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ABSTRACT

Controlling Hazardous Releases while Protecting Passengers in Civil Infrastructure
Systems

by

Sara P. Rimer

Chair: Professor Nikolaos Katopodes

The threat of accidental or deliberate toxic chemicals released into public spaces

is a significant concern to public safety, and the real-time detection and mitigation

of such hazardous contaminants has the potential to minimize harm and save lives.

Furthermore, safe evacuation of occupants during such a catastrophe is of utmost

importance. An illustrative example of such a scenario is the 1995 sarin-gas terror-

ism attacks in the Tokyo subway system, where sarin-gas permeated multiple subway

lines after being released by the perpetrators, causing twelve deaths and hundreds

of injuries. Not only were emergency response teams ill-prepared to deal with the

catastrophe, but the civil infrastructure system itself lacked ability to detect and

mitigate this chemical attack, or to survey and disseminate evacuee behavior to ac-

celerate evacuation. The specific objective of this research is to develop intelligent

public infrastructure systems capable of automatically responding to and minimizing

hazardous contaminant disasters through (i) the real-time sensing and control

of contaminants and, (ii) the modeling of and communication to occupants

as they evacuate.

xxi



This dissertation first works to address such public safety scenarios through the

development of a flow control computer model that combines computational fluid

dynamics and model predictive control optimization techniques. Public spaces de-

fined by a long conduit (e.g. airport terminal) allow us to assume unidirectional,

ambient flow. We set up our long conduit domain with a series of sensor arrays and

actuators along the wall boundaries, which are used to detect and mitigate the con-

taminant. The limitations of the computational flow control model is tested when

used in real-time scenarios by building a physical model with its own programmable

sensor-actuator control system.

Additionally, this dissertation addresses the evacuation of occupants inside of

public spaces when faced with a threatening, dynamic environment by developing an

evacuation agent-based model in which the agents (i.e. the evacuees) make egress

decisions within a simplified public space that has a spreading contaminant. This

agent-based evacuation model is coupled with the computational flow control model,

which subsequently provides the agents with a realistic contaminant they must inter-

act with as they evacuate, and in which the contaminant is controlled based on agent

location and potential contaminant exposure.

This research is novel in its ability to bridge a social science computational model

with a physical systems computational model allowing both systems to interact with

each other. Additionally, this research is able to demonstrate real-time aptitude of

cyber-physical fluid flow control through the construction and deployment of a physi-

cal prototype able to detect and mitigate the contaminant through a sensor-actuator-

controller system. This research will be used by civil infrastructure systems desiring

to improve their resilience and response to such hazardous contaminant threats.
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CHAPTER I

Introduction

1.1 “Breathing in a vacuum”

It was just after 8:00 AM and Kiyoka Izumi was on her way to work. This day began

the same as any others. Her daily commute took just a little over 30 minutes consisting

of three subway lines, thus she needed to change trains twice. As most standard jobs in

Japan begin at 8:30 AM, the morning commute can become quite overwhelming with trains

packed to the brim with passengers rushing to be on time. Kiyoka always left early enough

such that it would allow her to just miss the peak of morning commute passengers, being

one of the few who would arrive early to work. She was on the second leg of her trip in the

first car of the Chiyoda line that was just beginning to fill up, when she took a breath and

all of a sudden felt an intense, sudden pain, her chest seeming to freeze as though she was

trying to breathe in a vacuum. This void of breath soon turned to acute coughing followed

by terrible nausea. She realized she was not the only one – everyone else in her car was

also choking and coughing. Without much thought, she left her car at the Kasumigaseki

stop to catch the Hibiya line for one final stop before reaching her office. As she left the

car, a station attendant was waved in by other passengers to remove a strange plastic bag,

that attendant dying soon after. As she reached the Hibiya stop, the most bizarre sight

emerged of a completely abandoned Hibiya train, which immediately coincided with with an

emergency announcement for everyone to evacuate the station. It was then that Kiyoka
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began to realize how sick she felt, and as she evacuated, she was overwhelmed and horrified

by the sight of station attendants and civilians randomly lying on the ground, unconscious,

many with spoons shoved in their throats to keep them from choking on their tongues. As

she says of the scene she observed: “‘hell’ describes it perfectly.”

[story adapted from Murakami (2010)]

On March 20, 1995, the most serious attack on Japanese soil since World War II

occurred at the hands of the Aum Shirinkyo doomsday cult and terrorist group [Juer-

gensmeyer (2005)]. During the peak of morning rush hour, five members of the cult

walked into five different trains of three different subway lines on the Tokyo subway

system carrying approximately 1 litre each of liquid sarin in two plastic bags cov-

ered by newspaper. Each of them dropped their respective bags on the ground and

punctured them with sharpened umbrellas. As sarin is one of the most volatile of

all nerve agents, the liquid soon began to vaporize and spread through the trains,

eventually killing 12 civilians, seriously injuring over 50, and affecting over 5000, in-

cluding Kiyoka. Due to the movement of passengers and trains, the strategic release

of the sarin gas in such a location as a subway system is ripe for causing maximum

spread and corresponding exposure for occupants in the system.

Sarin was developed by the German Nazis during World War II to be used as a

chemical agent in warfare. It was actually discovered somewhat by accident as Ger-

man researchers in the 1930s were in the process of developing improved insecticides,

and instead invented the first class of nerve agents [Evison et al. (2002)]. Sarin was

a later iteration of and ten times more potent than the nerve agent first discovered.

In fact, the tiniest of pin drops of the liquid form of sarin is enough to kill a human

being. While the Germans never actually used sarin against the Allies during World

War II, by some estimates, they did have a stockpile of up to 10 tons of it. Since

then, the chemical has been used multiple times in conflict to a varying degree, with
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production in the U.S. officially ending in 1957, and the United Nations Chemical

Weapons Convention banning the chemical agent in 1993 [Henderson (1999)]. How-

ever, even with widespread ban of chemical agents such as sarin, their allurement

still attracts both governments involved in conflict and terrorist organizations with a

desire to cause widespread terror and destruction on a civilian population. Actually,

the 1995 attack was not the first time that the Aum Shirinkyo cult first used the

chemical: a similar attack was carried out in 1994 when sarin was released creating a

cloud of gas that permeated through various targeted neighborhoods of Matsumoto,

Japan killing eight and harming over 200 [Okumura et al. (1998)]. Most recently,

sarin gas was used by the government of Syria during its Civil War [Dolgin (2013)].

Obviously, the development and use of sarin in warfare and terrorism is not the

first time what is known as Chemical, Biological, Radiological (CBR) weaponry has

been used. In fact, stories of CBR weaponry use date back to the Ancient Greek

times [Szinicz (2005)], with their most prolific use in modern times occurring during

World War I. Nevertheless, sarin represents a clear example of the type of threat CBR

weapons pose to civilian populations. Additionally, while present-day usage of CBR

weapons is rare, intolerable, and formally banned by the majority of the world, its

use is still present, and is often on the imaginations of the most creative and deviant

of groups wanting to spawn harm.

What is most alarming is that though many of the most technologically advanced

countries have been at the forefront of developing modern CBR weapons and tech-

nologies, the civil defense of these countries against such threats is laughably un-

derdeveloped, with most focusing on personal protective equipment rather than more

extensive and intelligent civil infrastructure protection [Henderson (1999); Falkenrath

et al. (1998)]. Fortunately, since the attacks of September 11, 2001, and the more

recent localized terrorist threats, the focus on civil defense, particularly regarding

potential CBR attacks has been on the upswing.
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In the U.S., there have been a few studies on the potential widespread threat of

CBR attacks on the civilian population in highly populated environments. For ex-

ample, in Manhattan there have been a few attempts to understand the basic urban

consequences if a CBR agent were released into the city’s subway system. In 1966,

U.S. Army researchers carried out a field test in which bacillus subtilis was released

into the 23rd St subway station via smashed bulbs, and its concentration was mea-

sured around the city after different locations to learn about its dispersion. Within

only five minutes after its release, the bacteria was detected at every subway station

between 14th and 59th street; and within only four days, it was estimated that over

one million people were exposed to it, demonstrating its reach. Furthermore, even

though the tracer agent released in this study was deemed safe enough to ingest by

subway passengers for the low concentration used, it was still quite a controversial

test as bacillus subtilis is actually known to cause food poisoning [Carlton (2001)].

This sort of field test was carried out once again in 2013, and yet again in 2016,

both funded by the Department of Homeland Security with researchers from the

Brookhaven Laboratory. The most recent study used aerosol-dispensed particles as

what would be more characteristic of biological agents such as anthrax, and was once

again released in the subway system to measure its dispersion.

Yet, what limits the success of these field tests is that the scope of what they are

able to portray is often futile to the largeness of the problem at hand. Thus, a ques-

tion exists as to how to better understand the large-scale dispersion of CBR agents in

highly populated environments with minimal invasiveness. Computational methods

modeling these scenarios serve as an attractive alternative to disruptive, intensive,

and often controversial field tests.

The physical spread of a CBR agent can be viewed as a rich fluid dynamics prob-

lem. Many recent Computational Fluid Dynamics (CFD) studies have been carried

out to model urban environments that have been exposed to a CBR agent [Settles
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(2006), Branscomb et al. (2002)]. However, these CFD studies often only investigate

the outdoor urban environment, with only a few modeling the indoor environment

[Camelli and Löhner (2004)]. Moreover, all of these investigations are concerned

with understanding the spread of the contaminant, without consideration as to how

to control it. Finally, the concern of civilians in such scenario, particularly as a means

to reduce exposure to such contaminants, can also be a means of enriching and ac-

companying this overall civil engineering scenario.

The ability to detect and mitigate a hazardous contaminant in a public space in

real time, while also considering the safe and efficient evacuation of civilian occupants

is the motivation behind this dissertation and the attempts to solve such a problem

are explored throughout this thesis.

1.2 The Control of Fluid Flow

Flow control is the manipulation of the flow field of a fluid (e.g. water, air) to

meet some specific desire. It is considered a subfield of the branch of science known

as fluid mechanics, the physics of fluids. The concept of flow control can be demon-

strated quite well by looking at evolution in the natural world of species that have

exploited a fluid in their environment for their own benefit. For example, consider

a tall, cylindrical cactus with complex surface geometry. Because cacti face high

windspeed, it has been hypothesized they have evolved via natural selection to have

longitudinal cavities and corresponding spines so that wind forces, such as drag and

vortex shedding, are minimized [Bearman and Harvey (1993)].

The finesse and efficiency with which these aspects of nature are able to control

their surrounding fluid is a nontrivial problem that researchers are only at a fragment

of being able to understand and recreate. However, the examples demonstrate the

beauty, complexity, and prospects of the field of flow control.

Much like the majority of the engineering sciences, the pragmatic utility of flow
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control proceeded the scientific development and understanding of the field. The ex-

istence of humans designing tools that are able to harness the flow field of a fluid

for improved performance can be seen with the development of weapons in ancient

civilizations, such as boomerangs [Gad-el Hak (1989)]. Additionally, the emergence

of agricultural societies over 8,000 years ago is what brought the complicated water

distribution systems of canals and aqueducts of different Ancient empires [Mays et al.

(2007)].

While flow control has always been inherent in civil engineering hydrodynamics

(i.e. liquid flow), the field of flow control as it can be seen today was majorly shaped

by the modern development of aerodynamics (i.e. gas flow), which came about with

the advent of aircraft in the late 19th and early 20th centuries. In particular, the

development of “boundary layer theory” by Ludwig Prandtl in 1904 [Prandtl (1904)]

was integral to describing the phenomena of separation of fluid around a stationary

or moving object in a flow field; subsequently, boundary layer theory serves as the

basis of modern aircraft design. Prandtl first introduced experiments that were able

to manipulate the development of the boundary layer around an object, which can

for example reduce pressure drag and increase lift, both improving the speed and

efficiency of aircraft performance. Prandtl’s initial work on boundary layer theory

continues to be at the center of flow control applications1.

Since the birth of modern fluid flow control by Prandtl, the continued devel-

opment of flow control techniques and their applications have mirrored that of the

political landscape of the industrialized world, and the corresponding major scientific

breakthroughs. World War II and the Cold War propelled much of the scientific de-

velopment in the middle of the 20th century. Therefore, much of fluid flow control

during that time revolved around improved aircraft/watercraft and missile/torpedo

1For more elucidation on the fluid mechanics of these phenomena, the reader is di-
rected to the excellent film series by the National Committee for Fluid Mechanics Films
which can be viewed at the following link: https://www.youtube.com/playlist?list=

PLfF--3o8i4r82vJ0kjCVYgqKgyVM5QwN0.
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performance. Additionally, the corresponding development of computational meth-

ods during this same time period revolutionized the field of fluid dynamics by driving

the development of CFD [Gad-el Hak et al. (2003)], subsequently contributing to

breakthroughs in the design and refinement of watercraft and aircraft. During the

1970s and 1980s, the energy crisis and corresponding environmentalism focused flow

control efforts on improving the fuel efficiency of civilian vehicles (e.g. reducing drag)

on land, sea, and air. Additionally, the formation of wave theory in the 1950s in-

stigated the development of wave and free-surface control in hydraulic applications.

Since, flow control continues to develop in manners that reflect the expansion of com-

putational capacity and performance, plus improved knowledge and understanding

of turbulence. Furthermore, the scope of flow control applications has expanded be-

yond aerodynamics and hydraulics, influencing such fields as biofluids [Quarteroni

and Rozza (2003)].

In the most recent decades, the development of Microelectromechanical Systems

(MEMS) has completely transformed the underlying objectives of flow control. No

longer is flow control primarily passive; instead, the ability to use MEMS devices by

inputting energy into a flow field in order to exploit it has expanded the reach of the

field. Therefore, the methods of flow control have progressed beyond a priori design

optimization, to the ability to dynamically control a flow field utilizing MEMS. For

example, consider the airfoil of an airplane: mini-jets have now been placed along said

airfoil to pulsate air in strategic locations and times such that the boundary layer is

changed for the dynamic needs of airplane flight [Gad-el Hak et al. (2003)].

What is most exciting about the development of MEMS and its application to

flow control, is the corresponding recent developments of data and information sci-

ence. With the ability to use sensors to read information about the flow field, and use

MEMS to react and control the flow field based on the information read, the ability

to carry out flow control in real-time is the newest endeavor to this frontier.
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1.3 No Need to Panic

On the 15 of April in 1989, almost 100 people were killed, and over 700 were

injured, at the Hillsborough football stadium in Sheffield during a professional soccer

(football) game [Richardson (1993)]. These deaths and injuries occurred prior to the

start of the match as fans were entering the stadium, moving through “turnstiles” to

enter their assigned “pens.” As fans tried to reach their respective pens before the

match was to begin, they began pressing against crush barriers and fences due to

overcrowding. To ease overcrowding at the entrance to the stadium, officials decided

to open an exit. However, rather than reduce the load of the crowd, the opening of this

exit instead lead to an influx of even more people. Eventually, one of the barriers gave

way, and fans began trampling over one another in an effort to escape, subsequently

leading to the large number of deaths and injuries, and what is considered the worst

disaster in British sporting history (as well as one of the worst worldwide).

These types of human chaos in public spaces – sometimes known as “crushing” or

“stampedes” – are nothing new, particular for sporting events and large festivals. In

fact, as recently as 2015, over 2,000 people were killed in Mecca, Saudi Arabia in a

human stampede during the Hajj Pilgrimage2.

However, what is notable about the Hillsborough football stadium crushing event

is the recent decision by a British jury that the victims were actually “unlawfully

killed” [Mansfield (2016)]. For the past 27 years, police and safety officials pushed a

narrative that those caught up in the incident were “drunk” and “rowdy,” with their

“reckless” behavior contributing to the disaster, and thus the death and injuries were

their personal fault. Yet, after evidence was provided to the contrary – that actually

those caught in the stampede were often behaving rationally, sometimes working to

save one another – the jury instead ruled that the fault was at the hands of the police

2An interesting interactive article on the Hajj crushing event can be found here: http://nyti.
ms/2cjo51y.
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and safety officers due to the decisions they had made.

The decision by the jury falls in line with the individual and social psychological

research that has occurred over the past few decades. Researchers have found that

contrary to the narrative often pushed by everyday discourse – that under situations of

distress, humans are likely to act with “hysterics” and “panic” and without regards to

those around – that actually, individuals behave quite rationally, and make decisions

to protect themselves and others, while also trying to mitigate or minimize the disaster

at hand [Quarantelli (2001)].

This case study of the Hillsborough football stadium crushing demonstrates two

points:

1. First, that in chaotic situations such as human stampedes, individuals actually

behave and make decisions rationally ; a heightened sense of peril or fear does

not equate to a panic behavior.

2. Second, public officials and officers have a duty to the public to make decisions,

design these spaces such that large-scale evacuation disasters such as those

described are minimized.

Therefore, engineers have a duty to take into consideration the potential for disasters

and the subsequent safety of human occupants when designing public spaces, struc-

tures, and buildings3.

Now obviously, the evacuation out of large-scale structures such as stadiums is

nothing new. Additionally, engineers have responded to such catastrophes accord-

ingly. For example, many stadiums no longer include standing-only sections in their

designs [Bale (2000)]. However, there still exists a need to continually improve upon

3Actually, the structural engineering firm that had worked on the area of the Hillsborough Sta-
dium where the disaster occurred was found partly culpable in the recent jury’s decision. It was
found that the firm had performed some miscalculations regarding the safety aspects of their work.
After the jury’s decision, the firm even issued an apology. http://www.liverpoolecho.co.uk/

news/liverpool-news/hillsborough-structural-engineers-say-sorry-11243837
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these public spaces, their design, and the response to such disastrous events. Fur-

thermore, this need stretches further than just focusing on stadiums or large-scale

public activities: a variety of spaces exist (e.g. airports, subway tunnels) that are

vulnerable to catastrophic events that could cause unnecessary human death and in-

jury if design of these public spaces or immediate response to assist with evacuation

is poor4. Subsequently, the need to better understand evacuation dynamics in order

to improve the design of spaces, and response to catastrophic events is a rich research

area intersecting both the fields of individual and social psychology, and civil engi-

neering.

In the past few decades, many efforts have been made to understand evacua-

tion dynamics from a building. These efforts are usually limited to studying human

behavior in past real-world evacuations where comprehensive data is often lacking

[Aguirre et al. (2011)]. Furthermore, it is usually impractical to recreate emergency

situations in order to study evacuation dynamics due to its difficulty, expense, and

potential danger. Thus, a research need exists to understand evacuation dynamics

in complicated situations where there is limited data and an inability to recreate

real-life evacuation scenarios. The development of computational models to simulate

evacuation situations is therefore appealing. Most promising is the use of bottom-up

computational methods, such as agent-based modeling, that allow for heterogenous

human behavior. Much like flow control, an exciting yet unexplored opportunity for

these sorts of models is (i) their coupling with physical, dynamic environments, and

(ii) their potential to be deployed in real-time. The former is explored throughout

this dissertation, while the latter is pondered upon in its conclusion.

4Ironically, false alarms and subsequent evacuations out of airports seemed to be occurring almost
weekly during August 2016. http://nyti.ms/2aMS57G, http://nyti.ms/2bvTYFU
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1.4 Overview of Intellectual Contribution

This dissertation seeks to develop a comprehensive mean of approaching the civil

engineering scenario described at the beginning of this introduction from two fronts:

(i) the detection and mitigation of a hazardous contaminant released into a public

space and (ii) the safe and efficient evacuation of occupants inside such a space during

this scenario. There are three components to this research:

1. This research first addresses such public safety scenarios through the develop-

ment of a flow control computer model that combines computational fluid dy-

namics and model predictive control optimization techniques, which we will call

the CFD flow-control model. The CFD flow-control model is for wall-bounded

public spaces defined by a long conduit (e.g. airport terminal), which allows

us to assume unidirectional, ambient flow. The CFD flow-control model uses

the underlying Navier-Stokes equations with a scalar transport equation for the

contaminant injected into the flow field. These equations are programmed using

the open-source CFD software suite, OpenFOAM. We set up our long conduit

domain with a series of sensor arrays and actuators along the wall boundaries,

which are used to detect and mitigate the contaminant (see Figure 1.1).

This CFD flow-control model is based on a model developed previously

by a student in this research group who was able to demonstrate boundary con-

trol of a contaminant in a similar elongated conduitWarnock (2013b). This stu-

dent also investigated contaminant control in free-surface flows. This research

builds upon this model by exploring the influence of changes in “protected ar-

eas” in the domain. Additionally, this research applies the CFD flow-control

model to a physical prototype that has been constructed, and an evacuation

behavioral computational model that has been developed.

2. This research tests the limitations of the CFD flow-control when used in real-
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time scenarios by building a physical prototype with its own programmable

sensor-actuator control system. This physical prototype is able to ‘detect’ and

‘mitigate’ in real-time a ‘contaminant’ released into the ambient flow in a test

section. The basis of the prototype design is a blower wind tunnel, where an

upstream fan pushes air through a series of screens, honeycomb, and contraction

to provide uniform flow at the beginning of a test section. The test section

reaches over 6 m long (with a cross-sectional area of 0.6 × 0.6 m2) and has a

programmable sensor-actuator control system installed.

3. Additionally, this research investigates the evacuation of occupants inside of

public spaces when faced with a threatening, dynamic environment by devel-

oping an Agent-based Modeling (ABM) in which the agents (i.e. the evacuees)

make egress decisions within a simplified public space that has a spreading con-

taminant. A basic evacuation ABM has been developed to test the emergent

behavior of agents individually assigned a specific trait related to their evac-

uation decision-making. For this hypothetical scenario, agents must evacuate

and also try to minimize their exposure to the ‘contaminant.’ Each agent is

assigned a hypothetical ‘risk tolerance’ trait, which is their likelihood to ex-

pose themselves to the contaminant if it allows them to move closer to the exit.

The evacuation ABM was programmed using Repast agent modeling toolkit.

The evacuation model is coupled with the CFD flow-control model, which sub-

sequently provides the agents with a realistic contaminant they must interact

with as they evacuate.

This research distinguishes itself in three particular ways. First, while active feed-

back flow control is already a research area in many different engineering disciplines

[Gad-el Hak (1989), Bewley et al. (2001), Jameson et al. (1998)], it rarely involves

the removal of a mass from an ambient fluid flow–an application specific to civil en-

gineering context. Second, most active feedback flow control work is limited in its
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capability to be implemented in real-time [Gad-el Hak (1989), Bewley et al. (2001),

Duriez et al. (2014)]. By applying the computational model to a customized phys-

ical prototype, this research has the the potential to develop significant techniques

to progress the real-time capability of active feedback flow control. Third, while

many different evacuation ABMs have been developed for different emergency sce-

narios [Pan et al. (2007), Pelechano et al. (2005)], most do not incorporate dynamic

environments, such as a contaminant penetrating a public space.

x

z

y
Contaminant 
plume 

Sensor arrays 

Actuators 

Figure 1.1: Sensor-array schematic for underlying flow control problem.

1.5 Structure of Thesis

This dissertation organizes itself around the three areas discussed in Section 1.4:

• The CFD flow control model is developed in Chapter II, including the underly-

ing equations used, and how they are computationally estimated. This chapter

presents basic simulations demonstrating the CFD flow-control model, partic-
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ularly focusing on the influence of changing the protected area of the model’s

domain.

• A physical model designed and built to test the real-time feasibility of the CFD

flow control model is presented in Chapter III. The physical model is able to

detect and remove a contaminant in real-time, however, potentially undesirable

mixing and fluid rotation also occur as a result of the control. The fluid behavior

in the physical is compared to the CFD flow control model.

• Third, the evacuation ABM is developed, presented, and coupled with the CFD

flow control model to simulate the control of a contaminant in consideration of

civilians present in Chapter IV.

The dissertation concludes with reflection on this research, discussing its accomplish-

ments, and also limitations in Chapter V. The possibility for future research is also

discussed, particularly envisioning the long-term vision to move this research forward.
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CHAPTER II

Flow Control

The flow control strategy used is essentially the combination of two problems:

fluid dynamics and optimization. Actually, it is the area of “optimal control” that is

what describes this bridging. While optimal control is just one area within control

engineering, it is the method used most often for physical systems that wish to stay

true to their corresponding set of governing equations.

This chapter builds the CFD flow-control model by (i) first, describing one clas-

sification of flow control methods that is widely used by the flow control community

in Section 2.1; (ii) then developing the CFD model for the underlying fluid flow in

Section 2.2; (iii) followed by bringing in optimization to control the fluid flow 2.3.

Case runs are carried out and described in Section 2.4 for results based on where the

contaminant should be minimized, and how the capacity of the boundary actuators

influences the optimizing behavior. Finally, discussion on these results, and further

implications for the CFD flow-control model takes place in Section 2.5.

2.1 Classification of Flow Control Methods

As discussed earlier, the main contributions to the field of flow control lie in the

applications of aerodynamics, primarily in the applications to vehicle performance.

Thus, naturally researchers at the frontier of modern flow control have classified the
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different methods behind flow control, resulting in a breakdown that can be seen in

Figure 2.1. Broadly speaking flow control strategies can be separated into two main

categories: passive and active. An active flow control system can be simplified to

being a system with a set of sensors and actuators: sensors used to measure the state

of the flow field, and actuators used to input energy into the system to change the

flow field. Whereas passive flow control is majorly a priori shape optimization (e.g.

airfoil shape design).

Flow control 
classification

Passive Active

FeedbackFeedforward

ReactivePredetermined

Adaptive Optimal 
control

Dynamical 
systems

Physical 
model 

Figure 2.1: Classification of control strategies.

As can be seen in Figure 2.1, active flow control can be predetermined such that

energy is input into the flow field without regards to its state. Simply speaking,

predetermined active flow control is an active flow control system absent of sensors.

Thus, nothing in the flow field is measured, but a predetermined action is still taken

by the actuators (see Figure 2.2).

Reactive active flow control is categorized by two types: feedback and feedforward.

In both of these types of flow control, sensors are used to read the state of the flow

system, and a control action is carried out based on what is read. However, the
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major difference between feedback and feedforward is that active feedback flow control

systems continue to read the flow field and adjust the control action accordingly until

the desired state of the controlled variable is met. Figure 2.2 shows the different

control loops for predetermined, feedforward, and active feedback flow control.

Controller
(Actuator)

Power

Controlled variable

Controller
(Actuator)

Sensor
Feedforward
signal

Measured variable

Power

Controlled variable

Re
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Feedback element

(Sensor)
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(Actuator)

Measured/controlled 
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a) Predetermined control

b) Feedforward control

c) Feedback control

Figure 2.2: Different types of control loops for active flow control.

The type of control that has the most potential is active feedback flow control,

in which sensors are used to read a flow field, and the system then has the potential

to change its control actions via actuators based on what is read. These systems in

particular have the potential to carry out control in real-time, thus control actions
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can react to real changes in the environment.

Bewley and Moin (1994) have specified four sub-categories of active feedback flow

control. It must continue to be noted that these four subcategories are most likely

somewhat limiting due to their specificity (i.e. aerodynamics of vehicle performance)

of application, and the broader field of engineering control has a multitude of active

feedback control strategies that might also prove fruitful to flow control. However, for

this underlying research, the four subcategories still provide a basis for how to look at

the flow control problem at hand. Additionally, in Chapter III, a distinction will be

made between prior work done in this research group using one type of flow control

technique (i.e. dynamic systems) versus the one used throughout this dissertation

(i.e. optimal control). These four subcategories for active feedback flow control are

discussed further.

1. Adaptive schemes. Adaptive schemes use an empirical approach to flow control.

A flow control algorithm is developed by iteratively training itself to produce

the desired output based on given measurements. System identification and

controller determination are carried out without regard for the physical phe-

nomena taking place. Instead, parameters are adjusted by the user and/or the

optimization scheme itself to tune the feedback control law. Usually, adaptive

systems are based on some sort of control law for linear dynamic systems and

are best used for simple systems. As will be discussed in Chapter V, the appli-

cation of adaptive schemes to well-defined physical systems has a lot of future

possibilities, particularly as using adaptive methods with high fidelity to non-

linear partial differential equations is the focus of more recent developments

[Washabaugh et al. (2016); Duriez et al. (2014)].

2. Intuitive-based schemes. Intuitive-based flow control methods are usually used

when the physical phenomena taking place is well understood a priori. Intuitive-

based control methods usually develop first from physical experiments. Many
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examples of intuitive-based methods can be seen in applications which involved

the active cancellation of turbulence, or delaying the onset of turbulent transi-

tion in boundary layers. However, similar to adaptive schemes, intuitive-based

methods are ill-suited for problems in which the physical processes are not com-

pletely understood, such as for turbulent flows.

3. Dynamical-systems schemes. Dynamical-systems schemes, often referred to as

reduced-order models, extrapolate from linear systems theory and aim to de-

compose a complex physical phenomena, such as turbulence, into a finite num-

ber of representative modes. For example, the complexity of turbulent flow

lends itself well to a dynamical systems approach as by having large spatial and

temporal scales, it can be reduced down to systems of a much lower dimension.

4. Optimal control. The final approach, optimal control, provides a rigorous and

systematic method to derive feedback control laws. Unlike the other three

approaches, optimal control theory can be applied directly to the equations of

motion that govern the flow, such as the Navier-Stokes equations. The goal of

optimal control is to minimize a cost functional that is applied to the governing

flow equations and specifically written for the physical problem at hand. The

cost functional can be developed to represent a wide array of flow properties,

such as turbulent kinetic energy, drag, etc. While on the first look, this type of

control seems the most desirable as it is the truest to the governing equations at

hand. However, the cost (e.g. computational expense) of carrying out optimal

control makes it less desirable for certain applications.

Because it is the strategy that is most able to be true to the underlying physics of fluid

dynamics, the control strategy used throughout this research is optimal control. One

simple way of looking at optimal flow control is such that it can be reduced down to

essentially the bridging of two different problems: fluid dynamics and optimization.
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Exploiting a fluid field can be looked at as a means of searching for the best, or

rather “good enough” solution to manipulating the flow field for some particular

need. Relating back to the earlier discussion of flow control, the problems of fluid

flow around an airfoil can be looked at as an optimization problem in which the

objective is to design the airfoil such that drag is “minimized.”

In particular, the optimal control method is used in conjunction with what is

known as Model Predictive Control (MPC) and is presented in further detail in Grune

and Pannek (2011), in which the “optimal flow control” strategy is implemented for

only a short time period before reading in new information and adjusting this optimal

control strategy. The details on the implementation of MPC are presented later in

this chapter in Section 2.3.2. Before we are able to present on the optimization, we

must first develop a model for what exactly we are wanting to optimize, which is

discussed throughout this next section.

2.2 Computational Fluid Dynamics Model

It is naive to believe that any more than a brief overview on the fields of fluid

mechanics can be presented throughout this thesis. Instead, the reader is directed to

far more compelling and comprehensive texts on the subject such as Anderson and

Wendt (1995); Moukalled et al. (2015); Ferziger and Peric (2012); Wendt (2008).

However, for the sake of being loyal to the complex physics underlying the mechanics

of fluids, a brief overview is provided here, particularly with regards to the develop-

ment of computational methods for fluid dynamics.

Computational science has afforded scientists and engineers the ability to study

and model physical systems to which a closed form solution is not possible or whose

existence is unknown. It is interesting that the development of computation in the
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sciences and engineering began actually with brute force human computing1. Because

many different computational applications involve thousands, and possibly millions,

of basic individual computations, the use of humans to carry out these computations

obviously has its limitations. Thus, the development of high-speed digital computa-

tional machines is what has truly led to the modern field of computational science as

it is seen today. The advancement of computational capacity and efficiency over the

past half decade, and the subsequent reduction in computational costs, has lead to

the increased ability to model and simulate more diverse and complicated systems.

Originally, computational science was seen solely as an aid to the theoretical and

experimental arms of science. However, the ubiquity of computational science and

its applications is now itself considered its own paradigm with unique theory and

practice norms.

To understand the dramatic influence the field of computational science has had

on the field of physics, one does not need to look any further than CFD. A complete

solution to the equations used to describe the motion of fluid flow, known as the

Navier-Stokes equations (described later in this chapter), are considered one of the

greatest unsolved problems in physics of the century2. Thus, the ability to computa-

tionally estimate the solutions to these equations makes fluid dynamics a particularly

relevant field for the application of computational science. In fact, CFD has com-

pletely revolutionized the inherent potential to the field of computational science, as

it is often one of the driving forces behind faster, bigger, and more efficient compu-

tational machines and methods [Graves Jr (1982); Wendt (2008)].

The means to computationally estimate the solution to a set of partial differential

equations involves reducing the equations to a set of solvable algebraic equations,

1The term “computer” actually referred to a person who performs calculations. Notably, many
significant contributions in the sciences and engineering were carried out by labs of women “com-
puters” Des Jardins (2010).

2A solution to the Navier-Stokes equation is incidentally one of the Clay Mathematics Institute
“Millennium Prize Problems.”
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and iteratively calculate solutions throughout a domain while moving through space

and time. Obviously, the ability to do this is nontrivial, and is itself the motivation

behind the field of CFD.

For the most part, we can develop our CFD model using the following steps:

(i) Develop model of the physical system to be studied (i.e. geometric domain and

governing equations),

(ii) Discretize the geometry of the physical domain to create computational domain,

(iii) Discretize governing equations into a set of algebraic equations,

(iv) Determine the initial and boundary conditions.

(v) Implement an iterative solver over space and time to find a solution.

Beyond these five steps, another decision must be made concerning the method of

programming and subsequent deployment of software to assist in modeling our system.

While in the past, this step was usually a commonplace decision that centered on

choosing a procedural programming language to implement the above steps, the recent

use of object-oriented programming instead of procedural programming for the ease

of model development has favorably complicated this decision. Thus, as a final step

for developing our CFD model, we have:

(vi) Employ CFD software to carry out the above steps.

The details of these steps for the CFD portion of the flow control model are presented

throughout the following sections.

2.2.1 Geometric Domain

We choose our domain to represent a long conduit that is comparable to those

in the public spaces being studied (e.g. airport terminal) where the length is signifi-

cantly greater than the width. For computational simplification, we have the model
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be 2 −dimensional. Furthermore, we choose our geometric domain to be described

using the Cartesian coordinate system (otherwise known as rectangular coordinates).

For this space, we assume that the bulk fluid enters at the upstream end of the

space, and exits at the downstream end, thus signifying unidirectional ambient fluid

flow. We then assume that a contaminant plume is “injected” at a single point in the

upstream portion of the domain.

While not important until the control portion of this model in Section 2.3, we

assume there are boundary ports along the wall of the domain serving as the “actu-

ators” able to draw out the contaminant. These actuators can be compared to the

ventilation ports seen inside of a public space (see Figure 2.3). Additionally, in our

domain, we have “sensors” at the location of what are called the “protected points,”

which will determine how exactly we will control the flow field. Figure 2.4 shows our

domain with example protected points. It should be noted that the image in Figure

2.3 shows a public space from a side view, while Figure 2.4 shows a top view of the

system. In an actual public space, these protected points could be taken as a variety

of objects in our space. As will be discussed in Chapter IV, we take these points to

be “people” who are evacuating.

Figure 2.3: Example ports in a ventilation system.

This geometric domain obviously does not recreate that of a complex public space

being studied. For example, it is 2 −dimensional. However, this simplified space in-

stead allows for basic assumptions to be made about the underlying fluid flow which
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Figure 2.4:
Example domain that is 10 m long and 1 m wide with protected points
(denoted as yellow).

subsequently simplify the governing equations. Thus, the purpose is not to simulate

the scenarios we are studying, but instead to provide a model that evinces the im-

portant fluid phenomena inherent to these scenarios of which we are trying to better

understand.

2.2.2 Governing Equations

To start, we can simplify our flow model without major losses of understanding

in our application by making the following basic assumptions:

• Viscous. The fluid is viscous, thus it has some resistance to shear stress.

• Newtonian. The fluid is Newtonian, which constitutes the rate of shearing stress

of the fluid is linearly related to the angular deformation.

• Incompressible. The fluid is incompressible such that that the fluid density is
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constant for its given velocity. This assumption can be made in our application

because all of the fluid we will be modeling has low velocities such that the

corresponding Mach number is less than 0.3 (where the Mach number is defined

as the ratio of the speed of the fluid flow speed to the speed of sound).

• Shock wave free. Because the fluid is incompressible, this also allows us to

assume the fluid is free of “shock waves.” Thus, our computational grid and

schemes to not need to take into consideration the severe discontinuities that

would exist in the flow were there a shock wave.

• Constant thermo-physical properties. Our fluid is isothermal and has constant

temperature conditions. This assumption allows us to exclude consideration of

the energy equation in our model.

It should be noted that the assumptions above allow us to use many different types

of fluids as our bulk fluid, depending on the application. For example, in hydraulic

applications, it would be more appropriate to use water as the bulk fluid. While in

public buildings, air is the more appropriate fluid. The assumptions apply to both of

those applications. However, for this model, the bulk fluid used will be air.

We must also make assumptions regarding the contaminant that is released into

our bulk fluid:

• Non-reactive. We assume our contaminant is non-reactive, which means it does

not undergo any sort of chemical or biological transformation while in the flow.

• Neutrally buoyant. Our contaminant is neutrally buoyant, meaning the contam-

inant’s density is equal to the density of the fluid in which it is immersed and

gravitational effects can be dismissed.

Based on these assumptions, the contaminant in this problem behaves most like a

tracer element (or often referred to as “passive scalar”) released into the flow, which
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significantly simplifies the underlying equations used to describe our system. Fur-

thermore, these assumptions simplify our system such that behavior of the contami-

nant is the same whether analyzing the system in 2−dimensions from the side-view

(xy−plane) versus top-view (xz−plane). The interchangeability of coordinate planes

is important particularly in Chapter IV when human evacuation around a plume is

analyzed from the top-view. When applying our model to an actual system at hand,

this interchangeability in coordinate planes may not be appropriate. For example,

control actions in a public space might be more appropriate for horizontal control

(i.e. xz −plane), thus a top-view analysis would be more appropriate (or vice versa).

Or as another example, many contaminants may be sensitive to gravitational effects,

thus a side-view analysis would be more appropriate. For this chapter, we look at

our system from a side-view (although our “neutral buoyancy” assumption means the

fluid behavior is interchangeable for a top-view analysis).

It should also be noted that the assumptions above possibly disregard many of

the critical physical, chemical, and biological processes that might occur in such a

scenario. For actual scenarios in which specific contaminants are considered, these

assumptions may not hold, and therefore, the underlying equations described below

would need to reflect the specifics of the contaminant as the control scheme could

significantly change. For example, much research has been carried out regarding fire

in public spaces in which its heat flux leads to a phenomena of “horizontal buoyancy”

in which stratification of smoke and the ambient fluid the smoke is impregnating is

critical in control decisions for the smoke removal [Wu and Bakar (2000)]. Including

more specific processes would be a rich research question in and of itself adding sig-

nificant nuance to the problem at hand, and could serve as its own continued research

project.
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2.2.2.1 Conservation of Mass and Momentum

We can now define the “simplified” governing equations for our fluid flow as a

result of the assumptions made. Viscous fluid flow is governed by a set of equations

known as the Navier-Stokes equations, derived from the continuity equation and ap-

plying Newton’s second law to fluid motion, and named after Claude-Louis Navier

and George Gabriel Stokes. The Navier-Stokes equations are defined as:

∇ ·U = 0 (2.1)

∂U

∂t
+∇ · (UU) = g −∇p+∇ · (ν∇U) (2.2)

where U is the velocity vector [Ux, Uy, Uz], p is the pressure, g is the gravitational

constant, and ν is the kinematic viscosity; and where (2.1) represents the conservation

of mass, and (2.2) the conservation of momentum of a fluid. From left to right, the

terms in (2.2) represent the rate of change of inertia, gravitational body force, pressure

gradient, and dissipation terms.

2.2.2.2 Contaminant Transport

Additionally, we must also have another equation to represent the contaminant

transport in the ambient fluid flow. As mentioned above, we have assumed that

the contaminant in our model is neutrally buoyant and non-reactive. To model the

contaminant, we can use the following scalar transport equation:

∂C

∂t
+∇ · (UC)−∇2(ΓeC)− f = 0 (2.3)

where C is the transported scalar, Γe is the effective diffusivity of the contaminant,

and f is the source of the contaminant. The source, f , can be represented as an
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instantaneous release in both time and space using the following Dirac-Delta function

f = qδ(x− xs)δ(t− ts) (2.4)

where x = [x, y, z]T , xs represents the coordinates of the release, ts is the time of the

release, q̇ is the mass loading rate, and q is a mass load. For a continuous contaminant

release (i.e. an instantaneous release only in space, but not time), the source term

can just be represented as the following Dirac-Delta function

f = q̇δ(x− xs). (2.5)

2.2.2.3 Turbulence Model

The next decision that must be made regarding our CFD model is the turbulent

model we will use. Turbulent flow is irregular fluid flow characterized by apparent

chaotic and random changes in pressure and velocity of a fluid. Most fluid flow

occurring in nature is turbulent. In order to distinguish when a fluid is turbulent, a

dimensionless number known as the Reynolds number, which is defined as the ratio

of inertial forces to viscous forces, or

Re =
ρUl

µ
(2.6)

where ρ is the fluid density, U is the characteristic velocity, l is a characteristic length

(e.g. diameter of pipe), and µ is the dynamic viscosity. For the scenario presented

throughout this chapter with air at 15 oC, we have our characteristic length to be

the domain width l = 1 m, the characteristic velocity as our maximum inlet velocity

U = 1 m/s, our density to be ρ = 1.225 kg/m3, and the dynamic viscosity to be
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µ = 1.98× 10−5 N · s/m2. Thus, our Reynolds number is:

Re =
(1.225 kg/m3)(1 m/s)(1 m)

1.98× 10−5 N · s/m2
= 6187. (2.7)

In general, flows above what is known as the critical Reynolds number Recr number

are considered turbulent, often with a laminar-to-turbulent transition range before-

hand. Critical Reynolds numbers are dependent on the specific type of geometry of

the flow domain. Some example geometries and their corresponding critical Reynolds

number can be seen in Table 2.1: As our Re = 6187 is much greater than many of

Table 2.1:
Critical Reynolds values Recr for various geometries [Potter et al. (2011)].

Geometry Recr
Open channel 600

Pipe 2300
Golf ball 4× 104

Smooth sphere 3× 105

Free atmosphere 3.85× 105

Flow over airfoil 5× 105

the Recr values–particularly Recr for open channel flow and pipe flow–we will treat

the flow as turbulent.

While Re is a signifier for flows in the turbulent regime, it is not a strict physi-

cal distinguisher, and was developed empirically by Stokes and Reynolds in the 19th

century. Turbulent flow is also often characterized by the existence of vortices, or

the rotations of a fluid around an axis line. While some flows may have a low Re

number (i.e. are laminar), they may still demonstrate turbulent flow (i.e. have tur-

bulent structure such as rotation). Because a complete solution to the Navier-Stokes

equations in 3-dimensions for turbulent flow has still yet to be found, developing an

understanding of turbulence has largely been comprised of stochastic and qualitative

efforts–the existence of vortices serving as one of the most promising guides to better

understanding turbulence. One of the most important contributions to the under-
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standing of turbulence came from Kolmogorov (1941) in which turbulent regime was

described as having a spectrum of vortex sizes from the largest size (i.e. integral

length) to the smallest length (i.e. Kolmogorov length). This spectrum of vortex

sizes of a turbulent regime is described as “energy cascades” in which it is argued

that energy is transferred from the large vortices to the smallest ones, which even-

tually dissipate this energy to the surrounding flow via viscosity. The idea of energy

cascades propelled the understanding that turbulent flows also are characterized by

diffusion and mixing.

Because turbulent flows are inherently included in the full Navier-Stokes equa-

tions, the most straightforward method of modeling turbulence is by solving the

Navier-Stokes directly, known as Direct Numerical Simulation (DNS). However, in

order to use the modeling method of DNS, the mesh used in discretization must be

fine enough to entirely capture the full range of turbulent eddies, which would sub-

sequently require a high computational cost. Therefore, the use of DNS modeling is

prohibitive and is not usually computationally justified except for small-scale appli-

cations.

To overcome the prohibitive nature of DNS, different types of turbulence models

have been developed for different needs of turbulent modeling accuracy. The three

models most used to model turbulence, in order of increasing accuracy are:

1. Reynolds-averaged Navier-Stokes (RANS) models. RANS models use ensemble-

averaged versions of the governing equations.

2. Large Eddy Simulation (LES) models. LES models use fully resolved large-scale

eddies, and paramaterized small-scale eddies, and are more accurate than RANS

models.

3. Detached Eddy Simulation (DES) models. DES models are a hybrid of RANS

and LES models. DES models use RANS modeling at near-wall regions, and
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LES models at the interior flow and are the most accurate of the three.

Currently for this project, fully-resolved or near fully-resolved turbulent modeling is

not necessary since the focus of this research is on the real-time control of the fluid

flow and not necessarily on the subsequent effects on the flow’s turbulence. Thus,

RANS modeling is sufficient for our turbulent modeling needs. However, depending

on the nature of the application of this project, the need for a better turbulent model

might become necessary. For example, if the means of mitigating the contaminant via

injecting another chemical to react with the contaminant, turbulence might be more

important as mixing via turbulent diffusion is desired. Or as will be discussed later

in the the dissertation, increased mixing due to turbulence could be of concern for

its effect on human occupants. In that sort of scenario, a different turbulence model

might become necessary.

To develop the Reynolds-averaged Navier-Stokes models, we first decompose the

velocity as

U = U+U′ (2.8)

where U is the mean velocity and U′ is the fluctuating velocity. The average velocity

is formally defined as:

U = lim
T→∞

1

T

T∫
0

U(x, t)dt. (2.9)

We can substitute the decomposed velocity (2.8) into (2.1) and (2.2), and then av-

erage these new equations over time to obtain the Reynolds Averaged Navier-Stokes

(RANS) equations:

∇ ·U = 0 (2.10)

∂U

∂t
+∇ · (UU) = g −∇p+∇ · (ν∇U) +U′U′ (2.11)

where

U′U′ (2.12)

31



of the last term in equation (2.11) is known as the Reynolds stress tensor. Because

there are more unkowns than equations for RANS models, we have what is known

as a closure problem, thus RANS turbulent models focus on creating a connection

between the Reynolds stress tensor and the mean velocity field. There are various

strategies to computationally solving the closure model, with the most common being

the k − ϵ closure model. For this model, the turbulent kinetic energy k is used to

characterize the turbulence, and the turbulent energy dissipation rate per unit mass

ϵ is used to characterize the scale of the turbulence. The turbulent kinetic energy is

defined as:

k =
1

2
U′ ·U′ =

1

2
(U

′2
x + U

′2
y + U

′2
z ) (2.13)

with k estimated using

k =
3

2
(UrefI)

2 (2.14)

where Uref is a reference velocity typically taken as the average velocity of the flow at

the boundary, and I is taken as 5% of the inlet velocity for fully developed turbulent

flow. The turbulent energy dissipation rate per unit mass is defined as:

ϵ =
C

3/4
µ k3/2

l
(2.15)

where Cµ is a model constant, and l is the mixing length taken as 0.07 · L for inlet

boundaries where L is the characteristic length of the inlet. The transport equations

for k and ϵ for fully defined incompressible flow are now defined as:

∂k

∂t
+ U j

∂k

∂xj

=
∂

∂xj

[(
ν +

νt
σk

)
∂k

∂xj

]
+

[
νt

(
∂U i

∂xj

+
∂U j

∂xi

)
− 2

3
kδij

]
∂U i

∂xj

− ϵ (2.16)

∂ϵ

∂t
+ U j

∂ϵ

∂xj

=
∂

∂xj

(
νt
σϵ

∂ϵ

∂xj

)
+ Cϵ1

ϵ

k
νt

(
∂U i

∂xj

+
∂U j

∂xi

)
∂U i

∂xj

− Cϵ2

ϵ2

k
(2.17)
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where Cϵ1 , Cϵ2 , σk, and σϵ are model constants, and νt is the turbulent viscosity

defined as

νt = Cµ
k2

ϵ
. (2.18)

For this model, the k − ϵ constants in this model are summarized in Table 2.2, and

are standard values developed after model refinement.

Table 2.2:
Empirical constants used in the k − ϵ closure model [Versteeg and
Malalasekera (2007)].

Cµ Cϵ1 Cϵ2 σk σϵ

0.09 1.44 1.92 1.00 1.30

2.2.3 Geometric Discretization for Computational Domain

The heart of CFD is converting a continuous system into a discrete space and set

of equations that can be solved at every point in space and time. Discretization of a

system’s geometric domain (sometimes called meshing) is in and of itself a vital and

intricate component of developing the CFD model that involves strategically parti-

tioning said domain into smaller elements. The smaller elements then represent the

components for which the algebraic equations derived from the PDEs are applied to

and solved. The more “complex” the fluid flow in a certain section of the domain,

the smaller and more refined the elements should be in order to capture the full flow

phenomena. However, a more refined geometric domain leads to increased computa-

tional cost; thus, it is necessary to balance the need for more accurate solutions–with

higher rates of convergence–against the computational expense it precipitates.

The most straight forward discretization is on a Cartesian (rectangular) grid, in

which the domain is broken down into uniform, smaller rectangles, as can be seen in

Figure 2.5. Fortunately, for the problem being studied throughout this dissertation,
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this sort of meshing is currently sufficient as the accuracy of the solution is not the

most critical part of the model.
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Figure 2.5: A meshed rectangular domain
.

However, for fluid flows with more complex geometries or in which there are criti-

cal areas in the fluid flow that must be elucidated, different meshing strategies become

important. Decisions for more complex types of meshing usually are made concerning

element shapes (e.g. 2-D triangle, 3-D pyramid); and whether or not the mesh should

be structured (i.e. follows a uniform pattern) or unstructured (i.e. does not follow a

uniform pattern).

Again, for the model at its current state, a structured and uniform mesh is suffi-

cient to expose the fluid phenomena we are most interested in understanding at this

point. The meshed geometric domain for this model can be seen in Figure 2.6. As

can be seen, the domain is uniformly meshed with ∆x = ∆y = 0.1 m.

Depending on the discretization method of the governing equations that is used,

it is either the nodes or the elements of a discretized geometry for which the solutions

are estimated.
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Figure 2.6: The meshed geometric domain for this model.

2.2.4 Discretization of Governing Equations

While a range of methods exist to solve PDE’s, for the most part, there are three

main methods to discretize PDE’s in fluid dynamics:

Finite difference. The Finite Difference (FD) method is the oldest and most straight-

forward of these discretization approaches. It uses the Taylor Series expansion

to represent the spatial and temporal derivatives within the Navier-Stokes equa-

tions to a given order and accuracy. While the FD method is the easiest to code,

it is ill-suited for complex geometries and irregular boundaries, as a transfor-

mation must occur for domains that are not defined by a rectangular grid.

Furthermore, as the approximations occur from point-to-point temporally and

spatially, the state variables are not necessarily conserved which can lead to

greater inaccuracy when applied to realistic simulations.

Finite element. The Finite Element (FE) method was originally developed for use
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in structural analysis before it was applied to fluid dynamics. In simple FE

applications, the domain of the problem is broken into a set of unstructured

‘finite elements’; the solution is then approximated by a linear shape function

within each element which guarantees continuity of the solution across element

boundaries. The FE method works well on coarse and complicated grids; how-

ever, is not well-suited when used for modeling turbulence. Furthermore, since

the FE method integrates the equations over the entire domain, local conser-

vation of state variables are not guaranteed, which is another disadvantage to

this technique.

Finite volume. The Finite Volume (FV) method uses a solution domain that is

discretized into polyhedral volumes (also called ‘control volumes’) with a ‘cell

center’ and a set of faces. It then utilizes the integral form of the conservation

equations applied to each control volume. The control volumes make up the

entire domain without overlapping. Thus, the FV method works well for com-

plex geometries. Furthermore, unlike the other two methods, the FV method is

inherently conservative for each of the individual volumes. The inherent conser-

vation for each individual is especially important when dealing with flows that

have discontinuities, such as shock waves.

The FV method is most-widely used in CFD. Details on the exact means of discretiz-

ing using the FV method will be discussed below, and is largely drawn from the same

derivation techniques and explanations in de Villiers (2006); Jasak (1996).

2.2.4.1 Gauss’s Theorem

Unlike the FD method which uses the derivative to calculate the desired variable

at each “node” in a meshed grid, instead the FV method uses volume integrals to

calculate the variable value for each mesh element. Take the control volume of a

hypothetical element from our mesh seen in Figure 2.7. Here we have our control
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volume VP with a normal vector Af on the face f pointing outward from the control

volume VP toward point N . Additionally, we have a vector d connecting our two

points P and N , and is not necessarily orthogonal to our face f . For each element in

our mesh, we set our field to be cell-centered such that

∫
VP

(x− xP )dV = 0. (2.19)

Furthermore, we assume each element’s control volume is bounded by a set of flat

faces, and each face is shared with only one neighboring control volume, no elements

are overlapping, and all variables for an element are defined by the same control

volumes. Faces can be either internal faces, between two elements; or boundary faces,

at a boundary on the geometric domain. In order to ensure second-order accuracy

f

N

P

d

Af

Figure 2.7: Hypothetical control volume for points P and N .

regarding the truncation error, we must assume that all dependent variables in an

element’s control volume vary linearly around a point P and time t such that:

ϕ(x) = ϕP + (x− xP ) · (∇ϕ)P , (2.20)
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ϕ(t+∆t) = ϕt +∆t

(
∂ϕ

∂t

)
t

, (2.21)

where

ϕP = ϕ(xP ), (2.22)

and

ϕt = ϕ(t). (2.23)

The crux of the FV method is what is known as Gauss’s Theorem (sometimes

called the Divergence Theorem). Gauss’s Theorem states that the rate of change of

a property in a control volume is equivalent to the net flux of that property across

its boundaries, or ∫
V

∇ · ϕdV =

∫
∂V

dA · ϕ, (2.24)

where ∂V is the enclosed surface bounding the volume V , and dA is an infinitesimal

surface element with outward pointing normal on the surface ∂V . Essentially, Gauss’

Theorem reduces the volume integral of an element to a surface equivalent. Thus,

conserving the net flux of a variable across all of the components of an element’s

surface allows for the solution of that variable to be calculated for each element in

the mesh.

Using Gauss’s Theorem, we can convert our governing equations into a set of

algebraic equations that can be solved at each element in our domain. For example,

if we take our hypothetical control volume for our element P in Figure 2.7, along with

equation 2.20, it follows that

∫
VP

ϕ(x)dV = ϕPVP (2.25)

which is the midpoint interpolation. Because the faces of our elements are flat, we

can also take the integration of the divergence operator for our hypothetical element
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such that

∫
VP

∇ · ϕdV =

∫
∂VP

dA · ϕ =
∑
f

∫
f

dA · ϕ

 =
∑
f

A · ϕf . (2.26)

With these equivalencies, we can now convert our governing equations into a set of

solvable algebraic equations across the elements in our domain.

For brevity and ease, we will breakdown a general transport equation to demon-

strate the discretization of the temporal, advection, diffusion, and source terms, which

is the same discretization that occurs with the governing equations for our model

(equations 2.1, 2.2, and 2.3). We take our general transport equation for an indepen-

dent variable ϕ to be

∂ϕ

∂t︸︷︷︸
temporal derivative

+ ∇ · (Uϕ)︸ ︷︷ ︸
advection term

−∇ · (Γϕ∇ϕ)︸ ︷︷ ︸
diffusion term

= Sϕ(ϕ)︸ ︷︷ ︸
source term

(2.27)

where Γϕ is the diffusivity, ϕ = ϕ(x, t) is a function of space and time around the point

P , the temporal term ∂ϕ
∂t

represents the “accumulation” of ϕ in the control volume,

the convection term ∇ · (Uϕ) represents the transport of ϕ due to the velocity field,

the diffusion term ∇ · (Γϕ∇ϕ) represents the transport of ϕ due to its gradients, and

the source term accounts for sources or sinks that create or remove ϕ from the control

volume.

2.2.4.2 Advection Discretization

To discretize our advection term, we use equation (2.26) such that

∫
VP

∇ · (Uϕ)dV =
∑
f

A · (Uϕ)f =
∑
f

(A ·Uf )ϕf =
∑
f

Fϕf (2.28)
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where F is the volume flux through the face,

F = A ·Uf . (2.29)

Since the net mass flux on an element must be zero (i.e. the FV continuity equation

is obeyed), we have that

∫
V

∇ ·UdV =

∫
∂V

dA ·U =
∑
f

∫
f

dA ·U

 =
∑

F = 0. (2.30)

Now the next trick is to interpolate for ϕ at the face in order to find ϕf . There

are a multitude of approaches to do so, some with higher accuracy than 2nd order.

However, higher order accuracy does not necessarily bring stable and non-oscillatory

behavior. For this model, a combination of two interpolation approaches are used.

Central Differencing. The first approach known as Central Differencing (CD) is

just a simple linear interpolation between the two element cell-centers,

ϕf = fxϕP + (1− fx)ϕN , (2.31)

where fx is defined as the ratio of distances fN and PN , such that

fx =
fN

PN
. (2.32)

A schematic of this interpolation scheme can be seen in Figure 2.8. This method

has been shown to be 2nd order accurate for even unstructured meshes. However,

it has drawbacks in that for advective-dominant flow, the numerical solutions

will become increasingly non-physical and will possibly diverge. As a method

of alleviation, a higher order filter in the form of a dissipation term may be

applied, particularly in structured mesh in which it is easier to implement.
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Figure 2.8: Schematic of interpolation across face values in the FV method.

Upwind Differencing. For a first-order accurate variation of Upwind Differencing

(UD), the face value of ϕf is determined based on the direction of the face’s

flux such that

ϕf =


ϕP , if F ≥ 0

ϕN , if F < 0.

(2.33)

While UD improves upon stability and boundedness on the numerical solutions,

it is unfortunately prone to introducing numerical diffusion into the system, and

additional approaches must be taken for element Re numbers above a critical

value.

2.2.4.3 Diffusion Discretization

The diffusion term from equation (2.27) can be discretized such that,

∫
VP

∇ · (Γϕ∇ϕ)dV =
∑
f

A · (Γϕ∇ϕ)f =
∑
f

(Γϕ)fA · (∇ϕ)f (2.34)
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where the subscript f denotes a face interpolated quantity. An interpolated solution

to (Γϕ)f can be found in the same manner as the CD scheme described above using

an equivalent form of equation (2.31). For mesh and geometric domain of this model,

because all of the elements are orthogonal to each other, determining the right hand

side of equation (2.34) is straightforward. The vector A is parallel to d, and the face

gradient of ϕ can be expressed as the following:

A · (∇ϕ)f = |A|ϕN − ϕP

|d|
. (2.35)

It should be noted that this approach is different than a simple interpolation of (∇ϕ)f

across cell-centers, and is actually more accurate with less truncation error (although

both approaches are still 2nd order accurate). For meshes with elements that are non-

orthogonal to their neighbors, another step must be taken in addition to equation

(2.35) to estimate the interpolated value and correct for non-orthogonality.

2.2.4.4 Source Terms

The source terms encompass all terms in the generic transport equation that are

not written as advection, diffusion, or temporal terms, and are usually a function of

ϕ plus other variables. To discretize it, we linearize the source term such that:

Sϕ(ϕ) = Sc + Spϕ (2.36)

where Sc and Sp are constant and linear components of the source terms, respectively,

and may be functions of ϕ. Using the same midpoint interpolation as equation (2.25),

we calculate the volume integral as

∫
VP

Sϕ(ϕ)dV = ScVP + SpVPϕP . (2.37)
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2.2.4.5 Temporal Discretization

In order to discern exactly how to discretize the temporal component of our PDE,

let us first return to equation (2.27) and integrate the equation over the control volume

and in time to produce the integral form of the generic transport equation:

t+∆t∫
t

 ∂

∂t

∫
V

ϕtdV +

∫
V

∇ · (Uϕ)dV −
∫
V

∇ · (Γϕ∇ϕ)dV

 dt

=

t+∆t∫
t

∫
V

SϕdV

 dt.

(2.38)

After substituting in our equivalencies from equations (2.28), (2.34), and (2.37), we

now have:

t+∆t∫
t

[(
∂ϕ

∂t

)
P

VP +
∑
f

Fϕf −
∑
f

(Γϕ)fA · (∇ϕ)f

]
dt

=

t+∆t∫
t

[SeVP + SpVPϕP ]dt.

(2.39)

Temporal discretization must occur for the temporal derivative, as well as the spatial

terms (i.e. advection, diffusion, and source term). However, the method for temporal

discretization does not need to be the same for all terms, as long as the accuracy is

2nd order.

For ease of implementation and low computational cost while still preserving 2nd

order accuracy, the preferred method for time discretization is the Second-Order

Backwards Differencing. To derive it, the Taylor series expansion is taken using

three time levels:

ϕn−2 = ϕ(t−∆t) (2.40)

ϕn−1 = ϕ(t) (2.41)
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and

ϕn = ϕ(t+∆t). (2.42)

The Taylor series expansion for ϕn−2 is:

ϕn−2 = ϕn − 2

(
∂ϕ

∂t

)n

∆t+ 2

(
∂2ϕ

∂t2

)n

∆t2 +O(∆t3) (2.43)

and for ϕn−1 is

ϕn−1 = ϕn −
(
∂ϕ

∂t

)n

∆t+
1

2

(
∂2ϕ

∂t2

)n

∆t2 +O(∆t3). (2.44)

Combining equations (2.43) and (2.44) yields a second order approximation of the

temporal derivative at n:

(
∂ϕ

∂t

)n

=
3
2
ϕn − 2ϕn−1 + 1

2
ϕn−2

∆t
(2.45)

If the temporal variation in the face fluxes and derivatives are neglected, then equation

(2.45) gives:

3
2
ϕn − 2ϕn−1 + 1

2
ϕn−2

∆t
VP +

∑
f

Fϕn
f −

∑
f

(Γϕ)fS · (∇ϕ)nf = ScVP + SpVPϕ
n
P (2.46)

which is a fully implicit second order accurate discretization for the hypothetical

transport equation. The major drawback to the Backward Differencing method is the

truncation error due to the lack of temporal variation in face fluxes and derivatives,

which subsequently results in artificial diffusion. To handle this error, a cell-face

Courant number is defined as

CFL =
Uf · d
∆t

(2.47)

where ∆t is chosen such that CFL is less than 1 for stability.
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2.2.5 Boundary Conditions

Most CFD models become well-posed when sufficient boundary and initial condi-

tion assumptions are made that allow for the forward in time and space iteration of

the computational solution. In fact, to ensure that a numerical solution can be de-

veloped for a CFD model, the underlying set up of the model is said to be well-posed

when the solution to the PDE governing equation exists, is unique, and continuously

depends upon its initial and boundary conditions. There are a multitude of bound-

ary and initial conditions that can be used to help define the computational model.

Fortunately, for the problem investigated throughout this research, the most basic of

these assumptions are made, and thus discussed throughout this section.

There exist two types of boundary conditions that must be discussed: (i) numerical

boundary conditions, and (ii) physical boundary conditions. The most basic descrip-

tion of the boundary conditions is that they are either (i) fixed value, also known

as a Dirichlet condition, or (ii) fixed gradient, also known as a Neumann condition.

Additionally, there is a boundary condition that is implemented for the boundary

layer flow of fully-developed flow, in this case called wall-treatment. Together, these

three boundary conditions are used in this model.

2.2.5.1 Numerical Boundary Conditions

For the fixed value and fixed gradient boundary conditions must be developed for

the diffusion and advection terms previously derived. Consider an arbitrary element

from our mesh along the boundary of a domain with a boundary face b. It is assumed

that the boundary conditions a b is the same for the whole of the element’s boundary

face.

Fixed Value. For the fixed value conditions, let ϕb be the value of ϕ at the boundary

face b.
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• Advection. The fixed value boundary condition for the discretized advec-

tion term given in equation (2.28), is as follows:

∫
VP

∇ · (Uϕ)dV =
∑
f

Fϕf (2.48)

where the boundary face is

(Fϕf )f=b = Fbϕb (2.49)

and Fb is the specified flux across the boundary face.

• Diffusion. The fixed value boundary condition for the discretized diffusion

term given in equation (2.34), is as follows:

∫
VP

∇ · (Γϕ∇ϕ)dV =
∑
f

(∇ϕ)fA · (∇ϕ)f (2.50)

where the boundary face is

((∇ϕ)fA · (∇ϕ)f )f=b = (∇ϕ)bA · (∇ϕ)b. (2.51)

For the diffusion case, if the boundary was non-orthogonal (which is not

the case for this model), an additional interpolation step would need to be

made for A.

Fixed Gradient. A fixed gradient boundary condition prescribes a normal gradient

gb on a boundary face such that

(
A

|A|
· ∇ϕ

)
b

= gb. (2.52)

• Advection. For the advection term, ϕ is calculated using the gradient and
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cell centered value as the following:

ϕb = ϕP + dn · (∇ϕ)b = ϕP |dn|gb. (2.53)

• Diffusion. Because the face gradient is prescribed, the diffusion term for

the fixed gradient is simply

(Γϕ)b|A|gb. (2.54)

2.2.5.2 Physical Boundary Treatments

For the physical aspects of the model we have built, we make the following bound-

ary condition assumptions:

• Inlet boundary. The velocity at the inlet is prescribed as a constant parabolic

value (i.e. the flow is fully developed), with its vertex reaching a constant

velocity of 1 m/s. The boundary condition on the inlet for pressure is zero

gradient.

• Outlet boundary. For the outlet boundary, it must be calculated such that the

overall mass balance for the domain is satisfied. For this application, we can do

this by specifying the pressure at the outlet boundary, but not the velocity. The

pressure at the outlet is given atmospheric pressure (or relative zero pressure),

with zero gradient boundary condition on velocity. It should be noted that this

interdependence between the velocity and pressure will be discussed further in

Section 2.2.6.

• Port boundaries. Port boundaries are given an orthogonal uniform velocity

at their face, depending on what the optimized velocity is found to be. The

boundary condition on the ports for pressure is zero gradient.
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• Symmetry plane boundary. The component of the gradient normal to the bound-

ary is fixed to zero for a symmetry plane boundary.

• Impermeable no-slip walls. At the walls, the no-slip condition applies, which

means that the velocity of the fluid on the wall is equal to that of the wall itself.

Thus, it is a fixed boundary layer condition. Additionally, the pressure gradient

condition is zero gradient.

We must also take into special consideration the influence of the boundary layer

at near-wall flow regions. In particular, additional constraints must be applied to

account for the existence of high shear and large gradients brought on by turbulent

flow. Before describing these constraints, however, the specific considerations of the

near-wall flow must be described. For near-wall flow, there are three different velocity

regions, majorly affected by the viscosity of the fluid [Pope (2001)]. For the region

nearest the flow, the “no-slip” condition is present such that the velocity of the fluid

at the wall is equal to the wall velocity itself. However, additionally, this implies that

the velocity varies linearly as the distance from the wall increases, or rather

u+ = y+ 0 < y+ < 5 (2.55)

where u+ is the non-dimensional velocity, and y+ is the non-dimensional distance

from the wall.

Moving away from the wall is the region known as the logarithmic inertial layer

where Reynolds stresses are more dominant in the flow. For that region, we have a

log-law relationship that describes the velocity profile:

u+ =
1

κ
ln y+ + C y+ > 30 (2.56)

where κ and C are constants. The region 5 < y+ < 30 is known as the buffer region
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where both viscous and Reynolds stresses affect the flow, so neither equation (2.55)

or equation (2.56) hold. The log-law relationship for velocity profile in a boundary

layer can be seen in Figure 2.9.

Figure 2.9: Graph demonstrating the law of the wall.

There are many ways to take into account the boundary layer. For example,

a refined mesh closer to a boundary is one method. However, to fully resolve the

boundary layer can be computationally expensive. Thus, when full resolved flow is

not critical to the solution of the model, semi-empirical near wall treatments are used

instead. These wall treatments estimate u+ for the location y+ based on equation

(2.56) and are sufficient estimations for this model that reduce computational cost

and increase computational speed.

A table summarizing the boundary conditions used for this model can be seen in

Table 2.3.
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Table 2.3: Boundary conditions for the model at hand.

p( m2/s2) U( m/s) C( units) k( m2/s2) ϵ( m2/s3)
Inlet zero gradient parabolic Umax = 1 0 7.4× 10−4 4.7× 10−5

Outlet 0 zero gradient zero gradient zero gradient zero gradient
Walls zero gradient 0 zero gradient wall function wall function
Ports zero gradient normal fixed value zero gradient zero gradient zero gradient

2.2.6 Solving Navier-Stokes

One of the major issues when solving the incompressible Navier-Stokes equations

is the weak coupling between the pressure and velocity terms. In particular, the con-

servation of mass of equation (2.1) does not include the pressure term when flow is

incompressible, and with the conservation of momentum of equation (2.2) the pressure

is not a primary variable. Thus, in order to solve the set of Navier-Stokes equations,

we must develop a coupling between pressure and velocity.

For this research, the method used to fully solve the Navier-Stokes equations

known as the Pressure Implicit with Splitting of Operator (PISO) procedure for tran-

sient systems (a variation of the method known as Semi-Implicit Method for Pres-

sure Linked Equations (SIMPLE) for steady-state flows), and was developed by Issa

(1986). A simplified version of the PISO algorithm can be seeing in Algorithm 1.

To solve for pressure, we must first write the momentum equation in a semi-

discretized form:

aPUP +
∑
N

aNUN =
U0

∆t
−∇p (2.57)

where U0 is the latest available velocity field, aP is the matrix of coefficients to cell

P , and aN is the matrix coefficient corresponding to neighboring cell N . We now

introduce a correction operator H(U) such that

H(U) =
U0

∆t
−
∑
N

aNUN . (2.58)
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Substituting H(U) into equation (2.57) yields the following velocity field:

UP =
H(U)−∇p

aP
(2.59)

which interpolating at the face then yields

Uf =
(H(U))f − (∇p)f

(aP )f
. (2.60)

Next, we discretize the continuity equation such that:

∇ ·U =
∑
f

Af ·Uf =
∑
f

F = 0 (2.61)

where F is the flux through the cell face. Using equations (2.60) and (2.61), we can

derive F as

F = Af ·Uf = Af ·
(
(H(U))f − (∇p)f

(aP )f

)
. (2.62)

Additionally, substituting equation (2.60) into equation (2.61) yields the pressure

equation:

∇ ·
(
∇p
aP

)
= ∇ ·

(
H(U)

aP

)
=

∑
f

Af ·
(
H(U)

aP

)
f

. (2.63)

Finally, we have the Navier-Stokes equations for the pressure-velocity coupling:

apUP = H(U)−
∑
f

Af · pf (2.64)

∑
f

Af

(
∇p
aP

)
f

=
∑
f

Af ·
(
H(U)

aP

)
f

. (2.65)

These equations are used in the PISO loop in Algorithm 1.
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Algorithm 1 PISO algorithm

1: Decide on previous values of F and p.
2: Predict U using momentum equation
3: PISO loop:
4: for Number of PISO corrector steps do
5: Update H(U) ▷ Mass fluxes at cell faces
6: Solve for p
7: Correct for H(U)
8: Correct for U and F ▷ Using new p

9: t = t+∆t

2.2.7 Software Employment

An often overlooked but nontrivial aspect of implementing CFD models is the

programming paradigm used. When computational methods in engineering were first

deployed, the most straightforward approach was to utilize what is known as procedu-

ral programming, often called imperative programming, in which a list of instructions

is given to a computer regarding what to do step-by-step. These procedures usually

involve a combination of routines and subroutines for the different computations that

must be carried out for the computational model. Some of the earliest procedural pro-

gramming languages include C, Fortran, and COBOL which have been around since

the 1950s. In fact, the Fortran language was originally developed by IBM specifically

for computationally intensive areas within engineering and science. For procedural

programming, no matter how complicated the physical model is, it is usually reduced

to low-level mathematics, in which the basis of the program is defining and employing

functions for manipulation of individual floating-point values.

However, procedural programming has been limited in its ability to encompass or

reach more complex problems. Almost concurrently with the development of procedu-

ral programming, another programming paradigm was also being developed, known

as Object Oriented Programming (OOP), which is an approach to problem solving in

which objects are the basic unit, and what are known as classes are the “blueprints”

to the different objects. To develop an OOP, a class is first defined, and then objects
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are built from the defined classes. Put another way, a class is a concept and object is

an embodiment of that concept. For procedural programming, data and the related

functions are treated separately; for OOP, data and the related functions are grouped

together into classes, and then employed individually as objects.

OOP has streamlined the ability to develop and employ programs for complex

applications. The ability to implement a range and quality of solvers settings and so-

lution algorithms for various physical models is what sets OOP apart from procedural

programming. Frankly, using OOP, more complicated behavior can be modeled with

less code. Additionally, it is easier to modularize and develop monolithic general-

purpose computational tools using OOP.

2.2.7.1 OpenFOAM

In the late 1980s–motivated by similar applications for FE methods used in struc-

tural analysis, and with the desire to capitalize on the capabilities of OOP for CFD

applications–researchers headed by Henry Weller from Imperial College in London

developed what is currently known as Open Source Field Operation and Manipula-

tion (OpenFOAM). The OpenFOAM CFD Toolbox is an open-source CFD software

code of a set of C++ libraries that is fully customizable and is now overseen and

maintained by OpenCFD Ltd. at ESI Group, and distributed by the OpenFOAM

Foundation.3 It is becoming a favored and popular CFD software system amongst

engineers and scientists due to its extensive libraries and models ready for use, its

accessible syntax, and its unstructured grid capabilities. It uses the FV method when

solving the partial differential equations governing fluid dynamics problems.

At the core of OpenFOAM is the ability to create executables, known as appli-

cations. These applications fall into two categories: (i) solvers, designed to solve a

specific problem in continuum mechanics; and (ii) utilities, designed to perform tasks

3It is available free for download at http://www.openfoam.com.
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that involve data manipulation. The reach of OpenFOAM is extensive because of

these applications. For example, custom objects can be created by a user (e.g. a

boundary condition) that can be used with already existing solvers without the need

for redeveloping the source code.

Furthermore, the most distinguishing and appealing aspect of OpenFOAM is its

syntax for tensor operations and PDEs, which closely resembles the equations to be

solved. Take for example, the transport equation (2.3) that governs the contaminant

transport for this model:

∂C

∂t
+∇ · (UC)−∇2(ΓeC)− f = 0.

In OpenFOAM, it is coded as the following:

fvScalarMatrix ContTransEqn

(

fvm::ddt(C)

+ fvm::div(U, C)

- fvm::laplacian(gammaE, C)

- f ==

0

);

ContTransEqn.solve();

For this research, the OpenFOAM application pisoFoam was modified to include

solving for the above transport equation (2.3) for the contaminant. As can be inferred

from the name, the pisoFoam application is a transient solver for incompressible flow,

which can utilize a generic turbulent model, and uses the PISO iterative solver from

Section 2.2.6 for the pressure variable4.

4The PISO algorithm was actually developed within the same research group at Imperial College
in London as the founding members of the OpenFOAM software suite.
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2.2.7.2 ParaView for Visualization

Another software decision made for the development of this CFD model is the

visualization software used. While different software exists for flow visualization and

analysis (e.g. Tecplot, VisIT), the desire also existed to utilize another open-source

software for post-processing. Thus, used in this research is ParaView, an open-source,

freely available software system for 3D computer graphics, image processing, and

visualization that was developed starting in 2000 in a coordinated effort between

Kitware Inc. and Los Alamos National Laboratory. ParaView is an application built

on top of the Visualization Toolkit (VTK) software system, an open-source set of C++

libraries for data processing.

OpenFOAM already has a robust utilization with ParaView, with a built-in reader

module that can be easily accessed with the command paraFoam. One of the appealing

components of ParaView is the ability to use Python scripting for post-processing.

2.3 Optimal Flow Control

The concept of “optimal control” is actually quite basic: use mathematical opti-

mization to find the best control action. Flow control in aerospace engineering has

focused on the reduction of turbulence, drag, and boundary layer manipulation to

improve the aerodynamic performance of aircraft in fluid flow. A first approach has

been to optimize the design of an aircraft’s airfoil, and/or the aircraft’s wing-body

design by using passive optimal flow control. Jameson et al. were able to optimize

the wing and wing-body combinations for a long range transport aircraft in viscous,

compressible fluid flow [Jameson (1988); Jameson et al. (1998); Jameson (1999)]. In

particular, a cost function was selected to represent some sort of design parameter,

such as the drag coefficient or the lift to drag ratio, and optimization was carried out

using a quasi-Newton optimization technique.
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Yet, the early uses of optimal control were concerned more with shape optimiza-

tion, and thus were largely passive forms of control without feedback. Later tech-

niques in aerospace engineering focused on active flow control of turbulence via wall

transpiration (i.e. suction and blowing along a boundary). The initial idea for drag

reduction and turbulence control via transpiration was developed by Lions (1966)

and Abergel and Temam (1990). Bewley et al. (2001) then extended the idea of wall

transpiration for turbulence control into a feedback control problem. They utilized

optimal control by developing a cost function based on the drag distributed along a

channel wall in order to then reduce that drag. The cost function was minimized using

an adjoint sensitivity approach, and updating the control with a gradient algorithm.

Altogether, with this technique, they were able to reduce drag along boundary walls

by up to 17%. Bewley et al. (1993) continued the use of active feedback control for

drag reduction by developing a cost function based on the turbulent kinetic energy of

the channel, while Berggren (1998) developed a cost function based on the vorticity

of the flow (i.e. the curl of the velocity).

For civil and environmental engineering, the use of optimal control has been ex-

tensively applied to flood wave control in civil hydraulic systems, and contaminant

detection and release and/or mitigation in environmental bodies of water. Sanders

and Katopodes (1999) developed an optimal approach to gate motion of a reservoir so

as to prevent overtopping of a dam and downstream flooding when faced with an in-

coming flood wave. Furthermore, Sanders and Katopodes (2000) developed a method

for identifying an optimal location and flow diversion to actively intervene with an

oncoming flood wave. Piasecki and Katopodes (1997a) developed a numerical model

for the optimal release of hazardous contaminants into shallow rivers and estuaries

in order to minimize the environmental impact of the contaminants. Alvarez-Vzquez

et al. (2009) used optimal control and adjoint equations in order to optimally dilute

a contaminant to a certain concentration in a section of a river via the injection of
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pure water. Katopodes (2009) demonstrated the feasibility of using sets of sensors

and actuators to detect and mitigate sudden contaminant releases in channel flow.

One area of potential application for optimal flow control systems is by using ex-

isting ventilation systems currently in public infrastructure settings. Sreedharan et al.

(2011) have developed a Bayesian-based model to be able to characterize a biological

or chemical contaminant in a building’s ventilation system in real-time. Gao et al.

(2012) show the results of four different hybrid ventilation designs (i.e. natural and

mechanical ventilation components) with the potential to minimize fire-induced car-

bon monoxide concentration. Shih et al. (2011) demonstrate the possibility of utilizing

an air curtain to curtail the spread of gaseous ethanol released from a malfunctioning

machine inside a clean room.

2.3.1 Model Predictive Control

For optimal control in a dynamic system, we follow the method of MPC model

predictive control (MPC) discussed in Grune and Pannek (2011). The goal of model

predictive control (MPC) is to either track or stabilize a system. Suppose we are given

a controlled process with a state x(n) that is measured at discrete time instants tn for

n = 0, 1, 2, . . . . We control our system at each time instant by selecting a control input

u(n). This control input will influence the behavior of the future state of the system.

For our specific application, we define our cost functional based on the concentration

of the contaminant for a given time period at chosen “protected points” within our

domain, and constrained by the velocities of actuators along the boundary. When the

cost function is minimized, a vector of velocities are determined that are prescribed

to the corresponding actuators on the domain’s boundary and results in minimized

contaminant concentration at the protected points. For each minimization iteration,

we use the DAKOTA optimization toolkit with a quasi-Newton solver. Together, the

OpenFOAM CFD and DAKOTA optimization make up the CFD flow-control model.
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For tracking control, we select our control input u(n) such that our system x(n)

follows a reference xref as best as possible. For this problem, let x(n) ∈ X = Rd

and u(n) ∈ U = Rm. To reduce our tracking control problem to stabilization control

problem, we select our reference to be a constant such that xref (n) = x∗ = 0 for all

n ≥ 0.

For a linear or nonlinear system of the form

x+ = f(x, u) (2.66)

where f : X × U → X is a known and general nonlinear map that assigns a state

x and a control u to the successor state x+ at the next time instant. For any given

control sequence u(0), . . . , u(N − 1) with a horizon length N ≥ 2, and starting at the

current state x(n), we can iterate equation (2.66) to construct a prediction trajectory

xu such that

xu(0) = x(n), xu(k + 1) = f(xu(k), u(k)), k = 0, . . . , N − 1. (2.67)

We now can obtain predictions xu(k) for the state of a system x(n + k) at time

tn+k in the future, which subsequently allows us to predict the behavior of our sys-

tem on the discrete time interval tn, . . . , tn+N based on the chosen control sequence

u(0), . . . , u(N − 1).

Our optimal control comes in when we must choose our control sequence u(0), . . . ,

u(N − 1) such that the distance between xu and x∗ = 0 is minimized. We can define

a cost function ℓ(xu(k), u(k)) to represent the distance between xu(k) and x∗ = 0 for

k = 0, . . . , N − 1 (i.e. the greater the distance between xu(k) and x∗ = 0 the higher

the cost to our control problem). Our optimal control problem now reads

minimize J(x(n), u(·)) =
N−1∑
k=0

ℓ(xu(k), u(k)). (2.68)
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We can choose any function we would like to represent our cost function. For example,

we could choose the standard distance formula between two points on a Euclidean

space to represent our cost function. Furthermore, we can add in penalization for the

different possible control values u(k) to favor certain control actions over others (e.g.

if we would like to choose a control action that uses less energy than another).

Because we would like to eventually distribute control actions over more than one

time interval, we must also develop a means of feedback to our system. Thus, we can

put our control action u(n) in feedback form by define µ to map the state x ∈ X into

the set U of control values such that

u(n) = µ(x(n)). (2.69)

An illustration of this complete feedback control system at time step tn can be seen

in Figure 2.10.

2.3.2 Model Predictive Control Applied to CFD Model

For the CFD model developed in Section 2.2, our cost functional for MPC is

J(f) =

Np∑
p=1

T∫
0

C(xp)dt, (2.70)

subject to

|Ui| ≤ Umax (2.71)

where f is the vector of unknown port velocities for i number of ports with f =

(U1, U2, . . . , Ui), xp is a vector of coordinates corresponding to the location of the pth

protected point, Np denotes the total number of protected points in the domain, and

Umax is the maximum velocity of a port.
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Figure 2.10: Conceptual framework of Model Predictive Control.

We minimize equation (2.70) (i.e. minimize the concentration of the contaminant

at the given protected points) subject to the underlying equations of the CFD model.

After minimizing equation (2.70), we end with a vector of velocities f that are to be

prescribed to the corresponding control ports on our domain boundary.

It should be noted that for our problem of minimizing the concentration at the

protected points with more than one port, there is not necessarily a single solution to

the optimization problem. Furthermore, small errors in the optimization trajectory

are unimportant as long as the end results achieves the goal of sufficiently mitigating

the plume. This fortunately allows for some forgiveness in the optimization routine

which is especially important in real-time control scenarios.
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This optimization occurs for a given prediction horizon T , but is only actually

implemented for a shorter time period Ta. The optimization then occurs for another

prediction horizon T and applied again for only a time Ta. An image demonstrating

the advancing prediction horizon can be seen in Figure 2.11. This iterative process

occurs until a given termination criterion is met. The algorithm for the MPC opti-

mization can be seen in Algorithm 2.

t = 0 t = T

t = Ta t = T +Ta

t = T +2Ta

t = T +nTa

t = 2Ta

t = nTa

time

op
ti
m
iz
at
io
n

Figure 2.11: Prediction horizon for MPC routine.

2.3.3 Optimization Method

To implement MPC, we must iteratively optimize over small time horizons. Thus,

we optimize our system for every prediction horizon T from Figure 2.11. Simply

speaking, optimization involves finding the “best” result under given circumstances.

In general, an optimization problem is defined mathematically as the following: Find
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Algorithm 2 Model Predictive Control Algorithm

1: Initialize T , Ta, Tf , nmax, δ, i = 0
2: while iTa < Tf do
3: if J > δ then
4: Find fi that optimizes J(f) over iTa to (T + iTa);
5: Apply fi for period iTa through (Ta + iTa);
6: else
7: Set fi = 0⃗;
8: Apply fi for period iTa through iTa + Ta;

9: i=i++

x, which minimizes or maximizes f(x) subject to

di(x) ≤ ai i = 1, 2, . . . ,m (2.72)

and

ei(x) = bi i = 1, 2, . . . , p (2.73)

where x is an n-dimensional vector called the “design vector”; f(x) is the objective

function; and di(x) and ei(x) are inequality and equality constraints, respectively,

that can be either linear or nonlinear. For such an optimization problem, there are

many different ways this optimization may occur. For an objective function, there

can exist many different local minima or maxima (i.e. a solution holds for a given

parameter space), and sometimes there exists a global maximum or minimum (i.e. a

solution that holds for the entire domain). Particularly when there exist constraints

on an optimization problem, the likelihood of finding a local maximum/minimum

exists.

A variety of individual optimization methods can be used for any given optimiza-

tion problem. The decision of the optimization routine used is usually dependent

on the type of system trying to be optimized. Some example questions that must

be asked about an optimization problem are: Is the the realm of the cost functional

where optimization is to take place noisy (e.g. high fluctuations of the system at
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hand), or does it demonstrate smooth behavior? Is there just one, or more than one

objective that needs to be met? Is the problem constrained or unconstrained? Does

the solution need to be global, or is local sufficient?

Usually, optimization methods fall into one of two categories: (a) they are gradient-

based or (b) they are non gradient-based. A gradient-based optimization method uses

the derivative in the optimization routine as it searches for the maximum or mini-

mum. If the system being optimization is smooth, continuous, and single-objective,

then a gradient-based method can be used for the optimization as it is usually the

quickest mode of optimization. Additionally, gradient-based methods can be used for

optimization problems with linear or nonlinear constraints.

For this research, the popular Broyden-Fletcher-Goldfard-Shanno (BFGS) quasi-

Newton optimization method is used. The reason for specifically using a quasi-Newton

scheme over a conjugate-gradient based scheme is due to previous work by a student

that found the scheme to be quicker when employed with the CFD model, and often

was able to find a better local minimum than the conjugate-gradient based scheme

used [Warnock (2013a)].

The difficulty when employing an optimization scheme with a computational

model is that the optimization scheme often does not have access to the underly-

ing governing equations; instead, it is fed constraints and the cost-functional value.

Thus, for a derivative-based optimization where either the gradient or Hessian needs

to be calculated, it is difficult to do so without the underlying equations available. In-

stead, numerical estimates for calculating these derivatives are employed. Numerical

estimation is usually an iterative process where guesses as to what the minimum or

maximum might be, the cost function recalculated based on those guesses, and new

guesses are made based on the analysis of the new cost functional. For gradient-based

optimization, this analysis is with regards to determining a new direction to take for

the next maximum/minimum “guess.” This process occurs until the changes in the
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cost function are small enough for a given criterion. A numerical method for the

BFGS quasi-Newton method is now described.

For a gradient-based algorithm the goal is to use gradient information, in con-

junction with the function, and with respect to the unknown parameters f . For

gradient-based method, each iteration is dependent on a search direction p:

pk = −B−1
k ∇Jk (2.74)

where Bk is dependent on the algorithm used and J is the cost functional. For

a Newton-type method, we define our search direction from a second-order Taylor

series expansion about J(fk + p) such that

J(fk + p) ≈ Jk + pT∇Jk +
1

2
pT∇2Jkp. (2.75)

This approach is such that it constructs a quadratic function around each fk and

minimizes this function. As a result, the optimal search direction is the pk that

minimizes the approximate function mk(p). If we take the derivative of mk(p) and

set it to zero, our direction is

pk = −(∇2Jk)
−1∇Jk (2.76)

where Bk = ∇2J(fk) is the Hessian. While this method is second order accurate

and converges quite quickly, calculating the Hessian at ever iteration is actually quite

computationally costly. Thus, a method known as quasi-Newton has been developed

that approximates the Hessian for Bk. For this method, we begin again with the

Taylor series expansion such that:

∇J(f + p) = ∇J(f) +∇2J(f)p+O(||p||) (2.77)
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where the error O is the same as the magnitude of p. Substituting fk for f and

(fk+1 − fk) for p yields:

∇Jk+1 = ∇Jk +∇2Jk(fk+1 − fk) +O(||fk+1 − f ||). (2.78)

From this derivation, we can see that if fk+1 and fk are in the region near the actual

solution f , the error term will be far less significant than the second order term of the

expansion, and therefore we can deduce:

∇2Jk(fk+1 − fk) ≈ ∇Jk+1 −∇Jk. (2.79)

We can now substitute our B back into the above equation such that

Bk+1(fk+1 − fk) = ∇Jk+1 −∇Jk. (2.80)

This method is known as the secant method and provides us with an method to

iteratively construct the approximate Hessian. There exist many different ways to

approximate the Hessian, which for the BFGS method is the following:

Bk+1 = Bk −
Bksks

T
kBk

sTkBksk
+

yky
T
k

yTk sk
(2.81)

where sk = fk+1 − k and yk = ∇Jk+1 −∇J . Equation (2.81) can be substituted into

equation (2.74). Finally, a quadratic model of the objective function at the current

value of p is

mk(p) = Jk +∇JT
k p+

1

2
pTBkp. (2.82)

This equation is minimized by equation (2.74). The algorithm for the BFGS quasi-

Newton method is seen in Algorithm 3.
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Algorithm 3 Quasi-Newton BFGS algorithm

1: Define starting point f0, convergence tolerance ϵ, inverse Hessian approximation,
H0;

2: while ||∇Jk|| > ϵ do
3: Compute search direction using equation (2.74);
4: Carry out a line search where fk+1 = fk + akpk for a direction step size ak;
5: Set sk = fk1 − fk and yk = ∇Jk+1 −∇Jk;
6: Determine the new approximate Hessian using equation (2.81);
7: k ← k + 1;

2.3.4 Software Deployed for Optimal Control

Just like the employment of software for the CFD model described in Section

2.2.7, the decision on how to implement the optimization scheme computationally is

nontrivial. The most straightforward means of implementing an optimization scheme

is by coding it directly into the CFD model. However, this strategy can be tedious

if a variety of optimization algorithms are to be tried. Similar to OpenFOAM, in

the 1990s researchers from the Lawrence Berkeley National Laboratory and Sandia

National Laboratory developed a C++ library of classes for nonlinear optimization

named OPT++ [Meza et al. (2007)]. These libraries were particularly developed for

simulation-based nonlinear optimization.

2.3.4.1 DAKOTA

Almost simultaneously as OPT++ was developed, the Design and Analysis toolKit

for Optimization and Terascale Applications (DAKOTA) Design Analysis Kit for Op-

timization and Terascale Applications software toolkit was also developed by Sandia

National Laboratories [Adams et al. (2009)]. DAKOTA contains algorithms for both

gradient and non-gradient based optimization methods. Furthermore, DAKOTA has

the capacity for parameter estimation with nonlinear least squares methods, uncer-

tainty quantification with sampling, and sensitivity analysis. These diverse capabili-

ties of DAKOTA makes it especially appealing for use in a wide array of applications.
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2.3.4.2 OPT++ Package

While there are many different optimization packages and algorithms available

within DAKOTA, for this research, we use the quasi-Newton solver library, OPT++,

specifically developed for nonlinear optimization. The OPT++ library contains both

conjugate-gradient based optimization routines as well as quasi-Newton based opti-

mization routines. As stated in Section 2.3.3, the optimization routine specifically

used in this work is based on the popular quasi-Newton optimization method.

The decision to chose one optimization routine over another depends on the type

of problem being solved. In work carried out by a previous student, the CONMIN

(CONstrained MINimization) library, which is a conjugate-gradient based optimiza-

tion algorithm developed by NASA [Vanderplaats (1973)], was used for optimization.

However, in the most recent work by this research group ,the CONMIN routine was

compared to the OPT++ optimization algorithm; for the boundary control problem,

OPT++ was shown to perform more accurately and reliably. Therefore, the OPT++

optimization library is the optimization algorithm that will be employed throughout

this work.

2.3.4.3 Interfacing with OpenFOAM

One of the most appealing components of the DAKOTA software toolkit is its

ability to be interfaced with external models quite easily. For this work, optimization

of the numerical fluid model developed with OpenFOAM is achieved by ‘loosely cou-

pling’ the model with the DAKOTA software toolkit. That is, the information needed

for the optimization problem is passed to DAKOTA’s optimizer from OpenFOAM,

which then receives new parameter guesses from DAKOTA at each iteration. The

communication and preparation of necessary files between OpenFOAM and DAKOTA

is achieved through a combination of Python and Bash scripts. These scripts were

adapted from research carried out by a previous student [Warnock (2013a)] and the in-
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terfacing routine can be seen in Figure 2.12. Additionally, the OpenFOAM-DAKOTA

workflow can be seen in Figure 2.13.flowchart shown in Fig. 3.6.

Figure 3.6: DAKOTA-OpenFOAM iterative loop.

The algorithm for interfacing a derivative-free optimization method in DAKOTA

with OpenFOAM is similar to process delineated in Fig. 3.6, with the main difference

being that OpenFOAM is only run once for each guessed f , as no gradient information

is required in this case.

3.5.2 Gradient Approximations

Gradient-based optimizers require gradient approximations at each iteration for

the current f . When the objective function is differentiable these gradients can be

calculated exactly from the analytical function. However for most realistic optimiza-

tion problems, including the source inversion problem, the analytical gradients are
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Figure 2.12: OpenFOAM-DAKOTA interfacing routine.

2.4 Results

The overall objective for this research when investigating the CFD flow-control

model is what sort of influence coupling it with the evacuation model might have on

the overall behavior of the control actions. Thus, the main results for this section

were concerning the placement of protected points, and how that might change the

control action.
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Figure 2.13: Workflow for DAKOTA coupled with OpenFOAM.

It should be noted in the figures displayed below that the yellow points are the

protected points; the ports are distinguished by the grey sets of points along the

boundary, the arrows at the port represent the direction and magnitude of the control

action being applied, and the value C is the concentration in units. The label of port

locations for the six port scenarios can be seen in Figure 2.14; the label of port

locations for the two port scenarios can be seen in Figure 2.15

2.4.1 Case 1. General Flow Control

The first case is the very basic case in which there are two types of protected point

arrangements: (i) the protected points are in the middle of the domain and (ii) the

protected points are along the boundary of the domain. Simulation snapshots showing

the results for these two scenarios can be seen in Figures 2.16 and 2.18, respectively.
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Figure 2.14: Location and labels of ports for six port domain.

Port 2

Port 5

Figure 2.15: Location and labels of ports for two port domain.

The control action is actually quite obvious for both of these scenarios. It follows

almost effortlessly that for the protected points in the middle, the control scheme will

be to draw the contaminant to the side, and out of the domain if possible. Likewise,

for the protected points along the boundary, the control action would certainly be to

push the contaminant to the middle of the domain.

These two examples demonstrate a very basic control action for our domain. As

will be seen in Chapter IV, these two scenarios actually match up quite well with the

evacuation behavior.

2.4.2 Case 2. Location of Boundary Points

Because the first case showed almost obvious control actions, it was desired to

change the control problem such that the control action might not be as obvious.

Therefore, simulations were carried out with a domain where the protected points
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t = 0.0s
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Figure 2.16: CFD flow-control for protected points in the middle of the domain.

were randomly distributed. The result from this simulation can be seen in Figure

2.20. As can be seen, for this example, the control action is quite similar to when

all of the protected points were in the middle of the domain. The contaminant is

pushed to one side of the domain, and drawn out as quickly as possible. We continue

changing the protected points in various patterns in the domain as can be seen in

Figures 2.22, 2.24, and 2.26.

Figure 2.26 is especially interesting as there is a clear opening for two of the ports
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Figure 2.17:
Corresponding port velocities, and comparison of total concentration at
protected points with and without control for protected points in the
middle of the domain. Positive velocity is taken as velocity normal to
port.

to draw out the contaminant without affecting any of the protected points; however,

the control action does not behave in this manner. The most likely explanation is that

the control actions are sensitive to other parameters, such as the prediction horizon,

or potentially the number of boundary actuators.

2.4.3 Case 3. Influence of Number of Boundary Ports

To begin testing other parameters that might be influencing the control action,

some similar simulations were carried out with only two ports rather than six. The

patterns for having the protected points in the middle first then on the sides (Figure

2.28), and vice versa (Figure 2.30), were also used to compare with Figures 2.22 and

2.24 for six ports. When comparing the simulations of two ports versus six ports,

the control behavior is actually quite different for the two protected point scenarios.

What is most interesting is that in the two port scenario, nothing is really done by

the ports to control the upstream behavior of the fluid to move the contaminant away

from the protected points.
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Figure 2.18: CFD flow-control for protected points in the sides of the domain.

2.5 Discussion

Many different runs were carried out with the CFD flow-control model to see what

sort of unpredictable behavior might occur with the fluid for a variety of patterns of

protected points. For most of these scenarios, the control action was quite predictable.

Additionally, it is unclear what parameters may be be influencing the control action

over others. For this reason, a sweep of parameters can possibly be carried out to
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Figure 2.19:
Corresponding port velocities, and comparison of total concentration at
protected points with and without control for protected points on the
sides of the domain. Positive velocity is taken as velocity normal to port.

better discern, included the prediction horizon, the convergence criteria used, and the

velocities of the ports.

It must also be noted that as of now, there is only one parameter used within the

cost functional: the cell concentration. It would be interesting to house more char-

acteristics within the cost function. In particular, a cost to creating more turbulence

could be added to the cost functional.

As will be shown in the following chapters, when applied to the physical proto-

type, and coupled with the evacuation ABM, some interesting fluid dynamics behavior

arises.
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t = 0.0s
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t = 7.5s

t = 10.0s

t = 12.5s

Figure 2.20:
CFD flow-control for protected points randomly distributed in domain.

75



0 2 4 6 8 10 12 14
time (s)

0

10

20

30

40

50

60

70

80

90

100

Su
m

 C
 (u

ni
ts

)

No control
Yes control

0 2 4 6 8 10 12 14
time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

Po
rt 

ve
lo

ci
ty

 (m
/s

)

U1
U2
U3
U4
U5
U6

Figure 2.21:
Corresponding port velocities, and comparison of total concentration at
protected points with and without control for protected points in the
sides of the domain. Positive velocity is taken as velocity normal to
port.
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t = 0.0s

t = 2.5s

t = 5.0s

t = 7.5s

t = 10.0s

t = 12.5s

Figure 2.22:
CFD flow-control for protected points first in the middle of the domain,
followed by being on the side of the domain.
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Figure 2.23:
Corresponding port velocities, and comparison of total concentration at
protected points with and without control for protected points first in
the middle of the domain, followed by being on the side of the domain.
Positive velocity is taken as velocity normal to port.
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t = 0.0s

t = 2.5s

t = 5.0s

t = 7.5s

t = 10.0s

t = 12.5s

Figure 2.24:
CFD flow-control for protected points first on the side of the domain,
followed by being in the middle of the domain.
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Figure 2.25:
Corresponding port velocities, and comparison of total concentration at
protected points with and without control for protected points first on
the side of the domain, followed by being in the middle of the domain.
Positive velocity is taken as velocity normal to port.
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t = 0.0s

t = 2.5s

t = 5.0s

t = 7.5s

t = 10.0s

t = 12.5s

Figure 2.26:
CFD flow-control for protected points distributed in groups throughout
the domain.
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Figure 2.27:
Corresponding port velocities, and comparison of total concentration
at protected points with and without control for protected points dis-
tributed in groups throughout the domain. Positive velocity is taken as
velocity normal to port.
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t = 0.0s

t = 2.5s

t = 5.0s

t = 7.5s

t = 10.0s

t = 12.5s

Figure 2.28:
CFD flow-control for two ports with protected points first in the middle
of the domain, followed by being on the side of the domain.
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Figure 2.29:
Corresponding port velocities, and comparison of total concentration at
protected points with and without control for two ports with protected
points first in the middle of the domain, followed by being on the side
of the domain. Positive velocity is taken as velocity normal to port.
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t = 0.0s
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t = 5.0s

t = 7.5s

t = 10.0s

t = 12.5s

Figure 2.30:
CFD flow-control for two ports with protected points first on the side of
the domain, followed by being in the middle of the domain.

85



0 2 4 6 8 10 12 14 16 18 20
time (s)

0

10

20

30

40

50

60

70

80

90

100

Su
m

 C
 (u

ni
ts

)

No control
Yes control

0 2 4 6 8 10 12 14 16 18 20
time (s)

-1.5

-1

-0.5

0

0.5

1

1.5

Po
rt 

ve
lo

ci
ty

 (m
/s

)

U1
U2

Figure 2.31:
Corresponding port velocities, and comparison of total concentration at
protected points with and without control for two ports with protected
points first on the side of the domain, followed by being in the middle
of the domain. Positive velocity is taken as velocity normal to port.
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CHAPTER III

Physical Model

In order to test the feasibility of implementing the computational flow control

model from Chapter II, we have built a physical prototype. There are two parts to

the design of this physical prototype: (i) a blower wind tunnel (that provides uniform

air flow into a “test section”) and (ii) the control system (i.e. sensors, actuators, and

controller) that detect and mitigate an injected “contaminant.” The prototype has

been built and is currently housed in the Department of Civil and Environmental

Engineering’s Structures Laboratory.

This chapter details the specifics behind the design of the wind tunnel (in Section

3.3) and the control system (in Section 3.4). Results demonstrating real-time control

using this prototype are presented in Section 3.5 with the corresponding experimental

limitations.

3.1 Motivation

For this research, our experimental design is really just a basic proof-of-concept:

can we detect and mitigate a contaminant in real-time. A physical prototype has

been designed, built, and tested by another student in this research group [Wang

et al. (2013b)]. This prototype can be seen in Figure 3.1. For this prototype, water

is used as the bulk fluid. The bulk fluid is supplied to the prototype via a hydraulic
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pump at the inlet to a 4-inch diameter acrylic pipe that is approximately 3-feet

in length. Food dye is used as the ‘contaminant’ and is injected into the ambient

flow just after the bulk fluid inlet. Together, the contaminant and the bulk fluid

pass through a high density sponge used to improve the uniformity of the flow. A

‘webcam’ video camera is used to capture the colored contaminant in real-time and

send its images to computer. The images from the camera read in the concentration

of the contaminant and estimate its velocity. The controller then sends information

to pressure-controlled actuators located on the prototype’s boundary. The prototype

uses a dSPACE real-time controller coupled with a Simulink C-code autogenerator

when communicating with the actuators.

While this prototype has been successful in implementing real-time control with

the hazardous contaminant, it is limited in that it currently only has one actuator port

and is unable to be extended to include another port which would allow for feedback

control. Furthermore, this prototype utilizes a simplified fluid dynamics model that

is based on dynamical systems theory, and is thus not applicable for turbulent flows.

Therefore, the physical prototype discussed throughout this dissertation builds upon

this prototype by implementing a more comprehensive fluid dynamics model.

Figure 3.1:
Water-based dynamical system based prototype developed by Wang et al.
(2013b).
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3.2 Background

Experimental methods for fluid mechanics usually fall in to one of two categories:

(a) measurement or (b) visualization. As with most experimental methods, the desire

to measure specific parameters for a given fluid flow drive the underlying experimental

development. However, it must also be noted there is a great need for understand-

ing the qualitative behavior behind some fluid dynamics phenomena, which is why

fluid visualization is quite popular within the fluid dynamics community (although, it

must also be stated that some visualization techniques are also used for measurement

applications).

Studying a fluid phenomena experimentally allows researchers to develop knowl-

edge that is unable to be gained numerically or theoretically. Similitude is one of the

main concepts behind analyzing a fluid flow experimentally. In essence, similitude is

the ability to gain insight into one type of flow by studying another type of flow that

is similar to it. Thus, if a certain fluid phenomenon is difficult to study in its natural

environment, a physical model can be developed and experimentally analyzed such

that it has fluid behavior similar to the other. A “scaling” of a fluid system is the

principle means of similitude in experimental fluid mechanics. For example, building

a full-scale car in order to study air flow around it could be costly, whereas an al-

ternative is to develop a scaled-down less expensive version of the vehicle to analyze;

similitude practices are used to accomplish this “scaling-down” such that analysis can

be carried out on the scaled-down model and subsequent inference can be made about

the full-scale system. While there exists a multitude of methods developed over the

decades to carry out experiments based on the idea of similitude, one of the most

widespread physical methods to develop and carry out fluid experiments is through

the use of a wind tunnel.

Because an object moving through a flow field has the same experience as an

object with a flow field being pushed over it at the same velocity, the ability to make
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a scaled-down physical model to simulate an object moving through air is the basis

behind wind tunnel designs. For this research, a wind tunnel is the starting point of

the experimental model that is developed. Standard wind tunnel designs are built

such that uniform flow is provided at the entrance to a test section with air as the

bulk fluid.

Much like the discussion of flow control, the development of the standard design

of wind tunnels coincides with that of aircraft design and the development of modern

aerodynamics. As 19th engineers and scientists were developing the ability to harness

air for flight, the first wind tunnel was built more than 30 years before the Wright

Brothers made their first controlled powered airplane flight in 1903. The underlying

objective of the earliest wind tunnels are they same as they are today: to recreate

the often unpredictable winds of nature with a steady, controllable flow of air using

a machine1.

The University of Michigan houses actually quite a few wind tunnels, the most

famous being a closed-loop low-speed wind tunnel built in collaboration with the U.S.

Air Force in 1956, which has a 5 ft × 7 ft (≈ 1.5 m × 2 m|) cross-section and is large

enough for a person to stand upright in. The School of Public Health built a draw-

down wind tunnel with a 1 ft× 1 ft (≈ 0.3 m× 0.3 m|) cross-section and was used to

study human breathing of smoke.

The University of Michigan also has many water flumes, which are built and used

with the same rationale as wind tunnels. One of the most exciting experimental facil-

ities at the university with water as the fluid medium is the Marine Hydrodynamics

Laboratory’s physical model basin, which was built in 1905, reaches 360 ft (109.7 m)

in length, is 22 ft (6.7 m) wide, and 10 ft (≈ 3 m) deep2. Instead of pushing a fluid

1Actually, the first experiments carried out using a “wind tunnel” were often in open environments
such as the openings of blowing caves.

2More about this tow tank can be read here: http://mhl.engin.umich.edu/facilities/

basin/.
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over a body, a tow tank pulls a body through a stationary fluid3.

However, as has been continually reiterated throughout this writing, most of these

experimental prototypes are used to study fluid flow over some sort of scaled-down

body (primarily aircraft or vehicles). Instead, there existed a need to build a proto-

type with more flexible applications. Thus, as a motivation for the wind tunnel that

was built for this research, many different wind tunnels that have been used for en-

vironmental applications, particularly to recreate atmospheric boundary layers, were

explored as they were more likely to have a longer test section as the expanse of the

systems studied is far larger than vehicle applications, and oftentimes understanding

boundary layer development is a critical component of the corresponding research

questions. Many atmospheric boundary layer wind tunnels were used as a motivation

for the design of this prototype [Farell and Iyengar (1999); Uehara et al. (2000); Chen

et al. (2009)].

3.3 Wind Tunnel Design

Over the years, a standard design has been developed for wind tunnels. The ob-

jective of wind tunnel design is such that at the entrance to a test-section, the flow

of the air is as uniform (i.e. velocity is the same at every point in the cross-section)

and laminar as possible (i.e. there should be no separation of flow). Most of the

present-day design guidelines for wind tunnels are the result of decades of iterations

and refinement of various wind tunnels used throughout research and industry. Dif-

ferent design criteria exist for different types of fluid flow (e.g. supersonic flow versus

subsonic flow). However, for the most part, there are certain components that are a

part of almost all wind tunnels.

3. . . which is interestingly an equivalence observation first made by Leonardo Da Vinci around
the turn of the 16th century, but not pursued until multiple centuries later.
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3.3.1 Experimental Fluid Flow Objective

Before the details on the actual design of the wind tunnel are presented, the con-

versation must first be brought back to the concept of similitude introduced earlier.

The overall reason for developing this physical model is such that inferences can be

made on the fluid flow present in our emergency scenarios described in Chapter I

based on a similar version of fluid flow that is physically modeled. Most similitude

practices involve what is known as dimensional analysis, in which the physical quanti-

ties of two different fluid flows that are similar are characterized in terms of the same

fundamental parameters (e.g. length, velocity) for inferences to be made about the

relations between them. To do this, the most important parameters of the flow being

studied are identified, the remaining parameters are amalgamated into dimensionless

numbers, and these dimensionless numbers are held to be the same for both the fluid

flow being studied and its scaled version. Many famous dimensionless numbers are

used across a variety of flows. For example, the Froude number:

Fr =
U√
gD

(3.1)

is the ratio of a fluid’s inertial forces to gravitational forces, where U is the fluid’s ve-

locity, g is gravity, and D is the characteristic length (or hydraulic depth in hydraulic

applications), and is used in the field of hydraulics. The Froude number characterizes

open-channel flow as either critical (Fr = 1), supercritical (Fr > 1), or subcritical

(Fr < 1). Thus as an example of dimensional analysis, to study a scaled-down version

of an open-channel, the physical model must have the same Fr number as the actual

system being studied.

The ability to determine “similar” flow that is sufficient for this coupled analysis

is nontrivial. For types of fluid flow that have been systematically studied over the

years (e.g. flow over a vehicle), standard procedures have been developed and refined
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Table 3.1: Geometries of two different example public spaces.

Detroit-Windsor Tunnel McNamara Airport Terminal
Cross-section 7 m× 4 m (22 ft× 13 ft) 26.5 m× 25 m (87 ft× 82 ft)
Length 1, 573 m (5, 160 ft) 1, 573 m (4, 900 ft)
Width-to-length ratio 0.013 0.056

over the years for what exactly this “similar” flow should be. Otherwise, designing a

physical model with “similar” flow is the art behind experimental fluid mechanics.

For this physical model, the objective was to scale down some public space charac-

terized by a long conduit such that the fluid flow in the physical model was somehow

“similar” to the fluid flow in this public space. To do this, first the geometries of typi-

cal public spaces being studied were compared. For example, in Table 3.1, geometries

are presented for a vehicle transport tunnel and for a passenger airport terminal.

What can be gathered from the dimensions presented in this table is that our system

being studied is significantly longer than it is wide (or tall). Thus, our physical model

must also be the same.

Ideally, the experimental setup would be able to match some sort of non-dimensional

number also represented by these public spaces. If we take the velocity that can some-

times be felt in a subway passenger tunnel to be 10 m/s [Yang et al. (2007)] and our

characteristic length to be approximately the same height as the Detroit-Windsor car

tunnel (so l = 7m, our Reynold’s number at 15 oC with air as the ambient fluid such

that our density is ρ = 1.225kg/m3, and dynamic viscosity is µ = 1.98×10−5N · s/m2

is:

Re =
(1.225 kg/m3)(10 m/s)(7 m)

1.98× 10−5 N · s/m2
= 4.3× 106. (3.2)

For our experiment to match this Reynolds number, then we will need to determine

the velocity for a given characteristic length. As will be discussed in Section 3.3.4,

our height/width for the test section will be 0.6m for both. Thus for a Re = 4.3×106
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our velocity will need to be:

U =
Reµ

ρl
=

(4.3× 106)(1.98× 10−5 N · s/m2)

(1.225 kg/m3)(0.6 m)
= 116 m/s. (3.3)

Since this experiment for this dissertation was to show feasibility of real-time control,

rather than matching exactly to an actual physical scenario, having the prototype

have a velocity of 116 m/s seemed too high. Thus, matching the Reynolds number

was not necessarily the goal when creating a “similar” flow at the experimental level.

Instead, having a test section that was significantly longer than it was wide or high

was the main goal, and a velocity inside the test section match that of the maximum

velocity one might feel in an actual public space (e.g. 10 m/s) was followed instead.

3.3.2 Design Constraints

For the wind tunnel developed for this research, three different guides were fol-

lowed [Mehta and Bradshaw (1979); Mehta (1979); Bradshaw and Pankhurst (1964)].

Based on these guides, design decisions were made with an effort to minimize fluid sep-

aration and maximum fluid uniformity. However, there existed some obvious added

constraints for this wind tunnel–mainly cost, space, construction capabilities, and

timeline–that also influenced design decisions.

3.3.2.1 Space

The wind tunnel was built in the wave basin within the construction laboratory of

the Civil and Environmental Engineering Department. The total dimensions of the

space that were available for this physical model were 20 ft× 45 ft. Fortunately, this

space allowed for a long test section to be integrated into the design that will eventu-

ally allow for feedback flow control (more than one iteration of the sensing/control).

The disadvantage to this space was the significant amount of dust produced by the
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Table 3.2: Cost breakdown of physical model.

Item Approximate Cost
Test Section Glass & Acrylic $4, 000
Wood and Miscellaneous Construction Materials $2, 000
Centrifugal Fan $3, 000
Aluminum Honeycomb $1, 000
Smoke Generator for Visualization and for ‘Contaminant’ $3, 000
Wire Cloth for Settling Chamber and Wide Angle Diffuser $3, 000
National Instruments Real-Time Controller $8, 000
Compressed-Air Components for Control System $4, 500
Ethernet CCD Camera and Lens $1, 500

structures laboratory that often interfered with visualization efforts.

3.3.2.2 Cost

For the total physical model (including the control system discussed in Section

3.4), the budget was ≈ $30, 000. The wind tunnel was constructed in-house by

laboratory technicians, thus, labor was not included in the budget. Instead, the

budget was split in half between expenses for the control system and for the wind

tunnel. For the wind tunnel, the budget was split quite evenly through the cost

for the test section, the fan, the wire cloth, and the smoke generator. The expense

breakdown of the physical model can be seen in Table 3.2.

3.3.2.3 Construction Capabilities

The construction capabilities of the wind tunnel mainly influenced the orientation

of the wind tunnel. It was necessary to build the contraction section, settling chamber,

and diffusers out of wood as any other material would need outside contracting work

(other materials often used include fiberglass and metal, with fiberglass the preferred

material). Thus, because these components were made of wood, it was important

that the test section be rectangular, as a circular system would be far more difficult
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to build with wood. This also lead to the decision to make the wind tunnel a blower

wind tunnel (i.e. fan at upstream end of test section) rather than a draw-down wind

tunnel (i.e. fan at downstream end of test section) as the draw-down tunnel would

have required a rectangular-to-annular transition section, that would have again been

too difficult to construct with wood. One of the difficulties when constructing a

rectangular wind tunnel is the unwanted vortices produced in the corners. To mitigate

these vortices, it is standard practice to use fillets in the test section, which was done

with this wind tunnel.

3.3.2.4 Timeline

Design of the physical model began the summer of 2012, and construction the

following summer 2013. The complete physical model (control system and wind

tunnel) was completed in June 2016. All materials for the physical model needed to

be purchased by the end of June 2013. Many of the items purchased for the control

system were decided upon prior to completion of the wind tunnel construction, which

has lead to some limitations in the control systems implementation, and that will be

discussed in Section 3.6.

3.3.3 Wind Tunnel Orientation

The wind tunnel built for this research is a blower wind tunnel. Draw-down wind

tunnels are the standard types of tunnels built and used in aerodynamic applica-

tions; however, usually the application of these wind tunnels is to study the fluid

flow over some scaled-down component of a vehicle. The test sections in these types

of wind tunnels are usually quite short, with an almost equivalent ratio between the

width/height of the test section to its length. Additionally, there is not usually a

fluid injected into the boundary of the test section for these types of applications, so

the upstream and downstream flow are not necessarily examined. Thus, the ultimate
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objective for this wind tunnel was very different than standard uses of wind tunnels.

Therefore, a draw-down wind tunnel was not required. Instead, for ease of construc-

tion and economical concerns, a blower wind tunnel was built.

Another factor in the design of a wind tunnel is the air speed. This wind tunnel

operates at low enough speed to be considered a low speed wind tunnel, sometimes

referred to as a subsonic wind tunnel, which have a low Mach number (test section

speed < 134 m/s and Mach number < 0.4.)

Another design decision for the wind tunnel was whether it would be open-looped

versus closed-loop. The benefits of closed-loop designs are such that air is recircu-

lated and long tests can take place. Additionally, there is the possibility of having

two test sections with a closed loop design. For the same reasons stated above, an

open-looped wind tunnel was used because it was more economical, easier to build,

and the benefits were not necessary to this research.

The computer-aided drawing of the wind tunnel designed for this work (without

the fan) can be seen in Figure 3.3. The different components of the blower wind

tunnel are the test section, wind tunnel orientation, fan, wide-angle diffuser, settling

chamber, contraction section, and exit diffuser; these components can be seen in the

schematic in Figure 3.2, which is based of the work of Mehta and Bradshaw (1979).

The first decision to be made after the orientation was decided is what the flow must

look like in the test section, as that is what guided the needs of the rest of the

components.

3.3.4 Test Section

The goal for the wind tunnel is such that air enters the test-section with near

uniformity in the flow, and absent of flow separation. To allow for multiple iterations

of feedback flow control, the test section was to be made such that it was as long

as possible. For the space provided, this allowed for a design of a test section of
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Figure 3.2:
Basis of physical model wind tunnel design from Mehta and Bradshaw
(1979).

potentially over 20 ft in length (≈ 6 m). The cross-sectional area of the test section

would influence the size of the components upstream of test section as at least a 6 : 1

ratio is necessary between the cross-sectional area of the settling chamber to the test

section. It was decided that a 2 ft × 2 ft cross-sectional area would be used for the

test section, in part due to the increase in length of the contraction section were the

cross-sectional area any longer, and also in part due to the economical save it would

be to have the sides of the test section be multiples of 2 ft.

The material used for the test section is clear such that optical sensors can be used.

Specifically, a combination of acrylic plexiglass and tempered glass is used: tempered

glass is on the side facing the camera sensor to improve the optics, while plexiglass

was used for the other three sides so as it could be cut to install the vacuum nozzles.

Altogether, there will be at least three sections that together will yield a total length

of at least 24 ft (≈ 7 m). Each section was 8 ft (≈ 2.5 m) in length as the sheets

of acrylic plexiglass and tempered glass came in sheets that are 8 ft × 4 ft in size

(≈ 2.5m× 1.25m). This long length will allow for multiple sets of sensors/actuators

to be installed for feedback control. For the experimental results discussed in Section

98



3.5, only two sections of the test section were used.

Even though the velocity of the air is uniform at the test section entrance, as the air

continues through the test-section, there is boundary layer growth eventually creating

more of a parabolic flow profile before exiting the test section. While boundary layer

growth is generally unfavorable for wind tunnels, for this research, the focus is more on

the feasibility of carrying out detection/control, and thus, the boundary layer growth

was not the greatest concern. Although, it will need to be taken into consideration

when trying to match any experimental data to computational.

3.3.5 Centrifugal Fan

A picture of the centrifugal fan to push air through the wind tunnel can be seen

in Fig. 3.4. The fan provides a flowrate of up to 2000 ft3/s (which for the given

cross-sectional area of the test section approximates up to ≈ 2.5 m/s velocity in the

test section). A variable frequency driver is also used to allow for the fan’s flowrate

to be controlled down to one-tenth its maximum flowrate. The air used will be the

ambient air inside of the structure laboratory. A table showing the different test

section velocities for the frequency provided to the fan can be seen in Table 3.3. The

centrifugal fan also provides a static pressure of ≈ 1 wg H2O (≈ 249 Pa).

3.3.6 Wide-Angle Diffuser

Once air enters the wind tunnel via a fan, it first travels through an expansion

section connecting the fan to the settling chamber; this expansion section is known as

the wide-angle diffuser. It is necessary to have an expansion with a large area ratio.

But the difficulty lies in reducing the length over which this expansion occurs, which

subsequently reduces the pressure loss. A wide-angle diffuser allows for this area

expansion to occur over a shorter length. However, with such a short length, there is

an increased risk for separation in the fluid. Therefore, there must also be a means
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Table 3.3: Frequency of the fan corresponding to velocity in test section.

Motor ( Hz) Test Section Velocity, ft/s ( m/s)
5.0 0.69 (0.21)
10.0 1.39 (0.42)
15.0 2.08 (0.64)
20.0 2.78 (0.85)
25.0 3.47 (1.06)
30.0 4.17 (1.27)
35.0 4.86 (1.48)
40.0 5.56 (1.69)
45.0 6.25 (1.91)
50.0 6.94 (2.12)
55.0 7.64 (2.33)
60.0 8.33 (2.54)

of boundary control, such as metal screens, to minimize this risk for separation.

There are two main design decisions that must be made for the wide-angle diffuser:

(i) the length of expansion (and subsequent angle), and (ii) the number of screens.

The two decisions are interdependent. A chart compiled from previously built wind

tunnels was used to determine the number of screens necessary to minimize separation

of flow for the diffuser expansion angle. For this physical model, the wide-angle

diffuser is 5 ft long (≈ 1.5 m) with 3 screens total. The screens used were the same

screens decided upon for the settling chamber and discussed in greater detail below.

3.3.7 Settling Chamber

The next section, the settling chamber, contains a metal honeycomb used to liter-

ally straighten the flow, reducing any turbulent swirl in the flow; and is then followed

by a series of metal screens that are used to minimize the differences in the flow

field, which in turn improves the uniformity of the flow. The settling chamber’s

cross-sectional area was chosen as 5 ft × 5 ft (≈ 1.5 m × 1.5 m) due to a necessary

contraction ratio occurring between it and the test section, discussed further below.

The settling chamber has a much greater cross-sectional area than the test section so
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that the velocity of the fluid is much lower to reduce the pressure losses in the flow

as it moves through the honeycomb and screens.

An aluminum honeycomb that is 5 ft × 5 ft (≈ 1.5 m × 1.5 m) in area is used for

the settling chamber. The cell length of each honeycomb should be about 6− 8 times

its diameter [Mehta and Bradshaw (1979)]. Thus, a honeycomb with a cell length of

3 in (≈ 75 mm) with a cell size of 3/8 in (≈ 9.5 mm) is used.

For the screens (also known as wire cloth) used in the settling chamber and the

wide-angle diffuser, the major design decisions are that: (i) the open area is greater

than 57% and (ii) the mesh count (i.e. number of wires per lineal inch) be as large

as possible [Bradshaw and Pankhurst (1964)]. Screens with a 67.4% open area, and

0.0075 in (≈ 0.2 mm) wire diameter were selected for this physical model. The same

screens are used for both the settling chamber and the wide-angle diffuser discussed

above.

3.3.8 Contraction Section

The final part of the wind tunnel design before the test section is the contraction

section. The purpose of the contraction section is two-fold: (i) to increase the mean

velocity of the flow after it moves through the screens and honeycomb in the settling

chamber, and (ii) to reduce the mean and fluctuating velocity variations to a smaller

fraction of the average velocity [Barlow et al.]. The contraction section connects the

5-feet by 5-feet (≈ 1.5m× 1.5m) settling chamber to the 2 ft× 2 ft (≈ 0.6m× 0.6m)

test section. The standard contraction ratios used in wind tunnel designs are between

6− 9, thus for this physical model there is a ratio of 6.25.

The major design decision made with the contraction ratio is the contraction

curvature. As the fluid flows in the contraction section, there is a high risk for

either separation or boundary layer growth to occur. Therefore, the curvature of the

contraction section must be chosen such that separation does not occur and boundary
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Figure 3.3: CAD drawing of the physical model for construction.

layer growth is minimal. There does not exist a standard contraction section curvature

to ensure no separation occurs and boundary layer growth is minimal; however, many

studies have examined what contraction section curvature works better than others.

A cubic spline was chosen for the contraction section built in this wind tunnel and is

based on the guidelines provided in Bell and Mehta (1988).

3.3.9 Exit Diffuser

For wind tunnels with large velocities, there exists a need to reduce the speed

at the end of the test section before the air in the wind tunnel reaches the ambient

environment, thus, minimizing disturbance. To reduce this speed, an exit diffuser

is usually used that gradually increases the cross-sectional area in which the air is

flowing (i.e. for a constant flow rate, the larger the cross-sectional area, the lower

the velocity). Because the speeds for this wind tunnel are relatively small, the exit

diffuser was determined to be unnecessary.
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Figure 3.4: Picture of centrifugal fan for physical model.

3.4 Real-time Control System

A schematic of the control system designed and implemented in the long test-

section conduit can be seen in Fig. 3.5. The control system is currently for a single

time horizon. However, the system was designed such that it can be extended to

include another time horizon, allowing for future implementation of feedback control.

Unlike the wind tunnel, there did not exist a standard design for this control system,

thus much of it was designed provisionally. Therefore, the initial results for this

portion of the physical model were about feasibility of real-time control, rather than

carrying out an actual controlled experiment.

3.4.1 Contaminant

The ‘contaminant’ being using for the physical model is propylene glycol smoke

(i.e. the smoke used in everyday fog machines). The smoke generator was designed

by Aerolab LLC and can be seen in Fig. 3.6. The smoke generator is usually used in

wind tunnels for the purpose of flow visualization. However, for this physical model,

the smoke generator creates a plume of white smoke that is injected into the ambient
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wind tunnel flow. A picture of the plume created by this smoke machine can also be

seen in Fig. 3.6.

3.4.2 Sensors

The visual sensor that will be used to detect the plume of smoke is a Manta GigE

Vision camera from Allied Vision Technologies. The camera was chosen such that:

(i) it was compatible with a lens with a long frame to capture most of the length

of the wind tunnel test section (ii) can take multiple pictures in a short time frame,

and (iii) have the ability to send those pictures to the controller with minimal time

lag. The camera sends the pictures via an ethernet cable to the controller. It has

the ability to capture images at a rate of 30 frames per second with a resolution of

1292× 964. Furthermore, the camera can capture an area of 8 ft× 4 ft into its frame.

An image of the camera can be seen in Fig. 3.7.

3.4.3 Actuators

The actuators used in the control system shown in Fig. 3.5 are operated by

a compressed air system. Compressed air is stored in a 60 gal (0.23 m3) receiver

tank supplied by the building’s compressed air system. The compressed air tank

is connected to pressure regulators. The pressure regulators are connected to the

actuators, and are powered and controlled by the connected controller.

The company used to supply the actuators is EXAIR Corporation that specializes

in compressed air-operated products. Two types of actuators will be used for this

project and can be seen in Fig. 3.8. For the vacuum nozzle, the compressed air is

used to create a vacuum inside of the vacuum nozzle, which can then be used to draw

the contaminant out. For the air knife, the compressed air is used to create a sheet

of air flowing in a downward direction. The air knives will be used to section off

the test section, mimicking air curtains in buildings. The velocity that the vacuum
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Compressed air 
supply!

Controller!

Uniform flow!

Pressure regulators!

Air knives!

Vacuum 
nozzles!

Contaminant!

Camera!

Figure 3.5:
Schematic of physical model control system implemented for a single time
horizon.

nozzles create for a given pressure is not known; therefore, the vacuum nozzles must

be calibrated.

3.4.4 Controller

The controller to be used for this physical model is a National Instruments (NI)

PXIe-8102 embedded system, and can be seen in Figure 3.9. It is stored inside of

a NI controller chassis. The controller has an ethernet connection card that allows

the camera sensor to be hooked up to it and process the pictures in real-time. Fur-

thermore, the controller has connections to send a voltage to the pressure regulators,

which in turn control the pressure sent to the vacuum nozzles and air knives. The

software that will be used to program the controller is the NI LabVIEW Real-Time

Module, which is an extension of the LabVIEW Core Software.
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Figure 3.6: Example smoke plume made by the smoke generator system on right.

Figure 3.7: Camera used as an image sensor.

3.5 Results

As has been stated, much of the goal of the physical model is to demonstrate

feasibility and proof-of-concept of real-time control. Thus, the ultimate goal and
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Figure 3.8:
The actuators used for the control of the contaminant. On the left is the
air curtain; on the right is the vacuum nozzle.

subsequent results are to show that real-time control can occur, without necessarily

having fidelity to the CFD flow-control model from Chapter II at this point. To do

so, the first tasks were to successfully connect and process the data to and from the

controller via the camera and the pressure regulator. Once those were connected and

information was successfully collected and sent by the controller, a real-time control

experiment was carried out to see if a contaminant could be injected into the test

section, read in by the camera, and dispatch a signal to the controller. This experi-

ment was successfully carried out, with some interesting behavior by the contaminant.

Thus, a simulation with the CFD flow-control model was carried out similar to the

setup of the physical model’s test section to verify the qualitative fluid behavior.
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Figure 3.9: The controller used for this physical model.
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3.5.1 Real-time Image Processing

The NI PXI-8232 Gigabit Ethernet port is one of the cards that was purchased

to be housed within the real-time controller. Images are able to be taken and sent

with 30 fps from the Manta GigE Vision camera to the controller. In order to ‘detect’

the contaminant within these images, they must be processed by the controller. To

demonstrate this filtering, an example of the contaminant plume from Figure 3.6 as

it is filtered from color, to greyscale, to black and white can be seen in Figure 3.10.

Figure 3.10:
The filtering of a color image of the smoke plume, to greyscale, to black-
and-white.

The images sent from the camera are greyscale. To detect the contaminant, the

images were converted to black and white. This conversion was carried out using

the IMAQdx function palette from the Labview programming software. A series of

functions were used to convert the greyscale image into an array of a binary set of

numbers (e.g. 1 for white; 0 for black). A threshold was set such that the images

able to filter out possible noise from the camera, and to extract the existence of the

contaminant plume as best as possible. The images with the different threshold can

be seen in Figure 3.11.

Once a base threshold was decided upon, the controller was programmed such

that it read in images continuously, processed the images, and once the sum of the

black-and-white array reach a set value higher than the threshold (signifying signifi-

cant presence of the contaminant), a signal was generated to change settings on the

pressure regulator. The final example of the filtered image can be seen in Figure 3.12.
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Figure 3.11: The filtering black-and-white images to reduce noise.

Figure 3.12: A contaminant plume filtered from greyscale to black-and-white.

3.5.2 Real-time Signal Processing

The NI PXI-6232 Multifunction Data Acquisition (DAQ) board was used in con-

junction with the real-time controller to send voltage to the pressure regulator, which

in turn controlled the compressed air supplied to the vacuum nozzle, and its subse-

quent flowrate. The PXI-6232 Multifunction board has the ability to send up to two

voltage analog signals (up to 10V each), up to four voltage digital signals (up to 24V

each), and receive signals from up to six digital inputs.

The connector for the pressure regulator can be seen in Figure 3.13. As can be

seen from the figure, the regulator has a pin for one digital voltage input (which
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powers the regulator), and one analog voltage input (which controls the subsequent

flowrate of the connected nozzle). The pressure regulator was connected to the DAQ

board via one voltage output analog signal, and one voltage output digital signal. A

constant voltage was supplied to the board using a standalone controllable voltage

supplier.

The signals were sent using the NI-DAQmx driver software, and programmed with

the subsequent DAQmx LabVIEW function palette. Once a case loop received a signal

from the image case loop, the analog voltage channel was triggered to supply a voltage

of 5 V to the regulator, which essentially turned on the vacuum nozzle.

Figure 3.13: The wired connector for the pressure regulator.

3.5.3 Real-time Control Feasibility Experiment

An experiment was carried out to see if the Image and Signal Processing could

work successfully in conjunction with the wind tunnel and corresponding controller.

The initial setup of the experiment can be seen in Figure 3.14. Screenshot images from

the experiment can be seen in Figure 3.15. The threshold described in Section 3.5.1

was set such that the stream of smoke from the smoke generator could fully develop

before the nozzle was triggered. For this experiment, the frequency for the centrifugal
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fan was 12 Hz, which translates to about 1.7 ft/s (≈ 0.5m/s). The experiment lasted

for a total of about 5 min (although the controller was triggered within a minute

of starting the experiment). While it is difficult to discern from the photos, the

Figure 3.14:
The experimental setup for the physical model. The controller is con-
nected to the camera and pressure regulator, which controls the vacuum
nozzle at the downstream end of the tunnel.

experiment proceeds such that the smoke generator begins to supply a continuous

plume of smoke (see part (a) of Figure 3.15) Eventually, once enough smoke fills the

test section that is being sensed by the camera, the control system is triggered (see

part (b) of Figure 3.15). As a result of the control, significant mixing occurs at the

downstream end of the test section, and disruptions in the flow from the vacuum

nozzle can be seen on the upstream end of the test section (see parts (c) and (d) of

Figure 3.15). A more detailed view of the upstream disruptions can be seen in Figure

3.16.
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b)

c) d)

a)

Control is triggered

Upstream affects from vacuum nozzle

Figure 3.15:
Screenshots of the physical experiment. In picture (a), the smoke is
just starting to be generated; for picture (b) enough smoke is generated
that the control action is triggered; in pictures (c) and (d) there are two
types of fluid phenomena occurring as a result of the vacuum nozzle:
disturbances at the upstream end of the test section and mixing at the
downstream end.

3.5.4 CFD Flow-Control Applied to Physical Model

Two of the interesting observations of the fluid behavior from the experiment are:

(i) the vacuum nozzle influences the upstream behavior of the smoke to a certain

extent, and (ii) while the nozzle is not successful at completely removing the contam-

inant; instead it creates significant mixing with the ambient air in the downstream

end of test section.

To see how these qualitative observations matched up between the physical model

and the CFD flow-control model, a simulation of the experimental setup of the phys-

ical model was carried out using the CFD flow-control model. Now it must be stated

the geometries are different for both examples; the flowrate out of the vacuum nozzle

is unknown, so the flowrate for the port in the CFD flow-control model was a guess;
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Figure 3.16: Disruption upstream of flow.

and the contaminant in the CFD flow-control model is not assumed to be smoke, and

actually is assumed to be neutrally buoyant, which is the the case for the propylene

glycol in the experiment. However, even with these

The CFD flow-control model was ran with a single downstream port on the bot-

tom of the domain. The contaminant was released into the ambient flow continuously,

creating a constant stream of contaminant. Because the flowrate of the nozzle for the

physical model is unknown, deciding upon the flowrate of the nozzle for the CFD

flow-control model was somewhat tricky. Thus, there were two runs that were car-

ried out: (i) one with a port velocity range similar to those from Section 2.4 (i.e.

0− 3m/s), and (ii) one with a significantly higher port velocity range of 20− 40m/s.

The results from these two runs can be seen in Figures 3.17 and 3.18. As can be

seen, the upstream influence from the nozzle is similar to that of the physical model.

Additionally, for the high port velocity range, mixing creating what looks like uniform

distribution of the contaminant in the downstream end is also apparent.
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t = 0.0s

t = 2.5s

t = 5.0s

t = 7.5s

t = 10.0s

t = 12.5s

t = 15.0s

Figure 3.17:
One port with continuous contaminant. The control port can only create
a transpiration control action at a low velocity (≤ 3 m/s).

3.6 Discussion

The physical prototype and the real-time control system were implemented suc-

cessfully, however, there still exists quite a bit of limitation. The main limitation to

the prototype is the nozzle that draws the contaminant out. Because the nozzle func-

tions by being supplied a large amount of compressed air, it creates a high velocity

that significantly disrupts the flow in the test section, rather than simply drawing
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t=0.0s

t=2.5s

t=7.5s

t=5.0s

t=10.0s

t=12.5s

t=15.0s

t=17.5s

t=20.0s

Figure 3.18:
One port with continuous contaminant. The control port can only create
a transpiration control action at a high velocity (20− 40 m/s).

out the contaminant. Part of the reason this design is limited is that the items for

the prototype were purchased before the wind tunnel was actually built. Boundary

control via air is a much more difficult problem than with water as the ambient fluid.
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Thus, in the future an improved control system should be considered.

Further analysis needs to be carried out regarding similarity of fluid flow between

the prototype, the computational model, and the actual public spaces being studied.

As was seen earlier in the chapter, matching Reynolds numbers exactly for the three

analyses might not yield the information that is pertinent to this research. Instead,

questions regarding what time scales and length scales of the different components of

the experimental setup – particularly when compared to the actual public spaces –

should be further analyzed and possibly adjusted. For example, is the length scale of

the width of the test section what is important, or is the length scale of the turbulent

disruption what should be taken into consideration.

It is also important to note how the CFD flow-control model qualitatively is able to

capture some of the disturbances seen in the prototype from the high velocity nozzle.

It will be interesting to compare these two models more (physical and computational)

after actual measurements are made on the flow field within the wind tunnel.
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CHAPTER IV

Evacuation Dynamics

4.1 Motivation

Many different computational models have been developed in order to simulate

humans and crowds as they evacuate a space. These models have assisted a countless

number of public safety teams in search and rescue operations, emergency training

scenarios, and in building safety design [Aguirre et al. (2011)]. Moreover, some compu-

tational egress models have incorporated evacuation environments that are dynamic

and threatening, and with which agents must interact (e.g. earthquakes) [El-Tawil

and Aguirre (2010)].

This research seeks to build upon this work by developing an evacuation ABM

that is coupled with a CFD flow-control model of a spreading contaminant within a

public infrastructure system: the CFD flow-control model is able to “sense” the loca-

tion of the humans evacuating and “control” the contaminant via boundary actuators

to minimize contaminant exposure to evacuees. We look at public spaces defined by

a long conduit which allows us to assume unidirectional ambient fluid flow. We ini-

tialize the agents in our evacuation ABM with one trait that we defined to influence

their egress decision-making. This research demonstrates how basic decision making

at the human-level influences aggregate behavior of our human population, which in

turn influences the CFD flow-control that is carried out in such a space.
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4.2 Background of Agent-based Modeling

From an engineering standpoint, modeling how human’s behave can be a jarring

and formidable experience. Moving from physics to people is quite a leap, a sentiment

best summarized with a statement posed by the physicist Gell-Mann (1995):

“Imagine how hard physics would be if atoms could think.”

This statement epitomizes the challenge in studying human behaviors. Traditionally,

if engineers were to study a system that involved humans, the most comfortable and

obvious approach might be to develop some sort of mathematical model that can be

used to describe the overarching system, and fit this model to the observed behavior.

Actually, that has been a strategy by many seeking to bridge their engineering with

the human components that might influence it. However, at best, these sorts of

models are limited in their reach and fallacious in their application. Therefore, there

exists a need to bring in a more realistic method to model systems that involve human

behavior. Agent-based modeling is one technique used throughout this research that

allows for heterogeneity in decision-making among its agents at the micro-scale, giving

way to the broader macro-scare patterns of the population as a result.

4.2.1 What are Complex Systems?

ABM is a technique used to model what are known as complex systems. A system

is complex when it has a diverse set of interacting agents–or parts–whose collective

behavior exceed and transcend the capabilities of the constituent agents. As laid out

by Boccara (2010), a complex system more or less has the following traits:

1. It is a system consisting of individual, interacting agents,

2. The system exhibits emergence, or rather self-organizing, collective behavior

that might be difficult to distinguish solely by observing a single agent’s behav-

ior,
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3. There is no central controller that gives rise to this emergent behavior, thus this

self-organizing occurs from the bottom up, rather than top-down.

Some examples of complex systems include sparrows flocking together; fish swimming

in a school; an audience giving a standing ovation, or possibly the wave at a sporting

event; racial self-segregation in an urban neighborhood; or cells as they develop into

an embryo1.

One of the most famous examples of complexity is that of foraging and mainte-

nance in an ant colony. As Boccara (2010) describes it (based on the work of Gordon

(1996)), worker ants of the harvester ant species perform one of four tasks: (i) forag-

ing along cleared trails in the nest to collect seeds; (ii) performing maintenance in the

nest by clearing sand or vegetation; (iii) patrolling the nest by responding to damage

to the nest or protecting it from invasion of other ant species; and (iv) collecting and

sorting the nest’s waste. What Gordon and his team showed is that the allocation of

these four tasks is not set, and instead is continually adjusting. For example, when

researchers placed a toothpick near the entrance to the nest, the number of ants per-

forming maintenance on the nest significantly increased. Additionally, when mounds

of seeds were placed near the nest, the number of ants foraging also significantly

increased. But the fascinating aspect of this example is that there was no central

controller that decided upon these tasks, nor would it have been possible for any

macro-level agent, such as the queen ant, to have allocated tasks in a way that led to

such cooperative, efficient, and emergent behavior amongst so many ants. Instead,

the organization among the ants occurred at the micro-level, with each ant behaving

based on their perception of the chemical and tactile signals communicated to them

by other agents. Because this emergent behavior was a result of the individual agents

in the system, it is complex.

1The list of different complex systems is endless, and spans social, economic, ecological, biological,
political, political etc. realms. For examples of different complex systems, the reader is directed
toward computational tutorials on agent-based modeling, such as Repast Simphony [North et al.
(2013)] or Netlogo [Tisue and Wilensky (2004)].
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4.2.2 The Case for Agent-based Modeling

What is present in all of these examples described above is that micro-level be-

havior and interactions amongst the agents within the model are what lead to the

broader aggregate behavior. The field of complex systems spans beyond the behav-

ioral dynamics of the systems described above, and the ability to describe the many

other aspects of complex systems within this text would be a vain attempt. Instead,

the reader is directed to other texts such as Gilbert (2008).

But behavioral dynamics is one of the fields that has been completely revolution-

ized by agent-based modeling, a method that came about from complex systems.

Rather than develop a set of governing equations, or a different high-level mathemat-

ical means, to describe the system and its corresponding emergent behavior, ABM

builds a model computationally from the bottom-up, via the accretion of the agents.

At this point, to better explain ABM, it would be a useful exercise to juxtapose

ABM with CFD. They are similar in that they both use models to describe the ob-

served world around; however, they contrast in both the development and application

of these models. CFD uses a set of partial differential equations (e.g. Navier-Stokes

equations) to describe the motion of a fluid. Because these equations cannot necessar-

ily be solved outright, a computational model is developed that estimates the solution

to these equations. If the computational model is from the Eulerian perspective (i.e.

domain-level perspective), the estimates occur at nodes or volumes throughout the

domain; if the computational model is from the Lagrangian perspective (i.e. particle-

level perspective), the estimates occur for each of the hypothetical particles in the

flow. Either way, the behavior of the fluid at these nodes or particles is dependent

on the overarching equations.

Instead, for ABM, the model itself consists of the individual agents, and a set

of simplified, diverse behavior individually prescribed, of which they can adapt and

change with time. These agents are implemented into a computational model, and
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they move through space and/or time, interacting with each other, eventually giving

way to the broader, emergent behavior. CFD is a tool in order to better understand

the underlying theory of fluids; while ABM is tool to better understand human be-

havior2.

The development of ABM, and the computational theory behind it, can first be

seen in the mid-20th century, beginning with John von Neumann’s self-replicating

machine, which in turn motivated the development of cellular automata, in which a

system is described by discrete grid cells able to take on a finite number of states that

change values overtime based on the states of neighboring cells. The most famous

example of cellular automata is The Game of Life by John Conway Gardner (1970).

In this “game,” a grid of square cells have one of two states: alive or dead. Each

cell then progresses in time and may or may not change state based on a set of four

basic rules concerning the state of the other cells it “interacts with” in its Moore

neighborhood3. What is interesting about this cellular automata model is that based

on the initial states of the cells, the model will either completely die, continuously

evolve, or develop a constant state4.

Conway’s Game of Life actually lead to what is one of the first social science

ABMs by Schelling (1980). Schelling developed a model similar to the Game of Life

in which agents take on a “state,” which in this case is a racial demographic. Again,

each agent changes state based on rules, their individual prescribed preferences, and

the corresponding state of their neighbors–thus, they are interacting with their neigh-

bors. The model showed that even when the cells were seeded with a small overall

preference and inclination to be nearer to other cells of the same state, it could ulti-

2Interestingly, some of the earliest models for simulating human evacuation used fluid dynamics
concepts and their corresponding mathematical equations Zheng et al. (2009).

3To try out this “Game of Life,” the reader is directed to the following website: http://www.

bitstorm.org/gameoflife/.
4Interestingly, Conway’s Game of Life has developed somewhat of a cult following, with fol-

lowers changing or adding rules to find different emergent patterns in the grid, e.g. http:

//www.conwaylife.com/.

122

http://www.bitstorm.org/gameoflife/
http://www.bitstorm.org/gameoflife/
http://www.conwaylife.com/
http://www.conwaylife.com/


mately lead to total segregation of the cell population.

During the 1980s, Robert Axelrod was a seminal researcher who brought ABM

to political science Axelrod (1981), while Craig Reynold’s developed one of the first

biological ABM recreating the phenomena of “flocking” of birds Reynolds (1987).

Soon after these initial models, ABM eventually extended into arguably all dis-

ciplines after accessible open-source software codes and corresponding tutorials for

widespread use were developed in the 1990s and 2000s, namely Swarm (of the Santa

Fe Institute of the study of Complex Adaptive Systems Terna et al. (1998)), Repast

(University of Chicago), and Netlogo (Northwestern University). Today, ABM has

become ubiquitous to a variety of, if not all disciplines Macal (2016).

4.3 Evacuation and Agent-based Modeling

Most investigation into human evacuation strategies occurs a posteriori as disas-

ters that induce these types of evacuation responses are unpredictable, and unethical

to experimentally create. Thus, social science researchers usually resort to interview-

ing evacuees after an egress. Although follow-up investigations are not necessarily

the norm, nor always possible after events, the investigations that do occur have

yielded considerable insight into the decision making processes of evacuees. While

there are many underlying behavioral patterns that exist for all types of emergency

evacuations, there are also unique behaviors that emerge depending on the type of

emergency evacuees are facing. For example, one of the most interesting evacuation

characteristics observed is that when evacuating a building, humans are more likely

to move toward an exit where others are also evacuating, even if a quicker exit is

available; this phenomenon is called herding Pan (2006).

Evacuation due to the spread of a hazardous contaminant is one of the least stud-

ied evacuation scenarios because of the rarity of such events. However, one common

scenario that can be related to hazardous contaminant release is the need for evac-
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uation during a fire inside a building. A plume of smoke created by fires can be

considered to behave similarly enough that the evacuation of humans during such a

scenario is a useful comparison to make. Of course, one limitation to such a com-

parison is that smoke is usually able to be sensed by building occupants in a variety

of ways (e.g. smell, sight, feel, breath), whereas, other potential contaminants (e.g.

biological, chemical) may not be perceived.

Many egress models have been developed with different behaviors amongst agents.

Pan (2006) developed one of the more comprehensive agent-based models for evacua-

tion out of a building, which was named MASSEgress. According to Pan (2006), the

evacuation of a crowd can be modeled as the culmination of three levels: the agent,

interaction amongst individuals, and group behavior. Usually, the most efficient form

of evacuation occurs when an individual can make clear decisions. Disruptive, or

nonadaptive, behavior is behavior by an individual that worsens her/his ability to

evacuate. It is a result of high stress levels that may diminish the full functioning of

one’s senses. When the agents follow the model framework described above, the col-

lective result may lead to emergent behavior. In Pan (2006), this emergent behavior

was the top level of the behavior hierarchy. Pan (2006) allowed for three types of

emergent behavior to occur in their model: competition, queuing, and herding.

Another egress model by Pelechano and Badler (2006) emphasizes an individual’s

role within a group during the evacuation. Individuals could take on one of three

roles: trained leaders, untrained leaders, and untrained non-leaders (i.e. followers).

A trained leader would have complete knowledge of a building’s internal structure; an

untrained leader may not have previous experience, but can handle stress better than

others; and a follower is a person that might panic during an emergency situation

and become incapably of making her/his own decision.

The one form of emergent behavior that occurred in the Pelechano and Badler

(2006) model were the multiple clusters of agents that developed from the leader-

124



follower hierarchy. The higher percentage of leaders in the population led to a larger

number of groups with smaller amounts of agents in each group. The larger amounts

of leaders will smaller groups looking for exits actually led to more efficient evacua-

tion because the groups could communicate with each other. The lower percentage

of leaders with larger group sizes had the opposite effect.

Recently, Fang (2015) has been developing an ABM that incorporates and em-

phasizes the importance of social and socio-psychological factors of agents as they

evacuate. In particular, they develop a model in which agents will find their “famil-

ial” members before evacuating a space together.

One of the most important applications for evacuation models is their use in real

emergency situations, and their potential to save lives in such a situation. El-Tawil

and Aguirre (2010) discuss the potential these evacuation models have in training

search and rescue teams for survivors in collapsed buildings. They have used data

from earthquake disasters and building occupants as they evacuate during these dis-

asters. In the future, they plan to couple that data with a computer model simulating

the collapse of a building. This combination of both the evacuation of occupants and

the collapsing of a building are what can be used to assist search and rescue teams

during and after a disaster such as an earthquake. Furthermore, their approach is

novel in the area of evacuation models in that the agents in their model must now

interact with a dynamic environment as they evacuate.

One of the ABM models most potent to this research is the model developed by

Gwynne et al. (2001), who improved upon an evacuation model called buildingEXO-

DUS by implementing agent behavior unique to an environment with smoke from a

fire. The three behaviors implemented for agents in this sort of environment are:

• Occupant prior exit knowledge

• Functionality when moving through smoke
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• Confrontation with smoke barrier.

The occupant prior exit knowledge has a similar effect on agent behavior that was

present in both the Pan (2006) and Pelechano and Badler (2006) models. For the

most part, it is believed that agents will try to exit to their most familiar route, not

necessarily the route that is the least distance. Gwynne et al. (2001) additionally used

agent behavior such that agents must decide whether to continue moving toward their

desired exit even if there is a contaminant barrier affecting that route, or whether

they must change their desired exit.

Gwynne et al. (2001) also implemented agent functionality that is affected by

exposure to the fire cloud. Agents’ temperament as well as physical behavior were

negatively affected. Further, agents were unable to make clear decisions.

The model developed in this paper particularly seeks to implement decision mak-

ing of agents when faced with a contaminant cloud. According to Gwynne et al.

(2001), when faced with a contaminant barrier, agents will either continue through

the contaminant or move away and adjust evacuation route. This type of agent be-

havior is what this dissertation seeks to explore. However, instead of the contaminant

barrier being smoke, an arbitrary contaminant is considered (as was done in Chapter

II).

4.4 Results

There are three major results that are discussed throughout this section. First, an

initial evacuation ABM is developed in which the contaminant simply diffuses. With

this initial model, a comparison of two different decision styles implemented into the

model computationally is developed and compared. An experiment was carried out

where these for these two models in which there were run for a total of 1080 times.

The results demonstrate how sensitive a model of micro-level human behavior is to
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the means by which it is programmed.

Based on the original model, a new evacuation ABM is developed that mimics the

space of the CFD flow-control model developed in Chapter II. A contaminant is

injected into the space that is loyal to the physical model from the CFD flow-control

model and with which that the evacuees must interact.

Finally, the new evacuation ABM is coupled with the CFD flow-control model such

that the models feed data back and forth to each other that influence the behavior

of the phenomena in the models.

4.4.1 A Comparison of Two Different Decision Styles

The original evacuation ABM was programmed such that agents were able to em-

ploy one of two decision make styles: (i) a discrete decision style or (ii) combination

decision style. Both decision styles incorporated the agent’s pre-assigned risk toler-

ance, but the decision on how to move was implemented differently for the two.

Three types of measures were put into place in order to analyze the emergent

behavior. First, the percent of agents evacuated was measured. The second mea-

surement was the percent average contaminant exposure. The average contaminant

exposure at each time step for each agent was divided by the average contaminant

for each cell in the world. The third measurements are with the three measurements

were plotted on the same graph.

Discrete Strategy. For the discrete decision, the risk tolerance is what determines

how the agent will choose from the other two options. Again, a new random

number is computed between the values of 0.0 and 1.0. If the risk tolerance

for an agent is greater than the random number computed, the agent will move

to the open cell closest to the exit (i.e. it will risk being exposed to more

contaminant). Otherwise, the agent will move to the open cell that has the least

amount of contaminant. Snapshots of the program with a high risk tolerance
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mean versus of a low risk tolerance mean can be seen in Figures 4.1 and 4.2.

For this case, 120 agents were present in a space the size of 71 × 71 cells. As

can be seen, when there is a higher risk tolerance mean, the agents are able

to evacuate quickly while also exposing themselves to more contaminant. The

opposite occurs with a low risk tolerance mean.

Combination Strategy. For the combination decision, an agent’s move was de-

pendent on a defined “score” that was calculated at each step. The score is

calculated based on a combination of the agent’s risk tolerance, the cell’s nor-

malized distance to the exit, and the normalized contaminant concentration.

The normalized distance is the distance a cell is from the exit divided by the

maximum length of the world. The normalized contaminant concentration is

the amount of contaminant in the cell divided by the maximum contaminant

that is allowed into the system per cell.

Each step, a random number is chosen between 0.0 and 1.0. If the risk tolerance

is greater than the random number, then the following combination is used to

calculate the score:

score =
c2norm
rt

+
dnorm
1− rt

(4.1)

where cnorm is the normalized contaminant value, dnorm is the normalized dis-

tance, and risk is the risk tolerance.

If the risk tolerance is not greater than the random number, the following is

used to calculate the score:

score =
d2norm
rt

+
cnorm
1− rt

. (4.2)

Snapshots of the program with a high risk tolerance mean versus of a low risk

tolerance mean can be seen in Figures 4.3 and 4.4. For this case, 120 agents were
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Figure 4.1:
Evacuation patterns when agents have a lower risk tolerance mean using
first (discrete) decision strategy (risk tolerance mean = 0.2).
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Figure 4.2:
Evacuation patterns when agents have a higher risk tolerance mean first
(discrete) decision strategy (risk tolerance mean = 0.8).
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present in a space the size of 71× 71 cells. As can be seen, the evacuation time

is much quicker using this decision strategy. Further, exposure to contaminant

is somewhat reduced. The only time the contaminant exposure is not reduced

when compared to Decision Strategy 1, is when the risk tolerance is low.

As can be seen, for the discrete decision with low risk tolerance, the percent of agents

evacuated grows slowly, however, the percent contaminant exposure is small. In some

cases, some agents are unable to even evacuate. The opposite is true for the runs

with a high risk tolerance. As can be seen, agents have a high percent contaminant

exposure, however a quick evacuation time. Agents using this strategy with high risk

tolerance all are able to evacuate. However, some agents are exposed to more con-

taminant than the average cell contains. For the combination decision, it can be seen

that evacuation time is quicker when compared with the low risk tolerance for the

first decision strategy. However, contaminant exposure is somewhat higher. When

compared to high risk tolerance of the first decision strategy, the agents have less

exposure to contaminant, but slower evacuation time. These results were expected.

However, when comparing the second decision strategy for low and high risk fac-

tor, there does not seem to be much of a difference in behavior. Evacuation time

is similar, as well as exposure to contaminant. This behavior may be due to the

algorithm that was employed when the agents had to choose between cells based on

the calculated score from equations (4.1) and (4.2). The equation where the agent

takes into consideration the contaminant exposure as well as the distance from the

exit may not vary the weight of each consideration enough when there are different

risk tolerance means. Experiments were used in order to verify this hypothesis.

4.4.1.1 Experimental Analysis

Experiments were run in order to compare the discrete decision and the com-

bination decision. Further, the experiments were used to examine the combination
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Figure 4.3:
Evacuation patterns when agents have a lower risk tolerance mean using
second (combination) decision strategy (risk tolerance mean = 0.2).
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Figure 4.4:
Evacuation patterns when agents have a higher risk tolerance mean second
(combination) decision strategy (risk tolerance mean = 0.8).

133



decision to see if the different risk tolerance values led to distinct differences in agent

behavior. Twenty runs were made each for risk tolerance means of 0.10, 0.20, 0.30,

0.40, 0.50, 0.60, 0.70, 0.80, and 0.90 and corresponding standard deviations of 0.00,

0.10, and 0.20. These runs were carried out using both the discrete and combination

decision making strategies. Thus, there was a total of 1080 runs. Each run the size

of the world was 71× 71 cells with 120 agents.

Contaminant Exposure. The first results from the experiments examined the con-

taminant exposure. The average contaminant exposure was taken for each time

step across the twenty runs for each case. The maximum contaminant exposure

for each case was found. These maximum contaminant exposure values were

then plotted against each other and can be seen in Figure 4.5. As was ex-

pected, for the discrete decision, the maximum contaminant exposure increases

with risk tolerance. Further, the maximum contaminant exposure seems to stay

constant until a risk tolerance value of about 0.5.

What is even more interesting is how the maximum contaminant exposure seems

to stay constant for all of the combination decision. Further, the maximum con-

taminant exposure is about the same value as the discrete decision for low risk

tolerance means.

Evacuation time. Each run was carried for 1000 time steps. The percent evacuation

was averaged for each case for each time step. The plots of the average percent

evacuation time for each case can be seen in Figures 4.6, 4.7, 4.8, 4.9, 4.10, and

4.11. As can be seen and as was expected, for the discrete decision, the percent

evacuation increases much faster with higher risk tolerance means. Further, for

some cases, not all of the agents are even able to evacuate within 1000 time

steps.

For the combination decision, all of the cases allow the agents to evacuate within

about 300 time steps. Further, there does not seem to be a distinction between
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Figure 4.5:
The maximum average contaminant exposure for all of the cases in the
experiment.
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Figure 4.6:
The percent evacuated versus time for decision strategy 1 with risk toler-
ance standard deviation of 0.00.
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Figure 4.7:
The percent evacuated versus time for decision strategy 1 with risk toler-
ance standard deviation of 0.10.

the evacuation time and the risk tolerance value in the same manner as the first

decision making strategy. This observation seems to confirm the hypothesis
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Figure 4.8:
The percent evacuated versus time for decision strategy 1 with risk toler-
ance standard deviation of 0.20.
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Figure 4.9:
The percent evacuated versus time for decision strategy 2 with risk toler-
ance standard deviation of 0.00.
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Figure 4.10:
The percent evacuated versus time for decision strategy 2 with risk tol-
erance standard deviation of 0.10.
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Figure 4.11:
The percent evacuated versus time for decision strategy 2 with risk tol-
erance standard deviation of 0.20.
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above that believes the combination decision algorithm might not be optimal

in allowing the agent behavior to vary with regards to the risk tolerance.

What is notable about this experiment is that the combination decision does not

have as distinct aggregate behavior as the discrete decision for the sweep of risk

tolerance means. There are a few points to make about this. First, the idea for

the combination decision was somewhat arbitrary, and was carried out in the early

portions of this research with the naive desire to complicate the model. While it is

not to say whether or not a discrete decision style implemented here is more “correct”

than the combination decision style. To make that conclusion, the model would need

to be compared against data from an actual evacuation event. However, even then,

at this point it is unknown if humans make decisions via discrete thoughts, or a linear

combination of thoughts. Instead, what it demonstrates is that at the agent-level, the

way decisions are made affects aggregate behavior. What may seem like an innocuous

implementation of a “fancier” calculation for egress, actually has a large influence on

the emergent behavior at hand.

Thus, it was based on these results that the iteration of the evacuation ABM

would keep the decision making process as basic as possible, and agents would make

decisions via the discrete method. It was also a sobering message that as an engineer,

the desire to make a model as all-encompassing as possible should be met with a

critical eye–that complicatedness is not equivalent to complexity.

4.4.2 Evacuation ABM coupled with CFD Flow-Control Model

One of the major ideas of complex systems is that emergent behavior does not

occur in a vacuum. That is for any complex system to be studied, a successful

model is one that is able to isolate a phenomena even within its broader contextual

system. Furthermore, only bring in an aspect of the broader context when it is fully

understood. For example, if we return to the ants from Section 4.2, the model is able
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to describe an isolated series of aggregate behavior of the ant colony. However, this

model in no way able to capture everything that is occurring with this ant colony.

For example, it doesn’t consider how seasonal changes influence it, etc. Even though

it is obvious that the rest of the world could in someway affect it. However, because

the rest of the world (i.e. the broader context) is not necessarily well-understood by

the modeler, it is not brought in. Another component to this system should only be

brought in when it is also well understood.

It is this exact sentiment that makes the research approach in this dissertation

quite unique. The underlying physical processes that are occurring within the broader

context of the evacuation at hand are understood. Thus, combining the two models

only strengthens the investigation into both topics.

Eventually we rebuilt the original model developed in Section 4.4.1 using a more

recent version of Repast, and coupled with the CFD flow-control model (but without

any control). Using the discrete decision style, two screenshots of the example runs

with average high and low risk tolerances can be seen in Figure 4.12 and Figure 4.13,

respectively. The space is a 100× 10 long conduit space with one exit at the middle.

The space is occupied with 100 agents each. The agents are yellow, the exit is blue

(in the middle of the space), and the contaminant is red. As can be seen, the model

behaves quite similarly to the earlier model employing the same discrete decision

making: for the model with a low risk tolerance, not all of the agents are able to

evacuate; for the high risk tolerance, the agents are indeed able to evacuate.

The model was then closely coupled with the CFD flow-control model via the

ZeroMQ messaging system that flags each respective program to wait until the other

finishes running for a given window of time. Again, using the discrete decision style,

two screenshots of the example runs with average high and low risk tolerances can be

seen in Figure 4.14 and Figure 4.15, respectively. For these runs, the space is again

100× 10 long conduit space with one exit at the middle. The space is occupied with
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Figure 4.12:
The average risk tolerance is 0.8, thus as can be seen, evacuees are
moving toward the exit rather than away from the contaminant.

150 agents each. For the prediction horizon, we set Tf = 20, Ta = 5, and T = 10.

4.5 Discussion

An evacuation ABM is successfully developed and coupled with a CFD flow-control

model, demonstrating a unique ability to combine a physical with a social model. The

implications for this coupling can potentially be far reaching for implementation of a

real-time flow control system in an actual public space. It may be possible to better

understand how the control of a fluid will impact the evacuees (e.g. a certain type of

control could lead to higher mixing, which may cause greater contaminant exposure

to evacuees).

To improve upon the current model, one of the major steps that can be taken is a

sweep of parameters for the evacuation ABM when coupled with the CFD flow-control

model. Some parameters that can be studied include the density of occupants in the
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Figure 4.13:
The average risk tolerance is 0.2, thus as can be seen, evacuees are
moving away from the contaminant rather than toward the exit.
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Figure 4.14:
The average risk tolerance is 0.8, thus as can be seen, evacuees are
moving toward the exit rather than away from the contaminant.
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Figure 4.15:
The average risk tolerance is 0.2, thus as can be seen, evacuees are
moving away from the contaminant rather than toward the exit.

space and the location of the exit. Additionally, measures for contaminant exposure

to the evacuees (both at the individual time step, and for the whole simulation) should

be implemented to better understand how the control of the contaminant influences

overall contaminant exposure to the population.

Again, another question arises regarding the length and time scales of the evac-

uation ABM when coupled with the CFD flow-control model. Currently, the grid

sizes of the evacuation ABM match that of the CFD flow-control model (i.e. one

person in the evacuation ABM is equal to one computational element in the CFD

flow-control model). However, a more refined computational grid might be necessary

if more detailed fluid measurements such as turbulence are taken into consideration

for occupant exposure and health.
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CHAPTER V

Conclusion

5.1 Summary of Results

In summary, this research develops a comprehensive means to address hazardous

contaminant release in public spaces where human’s are present. In particular, a

CFD flow-control model has been developed that is capable of detection and mitiga-

tion of a contaminant via boundary ports along a domain. The CFD is developed

using the open source OpenFOAM software suite, and employing the Navier-Stokes

equations for incompressible viscous transient fluid flow; the contaminant is modeled

using a basic scalar transport equation. The CFD OpenFOAM model is coupled to

the DAKOTA optimization suite such that it minimizes the contaminant at given pro-

tection points for a specific time horizon using a quasi-Newton optimization scheme.

An iterative feedback flow control algorithm is implemented for the CFD modeling

and optimization using model predictive control. This research has shown different

types of control that occur based on different location patterns of protected points.

Additionally, this research has applied the CFD flow-control model to both the pro-

totype and evacuation model developed.

A laboratory-scale experimental prototype was built using a blower wind tunnel

as its design basis such that uniform flow is provided at the entryway to a test sec-

tion. This wind tunnel’s test section can reach > 7 m in length, and has a 0.37 m2
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cross-sectional area. A control system has been design such that it injects a ‘contam-

inant’ (propylene glycol) at the entrance of the test section, is detected via a CCD

digital camera optical sensor, and is controlled via a compressed air regulated vacuum

nozzle. The controller that reads in the images from the camera and sends voltage

signals to the regular is a National Instruments PXIe Real-Time controller. This

controller processes the images into a black and white photo, and once the sum of

the pixels on this black and white photo is greater than a specified threshold, a signal

is sent to the electronic pressure regulator to turn on the vacuum nozzle and draw

out the contaminant. The controller is programmed using the National Instruments

LabVIEW Real-time software and programming language. The CFD flow-control

model is run such that it qualitatively reinforces the behavior of the contaminant of

the wind tunnel when it is drawn out.

An evacuation ABM is developed using the Repast software suite and the Java

language. A contaminant is injected into a grid occupied by agents who make deci-

sions every time step based on their propensity to expose themselves to a contaminant

if it moves them closer to the exit (what is deemed here as an agent’s risk tolerance).

Simulations are carried out with the model to demonstrate how the distribution of

this risk tolerance value to the broader population of agents leads to aggregate pop-

ulation behavior. Namely, for a population with an overall higher risk tolerance,

the population evacuates quicker, but exposes itself to a higher amount of contami-

nant; likewise, a population with an overall lower risk tolerance exposes itself to less

contaminant, but might not completely evacuate the space. The CFD flow-control

model is coupled to the evacuation ABM such that the CFD flow-control controls the

contaminant to minimize exposure to agents in the evacuation ABM, and the agents

in the evacuation ABM potentially make egress decisions on the new location and

concentration of the contaminant.
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5.2 Future Work

As with any dissertation, the results that emerge from the research carried out

are often only a fragment to what become the more significant questions from that

research. Thus, I like to think of the “next steps” for this work as falling within three

different areas: the bettering of what has already been accomplished; the applying of

what has been developed to actual civil systems; and the furthering of this work to

what I believe are the next major research questions within the framework of this

dissertation.

5.2.1 Bettering

The bettering of this project is quite difficult as from one perspective it seems as

though the changes and improvements to the work are endless. However, there are

some specific improvements that could be made to all that was presented throughout

this dissertation that would enhance to overall research basis.

• Parameter Sweeps. Because so much of the work presented throughout this

dissertation was “proof-of-concept,” some parameter sweeps for the CFD flow-

control model, the physical prototype, and the evacuation ABM would bring

out the sensitivities to all three parts of the research.

• PIV Experiments. To obtain a general understanding of how the underlying

wind tunnel itself performs (i.e. uniform velocity at the test section entrance),

and to also better understand the fluid dynamics influences from the vacuum

nozzle, particle image velocimetry could be used to measure velocity for a given

cross-section in the physical model.

• Additional terms to the CFD flow-control cost functional. Currently the CFD

flow-control model only controls to minimize a contaminant at specific points.
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However, it might be beneficial to include another parameter, or added con-

straint, especially if related to the prototype or evacuation ABM influence.

5.2.2 Applying

As with most engineering research, a question always exists as to how to apply

this research to the underlying engineering problem at hand. This particular research

has endless applications in civilian systems, particularly as concern for non-localized

security threats is continually on the rise. Information from city safety officials, or

transportation engineers regarding the systems that are vulnerable to hazardous re-

leases of chemicals would best inform the local physical and social components of

their systems that this research could be applied to.

In particular, I am interested to know what exactly the fluid control possibilities

are inside of a building using boundary control. How capable is an HVAC system as

being able to draw out a contaminant?

For further application of this research, similitude analysis would need to be car-

ried out across the evacuation ABM, the physical model, and the CFD flow-control

model. While to a certain extent, the geometry is scaled across the three, time scales

should also be considered.

5.2.3 Furthering

5.2.3.1 Real-time

I most admire the research being carried out in the area of Machine Learning.

In particular, the real-time sensing and control of water systems by my committee

member has inspired me to consider how to include adaptive methods along with the

CFD flow-control model as it is deployed in real-time. Additionally, I am interested

in using and building upon techniques in this area by those specifically investigating

machine learning with regard to fluid mechanics [Balajewicz et al. (2015); Duriez et al.
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(2014)].

5.2.3.2 Optimal Control of Evacuation.

As optimal control was applied to the CFD flow-control model, I am also interested

in how it would apply to a bottom-up ABM model such as the evacuation ABM from

this research. If optimal control were possible, there exists the possibility to use

optimal control and communicate to evacuees optimal evacuation routes.

5.2.3.3 The Potential of Sensors.

The project that this research was a part initially included a component for in-

house fabricated sensors to be used with the ability to detect a wide array of chemicals.

While those sensors were never deployed, the possibilities for expanding this research

regarding sensors is particularly timely.
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