 267 (unique), 125 (96% sequence similarity) 

and 89 (90% sequence similarity) OTUs, respectively.  At the plot level, the observed richness of 

peroxidases ranged from 1 to 30 OTUs (Table 4.1).   
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The ranges for Simpson diversity (1 – 11.6) and Shannon evenness (0.08 – 0.93) indicate 

that there was considerable variation among samples in the extent to which they were dominated 

by expression of a single peroxidase or reflected the expression of a variety of peroxidases at 

approximately equal rates (Table 4.1).  When a sample is dominated by one highly expressed 

OTU, inverse Simpson diversity ≈ 1 and Shannon evenness ≈ 0.  However, Simpson diversity 

increases and Shannon evenness ≈ 1 for samples in which multiple OTUs are present in equal 

amounts.  Shannon diversity, which incorporates both abundance and evenness, exhibited a 

narrower range (0 – 2.62)  among samples than did Simpson diversity (Table 4.1), which may 

reflect the fact that total observed richness was relatively low. 

However, experimental N deposition had no significant effect on richness, Simpson 

diversity, or Shannon diversity of the expressed peroxidases at any of the OTU levels examined 

(Figure 4.2, Table 4.2).  Furthermore, site and the interaction of N deposition treatment with site 

were also not significant factors for these comparisons (Table 4.2).  However, experimental N 

deposition did significantly increase Shannon evenness of 90% nucleotide sequence similarity 

OTUs (Figure 4.2, Table 4.2); nonetheless, experimental N deposition did not significantly 

increase evenness for the 96% sequence similarity or unique OTUs, although these values were 

close to our significance cut-offs (Table 4.2).  Shannon evenness also varied significantly among 

Sites for the 90% nucleotide sequence similarity OTUs, but this was not true for the other OTU 

levels (Table 4.2).  There was no significant interaction between N deposition treatment and Site 

for comparisons of Shannon evenness at any of the OTU levels examined (Table 4.2).   

OTU-composition.  The peroxidases expressed under experimental N deposition were neither 

entirely separate nor completely a subset of those expressed under ambient N deposition (Figure 

4.3).  Instead, some peroxidases were expressed in both N deposition treatments, whereas a 
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larger number of OTUs are distinct to one N deposition treatment or the other.  The proportion of 

peroxidases expressed under both ambient and experimental N deposition increased with 

decreasing percentage similarity of cDNA sequences (Figure 4.3).   

However, when comparing OTUs which are abundant (i.e., comprise at least 1% of all 

expressed sequences under both ambient and experimental N deposition), very few OTUs (3 – 5) 

were abundant under both ambient and experimental N deposition (Table 4.3).  Therefore, most 

peroxidases expressed under both ambient and experimental N deposition treatments are those 

that are of low abundance, with only a few of the shared peroxidases were abundant in both N 

deposition treatments.   

For unique OTUs clustered from translated cDNA sequences, experimental N deposition 

significantly altered composition of expressed peroxidases according to PERMANOVA (Table 

4.4) and PERMDISP (Table 4.5) when presence-absence was examined; however, experimental 

N deposition had no significant effect using untransformed data (Tables 4.4, 4.5).  This suggests 

that experimental N deposition had a significant effect on the composition of the rare, but not the 

dominant OTUs.   By contrast, experimental N deposition had no significant effect on the 

composition 96% or 90% OTUs clustered from nucleotide sequences, either when untransformed 

data were examined or when the presence-absence transformation was applied, according to 

PERMANOVA (Table 4.4) or PERMDISP (Table 4.5).  However, PERMANOVA results for 

96% and 90% OTUs were close to our significance cut-off when data were analyzed for 

presence-absence (Table 4.4). 

Phylogenetic composition.   Experimental N deposition significantly altered the fraction of 

branch length in the phylogenetic tree which led to peroxidases from one N deposition treatment 

but not the other, both with and without weighting by sequence abundance (Table 4.6).  When 
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we limited analysis to Sites B & C only in order to obtain a balanced design necessary to 

consider the effects of Site and N-deposition-by-Site (see Methods for more details), 

experimental N deposition had a significant effect on weighted and unweighted Unifrac, both 

within and across sites; furthermore, each site contained unique lineages of expressed 

peroxidases (Table 4.6).  Thus, our results for unweighted and weighted Unifrac are consistent 

with our expectations that experimental N deposition would alter the phylogenetic composition 

of the peroxidases expressed by the fungal community. 

To determine which lineages contribute to this effect, we performed a neighbor-joining 

analysis with translated representative sequences from 90% sequence similarity OTUs.  

Neighbor-joining revealed that most peroxidases were either present under both ambient and 

experimental N deposition as shared OTUs or were part of clades which included closely related 

peroxidases from both ambient and experimental N deposition treatments (Figure 4.4).  

However, some lineages were unique to a particular N deposition treatment.   

We identified 14 lineages containing 17 OTUs that were present only under ambient N 

deposition and 8 lineages representing 11 OTUs which were only observed under experimental 

N deposition (Figure 4.4). All of the unshared lineages contained OTUs which were identified as 

either MnPs or GPs based on the presence and absence of conserved catalytic residues for Mn
2+

 

oxidation and LiP activity (Morgenstern et al. 2008, Kellner et al. 2014).  The LiP OTUs which 

we obtained were either part of OTUs which were expressed under both ambient and 

experimental N deposition or were closely related to these shared OTUs (Figure 4.4).   

While most of these unshared lineages were not closely related to reference sequences 

from known species, several of the lineages unique to the ambient N deposition treatment 

included reference sequences from one or more known species; these were associated with MnPs 



140 
 

from the Agaricales (Agaricus bisporus, Armillaria gallica, and Volvariella volvacea), the 

Hymenochaetales (Phylloporia ribis), the Polyporales (Phanerochaete flavidoalba and Grifola 

frondosa), and the Corticiales (Cytidia salicina).  While no MnPs that were distinct to the 

experimental N deposition treatment were closely related reference sequences, OTU077 (Figure 

4.4) was placed within a larger clade containing MnPs from a variety of Polyporales.   

DISCUSSION 

Our prior work has revealed that ca. 20 years of experimental N deposition has altered 

the composition of the active fungal community in the forest floor (Chapter 1) and decreased the 

abundance of lignolytic fungi (Chapter 2).  Furthermore, experimental N deposition decreased 

the richness of fungal lignocellulolytic genes in two out of four experimental sites in our study 

system (Eisenlord et al. 2013) and reduced the abundance of transcripts for fungal 

lignocellulolytic genes in a metatranscriptomic survey (Hesse et al. 2015).  Based on these 

previous observations, we would anticipate that experimental N deposition would also reduce the 

richness and diversity as well as alter the composition of expressed class II fungal peroxidases.  

Such changes in the richness, diversity, or composition of transcripts for this important class of 

lignolytic enzymes could potentially explain reductions in lignin-decay observed in our study 

(Pregitzer et al. 2008, Zak et al. 2008).  Yet, experimental N deposition did not reduce the 

richness or diversity of expressed fungal class II peroxidases in this study, but did alter the 

composition of the peroxidases which were expressed. 

Rather than decreasing the diversity of expressed peroxidases as we hypothesized, 

experimental N deposition increased the diversity of peroxidases being expressed in the forest 

floor, although this increase was not statistically significant (Figure 4.2).  Furthermore, 

experimental N deposition increased the Shannon evenness of peroxidases being expressed in the 
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forest floor (Figure 4.2).  Taken together, this suggests that a greater variety of fungal genes are 

contributing substantially to the process of lignin decay under experimental rates of N 

deposition, relative to the ambient condition.  One plausible explanation for this observation is 

that experimental N deposition suppressed the expression of genes which typically dominate this 

process, thereby opening up niche space for other fungi and allowing them to play a greater role 

in lignin decay.  Previous studies have found a greater potential for bacterial lignin decay under 

experimental N deposition (Freedman and Zak 2014), possibly as a result of reduced competition 

from fungal lignin decomposers, which are more efficient in this regard (de Boer et al. 2005).  It 

is, therefore, possible that a similar mechanism occurs among lignin-decaying fungi wherein less 

efficient lignin-decomposers play a greater role under experimental N deposition because of 

suppression of more efficient fungal decomposers.  However, more information regarding the 

origins and functions of the specific enzymes declining and increasing in representation would 

be needed to determine whether this is the case. 

Peroxidases expressed under experimental N deposition were not simply a subset of those 

expressed under ambient N deposition nor were the peroxidases expressed under experimental N 

deposition an entirely separate set of enzymes from those expressed under ambient N deposition 

(Figure 4.3).  Instead, some peroxidases were distinct to each N deposition treatment, whereas 

others co-occurred in both treatments (Figure 4.3).  Experimental N deposition altered the 

composition of fungal peroxidases expressed when all OTUs, regardless of abundance, were 

weighted equally, but not when the most abundant OTUs were highly weighted (Tables 4.4 & 

4.5).  However, most OTUs in the data set represented only relatively small percentages (2% or 

less each) of total sequences, whereas only a few OTUs represented large portions of sequences 

(5% or more, data not shown).  The strongest effects on community composition, however, were 
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determined by Unifrac analyses in which the fraction of unique branch length (i.e., unshared 

lineages) varied significantly between the N deposition treatments.  Such unique lineages could 

potentially have different substrate specificities or arise from taxa with different physiological 

and ecological roles in lignin and polyphenol decomposition.  Taken together, changes in both 

the composition of peroxidase OTUs and in the phylogenetic composition of expressed 

peroxidases suggest a potential change in the function of these expressed enzymes has occurred 

under experimental N deposition, consistent with our hypotheses and a decline in matter decay 

and increases soil C storage that we have previously documented (Pregitzer et al. 2008, Zak et al. 

2008). 

However, when we examined the peroxidases observed in our study, transcripts for 

MnPs, which oxidize the phenolic bonds in lignin, were abundant and diverse under both 

ambient and experimental N deposition (Figure 4.4). Furthermore, most MnP lineages occurred 

across both treatments.  These observations suggest that that experimental N deposition did not 

have a negative effect on the expression of MnPs.  Furthermore, some unique MnPs occurred in 

both treatments, suggesting that differences in composition were not solely driven by losses of 

enzymes expressed under ambient N deposition, but also by gains of enzymes not expressed 

under ambient N deposition; however, the number of lineages absent from the experimental N 

deposition did exceed those absent from the ambient N deposition treatment (Figure 4.4).  

While many of the MnP lineages occurring only under ambient N deposition were 

unrelated to any known MnP, a few were related to well-studied MnPs from known species, 

allowing us to make inferences regarding the ecology and function of these lineages.  For 

example, OTU071 occurred in the same clade as two MnP sequences from Volvariella volvacea 

(AFR44748, AFR44749), a litter decay fungus which resembles white-rot wood decay fungi in 
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its enzymatic capacity for decay of lignin and crystalline cellulose (Floudas et al. 2015).  Other 

OTUs found only under ambient N deposition were in clades with MnPs from known wood-

decay fungi including Armillaria gallica, Cytidia salicina, Phanerochaete flavidoalba, Grifola 

frondosa, and Phylloporia ribis.  Finally, one OTU occurring only under ambient N deposition 

was in a clade litter decomposer Agaricus bisporus, which is adapted for late-stage decay and 

humic-rich environments (Morin et al. 2012).  Thus, we can infer that these lineages found only 

under ambient, but not experimental, N deposition may represent MnPs from a variety of 

powerfully lignolytic wood and litter decay fungi and from late-stage decomposers specializing 

in the decay of highly humic litter.  Most of the peroxidases occurring only under experimental 

N deposition were also not closely related to any known reference sequences, but one OTU 

grouped within a larger clade containing MnPs from a variety of wood-decay fungi of the 

Polyporales, suggesting this lineage also represents MnPs from highly lignolytic white-rot fungi.   

Although a few LiP sequences were recovered in our study, expressed LiPs were 

uncommon under both ambient and experimental N deposition.  Thus, there is also no evidence 

that their associated function (decay of nonphenolic bonds of lignin) has been lost under 

experimental N deposition.   The low recovery of LiPs in our study is probably not the result of 

amplification bias against these enzymes, as the primer sequences in this study were present in 

LiP reference sequences (data not shown). Instead, it seems likely that LiP is rarely expressed in 

the forest floor, at least in our field sites and at the time of our sampling.  Finally, we recovered 

some GPs, which may decay simple phenols, from both ambient and experimental N deposition, 

as well, suggesting that this function is also unaffected by experimental N deposition. 

In this study, we were able to amplify fungal class II peroxidases transcripts from forest 

floor in stands receiving both ambient and experimentally elevated rates of N deposition.  As a 
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result of this, we know that experimental N deposition does not completely inhibit peroxidase 

transcription, because we were able to extract and amplify sequences for these enzymes.  

However, it is plausible that experimental N deposition could reduce the rate at which these 

enzymes are transcribed and produced.  While we did not quantify the abundance of fungal class 

II peroxidases transcripts in the present study, measuring the abundance of expressed 

peroxidases under ambient and experimental rates of N deposition is an important priority for 

future research. 

  Overall, we observed changes in the composition and evenness of transcripts a group of 

enzymes which play a critical role in lignin decay in a long-term experiment in which 

experimental N deposition has reduced lignin decay.  Given the changes observed in C-cycling 

in response to experimental rates of N deposition, we might have anticipated more dramatic 

losses of peroxidase diversity and function than we have observed here. For example, while we 

did see changes in the evenness of expressed genes, we did not observe any loss in diversity or 

richness.  Furthermore, while the changes in composition of expressed peroxidases, especially 

the loss of several lineages associated with known peroxidases, under experimental N deposition 

suggests that changes in function may have also occurred, we still obtained a diverse array of 

peroxidases apparently capable of oxidizing phenolic and, to a lesser extent, nonphenolic bonds 

of lignin across both N deposition treatments.  Thus, in constrast to our expectations, we were 

unable to detect any obvious reduction in function in response to experimental N deposition. 

The potential functional implications of the changes in composition and evenness of 

expressed peroxidases observed here are not entirely clear, because we have a limited 

understanding of the biology and ecology of enzymes recovered from the environment as well as 

the identity of the organisms which may be expressing them.  Most of the sequences we obtained 
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were only distantly related to reference sequences from known and well-studied fungal 

peroxidases, a result which has also been observed in a previous environmental survey of these 

enzymes (Barbi et al. 2014).   Others, including several of the larger OTUs in our study, were 

closely related only to peroxidases from fungal species for which genome sequencing has only 

recently revealed the potentially important roles in lignin decay by these organisms.  For 

example, both OTU001 and OTU004 were closely related to a peroxidase sequence from the 

genome of Sphaerobolus stellatus, whose incredible diversity of peroxidases was unknown until 

last year (Nagy et al. 2015).  Furthermore, we were unable to resolve the underlying phylogentic 

relationships between disparate clades of peroxidases, which may have also provided context for 

the evolution and function of different groups of MnPs.  Thus, we presently lack the appropriate 

context to interpret the changes in composition observed here in more detail. 

If experimental N deposition is dramatically altering the composition and diversity of 

fungal lignolytic genes, it is possible that we would have to observe a broader array of fungal 

lignocellulolytic genes in order to fully observe the extent of these effects.  For example, 

peroxidases are among a suite of fungal enzymes which include laccases (Theuerl and Buscot 

2010), dye-decolorizing peroxidases (DyPs) (Liers et al. 2010, Liers et al. 2013), unspecific or 

aromatic peroxygenases (UPOs/APOs) (Pecyna et al. 2009, Liers et al. 2011), and 

chloroperoxidases (CPOs) (Ortiz-Bermúdez et al. 2003, Kellner et al. 2010) for which roles in 

lignin-decay are either known or suspected.  Furthermore, the extent of a fungal species to decay 

lignin is strongly linked to its mode of cellulose utilization; the fungi with the most lignolytic 

potential possess not only the most peroxidase genes, but also the most genes for utilization of 

crystalline cellulose (Riley et al. 2014, Floudas et al. 2015).  It is, therefore, possible that 

experimental N deposition effects expression of entire suites of fungal lignocellulolytic genes 
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and that examination of more than one set of C-cycling genes may be necessary to more fully 

observe changes in function. 

We recently documented that experimental N deposition reduced the abundance of 

lignolytic fungi on wood and high-lignin substrates more dramatically after 7 months of decay in 

the field than after 18 months (Chapter 3), which suggests that the strongest negative effects of 

experimental N deposition on lignolytic fungi occur earlier, rather than later, in the decay 

process.  In this study, we examined forest floor (Oe/Oa) horizons which represent the latter 

stages of decay.  Therefore, it is possible that larger differences in terms of peroxidase 

composition may have been observed if we had also included the more recently deposited (Oi) 

litter layers.  Moreover, it is possible that experimental N deposition may have only subtle 

effects on the expression of lignolytic enzymes in leaf litter because leaf litter decay is not 

driving SOM accumulation under experimental rates of N deposition.  While experimental N 

deposition has increased soil C content (Pregitzer et al. 2008, Zak et al. 2008), we have recently 

learned that root litter, not leaf litter, is the largest source of these inputs (Thomas et al. 2012, 

Xia et al. 2015), despite there being no increase in either the production or recalcitrance of root 

litter under experimental N deposition (Burton et al. 2012, Xia et al. 2015).  In light of this, the 

response of fungal lignocelluloytic gene expression under experimental N deposition may 

ultimately be more important to observe on belowground litter than on aboveground litter. 

Our findings here add to a growing body of knowledge regarding the effects of long-term 

increases in the rate of N deposition on soil and forest floor microbial communities.  Thus far, 

we know that experimental N deposition has reduced the activity of peroxidase (DeForest et al. 

2004, Freedman et al. 2015, Freedman et al. 2016), laccase (DeForest et al. 2004, Freedman and 

Zak 2014), and cellbiohydrolase enzymes (Freedman et al. 2015, Freedman et al. 2016) in our 
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study system, strongly suggesting that a decline in the activity of highly lignolytic fungi accounts 

for observed increases in soil organic matter under experimental N deposition.  Furthermore, 

experimental N deposition has negatively affected the abundance of fungal transcripts for 

lignocellulose decay (Hesse et al. 2015), suggesting that declines in not only the activity, but also 

the expression of fungal lignocellulolytic genes, are occurring under experimental N deposition.  

At the same time, experimental N deposition has altered the composition of fungi active in the 

forest floor (Entwistle et al. 2013, Freedman et al. 2015), indicating that different fungal taxa are 

active in decomposition under experimental N deposition.  Finally, experimental N deposition 

negatively affected the abundance of lignolytic fungi and positive affected on the abundance of 

fungi which specialize in the decay of cellulose and hemicelluloses without substantial amounts 

of concurrent lignolysis (Chapter 3).  Because of this, experimental N deposition may have also 

altered the potential for expression of fungal lignolytic genes, although previous studies 

regarding this potential have provided conflicting results (Eisenlord et al. 2013, Freedman et al. 

2016).  Here, we have observed changes in composition of expressed fungal peroxidases, a 

highly important class of enzymes for lignin decay, but no accompanying loss of diversity.  This 

change in composition of an expressed functional gene implies that co-occurring changes in 

function are occurring; indeed, we did observe the absence of some lineages of known 

importance under experimental N deposition, but the expression of genes capable of manganese-

oxidation and, thus, the oxidation of the phenolic bonds of lignin remained robust across N 

deposition treatments.  Further work to elucidate the origin of the peroxidase genes observed in 

our experiment, and to determine the rate at which these genes are transcribed under both 

ambient and experimental N deposition, may provide additional insight into how an important 

agent of global change alters the ecosystem process of decomposition at the molecular level. 
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TABLES 

Table 4.1.  Observed ranges for richness, Shannon diversity, Shannon evenness, and Simpson 

diversity of expressed fungal peroxidases from unique OTUs which were clustered from 

amino acid sequences and 96% and 90% sequence similarity OTUs which clustered from 

cDNA nucleotide sequences. 

Index 
Similarity 

level of OTUs 

Sequence type 

from which 

OTUs were 

created 

maximum minimum 

Observed 

richness 

Unique Amino acid 12 30 

96% Nucleotide 3 19 

90% Nucleotide 1 16 

Shannon 

diversity 

Unique Amino acid 0.72 2.62 

96% Nucleotide 0.09 2.36 

90% Nucleotide 0 2.22 

Shannon 

evenness 

Unique Amino acid 0.29 0.85 

96% Nucleotide 0.08 0.83 

90% Nucleotide 0.15
*
 0.93 

Simpson 

diversity 

Unique Amino acid 1.3 11.6 

96% Nucleotide 1 8.2 

90% Nucleotide 1 10.7 
* 

Shannon diversity could not be calculated for plot for which observed richness was 1 and Shannon diversity was 0. 
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Table 4.2.  Observed richness, Shannon diversity, Shannon evenness and inverse Simpson 

diversity of expressed fungal peroxidases analyzed with two-way ANOVA.  Nucleotide 

cDNA sequences were clustered to the 96% and 90% sequence similarity level.  

Translated cDNA amino acid sequences were clustered to the unique level. Singletons 

were removed and all plots with fewer than 100 sequences were excluded prior to 

subsampling to normalize sequence counts across plots.  Significant comparisons (P < 

0.05) are in bold. 

Unique amino acid OTUs 

 Factor Degrees of 

freedom 

Mean 

Square 

F P 

Unique peroxidase 

amino acid 

sequences observed 

N deposition 1 26.080 0.844 0.382 

Site 3 24.468 0.792 0.529 

N deposition x Site 3 25.559 0.827 0.512 

Shannon diversity 

N deposition 1 0.903 3.765 0.084 

Site 3 0.414 1.726 0.231 

N deposition x Site 3 0.545 2.274 0.149 

Shannon evenness 

N deposition 1 0.079 4.765 0.057 

Site 3 0.034 2.056 0.177 

N deposition x Site 3 0.050 3.009 0.087 

Inverse Simpson 

diversity 

N deposition 1 15.419 1.571 0.242 

Site 3 5.810 0.592 0.636 

N deposition x Site 3 4.046 0.412 0.748 

96% sequence similarity nucleotide OTUs 

Richness or diversity 

index 

Factor Degrees of 

freedom 

Mean 

Square 

F P 

Unique peroxidase 

amino acid 

sequences observed 

N deposition 1 0.840 0.059 0.814 

Site 3 52.102 3.631 0.053 

N deposition x Site 3 15.767 1.099 0.394 

Shannon diversity 

N deposition 1 0.687 1.973 0.190 

Site 3 0.937 2.689 0.103 

N deposition x Site 3 0.621 1.783 0.214 

Shannon evenness 

N deposition 1 0.151 3.980 0.074 

Site 3 0.071 1.870 0.199 

N deposition x Site 3 0.087 2.292 0.140 

Inverse Simpson 

diversity 

N deposition 1 5.268 1.352 0.272 

Site 3 6.532 1.677 0.234 

N deposition x Site 3 2.368 0.608 0.625 

90% sequence similarity nucleotide OTUs 

Richness or diversity 

index 

Factor Degrees of 

freedom 

Mean 

Square 

F P 

Unique peroxidase 

amino acid 

sequences observed 

N deposition 1 6.094 0.434 0.524 

Site 3 32.392 2.306 0.133 

N deposition x Site 3 20.652 1.470 0.276 

Shannon diversity 

N deposition 1 1.072 3.400 0.092 

Site 3 0.899 2.851 0.086 

N deposition x Site 3 0.696 2.209 0.144 
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Shannon evenness 

N deposition 1 0.310 20.684 0.001 

Site 3 0.120 8.029 0.005 

N deposition x Site 3 0.036 2.412 0.127 

Inverse Simpson 

diversity 

N deposition 1 7.682 1.877 0.198 

Site 3 6.547 1.600 0.246 

N deposition x Site 3 2.610 0.638 0.606 
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Table 4.3.  Fungal peroxidases which were abundant ( ≥1% of all sequences) under both ambient 

and experimental N deposition, in terms of the number and percentage of all OTUs (excluding 

singletons) shared across N deposition treatments.  These numbers were determined for all 

sequences and again when plots containing < 100 sequences were removed and all remaining plots 

were subsampled to normalize sequence counts.   

OTU level 

(sequence similarity) 

Sequence type 

clustered 

Sequences included 

in analysis 

Number 

of OTUs 

shared 

Percentage of all 

OTUs shared (%) 

Unique Amino acid 
All 3 0.42 

Subsampled  5 2.10 

96% Nucleotide 
All 4 1.97 

Subsampled  5 4.00 

90% Nucleotide 
All 4 3.15 

Subsampled 5 5.68 
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Table 4.4. Effect of experimental N deposition on composition of expressed fungal peroxidases 

nucleotide as measured with PERMANOVA.  This effect was examined for OTUs clustered to 

the unique level from translated cDNA sequences and OTUs clustered from cDNA nucleotide 

sequences to the 96% and 90% sequence similarity level for OTUs clustered.  Significant 

comparisons (P < 0.05) are indicated in bold.  Degrees of freedom for all comparisons is 1.   

OTU level 

(sequence similarity) 

Sequences 

clustered 

Tranform 

applied 

Sum of 

squares 

Mean 

square 

Pseudo-

F 

Permutational 

P 

Unique amino acid 

none 5987.9 5987.9 1.4133 0.1101 

presence-

absence 
5869.9 5869.9 1.3733 0.0466 

96% nucleotide 

none 6044.2 6044.2 1.4855 0.1295 

presence-

absence 
5869 5869 1.5401 0.081 

90% nucleotide 

none 5284.7 5284.7 1.2719 0.2034 

presence-

absence 
5752.9 5752.9 1.5758 0.075 
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Table 4.5. Effect of experimental N deposition on composition of expressed fungal 

peroxidases as measured with PERMDISP.  This effect was examined for OTUs clustered 

to the unique level from translated cDNA sequences and OTUs clustered from cDNA 

nucleotide sequences to the 96% and 90% sequence similarity level.  Significant 

comparisons (P < 0.05) are indicated in bold. 

OTU level 

(sequence similarity) 

Sequences 

clustered 

Degrees of 

freedom 

Transform 

applied 
F 

Permutational 

P 

Unique amino acid  1, 15 

none 0.8998 0.399 

presence-

absence 
5.8919 0.0268 

96% nucleotide  1, 16 

none 0.92272 0.3666 

presence-

absence 
3.7192 0.1006 

90% nucleotide 1, 17 

none 1.0405   0.3556 

presence-

absence 
2.5786   0.1372 
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Table 4.6.  Effects of N deposition treatment and Site on Unifrac metric (unweighted and 

weighted) for expressed fungal peroxidase amino acid sequences.  Analysis was conducted with 

all sites (unbalanced plot design) and repeated with data from Sites B and C only (balanced plot 

design) in order to examine the effect of Site.  All comparisons were statistically significant (P < 

0.05). 

  Unweighted Unifrac Weighted Unifrac 

Factor  Score Significance Score Significance 

All Sites 

N deposition  0.740583 P < 0.001 0.429579 P < 0.001 

Sites B & C only 

N deposition 

treatment 

(across Sites) 

 0.717528 P < 0.001 0.376550 P < 0.001 

Site  0.757523 P < 0.001 0.511148 P < 0.001 

N deposition 

treatment 

(within Sites) 

Site B 0.737063 P < 0.001 0.445275 P < 0.001 

Site C 0.719585 P < 0.001 0.390356 P < 0.001 
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FIGURES 

 

Figure 4.1.  The location of four northern hardwood forest stands in our long-term N deposition 

experiment in Michigan, USA.   
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Figure 4.2.  Richness, diversity, and evenness of fungal peroxidases expressed under ambient 

(open bars) and experimental (shaded bars) rates of N deposition for OTUs clustered at the 

unique, 96% sequence similarity, and 90% sequence similarity levels.  Panels are A) observed 

richness, B) Shannon diversity, C) Inverse Simpson diversity, and D) Shannon evenness.  The 

96% and 90% sequence similarity OTUs were clustered from cDNA nucleotide sequences, while 

the unique OTUs were clustered from translated cDNA sequences.  Error bars represent a 

standard error of 2. Significant comparisons (P < 0.05) are indicated with an asterisk. 
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Figure 4.3.  Scaled Venn diagrams for expressed peroxidase OTUs occurring under ambient and 

experimental rates of N deposition for a) unique OTUs clustered from translated cDNA 

sequences, b) 96% sequence similarity OTUs clustered from cDNA nucleotide sequences, and c) 

90% sequence similarity OTUs clustered from cDNA nucleotide sequences.  Singletons were 

removed from data set prior to creation of Venn diagrams.  All plots were included with no 

subsampling. 
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Figure 4.4.  Neighbor-joining diagram of 127 OTU sequences occurring under ambient N 

deposition (■), experimental N deposition (▲), or both (●).  Highlighted OTUs are in lineages 

belonging to only one N deposition treatment.  OTUs were clustered at the 90% nucleotide 

sequence similarity level, translated to amino acid sequences, and aligned with 324 fungal 

peroxidase reference sequences prior to neighbor-joining for 100 repetitions with bootstrap 

cutoffs of 25.   OTUs are numbered from most to least abundant.  Collapsed nodes contain only 

reference sequences and no OTUs.  Sequences were identified as LiPs if they possessed 

conserved catalytic residue Trp-171 and putative GPs if they lacked both Trp-171 for direct 

oxidation of nonphenolic bonds and the Asp-175 residue for manganese oxidation.  All other 

OTU sequences not labelled as LiPs or GPs possessed an Asp-175 residue, but no Trp-171, and 
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are putative MnPs.  Reference sequences obtained from FunGene are labelled with Genbank ID 

number, name of organism and gene type. Reference sequences obtained from MycoCosm are 

labelled with Joint Genome Institute ID numbers for sequences from the genomes of 

Sphaerobolus stellatus (Sphst), Armillaria gallica (Armga), Sistotremastrum niveocremeum 

(Sisni), Sistotremastrum suecicum (Sissu), and Omphalotus olearius (Ompol). 
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CHAPTER 5 

Conclusions 

The overall goal of my dissertation was to improve our understanding of the biological 

mechanism by which elevated rates of N deposition increase soil C storage.  To gain this 

understanding, I used a long-term experiment which was designed to examine the effects of this 

agent of anthropogenic global change on northern hardwood forests, a widespread temperate 

forest ecosystem in North America. I examined the effects of experimental N deposition on the 

composition and diversity of fungi actively decomposing the forest floor, on the abundance of 

lignolytic fungi colonizing substrates of varying lignin content, and on the composition and 

diversity of fungal genes which are of critical importance in the decay of lignin.  My working 

hypothesis was that experimental N deposition would reduce the richness and diversity and alter 

the composition of fungi and their expressed lignolytic genes.  Overall, I found that experimental 

N deposition reduced decomposition and increases soil organic matter content by inducing 

changes in the composition of the fungal community which have important functional 

consequences for the decay of lignin and other polyphenols in soil organic matter. 

In Chapter 2, I asked whether experimental N deposition reduces the diversity or changes 

the composition or structure of the active fungal community in the forest floor.  I investigated 

this response in two of the four sites in our long-term N deposition experiment.  Experimental N 

deposition had no effect on richness and limited effects on the diversity of active fungi in forest 

floor.  In one forest stand, experimental N deposition altered the composition of active fungi; in 

the other stand, experimental N deposition changed the structure of active fungi.  In addition, at 
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each site, the abundance of at least one order of fungi significantly changed in response to 

experimental N deposition; however, these responses were not consistent across sites.  The 

relatively low sequencing depth of the clone library approach limited my ability to more deeply 

investigate how fungal taxa below the order level had responded to experimental N deposition.   

Because of these limitations, I conducted a more thorough survey in Chapter 3 designed 

to specifically examine whether experimental N deposition decreases the abundance of lignolytic 

fungi.  Such a response would be consistent with a previously proposed mechanism that posits 

that experimental N deposition reduces the decay of lignin via a shift in fungal community 

composition wherein lignolytic fungi decline and weak decomposers of lignin increase.  I 

examined fungal communities that colonized substrates of varying lignin-content over the course 

of decay, as well as examined the fungal communities present in the surrounding mineral and 

organic soil horizons.  I found that fungal taxa responsible for lignin decay decreased 

significantly on wood and a high-lignin substrate, but that these taxa were rare on a low-lignin 

substrate where no change in their abundance was observed.  Furthermore, I found that 

experimental N deposition significantly altered fungal community composition and that the 

nature of this change was consistent with a shift within the fungal community; experimental N 

deposition suppresses the abundance of lignolytic fungi and increases the abundance of fungi 

with limited capacity for lignin decay.  Finally, experimental N deposition reduced the size of the 

fungal community on wood, but increased it on a low-lignin substrate.  These results are 

consistent with the mechanism which I was testing as well as with previous research that shows 

that elevated rates of N deposition inhibit fungal lignin decay, but stimulate fungal decay of 

cellulose.  Contrary to research suggesting that experimental N deposition initially stimulates 

decay of cellulose and subsequently inhibits lignin decay in the late stage of decomposition 
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(Berg and Matzner 1997, Talbot and Treseder 2012), I found that the negative effects of 

experimental N deposition on lignolytic fungi were not enhanced at later stages of decay relative 

to earlier stages of decay.   

In Chapter 4, I investigated whether experimental N deposition impacts the composition 

or diversity of gene transcripts encoding an important class of lignolytic enzymes, fungal class II 

peroxidases.  I asked if experimental N deposition reduces the richness or diversity or alters the 

composition of lignin-decaying peroxidases expressed by fungi in the forest floor.  Furthermore, 

I examined whether any changes in function could be inferred from changes observed in the 

composition of expressed peroxidases.  While experimental N deposition did not reduce either 

the richness or diversity of the peroxidases expressed, it did increase the evenness of those 

peroxidases which were expressed.  This observation suggests that experimental N deposition 

has negative effects on the fungi which typically dominate this process.  Furthermore, 

experimental N deposition altered the composition of peroxidases which were expressed.  There 

were no apparent differences among peroxidases expressed in terms of capacity for indirect 

oxidation of phenolics via Mn
2+

 oxidation or direct oxidation of nonphenolic bonds, a surprising 

result given the reductions in decomposition and increases in SOM which have previously been 

observed in this experiment.  While most clades of fungal peroxidases appeared to be expressed 

across N deposition treatments, several lineages associated with peroxidases of known white-rot 

wood decay fungi or important litter decomposers were notably absent under experimental N 

deposition.  Interestingly, several lineages of unknown origin were only present under 

experimental N deposition.  Thus, while no broad functional changes were apparent, the presence 

and absence of some lineages under experimental N deposition suggests that there are potentially 

functional differences in the peroxidases being expressed; for example, enzymes of different 
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lineages may have different substrate specificities or originate from fungi with different 

ecological roles in decomposition.  

Collectively, my results indicate that experimental N deposition altered the composition 

and function of the fungal community in a manner consistent with previously observed 

reductions in plant litter decomposition and increased soil C accumulation.  Given that northern 

hardwood forests are a widespread ecosystem in the Northern Hemisphere and that elevated rates 

of N deposition are a widespread aspect of anthropogenic global change impacting terrestrial and 

coastal ecosystems, my results reveal a mechanism by which experimental N deposition has 

increased soil C storage.  While I have examined this response in northern hardwood forests in 

Michigan, increased SOM accumulation in response to long-term increases in N deposition has 

been observed in northern hardwood forests elsewhere (Frey et al. 2014), in other types of 

temperate forests (Janssens et al. 2010) and may, in fact, be a widespread response to elevated 

rates of N deposition (Nave et al. 2009), albeit not a universal one (Waldrop et al. 2004a, 

Waldrop et al. 2004b, Keeler et al. 2009).  Because rates of anthropogenic N deposition have 

already increased dramatically since the preindustrial era (Galloway and Cowling 2002), it is 

possible that present levels of SOM in temperate forests in North America may already reflect 

this response.  The future implications of anthropogenic N deposition on forest soils will thus 

depend upon whether future rates are similar to those that have been predicted (Galloway et al. 

2004).  For instance, rates of N deposition in North America may have already peaked (Lloret 

and Valiela 2016), but rates of N deposition have continued to rise in parts of the recently 

developed world (Liu et al. 2013) and may continue to do so over the next several decades.   

From this body of research, several lines of inquiry emerge as potentially important 

avenues for further investigation.  In Chapter 3, I observed simultaneous decreases in the relative 
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abundance of lignolytic fungi within the fungal community and in the total size of the fungal 

community on wood.  Other research has indicated that experimental N deposition increases 

woody biomass (Ibáñez et al. 2016) and may slow the decay of naturally occurring woody debris 

(Lyons 2012) in our study system.  While elevated rates of N deposition have been observed to 

increase C storage in aboveground plant biomass (Magnani et al. 2007), the extent of this effect 

is contentious (Nadelhoffer et al. 1999, de Vries et al. 2008). Importantly, the potential effect of 

anthropogenic N deposition on the decay of dead wood under field conditions has not received 

much attention.  Instead, the vast majority of research on decomposition to date has focused on 

the decay of leaf litter.  My results suggest that further study on the effects experimental N 

deposition on wood decay is warranted because reduced decomposition of wood debris is 

another mechanism through which experimental N deposition could increase C storage in 

northern temperate forests.  

My dissertation has examined how elevated rates of N deposition effect fungal 

decomposers and, thereby, increase soil C storage in temperate forests.  Predicting how rising 

rates of N deposition will effect soil C storage globally and what impact this may have on 

climate requires additional consideration of  not only the responses of temperate forests, but also 

other types of ecosystems (Bragazza et al. 2006) as well as consideration of the effects of 

elevated N deposition on the biogeochemical cycles of other greenhouse gases (Liu and Greaver 

2009).  However, determining the mechanisms through which ecosystems respond to elevated 

rates of N deposition is important for deepening our understanding of ecosystem responses to 

this agent of global change.  My dissertation contributes to this our scientific understanding of 

this process by providing new insight into the biological mechanism by which anthropogenic N 
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deposition has increased soil C storage in a long-term field experiment in a widespread type of 

temperate forest ecosystem.   
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APPENDIX A 

Dikarya reference sequences 

Dikarya sequences obtained in this study were aligned with reference sequences.  Alignments for 

initial OTU clustering were performed with 181 Dikarya reference sequences to help to guide 

alignment construction.  Alignments which were used for phylogenetic tree construction were 

also aligned with these 181 Dikarya reference sequences, but additionally included a 

Glomeromycota sequence as an outgroup in order to root the phylogenetic tree.  All references 

sequences were obtained from the NCBI GenBank database.  Sequences are identified according 

to the species or sequence name provided in Genbank with the Genbank accession number in 

parentheses.  The outgroup (Glomeromycota) sequence is indicated in bold.  The reference 

sequences used are listed below:  

Acanthostigma filiforme (GQ850495), Acaulospora  laevis (FM876785), Amanita jacksonii 

(AF097376), Amorphotheca resinae (EU040230), Anthostomella brabeji (EU552098), Antrodia 

infirma (JQ700294), Anungitopsis speciosa (EU035401), Articulospora tetracladia (EU998929), 

Athelia decipiens (AY586632), Aureobasidium pullulans (AJ876762), Aureobasidium pullulans 

(EF595769), Auricularia auricula-judae (DQ520099), Auritella foveata (GU062739), Boletellus 

projectellus (NG027638), Botryobasidium subcoronatum (EU909344), Bovista dermoxantha 

(DQ112579), Burgoa turficola (DQ915467), Burgoa verzuoliana (DQ915475), Caloplaca 

sublobulata (EF489950), Calosphaeria barbirostris (EF577059), Capronia semiimmersa 

(EU514693), Carestiella socia (AY661682), Catenulifera brevicollaris (GU727561), 

Ceratobasidium sp. AGH (AF354089), Ceratobasidium sp. CAG1 (AF354086), Ceratobasidium 

sp. CAG3 (AF354080), Ceriporiopsis gilvescens (AF347110), Chaetomidium leptoderma 

(FJ666353), Chamaeleomyces viridis (HM635079), Cistella acuum (GU727552 ), Cistella 

spicicola (GU727553), Cladonia gracilis (EF489958), Cladophialophora chaetospira 

(EU035403), Cladophialophora hachijoensis (AF050263), Clavaria fragilis (EF535278), 

Clavariadelphus ligula (AF347099), Clavicorona taxophila (AF115333), Clavulina cristata 

(AM259212), Clavulinopsis helvola (AY586647), Clitocybe  lateritia  (U66431), Clitocybe  
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odora  (AF261390), Clitocybe hesleri (HQ179664), Coleophoma empetri (FJ588250), 

Coleosporium asterum (DQ354559), Colletotrichum boninense (DQ286161), Collophora sp. TP-

Snow-Y69 (JN400810), Collybia dryophila (AF042595), Coniochaeta sp. M136 (HM595603), 

Coprinellus xanthothrix (FJ755223), Coprinopsis atramentaria (DQ457661), Corticium 

salmonicolor (AF506709), Cortinariaceous ectomycorrhiza (AF430290), Cortinarious icterinus 

(AF539720), Cortinarius picoides (GU233424), Corynascus sepedonium (FJ666364), 

Crepidotus calolepis (FJ904178), Crepidotus mollis (AM882996), Cristinia rhenana 

(GU187663), Cryptococcus laurentii (AJ555467), Cryptococcus oeirensis (AM160646), 

Cryptococcus sp. HA 2257 (FM991886), Cryptococcus sp. YSAR16 (AM922287 ), 

Cryptococcus taibaiensis (AY557601), Cryptosporiopsis actinidiae (HM595594), Cudonia lutea 

(AF433140), Cudoniella sp. ZW-Geo49-Clark (AY789338), Cylindrosympodium lauri 

(EU035414), Cystofilobasidium infirmominiatum (DQ645523), Dactylellina parvicollis 

(EF445986), Discocistella grevillei (GU727554), Entoloma pallidocarpum (JQ410331), Ericoid 

mycorrhizal sp. PPO-2 (AY599240), Erysiphe  hypophylla (AB292712), Exidiopsis plumbescens 

(AF395309), Exophiala bergeri (AB479516), Exophiala sp. DAOM 216391 (AF050267), 

Filobasidium uniguttulatum (AF075468), Flammula alnicola (AF195588), Fomitopsis pinicola 

(AF347106), Fusarium solani (AY097316), Geomyces pannorum (GU951688 ), Gloeostereum 

incarnatum (AF141637), Gloiocephala aquatica (NG027642), Graddonia coracina (JN012011), 

Gymnopus  bicolor (AY639411), Gyromitra infula (AJ698473), Haplographium catenatum 

(FJ839657), Harknessia rhabdosphaera (DQ923532), Hebeloma affine (FJ436324), 

Hemimycena gracilis (DQ457671), Hemipholiota destruens (AF261647), Hyalodendriella 

betulae (EU040232), Hydnangium carneum (HQ832455), Hygrocybe citrinopallida 

(HCU66435), Hygrophorus chrysodon (AY586661), Hyphodontia barba-jovis (AY293188), 

Hyphodontia subalutacea (DQ873631), Hypocenomyce scalaris (DQ782914), Hypocrea lutea 

(AB027384), Hypsizygus ulmarius (AF042584), Inocybe fulvilubrica (JQ085929), Kabatiella 

microsticta (EU167608), Karstenella vernalis (FJ499391), Lasallia pustulata (AY300839), 

Lepista nebularis (AY586685), Leucosporidium sp. AY30 (GQ336996), Marasmius  oreades  

(DQ156126), Marasmius  rotula (DQ457686),Micarea alabastrites (AY756327), Micarea 

micrococca (AY756330), Microglossum  viride  (AY789337), Mollisia incrustata (GU727556), 

Monilinia fructicola (AY544683), Moniliophthora roreri (AY194150), Mrakia frigida 

(DQ831016), Mycena  monticola  (EU669336), Mycena  tenax (EU669274), Mycena plumbea 
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(DQ470813), Nolanea sericea (AF223170), Ochroconis gallopava (AB125280), Omphalina 

rivulicola (ORU66451), Ossicaulis lignatilis (HE649954), Ostropa barbara (HM244773), 

Pachyphloeus marroninus (EU543209), Panellus ringens (AF347100), Phacidiella eucalypti 

(EF110620), Phacidiopycnis sp. ZLY-2010b (HM595597), Phaeococcomyces chersonesos 

(AJ507323 ), Phaeomarasmius erinaceus (AF261594), Phialea strobilina (EF596821), 

Phlogicylindrium eucalypti (DQ923534), Pholiota gummosa (AF195605), Pholiota oedipus 

(AF261649), Pleiochaeta setosa (EU167563), Pleomassaria siparia (AY004341), Pleurotus 

eryngii (EU365655), Pluteus petasatus (AF042611), Pluteus romellii (NG027625), Protodontia 

piceicola (DQ873660), Psathyrella fagetophila (AM712262), Pseudoclitocybe cyathiformis 

(EF551313), Pseudoidriella syzygii (JQ044441), Psora decipiens (AY756343), Puccinia mariae-

wilsoniae (GU058022), Puccinia violae (GU058029), Pycnora xanthococca (AY853388 ), 

Ramaria myceliosa (JQ408230), Ramaria rainierensis (EU669412), Ramaria sp. 4 AK-2012 

(JQ408229), Ramaria stricta (AF347098), Retroconis fusiformis (EU040239), 

Rhizocladosporium argillaceum (EU040240), Rhodotorula psychrophenolica (EF151256), 

Rhodotorula sp. FK.2.1 (FN400943), Rhyzoscyphus ericae (AM887699 ), Sarcomyxa serotina 

(EU365678 ), Scleromitrula shiraiana (AY789407), Sclerotinia sclerotiorum (AY789347), 

Sistotrema  biggsiae  (AM259217), Sporobolomyces griseoflavus (EF537895), Stropharia 

albocrenulata (AF195589), Sympoventuria capensis (DQ885904 ), Syzygospora alba 

(JN043616), Tectonidula hippocrepida (FJ617557 ), Trechispora hymenocystis (AF347090), 

Tremella phaeophysciae (JN043586), Tremella polyporina (JN043607), Tricholoma apium 

(AY586721), Tricholoma orirubens (DQ389734), Trichosporon laibachii (JN939451), 

Trichosporon porosum (JN939465), Typhula phacorrhiza (AY586724), Udeniomyces puniceus 

(DQ836005), Uncultured  fungus clone (FJ040372), Uncultured Ascomycota clone asc07198 

(HQ433120), Uncultured basidiomycete clone 4S1 D11 (EU489986), Uncultured Basidiomycota 

clone bas07010 (HQ433141), Uncultured Basidiomycota clone bas07088 (HQ433195), 

Uncultured fungus clone LSUTypeUS20 (FJ040366), Uncultured fungus clone LSUTypeUS22 

(FJ040368), Uncultured soil fungus clone BPAGM2T0 1H (EU691365), Veronaea botryosa 

(EU041874) 
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APPENDIX B 

OTU accession numbers and abundances 

 

Table B1.  Accession numbers and clone library abundance information for 99% sequence 

similarity OTUs.  Clustering was performed on all Dikarya sequences recovered without 

subsampling.  A representative clone sequence was selected from each 99% sequence 

similarity OTU and submitted to GenBank.  Abundances are listed as the number of 

occurrences in clone libraries by site and N deposition treatment. 

GenBank 

accession 

number 

Representative 

clone name 
Site 

  B D 

  N deposition treatment 

  
Ambient Experimental Ambient Experimental 

KC701765 B01A04 1 0 0 0 

KC701766 B01A11 1 0 0 0 

KC701767 B01B07 1 0 0 0 

KC701768 B01B08 1 0 0 0 

KC701769 B01B10 1 0 0 0 

KC701770 B01B12 1 0 0 0 

KC701771 B01E09 1 0 0 0 

KC701772 B01E12 1 0 0 0 

KC701773 B01F03 3 0 0 0 
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KC701774 B01F11 1 0 0 0 

KC701775 B01G03 1 0 0 0 

KC701776 B01H02 1 0 0 0 

KC701777 B01H03 1 0 0 0 

KC701778 B02B04 1 0 0 0 

KC701779 B02C02 1 0 0 0 

KC701780 B02C05 2 0 0 0 

KC701781 B02C06 1 0 0 0 

KC701782 B02D09 1 0 0 0 

KC701783 B02F09 1 0 0 0 

KC701784 B02G07 5 0 0 2 

KC701785 B02G08 2 0 0 0 

KC701786 B02H04 3 0 0 0 

KC701787 B03A02 1 0 0 0 

KC701788 B03A05 1 0 0 0 

KC701789 B03A06 1 0 0 0 

KC701790 B03A07 1 0 0 0 

KC701791 B03B02 1 2 3 0 

KC701792 B03B03 1 0 0 0 

KC701793 B03C04 1 4 0 1 

KC701794 B03E08 1 0 0 0 

KC701795 B03E10 1 0 0 0 

KC701796 B03F01 3 0 0 0 

KC701797 B03F04 3 0 0 0 

KC701798 B03F05 8 0 0 0 
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KC701799 B03F06 1 0 0 0 

KC701800 B03F09 3 0 0 0 

KC701801 B03G07 4 0 0 0 

KC701802 B03H02 1 0 0 0 

KC701803 B03H04 2 0 0 0 

KC701804 B03H06 2 0 0 0 

KC701805 B03H07 7 0 0 0 

KC701806 B03H09 1 0 0 0 

KC701807 B04A07 0 1 0 0 

KC701808 B04B01 7 1 0 0 

KC701809 B04B04 0 1 0 0 

KC701810 B04B06 0 2 0 0 

KC701811 B04B10 1 1 0 0 

KC701812 B04C08 1 2 0 0 

KC701813 B04C10 0 1 0 0 

KC701814 B04C11 0 1 0 0 

KC701815 B04D01 0 1 0 0 

KC701816 B04D07 0 2 0 0 

KC701817 B04D08 0 1 0 0 

KC701818 B04E07 0 2 0 1 

KC701819 B04E12 0 1 0 0 

KC701820 B04F02 0 1 0 0 

KC701821 B04F04 0 1 0 0 

KC701822 B04F08 0 1 0 0 

KC701823 B04F10 1 2 0 0 



186 
 

KC701824 B04G02 0 1 0 0 

KC701825 B04G06 0 2 0 0 

KC701826 B04H05 0 2 0 0 

KC701827 B04H06 0 1 0 0 

KC701828 B05A03 0 1 0 0 

KC701829 B05A09 0 1 0 0 

KC701830 B05A10 0 3 0 0 

KC701831 B05B04 0 2 0 0 

KC701832 B05B07 0 1 0 0 

KC701833 B05B08 0 1 0 0 

KC701834 B05B12 1 3 0 0 

KC701835 B05C03 0 1 0 0 

KC701836 B05C10 0 4 0 4 

KC701837 B05D07 1 1 0 0 

KC701838 B05D09 0 2 0 0 

KC701839 B05D11 0 1 0 0 

KC701840 B05E12 0 1 0 0 

KC701841 B05F02 0 1 0 0 

KC701842 B05G01 1 2 0 0 

KC701843 B05G04 0 1 0 0 

KC701844 B05G08 1 3 0 0 

KC701845 B05G12 0 1 0 0 

KC701846 B05H02 0 1 0 0 

KC701847 B06A05 0 1 0 0 

KC701848 B06A07 0 11 65 6 
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KC701849 B06B03 0 1 0 0 

KC701850 B06C05 0 1 0 0 

KC701851 B06C11 0 6 0 0 

KC701852 B06D03 1 1 0 0 

KC701853 B06D09 0 1 0 0 

KC701854 B06F01 0 1 0 0 

KC701855 B06F08 0 1 0 0 

KC701856 B06G01 0 1 0 0 

KC701857 B06G03 0 2 1 0 

KC701858 B06G11 0 3 0 0 

KC701859 B06H01 0 1 0 0 

KC701860 B06H07 0 1 0 0 

KC701861 D01A01 0 0 1 0 

KC701862 D01A04 0 3 1 0 

KC701863 D01B08 0 0 1 0 

KC701864 D01C07 0 0 1 0 

KC701865 D01D01 0 0 1 0 

KC701866 D01D06 0 0 2 0 

KC701867 D01D07 0 0 4 0 

KC701868 D01D10 0 0 1 0 

KC701869 D01E04 0 0 3 0 

KC701870 D01F01 0 0 2 0 

KC701871 D01F03 0 0 1 0 

KC701872 D01F04 0 1 2 1 

KC701873 D01F09 1 0 1 0 
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KC701874 D01G06 0 0 1 0 

KC701875 D01H07 0 0 1 0 

KC701876 D01H09 0 0 1 0 

KC701877 D02A07 1 0 1 0 

KC701878 D02A10 0 0 2 0 

KC701879 D02B01 0 0 1 0 

KC701880 D02C01 0 0 2 0 

KC701881 D02H04 0 0 1 0 

KC701882 D02H08 0 6 5 0 

KC701883 D03A01 0 0 1 0 

KC701884 D03A04 0 6 1 0 

KC701885 D03A10 0 0 1 0 

KC701886 D03B08 0 0 1 0 

KC701887 D03C02 0 0 1 0 

KC701888 D03C06 0 0 1 0 

KC701889 D03D12 0 0 2 0 

KC701890 D03E04 0 0 1 0 

KC701891 D03E06 0 0 1 0 

KC701892 D03F01 0 0 2 0 

KC701893 D03F02 0 0 1 0 

KC701894 D03F06 0 0 1 0 

KC701895 D03F11 1 0 1 0 

KC701896 D03F12 0 0 1 0 

KC701897 D03G04 0 0 1 0 

KC701898 D03G05 0 1 1 0 
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KC701899 D03G06 0 0 1 0 

KC701900 D03H02 0 0 1 0 

KC701901 D03H04 0 0 4 1 

KC701902 D03H08 0 4 1 0 

KC701903 D03H10 0 1 3 0 

KC701904 D03H12 0 0 1 0 

KC701905 D04A01 6 2 5 1 

KC701906 D04B09 0 0 1 1 

KC701907 D04B12 1 0 0 1 

KC701908 D04C01 0 1 0 1 

KC701909 D04C05 1 0 1 1 

KC701910 D04C07 0 0 0 1 

KC701911 D04C09 0 0 0 1 

KC701912 D04D02 0 1 2 4 

KC701913 D04E05 4 2 1 2 

KC701914 D04E09 0 0 0 2 

KC701915 D04E11 0 0 1 1 

KC701916 D04G04 0 0 0 1 

KC701917 D04G05 0 1 0 3 

KC701918 D04G08 0 1 0 2 

KC701919 D04H06 0 1 0 2 

KC701920 D05A10 0 0 0 1 

KC701921 D05B02 0 0 0 1 

KC701922 D05D06 1 2 11 1 

KC701923 D05D08 0 0 0 1 
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KC701924 D05D11 0 0 0 1 

KC701925 D05E02 5 0 0 13 

KC701926 D05F05 0 0 1 9 

KC701927 D05F07 0 1 5 1 

KC701928 D05F08 0 0 0 1 

KC701929 D05F09 0 0 0 2 

KC701930 D05G08 0 0 0 1 

KC701931 D05G10 0 0 0 1 

KC701932 D05H02 0 1 0 2 

KC701933 D05H04 0 0 0 49 

KC701934 D05H05 0 0 1 1 

KC701935 D05H07 0 0 0 1 

KC701936 D06A04 0 0 1 1 

KC701937 D06A10 0 0 0 1 

KC701938 D06A11 0 0 0 1 

KC701939 D06B03 0 0 0 1 

KC701940 D06B06 0 1 1 1 

KC701941 D06B07 0 0 0 1 

KC701942 D06C04 0 0 0 1 

KC701943 D06C11 0 0 0 1 

KC701944 D06C12 0 0 0 1 

KC701945 D06D01 0 0 0 1 

KC701946 D06D05 0 0 1 6 

KC701947 D06D08 0 0 1 1 

KC701948 D06D11 0 0 0 4 
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KC701949 D06E03 0 0 0 1 

KC701950 D06E07 0 0 0 2 

KC701951 D06E08 0 1 0 1 

KC701952 D06E09 0 0 0 1 

KC701953 D06F02 0 0 0 1 

KC701954 D06F04 0 0 0 1 

KC701955 D06F10 0 0 1 2 

KC701956 D06F11 0 0 0 2 

KC701957 D06G07 0 0 0 3 

KC701958 D06G08 4 2 1 17 

KC701959 D06G10 0 0 0 1 

KC701960 D06G12 0 0 2 2 

KC701961 D06H03 0 0 0 1 

KC701962 D06H06 0 0 0 1 

KC701963 D06H07 0 0 0 1 

KC701964 D06H08 5 0 0 6 

KC701965 D06H09 0 3 3 2 
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APPENDIX C 

Fungal physiological categories for OTUs identified by SIMPER analysis 

Table C1.  Physiological categories to which we assigned OTUs identified in SIMPER 

analysis. 

Physiology Function Taxa Citations 

White-rot and 

lignolytic litter decay
1
 

Enzymatically 

decompose lignin 

Mycena 

(Worrall et al. 1997, 

Osono and Takeda 

2002, Steffen et al. 

2007, Liers et al. 

2011, Cline and Zak 

2015) 

Marasmius 

(Osono and Takeda 

2002, Steffen et al. 

2007) 

Gymnopus 

(Osono et al. 2003, 

Osono and Takeda 

2006, Valaskova et al. 

2007, Šnajdr et al. 

2010, Cline and Zak 

2015) 

Crepidotus 

(Gutiérrez et al. 1999, 

Del Rıo et al. 2001, 

Martínez Ferrer et al. 

2005) 

Sphaerobolus 

(Robinson et al. 1993, 

Worrall et al. 1997, 

Baetsen 2013, Nagy 

et al. 2015) 

Hyphoderma (Binder et al. 2013) 

Gomphales 

(Ginns and Lefebvre 

1993, Erden et al. 

2009, Hibbett et al. 

2014) 

Trechisporales 
(Harkin et al. 1974, 

Nagy et al. 2015) 

Soft-rot and enzymatically Cantharellales (Boberg et al. 2011, 
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cellulolytic litter 

decay 

decompose 

cellulose or 

hemicelluloses, 

but decay little to 

no lignin 

Floudas et al. 2015, 

Nagy et al. 2015) 

Ascomycota (except 

Xylariales) 

(Worrall et al. 1997, 

Osono et al. 2006, 

Osono and Takeda 

2006, Boberg et al. 

2011, Nagy et al. 

2015) 

Brown-rot 

demethoxylate 

(“modify”) lignin 

but leave its 

phenolic and 

nonphenolic bonds 

intact 

Antrodia spp. (Binder et al. 2013) 

Anomoporia spp. (Niemelä et al. 2007) 

Ceriporia reticulata 
(Floudas and Hibbett 

2015) 

Weakly lignolytic 

exhibit either high 

laccase but no - 

low peroxidase 

activity  or 

relatively low 

laccase and 

peroxidase activity 

Xylariaceae 

(Osono and Takeda 

2001, 2002, Stephen 

and Parungao 2003, 

Liers et al. 2011) 

Psathyrellaceae 

(Ruiz-Duenas et al. 

2009, Oliver et al. 

2010, Liers et al. 

2011) 

Entolomataceae 
(Gramss 1997, Casieri 

et al. 2010) 

Tubariaceae 
(Okino et al. 2000, 

Machado et al. 2005) 

Mycorrhizal/ 

biotrophic 

In a mycorrhizal 

or biotrophic 

association with a 

host 

Russula (Kirk et al. 2008) 

Tomentella (Kirk et al. 2008) 

Hygrocybe (Seitzman et al. 2011) 

Sebacinales (Kirk et al. 2008) 
1.  Please note that our definition of “white-rot and lignolytic litter decay” fungi for this analysis is broader 

than our rather conservative definition of “highly lignolytic taxa” which we used for relative abundance 

analyses; white-rot and lignolytic litter decay fungi include any taxa which we have previously described 

as highly lignolytic, as well as well as some additional Agaricomycete taxa which we had excluded from 

previous analyses.   
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APPENDIX D 

Additional information regarding selected highly lignolytic taxa 

Table D1.  Additional information on the taxa we included in our compilation of highly lignolytic taxa used in our study.  This 

includes the name of the taxa in our taxonomic summary file from mothur (Schloss et al. 2009), the taxonomic assignment for these 

taxa in the Ribosomal Database Project (RDP) v7 fungal 28S LSU classifier files (Liu et al. 2012), their current known taxonomic 

assignment, their ecology, and their morphology.  Information including justifications for their inclusion and citations may be found 

in Table 3.2. 

name assignment with RDP v7 classifier current known taxonomic placement ecology morpholo

gy 

Marasmius Agaricales/Marasmiaceae/Marasmius Agaricales/Marasmiaceae/Marasmius 

(Matheny et al. 2006) 

litter decay gilled 

mushroom 

Amyloflagellula Agaricales/Tricholomataceae/ 

Amyloflagellula 

Agaricales/Marasmiaceae/Amylogflagell

ula (Douanla-Meli and Langer 2008) 

litter decay gilled 

mushroom 

Gymnopus Agaricales/Tricholomataceae/Gymnopus Agaricales/Marasmiaceae/Gymnopus 

(Matheny et al. 2006) 

litter decay gilled 

mushroom 

Clitocybe Agaricales/Tricholomataceae/Clitocybe Tricholomataceae/Clitocybe 

(Matheny et al. 2006) 

litter decay gilled 

mushroom 

Lepista Agaricales/Tricholomataceae/Lepista Tricholomataceae/Lepista (Matheny et 

al. 2006) 

litter decay gilled 

mushroom 

Mycena Agaricales/Tricholomataceae/Mycena Agaricales/Mycenaceae/Mycena 

(Moncalvo et al. 2002) 

litter decay gilled 

mushroom 

Poromycena Agaricales/Tricholomataceae/Poromyce

na 

Agaricales/Mycenaceae/Poromycena 

(Moncalvo et al. 2002) 

litter decay gilled 

mushroom 
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Crepidotaceae Agaricales/Crepidotaceae Agaricales/Crepidotaceae (Matheny et al. 

2006) 

white rot of 

wood and 

litter decay 

gilled 

"oysterlin

g" 

Auriscalpiaceae Polyporales/Auriscalpiaceae Russulales/Auriscalpiaceae (Larsson and 

Larsson 2003, Miller et al. 2006) 

 

white rot of 

wood and 

litter decay
a
 

tooth and 

shelf 

fungi
a
 

Lachnocladiaceae Polyporales/Lachnocladiaceae Russulales/Lachnocladiaceae (Kirk et al. 

2008)
b
 

white rot of 

wood 

resupinate 

Antrodiella Polyporales/Coriolaceae/Antrodiella  Polyporales/Steccherinaceae/Antrodiella 

(Miettinen et al. 2012)  

white-rot   

Ganodermataceae Polyporales/Ganodermataceae Polyporales/Ganodermataceae (Kirk et 

al. 2008) 

White-rot 

saprotrophs 

and  plant 

pathogen 

shelf fungi 

Aphyllophorales Polyporales/Polyporales incertae 

sedis/Aphyllophorales 

Aphyllophorales is a formerly used 

morphological taxonomic group for 

fungi without gills.  However, molecular 

phylogenetics showed that 

Aphyllophorales to be comprised of 

distantly related taxa (Hibbett and 

Donoghue 1995).  The sequences used to 

define this group in the RDP v7 

classifier
c
 now belong to several families 

in the Polyporales (Binder et al. 2013).  

In our data set, sequences classified as 

Aphyllophorales were members of the 

genera Phanerochaete and Scopuloides
d
. 

   

 

a All Auriscalpiaceae sequences in our data set classified to the wood-rot genus Lentinellus, which are mushrooms with gills. 

 

b Some authors include the genera contained in Lachnocladiaceae in Russulales/Peniophoraceae (Miller et al. 2006, Larsson 2007)  

 

c Searches for the sequences used to define Aphyllophorales in the RDP v7 taxonomic classifier returned close matches for 



200 
 

sequences identified as Antrodiella, Cerrena, Ceriporia, Phlebia, Bjerkandera, Rigidoporus, Phanerochaete, and Irpex using the 

National Center for Biotechnology Information (NCBI) Basic Local Alignment Tool (BLAST®) online portal. 

 

d For sequences classified to Aphyllophorales, we obtained an alignment all of the unique sequences classified to this group using 

mothur 1.31.2 (Schloss et al. 2009).  There were 637 unique sequences that had classified to Aphyllophoralles in our data set.  We 

selected every 50
th

 sequence in the alignment as well as the final two sequences in the alignment and conducted a search using 

NCBI BLAST®.  Phanerochaete laevis (GenBank accession KJ668345) was the top BLAST® result with a 99% identity score for 

the 14 sequences which we selected from among the first 636 unique sequences in the alignment.  Scopuloides hydnoides (GenBank 

accession LN611118) was the top BLAST® match with 99% identity for the final sequence in the alignment.  Therefore, we 

included Aphyllophorales among highly lignolytic taxa as we were confident that sequences classified to this group represented 

highly lignolytic white-rot Polyporales in our data set. 
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APPENDIX E 

Information regarding Agaricomycete taxa not selected as highly lignolytic 

Table E1. Agaricomycete taxa excluded from our list of “highly lignolytic taxa”.  We excluded any classes, families, or genera that:  

1) are largely or entirely not saprotrophic or for which nutritional modes are unknown,  

2) for which we have no information regarding a role in lignin decay,  

3) for which there is evidence that the taxa is nonlignolytic or weakly lignolytic,  

4) are or may be lignolytic but for which there is insufficient evidence that they are highly lignolytic,  

5) for which existing evidence regarding their capacity to decay lignin is contradictory,  

6) which are represented in our data set by fewer than 20 sequences regardless of their physiology.   

7) taxa that were unclassified at the order or class level (most not shown below). 

8) taxa unclassified at the genus level (not shown below) if we had not included its family in our selection of highly lignolytic (see 

Table B1).   

We list the current (to the best of our knowledge) taxonomic placement of any taxa we excluded.  If this differed from the classification 

we obtained from the Ribosomal Database Project fungal LSU rRNA v7 classifier (Liu et al. 2012) files, we documented this in the 

notes column. 

Taxa within 

Agaricomycetes  

Reasons for exclusion with citations Notes 

Auriculariales 5.  Inconsistent role in lignin decay.  Observations of lignin removal range 

from none to very high for different species, strains, substrates, and 

studies (Worrall et al. 1997, Osono and Takeda 2006, Liers et al. 2011, 
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Suhara et al. 2012).  Species of this group are of interest for their role in 

lignin decomposition because they have high numbers of lignin-

decomposing genes (Floudas et al. 2012, Nagy et al. 2015), including dye-

decolorizing peroxidases (Liers et al. 2010).  Despite their seemingly high 

potential for lignin decay, we have excluded Auriculariales because actual 

measurements for their role in this process show a high degree of 

variation.  

Agaricales/ 

Agaricaceae 

4 & 5.  Probably not highly lignolytic.   Agaricus removed ~50% of lignin 

mass from straw over 70 days (Durrant et al. 1991), but the ability of 

Agaricus to decay fresh needle litter was observed to be weak (Osono et 

al. 2006).   Agaricus species possess genes for lignolytic enzymes (Hildén 

et al. 2013, Floudas et al. 2015) and may be adapted for late-stage litter 

decay (Morin et al. 2012).  Lepiota, the genus to which most of the 

Agaricaceae sequences in our data set belonged, is much less well-

studied, in this regard.   L. cristata was able to oxidize lignin model 

compound ABTS, but did not bleach humic acids nor oxidize Mn
2+ 

(Steffen et al. 2000).  No other information regarding the role of Lepiota 

in lignin decay could be found. 

 

 

Agaricales/ 

Amanitaceae 

1. Largely mycorrhizal, although some species are saprotrophic litter 

decomposers with some lignin decomposing genes (Kohler et al. 2015) 

 

Agaricales/ 

Bolbitiaceae 

4.  Probably not highly lignolytic.  Agrocybe comprised the 

preponderance of sequences from the Bolbitiaceae in our data set.  

Agrocybe aegerita produced low-molecular weight compounds, which are 

evidence of lignin decomposition, but caused a low amount of lignin loss 

on a mass basis compared to other fungi studied (Liers et al. 2011). 

 

Agaricales/ 

Clavariaceae 

1. Includes saprotrophs and biotrophs, but the dominant genera in our data 

set (Clavaria, Clavulinopsis and Ramariopsis) are all biotrophic 

(Birkebak et al. 2013)  

 

Agaricales/ 

Cortinariaceae/ 

Cortinarius 

1. Ectomycorrhizae  

Agaricales/ 6.  < 20 sequences  
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Hymenogastraceae/ 

Dermocybe 

Agaricales 

/Cortinariaceae/ 

Quadrispora 

 6. < 20 sequences  

Agaricales/ 

Entolomataceae 

2.  Little is known about their role in decomposition or their capacity for 

lignin decay.  Saprotrophs, especially of grasslands (Lynch and Thorn 

2006, Griffith and Roderick 2008) and some mycorrhizal species (Smith 

et al. 2013).   

 

 

Agaricales/ 

Hydnangiaceae/ 

Laccaria 

1.  Ectomycorrhizae Laccaria classified to 

Agaricales/Tricholomataceae , but 

belongs in 

Agaricales/Hydnangiaceae 

(Matheny et al. 2006, Kirk et al. 

2008) 

Agaricales/ 

Hygrophoraceae 

1.  Hygrocybe, the genus that dominates Hygrophoraceae sequences in our 

data set, is biotrophic (Seitzman et al. 2011).  Gliophorus is also 

biotrophic (Seitzman et al. 2011). 

Gliophorus classified to  

Agaricales/Tricholomataceae, but 

should be in the 

Agaricales/Hygrophoraceae 

(Seitzman et al. 2011) 

Agaricales/ 

Hymenogastraceae/ 

Flammula 

2.  No information regarding lignin decay available.  Flammula alnicola 

and Flammula conissans cause root and butt root, with ~2% mass loss on 

wood over a 6 month incubation.  F. alnicola produces a rot described as 

vivid yellow to yellow brown (Denyer 1959).    

classified to 

Agaricales/Cortinariaceae.  In the 

past, Flammula was included in the 

Strophriaceae (Kirk et al. 2008), but 

others have found that is does not 

belong to the Strophariaceae 

(Moncalvo et al. 2002, Matheny et 

al. 2006) and is more appropriately 

placed in 

Agaricales/Hymenogastraceae 

(Matheny et al. 2006) 

Agaricales/ 4.  Insufficient information regarding their role in lignin decay.  Galerina classified to 
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Hymenogastraceae/

Galerina 

marginata is a white-rot organism with a high number of genes for lignin 

and crystalline cellulose decay (Floudas et al. 2015, Kohler et al. 2015) 

and other species in the genus Galerina are also wood decay fungi 

(Muraoka et al. 1999).  A laccase from a Galerina species efficienty 

oxidize lignin model compound ABTS (Ibrahim et al. 2011) and 

decolorized synthetic dyes (Mendoza et al. 2014).  Galerina 

pseudomycenopsis nor Galerina mycenopsis were able to utilize lignin in 

BIOLOG plates (Ibrahim et al. 2011); however, this is a poor means of 

assessing its lignolytic activity because fungi do not utilize lignin on its 

own.  However, we were unable to locate measurements of lignin decay 

for this genus. 

Agaricales/Cortinariaceae. This is 

correct according to some sources 

(Kirk et al. 2008), but others have 

placed it in the  

Agaricales/Hymenogastraceae using 

molecular phylogenetics (Matheny 

et al. 2006) 

Agaricales/ 

Hymenogastraceae/

Hebeloma 

6.  < 20 sequences classified to 

Agaricales/Cortinariaceae.  This is 

correct according to some sources 

(Kirk et al. 2008), but molecular 

phylogentic studies have placed it in 

the Agaricales/Hymenogastraceae 

(Moncalvo et al. 2002, Matheny et 

al. 2006) 

Agaricales/ 

Inocybaceae/ 

Inocybe 

1.  Ectomycorrhizae Inocybe classified to 

Agaricales/Cortinariaceae, but 

should be in Agaricales/Inocybaceae 

(Matheny 2005, Kirk et al. 2008) 

Agaricales/ 

Lycoperdaceae 

6.  < 20 sequences  

Agaricales/ 

Marasmiaceae/ 

Moniliophthora 

1 & 6.  < 20 sequences.  Moniliophthora is a plant pathogen (Aime and 

Phillips-Mora 2005) 

 

Agaricales/ 

Pleurotaceae 

6.  < 20 sequences  

Agaricales/ 

Pluteaceae 

3, 4, & 5. The straw mushroom, Volvariella volvacea, has a high number 

of genes for degradation of lignin and utilization of crystalline cellulose 

(Floudas et al. 2015).  In a decomposition experiment, V. volvacea caused 
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a 20% mass loss of lignin in straw over a 21 day incubation, with the ratio 

of lignin-to-mass lost of 1.4, indicating some selectivity for lignin 

decomposition over other constituents of plant litter (Chang-Ho and Yee 

1977).  However, none of our sequences classified to the genus 

Volvariella. Instead of the Pluteaceae sequences classified to the genus 

Pluteus, for which there is very little known regarding its lignolytic 

abilities.  One study found that Pluteus petasatus demonstrated no 

measurable laccase or MnP activity in enzyme assays and had low 

production of H2O2, a necessary cosubstrate for lignolytic peroxidases.  

Additionally, P. petasatus did not decolorize two aromatic compounds 

(Eichlerová et al. 2006).   Pluteus has been described as a tertiary 

decomposer that colonizes after primary decomposers have broken down 

lignocellulose (Stamets 2004).   

Agaricales/ 

Psathyrellaceae 

3 & 4.  Psathyrellaceae also do not appear to cause high amounts of lignin 

decay. Coprinellus radians exhibited low oxidative enzyme activity, 

removed low amounts of lignin, and did not produce low molecular 

weight compounds during over 72 days on wood (Liers et al. 2011).  

When inoculated on wood that had already been rotted by other fungal 

species first, Coprinopsis species did not cause significant additional mass 

loss, but Coprinellus species did, suggesting that at least some 

Psathyrellaceae might be late stage decay fungi (Oliver et al. 2010).  

Coprinopsis cinerea possesses 17 laccases in its genome (Kilaru et al. 

2006), but has only has a nonlignolytic general peroxidase and no 

lignolytic class II peroxidases (Ruiz-Duenas et al. 2009).   

 

 

Agaricales/ 

Schizophyllaceae 

4.  The Schizophyllaceae are wood-rot fungi, but are likely less lignolytic 

than many other white-rot fungi.  Schizophyllum commune has fewer 

lignolytic genes than most white-rot species which may reduce its 

lignolytic capabilities compared to other white-rot species (Floudas et al. 

2015).  S. commune does attack the secondary cell wall which is the 

lignified part of plant cells.  However, it leaves the middle lamella intact, 

much like a soft-rot species (Floudas et al. 2015).  Additionally, S. 

commune appears to cause a relatively low mass loss in wood decay 
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studies (Martínez et al. 2000, Floudas et al. 2015).   

Agaricales/ 

Strophariaceae/ 

Hypholoma 

6.  < 20 sequences  

Agaricales/ 

Strophariaceae/ 

Pholiota 

6.  < 20 sequences  

Agaricales/ 

Tricholomataceae/ 

Armillaria 

6.  < 20 sequences  

“ “ Cotobrusia 6.  < 20 sequences  

“ “Filoboletus 6.  < 20 sequences  

“ “Flagelloscypha 6.  < 20 sequences  

“ “ Hemimycena 6.  < 20 sequences  

“ “ Hydropus 6.  < 20 sequences  

“ “ Hygroaster 6.  < 20 sequences  

“ “ Hymenogloea 6.  < 20 sequences  

“ “ Infundibulicybe 6.  < 20 sequences  

“ “ Micromphale 6.  < 20 sequences  

“ “ Mycenella 6.  < 20 sequences  

“ “ Mycenoporella 6.  < 20 sequences  

“ “Omphalina 6.  < 20 sequences  

“ “ 

Pseudobaeospora 

6.  < 20 sequences  

“ “ Ripartites 6.  < 20 sequences  

“ “Setulipes 6.  < 20 sequences  

“ “ Tephrocybe 6.  < 20 sequences  

“ “ Tricholoma 1.  Ectomycorrhizae  

Agaricales/ 

Tricholomataceae/T

richolomella 

6.  < 20 sequences  

Agaricales/ 

Tubariaceae/ 

2.  Tubaria species have been isolated from lignin rich substrates like 

wood, needles, and dead roots (Martínez et al. 2000, Matheny et al. 2007), 

Tubaria were classified to 

Agaricales/Strophariaceae, but now 
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Tubaria but little is presently known regarding its ability to degrade lignin.  

Tubaria furfuracea was able to decolorize Remazol Brilliant Blue R 

(RBBR) dye, a substrate used to evaluate ligninolytic activity in studies 

examining fungi for biotechnological and bioremediation applications, in 

one study (Okino et al. 2000), but not in another (Machado et al. 2005).   

have their own family, the 

Tubariaceae (Matheny et al. 2006, 

Vizzini 2008). 

Amylocorticiales/ 

Amylocorticiacea/ 

Anomoporia 

3.  Brown-rot.  Because the classifier includes both brown-rot and white-

rot taxa in sequences used to define this genus (see note), we verified that 

sequences classified to Anomoporia represented brown-rot taxa by 

obtaining the unique sequences classified to this genus in mothur (Schloss 

et al. 2009) and conducting searches with these sequences using the 

National Center for Biotechnology Information (NCBI) Basic Local 

Alignment Tool (BLAST®) online portal.  All searches produced hits 

with 94-95% identity to Anomoporia kamtschatica (GenBank 

AY586630), a brown-rot species (Niemelä et al. 2007). 

These sequences were classified to 

Polyporales/Coriolaceae/Anomopori

a.  It is now placed in the 

Amylocorticiales (Binder et al. 

2010).  Furthermore, the classifier 

includes both brown-rot and white-

rot taxa in Anomoporia, but the 

genus has since been split into 

Anomoporia for brown-rot species 

and Anomoloma for white-rot 

species (Niemelä et al. 2007) 

Boletales 1 & 3.  Largely mycorrhizal with some brown-rot species (Floudas et al. 

2012) 

 

Cantharellales 1, 3, &  4.  Ectomycorrhizae, orchid mycorrhizae, lichen-associated fungi, 

plant pathogens, and saprotrophs.  Saprotrophs from Cantharellales have 

been observed highly celluloytic but not lignolytic (Boberg et al. 2011).  

Rot has not been characterized as white-rot but as “uncertain” or ancestral 

soft-rot (Floudas et al. 2015, Nagy et al. 2015)  

“Agaricomycetes incertae 

sedis/Tricellortus” and to 

“Polyporales/Polyporales incertae 

sedis/Aphyllophoralean” were also 

determined to represent 

Cantharellales.  Sequence defining 

Tricellortus in classifier produced 

93-99% NCBI BLAST matches to 

Minimedusa, Sistotrema, 

Clavulinaceae.  Sequence defining 

Aphyllophoralean produced 96-97% 

identity matches in NCBI BLAST to 

Sistotrema and Clavulina. 

Geastrales/ 

Geastraceae 

6.  < 20 sequences  
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Geastrales/ 

Sphaerobolaceae/Sp

haerobolus 

4 & 5.  Lack of information regarding their role in lignin decay.  S. 

stellatus is often found as a saprotroph on mulch and is also responsible 

for turfgrass disease (Baetsen 2013).  S. stellatus has a high number of 

oxidoreductases (Nagy et al. 2015), has been observed to decay lignin 

(Baetsen 2013), and has demonstrated high selectivity for lignin over 

other constituents of plant cells  (Worrall et al. 1997).  In media, S. 

stellatus strongly degraded lignin (Robinson et al. 1993).  However, 

Sphaerobolus species on natural substrata have not caused high mass loss 

of lignin (Valmaseda et al. 1990, Worrall et al. 1997, Suhara et al. 2012), 

although this may be because Sphaerobolous are slow growing (Conway 

et al. 2000).    While Sphaerobolus are lignolytic,  data available are 

currently too limited and contradictory to determine if they are highly 

lignolytic. 

 

Gomphales/ 

Gomphaceae/ 

Kavinia 

4.  Lack of information regarding their ability to decay lignin.  Kavinia 

are resupinate fungi often found on wood (Nordén and Paltto 2001, Kout 

and Hajšmanová 2015).  Kavinia species possess strong laccase activity 

(Harkin et al. 1974) and have been described as white-rot (Ginns and 

Lefebvre 1993) or uncertain rot (Hibbett et al. 2014).  However, no 

measurements of their ability to decay lignin presently exist in literature. 

 

Gomphales/ 

Gomphaceae/ 

Phaeoclavulina 

1.  Little known regarding their ecology  

Gomphales/ 

Gomphaceae/ 

Ramiricium 

6.  < 20 sequences  

Hymenochaetales 4.  Lack of information regarding their ability to decay lignin.  

Hymenochaetales have unique manganese peroxidases (Morgenstern et al. 

2010) and at least one species (Fomitiporia mediterranea) has a high 

number of genes for lignolytic enzymes (Floudas et al. 2012).  However, 

we were unable to find measurements of their ability to decay lignin in the 

literature. 

 

Phallales 6.  < 20 sequences  

Polyporales/ 6.  < 20 sequences  
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Meripilaceae 

 

Polyporales/ 

Meripilaceae/ 

Rigidoporus 

6.  < 20 sequences classified to 

Polyporales/Coriolaceae.  

Coriolaceae is no longer recognized 

as a family.  Rigidoporus but is 

currently placed in the Meripilaceae 

(Kirk et al. 2008). 

Polyporales/ 

Phanerochaetaceae/ 

Ceriporia 

3.  Many Ceriporia species are highly lignolytic white-rot fungi.  

However, Leptoporus mollis and Ceriporia reticulata are brown-rot 

species which were recently placed phylogenetically in the middle of this 

genus (Floudas and Hibbett 2015).  In order to investigate whether the 

Ceriporia in our data set were more closely related to white-rot or brown-

rot Ceriporia species, we obtained all of the unique sequences which were 

placed in this genus, using mothur 1.31.2 (Schloss et al. 2009).  Of the 

666 unique sequences classified to Ceriporia in our data set, we selected 

10 and conducted a search through the NCBI BLAST® online portal.  For 

all 10 sequences, the top BLAST hit was Ceriporia reticulata (99% 

identity, GenBank KP135204), a brown-rot species (Floudas and Hibbett 

2015).  Therefore, the Ceriporia sequences in our data set most likely 

represent brown-rot species.   

 

classified to 

Polyporales/Coriolaceae/Ceriporia.  

However, Coriolaceae is no longer 

recognized as a family and 

Ceriporia belongs to the 

Phanerochaetaceae (Kirk et al. 2008, 

Floudas and Hibbett 2015) 

“ “ Ceriporiopsis 6.  < 20 sequences classified Polyporales/Coriolaceae, 

but is currently placed in the 

Polyporales/Phanerochaetaceae 

(Kirk et al. 2008). 

Polyporales/ 

Polyporaceae 

6.  < 20 sequences  

Polyporales/ 

Polyporaceae/ 

Cerrena 

6.  < 20 sequences Classified Polyporales/Coriolaceae.  

Coriolaceae no longer recognized as 

a family.  Now placed in the 

Polyporales/Polyporaceae (Kirk et 
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al. 2008). 

“ “ Hapalopilus 6.  < 20 sequences Classified Polyporales/Coriolaceae.  

Coriolaceae no longer recognized as 

a family.  Now placed in the 

Polyporales/Polyporaceae (Kirk et 

al. 2008). 

“ “ Oligoporus 6.  < 20 sequences Classified Polyporales/Coriolaceae.  

Coriolaceae no longer recognized as 

a family.  Now placed in 

Polyporales/Fomitopsidaceae (Kirk 

et al. 2008). 

Russulales/ 

Russulaceae 

1.  Ectomycorrhizal  

Sebacinales 1. Largely mycorrhizal  

Thelephorales 1.  Ectomycorrhizal  

Trechisporales 7 & 4.  Sequences associated with Trechisporales appear to have been 

classified only as far as class (Agaricomycetes) and were placed as 

unclassified at the order level with the RDP v. 7 classifier.  Therefore, 

when we excluded unclassified Agaricomycetes, we excluded sequences 

in our data set from species in the Trechisporales.  A recent genomic 

analysis (Nagy et al. 2015) has placed two members of this order among 

white-rot fungi.  High laccase activity (Nobles 1958, Harkin et al. 1974, 

Kreetachat et al. 2016) and high peroxidase activity (Harkin et al. 1974) 

have been reported for some species from this group, but not from others 

(Harkin et al. 1974).  Rot from species in the Trechisporales has 

previously been described as white-rot (Harkin et al. 1974, Gilbertson et 

al. 1975, Huckfeldt and Schmidt 2006) or as an unknown rot (Nobles 

1958).  However, we were unable to locate any studies measuring 

lignolysis by Trechisporales.  Thus, Trechisporales are lignolytic, but we 

have insufficient data to be determine if they are highly lignolytic. 

Some sequences that were classified 

as Agariomycetes/unclassified 

represent 

Agaricomycetes/Trechisporales 
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APPENDIX F 

SIMPER results 

 

Table F1. Top ten SIMPER results for each type of sample for each collection date.  These ten operational taxonomic units (OTUs) 

had the highest dissimilarity scores between fungal communities under ambient and experimental N deposition, respectively.  The 

low-lignin (LL), high-lignin (HL), and wood (W) substrates were collected after 7 and 18 months of decomposition, while forest floor 

(FF) and soil (S) were co-collected during the 7-month sampling date.  For each OTU, we list its average dissimiliarity score, its 

dissimilarity over its standard deviation (SD), and its contribution (%) to total dissimilarity; we additionally list its average 

proportional abundance under ambient and experimental N deposition, as well the difference between treatments with declines in 

mean abundance under experimental N deposition denoted in bold.  Furthermore, we list the top BLAST® match to an identified 

species with outdated nomenclatures retained in parentheses.  Based on our knowledge of the biology of these taxa, we gave each 

OTU a functional assignment: white-rot and lignolytic litter decay (WRL), soft-rot and celluloytic/hemicelluloytic litter decay 

(SRCH), brown-rot (BR), weakly lignolytic (WL) and mycorrhizal/biotrophic (MB), with a question mark (?) indicating that this 

assignment was tentative (Appendix C).  Taxa were assigned to the phyla Basidiomycota (B) and Ascomycota (A), subphyla 

Agaricomycotina (Ag) and Pezizomycotina (Pez), with assignments to to class, order, and family abbreviated by leaving off the -

mycetes, -ales, and -aceae, respectively.   
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99 100 B Ag Agarico Agaric Crepidot Crepidotus 

W 7 9 2.1 1.4 3.8 0.005 0.052 0.048 

S
R

C
H

 

Herpotrichia 

vaginatispora 

KT93425

2 
96 98 A Pez 

Dothide

o 
Pleospor 

Melanomm

at 
Herpotrichia 

W 7 4 2 1.5 3.6 0.042 0.042 0.000 

W
R

L
 

Mycena 

sanguinolent

a 

AY20725

7 
99 100 B Ag Agarico Agaric Mycen Mycena 

W 7 22 1.9 0.7 3.5 0.061 0.000 0.061 

W
R

L
 

Gymnopus 

dryophilus 

NG_0276

32 
100 96 B Ag Agarico Agaric Marasmi Gymnopus 

W 7 8 1.9 1.2 3.4 0.079 0.054 0.025 

M
B

 

Sebacina 

vermifera 

DQ98381

5 
97 100 B Ag Agarico Sebacin Sebacin Sebacina 

W 7 15 1.9 1.1 3.4 0.039 0.000 0.039 

W
R

L
 

Mycena 

plumbea 

DQ47081

3 
99 100 B Ag Agarico Agaric Mycen Mycena 

W 7 25 1.8 0.7 3.3 0.000 0.058 0.058 
W

L
 

Coprinellus 

radians 

KM24602

7 
99 100 B Ag Agarico Agaric Psathyrell Coprinellus 
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W 18 1 3.6 1.3 6.5 0.070 0.145 0.075 

W
L

 

Rosellinia 

abscondita 

KF71920

8 
99 97 A Pez Sordario Xylari Xylari Rosellinia 

W 18 2 3.4 1.5 6.2 0.092 0.189 0.096 

S
R

C
H

 

Herpotrichia 

vaginatispora 

KT93425

2 
99 98 A Pez 

Dothide

o 
Pleospor 

Melanomm

at 
Herpotrichia 

W 18 7 3.1 1.5 5.6 0.107 0.025 0.082 

W
R

L
 

Crepidotus 

fragilis 

AF36793

1 
99 100 B Ag Agarico Agaric Crepidot Crepidotus 

W 18 4 3.1 1.3 5.6 0.077 0.000 0.077 

W
R

L
 

Mycena 

sanguinolent

a 

AY20725

7 
99 100 B Ag Agarico Agaric Mycen Mycena 

W 18 12 2.8 0.9 5 0.055 0.077 0.022 

W
R

L
 (?)

1 

Kavinia 

himantia1 

AY58668

2 
99 100 B Ag Agarico Gomph Lentari Kavinia 

W 18 14 2.4 0.9 4.3 0.064 0.000 0.064 

W
L

 

Anthostomell

a 

leucospermi 

EU55210

0 
99 100 A Pez Sordario Xylari Xylari 

Anthostomell

a 

W 18 9 2.2 1.4 4.0 0.028 0.109 0.081 

S
R

C
H

 

Herpotrichia 

vaginatispora 

KT93425

2 
96 98 A Pez 

Dothide

o 
Pleospor 

Melanomm

at 
Herpotrichia 

W 18 33 2 1 3.5 0.002 0.045 0.043 
W

L
 

Psathyrella 

candolleana 

KM03017

5 
99 100 B Ag Agarico Agaric Psathyrell Psathyrella 
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W 18 6 1.9 1.6 3.4 0.095 0.039 0.055 

S
R

C
H

 

Herpotrichia 

macrotricha 

GU38517

9 
98 98 A Pez 

Dothide

o 
Pleospor 

Melanomm

at 
Herpotrichia 

W 18 28 1.8 0.7 3.2 0.000 0.045 0.045 

W
L

 

Tubaria 

albostipitata 
EF051051 99 94 B Ag Agarico Agaric Tubari Tubaria 

1 Isotopic analysis of Phaeoclavulina (Ramaria) abietina suggests it is a saprotroph (Agerer et al., 2012) and genomic analyses reveal it has dye-decolorizing 

peroxidases (Fernandez-Fueyo et al. 2015), which may be involved in lignin-decay (Liers et al. 2010).   Ramaria stricta, a Ramaria species which grows on 

wood, has been observed to have high laccase and manganese-peroxidase activity (Erden et al. 2009). Gomphales species in the putatively saprotrophic genus 

Kavinia (Hosaka et al., 2006) are often found on wood (Kout & Hajšmanová, 2015; Nordén & Paltto, 2001), possess strong laccase activity (Harkin et al. 1974),  

and have been described as white-rot (Ginns & Lefebvre, 1993).  Furthermore, the genus Lentaria has been described as white-rot (Hibbett et al. 2014).  

Therefore, we have tentatively considered all putatively saprotrophic Gomphales observed here to be white-rot. 

2 We have tentatively placed an OTU associated with Ceratosebacina calospora as SRCH.  C. calospora could not be placed in any clade with confidence by 

Binder et al. 2005.  C. calospora and two other species were placed in its own clade by Weiß & Oberwinkler (2001).  Thus, C. calospora has not been 

definitively placed within any group subsequently determined to be white rot or soft-rot (Nagy et al., 2015).  However, we could find no descriptions of it or its 

sister taxa (Weiß & Oberwinkler 2001) as white-rot.  Because of this, we have tentatively described it as SRCH for the purposes of our study. 

3 Species in the genus Ceriporia are largely white-rot.  However, brown-rot has been reported for the species Ceriporia reticulata (Niemelä, 1985).  Additionally, 

C. reticulata was found to be closely related to another brown-rot species (Leptoporus mollis) in a recent phylogenetic analysis (Figure S5 in Floudas et al. 

2015). 

4  Ceraceomyces tessulatus was phylogenetically placed in a clade with brown-rot species Anomoporia bombycina, A. vesiculosa, and A. kamtschatica (Niemelä 

et al., 2007).  Additionally, this OTU had a high (94% sequenced identity) BLAST match for brown-rot species Anomoporia kamtschatica (GenBank 

AY586630).   
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