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Abstract 

Many important biomedical and clinical applications, such as early-stage cancer 

diagnosis, autoimmune disease treatment, and real-time monitoring of patients’ immune 

status, demand new integrated multiplexing nanoelectronic/microfluidic biosensors. 

These biosensors are anticipated to enable fast (minute-scale) quantification of illness-

related biomarkers, unprecedented detection sensitivity, fM-level limit-of-detection 

(LOD), and point-of-care capability. However, these new highly desirable biosensing 

capabilities have not been realized yet. 

Atomically layered transition metal dichalcogenides (TMDCs) have gained a lot 

of attention because of their excellent electronic and structural properties. Especially, 

semiconducting TMDCs can serve as an essential complement to zero-band-gap graphene 

and enable novel semiconductor-related applications, such as thin-film transistors, 

phototransistors, and various types of sensors. More importantly, such TMDCs hold 

significant potential to be exploited for making new electronic biosensors and realize the 

highly desirable biosensing capabilities mentioned above. The research presented in this 

thesis sought to advance the scientific and technical knowledge for fabricating and 
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operating new TMDC-based electronic/microfluidic-integrated biosensors and realizing 

rapid fM-level quantification of biomarkers.  

The first part (i.e., the second chapter) is mainly focused on developing a top-

down nanofabrication approach for producing orderly arranged, pristine few-layer MoS2 

flakes, which holds significant potential to be developed into a upscalable 

nanomanufacturing technology. The second part (i.e., the third-to-fifth chapters) presents 

a systematic study on the biosensing characteristics of the TMDC-based transistor 

sensors fabricated using our nanoprinting techniques. First, multiple sets of MoS2-based 

transistor biosensors were fabricated using our plasma-assisted nanoprinting method. 

Second, we studied the underlying device physics governing the response characteristics 

of TDMC transistor biosensors. Third, we further studied a cycle-wise method for 

operating MoS2/WSe2-based transistor biosensors to enable rapid, low-noise, highly 

specific biomolecule quantification at femtomolar levels.  

The presented research has leveraged the superior electronic properties of 

emerging layered semiconductors for biosensing applications and advances label-free 

biosensing techniques toward realizing fast real-time immunoassay for low-abundance 

biomolecule detection. Moreover, the nanofabrication approaches developed in this 

research can be generally utilized for making other nanoelectronic devices based on 

emerging 2D layered materials, and the obtained device physics knowledge is anticipated 

to greatly leverage the excellent electronic and structural properties of TMDCs for other 

relevant sensing applications. 
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          Chapter 1  

 

 

Introduction 

 

1.1 Emerging Two-Dimensional (2D) Atomically Layered Materials 

Since Novoselov and Geim exfoliated graphene layers from highly oriented 

pyrolitic graphite (HOPG) for the first time using the mechanical cleavage method in 

2004, great possibilities of two-dimensional atomically layered materials have opened up 

for research [1]. Graphene is a monolayer of carbon atoms with a two-dimensional (2D) 

honeycomb lattice, which has almost the same crystal energy as diamond [2]. 

Additionally, graphene has various extraordinary and attractive properties, such as 

ultrahigh carrier mobility at room temperature (∼10,000 cm2 V-1 s-1) [1], high Young's 

modulus (∼1 TPa) [3], and excellent thermal conductivity (3000-5000 W m-1 K-1) [4]. 

These peculiar properties of graphene have motivated many researchers to develop a 

variety of applications in a broad range of device applications, such as 

electronics/optoelectronics [5-7], biomedicine [8, 9], sensors [10-16], and more. 
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Moreover, the success of graphene has inspired people to investigate other atomically 

layered materials, such as transition metal dichalcogenides [17], topological insulators 

[18], hexagonal boron nitrides [19], and layered metal oxides [20]. 

In comparison to the solid materials with zero-dimensional (0D), one-dimensional 

(1D), or three-dimensional (3D) morphologies, 2D nanomaterials provide several 

superior and unique characteristics. Especially in single-layer and few-layer forms, 2D 

layered materials exhibit a strong quantum confinement effect, which results in excellent 

electronic properties [21], such as Van Hove singularity points for high light absorption. 

Furthermore, 2D layered materials have other superb electronic properties. For example, 

owing to the high-quality crystal structure of graphene, the massless Dirac electrons in 

graphene can travel submicrometer distances without scattering, resulting in ultrahigh 

charge carrier mobility as mentioned above [22]. In addition, the atomically thin nature of 

2D materials offers superb mechanical properties and high specific surface area. For 

example, the breaking strength and the ultimate tensile strength of graphene layers are 42 

N m-1 and 120 GPa, respectively [23]. These standout properties of graphene indicate that 

graphene is one of the strongest materials today [3]. Moreover, the maximum Brunauer–

Emmett–Teller (BET) surface area of graphene is 2630 m2 g-1, leading to very high 

electrocatalytic activity and ultrahigh loading capacity [24]. 

Another representative material is MoS2, one of the transition metal 

dichalcogenides, which has mostly been explored recently. MoS2 has a direct bandgap of 

~1.8eV when it is in the single-layer form, and has an indirect bandgap of ~1.2eV in the 

bulk form [25]. Therefore, both monolayer and multilayer MoS2 flakes can be exploited 

for semiconductor-related device applications and serve as a valuable complement to zero 
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bandgap graphene structures. Additionally, the breaking strength, the in-plane stiffness, 

and the Young’s modulus of MoS2 layers are 15 N m-1, 180 N m-1, and 270 GPa, 

respectively, which are comparable to those of steel [26]. Further, MoS2 has a high 

specific surface area of as high as 412 m2 g-1 [27]. Exploiting these superior properties of 

2D materials, there has been a broad range of potential device applications, including 

flexible electronics [28], solar cells [29], and surface-active applications owing to their 

high sensitivities from external stimuli, such as sensors [30-33], catalysis [34, 35], energy 

storage and conversion, and supercapacitors [36], etc. 

 

1.2 Attractive Biosensing Properties of Semiconducting Transition Metal 

Dichalcogenides 

All layered transition metal dichalcogenides (TMDCs) have a stratified crystal 

structure. The chemical formula of TMDCs can be generally expressed as MX2, where M 

is the transition metal (e.g., Mo and W), and X is a chalcogen atom (e.g., S, Se, and Te), 

as illustrated in Figure 1.1 [37-39]. In a TMDC quintuple layer, the sub-layer consisting 

of transition metal atoms is sandwiched by two sub-layers consisting of chalcogen atoms 

that are covalently bonded together to form the quintuple layer. In a bulk TMDC material, 

multiple such quintuple layers are stacked together through the van der Waals interaction 

[40]. Multilayer MoS2 has two types of stacking configurations: 2H-MoS2 and 1T-MoS2, 

as illustrated in Figure 1.2. The trigonal prismatic (2H) MoS2 structure is 

thermodynamically stable and semiconductive, while the octahedral (1T) MoS2 is 

thermodynamically unstable and metallic [41]. Attracted by their atomically thin 
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structures and semiconducting properties (e.g., MoS2 and WSe2), recently, many 

researchers have attempted to explore the applicability of semiconducting TMDCs for 

making biosensing devices [42-45]. 

 

 

Figure 1.1 Three-dimensional schematic illustration of the MoS2 structure. 

Courtesy of reference [25] 

  

 TMDCs have several appealing properties for biosensing applications. For 

example, pristine MoS2 structures have high-quality 2D surfaces with an extremely low 

areal density of out-of-plane dangling bonds. Such 2D surfaces lead to very low 

probabilities for charged carriers to be scattered and trapped by surface defects, which 

results in a low electronic noise level and therefore a high signal-to-noise ratio for 

detecting the signals associated with biological events [43]. Additionally, due to the 

sizable bandgap and high specific surface area of monolayer and few-layer MoS2 
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structures, MoS2-based biosensors are anticipated to have a better biodetection sensitivity 

as compared to those based on bulk semiconductors and graphene. Moreover, MoS2 and 

other TMDC layers have a very large mechanical strength as well as a superior flexibility, 

which could be exploited for making wearable and implantable biosensor devices. For 

example, a curvature radius down to 0.75 mm can be obtained in MoS2 thin-film 

transistors with no observable degradation of their electrical performance [28]. Lastly, 

TMDCs show an excellent biocompatibility. In particular, through a series of 

biocompatibility tests, people have confirmed that MoS2 exhibits a very low toxicity to 

most biological species as well as a high cell viability [46]. Such superior 

biocompatibility of MoS2 is critical for making safe in-vivo TMDC-based biosensors in 

the near future. 

 

 

Figure 1.2 Unit cell structures of 2H-MX2 and 1T-MX2. Courtesy of 

reference [41] 
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1.3 Need of New Biosensing Technologies for Enabling Rapid Detection of 

Low-Concentration Illness-Related Biomarker Molecules 

Cytokines are small secreted protein biomarkers released by immune cells, and 

they play very important roles in cell signaling and inflammatory response in the immune 

system (Figure 1.3). When pathogenic viruses or bacteria invade the immune system, the 

immune cells are activated and start to produce cytokines [47, 48]. Consequently, the 

concentration of different biomarkers indicates the development progress of target 

diseases. Therefore, the capability to detect and quantify low-concentration (femtomolar 

or single-molecule-level) biomarkers is critical for monitoring the development of 

immune responses at the early stage of a disease. 

The current gold standard for detecting and quantifying biomarkers is enzyme-

linked immunosorbent assay (ELISA). ELISA has commonly been used for both clinical 

and research purposes owing to its advantages, such as strong specificity, relatively high 

sensitivity, and safe environment for biomolecules. This method utilizes a plate-based 

assay with attached target biomolecules tagged with labels, and the signals from the 

labels are detected for quantification of the biomolecules. These labeling techniques 

require a long assay time because of a long sample preparation time and are not 

applicable for real-time detection of target biomolecules [48]. Additionally, ELISA 

processes need bulky instrument setups with large sample volumes, which hardly realize 

the point-of-care capability. To solve the listed challenges above, there is a strong need 
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for new technology for enabling rapid label-free detection of low-concentration illness-

related biomarker molecules. 

 

  

Figure 1.3 The role of cytokines during the pathogenic invasion. Courtesy 

of reference [47] 
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Figure 1.4 Schematic figure of MoS2-based FET biosensor. Courtesy of 

reference [43]  

1.4 Nanoscale Field-Effect-Transistor Biosensors for Realizing Rapid, Label-

Free, Multiplexing Biomarker Quantification at fM-Level Detection 

Limits and New Opportunities of Emerging 2D Layered Semiconductors 

Field-effect-transistor (FET) biosensors have gained a great deal of attention for 

severals years, and they have been demonstrated to be able to enable high biodetection 

sensitivity as well as label-free quantification capability. Additionally, FET biosensors 

can be integrated with portable electrical circuits and therefore enable point-of-care 

capability [49]. 

Among various types of nanomaterial structures, one-dimensional (1D) FET 

biosensors, such as silicon nanowires (Si NWs) [50] and carbon nanotubes (CNTs) [51], 

have been widely studied due to their high biodetection sensitivities. Such high 

sensitivities are attributed to the electrostatically gated nanoscale FET channels, which 
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are highly sensitive to biomolecule conjugation reactions. However, cost-effective 

manufacturing of orderly-arranged (or addressable) NW or CNT-based FET sensors is 

still a critical challenge, which has significantly hindered their practical applications. 

Specifically, using top-down nanolithography methods (e.g., electron-beam lithography 

(EBL) and nanoimprint lithography (NIL)), people can produce uniform arrays of Si NW 

FET biosensors on silicon-on-insulator (SOI) substrates. However, such sensor 

fabrication processes are too expensive to be used for practical biosensing applications, 

The bottom-up methods for directly synthesizing 1D FET biosensor structures still 

suffers from poor ordering and uniformity of synthesized 1D nanostructures over large 

areas. In addition, the bottom-up fabrication of CNT-based FET biosensors needs special 

techniques capable of selecting semiconducting nanotubes and eliminating metallic ones 

(i.e., the purity of semiconducting CNTs need to be higher than 99% for scale-up 

applications), which also significantly increases the complexity and cost of the 

fabrication of CNT FET biosensors [43]. 

To address the aforementioned challenges, researchers have started to investigate the 

applicability of two-dimensional (2D) nanomaterials, such as graphene and TMDCs, for 

making FET biosensors. Due to its atomically thin structure, graphene can be used to 

make highly sensitive sensing FETs, and the fabrication process is highly compatible 

with the state-of-the-art planar lithographic techniques, which is potentially suitable for 

scale-up applications. However, although many studies have been performed for 

developing graphene FET biosensors, the lack of a bandgap in graphene fundamentally 

leads to a low carrier modulation for graphene FET biosensors [43]. Therefore, new 

efforts have been performed to create and characterize FET biosensors based on 
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semiconducting TMDCs (Figure 1.4), which also have atomically thin FET channel 

structures [42, 43, 49]. TMDC-based FETs (e.g., those based on MoS2 and WSe2) exhibit 

high On/Off current ratios up to 108, which, in combination with the advantages already 

discussed in chapter 1.2, can be exploited for creating label-free, highly sensitive FET 

biosensors with low limit-of-detection (LOD). Wang et al. and Sarkar et al. recently 

fabricated MoS2 FET biosensors with 100-400 fM LODs for a cancer marker protein, 

Prostate-specific antigen (PSA) and the standard streptavidin–biotin conjugation reaction, 

respectively [42, 43]. Although individual MoS2 FET biosensors have been fabricated 

and exhibited very high biodetection sensitivities, the fabrication of multiple such sensors 

with consistent sensor response characteristics has not been realized. Additionally, in 

order to achieve the multiplexing biomarker quantification capability, people need to 

develop new nanofabrication approaches capable of incorporating uniform TMDC device 

structures into addressable device sites or ordered arrays.  

 

1.5 Summary of Dissertation  

To address the scientific and technical gaps discussed in chapter 1.4, I have 

finished a series of nanofabrication and device-oriented projects, which are presented in 

this dissertation. The whole dissertation is divided into two main parts: (1) new 

nanoprinting processes for generating arrays of few-layer TMDC device structures 

(Chapter 2), and (2) fabrication of multiple TMDC FET biosensors for rapid, low-noise, 

multiplexing biomarker quantification at fM-level detection limits (Chapter 3, 4, and 5). 
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In chapter 2, I present a novel approach for producing orderly arranged, pristine 

few-layer MoS2 flakes, which holds significant potential to be developed into a generic 

nanomanufacturing technology for producing device structures based emerging layered 

materials. In this work, I have successfully demonstrated the transfer printing of MoS2 

flakes into ordered arrays over cm2-scale areas. Further, the FETs made from as-printed 

MoS2 flakes exhibit excellent transport properties (e.g., On/Off current ratio: 105-107, 

field-effect mobility on SiO2 gate dielectrics: 6 to 44 cm2/(V s)) as well as a good 

uniformity of such transistor parameters over large areas.  

In chapter 3, I present the demonstration of MoS2-based transistor biosensors 

capable of detecting tumor necrosis factor – alpha (TNF-α) with detection limits as low 

as 60 fM. All sets of transistors exhibit consistent calibrated responses with respect to 

TNF-α concentrations, and they result in a standard curve, from which the equilibrium 

constant of the antibody-(TNF-α) binding pair is extracted to be KD = 369 ± 48 fM. 

Based on this calibrated sensor model, the time-dependent binding kinetics is also 

presented and the association/dissociation rates of the antibody-(TNF-α) pair are 

extracted to be (5.03 ± 0.16) × 108 M-1s-1 and (1.97 ± 0.08) × 10-4 s-1, respectively.  

In chapter 4, two different physics principles for operating MoS2 transistor 

biosensors are experimentally identified, which depend on antibody functionalization 

locations. If antibodies are functionalized on an insulating layer coated on a MoS2 

transistor, antibody-antigen binding events mainly modify the transistor threshold voltage, 

which can be explained by the conventional capacitor model. If antibodies are directly 

grafted on the MoS2 transistor channel, the binding events mainly modulate the ON-state 
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transconductance of the transistor, which is attributed to the antigen-induced disordered 

potential in the MoS2 channel.  

In chapter 5, a cycle-wise method for operating emerging MoS2/WSe2-based 

transistor biosensors is studied to enable rapid, low-noise, highly specific biomolecule 

quantification at femtomolar levels. The cycle-wise detection approach can physically 

separate incubation, flushing, and electrical measurement steps in the device chamber and 

therefore avoid the liquid-solution-induced electrochemical damage, screening, and 

nonspecific adsorption to the sensor. This capability can improve the transistor sensor’s 

durability, sensitivity, and specificity. Furthermore, the time-dependent response signals 

measured by the cycle-wise method exhibit lower noise as compared to those measured 

by the continuous detection method. These advantages in combination with the inherent 

high sensitivity of MoS2/WSe2-based biosensors allow for rapid biomolecule 

quantification at femtomolar levels by analyzing the initial slopes of time-dependent 

response curves. We demonstrate the cycle-wise quantification of streptavidin and 

interleukin 1 beta in pure and complex solutions with detection limit ~ 1 fM and a total 

incubation time less than 20 min. 
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          Chapter 2  

 

 

MoS2 Transistors Fabricated via Plasma-Assisted Nanoprinting of 

Few-Layer MoS2 Flakes into Large-Area Arrays 

2.1 Introduction 

Molybdenum disulfide (MoS2) belongs to the family of layered transition metal 

dichalcogenides [37]. It has been broadly used as a dry lubricant and as a catalyst for 

desulfurization in petroleum refineries [52]. Recently, MoS2 attracted a great deal of 

attention because of its attractive electronic, optoelectronic, and mechanical properties 

[25, 28, 53, 54]. In the bulk form, MoS2 is an indirect band-gap semiconductor with an 

energy gap of ∼1.2 eV [54]. In the monolayer form, MoS2 has a large direct band gap 

(∼1.8 eV) [54]. Therefore, MoS2 can serve as an important complement to zero-band-gap 

graphene and enable new semiconductor-related applications of two-dimensional (2-D) 

materials such as thin-film transistors [25, 55], phototransistors [56], chemical sensors 

[57], integrated circuits [58], and thin-film light-emitting diodes [54, 59]. As a 2-D 

nanoelectronic material, MoS2 is advantageous over bulk Si for suppressing the 

undesirable tunneling between drain and source regions at the scaling limit of transistors 
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and therefore provides benefits for miniaturization of electronic devices beyond Moore's 

law. In addition, bulk (or multilayer) MoS2 shows relatively high in-plane carrier 

mobility comparable to that of crystalline Si [60], as well as robust mechanical and 

chemical properties, which makes it an attractive material for making flexible electronic 

devices with high performance and long lifetime [28, 58, 61]. A broad variety of 

prototype devices based on few layer MoS2, such as high-performance field effect 

transistors [25, 55], phototransistors [56], sensors [33, 57], and integrated circuits [58], 

have been fabricated and extensively studied in research laboratories. However, the scale-

up applications of MoS2, especially the mass production of commercially feasible 

products, require large arrays of orderly arranged MoS2 structures. This requirement 

breaks down into two critical challenges in nanomanufacturing: (1) incorporating pristine 

MoS2 films over large areas and (2) patterning MoS2 into ordered micro- and 

nanostructures over large areas to obtain both desirable electronic properties and required 

functionality. Several approaches have been attempted to produce MoS2 materials for 

large-area applications, including Scotch tape exfoliation [1, 25, 61], liquid phase 

exfoliation in an organic solvent [62, 63], intercalation followed by forced hydration [59, 

64, 65], transition metal sulfurization [66, 67], thermal decomposition of thiosalts [68], 

chemical vapor deposition (CVD) [69, 70], van der Waals epitaxial growth [71], etc. So 

far, a few efforts have been developed on the lithographic patterning of MoS2 sheets and 

the deposition of MoS2 crystals into ordered arrays [72-74]. All of these technologies for 

producing MoS2 structures still suffer from one or more obstructions that prevent the 

creation of ordered, pristine MoS2 device arrays over large areas. In particular, Scotch 

tape-based or liquid-phase exfoliation-based processes usually create a poor yield of few-
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layer MoS2 flakes [1, 25, 61, 62]. Chemical intercalation methods can produce a 

relatively high yield of monolayer or few-layer MoS2 flakes in colloidal solutions, but 

cannot arrange them into ordered arrays over large areas [59, 64, 65]. CVD and epitaxial 

methods are promising to generate very thin MoS2 flakes over large areas in the future, 

but the present as-grown MoS2 samples still feature randomly distributed micro- or 

nanoflakes with 10's-100's nm scale crystalline domains that are much smaller than the 

crystalline domains achieved in geographic MoS2 materials (typically, 1 to 100's μm size) 

[37, 69-71]. Obviously, a nanomanufacturing technology capable of being scaled up and 

producing ordered and pristine few-layer MoS2 patterns would have a transformative 

impact on future manufacturing of MoS2 electronic and optoelectronic devices and 

systems.  

In this chapter, we present novel transfer-printing processes for generating large-

area arrays of prepatterned few-layer MoS2 features. In this work, bulk MoS2 films are 

prestructured with relief patterns by using lithographic techniques and subsequently serve 

as stamps for printing out MoS2 flakes on pristine and plasma-charged SiO2 substrates. 

Here, SiO2 is chosen as the substrate material, because SiOx-based substrates are widely 

used for electronic applications. Therefore, the approaches developed in this work can be 

generally applied to other SiOx-based substrates such as glass, fused silica, and flexible 

silicone rubber. The few-layer MoS2 flake pixels printed on such SiOx substrates can be 

used to create working transistors showing excellent performance. In the future, the 

presented printing approaches in combination with other nanolithography techniques, 

precise deposition and etching processes, and new high-k gate dielectrics can potentially 

be employed for producing high performance MoS2-based large-scale integrated circuits. 
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2.2 Methods and Materials   

2.2.1 Prepatterning of Bulk MoS2 Stamps 

To fabricate a bulk MoS2 stamp, a piece of bulk MoS2 is mechanically exfoliated 

from a MoS2 source sample (SPI, Inc., size ∼1 cm2) and firmly attached onto a bendable 

copper tape. The exfoliated MoS2 film has a fresh and pristine surface with total area of 

∼1 cm2. To pattern microscale relief features on the bulk MoS2, a 1.4 μm thick 

photoresist layer is spun onto the MoS2 surface and exposed on a Karl Suss MA6 

photoaligner. The photomask used for this work bears periodic pillar patterns with pillar 

diameters ranging from 3 to 10 μm. After development, 100 nm thick Ti masks are 

formed on the MoS2 surface by using electron-beam evaporation followed with lift-off in 

acetone. Afterward, the Ti mask patterns are etched onto the underlying MoS2 using a 

SF6- based RIE recipe (i.e., SF6 flow rate 20 sccm, pressure 20 mTorr, power 200 W) 

with an etching rate of ∼100 nm/min. Finally, the Ti masks are removed by soaking the 

MoS2 film in a diluted HF acid solution. 

 

2.2.2 Transfer Printing of Prepatterned MoS2 Flakes onto Substrates 

Prepatterned few-layer MoS2 flakes are transfer printed onto SiO2/Si substrates 

that are cleaned by using the standard RCA process. To perform a transfer printing, a 
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bulk MoS2 stamp and a SiO2/Si substrate are firmly pressed to each other by using a lab-

made pressing system that can generate a gauge pressure up to 3 MPa for contact printing. 

To improve the bonding strength between the MoS2 flakes and the SiO2 surface, an O2-

based plasma recipe (i.e., O2 flow rate 50 sccm, pressure 25 mTorr, power 100 W, time 

duration 2 min) is used to treat the SiO2 surface before the printing step. Such a plasma 

treatment is expected to introduce uniformly distributed electric charges on the SiO2 

surface that can provide additional electrostatic attractive stress for exfoliating 

prepatterned few-layer MoS2 flakes from the bulk stamp [75]. After the printing process, 

the printed MoS2 patterns are imaged by using a scanning electron microscope in 

secondary electron and backscattered modes as well as an optical microscope. An atomic 

force microscope is employed to measure the thickness of printed MoS2 features in the 

tapping mode. Furthermore, an X-ray energy dispersive spectrometer integrated with a 

SEM system is used to confirm the presence of MoS2 features within the printed areas. 

 

2.2.3 Fabrication of Field-Effect Transistors Using Printed MoS2 Flakes 

To fabricate back-gated MoS2 FETs, the metallic drain/source contacts (5 nm 

Ti/55 nm Au) are fabricated by photolithography or electron-beam lithography followed 

by metal deposition and lift-off. Especially, photolithography is used for fabricating FETs 

based on the inner flakes of MoS2 pixels, and EBL is specifically used for fabricating 

FETs based on the outer edge ribbons of MoS2 pixels. Finally, another metallic contact is 

made onto the p+-Si substrate, which serves as a back gate contact. The device 
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characteristic curves of FETs are measured using an Agilent-4145B semiconductor 

parameter analyzer. 

 

2.2.4 Plasma-Assisted Transfer Printing of Prepatterned Graphene Nanoribbons 

First, a highly oriented pyrolytic graphite stamp (SPI, Inc.) is prepatterned with 

100 nm half-pitch, 100 nm deep relief gratings. Such grating features are replicated from 

a master mold (Nanonex, Inc.) by using thermal nanoimprint lithography (T-NIL) 

followed by O2-based plasma etching [76]. The T-NIL process was performed on a 

Specac thermal pressing tool equipped with a cooling-water system. The fabricated 

HOPG stamp is subsequently used to stamp out graphene nanoribbons onto plasma-

charged SiO2 substrates. The plasma-assisted printing process performed here is the same 

as the process used for printing microscale MoS2 pixel arrays. 

 

2.3 Results and Discussion   

2.3.1 Experimental Results of Plasma-Assisted Transfer Printing 

Figure 2.1 (a) schematically illustrates our approach for transfer printing 

prepatterned MoS2 flakes. The fabrication process includes the following steps. (1) The 

process starts with a piece of pristine bulk MoS2. (2) Photolithography is performed to 

pattern a photoresist layer spin-coated on top of the MoS2 surface. (3) Arrays of metal 

masks are created by depositing 100 nm Ti followed with lift-off in acetone. (4) SF6-
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based reactive ion etching (RIE) is performed to transfer the Ti mask pattern onto 

underlying MoS2 [74, 77, 78]. (5) Ti masks are completely removed in hydrofluoric (HF) 

acid, and a bulk MoS2 stamp is created. (6) A SiO2 substrate is treated with O2 plasma to 

generate electric charges on the surface [75]. (7) Finally, the bulk MoS2 stamp is used for  

 

Figure 2.1 (a) Schematic flowchart of transfer printing of prepatterned few-

layer MoS2 flakes, which includes (1) initial bulk MoS2 with a pristine 

surface; (2) photolithography for patterning device features; (3) formation of 

Ti masks by metal deposition followed by lift-off; (4) plasma etching of 

underlying MoS2; (5) removal of Ti masks and finalization of a bulk MoS2 

stamp bearing relief features; (6) plasma treatment of the SiO2 substrate; (7) 

direct transfer printing of prepatterned few-layer MoS2 flakes onto the 

substrate. (b) SEM images of a bulk MoS2 stamp prestructured with 5 μm 

size periodic pillars. 

 

printing out MoS2 flake arrays onto the SiO2 substrate. This process can create MoS2 

device patterns directly from pristine geographic MoS2 materials that have the largest 
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crystalline domains (typically, 1 to 100's μm size) and the best electronic properties to 

date [37, 69-71]. Moreover, this approach can be generalized for manufacturing other 

emerging atomically layered nanomaterials such as graphene [79-81], boron nitride [82, 

83], and topological insulator thin films [84]. It should be noted that such a plasma-

assisted transfer-printing process is significantly advantageous over voltage-based 

electrostatic exfoliation methods previously developed by Liang et al. for generating 

atomically layered materials [80], in terms of application scope and printing uniformity.  

In particular, plasma-assisted printing can be applied to any substrates with a 

dielectric layer, whereas voltage-based exfoliation processes can only be utilzed for 

conductive substrates. Furthermore, plasma-induced surface charges are usually 

immobilized and uniformly distributed over dielectric substrates and, therefore, result in 

uniform attractive stress for printing MoS2 features over large areas. However, voltage-

generated free charges are movable in the conductive substrate, and they tend to 

accumulate at locations with the smallest stamp/substrate gap, resulting in nonuniform 

electrostatic printing stress and a high risk of electrical leakage [80]. Figure 2.1 (b) shows 

scanning electron micrographs (SEMs) of an exemplary MoS2 stamp prepatterned with 5 

μm size, 600 nm high pillars. The zoomed view in Figure 2.1 (b) shows that the SF6 

plasma-etched area exhibits a relatively high roughness, which is attributed to plasma 

etching or ion bombardment. However, the raised pillar mesas protected by the Ti masks 

are still as smooth as a pristine MoS2 surface. This should yield a conformal contact with 

the flat substrate during a mechanical printing process and therefore a high transfer-

printing efficiency of MoS2 flakes.  
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Figure 2.2 (a) and (c) display SEM images of MoS2 flakes printed on a pristine 

SiO2 surface. These images, captured over a large printed area (∼1 cm2), show that the 

mechanical printing process can create large-area, orderly paved arrays of MoS2 pixel 

features. However, most of the printed pixels have relatively irregular edge profiles that   

 

Figure 2.2 (a) SEM image of arrays of 10 μm size MoS2 flake pixels printed 

onto a pristine SiO2 substrate. (b) Stacked column chart of the average thickness 

data collected from 100 as-printed MoS2 pixels. The thickness data were 

obtained from MoS2 pixels printed over a∼1cm2 area by using an AFM. (c) SEM 

images of periodic arrays of 10 μm size MoS2 flakes printed onto a pristine SiO2 

surface, which were acquired from different locations over the printed area, as 

indicated by the red arrows. 
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are not faithfully correlated to the edge profiles of pillars prestructured on the bulk stamp. 

The thickness data of MoS2 pixels were obtained by using an atomic force microscope 

(AFM). For each of the printed MoS2 pixels, the average flake thickness was extracted 

from AFM topographic data. Figure 2.2 (b) plots the statistical distribution of the average 

thickness data of 100 MoS2 flake pixels of 10 μm size produced in a single transfer-

printing cycle. Figure 2.2 (b) shows that the overall average flake thickness is measured 

to be 4.1 nm (∼6 monolayers), and the standard deviation is 2.2 nm (∼3 monolayers) 

over a ∼1 cm2 area. About 95% and 80% of printed MoS2 flakes are thinner than 10 and 

5 nm, respectively.  

Figure 2.3 (a) shows an SEM image of MoS2 patterns printed onto an O2 plasma-

charged SiO2 substrate. Figure 2.4 lists more SEM images of MoS2 patterns with various 

dimension sizes, which were captured from different locations over the printed area. 

These images show that the printing process on plasma-charged substrates can create 

large-area, orderly arranged arrays of MoS2 flake pixels with a higher uniformity of pixel 

profiles in comparison with the printing result on a pristine substrate. In particular, MoS2 

pixel patterns feature clear, well-defined edge profiles that are faithfully correlated to the 

edge profiles of pillars prestructured on the bulk stamp. The zoomed image in Figure 2.3 

(b) reveals that the clear edge profile of a MoS2 pixel is indeed made up of a ring-shaped 

MoS2 ribbon. Such outer edge ribbons of MoS2 pixels have widths ranging from 200 to 

400 nm. Besides these edge ribbon features, there are indeed thinner MoS2 films or flakes 

located in the inner regions of printed pixels enclosed by the edge ribbons. These inner 
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MoS2 flakes typically show a poor feature contrast in secondary-electron images. To 

enhance the SEM contrast, printed MoS2 pixels were also imaged by detecting 

backscattered electrons (BSEs), as shown in Figure 2.3 (c-e), which are often used to 

detect contrast between areas with different chemical compositions. The BSE image 

contrast in Figure 2.3 (c-e) suggests the presence of thin MoS2 flakes within each of the 

pixels.  
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Figure 2.3 (a, b) Secondary-electron SEM images of MoS2 pixel arrays 

printed onto an O2 plasma-charged substrate, which exhibit clear, well-

defined edge profiles faithfully correlated to the edge profiles of pillar 

features on the bulk MoS2 stamps. (c, d) Backscattered SEM images of 

MoS2 pixel arrays, which show the presence of thin inner MoS2 flakes 

within each printed pixel. (e) Backscattered image of MoS2 pixels with 

broken inner films. 

 

 

Figure 2.4 (a) SEM images of periodic arrays of MoS2 patterns printed onto 

a plasma-charged SiO2 surface, which were acquired from different 

locations over the printed area, as indicated by the red arrows. (b) SEM 

images of MoS2 pixels with various feature sizes. All the MoS2 features 

printed on the plasma-charged substrates exhibit clear, well-defined edge 

profiles that are faithfully duplicated from the edge profiles of the pillar 

features on the bulk MoS2 stamps. 
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X-ray energy dispersive spectrometer (EDS) spectra were captured from the edge 

ribbons as well as the inner films of MoS2 pixels, as shown in Figure 2.5. The EDS 

results confirm the presence of sulfur and molybdenum in both the edge and inner 

portions of printed pixels. Additionally, Figure 2.6 exhibits optical micrographs of 

printed MoS2 pixels on a 330 nm thick SiO2 substrate, and the feature contrast further 

confirms the presence of inner flakes within printed MoS2 pixels. The spatial variation of 

BSE image contrast and the EDS intensity of MoS2-associated peaks propose an 

interpixel variation of MoS2 flake thickness over the printed substrate. To obtain the inner 

flake thickness data, MoS2 pixels with partially broken inner films (e.g., the pixels shown 

in Figure 2.3 (e) and Figure 2.6 (c)) were imaged by using AFM, and the thickness of an 

inner MoS2 flake was measured from its broken edges.  

 

 

Figure 2.5 X-ray energy dispersive spectrometer (EDS) spectra of (a) the outer 

edge ribbon of a printed MoS2 pixel and (b) the inner flake of a MoS2 pixel. The 

dashed red squares in the inset SEM images indicate the locations on the 

samples where the EDS spectra were obtained. The EDS results further confirms 

the presence of sulfur and molybdenum in both the edge and inner portions of 

printed MoS2 pixels. 

 

Figure 2.7 (a) displays an AFM image of an exemplary MoS2 pixel consisting of a 

relatively thick edge ribbon and broken inner flakes. The scan line denoted by the solid 
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line and accordingly plotted in Figure 2.7 (b) explicitly exhibits that the thickness values 

measured at the left and the right sides of this outer edge ribbon are 7 nm (∼11 

monolayers) and 8 nm (∼12 monolayers), respectively; the thickness of the broken inner 

flakes is measured to be 2.4 nm(∼4 monolayers). The thickness data acquired from 10 

scan lines are used to calculate the average thickness of the inner film and the outer edge  

 

 

Figure 2.6 Optical micrographs of printed MoS2 pixel arrays on a 330 nm 

thick SiO2 substrate: (a) a low-magnification view; (b) a zoomed view of 

printed pixels with continuous inner films; (c) a zoomed view of printed 

pixels with broken inner films. All printed pixels exhibit regular edge 

profiles faithfully duplicated from prepatterned pillars on the bulk MoS2 

stamps. 
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ribbon of an individual MoS2 pixel. Figure 2.7 (c) plots the statistical distribution of the 

average thickness data of 100 MoS2 pixels printed on a plasma-charged substrate. Here, 

the thickness data of inner films (solid columns) and outer edge ribbons (blue hatched 

columns) of MoS2 pixels are separately plotted. Figure 2.7 (c) shows that the overall 

average thickness of outer edge ribbons is 17 nm (∼26 monolayers) with a standard 

deviation of 3 nm (∼5 monolayers), whereas the overall average thickness of inner films 

is 3.0 nm (∼5 monolayers) with a standard deviation of 1.9 nm (∼3 monolayers). About 

90% of inner flakes of MoS2 pixels printed on a plasma-charged SiO2 substrate are 

thinner than 5 nm (∼8 monolayers). On the basis of such SEM, AFM, EDS, and optical 

micrograph characterizations, it is concluded that microscale MoS2 pixels printed on a 

plasma-charged SiO2 surface feature relatively thinner inner films or flakes enclosed by 

relatively thicker ring-shaped edge ribbons and a higher percentage yield of few-layer 

MoS2 flakes thinner than 5 nm in comparison with pixels printed on a pristine SiO2 

substrate.  
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Figure 2.7 (a) AFM image of a 10 μm size MoS2 pixel printed on a plasma-

charged SiO2 substrate. The solid line indicates a scanning trace across the 

pixel, which is explicitly plotted in (b). (c) Stacked column chart of the 

average thickness data collected from 100 as-printed MoS2 pixels. Here, the 

thickness data acquired from the inner flakes (solid columns) and the outer 

edge ribbons (hatched columns) of these MoS2 pixels are separately plotted. 

Although plasma-assisted printing can produce large-area arrays of microscale 

MoS2 pixels with regular edge profiles, many pixels have broken areas in their central 

regions, as shown in Figure 2.3 (e) and Figure 2.6 (c). This can be attributed to several 

possible reasons, including the limited size of crystalline domains in bulk MoS2, 

nonuniformity of attractive stress within a microscale MoS2 pixel mesa, as discussed in 

the simulation analysis, and the paradigm rule that the direct exfoliation of a large-area 

atomic layer (e.g., a complete microscale MoS2 pixel film free of defects) is 

thermodynamically unfavorable. Such an analysis suggests that it is indeed desirable to 

prepattern bulk MoS2 stamps with densely arranged nanostructures that can enhance the 
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printing fidelity and eliminate the defects in the middle of printed patterns. In addition, 

such relief nanostructures are expected to generate a higher fringe field during printing 

processes because of the higher density of sharp feature edges and result in the higher 

transfer-printing efficiency of MoS2 features. So far we have not developed a scalable 

process for patterning nanostructures on bulk MoS2 because of its overly rough surface. 

However, we and other groups have successfully realized the nanopatterning of highly 

oriented pyrolytic graphite (HOPG) stamps with 100 nm half-pitch gratings using 

nanoimprint lithography, as shown in Figure 2.8 (a) [76, 85]. Figure 2.8 (b) shows SEM 

images of 100 nm half-pitch graphene nanoribbons (GNRs) produced by using plasma-

assisted transfer printing. The printed GNRs exhibit a high degree of uniformity in ribbon 

widths over large areas and do not exhibit any visible defects in the middle of individual 

ribbons. The thickness of GNRs was measured to be 2.0 ± 1.0 nm by using an AFM. This 

work demonstrates that (1) nanoscale defect-free atomic layer patterns can be more easily 

produced by using plasma-assisted printing in comparison with microscale ones; (2) 

plasma-assisted printing can be generalized for producing high quality nanostructures of 

other atomically layered materials. 
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Figure 2.8 SEM images of (a) a HOPG stamp prepatterned with 100 nm 

half-pitch relief gratings by using nanoimprint lithography followed with 

plasma etching and (b) graphene nanoribbons printed onto a plasma-charged 

SiO2 substrate. 

 

2.3.2 Maxwell Stress Tensor Calculation 

To obtain a preliminary understanding of plasma-assisted printing mechanisms 

responsible for the resultant morphology of MoS2 pixels, Maxwell stress tensor 

calculation was performed and used for evaluating the distribution of surface charge-

induced electrostatic attractive stress between the bulk MoS2 stamp and the dielectric 

substrate [86, 87]. Figure 2.9 (a) illustrates the 2-D model for the calculation, in which a 

plasma-charged SiO2 substrate is in contact with a bulk MoS2 stamp and the surface 

charge density is arbitrarily set to 0.05 C/m2 (currently we lack experimentally measured 
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data of surface charge densities). Figure 2.9 (b) plots the calculated attractive stress 

exerted by the plasma-charged SiO2 substrate on the bulk MoS2 stamp as a function of 

positions. Figure 2.9 (c) shows the zoomed view of the attractive stress distribution 

within a single MoS2 mesa in contact with a SiO2 surface. It is found that the attractive 

stress acting on a microscale MoS2 mesa is uniform in the central region of the mesa but 

is significantly increased along the mesa edges due to the fringe effect. During a transfer 

printing process, such high attractive stress at the mesa edges is expected to result in the 

exfoliation of MoS2 flake pixels with well-defined edges, as experimentally demonstrated. 

In addition, the strong electric field at the MoS2/SiO2 interface is expected to influence 

dispersion and dipole interactions of atoms there and therefore change the cohesive 

energy of MoS2 layers close to the SiO2 surface [88, 89]. This could lead to a dependence 

of the number of printed MoS2 monolayers on the field magnitude, which could 

qualitatively explain our experimental result that for MoS2 pixels printed on plasma-

charged substrates the edge portions are statistically thicker than the inner flakes, as 

shown in Figure 2.7 (c). Our future theoretical simulation work will incorporate quantum 

mechanics, molecular simulations, and experimentally measured surface charge data to 

quantitatively analyze the effects of electric field on the number of printed MoS2 

monolayers. 
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Figure 2.9 (a) Illustration of the 2-D model for Maxwell stress tensor 

calculation of surface charge-induced electrostatic attractive stress between 

the bulk MoS2 stamp and the dielectric substrate. (b) Calculated attractive 

stress plotted as a function of positions. (c) Zoomed view of attractive stress 

distribution within a single MoS2 mesa in contact with a SiO2 surface. It is 

found that the attractive stress acting on a microscale MoS2 mesa is uniform 

in the central region of the MoS2 mesa but is significantly increased along 

the mesa edges due to the fringe effect. 

 

2.3.3 Field-Effect Transistors (FETs) Made from Printed MoS2 Flakes 

To evaluate the electronic properties of printed MoS2 flakes, we fabricated field-

effect transistors (FETs) using MoS2 pixels printed on plasma-charged SiO2/p
+ Si 

substrates. Figure 2.10 (a) shows a BSE image of an inner flake of a MoS2 pixel that was 

used to fabricate a back-gated FET with flake thickness of ∼5 nm, channel length of L = 
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5.4 μm, average channel width of W ≈ 3.7 μm, and gate dielectric thickness of d = 330 

nm. Figure 2.10 (b) plots drain-source current (IDS) versus drain-source voltage (VDS) 

characteristics of this exemplary FET under different gate voltages (VG) ranging from -75 

to 100 V. Figure 2.10 (c) plots the IDS-VG characteristics under a fixed drain-source 

voltage (VDS = 10 V). As shown in Figure 2.10 (b) and (c), this FET displays n-type 

conduction with an ON/OFF current ratio (ION/IOFF) of ∼107. The transconductance at the 

linear region of the IDS-VG characteristic curve was obtained as dIDS/dVG = 1.60 µS by the 

linear fitting (denoted with the red solid line in the inset of Figure 2.10 (c)). The field-

effect mobility was estimated to be µ = 22 cm2/(V s) by using equation (1) (valid for the 

linear region of MoS2-based FETs with microscale channel widths), where ε0 is the 

vacuum permittivity, εr ≈ 3.9 is the dielectric constant of SiO2, Cox is the gate capacitance, 

and W/L is the width/length ratio of the MoS2 flake channel. The field-effect mobility 

values obtained from other FETs made from the inner flakes of printed MoS2 pixels range 

from 6 to 44 cm2/(V s), which are comparable to the highest mobility values previously 

reported for MoS2 FETs using SiO2 as the gate dielectric [61, 90]. This indicates that our 

transfer-printing approaches can produce high-quality MoS2 features and are suitable for 

practical nanoelectronic applications. 

 

We also fabricated FETs using the ring-shaped edge ribbons of MoS2 pixels as the 

semiconducting channels. To make an edge ribbon-based FET, electron-beam 

lithography (EBL) followed by metal evaporation and lift-off was performed to fabricate 

GDSox

DS

VV
L

W
C

I






d
C r

ox

0 )1(



35 

drain and source electrodes precisely aligned to the specific segment of the edge ribbon 

of a MoS2 pixel. In EBL, the overlay alignment was carefully performed to avoid 

incorporating any inner pixel flakes into the FET channel. Figure 2.11 (a) shows an SEM 

image of an exemplary edge ribbon-based FET with a channel width of W ≈ 300 nm, 

channel length of L ≈ 500 nm, and average MoS2 thickness of ∼10 nm. Figure 2.11 (b) 

and (c) displays IDS-VDS and IDS-VG characteristics, respectively, which show that this 

edge ribbon-based FET exhibits p-type conduction for VG = -100 to 100 V. The 

transconductance at the linear region of the IDS-VG characteristic curve was obtained as 

dIDS/dVG = -1.74 nS by the linear fitting (denoted with the red solid line in the inset of 

Figure 2.11 (c)). The field-effect mobility was estimated to be μ = 0.27 cm2/(V s) by 

using equation (2), where Cg is the average gate capacitance associated with a single 

MoS2 edge ribbon per unit channel length [unit: F/m]. Here, Cg is calculated by using a 

simulation model based on finite element analysis that takes into account the fringe effect 

at the MoS2 nanoribbon edges, as shown in Appendix A. Such a fringe effect can 

significantly affect the values of Cg for MoS2 FETs with nanoscale channel widths. The 

field-effect mobility values measured from other edge ribbon-based FETs range from 0.1 

to 1.0 cm2/(V s). The p-type conduction is generally observed in other edge ribbon-based 

FETs, and it is attributed to the chemical doping to the edge portions of MoS2 pixels, 

which might be induced during the SF6 RIE process for patterning pillars in bulk MoS2 

stamps. 
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Our current printing approaches can generate few-layer MoS2 flakes with the 

change of thickness mainly in the range 0.7-10 nm on a pristine SiO2 substrate (Figure 

2.2 (b)) or 0.7-5 nm on a plasma-charged substrate (Figure 2.7 (c)). As-printed MoS2 

pixels with such flake thickness distributions over large areas are still suitable for scale-

up transistor-based electronic applications (if not for all applications), because previous 

works have demonstrated that FETs made from multilayer MoS2 flakes with thicknesses 

 

Figure 2.10 (a) BSE image of an exemplary back-gated FET made from 

the inner flake of a printed MoS2 pixel with flake thickness of∼5 nm, 

channel width of∼3.7 μm, channel length of∼5.4 μm, and gate dielectric 

(SiO2) thickness of 330 nm, in which Ti/Au contacts were deposited as 

drain (D) and source (S) contacts and the p+ silicon substrate serves as a 

back gate. (b) IDS-VDS characteristics under different gate voltages (VG) 

ranging from -75 to 100 V. (c) Semilogarithmic plot of an IDS-VG 

characteristic curve under a fixed drain-source voltage VDS = 10 V, which 

exhibits an ON/OFF current ratio (ION/IOFF) ≈ 107. The inset graph shows 

the linear plot of the same IDS-VG curve, and the transconductance 

(dIDS/dVG) is obtained by fitting the linear region of the IDS-VG curve, as 

indicated by the red line. The field-effect mobility is subsequently 

extracted to be μ = 22 cm2/(V s) for this FET. 
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Figure 2.11 (a) SEM image of an exemplary back-gated FET made 

from the outer edge ribbon of a printed MoS2 pixel with channel width 

of∼300 nm, channel length of∼500 nm, and gate dielectric (SiO2) 

thickness of 330 nm. IDS-VDS (b) and IDS-VG (c) characteristics of this 

edge ribbon-based FET exhibit p-type conduction and field-effect 

mobility of ∼0.27 cm2/(V s). (d) IDS-VG characteristics of a p-type FET 

made from a MoS2 flake blank-treated by SF6 plasma. 

 

ranging from 2 to 50 nm exhibit excellent and stable transport properties (i.e., high 

ON/OFF ratios ranging from 104 to 107, high field-effect mobility values on the order of 

10s cm2/(V s) on SiO2-based dielectrics and 100's cm2/(V s) on high-k dielectrics, as well 

as subthreshold slopes of 60-70 mV/decade for top-gated FETs) [91-93]. To evaluate the 

potential scalability of our printing approaches especially for future scale-up transistor-

based applications, we studied the uniformity of the transport characteristics of MoS2 
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FETs produced by plasma-assisted printing as well as the dependence of FET 

characteristics on the change of the MoS2 thickness. Figure 2.12 shows the transport 

characteristics of 14 FETs produced in a single printing cycle. Figure 2.13 displays (a) 

ON/OFF current ratio and (b) field-effect mobility data measured from these FETs, 

which are plotted as a function of the MoS2 thickness. These FETs have different flake 

thicknesses ranging from 3 to 20 nm. It should be noted that although the thickness 

values of most as-printed MoS2 flakes can be controlled to be less than 10 nm, as shown 

in Figures 2.2 (b) and 2.7 (c), relatively thicker flakes (i.e., thickness ∼10-20 nm) were 

intentionally chosen for making FETs in order to extend the investigation range of the 

flake thickness values and analyze the degree of redundancy in the control of the MoS2 

thickness. Figure 10 shows that in spite of the variation of the MoS2 flake thickness in the 

range 3-20 nm, all the FETs exhibit high ON/OFF ratios in the range 105-107, reasonably 

high field-effect mobility values on SiO2 gate dielectrics ranging from 15 to 24 cm2/(V s), 

and uniform threshold gate voltages around Vth ≈ -50 V. Such results preliminarily 

demonstrate that the MoS2 FETs produced by plasma-assisted printing do not show a 

sensitive dependence of FET characteristics on the change of the MoS2 thickness in the 

range 3-20 nm. This also proposes that our printing approaches can generate a high yield 

of electronic-grade MoS2 flakes with an acceptable degree of uniformity in FET 

characteristics and hold significant potential to be further developed into a manufacturing 

process for making arrays of working FETs. In addition, using HfO2-based high-k gate 

dielectrics, the mobility values of our FETs are expected to be further improved by at 

least 1 order of magnitude [25], which is attributed to the dielectric screening effect [94]. 
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The large arrays of such high-performance FETs produced by printing processes are 

expected to significantly facilitate the future scale-up electronic applications of few-layer 
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Figure 2.12 Semi-logarithmic IDS-VG characteristic curves of 14 back-

gated FETs made from the inner flakes of MoS2 pixels printed on a single 

substrate, which exhibit ON/OFF current ratios (ION/IOFF) ranging from 

105 to 107. The inset graphs display the linear plots of the IDS-VG curves, 

and the field-effect mobility (μ) can be extracted by fitting the linear 

regions of IDS-VG curves. μ ranges from 15 to 24 cm2/Vs. 

 

MoS2. In our future research, we will integrate the top gates with sub-5 nm thick gate 

dielectrics into MoS2 FETs in order to study the uniformity of other important FET 

parameters (e.g., subthreshold slopes) and further explore the potential of our printing 

processes for manufacturing high-performance MoS2-based electronic devices. 
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Figure 2.13 (a) ON/OFF current ratio and (b) field-effect mobility data 

extracted from the FET characteristics listed in Figure 2.12, which are 

plotted as a function of the MoS2 flake thickness. 

 

There are device applications requiring a more demanding control of the MoS2 

thickness. For example, optoelectronic applications usually require MoS2 monolayers to 

obtain a large direct band gap [6]. For such applications, our printing approaches can 

potentially serve as a useful technique for transforming initial raw materials of few-layer 

MoS2 into arrays of active device sites. These orderly formed MoS2 flakes can be 

subsequently tailored through a series of postprinting processes to achieve a higher 

degree of uniformity in thickness and feature profile. For example, the laser-thinning 

technology with a self-termination mechanism recently developed by Castellanos-Gomez 

et al. could be used as a postprinting process for thinning as-printed MoS2 flakes to 

increase the percentage yield of MoS2 monolayers [72]. Furthermore, a postprinting 

lithography step (e.g., photolithography and nanoimprint) followed by plasma etching 

can be easily implemented to trim as-printed MoS2 flakes into functional nanopatterns 

with specific shapes. 
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2.4 Summary 

In conclusion, we demonstrate a novel approach for producing ordered arrays of 

few-layer-MoS2 device features. In this process, the relief structures are prepatterned onto 

a bulk MoS2 film, which serves as a stamp for printing out orderly arranged MoS2 pixel 

patterns over cm2-scale areas on both pristine and plasma-charged SiO2 substrates. MoS2 

pixels printed on plasma-charged substrates feature a higher degree of uniformity in 

pattern profiles and a narrower distribution of the MoS2 flake thickness (i.e., 3 ± 1.9 nm) 

in comparison with those printed on pristine substrates. This is attributed to the strong 

fringe field around the feature edges that is induced by plasma-introduced electric 

charges. We demonstrate that such printing approaches can be generalized for producing 

other emerging atomically layered nanostructures (e.g., graphene nanoribbons). The 

printed MoS2 flakes can be used to build working n-type FETs with superior electronic 

properties (i.e., ION/IOFF ≈ 105-107, mobility μ ≈ 6-44 cm2/(V s)). Using additional plasma 

treatment processes, as-printed MoS2 flakes can be doped to create p-type FETs. Finally, 

we systematically study the thickness-dependent characteristics of MoS2 FETs and show 

that our printing processes can produce a high yield of electronic-grade MoS2 flakes with 

an acceptable degree of uniformity in transport properties. 
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          Chapter 3  

 

 

Multiple MoS2 Transistors for Sensing Molecule Interaction 

Kinetics  

3.1 Introduction 

Using field-effect transistor (FET)-based biosensors produced from nanowires 

(NWs) and carbon nanotubes (CNTs), researchers have demonstrated detection of cancer 

biomarkers from nM to fM range in serum [95-101], in vitro detection of nM proteins in 

cell growth systems [102, 103], and quantification of the affinities/kinetics of the protein 

interactions with fM-level sensitivities [104]. The fM-level limit-of-detection (LOD) 

achieved by such nanoscale FET biosensors for monitoring biomarker concentrations 

would enable label-free, single-molecule-level detection of trace-level amount 

biomarkers. The arrays of such biosensors with consistent transistor responses would 

serve as reliable lab-on-a-chip platforms for precisely determining the kinetics of various 

biomolecule interactions. However, serious constraints imposed on nanofabrication 

severely prohibit the reliable manufacturing of the affordable biosensor chips utilizing 

such one dimensional (1D) nanostructures [95, 99, 100]. In particular, high-quality, 

small-size NWs and CNTs are required to make biosensors with fM-level LOD for 
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concentration monitoring (or single-molecule-level LOD for trace-level amount detection) 

[105]. Especially, for trace-level amount detection, the critical dimensions of the sensing 

channels need to be comparable to the impact dimensions of charged molecules to 

maximize the gating effect due to the charged molecules and achieve very low LOD [98, 

106, 107]. CNTs and many NWs are usually produced by using bottom-up synthesis 

methods (e.g., chemical vapor deposition (CVD)). The community currently lacks proper 

top-down planar nanofabrication processes to produce ordered arrays of such 

nanostructures, which makes it very challenging to realize parallel high-throughput assay 

using biosensors made from these nanostructures. High-quality Si NW biosensor arrays 

can be made using top-down lithographic techniques [104]. However, the fabrication of 

such Si NW arrays usually requires expensive semiconductor-on-insulator (SOI) 

substrates and exquisite nanolithographic tools, which can result in a high processing cost 

and is not very suitable for manufacturing affordable (even disposable) assay chips for 

practical clinical biosensing applications. Emerging two-dimensional (2D) atomically 

layered materials, such as graphene, topological insulators (TIs), and TMDCs, recently 

attracted a great deal of interest because of their attractive electronic/ optoelectronic 

properties, large abundance, and compatibility to planar nanofabrication processes [25, 

28, 53, 54, 58, 59, 61, 108-111]. Due to their atomically thin structures, the transport 

properties of 2D layers are highly sensitive to the external stimuli, which can enable new 

ultrasensitive 2D FETs suitable for biosensing applications [112-116]. Especially, in 

comparison with the thin film transistors made from conventional bulk semiconductors 

(e.g., Si and III-V compounds), the transistors based on MoS2 and other atomically 

layered semiconductors are expected to show much more sensitive electrical responses to 
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antigen-antibody binding events. Moreover, all 2D layers have an extremely low density 

of dangling bonds on their surfaces, which can result in high-quality FET channels with 

low densities of scattering centers (and hence low Flicker noise level), and enable highly 

sensitive, low-noise-level detecting of biomolecules [113, 117-120]. Novoselov et al. 

have demonstrated graphene-based FET sensors capable of detecting individual gas 

molecules absorbed on the graphene channels [10, 121]. In contrast to zero-bandgap 

graphene, semiconducting TMDCs (e.g., MoS2) have sizable bandgaps. Therefore, 

TMDC-based FETs show high On/Off current ratios up to 108, which, in combination 

with their atomically thin structures, can potentially enable the higher detection 

sensitivities for gas, chemical, and biological sensing applications in comparison with 

graphene FETs [43, 57, 122]. Wang et al. and Sarkar et al. recently demonstrated that 

FET biosensors made from microscale few-layer-MoS2 flakes exhibit 100-400 fM LODs 

for detecting cancer-related biomarkers [42, 43]. These previous works strongly imply 

that such TMDC-based FET biosensors may not require sensing channels of nanoscale 

width to achieve fM-level LODs for concentration monitoring applications, and the 

fabrication of such biosensors would not need exquisite nanolithographic tools. 

Additionally, several recent nanomanufacturing-related works suggest that 

monolayer/few-layer TMDC structures and other relevant atomically layered materials 

hold significant potential to be produced over large areas on low-cost substrates (e.g., 

glass, plastic, or rubber) by using cost-efficient processes such as CVD followed with 

roll-to-roll transfer [123], addressable deposition [124], and microscale stamping [80, 125, 

126]. Therefore, it is very promising to realize cost-efficient manufacturing of 

multiplexing assays based on TMDC transistor arrays in the future. Toward such 
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envisaged bio-assay capability, additional device-oriented research is required for 

quantitatively calibrating the sensor responses measured from multiple sets of TMDC 

FET biosensors, so that the calibrated response signals are consistent with each other and 

can synergistically enable precise quantification of biomarker concentrations (or amounts) 

as well as the affinities/kinetics of biomolecule interactions. Although individual MoS2 

FET biosensors have been fabricated and exhibited very high biodetection sensitivity [42, 

43]. the utilization of multiple such devices for quantifying the biomolecule interactions 

has not been attempted.  

In this chapter, we fabricated multiple sets of MoS2-based transistor biosensors 

and demonstrated that these devices can be synergistically utilized to measure the 

concentrations of analyte solutions as well as the affinity and kinetic properties of the 

analyte-receptor pair. The biomolecule under study, TNF-α, is a pro-inflammatory 

cytokine and a key biomarker associated with host defense and immunosurveillance 

[127-130]. Researchers have shown that TNF-α secreted from immune cells stimulated 

with lipopolysaccharide (LPS) - an endotoxin causing septic shock due to severely 

pronounced immune response of the human body - reflects a functioning innate immune 

response [131, 132]. All our biosensors showed a TNF-α detection limit as low as 60 fM 

despite the small molecular size of the cytokine biomarker (~17 kDa) that renders its 

label-free detection at high sensitivity significantly challenging. Such a low detection 

limit was achieved in both linear and subthreshold regimes of the transfer characteristics 

of MoS2 transistors. In both transport regimes, the electrically measured sensor responses 

were calibrated into signal quantities independent of the transistor performance. All sets 

of transistor biosensors showed consistent relationships between calibrated sensor 
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responses and TNF-α concentrations. They created a standard curve, from which the 

equilibrium constant of the antibody-(TNF-α) pair was extracted to be KD = 369 ± 48 fM. 

Based on this calibrated sensor model, the time-dependent association-dissociation 

kinetics of the antibody-(TNF-α) pair was further studied and the association/dissociation 

rates of the antibody-(TNF-α) pair were measured to be (5.03 ± 0.16) × 108 M-1 s-1 and 

(1.97 ± 0.08) × 10-4 s-1, respectively. 

 

3.2 Methods and Materials 

3.2.1 Fabrication and Characterization of MoS2 Transistor Biosensors 

The MoS2 transistors were fabricated using a microprinting method previously 

reported [126]. Few-layer-MoS2 channel thicknesses were specifically controlled to be 

15-20 nm. Such a MoS2 thickness range has been demonstrated to result in the optimal 

field-effect mobility values for MoS2 transistors [93, 133]. The transistor channel lengths 

(L) were ~5 μm and the channel widths (W) ranged from 5 to 8 μ m. Ti (5 nm)/Au (50 nm) 

electrode pairs served as drain (D) and source (S) contacts, which were produced using 

photolithography followed with metal deposition and lift-off. The p+-Si substrates were 

used as the back gates (G). Thermally grown SiO2 layers (300 nm thick) were used as the 

back-gate dielectrics. Such 300 nm thick SiO2 layers can enable a simple color coding 

method for us to quickly identify MoS2 flakes with appropriate thicknesses (i.e., 15-20 

nm) [134]. All electrical measurements were performed using an HP-4145B 

semiconductor parameter analyzer. 
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3.2.2 Bio-Functionalization of MoS2 Transistor Biosensors 

First, an as-fabricated transistor biosensor is immersed in 5% (3-Aminopropyl) 

triethoxysilane (APTES, purchased from Sigma-Aldrich Co. LLC.) in ethanol for 1 hour. 

After the incubation, the sensor is rinsed with phosphate buffered saline (PBS) and blown 

dry by nitrogen gas. After this step, the HfO2 effective layer is silanized with an APTES 

monolayer. The device is subsequently immersed in 5% gluteraldehyde (GA) (purchased 

from Sigma-Aldrich Co. LLC.) in PBS for 2 hours followed by rinsing with PBS. 

Afterwards, anti-human TNF-α antibody (from eBioscience, Inc.) of 50 μg/ml 

concentration in DI water is dropped on the sensor and incubated for 1 hour. For studying 

the equilibrium-state sensor responses, the as-functionalized sensor is incubated with 

TNF-α solutions with incremental concentrations (i.e., n = 60 fM, 300 fM, 600 fM, 3 pM, 

and 6 pM; the incubation time for each of the concentrations: ~2 hours). The incubation 

is performed using the setup illustrated in Figure 3.1 (d). After each incubation process, 

the transfer characteristics of the transistor sensor are measured. 

 

3.2.3 Quantification of the Time-Dependent Association/Dissociation Kinetics of the 

Antibody-(TNF-α) Pair 

An as-functionalized MoS2 transistor biosensor is covered with a 

polydimethylsiloxane (PDMS) block bearing a microfluidic channel (10 mm in length, 

200 μm in width, 50 μm in height), as illustrated in Figure 3.1 (e). A motorized syringe 

pump is used for driving the analyte flows into and out of the microfluidic channel 

through an inlet/outlet tubing kit (tube diameter: 0.75 mm). At the beginning of the 



49 

measurement of a real-time sensor response curve associated with antibody-(TNF-α) 

binding, deionized (DI) water is injected into the sensor with flow rate of 5 μL/min. At 

the same time, the MoS2 transistor is biased under a given set of VG and VDS. After the IDS 

value is stabilized, the analyte solution with a specific TNF-α concentration is inserted 

into the sensor. 

 

 

Figure 3.1 Flow chart for fabricating a MoS2 transistor biosensor: (a) 

printing of a few-layer MoS2 flake onto a p+-Si/SiO2 substrate; (b) 

fabrication of Ti/Au D/S contacts; (c) ALD growth of the HfO2 effective 

layer on top of the MoS2 channel and coating of D/S contacts with thick 

SiOx layers; (d) integration of a PDMS liquid reservoir on top of the MoS2 

transistor for measuring sensor responses from different TNF-α 

concentrations under thermodynamic equilibrium condition and 

determining the affinity of the antibody-(TNF-α) pair; (e) integration of a 

microfluidic inlet/outlet tubing kit driven by a motorized syringe pump on 

top of the transistor for quantifying the association-dissociation kinetics of 

the antibody-(TNF-α) pair; (f) functionalization of the HfO2 effective layer 

with antibody receptors and subsequent TNF-α detection. 
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3.3 Results and Discussion  

3.3.1 Static Measurement Results of Few-Layer MoS2 Transistor Biosensors 

Figure 3.1 displays the steps for fabricating a transistor biosensor with a few-layer 

MoS2 sensing channel. First, a pristine few-layer MoS2 flake is printed onto a p+-doped Si 

substrate coated with 300 nm thick SiO2 (Figure 3.1 (a)). This printing process is the 

same as the method previously reported by us [126]. The thickness of the MoS2 flake 

chosen for making a biosensor is specifically controlled to be 15-20 nm, aiming to 

achieve relatively high field-effect mobility values (μ = 20 to 30 cm2/V s) [93, 133]. 

After the MoS2 printing, metallic drain/source (D/S) contacts (5 nm Ti/50 nm Au) are 

fabricated using photolithography followed with metal deposition and lift-off, and a back-

gated MoS2 transistor is subsequently formed (Figure 3.1 (b)). To enable a capacitive 

coupling between the microfluidic reservoir (or channel) and the MoS2 transistor channel, 

a 30 nm thick HfO2 layer is deposited on top of the MoS2 channel using atomic layer 

deposition (ALD) (Figure 3.1 (c)). This HfO2 layer also serves as an effective layer for 

biofunctionalization. Afterwards, additional 100 nm thick SiOx is sputtered on D/S 

contacts to minimize the leakage current between D/S contacts and microfluidic 

components (Figure 3.1 (c)). Before the TNF-α detection, anti-human TNF-α antibody is 

functionalized on the HfO2 effective layer. The detailed antibody functionalization 

procedure is illustrated in Figure 3.2. To measure the MoS2 transistor sensor responses 

from different TNF-α concentrations under the thermodynamic equilibrium condition and 

determine the affinity of the antibody-(TNF-α) pair, a large open liquid reservoir made 

from polydimethylsiloxane (PDMS) is integrated on top of the MoS2 transistor (Figure 
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3.1 (d)). Such a setup is very simple and enables the quick loading of various analyte 

solutions. To measure the association-dissociation kinetics of the antibody-(TNF-α) pair, 

a microfluidic channel is integrated on top of the transistor sensor, and a motorized 

syringe pump is used for driving the TNF-α solution flow into and out of the microfluidic 

 

 

Figure 3.2 Protocol for functionalizing a MoS2 transistor sensor with anti-

human TNF-α antibody receptors for detecting TNF-α molecules 

  

channel through an inlet/outlet tubing kit (Figure 3.1 (e)). Such a setup can enable stable 

laminar flows of analyte solutions and minimize the noise induced by the liquid loading 

processes, which is needed to precisely analyze the real-time kinetic processes of 

antibody-(TNF-α) binding. Figures 3.1 (d) and (e) also illustrate the circuit setups for 

measuring the transistor sensor responses. In addition, Figure 3.1 (f) illustrates the cross-

sectional view of a MoS2 transistor sensor in the TNF-α detection operation.  
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Figure 3.3 Optical micrographs or photographs of (a) an exemplary MoS2 

transistor with channel length (L) and width (W) of 5 and 6 μm, 

respectively; (b) an as-fabricated MoS2 transistor biosensor integrated with 

a cylindrical liquid reservoir, which is drilled into a PDMS block and is ~4 

mm deep and ~1 mm in diameter; (c) a transistor biosensor integrated with 

a microfluidic channel system connected with an inlet/outlet tubing kit, 

which is driven by a motorized syringe pump. 

 

Figure 3.3 (a) displays the optical micrograph (OM) of an exemplary MoS2 

transistor with channel length (L) and width (W) of 5 and 6 μm, respectively. Figure 3.3 

(b) shows the photograph of an as-fabricated MoS2 transistor biosensor integrated with a 

PDMS liquid reservoir. The reservoir is ~4 mm deep and is ~1 mm in diameter, which is 

drilled into a PDMS block with length, width, thickness of 2, 1, and 0.4 cm, respectively. 

Figure 3.3 (c) displays the photograph of a biosensor integrated with a microfluidic 

channel connected with an inlet/outlet tubing kit.  
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First we measured the sensor responses from different TNF-α concentrations 

under the thermodynamic equilibrium condition. The biosensor setup shown in Figure 3.3 

(b) was used for this measurement. For each transistor biosensor, the static transfer 

characteristics (i.e., drain-source current (IDS) – back gate voltage (VG) curves acquired 

under a fixed drain-source voltage (VDS)) were measured at each of the biodetection 

stages, following the sequence of (1) bare transistor, (2) antibody functionalization, and 

inputs of TNF-α solutions with concentrations of (3) 60 fM, (4) 300 fM, (5) 600 fM, (6) 3 

pM, and (7) 6 pM. To remove the effect of the IDS-VG hysteresis, all IDS-VG curves were 

measured by sweeping VG from -100 V to 100 V with a sweep rate of 10 V/s. 

 

 

Figure 3.4 Sensor responses measured in the linear transport regimes of 

MoS2 transistor biosensors: (a) transfer characteristics of an exemplary 

MoS2 transistor sensor measured at various biodetection stages, following 

the sequence of (1) bare transistor, (2) antibody functionalization, and inputs 

of TNF-α solutions with concentrations of (3) 60 fM, (4) 300 fM, (5) 600 

fM, (6) 3 pM, and (7) 6 pM; (b) a set of calibrated linear-regime responses 

(S) measured from five different MoS2 transistor sensors with respect to 

TNF-α concentration (n). These S-n relationships can be well fitted with 

Langmuir isotherms and the dissociation constant (KD) of the antibody-

(TNF-α) pair is extracted to be 369 ± 48 fM. 

  

Figure 3.4 shows the sensor responses measured in the linear transport regimes of 

MoS2 transistor sensors. Specifically, Figure 3.4 (a) shows the transfer characteristics of 
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an exemplary sensor measured at various biodetection stages. Here, IDS data are plotted in 

the linear scale. The transfer characteristics of this sensor show a strong dependence on 

TNF-α concentrations, and the TNF-α detection limit is estimated to be ~60 fM. We 

choose a fixed VG within the linear regimes of all IDS-VG curves (e.g., VG = 98 V, as 

denoted by the dashed vertical line in Figure 3.4 (a)). The IDS values measured under this 

VG vary according to different biodetection states and such IDS data could be used as a 

sensor response signal. However, such a response signal is highly dependent on the 

transistor performance parameters (e.g., transconductance (gm) and threshold voltage 

(VT)). Therefore, in the analysis of a given biodetection state, the IDS signals obtained by 

different MoS2 transistors may exhibit a poor device-to-device consistency due to the 

nonuniformity of MoS2 transistors. Although such an issue could be alleviated through 

optimizing the material deposition and device fabrication processes, a calibrated sensor 

response quantity independent of the device performance is highly desirable.  

 

𝐼𝐷𝑆 =  𝑔𝑚 (𝑉𝐺 − 𝑉𝑇 −  
𝑉𝐷𝑆

2
)                                                (1) 

 

𝑆 =  −
𝐼𝐷𝑆 −  𝐼𝐷𝑆(𝑎𝑛𝑡𝑖)

𝑔𝑚
 =  ∆𝑉𝑇 =  

𝑞𝑑𝑆𝑖𝑂2𝜎𝑇𝑁𝐹

𝐾𝑆𝑖𝑂2𝜀0
                (2) 

 

The linear regime of an IDS-VG characteristic curve measured from a microscale 

MoS2 transistor sensor in a specific biodetection state can be expressed as Equation (1). 

In our experiments, it is observed that for a given transistor sensor, the gm values 

extracted from different IDS-VG curves that correspond to different biodetection states are 
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very close and can be approximated as a constant for this sensor. For example, the gm 

value of the sensor shown in Figure 3.4 (a) is extracted to be ~177 nS at VDS = 1 V. Based 

on this observation and Equation (1) as well as the implication from previous works done 

by Duan et al. and Ishikaw et al. [104, 135], a calibrated sensor response quantity (S) is 

derived and expressed in Equation (2), where IDS(anti) is the IDS value measured in the 

“antibody functionalization” state of a sensor biased under a set of fixed VDS and VG, and 

IDS-IDS(anti) indicates the IDS variation induced by the introduction of TNF-α molecules. 

Such an IDS variation normalized by the gm of this sensor results in a sensor response 

quantity directly associated with the change in the VT of the sensor (i.e., ΔVT). It should 

be noted that although ΔVT is assumed to be completely induced by the charge brought to 

the HfO2 effective layer on top of the transistor channel through antibody-(TNF-α) 

binding events, ΔVT is not exactly the binding-event-induced potential change (ΔΦ) on 

the effective layer. This is because in this work, ΔVT is the change in the VT measured 

from the back gate. However, ΔVT and ΔΦ can be related by ΔVT = (CHfO2/CSiO2)ΔΦ, 

where CSiO2 and CHfO2 are the capacitances of the SiO2 back gate dielectric and the HfO2 

effective layer, respectively. More detailed discussion about these potential parameters 

can be found from the dual-gate transistor model illustrated in Appendix B. Based on this 

model, ΔVT can be evaluated using ΔVT = qdSiO2σTNF/kSiO2ε0 , where q is the effective 

charge carried by a TNF-α molecule (the screening effect due to the buffer liquid has 

been incorporated into q); dSiO2 and kSiO2 are the thickness and dielectric constant of the 

SiO2 back-gate dielectric layer, respectively; ε0 is the vacuum permittivity; and σTNF is the 

areal density of TNF-α molecules bound to the antibody receptors functionalized on the 

effective layer. Therefore, such a calibrated response quantity (S) is proportional to the 
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antibody receptor occupancy at the equilibrium state and it is also independent of the 

MoS2 transistor performance. These two conditions are important for the subsequent 

Langmuir isotherm analysis. 

 

 

Figure 3.5 Linear-regime sensor responses at the equilibrium state: The 

transfer characteristics of five different MoS2 transistor sensors measured 

at various biodetection stages, following the sequence of (1) bare transistor, 

(2) antibody functionalization, and inputs of TNF-α solutions with 

concentrations of (3) 60 fM, (4) 300 fM, (5) 600 fM, (6) 3 pM, and (7) 6 

pM.  
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Figure 3.4 (b) plots the calibrated responses measured from the linear transport 

regimes of five different sensors with respect to TNF-α concentration (n). The detailed 

transfer characteristics of these five devices measured at various biodetection stages are 

showed in Figure 3.5. Although Figure 3.5 shows that the transfer characteristics of these 

five sensors exhibit significant difference in VT, IDS and gm, Figure 3.4 (b) shows that the 

calibrated responses from these sensors are consistent with each other and can serve as a 

standard curve (i.e., a generic S-n curve) for TNF-α detection. This standard curve can be 

well fitted with Langmuir isotherms (Equation (3)) and the affinity equilibrium (or 

dissociation) constant (KD) of the antibody-(TNF-α) pair is extracted to be 369 ± 48 fM; 

the maximum sensor response (Smax) is extracted to be 10.7 ± 0.4 V. 

 

𝑆 =  𝑆𝑚𝑎𝑥  
𝑛

𝑛 + 𝐾𝐷
                      (3) 

  

Alternatively, sensor responses can also be measured from the subthreshold 

regimes of MoS2 transistor sensors. In the subthreshold regime of a transistor sensor, the 

sensitivity of IDS to the variation of electrical potential (or charge) at the effective layer is 

much higher than that in the linear transport regime of this sensor. Therefore, the 

responses from the subthreshold regimes of transistor sensors are expected to result in the 

higher biodetection sensitivity in comparison with those from the linear regimes. Figure 

3.6 (a) displays the transfer characteristics of another exemplary MoS2 transistor sensor, 

which were measured at various biodetection stages. Here IDS data are plotted in the 

logarithm scale, and the subthreshold regimes are emphasized. We choose a fixed VG 

within the subthreshold regimes of all IDS-VG curves (e.g., VG = 29 V denoted by the 
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vertical dashed line in Figure 3.6 (a)). The IDS values measured under this VG clearly vary 

according to different biodetection states and exhibit a strong dependence on TNF-α 

concentration. Here, the TNF-α detection limit is estimated to be at least as low as 60 fM. 

Similarly, such IDS data acquired in the subthreshold regimes of transistor sensors cannot 

be directly used as standard sensor responses. A calibrated subthreshold-regime response 

quantity independent of the transistor performance is required. 

 

 

Figure 3.6 Sensor responses measured in the subthreshold regimes of MoS2 

transistor biosensors: (a) transfer characteristics of an exemplary MoS2 

transistor sensor measured at various biodetection stages, following the 

sequence of (1) bare transistor, (2) antibody functionalization, and inputs of 

TNF-α solutions with concentrations of (3) 60 fM, (4) 300 fM, (5) 600 fM, 

(6) 3 pM, and (7) 6 pM (Here IDS data are plotted in the logarithm scale, and 

the subthreshold regimes are emphasized); (b) a set of calibrated 

subthreshold-regime responses (S) measured from five different MoS2 

transistor sensors with respect to TNF-α concentration (n). These S-n 

relationships can be well fitted with Langmuir isotherms and the 

dissociation constant (KD) of the antibody-(TNF-α) pair is extracted to be 

424 ± 70 fM. 

  

In the subthreshold regime of a microscale MoS2 transistor sensor, the IDS-VG 

relationship measured from a specific biodetection state can be approximately expressed 

by Equation (4), where IT is the IDS value measured at VG=VT under a given VDS; SS is the 

subthreshold swing. As observed in our experiments, although the functionalization of a 



59 

transistor sensor with antibody receptors (i.e., the transition from “bare transistor” to 

“antibody functionalization” states) can result in an observable reduction of the SS of this 

sensor, the SS value does not significantly vary among the subsequent biodetection states, 

including the inputs of TNF-α samples with incremental concentrations. Therefore, for a 

given as-functionalized transistor sensor, SS can be approximated as a constant. Based on 

this observation, a calibrated subthreshold-regime sensor response quantity (S) is derived 

from Equation (4) and expressed in Equation (5), in which IDS(anti) is the drain-source 

current measured in the “antibody functionalization” state of a sensor biased under a set 

of fixed VDS and VG; and IDS is the drain-source current measured from a subsequent 

biodetection state (i.e., a specific TNF-α concentration). Similar to the calibrated linear-

regime response quantity expressed in Equation (2), this subthreshold counterpart is also 

directly related to ΔVT, independent of the transistor performance, and proportional to 

σTNF.  

 

𝐼𝐷𝑆 =  𝐼𝑇  ×  10(𝑉𝐺−𝑉𝑇)/𝑆𝑆              (4) 

 

𝑆 =  −𝑆𝑆 × log (
𝐼𝐷𝑆

𝐼𝐷𝑆(𝑎𝑛𝑡𝑖)
) =  ∆𝑉𝑇 =  

𝑞𝑑𝑆𝑖𝑂2𝜎𝑇𝑁𝐹

𝑘𝑆𝑖𝑂2𝜀0
                 (5) 

 

Figure 3.6 (b) shows the calibrated subthreshold-regime responses (S) measured 

from five different sensors with respect to TNF-α concentration (n). The detailed transfer 

characteristics of these five devices measured at various biodetection stages are showed 

in Figure 3.7. As shown in Figure 3.7, the transfer characteristics of these five sensors 

show significant difference in VT, IDS and SS parameters. However, as shown in Figure 
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3.6 (b), the calibrated S-n curves measured from these devices are consistent with each 

other and can be well fitted with Langmuir isotherms (Equation (3)). Here, the 

equilibrium constant (KD) of the antibody-(TNF-α) pair is extracted to be 424 ± 70 fM, 

which is consistent with the KD value extracted from the linear-regime sensor responses 

(i.e., 369 ± 48 fM). The Smax parameter is fitted to be 15.3 ± 0.6 V, which is about 40% 

larger than that extracted from the linear-regime responses (i.e., 10.7 ± 0.4 V). This 

observable discrepancy has not been fully understood. However, this could be 

temporarily attributed to the different back-gate VG levels required for biasing sensors in 

subthreshold and linear regimes, which could result in different magnitudes of electric 

field penetrating through few-layer MoS2 channels as well as HfO2 effective layers and 

leaking into the analyte solution. This could lead to different degrees of the modification 

of electrical-double-layers around sensors and therefore different degrees of the screening 

of the charges brought through analyte-receptor binding pairs.  

Although the IDS signals measured from both linear and subthreshold regimes can 

be mathematically normalized to consistent device-independent response quantities using 

Equations (2) and (5), the physical limit-of-detection of a transistor biosensor is indeed 

determined by the sensitivity of IDS to the variation of analyte concentration (dn) as well 

as the noise level of electrically measured IDS signals. This IDS sensitivity is quantitatively 

defined as the relative change in IDS per change in n (i.e., Sensitivity = 
𝑑𝐼𝐷𝑆

𝐼𝐷𝑆
/𝑑𝑛). Figure 

3.8 displays and compares the sensitivity data acquired from (a) the linear-regime IDS 

signals measured from the five sensors shown in Figure 3.5 and (b) the subthreshold-

regime IDS signals from the five sensors shown in Figure 3.7. All differential sensitivity 

values are evaluated at TNF-α concentration of n = 60 fM. This can offer critical 
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information about the sensitivity required for obtaining fM-level detection limits. Figure 

3.8 shows that the subthreshold-regime IDS sensitivities (0.52 ± 0.3%/fM) are statistically 

 

 

Figure 3.7 Subthreshold-regime sensor responses at the equilibrium state: 

The transfer characteristics of five different MoS2 transistor sensors 

measured at various biodetection stages, following the sequence of (1) 

bare transistor, (2) antibody functionalization, and inputs of TNF-α 

solutions with concentrations of (3) 60 fM, (4) 300 fM, (5) 600 fM, (6) 3 

pM, and (7) 6 pM. 
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Figure 3.8 Sensitivity data acquired from (a) the linear-regime IDS signals 

measured from the five sensors shown in Figure 3.5 and (b) the 

subthreshold-regime IDS signals measured from the five sensors shown in 

Figure 3.7. All differential sensitivities were evaluated at TNF-α 

concentration of n = 60 fM 

 

higher than the linear-regime IDS sensitivities (0.14 ± 0.02%/fM). Therefore, 

subthreshold-regime sensor responses are more desirable in achieving high detection 

sensitivity. However, it should be noted that the ultimate detection limit of a transistor 

sensor is also limited by the signal-to-noise ratios of electrically measured IDS signals. In 

addition, for detecting low-abundance molecules, the non-specific adsorption of target 

molecules could also strongly affect the detection limit. The further analysis of these 

aspects is beyond the scope of this work but will be addressed in the future research. 

Finally, it is also noted that the sensitivity data listed in Figure 3.8 (b) show the larger 

device-to-device variation in comparison with those listed in Figure 3.8 (a). This is 

probably because of that the subthreshold swing properties of MoS2 transistors are more 

sensitive to the fabrication-introduced defects than their linear-regime transconductance 

properties. Therefore, for our current MoS2 transistors, their linear-regime IDS signals (or 

linear-regime transconductances) exhibit the higher device-to-device consistency than 

their subthreshold-regime IDS signals.  
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To evaluate the detection specificity of our MoS2 transistor sensors, a sensor 

functionalized with anti-human TNF-α antibody is used for detecting interleukin-6 (IL-6) 

cytokine. Figure 3.9 shows the transfer characteristics of this sensor measured at various 

stages, including (1) bare transistor, (2) antibody functionalization, and inputs of IL-6 

solutions with concentrations of (3) 600 fM and (4) 6 pM. Figure 3.9 displays that the 

presence of IL-6 that is not specific to TNF-α antibody cannot result in prominent change 

in the transfer characteristics. Such experimentally observed weak sensor responses to IL-

6 indicate a negligible nonspecific adsorption of IL-6 molecules on the sensor surface, 

which may be effectively screened by the densely-packed self-assembled monolayers of 

(3-Aminopropyl) triethoxysilane (APTES) on HfO2 effective layers. 

 

 

Figure 3.9 A negative control test of the detection specificity of MoS2 

transistor biosensors: The transfer characteristics of a control sensor 

measured at stages of (1) bare transistor, (2) antibody functionalization 

(still functionalized with anti-human TNF-α antibody receptors), and 

inputs of IL-6 solutions with concentrations of (3) 600 fM and (4) 6 pM. 
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3.3.2 Time-Dependent Measurement Results of Few-Layer MoS2 Transistor 

Biosensors 

The biosensor setup shown in Figure 3.3 (c) is used for measuring the time-

dependent association/dissociation kinetics of the antibody-(TNF-α) pair. Figure 3.10 (a) 

shows real-time sensor responses of antibody-(TNF-α) binding measured under different 

TNF-α concentrations (i.e., n = 60 fM, 600 fM, 3 pM, and 6 pM). Each of the time-

dependent response curves was measured from a different MoS2 transistor sensor and all 

as-measured IDS responses were normalized using S = − SS × log(IDS/IDS(anti)) (i.e., 

Equation (5) for calibrating subthreshold-regime responses). Figure 3.11 presents the 

detailed transfer characteristics of these transistor sensors measured before the input of 

TNF-α samples, from which the SS parameters required for normalizing IDS responses 

were acquired. In addition, the operation points (i.e., the fixed VG and VDS values, under 

which a real-time response curve was measured) are also labeled in Figure 3.11. In Figure 

3.10 (a), the red arrow indicates the onset time, at which the solutions with specific TNF-

α concentrations were filled into the respective biosensors. The real-time response curves 

in Figure 3.10 (a) exhibit that the association rate of the antibody-(TNF-α) pair increases 

with increasing TNF-α concentration. The rise segment of each real-time response curve 

can be well fitted with the first-order absorption equation (i.e., Equation (6)) [104]. In 

Equation (6), Seq is the sensor response at the final equilibrium state; kon and koff are 

association and dissociation rates, respectively; konn + koff relates to the rising slope of the 

linear regime of the response curve. Table 1 lists the fitting results of Seq and (konn + koff) 

parameters for n = 60 fM, 600 fM, 3 pM, and 6 pM. These Seq values extracted from the 

real-time binding responses are consistent with the sensor responses directly measured at 
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the equilibrium state, that is, after a long incubation time of ~2 hours (e.g., the 

equilibrium-state response data shown in Figure 3.6 (b)). In particular, Figure 3.10 (b) 

plots the extracted Seq data as a function of TNF-α concentration, which can be also fitted 

  

 

Figure 3.10 Time-dependent association kinetics of the antibody-(TNF-α) 

pair: (a) real-time sensor responses of antibody-(TNF-α) binding measured 

under different TNF-α concentrations (n = 60 fM, 600 fM, 3 pM, and 6 pM). 

Each of the response curves was measured from a different MoS2 transistor 

sensor and all responses were normalized using Equation (5). The rise parts 

of the binding response curves can be fitted with Equation (6). (b) The 

equilibrium-state responses (Seq) extracted from this fit plotted as a function 

of TNF-α concentration, which can be further fitted with Langmuir isotherm. 

The equilibrium constant (KD) is extracted to be 326 ± 37 fM. (c) The 

extracted (konn + koff) data plotted as a function of TNF-α concentration (n). 

The linear fitting of this (konn + koff)-versus-n graph results in rate constants 

of kon = (5.03 ± 0.16) × 108 M-1 s-1 and koff = (3.44 ± 0.15) × 10-4 s-1. 

  

with Langmuir isotherm. Here, the equilibrium constant (KD) is extracted to be 326 ± 37 

fM and the maximum response (Smax) is extracted to be 15.6 ± 0.2 V, which are consistent 
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with those extracted from the equilibrium-state subthreshold-regime responses shown in 

Figure 3.6 (b). 

 

 

Figure 3.11 Transfer characteristics of four different MoS2 transistor 

biosensors measured before the input of TNF-α samples, from which the 

subthreshold-swing (SS) parameters were acquired for normalizing the 

real-time subthreshold-regime sensor responses (Equation (5)). These 

sensors were utilized to quantify the real-time kinetics of antibody-(TNF-α) 

binding under different TNF-α concentrations (n) of (a) 60 fM, (b) 600 fM, 

(c) 3 pM, and (d) 6 pM. The operation points (OP, i.e., the fixed VG and 

VDS values, under which a real-time response curve was measured) are also 

labeled by the red arrows. 

 

 

𝑆 =  𝑆𝑒𝑞(1 −  𝑒−(𝑘𝑜𝑛𝑛+𝑘𝑜𝑓𝑓)𝑡)                  (6) 
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Table 1 The fitting results of the real-time sensor response curves shown in Figure 3.8 

(a) that are fitted with Equation (6). The table lists the extracted Seq and (konn + koff) 

parameters for n = 60 fM, 600 fM, 3 pM, and 6 pM. 

 

To evaluate kon and koff parameters, the extracted (konn + koff) data are plotted as a 

function of TNF-α concentration (n) (see Figure 3.10 (c)). The linear fitting results in rate 

constants of kon = (5.03 ± 0.16) × 108 M-1 s-1 and koff = (3.44 ± 0.15) × 10-4 s-1. It should 

be noted that this fit is not sensitive to the dissociation rate (koff) because of its small 

numerical value. To achieve a more precise quantification of koff, we directly measured 

the real-time dissociation kinetics of the antibody-(TNF-α) pair. Specifically, two as-

functionalized MoS2 transistor biosensors were incubated in solutions with TNF-α 

concentration of 600 fM and 3 pM, respectively. The incubation time was more than 2 

hours so that antibody-(TNF-α) association/dissociation processes reached to the 

equilibrium state. Afterwards, these fully incubated sensors were rinsed with pure buffer 

liquid flow and the calibrated sensor responses were recorded as a function of the lapsed 

time, as displayed in Figure 3.12. Figure 3.12 displays that the sensor responses 

decreased with time, which was attributed to the unbinding events. The response curve 

measured from the device incubated with TNF-α concentration of 600 fM can be well 

fitted with a monoexponential decay function (i.e., the desorption equation expressed in 

Equation (7)). In Equation (7), Sr represents the sensor response corresponding to the 

areal density of bound molecule residues after the desorption process. This fit results in 

koff = (1.97 ± 0.08) × 10-4 s-1, from which the affinity equilibrium constant KD can be also 



68 

estimated to be KD= koff/kon= 392 fM. This KD value is also consistent with those 

extracted from the equilibrium-state sensor responses (i.e., KD values extracted in Figure 

3.4 and 3.6). From this fit, Sr is extracted to be 3.0 ± 0.2 V and Seq is 9.2 ± 0.4 V. This 

implies that ~30% of bound TNF-α molecules are expected to remain absorbed on the 

sensor even after a long rinsing process.  

 

 

Figure 3.12 Time-dependent dissociation kinetics of the antibody-

(TNF-α) pair measured from two MoS2 transistor sensors that were 

incubated in solutions with TNF-α concentrations of n = 600 fM 

and 3 pM for about 2 hours and subsequently rinsed with the pure 

buffer liquid flow. 

 

 

𝑆 = (𝑆𝑒𝑞 −  𝑆𝑟)𝑒−𝑘𝑜𝑓𝑓𝑡 +  𝑆𝑟               (7) 

 

𝑆 = (𝑆𝑒𝑞 − 𝑆2 −  𝑆𝑟)𝑒−𝑘𝑜𝑓𝑓𝑡 +  𝑆2𝑒−𝑘2𝑡 +  𝑆𝑟             (8) 
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The response curve measured from the device incubated with TNF concentration 

of 3 pM can be hardly fitted with monoexponential Equation (7). We notice that it can be 

fitted with a bi-exponential decay equation (Equation (8)). This fit results in Seq = 13.6 ± 

1.0 V, S2 = 4.5 ± 0.2 V, Sr = 2.9 ± 0.3 V, k2 = (2.0 ± 0.16) × 10-3 s-1, and koff = (1.79 ± 

0.13) × 10-4 s-1. As reported by several previous works [104, 136, 137], such a bi-

exponential behavior of sensor responses is probably due to the multivalent antigen-

antibody binding, which may become more prominent with increasing the analyte 

concentration. This explanation is reasonable because the antibody used in this work is 

polyclonal. To fully understand the association/dissociation kinetics of multivalent 

binding/unbinding processes, a more complicated model for describing antibody-(TNF-α) 

binding is required.  

Finally, it should be noted that for our current MoS2 transistor sensors, the 

calibrated sensor responses do not explicitly depend on HfO2 layer thickness (tHfO2). All 

sensors discussed above have 30 nm thick HfO2 effective layers. To further 

experimentally verify that the sensor responses of our sensors do not strongly depend on 

HfO2 layer thickness (tHfO2), we fabricated additional sensors with tHfO2 = 60 nm. Figure 

3.13 (a) shows the transfer characteristics of an exemplary sensor with tHfO2 = 60 nm, 

which were measured from a set of incremental TNF-α concentrations. From such 

transfer characteristics, we extracted calibrated subthreshold-regime responses (S) at VG = 

− 25 V (VT ~ − 10 V) and plotted them as a function of TNF-α concentration (n) (see the 

red stars shown in Figure 3.13 (b)). This S-n relationship is consistent with those 
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measured from the sensors with tHfO2 = 30 nm. This result proves that the calibrated 

sensor response values do not strongly depend on the HfO2 effective layer thickness. 

 

 

Figure 3.13 Sensor response measured in the subthreshold regime of a 

MoS2 transistor biosensor with a 60 nm thick HfO2 effective layer (i.e., 

tHfO2 = 60 nm): (a) transfer characteristics of the MoS2 transistor sensor 

with tHfO2 = 60 nm, which were measured from a set of incremental TNF-α 

concentrations (i.e., n = 0, 60 fM, 300 fM, 600 fM, 3 pM, and 6 pM; (b) 

The calibrated subthreshold-regime responses (S) measured from this 

sensor (labeled as red stars) with respect to TNF-α concentration (n). 

 

3.4 Summary 

In conclusion, we presented significant device physics and metrics for calibrating 

the responses of MoS2 transistor biosensors and demonstrated that multiple such sensors 

can be utilized to enable quantification of low-abundance biomarker molecules as well as 

the affinities and kinetics of antibody-mediated binding events. In particular, our 

biosensors exhibited a TNF-α detection limit at least as low as 60 fM. Such a low 

detection limit can be obtained in both linear and subthreshold regimes of MoS2 

transistors. We further observed that the sensors operated in the subthreshold regime 

showed the higher current sensitivities in comparison with those in the linear regime. 
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Such high subthreshold-regime sensitivities hold significant potential to further lower the 

TNF-α detection limit. In both transport regimes, the measured current signals can be 

normalized into response quantities independent of the transistor performance, which can 

effectively reduce the effect of sensor-to-sensor variation on biodetection results. Based 

on this calibration method, all sets of our biosensors can generate very consistent sensor 

responses with respect to TNF-α concentration and therefore a standard curve for TNF-α 

quantification. From this standard curve, the equilibrium constant of the antibody-(TNF-α) 

pair was extracted to be KD = 369 ± 48 fM from linear-regime responses (or KD = 424 ± 

70 fM from subthreshold-regime responses). Furthermore, the real-time 

association/dissociation processes of the antibody-(TNF-α) pair were also quantified 

using multiple sensors. The association/dissociation rates were extracted to be kon = (5.03 

± 0.16) × 108 M-1 s-1 and koff = (1.97 ± 0.08) × 10-4 s-1, respectively. This work laid an 

important foundation for leveraging the excellent electronic properties of emerging 

atomically layered semiconductors in bio-assay applications as well as advanced the 

critical research capability in analyzing the biomolecule interactions with fM-level 

detection sensitivities. Notably, such capability would enable selection of antibodies with 

a high binding constant with respect to a specific target biomarker molecule, thereby 

offering a means to further enhance the selectivity and fidelity of immunoassay. 
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          Chapter 4  

 

 

Two Different Device Physics Principles for Operating MoS2 

Transistor Biosensors with Femtomolar-Level Detection Limits 

 

4.1 Introduction 

MoS2, one of transition metal dichalcogenides (TMDCs), has been studied as an 

attractive nanoelectronic material for making field-effect transistor (FET) biosensors [42, 

43], because the transport characteristics of monolayer or few-layer MoS2 FET channels 

are extremely sensitive to external stimulations, such as antigen-antibody binding events; 

2D MoS2 surfaces have an extremely low density of electron scattering centers, which 

can result in a low detection noise; and also semiconducting MoS2 FETs show much 

higher On/Off ratios and therefore the higher detection sensitivities in comparison with 

semi-metallic graphene FETs [53, 138, 139]. Therefore, MoS2 FET biosensors hold the 

significant potential to enable single-molecule-level (or fM-level) detection of illness-

related biomarkers. To leverage such superior sensing capability of MoS2 FETs for cost-

efficient immunoassay applications, large-scale MoS2 FET arrays need to be 
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manufactured at an affordable cost. To minimize the manufacturing cost, the sensor 

structure should be as simple as possible while meeting requirements unique to 

biosensing. In a conventional way of fabricating a typical FET biosensor based on MoS2 

or other layered materials [140, 141], a dielectric insulating layer (e.g., SiO2, Al2O3, and 

HfO2) is deposited on top of the MoS2 channel for hosting the antibody receptors [42]. 

The growth of such insulating layers requires exquisite atomic layer deposition (ALD) 

tools. Moreover, due to the hydrophilic nature of these insulating layers, extra chemical 

processes need to be performed to introduce additional chemical linkers (e.g., 3-

Aminopropyl)triethoxysilane (APTES)) for interfacing the dielectric surface and 

hydrophobic antibodies [142]. These two concerns could significantly increase the 

manufacturing cost of MoS2-based immunoassay chips. Recently, Lee et al. demonstrated 

that the direct antibody functionalization on MoS2 surface is possible because of the 

hydrophobicity of MoS2 layers, which could lower the fabrication complexity and the 

cost of MoS2 biosensors [142]. Notwithstanding such a progress, the underlying physics 

of the device operation still remains unexplored. Additional work is needed for 

understanding the difference between insulating-layer-coated and insulating-layer-free 

MoS2 sensors in their operation principles.  

In this chapter, we report different physics principles governing the sensor 

responses measured from insulating-layer-coated and insulating-layer-free MoS2 FET 

sensors. For an insulating-layer-coated sensor, antibody receptors are functionalized on 

the insulating layer. The charge introduced through antigen-antibody binding is 

capacitively coupled with the MoS2 channel and shifts the threshold voltage without 

significantly changing the transconductance (or mobility). On the other hand, for an 
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insulating-layer-free sensor, in which antibodies are directly grafted on the bare MoS2 

channel, antigen-antibody binding events mainly modulate the ON-state 

transconductance, which is attributed to the disordered potential formed in MoS2 layers. 

 

4.2 Methods and Materials 

4.2.1 Fabrication and Characterization of MoS2 Transistor Biosensors 

Figure 4.1 (a) displays insulating-layer-coated (left) and insulating-layer-free 

(right) MoS2 biosensors. To fabricate such devices, first few-layer MoS2 flakes (5-7 nm 

thick) are exfoliated from a bulk MoS2 ingot and printed onto the device substrates (i.e., 

p+-Si substrates coated with 300 nm thermally grown SiO2) using our previously reported 

method [125, 126]. After MoS2 exfoliation, metallic drain (D) and source (S) contacts are 

formed using photolithography followed with metal deposition (10 nm Ti/50 nm Au) and 

lift-off. To produces an insulating-layer-coated sensor, 30 nm HfO2 is deposited on the 

MoS2 channel using ALD. HfO2 and other high-k dielectric materials can result in less 

surface scattering as compared to SiO2 and can also host the antibody functionalization 

[25, 94]. We also deposit HfO2 on D/S electrodes to minimize the leakage currents from 

the analyte solutions to the electrodes. To create an insulating-layer-free sensor, the 

antibodies are directly functionalized on the bare MoS2 channel. 
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Figure 4.1 Illustrations (a) and optical micrographs (b) of insulating-layer-

coated (left) and insulating-layer-free (right) MoS2 FET biosensors. 

 

4.2.2 Bio-Functionalization of MoS2 Transistor Biosensors 

Figure 4.1 (b) shows the optical micrographs of two exemplary biosensors with 

(left) and without (right) a 30 nm HfO2 layer. In this work, we functionalized our sensors 

with Anti-Human TNF-α antibody receptors for detecting TNF-α molecules. The purified 

Anti-Human TNF-α (Clone: monoclonal antibody (MAb1) and Isotype: Immunoglobulin 

G (IgG1)) was purchased from Ebioscience, Inc. The MAb1 antibody has been used for 

capturing human TNF-α, immunoblotting, and neutralizing the biological activities of 

TNF-α. The antibody functionalization is described as follow. The sensors are submerged 

in 5% APTES in ethanol for 1 hour, and then they are washed with phosphate buffered 

saline (PBS) and blown dry. Afterwards, the sensors are submerged in 5% gluteraldehyde 

in PBS for 2 hours and rinsed with PBS [42]. Finally, the sensors are incubated with a 
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solution of 50 lg/ml anti-TNF-a antibody for 45 min and subsequently blown dry by N2 

gas. For the TNF-α quantification at the equilibrium state of the (TNF-α)-antibody 

reaction, we perform the following steps: (1) incubate the sensor in a target TNF-α 

solution (solvent is 1×PBS; ionic strength is 162.7 mM) for a duration of 20-30 min to 

assure that the (TNF-α)-antibody reaction has reached to the equilibrium state; (2) briefly 

rinse away unreacted TNF-α molecules with DI water; and (3) blow dry the device and 

measure its transfer characteristics (i.e., drain-source current (IDS)-gate voltage (VG) 

curves) using a semiconductor analyzer. Such an equilibrium-state measurement is 

performed in the air, and the screening effect is negligible. 

 

4.3 Results and Discussion 

4.3.1 Comparison of Insulating-Layer-Coated and Insulating-Layer-Free MoS2 

Transistor Biosensors 

Figure 4.2 (a) displays the transfer characteristics of an exemplary insulating-

layer-coated sensor, which were measured from a set of incremental TNF-α 

concentrations (i.e., n = 0, 60 fM, 300 fM, 600 fM, 3 pM, and 6 pM). With increasing n, 

the IDS-VG characteristic curve of this sensor shifted toward the positive VG direction 

without changing the shape. Such a shape-retaining transition can be further verified by 

the fact that we can make all IDS-VG curves from different TNF-α concentrates coincide 

by using a horizontal shift of them along the VG-axis, as shown in Figure 4.2 (b). This 

result indicates that the charges introduced by TNF-α molecules electrostatically affect 
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the free carrier concentration in the MoS2 channel and induce a shift of the threshold 

voltage (i.e., ΔVT measured at the back gate), but these charges do not cause a noticeable 

change of the ON-state transconductance (gm = dIDS/dVG) (or the field-effect mobility) of 

the FET. For such insulating-layer-coated sensors, the response behavior can be well 

described by the conventional capacitor model [105], and a calibrated sensor response 

quantity (S) is expressed in Equation (1) [104, 135], where IDS(n=0) is the IDS measured 

from an as-functionalized sensor (i.e., n = 0) biased under a set of fixed VDS and VG, and 

IDS-IDS(n=0) indicates the change of IDS induced by the introduction of TNF-α solutions 

with various concentrations. IDS-IDS(n=0) normalized by the gm of this sensor creates a 

sensor response quantity (S) associated with ΔVT. Here, ΔVT can be calculated using ΔVT 

= qdSiO2σTNF/kSiO2ε0, where q is the effective charge introduced by a TNF-α molecule; 

kSiO2 and dSiO2 are the dielectric constant and thickness of the SiO2 back-gate dielectric, 

respectively; ε0 is the vacuum permittivity; and σTNF is the areal density of TNF-α 

molecules bound to the sensor area. 

Figure 4.2 (c) displays the transfer characteristics of an exemplary insulating-

layer-free sensor, measured from n = 0, 60 fM, 600 fM, 6 pM, and 60 pM. This sensor 

exhibited a very different response behavior from insulating-layer-coated sensors. With 

increasing n, the IDS-VG curve of this sensor did not significantly shift along the VG-axis, 

but exhibited a proportional scale-down along the IDS-axis (i.e., the IDS (or gm) values 

proportionally decreased with increasing n). Such a proportional reduction of IDS (or gm) 

values can be further verified by the fact that we can make all IDS-VG curves from 

different TNF-α concentrations coincide by multiplying their IDS values with appropriate 

factors, as shown in Figure 4.2 (d). This result indicates that when TNF-α molecules are 
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bound to an insulating-layer-free senor, they can result in reduction of the gm (or the 

mobility) of the FET. Such a response behavior cannot be described by the simple 

capacitor model. For such insulating-layer-free sensors, a tentative calibrated response 

quantity is the relative change of the ON-state IDS under a given VG, as expressed by the 

Equation (2). 

 

 

Figure 4.2 Comparison of sensor responses measured from MoS2 FET 

biosensors with and without an insulating layer: (a) transfer characteristics 

of a sensor with a 30 nm HfO2 insulating layer, measured at various TNF-

α concentrations of n = 0, 60, 300, 600, 3000, and 6000 fM. We can make 

these transfer characteristic curves coincide by using a horizontal shift 

along the VG-axis, as shown in (b). (c) transfer characteristics of an 

insulating-layer-free sensor measured at n = 60, 600, 6000, and 60 000 fM. 

We can make these transfer characteristic curves coincide by multiplying 

them with different factors, as shown in (d). 

 

𝑆 =  −
𝐼𝐷𝑆 −  𝐼𝐷𝑆(𝑛=0)

𝑔𝑚
=  Δ𝑉𝑇            (1) 
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As demonstrated in Figure 4.2, both insulating-layer-coated and insulating-layer-

free sensors can result in a limit-of-detection (LOD) not higher than 60 fM for TNF-α 

detection. However, the employment of insulating-layer-free sensors can simplify the 

fabrication of future MoS2 FET immunoassay chips. In addition, bare MoS2 sensing areas 

are naturally hydrophobic and could enable the direct functionalization of a broad variety 

of antibodies without using complicated linkers, therefore simplifying the 

functionalization processes [142]. 

 

𝑆 =  −
𝐼𝐷𝑆 −  𝐼𝐷𝑆(𝑛=0)

𝐼𝐷𝑆(𝑛=0)
              (2) 

 

4.3.2 Simulation of Electrostatic Potential Distribution in Insulating-Layer-Coated 

and Insulating-Layer-Free MoS2 Channels 

Despite the simplicity of insulating-layer-free sensors, to ultimately realize 

biomarker quantification using such sensors, ones need to understand the device physics 

governing their response behavior. We tentatively attribute the antigen/ antibody-binding-

induced reduction of the gm values of our insulating-layer-free sensors (Figure 4.2 (c)) to 

the biomolecule-induced disordered potential in the MoS2 channels, which can reduce the 

FET mobility [143-146]. To support this hypothesis, we quasi-quantitatively simulated 

the electrostatic potential distribution in the MoS2 channels, which is induced by the 

charged antigen-antibody pairs. The simulation was performed using an electromagnetics 

simulation software (MaxwellTM) based on finite-element analysis. In this simulation, the 

antigen-antibody pairs were modeled as charged pillars randomly and discretely 
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distributed on the sensors (pillar diameter: 4 nm, height: 10 nm, and minimum spacing 

between pillars: 10 nm). Such a simple model of antigen-antibody pairs is approximately 

consistent with the geometric dimensions and spatial spacings of real antibody-(TNF-α) 

pairs bound to a solid sensor surface [147]. 

 

 

Figure 4.3 Simulation of the electrostatic potential distribution in the 

MoS2 channel of (a) an insulating-layer-coated sensor, in which charged 

molecules are bonded to the HfO2 insulating layer, and (b) an insulating-

layer-free sensor, in which charge molecules are directly bonded to the 

MoS2 surface. 

 

Figure 4.3 displays the simulated potential distributions in the MoS2 channels of 

(a) an insulating-layer-coated sensor and (b) an insulating-layer-free sensor. For both 

sensors, the charged molecules induce disordered and corrugated equipotential surfaces 

in the proximity of molecules. For the insulating-layer-coated sensor, the presence of a 30 

nm HfO2 insulating layer can effectively buffer such a disordered potential distribution 
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and result in relatively flat equipotential surfaces in the MoS2 channel. Such a uniform 

field distribution in the MoS2 channel does not significantly modulate the carrier mobility 

(or gm) but only induces a ΔVT. For the insulating-layer-free sensor, the molecules 

directly create a disordered/corrugated potential distribution in the MoS2 channel, which 

is expected to significantly enhance the scattering and localization probabilities of 

moving carriers, therefore degrading the carrier mobility (and gm) of the FET [143-146]. 

In 2D monolayer or quasi-2D few-layer MoS2 FET channels, such a disordered potential 

effect is expected to be more prominent than that in bulk semiconductors because of the 

2D confinement of carriers. This simulation result can qualitatively explain the response 

behavior of our insulating-layer-free sensors. 

 

4.3.3 Static Measurement: Sensor Reponses Measured Using a MoS2 FET Sensor 

with a 5 nm Thick HfO2 Insulating Layer 

Additionally, our simulation implies a critical HfO2 layer thickness of tc ~ 5 nm. 

When the HfO2 layer thickness (tHfO2) is thinner than tc, the biomolecule-induced 

potential disorder is prominent in the MoS2 channel and the FET is expected to function 

as a gm-modulated sensor, as demonstrated in Figure 4.2 (c) and 4.2 (d). When tHfO2 is 

thicker than tc, the potential distribution in the MoS2 channel is uniform and the FET is 

expected to function as a VT-modulated sensor, as demonstrated in Figure 4.2 (a) and 4.2 

(b). It is further speculated that when tHfO2 is close to tc, the sensor may exhibit a hybrid 

response behavior involving both gm and VT modulations. To test this speculation, we 

fabricated additional sensors with tHfO2 = 5 nm ~ tc. Figure 4.4 (a) displays the transfer 
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characteristics of one of such sensors. With increasing TNF-a concentration, the IDS-VG 

curve of this sensor indeed underwent a shift toward the positive VG direction in 

concurrent with a drop of the gm. This indicates that the sensors with tHfO2 ~ tc show a 

hybrid gm/VT-modulated character. Such a response behavior can be further confirmed by 

 

 

Figure 4.4 Sensor responses measured using a MoS2 FET sensor with a 5 

nm thick HfO2 insulating layer: (a) transfer characteristics of this sensor 

measured at various TNF-α concentrations of n = 0, 60, 300, 600, 3000, 

and 6000 fM. We can make these transfer characteristic curves coincide by 

horizontally shifting them along the VG-axis and subsequently multiplying 

them with different factors, as shown in (b) and (c). 

 



83 

the fact that we can make all IDS-VG curves coincide by shifting them along the VG-axis 

and subsequently multiplying them with different factors, as shown in Figure 4.2 (b) and 

4.2 (c). This result strongly supports our simulation model and further implies that HfO2 

layer thickness strongly affects the potential disorder in the MoS2 channels and 

determines the sensor response characters. 

 

4.3.4 Repeatability of the Sensor Response Behaviors Using MoS2 FET Sensors 

To evaluate the repeatability of the sensor response behaviors, we identified, 

fabricated, and characterized additional insulating-layer-coated and insulating-layer-free 

sensors. Figures 4.5 and 4.6 display the transfer characteristics of all these devices. All 

insulating-layer-coated sensors exhibit a VT-modulated behavior, and all insulating-layer-

free ones exhibit a gm-modulated behavior. Their sensor response behaviors are highly 

consistent with those of the representative devices, as shown in Figure 2. Figure 4.7 plots 

the response quantity (S)-TNF-α concentration (n) standard curves measured from all (a) 

insulating-layer-coated and (b) insulating- layer-free sensors. Here, the S values for 

insulating-layer-coated and insulating-layer-free sensors are calculated using Equation (1) 

and (2), respectively. The IDS values used for the calculation are measured at VG = 98 V. 

Figure 4.7 shows that our sensors exhibit a reasonably good device-to-device consistency 

in their S-n curves. Here, we do not use the Langmuir isotherm model to fit the S-n 

curves in Figure 4.7. This is because the antigen-antibody binding kinetics on our MoS2 

transistor biosensors may not follow the Langmuir isotherm model. In particular, for the 

insulating-layer-free sensors, we still lack a suitable physics model to correlate the sensor 
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Figure 4.5 Transfer characteristics of five effective-layer-coated MoS2 

FET biosensors (tHfO2 = 30 nm). Each of them is subjected to a set of 

incremental TNF-α concentrations (i.e., n = 0, 60 fM, 300 fM, 600 fM, 3 

pM, and 6 pM). 
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Figure 4.6 Transfer characteristics of five effective-layer-free MoS2 FET 

biosensors (tHfO2 = 0). Each of them is subjected to a set of incremental 

TNF-α concentrations (i.e., n = 0, 60 fM, 600 fM, 6 pM, and 60 pM). 
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Figure 4.7 The standard curves for TNF-α quantification, acquired from (a) 

a set of insulating-layer-coated sensors (the ones listed in Figure 4.5), and 

(b) a set of insulating-layer-free sensors (the ones listed in Figure 4.6). 

 

 

 

Figure 4.8 Simulation of the electrostatic potential distribution in the 

MoS2 channel of an insulating-layer-coated sensor. In this device, the 

HfO2 insulating layer has a surface roughness of ~10 nm (average peak-to-

valley magnitude). 

 

response quantity (S) with the areal occupancy of target biomolecules. For the insulating-

layer-coated sensors, although we have a sensor response quantity (S) literally 

proportional to the areal density of bound molecules (see Equation (1)), previous works 

have shown that the ALD-grown HfO2 films on 2D layer surfaces show a large roughness, 

which can make the antigen-antibody binding kinetics deviate from the Langmuir 

isotherm model [148-150]. Such a new justification about the effect of insulating layer 
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roughness on the antigen-antibody binding kinetics does not undermine our main 

conclusion, i.e., the introduction of an HfO2 insulating layer (even a rough layer) can 

effectively smooth out the antigen-induced disordered potential disturbances in the MoS2 

channel. Specifically, we further simulated the potential distribution in a sensor with 

HfO2 roughness of ~10 nm. Figure 4.8 displays that the potential distribution in the MoS2 

channel is still uniform in spite of the HfO2 roughness. 

 

4.4 Summary 

In summary, insulating-layer-coated and insulating-layer-free MoS2 FET 

biosensors show VT-modulated and gm-modulated responses to antigen-antibody binding 

events, respectively. Our work proposes that such a difference in the sensor response 

character could be attributed to the effect of insulating layer thickness on the potential 

disorder in the MoS2 FET channels. We also identify a critical insulating layer thickness, 

around which the sensors exhibit both VT and gm-modulated responses. This work 

advances the critical device physics for understanding and simplifying the FET 

biosensors based on emerging atomically layered semiconductors. 
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          Chapter 5  

 

 

Cycle-Wise Operation of MoS2 and WSe2 Transistor Biosensors 

for Rapid Biomolecule Quantification at Femtomolar Levels 

 

5.1 Introduction 

Field-effect transistor (FET) biosensors made from emerging layered transition 

metal dichalcogenides (TMDCs), such as MoS2 and WSe2, have exhibited attractive 

characteristics, such as high biodetection sensitivity, low limit-of-detection (LOD), and 

good compatibility with planar nanofabrication processes, potentially enabling 

multiplexing sensor arrays. Specifically, Wang et al. and Sarkar et al. experimentally 

demonstrated MoS2 FET biosensors with femtomolar (fM)-level detection limits [42, 43]. 

Nam et al. established the device physics for calibrating the sensor response signals 

measured from MoS2 FET sensors with insulating layers and preliminarily demonstrated 

the fabrication of MoS2 FET arrays [49, 151]. Lee et al. demonstrated that antibody 

receptors can be directly grafted on MoS2 FET channels without using insulating layers, 
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which is due to the hydrophobicity of the MoS2 surface [142]. Such an insulating-layer-

free sensor structure can lower the fabrication complexity as well as the cost of MoS2 

biosensors. Nam et al. further found that insulating-layer-free MoS2 sensors exhibit a 

higher sensitivity than insulating-layer-coated ones [152]. This was attributed to that two 

mechanisms, target-molecule-induced doping and target-molecule-induced surface 

scattering, synergistically contribute to the response signal of an insulating- layer-free 

sensor, but only target-molecule-induced doping contributes to the response signal of an 

insulating-layer-coated sensor [152, 153]. Nam et al. also demonstrated that WSe2 FET 

sensors exhibit a higher sensitivity than MoS2 FET sensors, which is attributed to the 

ambipolar transfer characteristics of WSe2 FETs [153].  

In spite of the progress mentioned above, MoS2 and WSe2 FET biosensors still 

suffer seriously from a series of challenges that hinder their practical biosensing 

applications. Especially, a FET sensor needs to be continuously subjected to a liquid 

reagent environment for quantifying the time-dependent reaction kinetics of analyte-

receptor binding. Such a time-dependent detection capability is a key to realize rapid 

biomolecule quantification based on sensor response readings at the non-equilibrium 

states of binding reactions, which could result in very short lapsed times and enable fast 

real-time immunoassay for quantifying extreme low-abundance biomolecules (e.g., fM-

level biomarkers) [154]. However, the electrical signal acquisition process is not 

generally compatible with such a liquid environment in the sensor. During a typical time-

dependent detection process for quantifying the binding reaction kinetics, the sensing 

FET is electrically biased and constantly exposed to the analyte solution. Here, the 

applied biases include a gate voltage (VG) that is used to bias the FET to the linear regime 
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of the transfer characteristic to obtain a high sensitivity as well as a consistent sensor 

response behavior [49, 153], and a drain-source voltage (VDS) for driving the sensing 

channel current (IDS). Such continuous electrical stresses in the liquid reagent 

environment can result in undesirable leakage currents flowing to electrodes and 

therefore generate high-level electronic noises and false sensor responses, and even 

electrochemically damage the sensor. It should be noted that even the FET sensor coated 

with an insulating layer can hardly survive in a long continuous time-dependent detection 

process (e.g., >1 hour) because of the electric-field-enhanced permeation of reactive ions 

into the insulating layer [154, 155]. The analyte solutions with different ionic strengths 

also cause different degrees of the screening effect to the interaction between target 

molecules and the sensing channel, resulting in inconsistent sensor response signals. Such 

a screening effect also degrades the biodetection sensitivity of the sensor [156-159]. 

Another serious issue associated with TMDC-based FET sensors is the hysteretic 

behavior of the transfer characteristics of such sensors, which is attributed to the gate-

modulated charges trapped at TMDC/dielectric interfaces [105]. Such a hysteretic 

behavior makes the IDS value measured under a given VG highly dependent on the VG 

sweep range, sweep direction, sweep time and loading history, therefore resulting in 

inconsistent sensor readings. To rule out such indeterminacy of sensor readings due to the 

hysteresis effect, ones need to measure the complete transfer characteristic curves (i.e., 

IDS-VG curves) by sweeping VG along both positive and negative directions, which is 

similar to the way for characterizing a FET memory [160-162]. However, this electrical 

measurement process is not applicable during a continuous time-dependent detection 

process. Another expedient solution is to constantly bias the FET sensor to the linear (or 
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highly conductive) transport regime, where the indeterminacy of IDS values is relatively 

smaller than that in the subthreshold regime. However, as discussed above, such a 

constantly applied gate bias can easily damage the sensor. In addition, during a 

continuous time-dependent detection process, the nonspecific adsorption of untargeted 

molecules on the FET sensing channel can also generate false signals. All of these issues 

seriously limit the applicability of TMDC-based FET biosensors for realizing rapid, 

highly specific biomolecule quantification using time-dependent sensor response signals 

or non-equilibrium-state sensor response readings. 

In this chapter, we present a cycle-wise time-dependent biodetection method for 

operating MoS2/WSe2-based FET biosensors. Such a cycle-wise process alternatingly sets 

the FET sensor into incubation, flushing, and electrical measurement steps and therefore 

avoids the liquid-solution-induced electrochemical damage, screening, and nonspecific 

adsorption to the sensor. This method can also rule out the indeterminacy of sensor 

readings due to the hysteretic behaviors of TMDC FETs. This cycle-wise detection 

method in combination with the superior sensitivity and limit-of-detection (LOD) of 

MoS2/WSe2-based biosensors can enable rapid, low-noise, highly specific biomolecule 

quantification with fM-level LODs. In this work, we have experimentally achieved time-

dependent responses associated with the reaction kinetics of streptavidin-biotin and IL1β- 

IL1β antibody binding and demonstrated fM-level streptavidin and IL1β quantification in 

pure as well as complex solutions (e.g., serum) with detection limit of ~1 fM and total 

incubation time less than 20 min. 
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5.2 Methods and Materials 

5.2.1 Fabrication of MoS2 and WSe2 FET Biosensors 

The TMDC FETs are produced onto p+-Si substrates with 300 nm thermally 

grown SiO2 layers using a printing approach previously reported by us [151]. The SiO2 

layers are used as the back-gate dielectrics. Such 300 nm thick SiO2 layers can also 

enable a simple color coding method for us to quickly identify and locate the MoS2 and 

WSe2 flakes with suitable thicknesses [163]. The thicknesses of printed Few-layer-

TMDC channels are specifically controlled to be 5-15 nm. Such TMDC channel 

thicknesses can result in the optimal field-effect mobility and On/Off ratio values for 

TMDC FETs [20, 133, 134]. The p+-Si substrates served as the back gates (G). Ti (5 

nm)/Au (50 nm) drain (D) and source (S) contacts to the TMDC channels are created 

using photolithography followed with metal deposition and lift-off. The channel lengths 

and widths of as-fabricated TMDC FETs are ~5 μm and ~15 μm, respectively. All 

electrical measurements are performed using an HP-4145B semiconductor parameter 

analyzer, which is connected to a LakeshoreTM probe station. Each of the TMDC FETs 

selected for making a biosensor is integrated with a polydimethylsiloxane (PDMS) block 

bearing a microfluidic channel (10 mm in length, 200 μm in width, 50 μm in height), as 

illustrated in Figure 5.1 (a). A motorized syringe pump is used for driving the reagent 

fluid flows into and out of the microfluidic channel through an inlet/outlet tubing kit 

(tube diameter: 0.75 mm). 
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Figure 5.1 Experimental method: (a) illustration of a TMDC-based FET 

sensor, which is integrated with a PDMS microfluidic channel for enabling 

the cycle-wise time-dependent detection capability; illustration of a few-

layer TMDC FET channel that is functionalized with (b) biotin receptors; 

(c) IL1β antibody 

 

5.2.2 Bio-Functionalization of TMDC FET Biosensors 

An as-fabricated MoS2 or WSe2 FET biosensor is incubated in 5% (3-

Aminopropyl) triethoxysilane (APTES) in ethanol for 1 hour. After this incubation 

process, the sensor is rinsed with phosphate buffered saline (PBS) and blown dry by 

nitrogen gas. For the IL1β antibody functionalization, the sensor is subsequently 

immersed in 5% gluteraldehyde in PBS for 2 hours followed by rinsing with PBS. Then 

0.1 mg/ml NHS-biotin or IL1β antibody in PBS is subsequently incubated on the MoS2 or 

WSe2 channel area for 30 min followed by rinsing with PBS and N2 blow-dry. During a 
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biodetection process, the integrated PDMS microfluidic system on the FET sensor is used 

to deliver a series of timely sequenced reagent fluids, including analyte streptavidin or 

IL1β solutions, pure buffers, and air flows, to the active sensing FET channel. 

 

5.3 Results and Discussion 

5.3.1 Cycle-Wise Time-Dependent Biodetection Method for Operating TMDC-

Based FET Biosensors 

Figure 5.1 (a) illustrates the TMDC-based back-gated FET biosensor under study, 

which is integrated with a polydimethylsiloxane (PDMS)-based microfluidic channel. A 

pair of inlet and outlet tubes is connected with the microfluidic channel for delivering 

various reagent fluids to the FET sensor. Before a biosensing process, the sensing FET 

channel made from few-layer TMDC (MoS2 or WSe2) is functionalized with specific 

antibody receptors for detecting the target molecules in the analyte solution. During a 

cycle-wise biodetection and quantification process, the microfluidic structure is operated 

to deliver a series of timely sequenced reagent fluids to the sensing FET channel and 

periodically set the sensor into four biodetection stages, including (i) incubation of the 

sensing channel in the analyte solution containing target molecules for a short but 

deterministic duration (typically 5-10 min), (ii) flushing the sensing channel using a pure 

buffer to eliminate unreacted target molecules and untargeted background molecules, (iii) 

drying the sensing channel using an air flow, and (iv) under such dry condition, 

electrically measuring the transfer characteristics (i.e., IDS-VG curves) of the sensing FET 
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by sweeping VG along both positive and negative directions. Repetitive performance of 

multiple such incubation-flushing-drying-measurement (IFDM) cycles can acquire a 

time-dependent response signal associated with the reaction kinetics of analyte-receptor 

binding. 

 

 

Figure 5.2 Biosensor fabrication and setup: (a) SEM image of several 

printed few-layer-MoS2 FET channels; (b) optical micrograph of a 

representative few-layer-MoS2 FET biosensor; (c) photograph of a WSe2 

FET sensor integrated with a micro-fluidic channel system. In this work, 

the few-layer-TMDC (MoS2 or WSe2) FET channels were functionalized 

with biotin receptors, and we experimentally demonstrated time-dependent 

quantification of streptavidin-biotin binding kinetics. 

 

Figure 5.2 (a) shows the scanning electron micrograph (SEM) of several as-

printed few-layer-MoS2 FET channels. Each of the printed channels is associated with a 

pair of Ti/Au align-marks, which are used for locating the FET channel specifically 

selected for making a working biosensor. Figure 5.2 (b) displays the optical micrograph 
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of a representative TMDC FET biosensor consisting of a few-layer MoS2 channel 

(thickness ~ 5 nm), a 300 nm thick SiO2 back gate dielectric layer, a p+-Si back gate, and 

a pair of metallic drain/source (D/S) contacts (10 nm Ti/50 nm Au). The FET channel 

length and width are 5 and 15 μm, respectively. Figure 5.2 (c) shows the photograph of a 

WSe2 FET sensor integrated with a PDMS microfluidic channel. This microfluidic 

channel is connected with a motorized syringe pump (not shown in Figure 5.2 (c)) 

through a pair of inlet/outlet tubes. As demonstrated in Figure 5.2 (c), we can operate this 

pump/tubing system to deliver timely sequenced reagent fluids to the FET sensing 

channel for performing IFDM detection cycles. 

 

5.3.2 Time-Dependent Sensor Responses with 30 fM Pure Streptavidin (MoS2 FET 

Biosensor) 

Figure 5.3 shows the time-dependent sensor responses to a 30 fM solution of pure 

streptavidin, which were measured using a representative n-type MoS2 sensor (Figure 5.3 

(a) and (b)) and a representative ambipolar WSe2 sensor (Figure 5.3 (c)-(f)). Both sensors 

were operated using the cycle-wise detection method discussed above, and for each 

IFDM cycle, the incubation time was Ti = 10 min. In the following discussion, the sensor 

responses are analyzed as a function of accumulative incubation time (t), which is defined 

as t = nTi (here, n is the number of already performed IFDM cycles). Specifically, Figure 

5.3 (a) shows the transfer characteristic (i.e., back-gate voltage (VG) - drain-source 

current (IDS)) curves of the MoS2 sensor measured at different t values ranging from 0 to 

110 min. For each t, two transfer characteristic curves were measured. One was measured 
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Figure 5.3 Time-dependent sensor responses to a 30 fM solution of pure 

streptavidin measured using a pair of representative MoS2 and WSe2 FET 

biosensors: (a) IDS-VG curves of the MoS2 sensor measured at different 

accumulative incubation times t ranging from 0 to 110 min (these curves 

were measured with both positive and negative VG sweep directions); (b) 

IDS-t response signals captured from the t-dependent IDS-VG curves in (a) at 

VG = 100 V; (c) and (d) t-dependent IDS-VG curves of the WSe2 sensor 

measured with positive and negative VG sweep directions, respectively; (e) 

and (f) IDS-t response signals captured from the p-type (at VG = -100 V) 

and n-type (VG = 100 V) branches of the t-dependent IDS-VG curves of the 

WSe2 FET, respectively. 

 

 with positive VG sweep direction (i.e., from -100 to 100 V, which is referred to as 

“positively-scanned curves” below), and the other was measured with negative VG sweep 
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direction (i.e., from 100 to -100 V, which is referred to as “negatively-scanned curves” 

below). Although this MoS2 sensor exhibits a prominent hysteretic behavior in its transfer 

characteristics, both sets of the positively and negatively-scanned IDS-VG curves measured 

from this sensor show similar IDS-reduced response behaviors with increasing 

accumulative incubation time t. To quantify the time-dependent reaction kinetics of 

biotin-streptavidin binding, the IDS values measured at a given VG are captured and 

plotted as a function of accumulative incubation time t. To minimize the indeterminacy of 

such IDS – t response signals due to the hysteresis of IDS-VG curves, IDS – t signals should 

be obtained in the highly conductive regime of IDS-VG characteristic curves (e.g., VG = 

100 V for our n-type MoS2 FETs). Figure 5.3 (b) plots the IDS – t response signals 

captured from the t-dependent IDS-VG curves in Figure 5.3 (a) (at VG = 100 V). Figure 5.3 

(b) shows that the IDS – t signals obtained from positively and negatively-scanned IDS-VG 

curves are consistent with each other, and the hysteresis-induced indeterminacy of IDS-t 

signals can be ruled out.  

Figures 5.3 (c) and (d) display the positively and negatively-scanned t-dependent 

IDS-VG curves of the WSe2 sensor, respectively. For both sets of the IDS-VG curves, the t 

values range from 0 to 110 min. The WSe2 FET exhibits an ambipolar transport property. 

In the p-type branch of IDS-VG curves, the WSe2 FET exhibits an IDS-enhanced response 

behavior with increasing t, whereas in the n-type branch, it exhibits an IDS-reduced 

response behavior with increasing t. Reliable IDS-t signals with the minimal 

indeterminacy due to the hysteretic behavior of IDS-VG curves can be obtained from both 

highly conductive p-type and n-type regimes of IDS-VG curves (e.g., VG = -100 V and 100 

V for this WSe2 FET). Figures 5.3 (e) and (f) plots the IDS-t response signals captured at 
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VG = -100 V (i.e., p-type IDS-t responses) and 100 V (i.e., n-type IDS-t responses), 

respectively. Figures 5.3 (e) and (f) also shows that for either p-type or n-type sensor 

response cases, the IDS-t signals obtained from positively and negatively-scanned IDS-VG 

curves are highly consistent with each other. This work demonstrates that the IFDM 

cycle-wise method for operating MoS2 and WSe2 FET sensors can generate reliable time-

dependent sensor response signals for quantifying the kinetics of binding reactions and 

rule out the indeterminacy of sensor readings due to the hysteresis of the transfer 

characteristics of such FETs. 

 

5.3.3 Comparison of the Time-Dependent Response Signals Obtained Using IFDM 

Cycle-Wise and Continuous Detection Methods 

We characterized two MoS2 FET sensors fabricated in the same fabrication batch 

for a direct comparison of the time-dependent response signals measured using the cycle-

wise method and the regular continuous detection method. Figure 5.4 shows these two 

sensors’ responses to the pure 30 fM streptavidin solution. Figure 5.4 (a) shows the t-

dependent IDS-VG characteristic curves measured using one of the MoS2 sensors, which 

was operated using the cycle-wise method (Ti = 10 min). An IDS-t signal can be captured 

from the highly conductive n-type transport regime (i.e., VG = 100 V) of the IDS-VG curves 

plotted in Fig. 5.4 (a). To further minimize the effect of the device-to-device variation in 

absolute IDS values on the comparison, we used the relative change in IDS (i.e., S = 100% 

× [IDS (t) – IDS (t = 0)]/ IDS (t = 0)) with respective to the accumulative incubation time (t) 

as a calibrated time-dependent sensor response signal. Here, S can also serve as the 
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measure of the biodetection sensitivity. Figure 5.4 (b) plots the S-t response signal 

measured from the MoS2 sensor that was operated using the cycle-wise method (solid 

circles). The other MoS2 FET sensor was used to continuously measure the electrical 

signal associated with the time-dependent reaction kinetics of biotin-streptavidin binding. 

In particular, the sensor was continuously biased with a back-gate voltage (VG) of 100 V 

and a drain-source voltage (VDS) of 1 V. Since the 30 fM streptavidin solution was 

introduced into the sensor, the instant IDS signal had been being continuously recorded as 

a function of t. This IDS-t signal was also calibrated into the signal of t-dependent relative 

change in IDS (i.e., the S-t signal), which was also plotted in Figure 5.4 (b) (the solid line). 

In comparison with this S-t signal obtained using the continuous detection method, the S-t 

signal obtained using the IFDM cycle-wise method exhibits the larger signal magnitude 

(i.e., the higher sensitivity) and the smaller relative error of the signal magnitude (i.e., the 

higher signal-to-noise ratio) at a given accumulative incubation time. The relatively 

weaker magnitude of the S-t signal obtained using the continuous method is attributed to 

the Debye screening effect of the liquid solution, which can weaken the electrostatic 

coupling between the charges of target molecules and the FET channel, resulting in the 

lower sensitivity [105, 157-159]. The IFDM cycle-wise method can address this issue 

through physically isolating the incubation and measurement stages during an IFDM 

cycle. This cycle-wise method can also eliminate the electrical noise from the liquid 

solution and therefore result in the lower LOD. Additionally, as shown in Figure 5.4 (b), 

the MoS2 sensor operated using the continuous method failed at t ~ 50 min. Our other 

TMDC FET sensors, when operated using the continuous method, also usually fail within 

one hour of the operation. Such a poor durability is attributed to the net effect of the 
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electrical stresses continuously applied to the FET channel and the continuous exposure 

of the sensor to the liquid environment, which can lead to electrochemical or thermal 

damage to the sensing channel. However, the similar TMDC sensors, if operated using 

the IFDM cycle-wise method (Ti: 5-10 min), can properly work for at least five hours 

without damage. Therefore, this comparison work indicates that the TMDC FET sensors 

operated using the cycle-wise method exhibit the better durability, the higher sensitivity, 

and the higher signal-to-noise ratio in comparison with those operated using the 

continuous detection method. 

 

 

Figure 5.4 Comparison between a MoS2 FET biosensor operated using the 

IFDM cycle-wise method and another similar sensor operated using the 

regular continuous detection method in their responses to a 30 fM solution 

of pure streptavidin: (a) t-dependent IDS-VG characteristic curves of the 

sensor operated using the cycle-wise method; (b) the S-t response signals 

obtained using the IFDM cycle-wise method (solid circles) and the regular 

continuous detection method (the solid line). 

 

5.3.4 Detection Specificity of the TMDC FET Biosensors Operated by the IFDM 

Cycle-Wise Method 

To evaluate the detection specificity of the TMDC FET biosensors operated by 

the IFDM cycle-wise method, we further performed two experiments to test time-
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dependent quantification of biotin-streptavidin binding reaction kinetics in complex 

solutions. In the first experiment, we characterized four MoS2 FET biosensors, which 

were fabricated in the same batch and have very similar transfer characteristics. Two of 

them (sensors #1 and #2) were used to quantify 30 fM streptavidin in a pure solution. The 

other two sensors (sensors #3 and #4) were used to quantify 30 fM streptavidin in a 

solution that also contained 60 fM tumor necrosis factor alpha (TNF-α). The processing 

parameters of the IFDM cycle-wise method are the same as those used for the 

experiments discussed above. Figure 5.5 shows the t-dependent IDS-VG characteristic 

curves of these four MoS2 FET sensors, which were measured using the IFDM cycle-

wise method (Ti = 10 min). Figure 5.6 (a) displays four sets of S-t signals respectively 

captured from the t-dependent IDS-VG curves of these four MoS2 sensors (all IDS and S 

data were captured at VG = 100 V). These four sets of S-t signals are consistent with each 

other. This indicates that the presence of 60 fM TNF-α in the analyte solution does not 

significantly affect the t-dependent sensor response to 30 fM streptavidin. The slight 

difference among these four S-t curves is attributed to the slight sensor-to-sensor 

variation in transport characteristics. 

In the second experiment, two WSe2 FET biosensors were fabricated in the same 

batch. One sensor (sensor #1) was used to quantify 30 fM streptavidin in a pure solution, 

and the other sensor (sensor #2) was used to quantify 30 fM streptavidin in a serum 

solution (Merck KGaA, Serum matrix (Contains 0.08% Sodium Azide), 20 times dilution 

in DI water). Figure 5.7 displays the t-dependent IDS-VG characteristic curves of these two 

WSe2 FET sensors, which were measured using the IFDM cycle-wise method (Ti = 10 



103 

min). Figures 5.6 (b) and (c) displays the S-t response signals captured from the p-type 

(VG = -100 V) and n-type (VG = 100 V) regimes of the t-dependent IDS-VG curves of these 

 

 

Figure 5.5 IFDM cycle-wise responses (Ti = 10 min) of four MoS2 FET 

biosensors that were fabricated in the same fabrication batch: t-dependent 

IDS-VG characteristic curves of Sensors #1 (a) and #2 (b), which were 

measured in a pure solution of 30 fM streptavidin, and Sensors #3 (c) and 

#4 (d), which were measured in a mixed solution containing 30 fM 

streptavidin and 60 fM tumor necrosis factor alpha (TNF-α). 

 

two WSe2 sensors, respectively. Figures 5.6 (b) and (c) shows that for both p-type and n-

type sensor readings, the S-t response to 30 fM streptavidin in the serum solution is 

highly consistent with the S-t response to 30 fM streptavidin in the pure streptavidin 

solution. The complex protein background in the serum solution does not significantly 

affect the t-dependent sensor readings associated with the specific concentrations of 

target molecules. These two comparison experiments have demonstrated that the MoS2 
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and WSe2 FET biosensors operated using the IFDM cycle-wise method exhibit a high 

biodetection specificity. This is attributed to the flushing step in an IFDM cycle, which 

can effectively remove non-specifically adsorbed molecules from the FET sensing 

channel, therefore minimizing the false sensor responses. Furthermore, two-dimensional 

TMDC surfaces usually have very low friction coefficients and exhibit very low adhesion  

 

 

Figure 5.6 Sensor responses to targeted streptavidin molecules in different 

solutions: (a) S-t responses, measured from four n-type MoS2 FET sensors, 

to 30 fM streptavidin in a pure solution (sensors #1 and #2) and a solution 

also containing 60 fM TNF-α (sensors #3 and #4); (b) p-type and (c) n-

type S-t responses, measured from two ambipolar WSe2 FET sensors, to 30 

fM streptavidin in a pure solution (sensor #1) and a serum solution (sensor 

#2). 
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Figure 5.7 IFDM cycle-wise responses, measured from two ambipolar 

WSe2 FET biosensors, to streptavidin molecules in a pure solution and a 

serum solution: (a) p-type and (b) n-type branches of the t-dependent IDS- 

VG characteristic curves measured from the sensor (Sensor #1) in a pure 

solution of 30 fM streptavidin; (c) p-type and (d) n-type branches of the t-

dependent IDS- VG characteristic curves measured from the sensor (Sensor 

#2) in a serum solution containing 30 fM streptavidin. 

 

 

to other materials, which is expected to make the flushing of non-specifically adsorbed 

molecules on TMDC FET channels much easier than that on the FET channels made 

from conventional semiconductors [164]. 

 

5.3.5 Sensor Response Signals Measured at Different Streptavidin Concentrations 

We further used MoS2 and WSe2 FET sensors operated by the IFDM cycle-wise 

method to obtain standard curves for streptavidin quantification (i.e., calibrated sensor 

response (R) versus analyte concentration (n) curves) and to enable rapid biomolecule 

quantification at femtomolar levels. Specifically, we fabricated a set of MoS2 sensors and 
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a set of WSe2 sensors in the same fabrication batch. These sensors were used to quantify 

30 fM, 300 fM, and 3 pM solutions of pure streptavidin. Figures 5.8 and 5.9 display the t-

dependent IDS-VG characteristic curves of these MoS2 and WSe2 sensors, respectively, 

which were measured at different streptavidin concentrations (nstreptavidin = 30 fM, 300 fM, 

and 3 pM). Figures 5.10 (a) and (b) show the S-t response curves captured from the n-

type branches of the IDS-VG curves of MoS2 FET sensors (captured at VG = 100 V) and the 

p-type branches of the IDS-VG curves of WSe2 FET sensors (captured at VG = -100 V), 

respectively. These S-t response curves were measured at nstreptavidin = 30 fM, 300 fM, and 

3 pM. For both MoS2 and WSe2 sensors, the initial slopes of their S-t response curves 

exhibit a dependence on streptavidin concentrations (nstreptavidin) and can be exploited for 

rapid streptavidin quantification. The determination of such initial slopes of S-t curves 

does not need a long accumulative incubation time until the analyte-receptor binding 

reaction reaches to the equilibrium state. Therefore, the initial slope of an S-t curve (i.e., 

dS/dt at t ~ 0) can serve as a derived sensor response quantity for enabling rapid 

biomolecule quantification. Here, the specific dS/dt value is extracted from the S-t 

response curve through linearly fitting the S data measured within the first three IFDM 

cycles (typically, the accumulative incubation time is shorter than 20 min for nstreptavidin ~ 

30 fM, and the total assay time is less than 23 min). Figures 5.10 (c) and (d) plots the 

dS/dt - nstreptavidin curves extracted from the S-t response curves measured from MoS2 and 

WSe2 sensors, respectively. Such dS/dt - nstreptavidin curves can serve as standard curves for 

rapid streptavidin quantification. To evaluate the repeatability of such streptavidin 

quantification using the initial varying slopes of S-t response curves, another set of two 

MoS2 FET sensors fabricated in the same batch were used to generate additional two S-t 
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response curves at nstreptavidin = 3 pM, which were plotted in Figure 5.10 (a). All three S-t 

response curves measured at nstreptavidin = 3 pM appear to have very similar initial slopes, 

which can be well correlated to nstreptavidin = 3 pM. Additionally, another WSe2 sensor was 

 

 

Figure 5.8 t-dependent IDS-VG characteristic curves of a set of MoS2 FET 

sensors, which were measured at different streptavidin concentrations 

(nstreptavidin = 30 fM, 300 fM, and 3 pM). 
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Figure 5.9 p-type branches of the t-dependent IDS-VG characteristic curves 

of a set of WSe2 FET sensors, which were measured at different 

streptavidin concentrations (nstreptavidin = 30 fM, 300 fM, and 3 pM). 

 

 

 

used to generate an additional S-t response curve at nstreptavidin ~ 300 fM, which is also 

consistent with the one already plotted in Figure 5.10 (b). 

In addition, we also used our MoS2 FET sensors and the IFDM cycle-wise method 

for testing the quantification of other clinical biomarkers, which usually exhibit a much 

weaker affinity to their antibody receptors in comparison with streptavidin. Here, we 

demonstrated Interleukin 1beta (IL1β) quantification. IL1β is a cytokine protein and 

serves as an important mediator of the inflammatory response. It is related to many 

cellular activities, including cell proliferation, differentiation, and apoptosis [165]. IL1β 
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has a relatively weak affinity to its antibody in comparison with streptavidin (i.e., KD, 

Streptavidin ~ 10-14 M (or 10 fM), and KD, IL1β ~ 10-9 M (or 1 nM)). Therefore, the state-of-

the-art biodetection methods usually result in LODs in the range of 10s pM to 1 nM for 

IL1β quantification, and fM-level IL1β quantification is still a challenge.  

Figure 5.11 displays the t-dependent IDS-VG characteristic curves measured from a 

set of six MoS2 FET sensors, which were subjected to a set of pure IL1β solutions with 

different IL1β concentrations (i.e., nIL1β = 0 fM, 1 fM, 4 fM, 20 fM, 100 fM, and 500 fM), 

respectively. From these IDS-VG curves, the corresponding S-t response curves were 

extracted at VG = 100 V and plotted in Fig. 5.12 (a). It should be noted that for nIL1β = 0, 

the S-t response curve is not completely flat. This indicates that the pure buffer solution 

results in moderate nonspecific absorption of ions or molecules on the MoS2 channel. 

Currently, we have not fully understood the mechanism of such nonspecific absorption, 

but temporarily attributed it to the slow reaction between the crystal defects on the MoS2 

channel and the buffered solution. Such a zero-concentration S-t response curve serves as 

the baseline for IL1β quantification. Figure 5.12 (a) shows that the S-t response curve 

measured at nIL1β = 1 fM is significantly distinct from that measured at nIL1β = 0. This 

indicates that our MoS2 FET biosensors in combination with the IFDM cycle-wise 

method can result in a LOD of ~1 fM for IL1β quantification. As discussed for 

streptavidin quantification, the initial slopes of the S-t response curves shown in Fig. 5.12 

(a) can be also used as response signals for the rapid IL1β quantification. Figure 5.12 (b) 

shows the extracted dS/dt data plotted as a function of the IL1β concentrations (nIL1β). In 

our work, to unambiguously determine the dS/dt values for IL1β quantification, the 

minimum incubation time is about 20 min, and the corresponding total assay time is 
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about 23 min. Therefore, this work has demonstrated that the TMDC FET biosensors 

operated using the IFDM cycle-wise method can enable rapid fM-level quantification of 

IL1β and other biomolecules with relatively weak affinity (i.e., nM-level KD values) to 

their antibody receptors. 

 

 
 

Figure 5.10 S-t response curves measured at different streptavidin 

concentrations (nstreptavidin = 30 fM, 300 fM, and 3 pM), which are captured 

from (a) the n-type branches of the t-dependent IDS-VG curves of a set of 

MoS2 sensors and (b) the p-type branches of the IDS-VG curves of a set of 

WSe2 sensors; (c) and (d) plots the dS/dt - nstreptavidin curves extracted from 

the S-t response curves measured from MoS2 and WSe2 sensors, 

respectively. 
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Figure 5.11 t-dependent IDS-VG characteristic curves of a set of MoS2 FET 

sensors, which were measured at different IL1β concentrations (nIL1β = 0 

fM, 1 fM, 4 fM, 20 fM, 100 fM, and 500 fM). 
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Figure 5.12 (a) S-t response curves measured at different IL1β 

concentrations (nIL1β = 0 fM, 1 fM, 4 fM, 20 fM, 100 fM, and 500 fM), 

which are captured from the t-dependent IDS-VG curves of a set of MoS2 

sensors at VG = 100 V, VDS = 1 V; (b) plots the dS/dt - nIL1β curve extracted 

from the S-t response curves shown in (a). 

 

5.4 Summary 

In summary, we established a cycle-wise approach for operating MoS2 and WSe2 

FET biosensors. This approach enabled rapid, low-noise, highly specific biomolecule 

quantification and analyte-receptor binding kinetics analysis. The cycle-wise detection 

process utilized a microfluidic structure integrated with a MoS2 or WSe2 FET sensor that 

delivers a time-sequenced series of reagent fluids to the sensing FET channel. 

Periodically delivering the reagent fluids into the device resulted in assay cycles, each 

with four stages: incubation, flushing, drying, and measurement (i.e., IFDM cycles). This 

process can measure time-dependent sensor responses to analyte-receptor binding 

reaction. The IFDM cycle-wise approach can physically separate incubation, flushing, 

and electrical measurement steps from each other in the time sequence. Thus, it can 

prevent liquid-solution-induced electrochemical damage, electronic noise, signal 

screening, and nonspecific adsorption, therefore improving the sensors’ durability, 
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detection limit, sensitivity, and specificity. Combined with the high sensitivity and low 

detection limit of MoS2/WSe2-based FET biosensors, this cycle-wise detection method 

can realize rapid biomolecule quantification at femtomolar levels. In this work, we have 

demonstrated the quantification of femtomolar-level streptavidin and IL1β suspended in 

pure and complex solutions (e.g., serum) with a detection limit of ~1 fM and a total 

incubation time less than 20 min (or total assay time less than 23 min). This work 

leverages the superior electronic properties of emerging layered semiconductors for label-

free biosensing applications and also advances the sensor operation technology toward 

realizing fast real-time biomolecule quantification at femtomolar levels. In addition, the 

presented cycle-wise method could be generally applied to other nanoelectronics-based 

biological and chemical sensors while overcoming the issues resulting from poor 

compatibility between reagents and electrical detection processes in a fluidic environment. 
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          Chapter 6  

 

 

Conclusions and Future Work 

 

6.1 Summary of Thesis 

This thesis work successfully advanced nanofabrication technologies and device 

physics for biosensing applications based on atomically layered materials. In our first 

study, we developed the plasma-assisted nanoprinting approach for producing ordered 

and pristine few-layer-MoS2 flake pixels over large areas. This work lays an important 

foundation for future scale-up nanoelectronic applications of few-layer-MoS2 micro- and 

nanostructures. In our second study, we fabricated MoS2 transistor sensors with 

insulating layers, which can be used for quantifying femtomolar-level biomolecules and 

molecule interactions. This work advanced the critical device physics for leveraging the 

excellent electronic/structural properties of TMDCs in biosensing applications as well as 

the research capability in analyzing the biomolecule interactions with fM-level 

sensitivities. In our third study, we compared between insulating-layer-coated and 
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insulating-layer-free MoS2 transistor biosensors in their sensor response behaviors. This 

work advances the device physics for simplifying the transistor biosensor structures 

targeting for femtomolar-level quantification of biomolecules. In our fourth study, we 

developed cycle-wise operation of MoS2 and WSe2 transistor biosensors for enabling 

rapid biomolecule quantification at femtomolar levels. This work leverages the superior 

electronic properties of emerging layered semiconductors for biosensing applications and 

advances the biosensing techniques toward realizing fast real-time immunoassay for low-

abundance biomolecule detection. 

 

6.2 Future Research 

Our TMDC FET sensors, especially those fabricated in different fabrication 

batches, still exhibit observable device-to-device variation in sensor response signals. It is 

anticipated that such variation could be further minimized by using calibrated response 

quantities that are completely independent of the FET performance parameters. We 

currently lack such a calibration approach, however, because we have not established a 

complete device physics model that can be used for quantitatively analyzing the 

responses of TMDC FET biosensors to specific analyte-receptor binding reaction events. 

In our previous work, we qualitatively identified that the electrical responses measured 

from a few-layer-TMDC FET biosensor are attributed to the net effect of (i) analyte-

molecule-introduced doping to the TMDC channel and (ii) surface scattering due to 

binding-reaction-induced disordered potentials. Future work will seek to quantitatively 

calculate the contributions of these two mechanisms to the final sensor response signals 
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and establish a calibration method based on such calculation to further improve the 

sensor-to-sensor consistency in calibrated sensor readings. Furthermore, such a 

quantitative device physics model is also needed for extracting critical molecular 

interaction properties, such as the affinity constant (KD), and association/dissociation 

rates (kon/koff) of analyte-receptor pairs, from electrical sensor responses. Another 

approach to explore device-to-device variation in sensor response signals is to study 

crystal structures of TMDC materials. Unlike silicon-based FET, TMDC FETs have 

polycrystalline structures. Therefore, the aspects of crystal domain boundaries on TMDC 

channel surfaces are different in each sensor, which induce the device-to-device variation 

in sensor response signals. Since we expect the receptors are functionalized on the 

domain boundaries, another future study will pursue the fabrication of our TMDC FET 

sensors with different channel lengths, which may affect the total number of binding sites 

on the sensing channels, resulting in a change of sensor response signals. Based on the 

aforementioned research, we can contribute to the development of a multiplexed cytokine 

detection platform with high throughput field-effect transistor biosensors. 
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Appendix A 

Finite Element Analysis for Simulating Electric Field around the Edge ribbon of a 

MoS2 Pixel and Calculating Effective Gate Capacitance of Edge-Based FETs (Cg)  

 

 

 

Figure A1 (a) Simulation model based on finite element analysis (FEA) 

for calculating the effective gate capacitance of the edge ribbon of a MoS2 

pixel, which takes into account the fringe effect at the feature edges. (b) 

Cross-sectional viewgraph of simulated electric field around the MoS2 

edge ribbon. (c) Cross-sectional viewgraph of simulated equipotential lines 

of 6 electric field around the MoS2 ribbon.  

 

 

Figure A1 shows the simulation of electric field around the edge ribbon of a MoS2 

pixel (cross-sectional view). The simulation was performed by using a finite element 

analysis (FEA) software tool (MAXWELL SV from Ansoft, Inc.). The simulation can 
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give out the effective gate capacitance associated with a single MoS2 ribbon per unit 

channel length (Cg) [unit: F/m]. 

In the simulation, the dielectric constant of SiO2 is εr ~ 3.9; the thickness of the 

gate dielectric is d ~ 330 nm; the width and thickness of the MoS2 edge ribbon are 300 

nm and 10 nm, respectively. The average gate capacitance associated with a 300 nm wide, 

10 nm thick MoS2 ribbon per unit channel length is calculated to be 187.9 pF/m. 

  



120 

 

Appendix B 

The Dual-Gate Thin-Film Transistor Biosensor Model  

 

 

Figure B1 A schematic illustration of the dual-gate thin-film transistor 

biosensor model 
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Figure B1 shows the dual-gate thin-film transistor biosensor model. The binding 

of TNF-α molecules with the antibody receptors functionalized on the HfO2 effective 

layer can cause a potential change (ΔΦ) on this effective layer. ΔΦ can be evaluated 

using ΔΦ = qNTNF/CHfO2, where q is the effective charge brought to the HfO2 effective 

layer through a single antibody-(TNF-α) binding event (here, q is the effective charge 

sensed by the transistor, and the screening effect due to the electrical double layer in 

solvent has been involved into q); NTNF is the total number of TNF-α molecules bound to 

the HfO2 effective layer; CHfO2 is the total capacitance of the HfO2 effective layer. This 

ΔΦ induces a change in the conductive charge (ΔΦ = CHfO2ΔΦ) in the MoS2 channel. 

This ΔΦ can cause a shift of the threshold voltage (ΔVT) measured from the back gate 

(note: not measured from the top gate), and ΔVT can be evaluated by ΔVT = ΔQ/CSiO2 = 

(CHfO2/CSiO2)ΔΦ = qNTNF/CSiO2, where CSiO2 is the capacitance of the back-gate dielectric 

layer. Furthermore, NTNF can be calculated using NTNF = σTNFA, where σTNF is the areal 

density of bound TNF-α molecules on the effective layer and A is the total sensor area. 

CSiO2 can be calculated using CSiO2 = kSiO2ε0A/dSiO2 and kSiO2 are the thickness and 

dielectric constant of the SiO2 back-gate dielectric layer, respectively; ε0 is the vacuum 

permittivity. Therefore, ΔVT = qNTNF/CSiO2 = qdSiO2σTNF/kSiO2ε0.  
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