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Abstract 

 

Continental paleoclimate records provide a means to assess regional climate variability 

through time and assess how the evolution of the terrestrial biosphere has driven and responded 

to environmental change. Fossil soils (paleosols) are a particularly useful paleoclimate archive, 

because they are widely distributed throughout the geologic record. Carbonate clumped isotope 

paleothermometry is an exciting new proxy for paleosols, as it has the potential to assess 

temperature seasonality. Yet the processes underlying soil carbonate formation and clumped 

isotope temperature resetting must be further understood before this proxy can be effectively 

applied. My dissertation centers on improving understanding of the processes controlling soil 

carbonate formation and critically evaluating the potential resetting of clumped isotope carbonate 

data from terrestrial deposits.  

In Chapter 2, I use modern samples to explore seasonal biases associated with the 

clumped isotope composition of soil carbonate. The results demonstrate that soil carbonate can 

form at or below mean annual temperatures. The cold nature of these results is explained by the 

annual timing of soil water depletion, which is driven by patterns of seasonal precipitation and 

evapotranspiration. In Chapter 3, modern soil environmental data are compiled to examine how 

soil temperatures relate to surface air temperatures and to quantify systematic biases that will 

affect paleosol proxies. Seasonal fluctuations in soil moisture are used to predict the seasonal 

timing of pedogenic carbonate formation. Soil temperature data indicate that pedogenic 
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carbonate is more likely to record warm season bias relative to mean annual air temperature.  In 

Chapter 4, I use clumped isotope and organic biomarker analyses on the 1.1 Ga Nonesuch 

Formation to explore how easily the clumped isotope thermometer can be reset on geologic 

samples and to evaluate the performance of new solid-state reordering models. Using a solid-

state reordering model, I illustrate that the synsedimentary and early-diagenetic calcite were 

partially reset to elevated temperatures. Taken together, these results illustrate factors that must 

be considered when producing environmental reconstructions from pedogenic carbonate and 

other terrestrial archives. These findings provide guidance on how to extract accurate 

paleoclimate information from paleosol carbonate and highlight the need for a process-based 

understanding of pedogenic carbonate formation.  
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CHAPTER 1 

 

Introduction 

 

Paleoclimate data provides a means to test our understanding of the Earth’s climate 

system and to develop more accurate predictions of how the Earth will respond to future climate 

change. While much paleoclimate work has centered on the marine realm, terrestrial 

paleoclimate data provides an important and complementary perspective. There exist 

fundamental differences between terrestrial and marine paleoclimatology, both in the specific 

climate variables that can be reconstructed (e.g. air temperature vs. seawater temperature; 

precipitation vs. salinity) and in the fundamental nature of the records that are produced. 

Importantly, marine records tend to provide a more globally integrative climate perspective, 

whereas terrestrial archives are inherently more local.  

The terrestrial and marine response to major global climate events is not always uniform. 

For example, during the Eocene-Oligocene transition (33.9–33.5 Ma) which marks the onset of 

Antarctic glaciation, marine geochemical records indicate a fall in atmospheric pCO2 was 

accompanied by high latitude ocean cooling of 5°C (Pearson et al., 2009; Liu et al., 2009). The 

terrestrial temperature response during this event was heterogeneous, with some coastal areas 

recording a similar drop in mean annual temperature while other regions display no evidence of 

cooling (Sheldon et al., 2012; Hren et al., 2013). Understanding the complex and spatially 
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variable response of terrestrial environments to global change is especially important with 

respect to modern global warming. However, impactful changes in terrestrial climate may not 

always be captured by mean annual climate variables. For example, shifts in the seasonal timing 

of precipitation or the frequency of certain extreme phenomena (e.g. droughts and floods) can 

significantly affect terrestrial ecosystems and pose societal challenges relating to water 

availability and food security.  

The objective of this dissertation is to refine our understanding of how carbonate 

minerals can be used as a terrestrial paleoclimate archive. My focus is predominantly on 

pedogenic carbonate (i.e. carbonate authigenically precipitated in soils), which is a phenomenon 

typically restricted to environments where annual precipitation falls below 100 cm (Cerling and 

Quade, 1993; Royer 1999; Retallack, 2005). In this dissertation, I assess the environmental 

factors that control the seasonal formation of pedogenic carbonate, explore the implications of 

seasonal formation on paleoclimate reconstructions, and assess evidence for post-depositional 

alteration of terrestrial deposits. 

 

1.1 Paleosols as a Paleoclimate Archive 

Paleosols (fossil soils) can be used as an archive of paleoclimate information, because 

climate is a primary factor controlling soil formation (Jenny, 1941). For example, temperature 

and moisture availability affects the rate of chemical weathering and secondary mineral 

formation in soils. Unlike other terrestrial climate archives, such as tree rings, which become rare 

beyond the past few hundred to thousands of years, the geologic record of paleosols extends 

much longer, with the earliest paleosols dating to the Archean (e.g. Rye and Holland, 1998). 

Paleosols also offer certain advantages as compared to other terrestrial paleoclimate archives. In 
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addition to their existence deep within Earth’s history, paleosols tend to be more frequently and 

evenly deposited within the sedimentary record than these other archives. Furthermore, the long 

formation time of soils (103−106 years) means that paleosols are more likely to preserve an 

integrated, time-averaged record of climate, whereby short-term climate anomalies may be 

smoothed out (Sheldon and Tabor, 2009).  

While certain paleoclimate proxies are based on structural aspects of soils and paleosols 

(e.g. depth to Bk horizon precipitation proxy; Retallack, 2005), a greater amount of work has 

centered on developing paleoclimate proxies derived from the geochemistry of paleosols. This 

geochemical effort can be broadly subdivided into two approaches: one that focuses on the bulk 

elemental composition of the paleosols and the other that uses specific minerals preserved in 

paleosols. The bulk geochemistry approach is based on the understanding that enhanced 

chemical weathering and secondary mineral formation will occur under warm and wet climates. 

So called “pedo-transfer functions” have been developed based on the bulk composition of 

modern soils. Bulk soil proxies have been used to reconstruct climate variables such as mean 

annual precipitation (Sheldon et al., 2002; Nordt and Driese, 2010) and mean annual temperature 

(Gallagher and Sheldon, 2013). Uncertainty surrounding these pedo-transfer functions increases 

as one goes further back in time. Oftentimes, it is also difficult to constrain formation times for 

individual paleosols within stacked sequences, which raises the possibility that reconstructed 

climatic shifts could instead be attributed to an uneven formation age distribution. 

Mineral-specific paleosol proxies can be derived from the relative abundance of certain 

minerals as well as the isotopic composition of authigenically formed soil minerals. For example, 

the relative abundance of iron (oxyhydr)oxides, goethite to hematite, in soils is related to the 

amount of annual precipitation (Hyland et al., 2015). Isotopic approaches to constrain formation 
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temperatures and hydrological shifts include measuring the oxygen and hydrogen isotope 

composition of specific minerals, such as goethite, kaolinite or smectite (Delgado and Reyes, 

1996; Yapp, 2000) or measuring the oxygen isotope composition of mineral pairs (Tabor, 2007). 

Numerous paleoenvironmental proxies have also been developed based on the isotopic 

composition of soil carbonate minerals, including calcite and siderite (e.g. Cerling 1984; 

Ludvigson et al., 1998), with the former being the focus of this dissertation. With both bulk and 

mineral specific paleosol proxies, it is also important to note that caution must always be taken to 

evaluate if later geochemical alteration occurred during burial before applying these proxies. 

 

1.2 Pedogenic Carbonate 

 Pedogenic carbonate is a prominent feature in semi-arid and arid terrestrial environments, 

with the total amount of carbon stored in pedogenic carbonate exceeding that of land plants 

(Monger et al., 2015). It plays an important role in dry-land ecosystems by filling pore space, 

thereby inhibiting the percolation of water into soils and increasing the water holding capacity of 

the soil relative to the parent material (Duniway et al., 2007). Pedogenic carbonate can also 

reduce the availability of phosphorus for plants due to precipitation of Ca-P minerals within the 

calcic horizon or sorption reactions with CaCO3 (Lajtha and Schlesinger 1988). Interest in using 

the geochemistry of pedogenic carbonate as a paleoclimate archive expanded after it was shown 

that their oxygen and carbon stable isotope composition was directly related to environmental 

factors (Cerling, 1984). The oxygen isotope composition of pedogenic carbonate is influenced by 

both temperature and the isotopic composition of soil water, which in turn is a function of the 

initial isotopic value of precipitation and subsequent evaporation. The carbon isotope value of 

pedogenic carbonate reflects the isotopic composition of soil CO2, which is primarily controlled 



  5 

by the composition of soil organic matter. The oxygen isotope composition of pedogenic 

carbonate preserved in paleosols has been used to reconstruct changes in temperature (e.g. 

Dworkin et al., 2005; Cleveland et al., 2008), hydrology (e.g. Amundson et al., 1996; Deutz et 

al., 2001), and elevation (e.g. Garzione et al., 2000; DeCelles et al., 2007). The carbon isotope 

composition of pedogenic carbonate has been used to reconstruct the relative abundance of C3 

and C4 plants in overlying vegetation (e.g. Quade and Cerling, 1995; Fox and Koch, 2003; Levin 

et al., 2004) as well as to estimate past atmospheric pCO2 values (e.g. Cerling, 1991; Ekart et al., 

1999; Breecker et al., 2010). 

The effectiveness of climate reconstructions derived from the geochemistry of pedogenic 

carbonate relies on an accurate understanding of the processes that control the seasonal timing of 

carbonate formation. The original expectation was that the geochemical composition of 

pedogenic carbonate would tend to reflect the mean growing season conditions (Cerling and 

Quade, 1993). However, more recently, evidence from modern soils in New Mexico suggested 

that pedogenic carbonate may instead form during periods of excessive dryness that differ 

significantly from mean growing season conditions (Breecker et al., 2009). 

 The advent of carbonate clumped isotope thermometry offered a new tool to assess the 

seasonal formation of pedogenic carbonate. Carbonate clumped isotope thermometry is based on 

the observation that the abundance of bonds between rare isotopes of carbon and oxygen (e.g. 

13C and 18O) is controlled by the temperature of carbonate formation (Ghosh et al., 2006; Eiler, 

2011). Initial clumped isotope studies of pedogenic carbonate suggested that pedogenic 

carbonate tends to exhibit a warm-season bias (Passey et al., 2010; Quade et al, 2013; Hough et 

al., 2014). However, clumped isotope analyses of pedogenic carbonate collected along an 

elevation transect in the Andes documented formation temperatures close to mean annual 
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temperature in areas where precipitation was concentrated during the summer months (Peters et 

al., 2013). A modeling study by Meyer et al. (2014) further suggested that the phenology of 

overlying vegetation could affect the timing of pedogenic carbonate formation. 

Great strides have been made in developing pedogenic carbonate as a paleoclimate 

archive; however, areas of uncertainty persist that need to be addressed in order to improve its 

utility for climate reconstructions. For example, the majority of clumped isotope studies of 

modern carbonate bearing soils document a warm-season bias, but as the results of the Peters et 

al. (2013) study illustrate, this particular bias may not always apply.  Additionally, the majority 

of clumped isotope studies of modern pedogenic carbonate have focused on carbonate that forms 

on the underside of large clasts, whereas pedogenic carbonate preserved in paleosols is often 

nodular in form. It has also been observed that the soil environment can differ substantially from 

the surface environment due to processes such as excess ground heating (Quade et al., 2013), 

causing soil temperatures to deviate significantly from air temperatures. Therefore, a thorough 

understanding of the factors controlling pedogenic carbonate formation are required to constrain 

the biases that may be imparted on the carbonate. 

 

1.3 Structure of Thesis 

The seasonal processes that control pedogenic carbonate formation are investigated in 

Chapter 2 through examination of ten modern carbonate-bearing soils that formed under different 

seasonal precipitation regimes. The carbonate clumped isotope temperatures of the pedogenic 

carbonate are compared to modeled seasonal variation in soil temperature and moisture. This 

approach is used to assess if a warm-season formation bias can always be presumed for 
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pedogenic carbonate and to evaluate if seasonal fluctuations in soil moisture exhibit a control on 

the timing of carbonate formation. 

 In order to improve environmental reconstructions from pedogenic carbonate, a better 

understanding of how fluctuations in soil temperature and moisture to climate variables, such as 

air temperature and precipitation, is required. Instrumental soil temperature and moisture data 

was compiled from the Soil Climate Analysis Network in Chapter 3 in order to investigate soil 

temperature fluctuations relative to air temperature. Systematic biases are assessed between 

mean annual and mean soil temperature. The temperature biases likely to be recorded by 

pedogenic carbonate are assessed by first using seasonal trends in soil moisture depletion to 

identify likely periods of carbonate formation. Soil temperatures during these time intervals are 

then compared to mean annual air temperature in order to quantify the relative likelihood of a 

warm-season bias. 

Chapter 4 examines issues surrounding the alteration of terrestrial paleoenvironmental 

archives during diagenesis and burial. This chapter focuses on samples from the Nonesuch 

Formation, which was deposited in a lacustrine environment approximately ~1.1 Ga. In order to 

better constrain the thermal history of this unit, I compare organic thermal maturity data to the 

carbonate clumped isotope composition of three different carbonate pools (sedimentary, early-

diagenetic, later-stage veins). Maximum burial temperatures are assessed and the likelihood of a 

spatially variable thermal history is explored using the geochemical data and solid-state 

reordering models.  

 Collectively, these new results will demonstrate that a number of complicating factors 

exist that must be considered when reconstructing paleoclimate from carbonate preserved in 

terrestrial sedimentary archives. However, these complications can be overcome by improving 
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our understanding of the processes that control pedogenic carbonate formation in modern soils 

and employing a multi-proxy approach when producing environmental reconstructions.  
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CHAPTER 2 

 

Combining soil water balance and clumped isotopes to understand the nature and timing of 
pedogenic carbonate formation 

 

 

2.0 Abstract 

 Pedogenic carbonate is an important archive for paleoclimate, paleoecology, and 

paleoelevation studies. However, it can form under seasonal environmental conditions that differ 

significantly from the mean growing season environment or mean annual conditions, potentially 

complicating its use for proxy reconstructions. The observed seasonal temperature is typically, 

but not always, biased high relative to mean annual air temperature (MAT). To evaluate the 

annual timing of pedogenic carbonate formation, ten different soils were sampled across the 

western United States. Sites were selected to span a variety of precipitation regimes and soil 

orders. Precipitation regimes ranged from arid sites (mean annual precipitation (MAP) < 20 cm) 

that receive the majority of precipitation during the winter to wetter sites (MAP > 50 cm) 

dominated by summer precipitation. Pedogenic carbonate formation temperatures derived from 

clumped isotope measurements ranged between 6 and 22 °C, with most samples falling at or 

below MAT. Clumped isotope temperatures were compared to monthly precipitation normals 

and modeled monthly values of evapotranspiration and soil water content. Results show that 

carbonate formation temperatures agree with the annual timing of soil water depletion, 
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suggesting soil moisture content is a primary control on the timing of pedogenic carbonate 

formation. Although the seasonal bias is a function of environmental factors that are difficult to 

reconstruct in paleo-studies, the use of other paleosol proxies can help to assess if changes in 

clumped isotope temperatures are a function of changes in air temperature or hydrology. These 

results have important implications for the production of accurate paleoclimate and 

paleoelevation estimates. 

 

2.1 Introduction 

 Many soils in semi-arid to arid environments exhibit a distinct calcic horizon identifiable 

by an accumulation of authigenically precipitated pedogenic carbonate. Depending on the age 

and texture of the soil, pedogenic carbonate can precipitate as thin filaments, clast undercoatings, 

root casts, nodules, or continuous indurated horizons (Gile et al., 1966). Pedogenic carbonate 

preserved in paleosols is of particular interest in paleoclimate research. The occurrence of 

pedogenic carbonate provides a paleoprecipitation limit, as it tends only to form when mean 

annual precipitation (MAP) is less than 100 cm (Cerling and Quade, 1993; Royer, 1999; 

Retallack, 2005). Proxies based on the physical nature of pedogenic carbonate, such as depth in 

soil profile or horizon thickness, have been developed to reconstruct variables such as MAP and 

degree of seasonality (Retallack, 1994; Retallack, 2005). Widespread interest in the 

geochemistry of pedogenic carbonate expanded since it was demonstrated that the oxygen and 

carbon isotopic composition of the carbonate was a reflection of the environment in which it 

formed (Cerling, 1984; Cerling and Quade, 1993). Subsequently, the oxygen isotope 

composition of pedogenic carbonate has been used to reconstruct paleohydrology (e.g. 

Amundson et al., 1996; Deutz et al., 2001; Fox and Koch, 2004), paleotemperature (e.g. Dworkin 
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et al., 2005; Cleveland et al., 2008), and paleoelevation (e.g. Garzione et al., 2000; DeCelles et 

al., 2007). The carbon isotope composition of pedogenic carbonate has been used to reconstruct 

relative abundances of C3 and C4 vegetation (e.g. Quade and Cerling, 1995; Deutz et al, 2001; 

Fox and Koch, 2003; Levin et al., 2004) as well as atmospheric pCO2 (e.g. Cerling. 1991; Ekart 

et al., 1999; Cotton and Sheldon, 2012; Montañez, 2013). 

 However, complications exist when using pedogenic carbonate as a paleoclimate proxy. 

The traditional assumption was that pedogenic carbonates form during conditions reflective of 

the mean growing season environment, which would typically imply soil temperature conditions 

between average and maximum annual soil temperature (Cerling and Quade, 1993). However, 

the growing season occurs at different times of the year under different climate regimes. For 

example, the growing season in the central plains of North America extends from spring to early 

autumn (Ode et al., 1980), whereas the growing season in the eastern Mojave Desert extends 

from late autumn to early spring (Beatley, 1974).  It has also been documented in modern soils 

that carbonate can precipitate at times of excessive dryness when climatic conditions differ 

strongly from the mean growing season conditions (Breecker et al., 2009). These findings 

suggest that, in some cases, a complicated seasonal bias may strongly affect the formation and 

isotopic composition of pedogenic carbonate. 

 Carbonate clumped isotope thermometry is an attractive tool to apply to the study of 

pedogenic carbonate, as the abundance of doubly substituted rare isotopes in carbonate is 

predominantly a function of temperature (Ghosh et al., 2006a; Quade et al., 2007; Passey et al. 

2010; Eiler, 2011). The carbonate clumped isotope proxy has featured prominently in recent 

continental paleoclimate (e.g. Passey et al., 2010; Snell et al., 2013; VanDeVelde et al., 2013) 

and paleoelevation studies (e.g. Ghosh et al., 2006b; Quade et al., 2011; Lechler et al., 2013; 
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Leier et al., 2013; Fan et al., 2014; Garzione et al., 2014; Huntington et al., 2015). However, 

relating the temperature of pedogenic carbonate formation to climatic variables such as mean 

annual temperature (MAT) has proven complicated when analyzing modern samples. For 

example, clumped isotope studies of pedogenic carbonate in East Africa, Tibet, and the Western 

United States revealed temperatures reflective of a warm season bias rather than MAT (Passey et 

al., 2010; Quade et al., 2013; Hough et al., 2014). Quade et al. (2013) highlighted many factors 

that could complicate the relationship between the temperature of soil carbonate formation and 

air temperature, including excessive ground heating, damping of temperature variation with 

depth, slope aspect, and vegetative shading. Despite these factors, Quade et al. (2013) were able 

to relate many modern carbonate-bearing soils to MAT and warmest average monthly 

temperature, using a depth-based ground heating model that reflected the generally observed 

warm-season temperature bias. However, pedogenic carbonates collected along an elevation 

transect in the Andes showed that clumped isotope derived temperatures can be affected by the 

timing of seasonal rainfall (Peters et al., 2013). Sites that received the majority of annual rainfall 

during the summer produced results reflective of mean annual soil temperature, whereas sites 

dominated by winter rainfall were biased towards warm summer temperatures (Peters et al., 

2013). These results demonstrate that studies of pedogenic carbonate cannot always assume a 

warm-season formation bias. 

 This paper examines the annual timing of pedogenic carbonate formation under different 

climate regimes, including sites with different annual precipitation regimes and different growing 

seasons. This study specifically focuses on carbonate-nodule bearing soils ranging from fine to a 

relatively coarse texture. By comparing clumped isotope derived temperatures of carbonate 

formation to modelled seasonal soil temperature fluctuations, we assess the relative roles of 
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normal climate patterns and other environmental factors. Monthly precipitation normals are 

considered alongside evapotranspiration in order to determine a monthly soil water balance and 

to assess its control on the timing of pedogenic carbonate formation. The clumped isotope 

temperatures will also be used to calculate a δ18O value for the soil water, allowing for 

comparison with annual fluctuations in the δ18O of precipitation. 

2.2 Site Distribution 

 Sites in this study were selected in order to span a range of soil types as well as different 

temperature and precipitation regimes (Fig. 2.1; Table 2.1). The soils analyzed herein represent 

three different soil taxonomic orders: Aridisols, Mollisols, and Alfisols. Of these three soil 

orders, Aridisols tend to be the least developed. They are characteristically dry soils that form in  

Figure 2.1 

 Map showing sample localities for pedogenic carbonate nodules analyzed in this study along with a 4 km 
gridded mean annual precipitation (MAP) dataset interpolated from 1981–2010 climate normals (Prism 
Climate Group, 2015). Soil orders sampled include Mollisols (circles), Alfisols (triangles), and Aridisols 
(squares). Soil Climate Analysis Network (SCAN) sites used for data-model comparisons are shown as 
stars. 
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arid environments and are capable of supporting only a limited amount of plant growth. Due to a 

lack of moisture and productivity, chemical weathering and soil development tend to be very 

slow in these soils (Knight, 1991). As compared to Aridisols, Mollisols are generally more 

developed. They typically underlie temperate grasslands, such as the North American Great 

Plains and the Eurasian Steppe. The defining characteristic of a Mollisol is a thick (generally >25 

cm), organic-rich A-horizon known as the mollic epipedon, which is largely a product of the 

extensive root system of prairie grasses (Soil Survey Staff, 2014). Of the soil orders examined in 

this study, Alfisols tend to be the most developed, and they are typically found under temperate 

deciduous forests (Buol et al., 2011). Soils analyzed as part of this study were generally of a 

finer-grained texture, allowing for greater water holding capacity and a slower drainage rate than 

coarse-grained, gravelly soils. With time, fine-grained soils will also tend to form carbonate 

nodules as opposed to clast undercoatings due, in part, to the lack of coarse fragments that serve 

to nucleate carbonate precipitation. 

 The sites examined in this study can be divided into four distinct precipitation regimes 

(Table 2.1). The two Southern California sites receive the least amount of rainfall, with both sites 

having a MAP value of less than 20 cm. The little precipitation that these two sites receive tends 

Table 2.1    Site Information  
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to fall during the winter months (December-March). At the wet end of the spectrum, the two 

South Dakota soils receive the most precipitation with MAP values around 60 cm. These two 

sites experience a typical continental climate with cold winters, hot summers, and peak 

precipitation falling during June and July. The remaining Arizona, New Mexico, and Colorado 

sites have MAP values that fall between these two end-members; and these sites can be 

subdivided into two distinct groups based on the timing of precipitation. In New Mexico and 

Colorado, the winters are generally dry with precipitation peaking in late summer (July/August). 

The three Arizona sites on the other hand are strongly affected by the Arizona monsoon and are 

driest between April and June before precipitation peaks in August. 

2.3 Materials and methods 

All of the pedogenic carbonate samples were collected in the field from calcic soil 

horizons (Cotton and Sheldon, 2012), and only carbonate nodules measuring at least 1 cm in 

diameter were analyzed, which equates to formation times of at least 2–6 ka (using the transfer 

function of Retallack, 2005). Where possible, samples were collected below 30 cm depth in 

order to minimize the effect of diurnal temperature variations and the relative input of 

atmospheric CO2. The only exceptions were the two California soils, Muroc and Lavic. These 

samples were sourced from the California “Soil Series Pedolarium” (see Tabor et al., 2013), and 

carbonate nodules were slightly shallower than 30 cm depth.  Both of these samples had 

indurated carbonate nodules, however, the nodules from the Lavic soil were approximately 5 mm 

in diameter. 

2.3.1 Climate data and evapotranspiration 

Climate data used in this study were taken from two separate sources, the 1981–2010 

United States climate normal (Arguez et al., 2012) and the NCEP North American Regional 
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Reanalysis (NARR) dataset (Mesinger et al., 2006). The motivation behind using these data 

sources is twofold. They (1) offer the opportunity to compare instrumental climate data that were 

collected and analyzed using the same methodology across our widely dispersed study sites and 

(2) provide a long-term record that is less weighted toward anomalous weather events. Monthly 

temperature and precipitation data were sourced from the 1981–2010 normals (NCDC, 2012). 

For each site, the climate normals were taken from the closest NOAA weather station that sits at 

a similar elevation (Table A.1). In order to calculate monthly estimates of reference 

evapotranspiration (ET0), the Penman-Monteith equation was used following the methodology of 

the United Nations FAO-56 paper (Monteith 1981; Allen et al. 1998). The Penman-Monteith 

equation is defined as follows: 

	
. 	∆	

∆ .
  (1) 

where Δ is the slope of the saturation vapor pressure relationship, Rn is the net radiation, G is the 

soil heat flux density, γ is the psychrometric constant, T (°C) is the 2 m air temperature, u2 is the 

2 m wind speed, and es–ea is the saturation vapor pressure deficit. According to the FAO-56 

methodology, Δ, G, γ, and es–ea can be calculated if the atmospheric pressure, relative humidity 

and temperature variability are known. The Penman-Monteith equation was used rather than an 

empirical equation, because it is a physically based model that combines energy balance with 

mass transfer (Allen et al., 1998). 

For the ET0 calculations, average, maximum, and minimum monthly temperature data 

from the 1981–2010 climate normals were used as input variables. Because instrumental data is 

lacking in spatial and temporal coverage, the remaining climate variables required for the 

Penman-Monteith equation (pressure, relative humidity, short and longwave radiation, wind 

speed, and 2 m air temperature) were sourced from the NARR dataset (ESRL-PSD, 2014). This 
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long-term, high-resolution dataset (0.3 degrees at the lowest latitude) was produced by 

assimilation of a number of observed climate variables including precipitation, using the very 

high resolution NCEP Eta model (Mesinger et al., 2006). NARR data compares favorably when 

analyzed alongside observational data (Mesinger et al., 2006). Monthly means for all input 

variables were taken from the grid cell containing each respective soil site and averaged over the 

years 1981 to 2010. These 30-year monthly average values were then entered into the Penman-

Monteith equation (Eq. (1)) to calculate an average daily ET0 value in mm day-1 for each month. 

The average daily ET0 value was then multiplied by the number of days in the month to give a 

30-year average monthly ET0 value (cm month-1).  

2.3.2 Soil temperature and soil water balance 

Annual variations in air temperature result in similar temperature variations in soils. 

However, when considering progressive depths in the soil profile, the amplitude of temperature 

variation is damped and the phase lag increases (Hillel, 1980). For each soil, annual temperature 

variation was modeled at the pedogenic carbonate sampling depth. The annual soil temperature 

variability at depth can be modeled using the equation: 

, /   (2) 

where Tavg is equal to MAT, A0 is the amplitude of annual surface temperature variation, z is 

depth in the soil, ω is the radial frequency (2π/365), and d is the damping depth (Hillel, 1980; 

Quade et al., 2013). At each site, different climate data inputs were used to create two different 

soil temperature models (Models A and B). For model A, Tavg was set to MAT, and A0 was 

calculated as the difference between the warmest and coldest average monthly temperatures. For 

model B, Tavg was set to mean monthly maximum temperature, and A0 was calculated as the 
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difference between the coldest average monthly temperature and the warmest maximum monthly 

temperature. The damping depth is defined for all sites as: 

  (3) 

where κ is the thermal conductivity and Cv is the volumetric heat capacity of the soil. Because κ 

and Cv change as a function of soil texture (grain size distribution) and water content, we used 

values measured from soils of a similar texture and at the lowest water content assessed in order 

to calculate damping depths for each site (Table A.2; Shukla, 2014). 

  Soil water balance was calculated by comparing the monthly gains (precipitation) and 

losses (evapotranspiration and percolation below the B-horizon) of water in the soil (Arkley, 

1963; Birkeland, 1974). The soil was considered as a single compartment, and the field capacity 

(maximum water holding capacity) of the soil was calculated based on textural characteristics of 

the soil series, similar to Tabor et al. (2013). To calculate if there was net storage during a 

particular month, the monthly ET0 value was subtracted from the normal monthly precipitation 

total. There is net storage during a month if precipitation is greater than ET0, and conversely 

there is net loss or no accumulation of soil water if ET0 is greater than precipitation. The total 

soil water is never allowed to rise above the field capacity of the soil. Also, because actual 

evapotranspiration is negligible during cold periods of the year due to frost, ET0 was set to zero 

when the daily normal minimum temperature is lower than -4°C (Allen et al., 1998). For months 

that included days below this threshold, the monthly ET0 value was multiplied by the fraction of 

days where daily normal minimum temperatures are above -4°C. 

2.3.3 Geochemistry 

Analytical methods for Δ47 analyses are described in detail in Defliese et al. (2015), but 

will be briefly outlined here. Carbonate nodules were microdrilled at low speed, and between 5 
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and 10 mg of drilled sample was reacted in anhydrous phosphoric acid at 75°C. The resulting 

CO2 was purified off-line using cryogenic separation on a vacuum line and a Porapak-Q filled 

column held at ‒25°C. The Δ47 of the purified gas was then measured on a Thermo Scientific 

MAT 253 dual inlet stable isotope ratio mass spectrometer outfitted to collect masses 44–49 in 

the Stable Isotope Laboratory at the University of Michigan. At least three replicates were 

analyzed for each sample; data are summarized in Table 2.2. 

 
In order to correct for scale compression and nonlinearity, reference gasses of varying 

bulk isotopic composition were analyzed after being heated to 1000°C in order to attain a 

stochastic distribution of isotopes among isotopologues (Huntington et al., 2009). CO2 standards 

equilibrated with H2O at 25°C and the Carrara Marble interlaboratory standard were also 

measured to allow normalization of Δ47 values to the absolute reference frame of Dennis et al. 

(2011). Long-term laboratory analyses of the Carrara Marble standard yield average values of 

Table 2.2    Geochemical results from pedogenic carbonate  
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0.418‰ with a standard deviation of 0.020‰. An empirically derived acid fractionation 

correction of 0.067‰ was applied to Δ47 measurements to account for the digestion temperature 

of 75°C (Hren et al., 2013; Defliese et al., 2015).  

Conventional carbonate stable isotope data (δ13C and δ18O) were simultaneously 

measured during Δ47 measurement. Empirically derived corrections of +0.36‰ and +0.10‰ 

were applied to raw δ18O and δ13C values, respectively, to account for temperature dependent–

fractionation resulting from the transfer of samples through the Porapak-Q column held at -25°C 

(Petersen et al., 2016). Reference gasses were also passed through the Porapak-Q column held at 

-25°C, so a further correction to Δ47 values was not required. The δ18O values were then 

corrected using acid fractionation factor of 1.00830 for calcite reacted at 75°C (Swart et al., 

1991). The corrected carbonate δ18O value and the Δ47 temperature were used to calculate the 

δ18O value of the precipitating soil water (δ18Osw) using the fractionation factor of Friedman and 

O’Neil (1977). 

1000	ln	 2.78	 	10 2.89      (4) 

 

2.4 Results 

Complete results of ET0 and soil water balance calculations are presented in Table A.3. 

As an example, the soil temperature and water balance model results for two Soil Climate 

Analysis Network (SCAN) sites, Eros and Adams Ranch, are shown in Fig. 2.2 and Fig. 2.3. 

Modelled soil temperatures peak during mid to late July, and reach their nadir between mid-

January and early February (Fig 2.2). Soil temperature model B consistently produces higher 

temperature results than model A, with the difference most pronounced at peak soil 

temperatures. Monthly precipitation is greater than ET0 between October and April at the Eros 
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station (Fig. 2.3B) and between December and February at the Adams Ranch station (Fig. 2.3E), 

causing water to accumulate in the soils. As ET0 becomes greater than monthly precipitation, soil 

water storage declines until the soil effectively “dries out” during April at the Adams Ranch site 

(Fig. 2.3F). The soil water balance never reaches zero at the Eros site, instead sitting at 

approximately 2 cm between August and October (Fig. 2.3C). Soil water balance results for all 

of the sites are summarized in Fig. 2.4 by highlighting the months for which there is effectively 

no net soil water storage. 

Complete clumped isotope geochemistry data are presented in Tables A.4 through  A.6. 

Average Δ47 values for soil carbonate samples range from 0.756 to 0.705‰, with an average  

Figure 2.2 

 Observed and modeled temperatures for the Eros and Adams Ranch SCAN sites at soil depths of 20 cm 
(A and C) and 51 cm (B and D). Temperature data was available and compiled between the years 2003–
2015 for the Eros station and 1997–2015 for the Adams Ranch station (NRCS, 2016). The grey window 
highlights the absolute range of observed temperatures, while the solid gray line shows the mean 
temperature during the observation period. Daily soil temperatures were recorded at midnight each night. 
Model A (dotted line) uses the monthly mean, minimum and maximum 1981–2010 monthly normal 
average temperatures. Model B uses the minimum monthly normal average temperature and the mean 
and maximum normal maximum average temperatures. 
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standard deviation for replicate analyses of 0.011‰ (Table 2). For all samples, the laboratory 

long-term standard deviation of replicate standard analyses (0.020‰) exceeded that of replicate 

sample analyses (Petersen et al., 2016). Therefore the standard error was calculated for each 

sample using the long-term standard deviation of the Carrara marble divided by the square root 

of the number of replicates.  Due to uncertainties based on discrepancies among carbonate 

temperature calibrations, Δ47 results are converted to temperatures using the multiple empirical 

calibrations in Table 2.2. To date, numerous carbonate clumped isotope temperature calibrations 

Figure 2.3 

 Observed soil moisture data and water balance model results for the Eros and Adams Ranch SCAN sites. 
Soil moisture data was available and compiled between the years 2003–2015 for the Eros station (A) and 
1997–2015 for the Adams Ranch station (D; NRCS, 2016). Solid lines represent the mean daily soil 
moisture averaged over the observation period, while the symbols represent average monthly soil 
moisture content. The area shaded gray for the Eros station highlight winter months when soil 
temperature is below freezing. The difference between normal monthly precipitation and modelled 
reference evapotranspiration (ET0) is plotted below (B and E) as well as the modeled soil water storage 
for each site (C and F). 
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have been developed using a wide range of materials including synthetic calcite and aragonite 

(Ghosh et al., 2006; Dennis and Schrag, 2010; Zaarur et al., 2013; Grauel et al., 2013; Petrizzo et 

al., 2014; Wacker et al., 2014; Tang et al., 2014; Defliese et al., 2015), biogenic calcite and 

aragonite (Ghosh et al., 2006; Ghosh et al., 2007; Tripati et al., 2010; Thiagarajan et al., 2011; 

Henkes et al., 2013; Eagle et al., 2013), and siderite (Fernandez et al., 2014).  It has been 

observed that these calibrations can be grouped into two broad categories according to the 

temperature of the phosphoric acid during sample digestion, where studies that digest samples at 

temperatures > 70°C tend to produce shallower calibration slopes than those that react samples at 

25°C (Fernandez et al., 2014). Exceptions to this observation include the Grauel et al. (2013) 

calibration, which produced a steep slope from samples reacted at 70°C, and the Petrizzo et al. 

(2014) calibration, which produced a shallow slope from samples reacted at 25°C. Samples in 

Figure 2.4 

 Summary of soil water balance calculations for all sites. Months with a positive water balance are shown 
by the black bar for each site. Months highlighted by a gray bar represent months when the net water 
balance is less than 0.5 cm month-1. 
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this study were digested in phosphoric acid held at 75°C, and analysis of synthetic calcite at the 

University of Michigan produces results within error of other > 70°C calibrations (Defliese et al., 

2015). Due to the ongoing uncertainty involving carbonate temperature calibrations, this paper 

will focus on temperature results using a composite calibration that combines results from 

multiple studies that reacted samples in phosphoric acid > 70°C, excluding siderite (Defliese et 

al., 2015).  

Using the composite calibration, the measured Δ47 values correspond to a temperature 

range of 6 to 22°C. Carbonate nodules from two separate sampling pits were analyzed for the 

Plughat site. The calculated temperatures of 6 ± 3°C and 9 ± 3°C from the two Plughat pits are 

within error of each other. The final Plughat site temperature (7 ± 2°C) is determined by 

combining all of the data from both pits. The Clamo site from South Dakota produced the 

highest Δ47 temperature of 22 ± 4°C, while the Montecito site in New Mexico produced the 

lowest temperature of 6 ± 3°C. 

Measured δ18O values of soil carbonate (δ18Ocarb) ranged between -10.5 and -5.3‰ 

VPDB, while δ13C values ranged between -6.4 to -0.5‰ VPDB. The δ18Ocarb values are 

relatively well dispersed across the ~5‰ range, whereas the δ13C values cluster in two separate 

groups. The carbonate from the Kranzburg, Clamo, and Cornville soils all had δ13C values of 

0.5–0.6‰, while the remaining seven soils had pedogenic carbonate with a δ13C value < -3.3‰. 

The δ18O values for the precipitating soil waters (δ18Osw) were calculated using the Δ47 

temperatures and the calcite-water fractionation factor of Friedman and O’Neil (1977), and the 

calculations are summarized in Table A.7. Calculated δ18Osw values ranged between -3.9 and -

11.2‰ VSMOW (Table 2). The two South Dakota sites had δ18Osw values of -3.9 and -6.6‰, 

whereas the remaining sites all had δ18Osw values below -8.7‰. The only exception was the 
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Guvo soil from Arizona, which had a δ18Osw value of -5.3‰. Of note, the carbonate sampled 

from two separate soil pits at the Plughat site produced δ18Ocarb values that differed by 0.9‰. 

However, individually calculated δ18Osw values of -10.6 and -10.7‰ for each pit were well 

within error. 

 

2.5. Discussion 

2.5.1 Data-model comparison 

 Given that long-term instrumental soil records are unavailable near our study sites, the 

effectiveness of the soil temperature and moisture models can be assessed using instrumental 

data for the Eros and Adams Ranch SCAN stations. Soil temperature and moisture data is 

available at the Eros station since 2003, while the same data is available for the Adams Ranch 

station since 1997 (NRCS, 2016).  The Eros station is located relatively close to the Kranzburg 

site (~80 km) and experiences similar temperatures throughout the year, yet it receives nearly 9 

cm more annual precipitation. The Adams Ranch station is located ~100 km SE of the Witt site, 

while sitting  ~200 m lower in elevation and receiving  about 7 cm more annual precipitation. 

 In Fig. 2.2, the soil temperature model results at depths of 20 and 51 are compared to 

instrumental data from both SCAN sites. Model A compares favorably with the observed 

average soil temperature record between March and October at the Eros station, but it under-

predicts temperatures between November and February. This discrepancy likely arises because 

the temperature model does not take into account the effects of freezing and snowpack insulation 

under extremely cold air temperatures. Poor model performance during very cold points during 

the year will not affect the overall conclusions of this study, as snowpack and freezing is 

primarily an issue at the two South Dakota sites and carbonate formation is extremely unlikely at 
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these temperatures. At the Adams Ranch station, model B compares favorably with the average 

observed soil temperature between February and June. The better performance of model B is 

likely a result of reduced vegetative cover as compared to the South Dakota sites, which would 

allow for greater ground heating. Taken together, the temperature data from the SCAN sites 

suggests that model A produces a more accurate picture of annual soil temperature variation for 

the South Dakota grassland sites, while model B is likely more valid at the remaining semi-arid 

to arid sites during late winter to early summer. Some uncertainty remains, but at the very least, 

the two models together form a range of likely soil temperatures for the majority of the year 

under a variety of precipitation regimes. More importantly for the purposes of this study, the 

temperature model performance is best during the times of the year that the soil water balance 

models indicate soils are likely drying out.  

 Soil moisture data from the SCAN sites is compared to evapotranspiration and soil water 

balance results in Fig. 2.3. Observed soil moisture data is calculated by relating the soil dielectric 

permittivity to soil-water content using a general multi-soil ‘loam’ calibration equation (Seyfried 

et al., 2005). The soil water balance results should also not be taken at face value to mean that 

the soil moisture is completely depleted, but rather the soil effectively begins to dry out. Plants 

are generally unable to deplete soil water completely, because the adhesive forces to soil 

particles increase relative to matric water potential forces when soil water content falls. The 

annual trend of precipitation−ET0 results compare favorably to the trend in observed soil 

moisture, especially at 20 cm where the soil moisture will be more readily affected by changes in 

evapotranspiration. The main discrepancy occurs during the winter at the Eros station at 20 cm 

depth (shaded regions in Fig. 2.3A), which can be explained by freezing soil temperatures during 

the winter months (Fig. 2.2A). The soil water balance compare more favorably with the 51 cm 
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soil moisture results. Data from the Eros station shows that it is not until late summer-early fall 

that soil moisture reaches its growing season minimum, whereas April marks the inflection point 

at the Adams Ranch station. Generally the Eros soil is much wetter than the Adams Ranch, which 

may imply that it is only during drought years that the soil effectively dries out 

2.5.2 Timing of pedogenic carbonate formation 

The majority of published clumped isotope measurements on modern pedogenic 

carbonate have produced formation temperatures that tend to fall between warmest monthly 

temperature and MAT (e.g. Passey et al., 2010; Quade et al., 2013; Hough et al., 2014). 

However, soils examined as part of this study tend to be substantially colder than these earlier 

Figure 2.5 

 Average clumped isotope derived temperatures of pedogenic carbonate formation plotted against mean 
annual air temperature for each site. The broadly-defined climate regime is indicated by the symbols. 
The two California sites (triangles) are the driest sites examined in this study (MAP 10-20 cm). The three 
Arizona sites (diamonds) receive 25–40 cm of annual rainfall, with an exceptionally dry period between 
April and June. The New Mexico and Colorado sites (squares) receive between 30 and 40 cm of annual 
rainfall. The South Dakota sites (circles) are the wettest, with MAP in excess of 50 cm. Error bars 
display a ±1 S.E. window. 
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studies, with all but three of the Δ47 temperatures falling at or below MAT (Fig. 2.5). The long 

formation time of pedogenic carbonate complicates comparisons to short-term instrumental 

records of climate and soil conditions. While the concern surrounding short term anomalous 

weather events (e.g. droughts) is reduced by use of 30 year normal climate data to model typical 

soil conditions, uncertainty persists regarding regional climate change that occurred while the 

carbonate nodules formed (2–6 kyrs using the transfer function of Retallack, 2005). Proxy-based 

climate reconstructions and model simulations indicate that between the Mid-Holocene (~6000 

cal years BP) and the preindustrial period (AD ~1700) the North American continental interior 

generally became more humid and summer temperatures declined slightly (0.5−2°C), while the 

monsoon-affected North American southwest became drier (Wanner et al., 2008). A small 

decrease in temperature over this timeframe would serve to increase the extent to which Δ47 

derived temperatures in the present study fall below MAT. Greater uncertainty surrounds 

seasonal hydrologic patterns throughout this period, but in the absence of more detailed 

paleoclimate data we assume that patterns similar to modern were predominant.  

It is important to note that choice of clumped isotope temperature calibration can 

drastically affect the calculated temperatures, especially for the range of Δ47 values measured as 

part of this study. For example, use of the Ghosh (2006a) calibration would result in 

temperatures at or above MAT for all of our sites (Table 2) and fall more in line with previous 

studies of pedogenic carbonate that observed Δ47–derived reflecting a warm-season bias (Passey 

et al. 2010; Quade et al. 2013; Hough et al. 2014). However, the Ghosh (2006a) calibration is not 

thought to be the appropriate choice for our study, based on the analytical methods used in the 

University of Michigan Stable Isotope Laboratory and the current understanding of calibration 

issues related to clumped isotopes (Defliese et al., 2015). 
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Uncertainties about calibration choice do not confound earlier work that observed a 

warm-season bias primarily using the Ghosh et al. (2006a) calibration. For example, if reaction 

temperature is indeed the primary control underlying the calibration discrepancies (Fernandez et 

al., 2014; Defliese et al., 2015), use of the Ghosh et al. (2006a) calibration was appropriate in the 

study of Quade et al. (2013), as their samples were reacted at 25°C. In contrast, samples from 

Hough et al. (2014) study were reacted at 90°C, and most of the calculated temperatures are 

reduced (average reduction = 6°C) using the composite calibration of Defliese et al. (2015) rather 

than the Ghosh et al. (2006a) calibration. However, the recalculated temperatures for all but one 

site still fall above the range of MAT values included in their study. Therefore, while calibration 

uncertainties do not contradict the documented warm-season bias for some sites, the colder 

nature of the results presented herein do underscore that a warm-season temperature bias cannot 

be presumed for pedogenic carbonate in all settings. 

As would be expected from the cold nature of the temperature results in this study, only a 

few of the soils can be explained using the depth-based ground heating model of Quade et al. 

(2013). Relatively cold pedogenic carbonate formation temperatures are expected to be less 

common, in part because calcite tends to be more soluble under colder temperatures (Breecker et 

al. 2009). However, clumped isotope derived temperatures that fall closer to MAT may occur in 

some settings due to the mediating effect of precipitation on the timing of pedogenic carbonate 

formation (Peters et al., 2013). As discussed by Breecker et al. (2009), pedogenic carbonate 

formation can be driven not only by an increase in temperature, but also by  a decline in soil 

pCO2 or increased Ca2+ activity in the soil solution, both of which are tied to precipitation and 

soil water. Soil pCO2 at depth is primarily sourced from soil respiration, which is a combination 

of respiration by roots, microbial decomposition of soil organic matter, and respiration by other 
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fauna in the soil (Luo and Zhou, 2006). In arid and semi-arid environments, overall productivity 

is controlled by the availability of water (Noy-Meir, 1973). Small pulses of water to these 

ecosystems trigger microbial respiration primarily near the soil surface, and it is not until a larger 

threshold of water is provided to the soil system that vascular plant productivity will increase, 

thereby increasing plant water uptake and root respiration and driving a build-up of soil pCO2 at 

depth (Huxman et al., 2004). Then, as the soil begins to dry out, soil pCO2 will fall as 

productivity and microbial respiration of soil organic matter slows (Liu et al., 2002). 

The activity and availability of Ca2+ is also tied to precipitation in arid and semi-arid 

environments. Due to the lack of moisture and biological activity, chemical weathering tends to 

proceed at a much slower rate under arid and semi-arid climate regimes (Knight, 1991; Cotton et 

al., 2013), thereby limiting the in-situ supply of Ca2+ ions to the soil solution. It has long been 

suggested that dust sourced Ca2+ is important under these climate regimes (e.g. Gile et al., 1966; 

Machette, 1985).  In arid settings, as much as 98% of the Ca2+ in the soil can be attributed to dust 

deposition rather than weathering of bedrock derived silicate minerals (Capo and Chadwick, 

1999). If the majority of Ca2+ is delivered to the surface during dry months, precipitation is 

required to translocate dust sourced Ca2+ into the soil profile to the depth of carbonate formation. 

Subsequently, as the soil dries out, the activity of Ca2+ will increase, promoting the formation of 

pedogenic carbonate (Breecker et al., 2009). Therefore, a thorough evaluation of annual 

fluctuations in precipitation and soil water content is necessary to assess the annual timing and 

formation temperature of pedogenic carbonate. 

2.5.2.1 Soil water control 

As discussed above, the timing of annual precipitation can influence the timing of 

pedogenic carbonate formation through its effect on Ca2+and soil pCO2. In addition to monthly 
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precipitation totals, soil water storage and fluctuations in evapotranspiration need to be 

considered when assessing the timing of soil moisture depletion. For example, antecedent water 

that accumulates at cooler times of the year (e.g. winter) can be an important source of water to 

sustain productivity even when monthly precipitation levels are low (Reynolds et al., 2004). The 

soil water balance can be driven to zero either by a sizeable decrease in precipitation, or by 

sustained high evapotranspiration. 

 Water inputs into the soil are limited under arid climate regimes. Therefore, soil water 

will likely be exhausted soon after a sizable drop in precipitation. The two California soils, 

Muroc and Lavic, demonstrate this scenario, as they are the driest sites examined in this study. 

Both of these sites receive the bulk of their precipitation during the winter months, before 

experiencing a sharp drop in rainfall during April (Fig. 2.6). Yet these soils are likely drying out 

ahead of the decline in precipitation due to evapotranspiration losses, with water balance results 

indicating that the Lavic soil begins to dry out during February and the Muroc soil begins to dry 

out in March. Clumped isotope temperatures within error of the modeled soil temperature 

support formation of pedogenic carbonate at these sites during February and March, respectively 

(Fig 6). 

Although the three Arizona soils receive more precipitation on an annual basis than the 

California soils, the three Arizona soils experience a severe drop in precipitation beginning in 

April that is driven by the monsoonal climate regime (Fig. 2.6). Soil water balance results 

indicate that the Cross-Apache and Cornville sites dry out in April, coincident with the decline in 

rainfall, whereas the hotter Guvo site dries out a month earlier. The clumped isotope 

temperatures agree with the modeled soil temperatures during April and March for the Cornville 

and the Guvo sites, respectively (Fig 6). This agreement further supports the idea that the timing 
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of carbonate formation is biased by a sharp decline in precipitation that coincides with the annual 

rise in soil temperature and evapotranspiration. However, the third Arizona soil, Cross-Apache, 

does not follow this explanation as clearly. The clumped isotope temperature from the Cross-

Apache site would better agree with the modelled soil temperatures if the soil water balance 

predicted that the soil began to dry out a month earlier (March). A possible explanation for this 

discrepancy is the abundance of coarse fragments in the Cross-Apache soil, with the soil series 

containing up to 35 percent pebbles and cobbles. Coarse fragments were not accounted for when 

calculating maximum water holding capacity for each soil, and abundant coarse fragments will 

likely facilitate flow through and reduce the soil’s ability to retain water during the cool winter 

months. Therefore, it is likely that the Cross-Apache soil dries out earlier than the soil water 

balance model would suggest. 

Unlike the California and Arizona soils, the remaining soils analyzed in this study all lack 

an excessively dry period during the spring/early-summer. At these sites, the driest months are 

during the winter when temperatures drop below freezing, inhibiting productivity and likely 

carbonate formation as well. Soil water balance results for Plughat, Montecito, and Witt indicate 

that these sites all dry out in April (Fig. 2.6). The clumped isotope temperatures from all of these 

sites fall generally agree with the modelled soil temperature range for April. The clumped 

isotope temperature window for both of the South Dakota soils is distinct from the other sites 

examined in this study, as it sits at or near the maximum modeled soil temperature at Bk horizon 

depth. These two sites also receive the most precipitation and experience the widest annual 

temperature variation (Fig. 2.6). The soil temperatures peak during July and August, which, for 

the Clamo soil at least, suggests mid-summer carbonate formation. At first, it may seem 

counterintuitive that soil carbonate forms when there is still 6 to 8 cm of monthly precipitation  
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Figure 2.6 

 Plots for each site showing monthly precipitation totals and mean annual temperature values taken from 
the 1981–2010 climate normals. Annual variation in soil temperature was modeled for the depth at which 
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on average; however, according to the soil water balance results this is precisely the time when 

water storage at this site is exhausted (Fig. 2.4). At the Kranzburg site, the clumped isotope 

window overlaps during both late spring and early autumn. Carbonate formation during late 

August and September is considered more likely due to lower precipitation totals and  because a 

sizeable increase in soil water balance does not occur until October (Fig. 2.4). 

It is important to note that there is a level of uncertainty in the evapotranspiration derived 

soil water estimates, attributable to necessary model assumptions. First, ET0 is distinct from 

‘real’ evapotranspiration because it represents the theoretical evapotranspiration from a uniform 

grass cover assuming peak growth conditions (Lhomme, 1997). When applied to agricultural 

crops, calculated Penman-Monteith ET0 values are subsequently modified by a crop coefficient 

depending on the particular species. Adequate data necessary to create a more precise estimate of 

evapotranspiration were unavailable for vegetation at sites examined in this study. Therefore, the 

monthly ET0 values should be considered as an upper limit of actual evapotranspiration 

(Lhomme, 1997). The use of monthly precipitation totals as soil infiltration totals should also be 

considered a maximum value, because some fraction may be lost to runoff or interception by 

vegetation (Huxman et al., 2004). Despite these necessary assumptions, the calculated soil water 

estimates allow for a detailed evaluation of soil water limitation and help explain variations in 

Δ47–derived temperatures. 

Pedogenic carbonate, which typically forms on timescales of hundreds to thousands of 

years, can preserve an integrated signal of past environmental conditions. Its integrative nature 

Figure 2.6 (contiued) 

 the pedogenic carbonate was sampled. Model A (dotted line) uses the monthly mean, minimum and 
maximum 1981–2010 monthly normal average temperatures. Model B uses the minimum monthly 
normal average temperature and the mean and maximum normal maximum temperatures. The Δ47 
derived temperature is shown as a dashed horizontal line with solid lines highlighting a ±1 S.E. window. 
The light gray vertical bar highlights the first month when soil water storage equal 0. 
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depends on, in part, if overprinting (precipitation of younger crystal overgrowths) or 

recrystallization is the dominant process in the soil (Deutz et al., 2002). It should also be noted 

that pedogenic carbonate does not necessarily form every year or always during a certain month, 

potentially forming during shorter-term, anomalous events that deviate from normal patterns, 

such as droughts (Breecker et al. 2009; Hough et al., 2014). These factors may contribute to 

some of the uncertainty in the clumped isotope derived temperatures.  However, the general 

agreement between the Δ47-temperatures and the model results suggests that normal climate 

factors were the primary control on carbonate formation at our sites. As with other paleosol-

based paleoclimate proxies, the integrative nature of paleosol Δ47 values can be seen as an 

advantage because the influence of short-lived climatic events are reduced to some degree and do 

not dominate the signal (Sheldon and Tabor, 2009).  

2.5.2.2 Vegetation and excessive ground heating 

 Additional factors, including vegetation composition and excessive ground heating can 

affect the annual timing of pedogenic carbonate formation. When other environmental variables 

are equal, model results suggest that soils under C3 vegetation may dry out earlier in the year 

than soils under C4 vegetation (Meyer et al., 2014). While we do not possess comprehensive 

vegetation data for all of the sites examined in this study, the sites range from predominantly C3 

to a mixture of C3 and C4 plants based on the bulk δ13Corg from the soil surface and A horizons. 

The fact that most of the sites described herein dry out early in the year lends some credence to 

their findings. However, recent work from Central Argentina did not identify evidence for 

different seasons of carbonate formation between predominantly C3 and mixed (C3/C4) 

vegetation sites (Ringham et al., 2016). 
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 Excess ground heating has been shown to affect the Δ47 values of pedogenic carbonate 

forming in both the southwestern United States and the vegetation-poor Tibetan Plateau (Quade 

et al., 2013); however, the generally colder nature of the Δ47 temperatures suggests that excess 

ground heating is not as significant of a factor in sites described herein. The reduced impact of 

excessive ground heating could be because the sites with the least amount of vegetative cover 

tend to become water limited at an early point in the year when total radiation values are still 

relatively low. The South Dakota soils do not dry out until the middle of the year; however, these 

sites also have the thickest vegetative cover, potentially limiting ground heating. 

2.5.3 Δ47 temperature and the δ18O of precipitation 

Another product of measuring the Δ47 values of pedogenic carbonate is that the calculated 

formation temperature can be used along with the measured δ18Ocarb to calculate the isotopic 

composition of the soil water (δ18Osw) at the time of formation (Ghosh et al., 2006b; Quade et al., 

2007; Hough et al. 2014). Relating δ18Osw to the δ18O of precipitation (δ18Oprecip) is complicated 

by sizable seasonal variation in δ18Oprecip. According to the Online Isotopes in Precipitation 

Calculator (OIPC), which interpolates a global dataset of precipitation stable isotope data, 

seasonal δ18Oprecip variability at these sites can be as much as 13.8‰ (Bowen and Revenaugh, 

2003; Bowen, 2014). As meteoric water moves through a soil, it can mix with soil water held 

near the surface that has been evaporatively enriched in 18O; but, it can also move relatively 

rapidly to depth with less mixing due to the existence of coarse fragments or macropores 

(Mathieu and Bariac, 1996).  

Calculating δ18Osw offers an opportunity to assess changes in hydrology, even when local 

environmental factors (e.g. vegetative shading) can cause soil temperature variations. As the 

results from the separate pits at the Plughat site suggest (Table 2), δ18Osw can be faithfully 
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recorded even if there are local variations in soil carbonate formation temperature. However, it 

remains unclear whether δ18Osw values record an integrated signal of precipitation received year-

round, or if they are biased towards certain seasonal contributions. To assess this point, δ18Osw 

values can be compared to OIPC sourced monthly δ18Oprecip values. The calculated δ18Osw values 

are plotted against a weighted average of monthly δ18Oprecip values in Fig. 2.7, where each 

monthly OIPC δ18O value was weighted according to the fraction of total precipitation received 

during that month. The three precipitation scenarios plotted in Fig. 2.7 exhibit the best agreement 

with the calculated δ18Osw values. Fig.2.7A includes all precipitation received year-round, 

Fig.2.7B considers only the first month without soil water storage, and Fig. 2.7C plots a 

weighted average of the three wettest months. A number of additional scenarios were explored 

(e.g. driest month, months when P>ET0, etc.) and are shown in Fig. A.1. To assess how well the 

data compare to the 1:1 line, a modified standard error was calculated for Fig. 2.7, using the 1:1 

line instead of a best-fit regression line. 

In addition to complications introduced by seasonal variations in δ18Oprecip, the isotopic 

composition of soil water can deviate significantly from meteoric water, becoming higher with 

evaporative loss before the water percolates deeper into the soil, especially in finer-textured soils 

(Cerling and Quade, 1993). It is important to note that scenarios where δ18Osw > δ18Oprecip are 

much easier to explain (via evaporative loss) than scenarios where δ18Osw < δ18Oprecip. Two sites, 

Witt and Clamo, consistently appear excessively 18O-enriched, as compared to the remaining 

sites (Fig. 2.7). The Witt and Clamo soil series are unique amongst our sites in that they are 

described as having a moderately-slow to slow permeability. Slow permeability in these two 

soils would explain the observed 18O-enrichment as precipitation will percolate slowly into the 

soil, thereby increasing the time available for evaporative loss near the soil surface. 
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Of the many scenarios examined, annually integrated δ18Oprecip values produce one of the 

better relationships with calculated δ18Osw values, with a S.E. of 2.7‰ (Fig. 2.7A). However 

stronger relationships are observed when only the first month with no soil water storage (Fig. 

2.7B; S.E = 2.1‰) or the three wettest months are considered (Fig. 2.7C; S.E = 1.8‰). Although 

the latter scenario has a slightly smaller S.E., a number of the δ18Osw values are more negative 

than δ18Oprecip, which is difficult to explain. In contrast, all of the δ18Osw values exceed δ18Oprecip 

when only precipitation from the month where the soil water balance is considered, with the one 

exception being the Muroc site (although it is within error of the 1:1 line). Furthermore, a linear 

regression through the data that excludes the strongly 18O-enriched Clamo and Witt sites has a 

slope subparallel to the 1:1 line with a fairly strong coefficient of determination (r2 = 0.78). 

Figure 2.7 

 Calculated δ18O values of the soil water (δ18Osw) at the time of pedogenic carbonate formation plotted 
against OIPC-derived δ18O values of precipitation (δ18Oprecip). Fig. 7A plots a weighted average of OIPC 
values from all months. Fig. 7B includes only the precipitation that falls during the first month where the 
soil water storage model goes to 0. Fig 7C plots the weighted average of the three wettest months. For 
Figs. 7A and 7C the monthly δ18Oprecip were weighted according to the fraction of annual precipitation 
received that month. A modified standard error (S.E.) is calculated based on deviation from the 1:1 line 
considering all 10 sites. The two sites (Clamo and Witt) that are consistently the most 18O-enriched 
relative to the 1:1 line are shown as white symbols, and a separate standard error (*S.E.) is shown 
considering only the 8 remaining sites. Also plotted as a solid black line, is a linear regression that 
excludes the Clamo and Witt sites along with its slope (m) and coefficient of determination (r2). 
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These results suggest that the δ18Ocarb value of pedogenic carbonate will most directly reflect the 

δ18O composition of seasonal precipitation falling close to the time of carbonate formation  

It is important to note that mixing of soil water under seasonally variable precipitation 

regimes is a complex process. For example, it has been shown in wet environments characterized 

by strong seasonal variation in precipitation that tightly bound water can remain isolated in small 

pores and not mix with subsequent precipitation (Brooks et al., 2010). However in water-limited 

environments, our results suggest that soil water is less likely to remain unutilized in sizeable 

quantities across seasons. Although the soils likely do not dry out completely, the water content 

remains low enough that the δ18Osw value will be set by recent precipitation. Soil hydrology can 

be further complicated by overlying vegetation. Variations in rooting depths suggest that woody 

and herbaceous plants may rely on water uptake from different soil depths in drier environments, 

and individual plants have been shown to access pools of water at varying depths during 

different seasons (Dawson and Pate, 1996; Schenk and Jackson, 2002). Variation in vegetation 

between the sites as well as fluctuations in soil pH may explain some of the variability observed 

in the calculated δ18Osw data. 

Considering all of the complicating factors, it is encouraging that such a strong 

relationship exists between the calculated δ18Osw values and the δ18O of precipitation that falls 

during the modeled month of soil water depletion. This overall agreement lends further support 

to the effectiveness of the soil water balance model results and the conclusion that seasonal 

fluctuations in soil water balance are controlling the timing of carbonate formation. Additional 

detailed studies are required from a wider array of sites (across a range of moisture regimes) to 

examine thoroughly the integration of δ18Osw and δ18Oprecip during pedogenic carbonate 
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formation. Caution should be taken when interpreting changes in  δ18Ocarb values for they may be 

reflective of shifts in local hydrology rather than temperature. 

2.5.4 Implications for clumped isotope studies of paleosol carbonates and future directions 

 It is evident that annual fluctuations in soil water content can control the annual timing of 

pedogenic carbonate formation. As outlined above, variations in precipitation, evapotranspiration 

and antecedent water storage control soil water content, and in turn, the timing of pedogenic 

carbonate formation. Therefore, when interpreting clumped isotope temperature results from a 

stacked sequence of paleosols, it should be considered whether recorded temperature variations 

are driven primarily by change in air temperature or a shift in soil hydrology, which may be 

independent of climate. However, these variables are difficult to constrain directly when 

evaluating clumped isotope results of paleosol carbonate. An in-depth characterization of 

paleosols can help to elucidate the primary driver of changes in a particular paleosol clumped 

isotope record. For example, changes in paleosol texture (grain size) throughout a sequence 

should be evaluated, as this will partially control water storage outside of the growing season. 

Reconstructions of paleovegetation from phytolith assemblages, organic matter δ13C, or 

pedogenic carbonate δ13C are important, as different plant phenotypes will have different water-

uptake strategies and provide variable amounts of shade (e.g. Cerling, 1984; Strömberg and 

McInerney, 2011). Paleosol climate proxies that reconstruct MAT and MAP independent of 

pedogenic carbonate can also be used to suggest if a change in air temperature or precipitation 

regime is more likely (e.g. Sheldon et al., 2002; Sheldon and Tabor, 2009; Nordt and Driese, 

2010; Hyland et al., 2015). 

 Further work is needed on modern pedogenic carbonates, specifically to consider the 

effects of soil texture and vegetation. Most clumped isotope studies of modern soils have focused 



   

  44 

on sandy soils or those with coarse clasts capable of developing carbonate undercoatings. 

However, the majority of paleosols used for paleoclimatic reconstructions tend to be more 

developed, with nodular carbonate that represents both longer formation times and potentially 

different modes of carbonate formation. Most of the soils examined as part of this study were 

fine-grained and capable of storing sizable volumes of antecedent water, and future work should 

directly assess the different soil textures under similar climate regimes. The predominantly 

cooler-nature of our Δ47 results may be, in part, attributable to differences in how pedogenic 

carbonate nodules versus clast undercoatings form over time. Soils examined herein all included 

nodular horizons that may preserve a longer, more time integrative climate signal of regular 

seasonal patterns than previous studies that focus on carbonate undercoatings. Importantly, the 

majority of pedogenic carbonates preserved in the geologic record and those used in paleo-

reconstructions are well-formed nodules rather than undercoatings. Thus, the new results herein 

may reflect a better interpretive structure for understanding Δ47 results going forward. The effect 

different vegetation phenotypes have on pedogenic carbonate formation temperatures still needs 

to be tested directly.   For example, C3 and C4 plant productivity can be favored at different 

points during the year, which may, in turn, affect the seasonality of pedogenic carbonate 

formation (Ode, et al., 1980; Meyer, et al. 2014). 

 Considering soil hydrology when discussing clumped isotope results of pedogenic 

carbonate is especially relevant to paleoelevation studies, because regional uplift can drive 

changes in regional climate that affect paleoelevation proxies (Ehlers and Poulsen, 2009; Fiorella 

et al., 2015). As noted above, Δ47 temperatures of pedogenic carbonate were notably affected 

along an elevation transect in the Andes where the seasonality of rainfall varies as a function of 

elevation. We agree with findings of Peters et al (2013) that the annual timing of precipitation 
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needs to be considered, because it is the primary input of water into a soil. We also stress that 

other factors should also be considered including other climatic variables that affect 

evapotranspiration (e.g. temperature variability and humidity), soil texture, and plant water 

uptake strategies. The fine-grained nature of most of the soils examined herein highlights the 

importance of considering soil water storage, because it could allow carbonate formation to lag 

well-behind precipitation events. 

 

2.6. Conclusions 

 Our results provide additional credence to the observation that carbonate sourced from 

modern soils is not always biased towards warm-season temperatures. Clumped isotope 

temperatures that fall at or below MAT may be less of an exception than published results of 

modern pedogenic carbonate have documented. When considering clumped isotope derived 

temperatures of carbonate preserved in paleosols, it is necessary to consider that reconstructed 

changes in temperature may be indicative of changes in hydrology and vegetation rather than 

exclusively changes in air temperature. 

 Clumped isotope temperature variability in modern pedogenic carbonate can be explained 

by considering a monthly soil water model that accounts for precipitation, evapotranspiration, 

and soil water storage. Results from this study agree with previous research that suggested the 

timing of annual precipitation can bias the timing and temperature of pedogenic carbonate 

formation. The effects of water loss via plant water uptake need to be considered in order to 

explain all of the sites examined in this study, especially those that lack an excessively dry 

period during the spring or summer (e.g. the South Dakota sites). 
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 Systematic differences in Δ47 results between different soil taxonomic orders were not 

observed, as it appears that precipitation, evapotranspiration, and antecedent soil water storage 

are primary controls on the timing of pedogenic carbonate formation. Whereas most previously 

published clumped isotope studies demonstrated a warm season bias in pedogenic carbonate, the 

majority of our sites fall at or slightly below MAT. Only the two South Dakota soils that 

developed under a continental climate were biased well above MAT. The seasonal timing of soil 

water depletion explains the differences in formation temperatures recorded at our sites. 

Additionally, the Δ47 derived δ18Osw results suggest that the δ18O value of the pedogenic 

carbonate will be seasonally biased towards seasonal precipitation δ18O values when soil water 

content is depleted. Future research should investigate the possibility that differences exist in 

seasonal formation patterns of pedogenic nodules and clast undercoatings, and therefore the 

environmental data they record. This point is particularly important because most studies of the 

geologic record rely on nodular carbonate (as examined herein), rather than undercoatings, which 

have been the focus of most modern clumped isotope calibration studies. The remaining 

uncertainty does not preclude the use of this approach on paleosol carbonates in order to assess 

relative changes in local hydrology, but caution must be taken when interpreting the results in 

light of climatic or tectonic changes. 
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CHAPTER 3 

 

The effect of seasonally fluctuating soil environments on temperature reconstructions from 
paleosols 

 

3.0 Abstract 

Accurate reconstructions of surface air temperatures from paleosols depend on 

understanding the processes that cause the soil environment to deviate from the surface climate. 

A number of proxies have been developed that use the geochemistry of soil minerals to 

reconstruct surface climate. In order to constrain the temperature biases likely to be recorded by 

paleosol proxies better, soil moisture and temperature data are compiled from 218 modern soils 

within the Soil Climate Analysis Network. These data are compared to mean annual air 

temperature as well as to seasonal air temperature fluctuations in order to quantify the biases 

between the two datasets. Reduced temperature seasonality in soils occurs at sites where cold 

season air temperatures fall below freezing, with minimum monthly temperature corresponding 

to the scale of the reduction in soil temperature seasonality. This phenomenon produces mean 

annual and warm season soil temperatures warmer than the corresponding air temperature 

values, with mean annual soil temperatures (MAST) being more severely affected. When 

considering all of the SCAN sites, the average offset between MAST and mean annual air 

temperature is +1.9 °C. We also assess temperature biases that are likely to be recorded by 

pedogenic carbonate. Given that pedogenic carbonate likely forms seasonally during periods of 
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declining soil moisture content, pedogenic carbonate is more likely to record a temperature that 

is biased warm relative to mean annual air temperature. If the largest 30-day decline in soil 

moisture accurately predicts the seasonal timing of pedogenic carbonate formation, >75% of the 

sites would record a warm bias relative to MAAT, with an average bias of about +4 °C. 

Additionally, temperatures recorded in pedogenic carbonate greater than 12−14 °C above MAAT 

are considered unlikely at depths > 50 cm. Many soils are also characterized by distinct seasonal 

soil moisture fluctuations at different depths, suggesting that the depth at which pedogenic 

carbonate formed in soils may record substantially different temperatures biases. Therefore, 

careful characterization of whole paleosol profiles and of post-burial processes (e.g., 

compaction) need to be taken into account when using clumped isotope measurements of 

pedogenic carbonates to reconstruct paleoclimatic or paleoenvironmental conditions. 

 

3.1 Introduction 

 Because climate plays a primary role in shaping the physical and chemical development 

of soils (Jenny, 1941), the geochemistry of paleosols can be used to reconstruct climate variables 

in the geologic past (Sheldon and Tabor, 2009). Accurate reconstructions of air temperature are 

required to address questions surrounding climate sensitivity and the evolution of the Earth’s 

climate system. Temperature records are also important for a broad range of geologic 

applications, including regional paleoelevation reconstructions required to test hypotheses of 

continental tectonics (Clark, 2007). Proxies developed for reconstructing temperature from 

paleosols include “pedo-transfer functions,” which relate the degree of chemical weathering, as 

reflected by the bulk elemental geochemistry of paleosols, to mean annual air temperature 

(MAAT; Sheldon et al., 2002; Gallagher and Sheldon, 2013). Other approaches for 
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reconstructing temperatures are based on the stable isotopic geochemistry of particular minerals 

that formed in-situ in paleosols, including carbonate (Dworkin et al., 2005), clay minerals 

(Delgado and Reyes, 1996; Tabor and Montañez, 2005), as well as iron oxides and hydroxides 

(Yapp, 1987; Yapp, 2000; Tabor and Yapp, 2005). 

 These paleosol temperature proxies depend on certain assumptions, including uncertainty 

about the formation time of individual paleosols, potential evaporative enrichment of 18O in soil 

water (Tabor et al., 2013), or the stability of the meteoric water line in the geologic past (Sheldon 

and Tabor, 2009). Unlike previous approaches, the advent of clumped isotope thermometry 

allows for the direct assessment of temperature in carbonate-bearing paleosols, because the 

abundance of doubly substituted rare isotopes in carbonate minerals is controlled only by 

formation temperature (Ghosh et al., 2006; Eiler, 2011). Although the clumped isotope 

composition of pedogenic carbonate provides a direct measurement of temperature, uncertainties 

exist about the potential for a bias imparted by seasonal timing of carbonate formation. The 

traditional assumption held that pedogenic carbonate formed during mean growing season 

conditions, and therefore would reflect the climate of the growing season (Cerling and Quade, 

1993). However, it was subsequently demonstrated that carbonate can form in soils during 

particularly dry and hot periods that differ significantly from the mean growing season (Breecker 

et al., 2009). 

 The earliest clumped isotope analyses of pedogenic carbonate from modern soils in East 

Africa produced temperatures that were generally reflective of warm season air temperatures 

(Passey et al., 2010). A warm season temperature bias was further documented by clumped 

isotope studies of modern soils in North America, Asia, and South America (Quade et al., 2013; 

Hough et al., 2014; Ringham et al., 2016). However, a warm season formation bias cannot be 
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universally assumed for pedogenic carbonate. Studies of pedogenic carbonate along elevation 

transects in the Andes documented warm-season temperatures at lower elevation sites that 

receive the bulk of precipitation during the summer, whereas higher elevation sites that receive 

the bulk of precipitation during the winter months produced temperatures close to MAAT (Peters 

et al., 2013; Burgener et al., 2016). Clumped isotope temperatures close to MAAT were also 

recorded at sites from the southwestern United States, where model results predict that the soils 

tend to dry out in the late winter to early spring (Gallagher and Sheldon, 2016).  

 Accurate temperature reconstructions from paleosols depend on a thorough 

understanding of how the soil environment relates to surface climate variables. To address this 

need, we compiled instrumental soil temperature and moisture data from the Soil Climate 

Analysis Network (SCAN) and compared it to surface climate normals. Seasonal temperature 

variations are evaluated across multiple soil depths and compared to normal air temperature 

fluctuations in order to quantify systematic differences and the prevalence of a warm soil 

temperature bias relative to MAAT. Seasonal fluctuations in soil moisture data are also assessed 

to determine points of the year during which pedogenic carbonate formation is likely favored. 

Finally, soil temperatures during these periods of soil water depletion are compared to MAAT in 

order to determine the magnitude of the offset between the temperature presumably recorded by 

pedogenic carbonate and MAAT. 

 

3.2 Factors affecting soil temperature and pedogenic carbonate formation 

 Fluctuations in soil temperature are primarily controlled by changes in radiant, thermal, 

and latent energy exchange at the soil surface, which are then propagated down into the soil via 

conduction (Hillel, 1980). Conduction of heat in a soil depends on both the volumetric heat 
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capacity and thermal conductivity of the soil, which vary depending on the density and physical 

composition of the soil. For example, the organic content of a soil can alter its thermal properties 

because organic matter tends to have a higher heat capacity and lower thermal conductivity than 

most minerals (Hillel, 1980). It is also important to note that the depth to which surface soil 

temperature fluctuations will be propagated into a soil is not only a function of the physical 

properties of a soil, but also the frequency of the temperature fluctuation. A temperature 

fluctuation with a longer duration will be propagated deeper into the soil, which explains why 

diurnal temperature fluctuations tend to be largely damped out by 50 cm (Buol et al., 2012), 

whereas seasonal temperatures fluctuations are propagated many meters down into a soil. 

 Although the seasonal temperature fluctuation of the soil surface generally tracks air 

temperature fluctuations, it is important to note that other factors can cause significant deviations 

from this pattern. In areas where there is limited vegetative cover, the soil surface is exposed 

directly to solar radiation, which allows soil surface temperature to exceed air temperature. 

During the winter, persistent snow cover can allow the soil surface to remain warmer than air 

temperatures by providing insulation. In contrast to these processes, high levels of soil water 

content in the soil can have a cooling effect of soil surface by raising the total heat capacity of 

the soil and increasing the thermal conductivity of the soil (Hillel, 1980). Evaporative loss of 

water from the soil will also have a net cooling effect on the soil (Hillel, 1980).  

 Because seasonal temperature fluctuations are propagated deep into soils, the exact 

timing of pedogenic carbonate formation during the year could significantly affect the 

temperature recorded within the carbonate. The relative impact of the various environmental 

factors that control the seasonal timing of pedogenic carbonate formation remains uncertain. 

Understanding the formation of pedogenic carbonate is further complicated because it does not 
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necessarily form every year, and in some settings it may only form in response to shorter-term 

anomalous weather events (e.g. droughts; Hough et al., 2014). With all other factors being equal, 

formation during warmer periods is thought to be more likely because carbonate saturation is 

favored at higher temperatures (Breecker et al., 2009; Cotton et al., 2013). This interpretation is 

supported by the predominance of warm-season temperatures produced by clumped isotope 

studies of pedogenic carbonate (e.g., Passey et al., 2010; Quade et al., 2013; Hough et al., 2014). 

Furthermore, kinetic limitations begin to preclude carbonate formation under equilibrium 

conditions when temperatures approach freezing, as evidenced by anomalously warm clumped 

isotope temperatures from a high elevation site in the Andes (Burgener et al., 2016). 

 Seasonal fluctuations in soil moisture content may supersede temperature as a primary 

control on pedogenic carbonate formation in water-limited environments (Hough et al., 2014; 

Gallagher and Sheldon, 2016; Burgener et al., 2016). Carbonate formation could be favored 

during drier periods, because the activity of Ca2+ increases as soils dry out and soil pCO2 will 

decrease as soil respiration rates slow (Cotton et al., 2013). If the timing of soil water depletion 

occurs during a cooler part of the year, it explains clumped isotope results that record 

temperatures at or below MAT (Gallagher and Sheldon, 2016; Burgener et al., 2016). It is 

important to note that relating soil moisture fluctuations to surface climate variables is not 

straightforward. In addition to precipitation and evapotranspiration, soil moisture is affected by 

physical properties of soils, such as texture and drainage, which control the infiltration and 

retention of water (Noy-Meir, 1973; Tabor et al., 2013). 

 The composition and density of overlying vegetation can also affect absolute soil 

temperatures and soil moisture fluctuations, thereby influencing pedogenic carbonate formation. 

As stated above, reduced vegetative cover can allow soil temperatures to exceed overlying air 
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temperatures. This phenomenon, known as ground heating, has been invoked to explain elevated 

clumped isotope temperatures recorded in pedogenic carbonate in sparsely vegetated 

environments (Quade et al., 2013). Different plants also have various rooting depths and growth 

strategies, which can affect the timing of soil water depletion and, therefore, also the timing of 

pedogenic carbonate formation. Modeling results have suggested that calcite may form at hotter 

temperatures when overlain by C4 vegetation rather than C3 plants (Meyer et al., 2014). 

However, pedogenic carbonate clumped isotope results from two nearby sites in central 

Argentina overlain by C3 and C4 vegetation, respectively, produced similar temperatures 

(Ringham et al., 2016). 

 

3.3 Methods 

Instrumental soil temperature and moisture data were compiled from 218 sites within the 

Soil Climate Analysis Network (SCAN) located across the contiguous United States, Alaska, 

Hawaii, Puerto Rico and the US Virgin Islands (NRCS, 2015). Because the goal of this study is 

to investigate regular seasonal variations in soil temperature and moisture, an average daily value 

was calculated for each calendar day during the year (1−365). The soil data measured at 

midnight each day were averaged with the corresponding days from every year, beginning when 

soil data became available through the end of 2015. Soil temperature data were only examined 

for 51 and 102 cm depth because diurnal temperature fluctuations are largely damped out below 

30 cm (Hillel, 1980). 

It should be noted that not all of the SCAN sites had sensors installed at the depths of 

interest (51 and 102 cm for soil temperature; 20, 51, and 102 cm for soil moisture). Additionally, 

records from particular sites or specific depths within a site were excluded if there were any 
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calendar days for which no data existed during the entire study interval. Clearly erroneous sensor 

data was removed ahead before computing daily averages. Depths excluded for missing or 

erroneous data are detailed in Appendix 1 along with specific data that was manually removed. 

Surface climate data (temperature and precipitation) was taken from the 1981–2010 US 

Climate Normal dataset (Arguez et al., 2012; NCDC, 2012). For each SCAN site, climate data 

from the closest normal station was used except in situations where the elevation difference 

between the SCAN station and normal station was greater than ± 250 m. If no climate stations 

existed within 75 km of the particular SCAN site that met these criteria, then that SCAN site was 

excluded (14 sites). 

 

3.4 Results and Discussion 

3.4.1 Soil temperature seasonality 

As stated above, surface soil temperatures are able to exceed air temperatures in 

situations where the soil surface is directly exposed to solar radiation. This phenomenon is likely 

of greater importance in areas where there is a low density of vegetation, such as arid 

ecosystems. This phenomenon raises the possibility that the total amplitude of seasonal soil 

temperature variation can exceed that of the air. To evaluate how the seasonal amplitudes of air 

and soil temperature compare, the difference between the maximum and minimum monthly 

temperatures for each site are plotted in Fig. 3.1. It is important to note that the amplitude of 

seasonal soil temperature variation cannot be directly compared to seasonal air temperature 

variation, because the oscillation will be damped with depth in the soil. 

The extent to which seasonal temperature fluctuations will be damped at depth can be 

estimated using the following equation from Hillel (1980): 
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𝑇 𝑧, 𝑡 = 𝑇!"# +
!! !"# !"!!!

!!/!
     (1) 

where Tavg is the average annual temperature, A0 is the amplitude of seasonal surface 

temperature fluctuation, ω is the radial frequency (2π/365), z is the depth in the soil, and d is the 

damping depth. The damping depth is a function of the physical properties of the soil and can be 

calculated using the equation: 

𝑑 = !!
!!!

      (2) 

where κ is the thermal conductivity and Cv is the volumetric heat capacity. Using values of 1.09 

(w°K-1m-1) for κ and 1.98 (J°K-1m-3) for Cv (Shukla, 2014), the amplitude of seasonal 

temperature variation at 51 and 102 cm would be approximately 81% and 65% of the surface 

temperature variation, respectively. 

Figure 3.1 

 Air temperature seasonality compared to soil temperature seasonality at depths of (A) 51 cm and (B) 102 
cm. Minimum monthly average soil and air temperatures were subtracted from maximum monthly 
average temperature values. The gray dashed line line is a 1:1 line. The black solid line is the damped 
seasonality estimated at depth in the soil. 
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 At 51 and 102 cm depth in the soil, the seasonal soil temperature variation falls at or 

above the damped surface air temperature at 59 and 62% of the sites, respectively (Fig. 3.1). The 

sites where the amplitude of seasonal soil temperature variation exceeds that of the air can be 

explained, at least in part, by excess ground heating. It is important to note that ground heating 

will only affect the amplitude of seasonal temperature fluctuations at sites with sizable seasonal 

variations in solar radiation (e.g. greater in the summer, lower in the winter). 

The sites where temperature seasonality is reduced in the soil as compared to the 

calculated damped air temperature seasonality require a different explanation. Sites at which the 

average air temperature during the coldest month falls below -2 °C exhibit a moderately strong 

relationship between that month’s air temperature and the extent to which the soil temperature 

variation falls below values predicted by the damped air temperature variation (Fig. 3.2). Put 

another way, colder air temperatures during the coldest month correspond to a greater reduction 

in soil temperature seasonality. The reduction in soil temperature amplitude is likely due to a 

combination of factors associated with freezing temperatures. Consistent snowpack will insulate 

Figure 3.2 

 Minimum monthly air temperatures compared to the difference between the observed range in monthly 
seasonal soil temperatures and the damped estimate of temperature range derived from monthly air 
temperature seasonality. 
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the soil surface, preventing the soil from reaching temperatures as cold as the overlying air 

(Smith et al., 1964; Decker et al., 2003). Latent heat transfer associated with the freezing and 

thawing of H2O in the soil may also diminish the overall temperature change observed in the 

soils by consuming energy that would otherwise result in a temperature change (Hillel, 1980). 

Soils where the coldest monthly average temperature is warmer than -2 °C do not exhibit any 

correlation with the deviation in soil seasonality (Fig. 3.2). 

A reduction in the amplitude of seasonal temperature variations restricts the maximum 

amount that both cold and warm season soil temperatures can deviate from mean annual soil 

temperature (MAST). In colder settings such as described above, where cold month soil surface 

temperatures are warmer than air temperature and the warm month soil surface temperature is 

similar to or greater than air temperature, MAST will be warmer than MAAT. Based on the 

relationship identified in Fig. 3.2, where the amplitude of seasonal soil temperature decreases as 

cold month air temperatures fall further below -2 °C, the difference between MAST and MAAT 

would be expected to increase at colder sites. 

Although insulating the soil against cold air temperatures alone will increase both MAST 

and warm season soil temperatures at depth, MAST will shift by a greater amount. Therefore, 

this phenomenon would likely have a greater effect on paleosol proxies that reconstruct MAST, 

as opposed to those that record warm season temperatures, such as pedogenic carbonate. These 

processes are also most likely to be a complicating factor in continental settings at high latitudes 

or at high elevations. This bias is likely to be of greater importance during cooler periods of 

Earth’s history, as opposed to greenhouse periods such as the Cretaceous. We would also expect 

this bias to be less pronounced in regions of extreme water limitation. Well-drained soils will 

typically be dry in arid settings, which means that less energy will be consumed during phase 
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changes associated with the freezing and thawing of H2O (Hillel, 1980). Additionally in settings 

without significant winter precipitation, snowfall will be limited and the soil will be less 

insulated against cold air temperatures. 

 

3.4.2 Mean Annual Soil Temperature vs. Mean Annual Air Temperature 

Ground heating, snow insulation, and freeze-thaw are all processes that can elevate 

MAST relative to MAAT. It is generally estimated that MAST will be approximately 1–2 °C 

greater than MAAT in United States (Buol et al., 2012). A greater offset between the two 

variables has been observed for certain regions, such as 3−7 °C in Alaska (Smith et al., 1964) 

and 2.5 °C at tropical latitudes (Van Wambeke, 1985). When considering all of the SCAN sites, 

the average difference between MAST and MAAT is 1.9 °C, with a fairly even distribution 

around the mean (Fig. 3.3A-B). Pedogenic carbonate typically only forms in soils at sites where 

MAP is less than 75 cm (Retallack, 2005). Within only the sites that receive less than 75 cm of 

precipitation annually, the distribution shifts to slightly higher values with a mean difference of 

2.5 °C.  

The larger difference between MAST and MAAT values within more arid SCAN sites is 

consistent with expectations. For example, Murtha and Williams (1986) observed that in 

Australia MAST is elevated above MAAT by 4 °C in drier regions, as compared to 2 °C 

characterized by wetter soil regimes. Although a number of local factors complicate the 

relationship between soil moisture and precipitation, it can be assumed that sites that receive less 

annual precipitation will have drier soils on average. These drier soils will tend to be slightly 

warmer than wetter soils, in part because evaporation of soil water will have a net cooling effect 

on the soil. 
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Combining the SCAN data with previous studies of soil temperature, it is clear that a 

mean warm bias relative to MAAT can generally be assumed for soils and paleosols. However, 

this bias is generally less than 5 °C (Fig. 3.3). For studies that use minerals that may form in 

particular seasons, such as pedogenic carbonate, to reconstruct temperature from paleosols, this 

general tendency for reconstructed soil temperature to exceed MAAT makes a warm bias 

inherently more likely. Fig. 3.4 plots the percentage of sites where average soil temperature is 

greater than MAAT during each month. Over half of the sites that receive less than 75 cm in 

mean annual precipitation are characterized by at least 7 months out of the year where soil 

temperature exceeds MAAT. 

Figure 3.3 

 Binned site distribution of the difference between mean annual soil temperature (MAST) and mean 
annual air temperature (MAAT) at (A–B) all sites and (C–D) sites that receive less than 75 cm of mean 
annual precipitation. 
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3.4.3 Pedogenic carbonate formation and a warm-season temperature bias? 

Pedogenic carbonate is more likely to record a warm bias relative to MAAT if the timing 

of pedogenic carbonate formation were completely random, because average soil temperature 

exceeds MAAT at the majority of sites for more than half of the year (Figs 3.4B and D). 

However as discussed above, pedogenic carbonate formation will be favored under certain 

environmental conditions, such as periods of soil water depletion. If soil water depletion is 

assumed to be the primary factor controlling pedogenic carbonate formation, the seasonal timing 

of pedogenic carbonate formation can be estimated from the instrumental soil moisture record. 

The soil temperature at the time of soil water depletion can then be compared to MAAT in order 

Figure 3.4 

 Binned site distribution of the number of months where average soil temperature (AST) is greater than 
mean annual air temperature (MAAT) at (A–B) all sites and (C–D) sites that receive less than 75 cm of 
mean annual precipitation. 
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to assess the temperature bias that would be recorded by pedogenic carbonate. For the purpose of 

this study, two different soil moisture scenarios are considered as the intervals during which soil 

carbonate formation is most likely to occur: (1) the 30-day period during the year when soil 

moisture is at its lowest value, and (2) the 30-day period during which there is the largest decline 

in soil moisture. 

For both pedogenic carbonate formation scenarios, the temperature and moisture data 

from 51 and 102 cm were independently evaluated. Because pedogenic carbonate formation is 

restricted to more arid sites (Retallack, 2005), only sites that receive less than 75 cm annual 

precipitation were considered for this portion of the study. The driest period of the year was 

assessed by calculating the average soil moisture value for consecutive 30-day intervals, and then 

determining the lowest 30-day value throughout the year. An average soil temperature value 

during the driest 30-day window was subsequently calculated and compared to MAAT. 

In order to determine the time of the year when the soils experienced the most severe 

decline in soil moisture, a 30 consecutive day window was used again. The average soil moisture 

was calculated for both the first and last 15 days of the time window, and the average soil 

moisture value from the last 15 days of the window was subtracted from the average value 

during the first 15 days. This approach was chosen in order to capture seasonal trends in soil 

water content more accurately, and to smooth out day to day variability. Similar to the first 

scenario, the average soil temperature was then calculated for the 30-day period that recorded the 

largest drop in soil moisture. 

 At both 51 and 102 cm depth, the driest 30-day period occurs most frequently during the 

winter months (December−February; Figs. 3.5A and 3.5B). While the seasonal timing of the 

driest period in the soils is broadly similar at both depths, a slight offset is observable. The driest 
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interval at 51 cm occurs at a number of sites in late fall, but rarely occurs during this time at 102 

cm. Instead, a higher percentage of sites reach their driest point during the late winter and early 

spring. This difference between the distributions is a product of the driest value at 102 cm 

frequently occurring between one and six weeks after it is reached at 51 cm.  

 In contrast to a predominantly winter nadir in soil moisture, the seasonal timing of rapid 

soil moisture decline forms a bimodal distribution at 51 cm. The majority of the sites rapidly dry 

out during the late spring through summer (May through August), while a smaller number of 

sites undergo the most severe drop in soil moisture during the winter. The same two peaks in the 

distribution are visible at 102 cm, but overall the timing of rapid soil water depletion is more 

Figure 3.5 

 Seasonal timing of soil moisture scenarios that considered favorable for pedogenic carbonate formation: 
(A–B) the driest 30-day interval during the year and (C–D) the largest 30-day decline in soil moisture. 
Sites are placed are placed in the appropriate bin based on the midpoint of the respective 30-day window. 
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evenly distributed throughout the year. Unlike the trend described above where the driest 30-day 

period at 102 cm tends to occur one to six weeks after it occurs at 102 cm, there is not a 

systematic pattern with respect to the timing of rapid soil water depletion. At many sites, the 

most abrupt decline in soil moisture occurs nearly synchronously at both 51 and 102 cm depth. A 

number of sites also record rapid soil water depletion at 102 cm significantly before 51 cm.  

 The clear differences in seasonal timing between the two soil moisture scenarios 

considered would result in pedogenic carbonate recording significantly different temperature 

biases relative to MAAT. Because the driest 30-day interval occurs most frequently during the 

Figure 3.6 

 Distribution of the temperature biases relative to mean annual air temperature (MAAT) during the 
corresponding soil moisture scenario: (A-B) the driest 30-day interval during the year and (C-D) the 
largest 30-day decline in soil moisture. 
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winter months, the coeval soil temperature typically falls below MAAT (Figs. 3.6A and 3.6B). 

Under this scenario, 79−84% of the sites would record a temperature below MAAT (Fig. 3.7). 

The average cold biases expected at depths of 51 and 102 cm under this scenario are -3.5 and -

2.4 °C, respectively. These results starkly contrast with the temperature bias that would be 

expected under the second soil moisture scenario. If the largest 30-day decline in soil moisture 

more accurately predicts the seasonal timing of pedogenic carbonate formation, 75−76% of the 

sites would record a warm bias relative to MAAT, with an average bias of about +4 °C (Figs. 

3.6C, 3.6D, 3.8). As discussed above, the majority of carbonate clumped isotope studies 

examining modern pedogenic carbonate have documented a warm temperature bias relative to 

MAAT. This warm bias tendency suggests that the seasonal timing of rapid soil moisture 

depletion more effectively captures the seasonal timing of pedogenic carbonate formation. A 

systematic cold bias, as suggested by the driest 30-day scenario, is furthermore considered less 

likely because soil temperatures during the winter months approach 0 °C at many of these sites, 

and kinetic limitations would likely inhibit carbonate formation.  

 Although the results from the rapid drying out scenario indicate that a warm season bias 

is more likely, the magnitude of that bias is difficult to predict. The percentage of SCAN sites are 

distributed fairly evenly between 0 and +14 °C at 51 cm depth and between 0 and +12 °C at 102 

cm (Figs. 3.6C and 3.6D). The absence of a clear trend in the magnitude of the warm-season bias 

makes it difficult to interpret the seasonal temperature bias recorded by pedogenic carbonate in 

paleosols. However, the results suggest that warm biases greater than +12–14 °C relative to 

MAAT are unlikely to occur. 

 Evaluating the temperature bias results from the rapid soil moisture depletion scenario 

from a spatial perspective highlights the difficulties encountered when trying to evaluate regional  
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Figure 3.7 

 Spatial distribution of soil temperatures relative to mean annual air temperature during the driest 30-day 
interval at (A) 51 cm and (B) 102 cm. and (B) the largest 30-day decline in soil moisture. Black 
diamonds indicate sites with previously published clumped isotope data from modern pedogenic 
carbonate samples. 
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Figure 3.8 

 Spatial distribution of soil temperatures relative to mean annual air temperature during the larges 30-day 
decline in soil moisture at (A) 51 cm and (B) 102 cm. and (B) the largest 30-day decline in soil moisture. 
Black diamonds indicate sites with previously published clumped isotope data from modern pedogenic 
carbonate samples. 
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climate from discrete soils. While all of the soils will be affected by trends in regional climate 

patterns and elevation, individual soil temperature and moisture profiles will be further shaped 

by local factors such as soil texture, drainage, slope, aspect, and vegetation. The soil temperature 

bias relative to MAAT at the time of greatest decline in soil moisture is plotted in Figure 3.7 for 

each SCAN site within the contiguous United States where MAP < 75 cm. 

 General regional trends in seasonal moisture depletion are apparent at 51 cm (Fig. 3.8A). 

For example, the sites east of the Rocky Mountain region are consistently characterized by a 

warm-season bias. These sites are characterized by a continental climate regime, with 

precipitation peaking during the summer months. The seasonal decline in soil moisture co-occurs 

with elevated rainfall totals and is likely explained by high evapotranspiration rates during the 

summer months. Another spatial trend apparent from the 51 cm data is that sites located in the 

Mojave and northwestern Sonoran deserts are generally characterized by a cool-season bias at 51 

cm. These sites are among the most arid evaluated as part of this study, and what little 

precipitation these sites receive generally falls during the winter, thereby restricting carbonate 

formation to the cooler seasons. 

 These two regional trends become less apparent when evaluating data from 102 cm (Fig. 

3.8B). At this depth, sites east of the Rocky Mountain region are no longer consistently biased 

warm, and the sites in the Mojave and Sonoran deserts are no longer predominantly biased cold. 

These results highlight that a similar season pedogenic carbonate formation cannot be presumed 

for all depths within a soil. Based on clumped isotope analyses and soil instrumental data from 

Andean soils, Ringham et al. (2016) observed that pedogenic carbonate formation above 50 cm 

was likely forced by seasonal precipitation trends, while below 50 cm only the largest rainstorms 

were able to affect soil moisture content. Our results suggest that this is a common issue at 
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multiple depths in the soil and therefore complex temperature profiles would be expected from 

pedogenic carbonate samples collected at multiple depths within the same soil. 

 Comparing previously published clumped isotope results from pedogenic carbonate to the 

SCAN data is difficult because few samples were collected close to SCAN sections without 

major elevation differences or topographic boundaries separating them. However, published 

clumped isotope data exists relatively close to SCAN stations. Three of these sites produced 

clumped isotope temperatures that were warmer than MAAT and one site produced temperatures 

cooler than MAAT (Table 3.1; Hough et al, 2014; Gallagher and Sheldon, 2016). Although the 

samples were collected slightly above or below 50 cm, the clumped isotope data compare 

favorably with the temperature bias during the greatest 30-day decline in soil moisture. The 

warm biased clumped isotope data from Wyoming and South Dakota are within error of the 

temperature bias predicted by the rapid decline in soil moisture at from the SCAN sites. 

While a cold bias relative to MAAT is recorded by pedogenic carbonate from the Witt 

site in New Mexico (-1.6 ± 3 °C), the corresponding SCAN site suggests that the cold bias 

should be more extreme (-5.8 °C). These results do not necessarily contradict each other, because 

the soil moisture data from 102 cm is distinct from the 51 cm data, and instead predict a warm 

bias of +6.1 °C. The clumped isotope sample was collected at 70 cm. Therefore, a clumped 

isotope temperature that falls between the two temperatures predicted from the soil moisture data 

Table 3.1    Comparison to clumped isotope data  
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at 51 and 102 cm is logical for a sample collected at an intermediate depth. 

Although there are only four points of comparison, previously published clumped isotope 

data does support the approach of using the 30-day interval of most rapid soil water depletion to 

predict the timing of soil carbonate formation. The clumped isotope data also does fall within the 

upper limit (+14 °C) of warm biases predicted for soils at 50 cm. Future work is required to pair 

long-term soil moisture and temperature records with clumped isotope data of pedogenic 

carbonate.  

 

3.5 Conclusions 

Sites characterized by winter air temperatures below freezing experience reduced 

seasonal temperature fluctuations in the soils, likely due to insulation from snow and latent heat 

processes associated with the freezing and thawing of water. Soils characterized by progressively 

colder winter air temperatures experience a greater reduction in soil temperature seasonality. A 

reduction in soil temperature seasonality due to these cold season processes will elevate both 

MAST and warm season soil temperatures relative to corresponding air temperatures, with 

MAST more severely affected. Because a reduction in soil temperature seasonality will affect 

MAST to a greater degree, the biases introduced by winter air temperatures below freezing are of 

greater concerns for proxies that record MAST. Given that this bias is a function of winter air 

temperatures dropping below freezing, this phenomenon will be most drastic in proxy 

applications in continental settings at in mid- to high latitudes and at higher elevations. It is 

therefore likely that these complications are of lesser concern at low latitudes or during periods 

of Earth’s history characterized by greenhouse climates. 
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 Based on seasonal fluctuations in soil moisture and temperature, pedogenic carbonate 

formation during the driest 30-day period of the year would be expected to record a 

systematically cold bias relative to MAAT. In contrast, a warm bias relative to MAAT would be 

expected if pedogenic formation predominantly occurs when soil moisture declines at the 

greatest rate. The latter scenario is considered more likely due to a general agreement with 

modern clumped isotope studies of pedogenic carbonate at sites with nearby instrumental 

temperature data. 

 Although a warm-season bias relative to MAAT is considered more likely, the magnitude 

of this bias is difficult to predict. Temperature biases ranging between -2 and +12 °C appear to 

be of a similar likelihood. According to data from the SCAN sites, it is unlikely that pedogenic 

carbonate that forms at or below 51 cm depth would record a temperature more than 12−14 °C 

warmer than MAAT. Although some broad regional patterns were evident at 51 cm depth, it is 

difficult to relate the sign and magnitude of the temperature bias to regional climate patterns. 

Finally, substantially different seasonal fluctuations in soil moisture are observed between 51 

and 102 cm depth. This heterogeneity suggests that, at different soil depths, pedogenic carbonate 

may form during different points of the year. Therefore, carbonate samples from different 

soil/paleosol depths may not be indicative of the same environmental conditions. When 

reconstructing temperatures from multiple paleosols, sampling at a consistent depth within the 

paleosols may minimize complications in interpreting the data. 
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CHAPTER 4 

 

Constraining the thermal history of the North American Midcontinent Rift System using 
carbonate clumped isotopes and organic thermal maturity indices 

 

 

4.0 Abstract 

 The Midcontinent Rift System (MRS) is a Late Mesoproterozoic (~1.1Ga) sequence of 

volcanic and sedimentary rocks exposed in the Lake Superior Region of North America. The 

MRS continues to be the focus of much research due to its economic mineral deposits as well as 

its archive of Precambrian life and tectonic processes. In order to constrain the post-depositional 

thermal history of the MRS, samples were analyzed for carbonate clumped isotope composition 

and organic thermal maturity. Clumped isotope values from sedimentary/early-diagenetic 

samples were partially reset during burial to temperatures between 68 and 75 °C. Solid-state 

reordering models suggest that maximum temperatures of 138–155 °C would be required to reset 

the clumped isotope values to the observed temperature range before the onset of regional 

compression and uplift. Clumped isotope results from late-stage veins in the White Pine Mine 

encompass a greater temperature range (49–116 °C), suggesting that these veins record spatially 

variable hydrothermal activity and were emplaced after burial temperatures fell below 100 °C in 

association with regional uplift. Clumped isotope and organic thermal maturity data indicate no 

significant spatial differences in thermal history along the MRS. Observed variability in bulk 
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organic matter composition and biomarker indices are therefore more likely a result of shifts in 

primary productivity or early-degradation processes. These results demonstrate that the MRS 

experienced a spatially consistent, relatively mild thermal history (<150–200 °C) and is therefore 

a valuable archive for understanding the Late Mesoproterozoic environment. 

 

4.1 Introduction 

 The North American Midcontinent Rift System (MRS) is a sequence of volcanic and 

clastic sedimentary rocks that were deposited around 1.1 Ga. Rocks from the MRS outcrop along 

both the northern and southern shorelines of western Lake Superior, with gravity and seismic 

data revealing vast rift deposits below the lake that continue in the subsurface as far southwest as 

Kansas (Cannon et al., 1989; 2001). Geologic interest in the rocks of the MRS originated during 

the mid-19th century due to the discovery of native copper deposits on the Keweenaw Peninsula 

within the Portage Lake Volcanic Group and within the Nonesuch Formation at White Pine (Fig. 

1; White, 1968; Ensign et al., 1968). Large-scale copper mining operations began during the 

1950s at the White Pine Mine, and exploration and development work continues throughout the 

region today (Ensign et al., 1968; Bornhorst and Williams, 2013). 

 Scientific interest in the MRS broadened with the discovery of biomarkers attributed to 

Precambrian organisms within a petroleum seep originating from the Nonesuch Formation 

(Meinschein et al. 1965; Eglinton et al. 1965). Evidence for early terrestrial life preserved within 

the rocks of the MRS has since expanded to include stromatolites (Elmore, 1983), organic-

walled microfossils (Wellman and Strother, 2015; Strother and Wellman, 2016), and microbially 

induced sedimentary structures (Sheldon, 2012; Wilmeth et al., 2014). Geochemical 

investigations of lacustrine deposits and paleosols have also yielded insights into the 
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Mesoproterozoic atmosphere and other paleoenvironmental variables (Zbinden et al., 1988; 

Hieshima and Pratt, 1991; Imbus et al., 1992; Mitchell and Sheldon, 2009; 2010; 2016; 

Cumming et al., 2013; Sheldon, 2013). 

 The MRS also comprises a well-preserved record of Precambrian tectonics and rift 

processes. Traditionally the MRS has been characterized as a classic continental rift setting with 

volcanism driven by a mantle plume (Nicholson et al., 1997), whereas recent work has invoked 

passive-rifting generated by far-field tension (Levandowski et al., 2015). Failure of the rift has 

previously been linked to Grenville compression, but is complicated by the cessation of volcanic 

activity ahead of regional compression (Cannon, 1994; Stein, 2015; Malone et al., 2016). The 

current understanding of MRS tectonics continues to evolve with recent paleomagnetic data 

Figure 4.1 

 Geologic map of surface exposures of the Midcontinent Rift System (MRS) units in the western Lake 
Superior region.  Circles indicate sample localities. MN–Minnesota; WI–Wisconsin; MI–Michigan. 
ERF–Eagle River Falls; PLR–Pike Lake Road. 
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providing evidence for very rapid plate movement or a possible link to the Laurentia/Amazonia 

rifting (Swanson-Hysell et al., 2009; Stein et al. 2014). 

 In order to constrain the paleoenvironmental and tectonic evolution of the MRS 

accurately, a full understanding of the burial history and diagenetic to metamorphic processes is 

required. Here we present carbonate clumped isotope and organic thermal maturity data from the 

MRS in order to evaluate and constrain its diagenetic and burial history. This study primarily 

focuses on the sedimentary units from the upper peninsula of Michigan and Wisconsin (Fig. 4.1). 

New thermal data are evaluated in order to assess evidence for a spatially heterogeneous thermal 

history as well as to constrain better the timing and nature of later hydrothermal activity that 

produced economically important copper deposits. 

 

4.2 Geologic Setting 

4.2.1 Keweenaw Supergroup 

 The Midcontinent Rift System is a classic rift sequence comprised primarily of more than 

1.3×106 km3 of flood basalts and overlying clastic sedimentary units, referred to collectively as 

the Keweenaw Supergroup (Fig. 4.2; Morey and Green, 1982). Relatively thin sandstone units, 

including the Bessemer, Puckwunge, and Nopeming Formations, comprise the base of the 

Keweenaw Supergroup and were likely deposited in a basin that formed in response to early rift 

subsidence (Ojakangas and Morey, 1982). Igneous activity in the rift began around 1109 Ma and 

appears to cluster into two episodes of abundant activity (Paces and Miller, 1993). The first pulse 

(1109–1106 Ma) was characterized by greater eruption rates and includes the Powder Mill Group 

of Michigan and Wisconsin and the lower units in the North Shore Volcanic Group of Minnesota 

(Davis and Green, 1997). The second igneous episode extended from 1099 to 1094 Ma and 
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includes the upper units in the North Shore Volcanic Group as well as the Chengwatana Group 

and Portage Lake Volcanics (Davis and Paces, 1990; Zartman, et al. 1997). 

 Overlying the volcanic units in Michigan and Wisconsin is the clastic sedimentary 

Oronto Group, which consists of the Copper Harbor, Nonesuch, and Freda formations (Fig. 4.2). 

Taken together, these three units represent a continental sequence of alluvial fan, lacustrine, and 

fluvial depositional systems (Elmore, 1989). The Copper Harbor Formation consists of a fining 

upward alluvial fan sequence of conglomerates and sandstones that ranges in thickness between 

200 and ~2000 m (White and Wright, 1960; Elmore, 1984). The transition from the underlying 

volcanic rocks into the sedimentary Oronto Group is somewhat gradational because the lower 

Copper Harbor Formation contains a number of intercalated volcanic deposits (Daniels, 1982). 

The Nonesuch Formation conformably overlies the Copper Harbor Formation and is comprised 

predominantly of dark siltstones and shales, and was most likely deposited in a lacustrine 

Figure 4.2 

 Stratigraphic units of the Keweenaw Supergroup in Minnesota, Wisconsin, and Michigan. Units colored 
in gray were sampled as part of this study. Modified from Cannon and Nicholson (1992) and Ojakangas 
et al. (2001). 
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environment (Elmore, 1989; Imbus et al., 1992). The Nonesuch Formation reaches a maximum 

thickness of around 200 m and its transgressive nature may be explained either by local tectonics 

or the obstruction of regional drainage patterns (Daniels, 1982). The Nonesuch Formation 

conformably grades into the red alluvial facies of the Freda Formation, which reaches a thickness 

of at least 3660 m near the Michigan-Wisconsin border (Daniels, 1982). The Solor Church 

Formation of Minnesota is thought to be roughly correlative to the Oronto Group (Fig. 4.2); 

however, it is poorly exposed at the surface and known primarily from drill-cores, which 

complicates regional correlations (Morey and Ojakangas, 1982). Age constraints on the 

deposition of the Oronto Group include an andesite flow within the Copper Harbor Formation 

that yielded a U-Pb age of 1087.2 ± 1.6 Ma (Davis and Paces, 1990). Ages from the Nonesuch 

Formation include a Pb-Pb isochron age of 1081 ± 9 Ma from a basal carbonate bed in the White 

Pine Mine area (Ohr, 1993) and a Re-Os age of 1078 ± 24 Ma from the Presque Isle syncline 

(Cumming et al., 2013). 

 The Oronto Group is overlain by the Jacobsville sandstone in Michigan and the Bayfield 

Group in Wisconsin (Fig. 4.2). These units tend to be both texturally and compositionally more 

mature than Oronto Group sedimentary rocks (Kalliokoski, 1982; Morey and Ojakangas, 1982; 

Mitchell and Sheldon, 2016). The Jacobsville Formation is estimated to be up to 3,000 m thick 

based on geophysical data, despite less than 100 m of section exposed at the surface 

(Kalliokoski, 1982). In contrast, outcrops of the Bayfield group total 815 m (Ojakangas et al., 

2001). The exact ages of the Bayfield Group and Jacobsville Formation have proven difficult to 

constrain. Although the contact between these units and the Oronto Group is not exposed, an 

unconformity is presumed from seismic data and the contrast between the subhorizontal nature 

of the Jacobsville Formation and Bayfield group and the steeper dipping beds of the Oronto 
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Group (Morey and Ojakangas, 1982; Cannon et al. 1989; Ojakangas, et al. 2001). While the 

Jacobsville has been lithologically correlated to the Bayfield group, paleomagnetic data suggest 

that the Bayfield Group is younger (Halls and Pesonen, 1982). Detrital zircon 207Pb/206Pb dates 

provide maximum ages of 1059 Ma and 933 Ma for the Bayfield Group and Jacobsville 

Formation, respectively (Craddock et al., 2013), with most ages for both being younger than 959 

±19 Ma (Malone et al., 2016). 

 The evolution of the MRS as recorded by the Keweenaw Supergroup can be generally 

grouped into four stages (Cannon et al., 1989; Ojakangas et al., 2001; Stein et al, 2015). The first 

stage was characterized by the deposition of the basal sandstone units and the first pulse of rift-

filling volcanic rocks between 1109 and 1106 Ma. The next stage corresponds to the second 

major pulse of volcanic eruptions in the rift (1099–1094 Ma). The deposition of the Oronto 

Group marks the onset of the third stage, during which volcanism and extension end, and thermal 

subsidence creates accommodation space. The final stage in the evolution of the MRS consists of 

regional compression that led to reactivation and reverse movement along the rift-bounding 

faults (up to 5.5 km; Cannon et al., 1989), followed by the deposition of the Jacobsville 

Formation and Bayfield Group. 

4.2.2 Copper Mineralization 

 Major copper deposits along the southeastern arm of the MRS include stratiform ore 

deposits within the basal 1–5 m of the Nonesuch Formation found in the White Pine Mine area 

(Fig. 4.1). The main stage of copper mineralization in the Nonesuch Formation involved 

movement of cupriferous fluids though the Copper Harbor Formation into the lower beds of the 

Nonesuch Formation, where the fluids reacted with organic matter and pyrite to form chalcocite 

(White, 1971; Brown, 1971; Mauk and Hieshima, 1992; Ho and Mauk, 1996). The main-stage 
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mineralization is thought to have occurred during relatively early-stage diagenesis, as evidenced 

by chalcocite-filled fluid escape structures and ore deposits that are cut by high-angle extensional 

faults (Mauk et al., 1992). Sometime after regional compression began, second-stage copper-

bearing fluids migrated along fault conduits located in the southern portion of the mine (Mauk et 

al., 1992). This second-stage event enriched the copper content through deposition of native 

copper in the upper Copper Harbor and lower Nonesuch beds, as well as increasing chalcocite 

accumulation near the top of the mineralization zone (Ho and Mauk, 1996). Although main-stage 

mineralization is a common feature at the base of the Nonesuch Formation in many places in the 

MRS, significant second-stage fluid movement and copper enrichment appears to be restricted to 

the White Pine Mine area (Bornhorst and Williams, 2013). 

 Native copper deposits are also found within the Keweenaw district in basalts and 

interbedded conglomerates of the Portage Lake Volcanic Group. Unlike the primary 

mineralization in the Nonesuch Formation, mineralization in the Keweenaw district likely 

occurred well after deposition when cupriferous hydrothermal fluids flowed through these units 

(White, 1971; Jolly, 1974). Based on overlapping age constraints, the possibility exists that 

second-stage mineralization in the White Pine Mine is related to the mineralization in the 

Keweenaw Copper district (Mauk et al., 1992). The timing of second stage mineralization in the 

White Pine Mine is constrained by a Rb/Sr date of 1047 ± 37 Ma on second stage calcite veins 

(Ruiz et al., 1984). Hydrothermal activity in the Keweenaw district is constrained by Rb/Sr dates 

on epigenetic amygdule-filling minerals that range between 1060 to 1047 ± 20 Ma (Bornhorst et 

al., 1988). These ages agree with the timing of regional compression, which is constrained by 

reset biotite ages of 1060 ± 20 Ma from Archean rocks that were upthrust near the Michigan-

Wisconsin border (Cannon et al., 1993). 
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4.2.3 MRS Thermal History Constraints 

 Most of the thermal history constraints within the MRS are derived from the Nonesuch 

Formation. Price and McDowell (1993) assessed variations in clay mineralogy and quantified 

illite/smectite expandability in core-samples from the Nonesuch and Freda Formations in 

Michigan and Wisconsin. Clay mineralogy data can be used to estimate a maximum burial 

temperature, based on the premise that conversion of smectite to illite will be promoted by 

exposure to elevated burial temperatures (Hower et al., 1976; Hoffman and Hower, 1979). 

However, the accuracy of smectite-illite clay thermometry is somewhat limited due to 

uncertainty surrounding the existence of true chemical equilibriums for the associated chemical 

reactions (Essene and Peacor, 1995). Maximum burial temperatures derived from clay data 

ranged between 110 and 190 °C, with the hottest temperature recorded at the southwestern 

margin of the Keweenaw Peninsula. The lowest temperature was recorded in the Iron River 

Syncline (WPB cores) with intermediate temperatures observed in cores taken from Wisconsin 

(140 °C) and the White Pine Mine (160 °C). 

 Examination of organic matter preserved in the Nonesuch formation provides additional 

constraints on the thermal history of the MRS. Similar to the clay thermometry results, multiple 

studies observed spatial patterns in the maturity and composition of sedimentary organic matter 

preserved within the Nonesuch formation. Hieshima and Pratt (1991) analyzed biomarker 

composition from cores taken along the Southeastern arm of the Midcontinent Rift. They 

observed spatial trends in the relative abundance of pristane and phytane, which they suggest 

provides evidence for greater thermal maturity in Wisconsin as compared to Michigan. 

 Spatial trends in Nonesuch organic matter composition were also observed in organic 

matter petrography, bulk δ 13Corg values, and RockEval data (Imbus et al. 1988; 1992). Organic 
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matter in Michigan samples is predominantly characterized by a filamentous and fluorescent 

appearance in thin-section, whereas organic matter in Wisconsin has a granular appearance and 

exhibits little to no fluorescence (Imbus et al. 1988). Further geochemical characterization of the 

organic matter revealed that there exist small spatial differences in the bulk δ13Corg values and 

RockEval-derived organic matter composition/maturity. Unlike Hieshima and Pratt (1991), 

Imbus et al. (1988; 1992) argue that spatial patterns in organic matter composition are more 

likely attributed to either heterogeneous patterns of primary producer composition or the 

differential early-diagenetic degradation of organic matter. They argue against different regional 

thermal histories based primarily on the alternating presence of both organic petrographies 

(fluorescent vs. non-fluorescent) in a single rock core from Wisconsin. 

 Using the thermal constraints described above, Price et al. (1996) constructed a best-fit 

thermal history model for the Nonesuch Formation. Their model suggests that the Nonesuch 

Formation experienced maximum burial temperatures of around 125 °C after deposition of Freda 

Formation. The burial temperature decreased in response to regional compression and uplift 

around 1060 Ma. Modeled burial temperatures increased again after deposition of the Jacobsville 

Formation/Bayfield Group, but did not return to the previous maximum temperature. A slightly 

hotter maximum burial temperature of 140–150 °C was estimated by Mauk et al. (1992) by 

assuming 4 km of overlying sediments. 

 Thermal constraints on the hydrothermal activity that drove secondary-mineralization 

processes in the White Pine Mine imply that hydrothermal fluid temperatures were generally < 

100 °C (Ho and Mauk, 1996). The best thermal constraint comes from homogenization 

temperatures of fluid inclusions preserved within second-stage veins that produce temperatures 
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mostly between 70 and 100 °C (Nishioka, 1983). Monoclinic chalcocite was also observed in 

some veins, which restricts the formation temperatures to less than 103 °C (Nishioka, 1983). 

 

4.3  Methods 

In order to constrain the thermal history of the MRS, samples were collected from 

different regions of the rift for carbonate clumped isotope and organic thermal maturity analyses 

(Fig. 4.1). Surface samples were collected from outcrops at Eagle River Falls and Pike Lake 

Road, while subsurface samples were collected from within the White Pine Mine. Additional 

samples were taken from six different drill-cores stored at the Northern Michigan Core 

Repository and the Wisconsin Geological & Natural History Survey Core Repository (Table 

4.1). Calcite from surface, drill-cores, and the White Pine Mine was analyzed for clumped 

isotopes, whereas only drill-core material was analyzed for organic thermal maturity.  

 

 

Table 4.1    Sample type and locality  
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4.3.1 Carbonate Clumped Isotope Geochemistry 

Carbonate clumped isotope thermometry is based on the observation that the abundance 

of carbonate isotopologues containing at least two rare isotopes (e.g. 13C and 18O) increases at 

lower formation temperatures (Ghosh et al., 2006a). This tool has been applied to help constrain 

paleoenvironmental changes (e.g. Ghosh et al., 2006b; Passey et al., 2010; Eiler, 2011) as well as 

the extent and nature of post-depositional processes (e.g. Bristow et al., 2011; Huntington et al., 

2011; Ferry et al., 2011; Shenton et al., 2015). 

Clumped isotope and simultaneously measured δ13C and δ18O data were collected during 

three separate measurement sessions between September 2014 and February 2016 at the 

University of Michigan Stable Isotope Laboratory. The laboratory set-up and methodology for 

clumped isotope analyses are detailed in full by Defliese et al. (2015). For all runs, between 4 

and 15 mg of sample was acidified in anhydrous H3PO4 held at 75 °C. The resulting CO2 was 

purified off-line under vacuum via cryogenic separation and a Porapak-Q filled column. Samples 

were then analyzed on a Thermo Scientific MAT 253 dual inlet stable isotope mass spectrometer 

outfitted to collect masses 44–49. Clumped isotope results are reported in Δ47 notation, which is 

defined as: 

∆!"=
𝑅!"

𝑅!"∗ − 1 −
𝑅!"

𝑅!"∗ − 1 −
𝑅!"

𝑅!"∗ − 1 ×1000 

where Ri is the observed ratio of that particular mass CO2 to mass-44 CO2 and Ri* is the 

corresponding stochastic distribution based on the bulk sample composition (Affek and Eiler, 

2006). 

 Reference gasses of varying isotope composition were heated to 1000 °C and analyzed 

throughout data collection periods in order to account for scale compression and non-linearity 

effects (Huntington et al., 2009). Measured Δ47 values were subsequently normalized to the 
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absolute reference frame of Dennis et al. (2011) using the heated gasses, CO2 standards 

equilibrated with H2O at 25 °C, and the Carrara Marble interlaboratory standard. Finally, an 

empirical acid fractionation factor of 0.067‰ was applied to Δ47 values for samples reacted at 75 

°C (Hren et al., 2013). Average reproducibility of carbonate standards was 0.020‰ (1 sd). Error 

on individual samples was calculated as the minimum of either 1) the measured standard error on 

n replicates or 2) the standard error calculated for a Carrara Marble with the same number of 

replicates (0.020/ 𝑛.) 

 During the September 2014 measurement session, samples were measured for eight 

acquisitions comprised of 10 cycles each, as described in Defliese et al. (2015). Analytical 

methods were slightly modified ahead of the December 2015 run to measure for five acquisitions 

of 12 cycles each, with the bellows pressure balanced ahead of each acquisition. No statistically 

significant differences were observed in measured values of interlaboratory or internal standards 

as a result of this modification. The CO2 purification procedure was also adjusted ahead of the 

December 2015 run in response to observed fractionations in δ13C and δ18O values associated 

with the Porapak-Q column temperature (Petersen et al., 2016). During the September 2014 run, 

the Porapak-Q column was held at -25 °C, whereas it was held between -10 and -15 °C in the 

latter two runs. Corrections to the September 2014 data were carried out following Petersen et al. 

(2016).  

 Discrepancies between empirically derived clumped isotope temperature calibrations 

have been observed among various laboratory groups. These calibrations generally fall into two 

broad categories: calibrations developed at laboratories that digest samples at temperatures > 70 

°C and those that digest samples at 25 °C (Fernandez et al., 2014). Results herein are presented 

and discussed using the calibration of Kluge et al. (2015) because it included high temperature 
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samples (25–250 °C) and is statistically similar to calibrations determined within the University 

of Michigan Stable Isotope Laboratory (Table 4.2; Defliese et al., 2015). For comparison, 

clumped isotope temperatures are also presented in Table 4.2 using the theoretical calibration of 

Schauble et al. (2006) calibration and a 25 °C-digestion calibration (Ghosh et al. 2006a). 

 

4.3.2 Organic Geochemistry 

 Organic geochemistry sample preparation and analyses were performed at the 

Biogeochemistry Laboratory at the Australian National University. To limit possible 

contamination from modern sources or from drilling fluids, the exterior surfaces of samples were 

removed with a solvent-cleaned rock saw as described in Brocks et al. (2008). The exterior and 

interior portions of trimmed samples were then pulverized separately using a steel puck mill. 

Grinding equipment was cleaned with dichloromethane and methane between samples. Bitumen 

Table 4.2    Clumped isotope geochemistry results  
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was extracted from pulverized samples according to the methodology described by Jarrett et al. 

(2013). Laboratory blanks of combusted quartz sand were used to monitor contamination during 

analyses. Extracted samples were then analyzed on an Agilent 6890 gas chromatograph (GC) 

coupled to a Micromass Autospec Premier double sector mass spectrometer. Helium was used as 

the carrier gas and the GC was equipped with a 60 m DB-5 MS capillary column. Samples were 

injected in n-hexane at 60 °C before being heated to 300 °C. Data collected was used to calculate 

a series of thermal maturity index values. The equations and references for these are found in 

Table 4.3. 

 

4.4 Results 

4.4.1 Carbonate Geochemistry Results 

 Complete clumped isotope geochemistry results are presented in tables C.1 and C.2. 

Average Δ47 values ranged between 0.630 and 0.507‰ (Table 4.2). With the exception of 

samples PLR-12-09 and CHC-12-04, the long-term standard deviation of replicate standard 

analyses (0.020‰) exceeded the standard deviation of replicate sample analyses. Clumped 

isotope derived temperatures for sedimentary and early diagenetic calcite in the Nonesuch and 

Copper Harbor formations cluster tightly between 68 ± 6 °C and 75 ± 6 °C (Fig. 4.3). 

Conventional carbonate stable isotope results from these same samples exhibit more variability. 

The δ18O values range between -6.4 and -8.5‰, with slightly more 18O-depleted values in 

Michigan samples (-7.9 to -8.5‰) than Wisconsin samples (-6.4 to -7.4‰). The δ13C values span 

a much greater range (-0.9 to -12.3‰), but do not display a clear geographic trend, as the 

samples with the most 13C-enriched and most 13C-depleted δ13C values both come from 

Michigan. 
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 The average clumped isotope temperature of 84 ± 14 °C determined for the calcite-filled 

basalt vesicle from the North Shore Volcanic Group in Minnesota was the least reproducible 

clumped isotope sample. The temperature of 84 ± 14 °C is within the error range for the hottest 

measured temperatures within the sedimentary and early diagenetic samples from the Oronto 

Group. The δ13C value of this sample (-2.4‰) is within the observed range of Oronto Group 

samples; however the δ18O value of -17.0‰ for this sample falls well below those same samples. 

 Late stage vein samples from the Nonesuch Formation in the White Pine Mine span a 

much larger temperature range than the sedimentary and early diagenetic samples, with values 

between 49 ± 5 °C and 116 ± 7 °C. The δ18O and δ13C values from the veins fall at the lower end 

Figure 4.3 

   Clumped isotope temperatures results for calcite samples from the Midcontinent rift. Error bars display 
±1 standard error. Solid black symbols represent calcite that formed either at the time of deposition or 
during early diagenesis. Blue symbols represent the late-stage veins from the White Pine Mine. The 
orange window highlights the range of values in the sedimentary/early-diagenetic calcite pool (± error) 
MN – Minnesota; PIS – Presque Isle Syncline; ERF – Eagle River Falls. 
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of the range observed in sedimentary and early diagenetic samples, with values between -12.0 – -

14.1 and -7.7 – -9.1‰, respectively. 

4.4.2 Organic Geochemistry Results 

 Organic thermal maturity results are presented in Table 4.3. Samples from different cores 

of the Nonesuch produced fairly consistent results for a number of thermal indices. For example, 

C31 hopane 22S/(22S+22R) ratios all fall between 0.57 and 0.60. Methlydiamantane index (MDI) 

values between 0.29 and 0.38 were found in all cores. The stratigraphically lowermost samples 

cores DO-6 and PI-2 produced slightly greater MDI values of 0.53 and 0.58, respectively. C30 

moretane to hopane ratios were > 0.1, with the exception of two samples from Wisconsin. The 

MPI-1 values were also fairly consistent and ranged between 0.22 and 0.33. Two of the organic 

indices exhibited greater variability between samples. C27 hopane Ts/( Ts + Tm) values ranged 

Table 4.3    Organic thermal maturity data 
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between 0.032 and 2.6, and the ratio of phenanthrene to methylphenanthrene produced values 

from 0.49 to 1.4. 

 

4.5 Discussion 

Carbonate clumped isotope derived temperatures from the sedimentary and early 

diagenetic phases are restricted between 68 and 75 °C, which is much hotter than what would be 

expected for (near) surface temperatures during sedimentation. Therefore, it is likely that the 

clumped isotope values were reset to hotter temperatures during burial. As stated above, 

maximum burial temperature estimates for the Nonesuch Formation derived from clay 

thermometry data range between 110 and 190 °C (Price et al., 1993). Maximum burial 

temperatures calculated based on estimates of heat flow and overlying sediment thickness fall in 

the middle of this temperature range (140–150 °C; Mauk et al., 1992). The disparity between 

these constraints and the clumped isotope temperatures suggests that the latter do not represent 

the maximum burial temperature, but instead were partially reset to intermediate temperature 

values. 

Unlike conventional carbonate stable isotope values (δ13C and δ18O), reordering of 

clumped isotopes can occur in the solid state and does not require interaction with a fluid (Passey 

and Henkes, 2012). The small amount of Δ47 variability that exists between sedimentary and 

early-diagenetic calcite samples could be attributed to factors such as minor differences in burial 

depth, different initial formation temperatures, or different trace element compositions (e.g. 

Passey and Henkes, 2012). Post-depositional hydrothermal interacted with the basal Nonesuch 

Formation in all of the Michigan localities sampled as part of this study. Evidence for this fluid 

activity comes from enriched copper concentrations within the lowermost 10–15 meters of the 
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Nonesuch Formation. Copper mineralization in this interval formed from copper-bearing fluids 

that flowed through the underlying permeable and porous red beds of the Copper Harbor 

Formation before reaching the less-permeable Nonesuch Formation, which is relatively enriched 

in organic matter (White, 1971; Brown, 1971; Mauk and Hieshima, 1992). Dissolution and re-

precipitation of calcite during this event could have reset the clumped isotope values; however, 

clumped isotope values from sedimentary and early diagenetic calcite within the copper-

mineralized zone are consistent with those collected from the overlying, unmineralized 

sedimentary rocks. This consistency implies either that there was not significant dissolution/re-

precipitation associated with this fluid event, or that any calcite formed during this event did so 

soon after deposition when temperatures remained similar to the formation temperatures of 

overlying samples. 

In contrast, the late-stage veins from the White Pine Mine record a much wider 

temperature range of 49–116 °C, extending to hotter and cooler temperatures than those recorded 

by previous fluid inclusion homogenization temperatures (70–100 °C; Nishioka, 1983). This 

disparity could be a result of sampling different veins that formed at a wider range of 

temperatures. Alternatively, temperatures at the hotter end of this range (116 °C) could be a 

product of partial resetting of the clumped isotope composition during burial, as seen with the 

sedimentary and early diagenetic carbonates. However, partial resetting would not explain the 

absolute range of observed temperatures, because all veins in the mine were deposited at a 

similar time and therefore would have experienced the same burial history. The more likely 

explanation is that these veins were initially formed at different temperatures and are recording 

variable fluid temperatures in different areas of the mine. Certain areas of the White Pine Mine 

are characterized by greater vein activity and secondary copper mineralization. For example, 
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Sample WP-079 comes from one of these productive units of the mine (Unit 96) and produced 

the hottest clumped isotope temperature (116 °C), which suggests that hotter hydrothermal fluid 

temperatures may correlate with the more productive areas of the mine. 

The relatively small temperature window of 68–75 °C recorded by the sedimentary and 

early-diagenetic calcite samples suggests that significant spatial differences in thermal history 

along the southeastern arm of the Midcontinent Rift did not occur. This interpretation contrasts 

with the clay thermometry data of Price and McDowell (1993), which was used to suggest that 

the Nonesuch Formation in different areas experienced a large range of maximum temperatures 

(110–190°). The wide range of temperatures derived from the clay mineralogy could be a 

product of factors other than temperature, such as a variable lithology, post-depositional fluid 

activity, or metastability of clay phases (Price and McDowell, 1993; Essene and Peacor, 1995). 

A spatially consistent thermal history along the southeastern arm of the Midcontinent Rift 

is further supported by the consistent nature of organic thermal maturity data presented herein 

(Table 4.3). After burial, sedimentary organic matter is transformed by heat-driven reactions. 

Specifically, the stereochemistry of preserved steranes and hopanes can be used to assess the 

degree of organic thermal maturity with respect to oil generation (Mackenzie et al., 1980; Seifert 

and Moldowan, 1980). All samples entered the oil generation window as evidenced by 

isomerization of C31 17αβ-hopanes at C-22.  When bitumen enters the oil window, C31 

22S/(22S+22R) ratios attain equilibrium values between 0.57–0.62 (Mackenzie et al., 1980; 

Seifert and Moldowan, 1980). Samples from the Nonesuch fell within this range, with values of 

0.57–0.60.  

Additional thermal maturity indices indicate that samples tend to be of low to moderate 

thermal maturity. The moretane ratio C30 βα/αβ is greater than 0.1 for all but one sample, which 
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indicates low thermal maturity (Grantham, 1986; Mackenzie et al., 1980; Seifert and Moldowan, 

1980). Low thermal maturity is further supported by methylphenanthrene index (MPI-1) values 

between 0.22 and 0.33. For most samples, the ratio of phenanthrene to methylphenanthrene is < 

1, demonstrating that the MPI is not reversed (Brocks et al., 2003). Vitrinite reflectance (Rc) 

values calculated from the MPI ranged between 0.40 and 0.60, which represent low maturity 

bitumens that entered the early oil generation window (Boreham et al., 1988; Radke and Welte, 

1983). The methyldiamantane index (MDI) is below 0.50 for all samples except DO6-54-7 and 

PI2-48-2, indicating that thermal maturities are generally low to moderate (Chen et al., 1996).  

The absence of clear spatial trends in the organic thermal maturity data contrasts with 

previously published relative abundances of pristane and phytane as compared to n-alkanes 

(Hieshima and Pratt, 1991). Hieshima and Pratt (1991) interpreted these data as a product of 

greater thermal maturity in Wisconsin as compared to Michigan. However, biodegradation 

processes are also known to affect pristane and phytane abundances (Peters et al., 2005). We also 

observed greater variability in organic parameters that are affected by multiple processes. For 

example, C27 Ts/(Ts+Tm) hopane ratios, which are controlled by both thermal maturity and source 

composition (Peters et al., 2005), are highly variable in our samples (0.03–2.9). The lack of 

spatial variability in sedimentary/early-diagenetic clumped isotope results combined with 

generally consistent thermal maturity indices suggests that the variability in these other organic 

parameters, including Pr/Ph, is more likely a product of variations in source material or 

degradation under fluctuating environmental conditions at the time of deposition and early 

diagenesis. Imbus et al. (1992) similarly concluded that slight differences observed in δ13Corg 

values between Wisconsin and Michigan were a result of environmental rather than thermal 

differences.  
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4.5.1 Solid-state reordering model 

 In addition to assessing spatial trends in thermal history, the clumped isotope results can 

be used to refine the burial history of the Nonesuch Formation. A solid-state reordering model 

can be used to evaluate how the clumped isotope temperatures would be reset under various 

thermal history scenarios (Passey and Henkes, 2012; Henkes et al., 2014; Stolper and Eiler, 

2015). The first order approximation model and ‘transient defect/equilibrium’ models predict 

that the clumped isotope composition of samples are likely to remain stable on geologic 

timescales if temperatures do not exceed 100 °C, and rapid partial resetting of Δ47 temperatures 

is not expected until burial temperatures reach 150–160 °C (Henkes et al., 2014). Slightly cooler 

temperature thresholds are suggested by the modeling results of Stolper and Eiler (2015), which 

predict that measurable Δ47 temperature changes do not occur if burial temperatures remain 

below 75 °C. Their results predict Δ47 temperatures will increase by 10–25 °C when burial 

temperatures are between 80–100 °C, whereas if burial temperatures exceed 125 °C, a rapid 

partial increase in Δ47 temperatures will be followed by a slower change until the environmental 

temperature is reached (Stolper and Eiler, 2015). 

 Existing thermal constraints and the thermal history model of Price et al. (1996) suggest 

that the Copper Harbor and Nonesuch formations experienced temperatures high enough to result 

in partial resetting of the Δ47 values. As discussed above, thermal reconstructions suggest that 

maximum burial temperatures did not exceed 200 °C, with the majority of temperature 

constraints and estimates falling below 150 °C. Therefore, the first order approximation model 

can be used because the predicted reordering rates of the first-order approximation model and 

‘transient defect/equilibrium’ model are nearly identical at temperatures below 150–200 °C 
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(Henkes et al., 2014). Changes in Δ47 values during burial can be predicted using the following 

equation:  

ln
∆!"! − ∆!"

!"

∆!"!"!# − ∆!"
!" = −𝑡𝐾!exp

−𝐸!
𝑅𝑇  

where Δ47
t  is the clumped isotope composition after a given time duration (t), Δ47

eq is the 

equilibrium clumped isotope composition at a given temperature, Δ47
init is the initial clumped 

isotope value at the beginning of a time interval, K0 and Ea are empirically derived constants, R 

is the universal gas constant, and T is the temperature. Marginally different values for K0 and Ea 

were derived from results of heating experiments that assessed brachiopod and optical calcite 

samples (Passey and Henkes, 2012; Henkes et al., 2014). Because the model was developed 

using the theoretical calibration of Schauble et al. (2006), this temperature calibration was used 

for the modeling portion of the work. 

 The thermal history produced by Price et al. (1996) for the basal Nonesuch Formation 

was used as an initial input to drive the solid state reordering model (Fig. 4.4), with the initial 

clumped isotope temperature set at 25 °C. In this thermal history, the basal Nonesuch reaches a 

maximum burial temperature of 125 °C at 1073 Ma before cooling rapidly around 1060 Ma in 

association with regional uplift and erosion of overlying sediments. A subsequent increase in 

burial temperature occurs at around 1035 Ma due to deposition of the overlying Jacobsville 

Formation and Bayfield Group, although temperatures never again exceed ~85 °C and slowly 

cool towards present day. 

 To test the sensitivity of clumped isotope reordering to different burial histories, the 

maximum burial temperature was varied between 125–150 °C for three different cooling 

scenarios (Fig. 4.4A–4.4C). The timing of the initial burial temperature decline, which is 

assumed to be driven primarily by regional compression and uplift, was set for 1060, 1050, and  
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Figure 4.4 

 Modeled solid-state reordering of clumped isotope values under different burial scenarios using the first-
order approximation model (Passey and Henkes, 2012; Henkes et al., 2014). A–C display different 
maximum burial temperature scenarios assuming uplift and cooling began at (A) 1060, (B) 1050, or (C) 
1040 Ma The black line in A corresponds to the best-fit model for the basal Nonesuch from Price, et al. 
(1996), and is shown for reference as a dashed gray line in the other two uplift scenarios. Reordered Δ47 
values are shown as forced by the thermal history plotted in the same column. Δ47 temperatures are 
plotted using the theoretical calibration of Schauble et al. (2006). D–F use the optical calcite coefficients, 
whereas G–I use the brachiopod coefficients. D–I use the same colors and dashes as the corresponding 
thermal history above. The thick orange vertical line represents the observed range of Δ47values from the 
sedimentary/early-diagenetic pool, and the thin orange line corresponds to the error window of this 
sample pool displayed in Figure 3. The orange number corresponds to the maximum burial temperature 
required to produce a Δ47 value within the targeted range. 
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1040 Ma. 1040 Ma was considered the younger limit for regional uplift based upon the biotite 

age from Archean basement rocks that was reset at 1060 ± 20 Ma due to regional uplift (Cannon 

et al. 1993). These scenarios correspond to maximum burial temperature durations of 13, 23, and 

33 million years, respectively. Model results using first-order approximation coefficients from 

both the optical and brachiopod calcite heating experiments are presented in Fig. 4.4. 

 The modeled scenarios indicate that maximum temperatures between 138 and 155 °C are 

required to reset the Δ47 values to between 0.575–0.588‰. These temperatures are consistent 

with the maximum burial temperature estimates of Mauk et al. (140–150 °C; 1992), and fall in 

the middle of the clay thermometry temperature estimates (110–190 °C; 1993). Use of the 

brachiopod-derived coefficients allows for comparable degrees of resetting at slightly lower 

temperatures.  However, it is unclear which set of coefficients is more appropriate for samples 

analyzed herein, because the underlying cause of the slight differences in reordering kinetics 

between optical and brachiopod calcite remains unknown (Henkes et al., 2014). 

 The modeling results demonstrate that clumped isotope reordering is very sensitive to 

small differences in maximum burial temperatures between 130 and 150 °C. This observation 

supports the interpretation of only minor spatial heterogeneity in thermal history along the 

southeastern arm of the rift. Otherwise, a greater range of Δ47 values would be expected within 

the sedimentary/early-diagenetic calcite sample set. Modeling results further suggest that all of 

the sedimentary/early-diagenetic samples initially formed at similar temperatures. This 

assumption was tested by varying the initial clumped isotope temperature between 10 and 30 °C 

and modeling the reordering using the same thermal scenarios described above. Resulting Δ47 

values exhibited much greater variability (0.032–0.061‰; Fig. C.1) as compared to the tight 



 108 

range observed in the samples (0.013‰), which supports the assumption of similar initial 

temperatures. 

The modeling results demonstrate that relatively rapid burial and uplift as suggested by 

the various radiometric ages is consistent with the clumped isotope data as long as burial 

temperatures reached maximum temperatures of 140–150 °C. It is difficult to evaluate the 

relative likelihood of different uplift timing scenarios, due to uncertainty surrounding the 

different reordering coefficients. The large spread in the clumped isotope temperatures of late-

stage veins suggests that these samples have not been reordered and likely reflect different initial 

formation temperatures. Even if some post-formation reordering occurred, it must have been 

relatively minor in order to maintain the lower observed temperatures (<50 °C). Emplacement of 

the veins, therefore, likely occurred after burial temperatures were well below 100 °C. 

4.5.2 δ18O of hydrothermal fluids 

Because the clumped isotope composition of carbonate (Δ47) is controlled exclusively by 

the formation temperature, the δ18O of the precipitating fluids (δ18Ofl) can be calculated using the 

clumped isotope temperature and the δ18O of the carbonate (δ18Ocarb) following the δ18Ocarb–

temperature– δ18Ofl relationships (Ghosh et al., 2006b). Calculated δ18Ofl data can be used to 

examine the resetting of clumped isotope values further, as well as the origin of the fluids (e.g. 

meteoric, metamorphic, magmatic) that produced the late-stage veins in the White Pine Mine.  

As discussed above, the clumped isotope temperatures of the sedimentary and early-

diagenetic calcite samples were likely partially reset through solid-state reordering during burial. 

If the clumped isotope reordering occurred in the solid state and the there was little to no 

interaction with a secondary fluid, the bulk δ18Ocarb would remain unaffected.  Calculating the 

δ18Ofl using the measured clumped isotope temperatures and the calcite-water fractionation 
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factor of Friedman and O’Neill (1977) yields values between 1.5 and 3.2‰ (VSMOW) for the 

sedimentary and early-diagenetic samples (Fig. 4.5A). This range is more positive than would be 

expected for a lacustrine depositional environment that lacks evidence for significantly 

evaporative conditions (Elmore et al., 1989). If instead an original formation temperature of 25 

°C is used, more reasonable δ18Ofl values for lake water derived from meteoric water are 

produced (Fig. 4.5B; -6.5 to -4.3‰), supporting the assessment that clumped isotope values were 

reordered and δ18Ocarb values were not affected by later fluid interaction. 

Nishioka (1983) originally suggested that meteoric water was the primary source of the 

fluids that produced the second-stage veins. Mauk et al. (1992b) observed a significant shift in 

δ18Ocarb values from synsedimentary limestone to the calcite veins that could best be explained 

by as shift in δ18Ofl from approximately -6.4‰ for the limestone to -1.3‰ for the veins. They 

Figure 4.5 

 Calculated δ18O values of the precipitating fluids (δ18Ofl). A) δ18Ofl calculated assuming that the 
measured clumped isotope temperature corresponds to the formation temperature. B) δ18Ofl calculated 
assuming a formation temperature of 25°C (±10°C)for the sedimentary/early-diagenetic calcite samples 
and using the clumped isotope temperature for the late-stage vein samples. MN – Minnesota; PIS – 
Presque Isle Syncline; ERF – Eagle River Falls. 
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interpreted the more 18O-enriched fluid values as a product of greater water-rock interaction. 

Calculating δ18Ofl values for the late-stage vein samples using the clumped isotope temperatures 

yields values between -5.5 and 1.0‰, with the more positive values corresponding to hotter 

temperatures. The new data is broadly similar to the δ18Ofl values estimated by Mauk et al. 

(1992b), lending support to their interpretation. However, with the data available it is not entirely 

possible to rule out metamorphic- or magmatic-sourced brines as a fluid source.  

 

4.6. Conclusions 

In contrast to previous studies of clay thermometry and bulk organic matter composition, 

carbonate clumped isotope and organic thermal maturity results indicate a spatially homogenous 

thermal history within the MRS. Temperatures derived from the clumped isotope composition of 

sedimentary and early diagenetic calcite samples cluster tightly between 69 and 75 °C. These 

temperatures likely do not correspond to the original formation temperatures, but were instead 

elevated to intermediate temperatures due to partial resetting during burial. Modeling results 

suggest that maximum burial temperatures of 138–155 °C would have been required to reset the 

clumped isotope composition to this intermediate temperature range, assuming that regional 

uplift began no later than 1040 Ma. Late-stage calcite veins associated with secondary 

mineralization within the White Pine Mine display a wide range of clumped isotope temperatures 

(49–116 °C), likely representing variable hydrothermal fluid activity and also constraining the 

timing of emplacement to after burial temperatures had fallen below ~100 °C. 

Organic thermal maturity results indicate that all samples entered the oil generation 

window, and did not exhibit significant spatial variability. Organic indicators that are dependent 

on thermal maturity as well as source composition exhibit more variability, both spatially and 

within individual cores. Therefore, the previously documented spatial differences in bulk organic 
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matter composition are more likely a product of variable environmental conditions around the 

time of deposition and/or early diagenetic preservation of organic matter, rather than a spatially 

variable thermal history. The relatively low burial temperatures indicated by both the clumped 

isotope and biomarker data demonstrate that the deposits within the MRS comprise a 

sedimentary archive that experienced a relatively moderate (<200 °C) thermal history for its age, 

making it a valuable archive for understanding early Earth environments. 
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CHAPTER 5 

 

Conclusions 

 

5.1 Summary of results 

Pedogenic carbonate is relatively abundant in the geologic record and can provide insight 

into many questions regarding paleoclimate, paleobiology, and paleoelevation. Geologic 

applications of pedogenic carbonate preserved in paleosols have proliferated; however, these 

applications are somewhat limited by uncertainty that persists around the nature of pedogenic 

carbonate formation. A number of environmental variables that are reconstructed from pedogenic 

carbonate exhibit significant seasonal variations throughout the year, including temperature, soil 

pCO2, and soil water δ18O (Breecker et al., 2009). Therefore, an accurate understanding of the 

seasonal timing of pedogenic carbonate formation is required in order to improve environmental 

reconstructions. 

In Chapter 2, I determined clumped isotope temperatures for pedogenic carbonate 

sampled from modern soils that formed under four distinct precipitation regimes. Clumped 

isotope temperatures derived from these samples were within error or slightly below mean 

annual air temperature (MAAT) at sites from three of the four precipitation regimes. Only the 

relatively wet, continental climate regime produced temperatures well above MAAT. These 

results illustrate that a warm-season formation bias cannot always be assumed. 
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I used a soil water balance model to predict the seasonal timing of soil water depletion in 

each of the sampled soils. Modeled soil temperatures at the time of soil water depletion generally 

agree with the clumped isotope temperatures, indicating that fluctuations in soil moisture exert a 

control on the timing of pedogenic carbonate formation. Soil water δ18O values calculated from 

the clumped isotope temperature and the δ18O value of the carbonate most closely reflect the 

isotopic composition of precipitation during the month of soil water depletion, further supporting 

the conclusion that pedogenic carbonate forms when the soil begins to dry out. 

To gain an improved understanding of temperature biases that are likely imparted on 

pedogenic carbonate and other paleosol temperature proxies, I compiled soil moisture and 

temperature data from the Soil Climate Analysis Network in Chapter 3. It was shown that soil 

temperature seasonality was significantly reduced as compared to air temperature fluctuations at 

sites where cold month temperatures fell below freezing, likely due to snow insulation and latent 

heat exchange during the freezing and thawing of H2O. These cold season temperatures produce 

mean annual soil temperature well above MAAT. 

Using the SCAN data, I evaluated two different soil moisture scenarios to predict the 

time of the year during which pedogenic carbonate is most likely to form and constrain what 

temperature biases relative to MAAT would be expected. If pedogenic carbonate is most likely 

to form during the absolute driest point of the year, a systematic cold bias would be expected. 

However, a warm temperature bias would be more likely if pedogenic carbonate formation is 

better predicted by the largest seasonal decline in soil moisture. The latter scenario appears more 

likely due to comparison with previously published clumped isotope measurements. The exact 

magnitude of the warm bias is difficult to predict, although temperatures greater than 12–14 °C 

are considered unlikely at depths below 50 cm in soils. 
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Beyond uncertainties surrounding the formation of pedogenic carbonate, studies that aim 

to reconstruct environmental conditions from paleosols, and terrestrial systems in general, must 

always attempt to constrain post-depositional alteration. Solid state reordering of carbonate 

clumped isotopes during burial is of particular concern for paleosol carbonate samples (Quade et 

al., 2013). In Chapter 4, I evaluated post-depositional alteration of continental deposits from the 

Midcontinent Rift System (MRS) of North America. These rocks were deposited at 

approximately 1.1 Ga and comprise an important archive of terrestrial life and environments; 

however, accurate environmental reconstructions depend on a well-constrained post-depositional 

history. 

Clumped isotope analyses of three different generations of calcite were combined with 

organic thermal maturity data to refine the thermal history of the MRS. Clumped isotope values 

from sedimentary and early-diagenetic samples were partially reset to elevated temperatures 

between 68 and 75 °C. Solid-state reordering models indicate that temperatures between 138 and 

155 °C over a 13 to 33 million year period would have been required to reset the temperatures 

into the observed range. This data is consistent with independent analyses of organic thermal 

maturity, which also both indicate that there were not significant spatial differences in the 

regional thermal history.  

 

5.2 Future research directions 

5.2.1 An improved, process-based understanding of pedogenic carbonate formation 

 The clumped isotope data presented in Chapter 2 and the soil instrumental data 

presented in Chapter 3 together demonstrate that pedogenic carbonate form during different 

seasons under different climate regimes. Potentially, the seasonal timing of carbonate formation 
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may even occur during different seasons at various depths within the same soil. This seasonal 

variability makes the magnitude of temperature bias recorded by paleosol carbonate is difficult to 

predict. Despite decades of research, a complete, process-based understanding of the factors that 

control pedogenic carbonate formation is still lacking and is required to improve its utility as a 

paleoclimate archive. Furthermore, fundamental questions remain about the carbon isotopic 

fractionations between soil CO2 and pedogenic carbonate. A general range of (14–17 ‰) is 

assumed to represent equilibrium (Cerling et al., 1989; Cerling and Quade, 1993); however, the 

exact processes and their respective magnitudes remain uncertain (Monger et al., 2009). 

One of the most difficult aspects of studying pedogenic carbonate formation in modern 

soils is its long formation time. Pedogenic carbonate tends to only accumulate in sizable 

quantities in soils after hundreds of years, and most soils with well-developed carbonate horizons 

have been developing for hundreds to thousands of years at minimum (Gile et al., 1966). The 

long formation time increases the uncertainty that modern soil environmental conditions 

adequately reflect the mean conditions that pedogenic carbonate experienced throughout its 

entire formation history. Another complication is that short-term soil instrumental records 

potentially do not capture normal recent soil environmental conditions, especially with modern 

climate change rapidly changing regional hydrology. 

Investigations that take an experimental approach towards understanding the seasonal 

controls on pedogenic carbonate may be able to avoid some of these complicating factors. A 

research approach that combines experimental soil manipulation and computer modeling has the 

potential to develop a more complete, process-based understanding of pedogenic carbonate 

formation. If an improved understanding of the factors controlling pedogenic carbonate 

formation can be developed and the primary factors identified, the possibility exists that 
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paleoclimate model data may be used to help understand the seasonal formation processes in 

paleo-applications. 

 

5.2.2 Effect of soil texture on pedogenic carbonate formation 

As demonstrated in Chapter 2, as well as other studies (Hough et al., 2014; Burgener et 

al., 2016), soil moisture can exert a control on the seasonal timing of pedogenic carbonate 

formation. Soil texture also plays an important role in soil moisture dynamics as it affects the 

water holding capacity of soils as well as the rate of infiltration. Therefore, it is important to 

understand the effect of soil texture on the geochemistry of pedogenic carbonate. Understanding 

the role of soil texture is especially important in arid settings, where finer grained soils with slow 

infiltration rates may lose more water to evaporation (Noy-Meir, 1973). The 18O-enriched soil 

water values from the two poorly drained soils in Chapter 2 underscore the potentially sizeable 

effect that slower infiltration can have on the isotopic composition of pedogenic carbonate. 

Texture also shapes the nature of pedogenic carbonate formation in soils. Coarse-grained 

soils generally accumulate carbonate as coatings on the undersides of large clasts, whereas fine-

grained soils will tend to form nodular carbonate (Gile et al., 1966). Because of the hydrologic 

difference between the two textural end members, there is reason to suspect that they might form 

during different seasons, and thereby record different temperature biases. The majority of 

clumped isotope studies of carbonate in modern soils have focused primarily on clast 

undercoatings (Quade et al., 2013; Peters et al., 2013; Hough et al., 2014; Ringham et al., 2016; 

Burgener et al., 2016). More work needs to be done focusing on nodule-bearing soils to ensure 

that the colder-nature of the results presented on nodular carbonate in Chapter 2 are indeed a 

function of climatic differences and not texture. 
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Oerter and Amundson (2016) analyzed undercoatings and filamentous carbonate from the 

within the same soils, and documented differences between the two types of carbonate within 

some soils but not others. Future work should attempt to target nodular bearing soils that are 

fairly close to coarser-grained soils that can be analyzed and compared. Paleo-studies should also 

be aware of changes in texture within stacked sequences of paleosols to make sure that any 

observed shifts in temperatures are a product of actual environmental change and are not forced 

by texturally-induced changes in soil hydrology. 

 

5.2.3 Partial resetting of clumped isotopes in pedogenic carbonate 

 One of the greatest challenges facing applications of clumped isotope thermometry to 

pedogenic carbonate preserved in paleosols is assessing if samples have been reordered to hotter 

temperatures during burial. Because this process does not require fluid interaction or 

recrystallization (Passey and Henkes, 2012), it can be difficult to detect in samples where 

temperatures are still plausible for the Earth’s surface (e.g. a sample that formed at 10 °C but was 

reordered to 30 °C). Evidence for partial reordering of paleosol carbonates was documented at 

relatively shallow burial depths of only 2−4 km (Quade et al., 2013). Further concern is raised by 

the modeling results of Stolper and Eiler (2015), which suggest that partial reordering of ~10 °C 

may be possible even in situations where burial temperatures remain below 100 °C. 

Improved means of assessing solid-state reordering will allow for greater confidence in 

the fidelity of temperature reconstructions derived from the clumped isotope composition of 

paleosol carbonate. Electron backscatter diffraction has been suggested as a possible technique to 

help detect the occurrence of reordering processes in calcite (Henkes et al., 2014); however, the 

effectiveness of this approach remains to be evaluated. It should be noted that certain types of 
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carbonate, such as micritic limestone, are potentially more easily reset to elevated temperatures 

than optical or shell calcite (Winkelstern et al., 2016). It is possible that pedogenic carbonate, 

which can forms as diffuse, poorly-crystalline filaments (Gile et al., 1966), may also be more 

susceptible to reordering or potentially even minor recrystallization during early burial. 

The upper threshold of a 12–14 °C bias above MAAT proposed in Chapter 4 provides 

some guidance when evaluating if the clumped isotope composition of paleosol carbonate 

samples are pristine. In some circumstances, clumped isotope temperatures may be combined 

with independent proxies that reconstruct MAAT, such as plant fossils (e.g. Snell et al., 2013), to 

assess if reconstructed temperature seasonality values are plausible (e.g. < 12–14 °C). However, 

more direct methods for constraining solid state reordering are needed to increase the confidence 

of temperature reconstructions. 
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Appendix A 

Supplemental Figures and Data for Chapter 2 

 
Table A.1     Sites and corresponding climate station information 

 
Site/Soil Station Name Location Elevation 
  N (°) W (°) (m) 

Muroca Mojave, CA US 35.049 118.162  834 
Lavica El Mirage, CA US 34.589 117.630  899 
Guvo Arizona City, AZ US 32.731 111.692  465 
Cross-Apache Seligman, AZ US 35.332 112.880  1600 
Cornville Montezuma Castle NM, AZ US 34.611 111.838  969 
Plughat Des Moines, NM US 36.750 103.833  2018 
Montecito Taos, NM US 36.391 105.586  2123 
Wittb Mountainair 8 NW, NM US 34.624 106.310   2014 
 Mountainair, NM US 34.521 106.261  1987 
Kranzburg Mitchell Municipal Airport, SD US 43.774 98.038  396 
Clamo Brookings 2 NE, SD US 44.325 96.769  497 
Eros Sioux Falls 14 NNE, SD US 43.735 96.622     486 
Adams Ranchc Corona Lincoln Compressor Station, NM US 34.100 105.683   1981 
 Corona 10 SW, NM US 34.149 105.698   2036 

aThese samples were collected from the California “Soil Series Pedolarium,” and  the GPS coordinates 
given are for the type location of the soil series. 
bMountainair 8 NW was the closest climate station to the Witt site, but only had temperature data, so 
precipitation data was taken from the Mountainair station. 
cCorona Lincoln Compressor Station was the closest climate station to the Adams Ranch site, but only 
had temperature data, so precipitation data was taken from the Corona 10 SW station. 

 

Table A.2    Soil thermal properties 

 
Site/Soil κ Cv d 
 (W/K/m)a (J/m3/K)b (cm)c

Muroc 0.57 1.38 204 
Lavic 0.85 1.2 267 
Guvo 0.52 1.31 200 
Cross-Apache 1.09 1.98 235 
Cornville 0.52 2.01 161 
Plughat 1.09 1.98 235 
Montecito 1.08 2.23 220 
Witt 1.09 1.98 235 
Kranzburg 1.09 1.98 235 
Clamo 1.09 1.98 235 
Eros 1.09 1.98 235 
Adams Ranch 0.52 2.01 161 

aThermal conductivity; data from Shukla (2014) 
bVolumetric heat capacity; data from Shukla (2014) 
cDamping depth 
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Table A.3     Summary of evapotranspiration and soil water balance calculations 

 
Site Month ET0 

(cm) 
ET0’ 
(cm)a 

Precip 
(cm) 

P-ET0 
(cm) 

Soil Water 
Storage 
(cm) 

Muroc Jan 2.2 2.2  3.0 0.9 1.0 
 Feb 4.5 4.5  3.9 -0.6 0.4 
 Mar 9.5 9.5  2.5 -7.1 0.0 
 Apr 13.9 13.9  0.6 -13.3 0.0 
 May 20.2 20.2  0.3 -20.0 0.0 
 Jun 24.5 24.5  0.1 -24.4 0.0 
 Jul 27.5 27.5  0.8 -26.7 0.0 
 Aug 25.2 25.2  0.7 -24.5 0.0 
 Sep 17.6 17.6  0.4 -17.2 0.0 
 Oct 9.9 9.9  0.9 -8.9 0.0 
 Nov 4.7 4.7  1.5 -3.1 0.0 
 Dec 2.1 2.1  2.3 0.1 0.1 

       

Lavic Jan 2.2 2.2 2.6 0.4 0.1 
 Feb 4.6 4.6 2.7 -1.8 0.0 
 Mar 9.7 9.7 2.0 -7.7 0.0 
 Apr 14.2 14.2 0.7 -13.5 0.0 
 May 20.4 20.4 0.4 -20.0 0.0 
 Jun 24.3 24.3 0.2 -24.2 0.0 
 Jul 27.1 27.1 0.4 -26.6 0.0 
 Aug 24.9 24.9 0.8 -24.1 0.0 
 Sep 17.7 17.7 0.6 -17.1 0.0 
 Oct 9.9 9.9 0.7 -9.1 0.0 
 Nov 4.7 4.7 0.9 -3.8 0.0 
 Dec 2.2 2.2 1.9 -0.3 0.0 

       

Guvo Jan 1.2 1.2 2.6 1.5 3.3 
 Feb 3.2 3.2 2.6 -0.7 2.6 
 Mar 7.5 7.4 2.7 -4.8 0.0 
 Apr 12.6 12.3 0.8 -11.5 0.0 
 May 17.8 17.7 0.5 -17.2 0.0 
 Jun 20.5 20.4 0.3 -20.1 0.0 
 Jul 21.0 20.9 3.2 -17.7 0.0 
 Aug 18.5 18.5 3.7 -14.8 0.0 
 Sep 15.0 15.0 2.2 -12.7 0.0 
 Oct 8.9 8.8 1.8 -7.0 0.0 
 Nov 3.1 3.1 1.8 -1.3 0.0 
 Dec 0.9 0.9 2.7 1.9 1.9 
          

Cross-Apache Jan 1.5 0.0 2.8 2.8 5.1 
 Feb 3.1 1.1 2.9 1.8 6.9 
 Mar 6.9 6.9 2.7 -4.1 2.8 
 Apr 10.8 10.8 1.4 -9.4 0.0 
 May 16.2 16.2 0.9 -15.3 0.0 
 Jun 20.0 20.0 0.8 -19.2 0.0 
 Jul 19.8 19.8 4.6 -15.2 0.0 
 Aug 17.4 17.4 5.5 -11.9 0.0 
 Sep 13.6 13.6 3.5 -10.1 0.0 
 Oct 7.4 7.4 2.8 -4.6 0.0 
 Nov 2.7 2.3 2.2 -0.1 0.0 
 Dec 1.3 0.0 2.3 2.3 2.3 
          

Cornville Jan 1.7 1.7 3.4 1.7 3.7 
 Feb 3.0 3.0 3.5 0.5 4.2 
 Mar 7.5 7.5 3.4 -4.1 0.1 
 Apr 12.1 12.1 1.6 -10.5 0.0 
 May 17.7 17.7 1.1 -16.6 0.0 
 Jun 20.8 20.8 0.7 -20.1 0.0 
 Jul 20.0 20.0 4.6 -15.4 0.0 
 Aug 17.6 17.6 5.5 -12.1 0.0 
 Sep 13.9 13.9 4.4 -9.5 0.0 
 Oct 7.8 7.8 2.7 -5.1 0.0 

 Nov 2.5 2.5 2.4 -0.1 0.0 
 Dec 1.2 1.2 3.2 2.1 2.1 
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Site Month ET0 
(cm) 

ET0’ 
(cm)a 

Precip 
(cm) 

P-ET0 
(cm) 

Soil Water 
Storage 
(cm) 

Plughat Jan 2.2 0.0 1.2 1.2 3.5 
 Feb 2.8 0.0 1.7 1.7 5.3 
 Mar 5.7 4.3 2.8 -1.5 3.8 
 Apr 9.1 9.1 2.4 -6.8 0.0 
 May 12.8 13.1 5.3 -7.8 0.0 
 Jun 15.6 15.9 5.5 -10.4 0.0 
 Jul 16.4 17.0 7.0 -10.0 0.0 
 Aug 14.2 14.7 7.3 -7.4 0.0 
 Sep 10.6 11.0 4.6 -6.3 0.0 
 Oct 6.5 6.6 3.6 -3.0 0.0 
 Nov 3.3 2.1 2.1 0.1 0.1 
 Dec 1.8 0.0 2.2 2.2 2.3 

         

Montecito Jan 1.2 0.0 1.6 1.6 5.1 
 Feb 2.7 0.0 1.4 1.4 6.5 
 Mar 6.6 1.3 2.0 0.7 7.3 
 Apr 10.8 10.8 2.0 -8.7 0.0 
 May 15.5 15.5 2.9 -12.6 0.0 
 Jun 18.2 18.2 2.5 -15.7 0.0 
 Jul 17.1 17.1 3.8 -13.3 0.0 
 Aug 14.9 14.9 5.2 -9.6 0.0 
 Sep 12.6 12.6 3.8 -8.8 0.0 
 Oct 8.0 8.0 3.3 -4.7 0.0 
 Nov 3.5 0.4 2.0 1.7 1.7 
 Dec 1.3 0.0 1.9 1.9 3.6 
         

Witt Jan 1.5 0.0 1.4 1.4 4.6 
 Feb 3.2 0.0 1.5 1.5 6.2 
 Mar 6.4 4.7 2.1 -2.7 3.5 
 Apr 9.8 9.8 1.5 -8.3 0.0 
 May 12.9 13.1 1.9 -11.1 0.0 
 Jun 14.4 14.3 2.6 -11.7 0.0 
 Jul 14.0 14.1 6.8 -7.3 0.0 
 Aug 12.8 13.0 7.3 -5.7 0.0 
 Sep 9.6 9.7 4.6 -5.1 0.0 
 Oct 5.9 5.9 3.8 -2.1 0.0 
 Nov 2.7 1.5 1.9 0.5 0.5 
 Dec 1.2 0.0 2.7 2.7 3.2 

         

Kranzburg Jan 0.0 0.0 0.9 0.9 5.7 
 Feb 0.3 0.0 1.0 1.0 6.7 
 Mar 2.0 0.5 2.9 2.4 9.2 
 Apr 5.6 5.6 5.4 -0.2 8.9 
 May 9.2 9.2 7.5 -1.6 7.3 
 Jun 12.3 12.3 10.9 -1.3 6.0 
 Jul 13.8 13.8 8.3 -5.6 0.4 
 Aug 11.9 11.9 7.8 -4.1 0.0 
 Sep 7.7 7.7 8.1 0.4 0.4 
 Oct 4.0 4.0 5.2 1.2 1.7 
 Nov 1.3 0.5 2.4 1.9 3.6 
 Dec 0.2 0.0 1.2 1.2 4.8 
         

Clamo Jan 0.0 0.0 0.56 0.6 4.1 
 Feb 0.4 0.0 0.86 0.9 4.9 
 Mar 2.4 0.2 2.69 2.5 7.5 
 Apr 5.9 5.9 5.54 -0.3 7.2 
 May 9.6 9.6 7.44 -2.2 5.0 
 Jun 12.8 12.8 10.49 -2.3 2.7 
 Jul 14.9 14.9 7.90 -7.0 0.0 
 Aug 12.9 12.9 6.05 -6.8 0.0 
 Sep 7.7 7.7 5.89 -1.8 0.0 
 Oct 3.5 3.5 4.11 0.6 0.6 
 Nov 1.1 0.2 1.98 1.8 2.4 
 Dec 0.1 0.0 1.14 1.1 3.5 
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Site Month ET0 
(cm) 

ET0’ 
(cm)a 

Precip 
(cm) 

P-ET0 
(cm) 

Soil Water 
Storage 
(cm) 

Eros Jan 0.1 0 1.8 1.8 8.8 
 Feb 0.4 0 1.4 1.4 10.3 
 Mar 2.1 0.3 4.4 4.1 14.3 
 Apr 5.6 5.6 7.7 2.1 16.4 
 May 9.6 9.6 8.2 -1.4 15.0 
 Jun 12.8 12.8 11.2 -1.6 13.4 
 Jul 14.6 14.6 7.9 -6.7 6.7 
 Aug 12.7 12.7 8.1 -4.6 2.1 
 Sep 8.1 8.1 8.0 -0.1 2.0 
 Oct 4.0 4.0 5.6 1.6 1.6 
 Nov 1.3 0.5 4.1 3.6 5.2 
 Dec 0.2 0 1.9 1.9 7.1 

       

Adams Ranch Jan 3.8 0.0 1.6 1.6 4.1 
 Feb 5.1 0.0 1.8 1.8 5.9 
 Mar 8.8 5.7 1.7 -4.0 1.9 
 Apr 12.0 12.0 2.1 -9.9 0.0 
 May 15.0 15.0 2.8 -12.1 0.0 
 Jun 16.5 16.5 3.8 -12.7 0.0 
 Jul 15.4 15.4 8.4 -6.9 0.0 
 Aug 13.9 13.9 8.2 -5.7 0.0 
 Sep 11.3 11.3 5.1 -6.2 0.0 
 Oct 8.8 8.8 4.7 -4.0 0.0 
 Nov 5.8 3.1 2.1 -1.0 0.0 
 Dec 4.0 0.0 2.5 2.5 2.5 

aCalculated by multiplying ET0 by the fraction of days in the month when the normal 
daily normal minimum temperature is > -4°C 

 

  



  131 

Table A.4      Raw Clumped Isotope Data 
 

Type Date Name δ47 δ48 δ13C δ18O 
   ‰,WGa ‰,WGa ‰,VSMOW ‰,VPDB 
May–June 2012        

Heated Gas 05/13/12 Heated Gas IV -27.51 -5.23 -18.98 23.68 
Heated Gas 05/14/12 Heated Gas V -3.78 48.02 -3.68 32.19 
25°C Equil. Gas 05/14/12 MDIW CO2-H2O 25C -27.93 14.14 -28.10 31.47 
25°C Equil Gas 05/14/12 AAS CO2-H2O 25C -41.23 -39.29 -28.18 18.17 
Heated Gas 05/14/12 Barbados Coral HG -7.00 -11.97 -1.78 27.14 
25°C Equil Gas 05/14/12 Evap CO2-H2O 25C -8.79 42.61 -27.08 49.73 
Standard 05/14/12 Cararra 75C rxn 7.39 8.77 1.83 37.47 
25°C Equil Gas 05/15/12 AAS CO2-H2O 25C -41.03 -42.23 -28.05 18.19 
Standard 05/15/12 Cararra 75C rxn 7.20 7.24 1.86 37.25 
Standard 05/15/12 Cararra 75C rxn 7.34 7.29 1.93 37.32 
25°C Equil Gas 05/15/12 Evap CO2-H2O 25C -12.83 32.58 -28.30 46.90 
Heated Gas 05/16/12 MDIW HG -31.45 -15.08 -28.04 28.68 
Heated Gas 05/16/12 AAS HG -42.71 -45.71 -28.08 17.34 
25°C Equil Gas 05/17/12 MDIW CO2-H2O 25C -27.77 -7.12 -28.09 31.59 
Heated Gas 05/17/12 Barbados Coral HG -4.08 -12.15 -1.79 30.02 
25°C Equil Gas 05/17/12 AAS CO2-H2O 25C -40.96 -42.53 -28.13 18.34 
Standard 05/18/12 Cararra 75C rxn AB 7.31 6.70 1.89 37.31 
Heated Gas 05/18/12 Evap HG -22.47 9.47 -28.75 38.45 
25°C Equil Gasb 05/20/12 MDIW CO2-h2O 25C -27.20 -8.04 -28.08 31.60 
Heated Gas 05/20/12 Heated Gas -64.52 -66.69 -42.49 9.42 
25°C Equil Gas 05/20/12 Evap CO2-H2O 25C -8.54 40.25 -27.09 50.02 
Heated Gas 05/22/12 MDIW HG -30.34 -13.85 -28.04 29.79 
25°C Equil Gas 05/22/12 AAS CO2-H2O 25C -40.32 -41.72 -28.15 18.99 
25°C Equil Gas 05/24/12 Evap CO2-H2O 25C -14.78 28.51 -28.94 45.53 
Heated Gas 05/24/12 AAS HG -42.96 -47.75 -28.08 17.09 
25°C Equil Gas 05/25/12 AAS CO2-H2O 25C -39.80 -40.76 -28.05 19.42 
Heated Gas 05/25/12 Evap HG -19.15 18.01 -28.80 41.87 
Heated Gas 05/26/12 Adamussium HG 1.75 -6.51 1.85 32.21 
25°C Equil Gas 05/26/12 MDIW CO2-H2O 25C -28.56 -10.31 -28.17 30.86 
Heated Gas 05/27/12 Matheson HG -8.98 -20.28 -3.96 27.30 
25°C Equil Gas 05/27/12 Evap CO2-H2O 25C -11.48 34.23 -27.85 47.79 
Heated Gas 05/29/12 Barbados Coral HG -5.24 -16.57 -1.67 28.78 
25°C Equil Gas 05/29/12 MDIW 25C -26.57 -13.45 -25.09 29.89 
Heated Gas 05/30/12 Heated Gas IV -8.89 -17.94 -4.83 28.21 
25°C Equil Gas 05/30/12 AAS CO2-H2O 25C -41.70 -44.44 -28.51 17.95 
25°C Equil Gas 05/31/12 Evap CO2-H2O 25C -13.30 30.48 -28.46 46.56 
Heated Gas 05/31/12 AAS HG -41.95 -44.91 -28.01 18.05 
Heated Gas 06/01/12 MDIW HG -32.47 -19.06 -28.23 27.82 
25°C Equil Gas 06/02/12 MDIW CO2-H20 25C -28.15 -10.03 -28.10 31.24 
25°C Equil Gas 06/03/12 AAS CO2-H2O 25C -43.66 -49.22 -28.95 16.40 
Heated Gas 06/03/12 Evap HG -20.33 13.78 -28.39 40.24 
Sample 06/04/12 Cornville -3.60 -16.73 -0.59 28.77 
Heated Gas 06/04/12 HG-I -6.29 -13.78 -3.85 29.87 
25°C Equil Gas 06/04/12 AAS CO2-H2O 25C -39.38 -40.66 -27.65 19.45 
Sample 06/04/12 Plughat-P1 -7.64 -11.54 -6.51 30.53 
Sample 06/04/12 Plughat-P2 -8.40 -13.80 -6.46 29.74 
Sample 06/05/12 Cross-Apache -8.29 -12.72 -6.65 30.04 
Heated Gas 06/05/12 Adamussium HG 9.46 12.08 1.98 39.66 
25°C Equil Gas 06/05/12 Evap CO2-H2O 25C -11.26 35.33 -28.00 48.18 
Sample 06/06/12 Cornville -3.78 -16.74 -0.64 28.64 
Sample 06/06/12 Witt -4.46 -7.52 -5.05 32.26 
Sample 06/06/12 Cross-Apache -7.67 -12.05 -6.38 30.39 
Sample 06/06/12 Guvo -1.77 -3.27 -3.79 33.68 
Sample 06/06/12 Plughat-P2 -8.59 -13.87 -6.50 29.59 
Heated Gas 06/07/12 HG II -32.70 -36.76 -21.53 20.99 
25°C Equil Gas 06/07/12 MDIW CO2-H2O 25C -28.47 -10.46 -28.14 30.97 
25°C Equil Gas 06/07/12 MDIW CO2-H2O 25C -28.47 -10.46 -28.14 30.97 
Sample 06/07/12 Cornville -3.10 -15.19 -0.47 29.16 
Sample 06/07/12 Plughat-P1 -7.14 -10.79 -6.18 30.70 
Heated Gas 06/08/12 HG III #1 -33.94 -39.00 -22.08 20.28 
25°C Equil Gas 06/08/12 MDIW CO2-H2O 25C -27.91 -9.15 -28.10 31.47 



  132 

Type Date Name δ47 δ48 δ13C δ18O 
   ‰,WGa ‰,WGa ‰,VSMOW ‰,VPDB 

Sample 06/08/12 Plughat-P2 -7.72 -11.92 -6.54 30.50 
Sample 06/08/12 Cross-Apache -7.93 -12.17 -6.58 30.31 
Sample 06/09/12 Witt -4.41 -7.01 -5.05 32.29 
Sample 06/09/12 Kranzburg 0.31 -5.86 -0.79 32.79 
Sample 06/09/12 Guvo -2.06 -3.28 -3.73 33.35 
Heated Gas 06/09/12 Barbados Coral HG -6.02 -18.09 -1.73 28.06 
25°C Equil Gas 06/09/12 Evap CO2-H2O 25C -11.67 34.94 -28.14 47.89 
Sample 06/10/12 Witt -4.39 -6.98 -5.03 32.29 
Sample 06/10/12 Guvo -1.97 -4.03 -3.69 33.39 
Sample 06/10/12 Montecito -5.97 -12.63 -4.35 30.07 
Sample 06/10/12 Plughat-P2 -8.68 -13.87 -6.61 29.63 
Sample 06/10/12 Montecito -6.41 -13.30 -4.59 29.88 
Heated Gas 06/11/12 Adamussium and Jolters HG -6.29 -9.57 -5.47 31.48 
25°C Equil Gas 06/11/12 AAS CO2-H2O 25C -45.75 -52.36 -29.60 14.95 
Sample 06/11/12 Montecito -6.31 -13.41 -4.49 29.86 
Sample 06/11/12 Kranzburg 0.35 -5.74 -0.71 32.74 
Sample 06/11/12 Kranzburg 0.63 -5.32 -0.61 32.93 
Heated Gas 06/12/12 MDIW HG -33.40 -21.70 -28.22 26.87 
25°C Equil Gas 06/12/12 MDIW CO2-H2O 25C -28.29 -9.72 -28.21 31.22 

Sept–Oct 2012       
Heated Gas 10/23/12 Matheson HG -4.58 -9.78 -3.62 31.27 
Heated Gas 10/23/12 Evap HG -18.15 18.22 -28.07 41.99 
Heated Gas 10/23/12 AAS HG -41.67 -41.83 -28.00 18.01 
Heated Gas 10/24/12 Math/BD Mix HG -17.51 -19.35 -12.79 27.40 
Heated Gas 10/24/12 Barbados Coral HG -3.30 -10.57 -1.56 30.52 
Heated Gas 10/24/12 MDIW HG -30.64 -14.11 -28.25 29.49 
Heated Gas 10/24/12 Matheson HG -2.58 -4.31 -3.73 33.35 
25°C Equil Gas 10/24/12 MDIW CO2-H2O 25C -27.94 -8.81 -28.24 31.39 
25°C Equil Gas 10/24/12 AAS CO2-H2O 25C -41.88 -44.52 -28.05 17.01 
25°C Equil Gas 10/25/12 Evap CO2-H2O 25C -12.02 30.79 -27.99 47.28 
25°C Equil Gas 10/25/12 AAS CO2-H2O 25C -41.48 -42.96 -28.09 17.48 
Heated Gas 10/25/12 AAS HG -41.49 -41.35 -28.15 18.35 
Heated Gas 10/25/12 MDIW HG -31.78 -16.90 -28.13 28.19 
Heated Gas 10/25/12 Admussium HG 9.41 12.00 1.91 39.69 
Standard 10/25/12 Cararra 75C rxn 5.78 4.13 1.13 36.55 
25°C Equil Gas 10/26/12 Evap CO2-H2O 25C -12.51 30.72 -28.26 47.08 
Heated Gas 10/26/12 Matheson HG -6.62 -14.59 -3.53 29.17 
Standard 10/26/12 Cararra 75C rxn 6.43 4.34 1.67 36.69 
25°C Equil Gas 10/26/12 MDIW CO2-H2O 25C -27.47 -7.60 -28.10 31.70 
25°C Equil Gas 10/27/12 AAS CO2-H2O 25C -42.37 -45.13 -28.17 16.63 
Heated Gas 10/28/12 BD HG -29.91 -35.44 -18.79 20.83 
25°C Equil Gas 10/28/12 Evap 25C -12.04 31.09 -28.07 47.34 
25°C Equil Gas 10/29/12 MDIW CO2-H2O 25C -28.05 -8.83 -28.23 31.27 
Heated Gas 10/29/12 MDIW HG -31.22 -15.23 -28.20 28.87 
Heated Gas 10/30/12 AAS HG -42.80 -45.05 -28.19 17.08 
25°C Equil Gas 10/31/12 AAS CO2-H2O 25C -41.41 -43.22 -28.20 17.67 
Heated Gas 11/01/12 Evap HG -18.28 17.08 -27.98 41.79 
25°C Equil Gas 11/01/12 MDIW CO2-H20 25C -29.32 -12.51 -28.18 29.93 
25°C Equil Gas 11/02/12 Evap CO2-H2O 25C -12.86 30.07 -28.21 46.66 
Heated Gas 11/02/12 MDIW HG -30.24 -13.77 -28.00 29.70 
Heated Gas 11/03/12 AAS HG -43.21 -46.19 -28.17 16.70 
25°C Equil Gas 11/03/12 AAS CO2-H2O 25C -40.62 -41.65 -28.08 18.39 
Heated Gas 11/04/12 Evap HG -15.97 23.04 -28.06 44.22 
25°C Equil Gas 11/04/12 Evap CO2-H2O 25C -15.31 23.79 -28.25 44.18 
25°C Equil Gas 11/05/12 MDIW CO2-H2O 25C -28.59 -10.32 -28.28 30.80 
Heated Gas 11/06/12 Barbados Coral HG -4.05 -13.09 -1.63 29.85 
25°C Equil Gas 11/06/12 AAS CO2-H2O 25C -41.59 -44.39 -28.07 17.43 
Heated Gas 11/07/12 Matheson HG -13.49 -28.55 -5.02 23.76 
25°C Equil Gas 11/07/12 Evap CO2-H2O 25C -14.43 25.59 -28.07 44.92 
Heated Gas 11/08/12 AAS HG -42.02 -43.78 -28.03 17.80 
25°C Equil Gas 11/08/12 MDIW CO2-H2O 25C -27.99 -9.43 -28.09 31.26 
Heated Gas 11/10/12 MDIW HG -32.88 -20.56 -28.09 27.13 
25°C Equil Gas 11/10/12 AAS CO2-H2O 25C -42.26 -45.69 -28.17 16.86 
Heated Gas 11/11/12 Evap HG -18.90 15.94 -28.10 41.32 
25°C Equil Gas 11/11/12 MDIW CO2-H2O 25C -28.73 -11.38 -28.10 30.50 
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Type Date Name δ47 δ48 δ13C δ18O 
   ‰,WGa ‰,WGa ‰,VSMOW ‰,VPDB 

Heated Gas 11/12/12 AAS HG -41.91 -43.31 -28.13 18.01 
25°C Equil Gas 11/14/12 MDIW CO2-H2O 25C -28.42 -10.59 -28.15 30.91 
Heated Gas 11/14/12 Matheson HG -9.33 -21.10 -3.84 26.78 
Sample 11/14/12 Muroc -7.81 -13.95 -5.54 29.35 
Sample 11/15/12 Lavic -6.67 -17.08 -3.24 28.27 
25°C Equil Gas 11/15/12 Evap CO2-H2O 25C -11.78 32.41 -27.96 47.52 
Heated Gas 11/15/12 Evap HG -15.42 24.78 -28.01 44.73 
25°C Equil Gas 11/16/12 AAS CO2-H2O 25C -40.70 -42.51 -27.86 18.17 
Heated Gas 11/16/12 MDIW HG -31.24 -15.39 -28.17 28.86 
Heated Gas 11/17/12 AAS HG -42.71 -45.05 -28.21 17.31 
25°C Equil Gas 11/18/12 MDIW CO2-H2O 25C -29.80 -14.57 -27.88 29.18 
25°C Equil Gas 11/19/12 Evap CO2-H2O 25C -12.30 31.69 -28.07 47.13 
Heated Gas 11/19/12 Evap HG -16.24 22.54 -28.03 43.93 
Sample 11/19/12 Muroc -7.48 -13.94 -5.36 29.49 
Sample 11/19/12 Lavic -6.98 -17.27 -3.53 28.21 
25°C Equil Gas 11/20/12 AAS CO2-H2O 25C -41.62 -44.01 -28.25 17.60 
Heated Gas 11/20/12 Evap HG -19.04 15.64 -28.07 41.14 
Sample 11/20/12 Muroc -8.33 -14.30 -6.01 29.32 
Sample 11/20/12 Lavic -6.99 -16.88 -3.57 28.24 
Heated Gas 11/21/12 MDIW HG -29.36 -11.42 -28.05 30.67 
25°C Equil Gas 11/21/12 MDIW CO2-H20 25C -29.50 -13.62 -27.88 29.51 

Sept–Oct 2012       
Heated Gas 10/19/13 Math HG -8.75 -15.75 -4.95 28.41 
Heated Gas 10/19/13 AAS HG -56.86 -44.12 -41.66 16.04 
Heated Gas 10/20/13 BCoral HG -45.68 -17.70 -41.51 27.39 
Heated Gas 10/20/13 BCoral HG -9.55 -21.34 -2.97 25.66 
Heated Gas 10/20/13 Evap HG -29.51 21.06 -40.99 43.35 
Heated Gas 10/20/13 MCB HG -16.17 -29.89 -6.15 22.19 
Heated Gas 10/20/13 Barbados Coral HG -11.07 -25.26 -2.94 24.14 
Heated Gas 10/21/13 Cararra HG 3.05 -4.13 2.00 33.33 
Heated Gas 10/21/13 MCB HG -15.48 -30.20 -5.92 22.68 
Heated Gas 10/21/13 BCoral HG -10.02 -24.31 -2.78 25.07 
Heated Gas 10/21/13 Carerra HG 4.05 -2.74 2.26 34.07 
Heated Gas 10/21/13 MCB HG -17.24 -36.11 -5.35 20.36 
Heated Gas 10/22/13 BCoral HG -7.86 -19.26 -2.79 27.23 
Heated Gas 10/22/13 Carerra HG 3.44 -3.98 2.32 33.43 
25°C Equil Gas 10/22/13 AAS 25C -54.71 -42.87 -41.53 17.30 
25°C Equil Gas 10/22/13 MDIW 25C -41.40 -10.09 -41.38 30.87 
Heated Gas 10/22/13 Cararra HG 3.20 -3.86 1.95 33.54 
25°C Equil Gas 10/22/13 Evap 25C -26.18 28.57 -41.47 46.62 
Heated Gas 10/23/13 MCB HG -5.32 -14.57 -1.98 28.90 
Heated Gas 10/23/13 AAS HG -55.46 -43.32 -41.39 17.27 
25°C Equil Gas 10/23/13 AAS 25C -54.92 -42.88 -41.61 17.21 
25°C Equil Gas 10/23/13 Evap 25C -25.04 31.61 -41.39 47.75 
25°C Equil Gas 10/23/13 MDIW 25C -41.36 -9.54 -41.43 31.00 
Standard 10/24/13 ActualCarerra 6.90 5.11 1.91 36.94 
Heated Gas 10/24/13 Evap HG -15.78 22.46 -27.90 44.25 
25°C Equil Gas 10/24/13 AAS 25C -54.31 -42.31 -41.41 17.65 
Standard 10/24/13 Cararra 75C rxn 7.37 6.35 1.99 37.31 
25°C Equil Gas 10/25/13 Evap 25C -26.14 31.11 -41.61 46.81 
Heated Gas 10/26/13 MCB HG -6.33 -17.72 -1.73 27.71 
25°C Equil Gas 10/26/13 MDIW 25C -41.41 -10.25 -41.27 30.83 
Heated Gas 10/28/13 MCB HG -3.71 -11.77 -1.71 30.25 
25°C Equil Gas 10/28/13 AAS 25C -54.74 -41.55 -41.55 17.38 
25°C Equil Gas 10/29/13 Evap 25C -25.45 31.04 -41.40 47.33 
Heated Gas 10/29/13 Cararra HG 3.04 -4.52 2.10 33.22 
Heated Gas 10/30/13 Barbados Coral HG -11.39 -27.62 -2.82 23.79 
25°C Equil Gas 10/30/13 MDIW 25C -42.03 -11.00 -41.45 30.38 
Standard 10/30/13 Cararra #1 75C BL 6.72 4.93 1.73 36.95 
Standard 10/31/13 Cararra #2 75C BL 7.15 5.63 1.93 37.13 
25°C Equil Gas 10/31/13 AAS 25C -55.47 -45.08 -41.47 16.62 
Heated Gas 10/31/13 Evap HG -32.77 14.64 -41.59 40.91 
Standard 11/01/13 Cararra #3 75C WD 6.58 7.06 1.79 36.71 
Heated Gas 11/01/13 MCB HG -5.81 -17.12 -1.63 28.14 
25°C Equil Gas 11/01/13 MDIW 25C -41.59 -10.72 -41.23 30.63 
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Type Date Name δ47 δ48 δ13C δ18O 
   ‰,WGa ‰,WGa ‰,VSMOW ‰,VPDB 

Heated Gas 11/03/13 AAS HG -56.33 -45.37 -41.51 16.65 
25°C Equil Gas 11/03/13 Evap 25C -25.35 31.45 -41.38 47.44 
Standard 11/03/13 Carerra #4 75C WD 5.66 3.44 1.23 36.36 
25°C Equil Gas 11/04/13 AAS 25C -54.46 -42.36 -41.44 17.70 
Heated Gas 11/04/13 Evap HG -30.01 21.32 -41.26 43.42 
Heated Gas 11/05/13 BCoral HG -8.82 -22.57 -2.58 26.08 
25°C Equil Gas 11/05/13 MDIW 25C -41.96 -11.14 -41.30 30.35 
Heated Gas 11/06/13 Cararra HG 6.18 3.05 2.25 36.21 
25°C Equil Gas 11/07/13 Evap 25C -25.69 31.08 -41.42 47.18 
Heated Gas 11/08/13 MCB HG -3.52 -12.12 -1.54 30.32 
25°C Equil Gas 11/08/13 AAS 25 C -54.85 -44.19 -41.49 17.35 
Heated Gas 11/09/13 MDIW HG -44.06 -14.68 -41.51 29.28 
25°C Equil Gas 11/09/13 MDIW 25C -41.86 -11.25 -41.49 30.66 
Sample 11/10/13 Clamo 1.24 -3.64 -0.65 33.58 
Heated Gas 11/10/13 AAS HG -15.03 -30.22 -5.74 22.96 
25°C Equil Gas 11/10/13 Evap 25C -25.48 31.85 -41.38 47.36 
Sample 11/10/13 Clamo 1.64 -2.60 -0.57 33.87 
Sample 11/10/13 Clamo 1.18 -3.46 -0.64 33.50 
25°C Equil Gas 11/11/13 AAS 25C BL -54.84 -41.69 -41.04 16.91 
Heated Gas 11/11/13 EVAP HG BL -29.15 24.48 -41.61 44.69 
aWorking gas 
bIrregular heated gas, excluded from the reference frame calculations 
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Table A.5    Clumped Isotope Data – Samples in the Absolute Reference Frame 

 
Type Date Name Δ47-[SGvsWG]0 Δ47-RF

a Δ47-RF-AC
b Tc 

   ‰ ‰ ‰ °C 
May–June 2012        

Heated Gas 05/13/12 Heated Gas IV     
Heated Gas 05/14/12 Heated Gas V     
25°C Equil. Gas 05/14/12 MDIW CO2-H2O 25C     
25°C Equil Gas 05/14/12 AAS CO2-H2O 25C     
Heated Gas 05/14/12 Barbados Coral HG     
25°C Equil Gas 05/14/12 Evap CO2-H2O 25C     
Standard 05/14/12 Cararra 75C rxn     
25°C Equil Gas 05/15/12 AAS CO2-H2O 25C     
Standard 05/15/12 Cararra 75C rxn     
Standard 05/15/12 Cararra 75C rxn     
25°C Equil Gas 05/15/12 Evap CO2-H2O 25C     
Heated Gas 05/16/12 MDIW HG     
Heated Gas 05/16/12 AAS HG     
25°C Equil Gas 05/17/12 MDIW CO2-H2O 25C     
Heated Gas 05/17/12 Barbados Coral HG     
25°C Equil Gas 05/17/12 AAS CO2-H2O 25C     
Standard 05/18/12 Cararra 75C rxn AB     
Heated Gas 05/18/12 Evap HG     
25°C Equil Gasd 05/20/12 MDIW CO2-h2O 25C     
Heated Gas 05/20/12 Heated Gas     
25°C Equil Gas 05/20/12 Evap CO2-H2O 25C     
Heated Gas 05/22/12 MDIW HG     
25°C Equil Gas 05/22/12 AAS CO2-H2O 25C     
25°C Equil Gas 05/24/12 Evap CO2-H2O 25C     
Heated Gas 05/24/12 AAS HG     
25°C Equil Gas 05/25/12 AAS CO2-H2O 25C     
Heated Gas 05/25/12 Evap HG     
Heated Gas 05/26/12 Adamussium HG     
25°C Equil Gas 05/26/12 MDIW CO2-H2O 25C     
Heated Gas 05/27/12 Matheson HG     
25°C Equil Gas 05/27/12 Evap CO2-H2O 25C     
Heated Gas 05/29/12 Barbados Coral HG     
25°C Equil Gas 05/29/12 MDIW 25C     
Heated Gas 05/30/12 Heated Gas IV     
25°C Equil Gas 05/30/12 AAS CO2-H2O 25C     
25°C Equil Gas 05/31/12 Evap CO2-H2O 25C     
Heated Gas 05/31/12 AAS HG     
Heated Gas 06/01/12 MDIW HG     
25°C Equil Gas 06/02/12 MDIW CO2-H20 25C     
25°C Equil Gas 06/03/12 AAS CO2-H2O 25C     
Heated Gas 06/03/12 Evap HG     
Sample 06/04/12 Cornville -0.356 0.640 0.707 21.1 
Heated Gas 06/04/12 HG-I     
25°C Equil Gas 06/04/12 AAS CO2-H2O 25C     
Sample 06/04/12 Plughat-P1 -0.305 0.697 0.763 3.6 
Sample 06/04/12 Plughat-P2 -0.314 0.687 0.754 6.4 
Sample 06/05/12 Cross-Apache -0.315 0.686 0.753 6.6 
Heated Gas 06/05/12 Adamussium HG     
25°C Equil Gas 06/05/12 Evap CO2-H2O 25C     
Sample 06/06/12 Cornville -0.347 0.651 0.718 17.6 
Sample 06/06/12 Witt -0.330 0.670 0.736 11.6 
Sample 06/06/12 Cross-Apache -0.324 0.676 0.743 9.5 
Sample 06/06/12 Guvo -0.337 0.662 0.728 14.1 
Sample 06/06/12 Plughat-P2 -0.316 0.684 0.751 7.1 
Heated Gas 06/07/12 HG II     
25°C Equil Gas 06/07/12 MDIW CO2-H2O 25C     
25°C Equil Gas 06/07/12 MDIW CO2-H2O 25C     
Sample 06/07/12 Cornville -0.362 0.634 0.701 23.2 
Sample 06/07/12 Plughat-P1 -0.303 0.699 0.766 2.8 
Heated Gas 06/08/12 HG III #1     
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Type Date Name Δ47-[SGvsWG]0 Δ47-RF
a Δ47-RF-AC

b Tc 
   ‰ ‰ ‰ °C 

25°C Equil Gas 06/08/12 MDIW CO2-H2O 25C     
Sample 06/08/12 Plughat-P2 -0.327 0.673 0.740 10.5 
Sample 06/08/12 Cross-Apache -0.307 0.694 0.761 4.2 
Sample 06/09/12 Witt -0.316 0.685 0.752 6.8 
Sample 06/09/12 Kranzburg -0.341 0.657 0.724 15.5 
Sample 06/09/12 Guvo -0.353 0.644 0.710 20.0 
Heated Gas 06/09/12 Barbados Coral HG     
25°C Equil Gas 06/09/12 Evap CO2-H2O 25C     
Sample 06/10/12 Witt -0.320 0.680 0.747 8.4 
Sample 06/10/12 Guvo -0.339 0.659 0.726 14.8 
Sample 06/10/12 Montecito -0.314 0.687 0.753 6.4 
Sample 06/10/12 Plughat-P2 -0.334 0.665 0.732 13.1 
Sample 06/10/12 Montecito -0.319 0.681 0.748 8.0 
Heated Gas 06/11/12 Adamussium and Jolters HG     
25°C Equil Gas 06/11/12 AAS CO2-H2O 25C     
Sample 06/11/12 Montecito -0.304 0.698 0.765 3.1 
Sample 06/11/12 Kranzburg -0.326 0.674 0.740 10.3 
Sample 06/11/12 Kranzburg -0.335 0.664 0.730 13.5 
Heated Gas 06/12/12 MDIW HG     
25°C Equil Gas 06/12/12 MDIW CO2-H2O 25C     

Sept–Oct 2012       
Heated Gas 10/23/12 Matheson HG     
Heated Gas 10/23/12 Evap HG     
Heated Gas 10/23/12 AAS HG     
Heated Gas 10/24/12 Math/BD Mix HG     
Heated Gas 10/24/12 Barbados Coral HG     
Heated Gas 10/24/12 MDIW HG     
Heated Gas 10/24/12 Matheson HG     
25°C Equil Gas 10/24/12 MDIW CO2-H2O 25C     
25°C Equil Gas 10/24/12 AAS CO2-H2O 25C LOW YIELD     
25°C Equil Gas 10/25/12 Evap CO2-H2O 25C     
25°C Equil Gas 10/25/12 AAS CO2-H2O 25C     
Heated Gas 10/25/12 AAS HG     
Heated Gas 10/25/12 MDIW HG     
Heated Gas 10/25/12 Admussium HG     
Standard 10/25/12 Cararra 75C rxn     
25°C Equil Gas 10/26/12 Evap CO2-H2O 25C     
Heated Gas 10/26/12 Matheson HG     
Standard 10/26/12 Cararra 75C rxn     
25°C Equil Gas 10/26/12 MDIW CO2-H2O 25C     
25°C Equil Gas 10/27/12 AAS CO2-H2O 25C     
Heated Gas 10/28/12 BD HG     
25°C Equil Gas 10/28/12 Evap 25C     
25°C Equil Gas 10/29/12 MDIW CO2-H2O 25C     
Heated Gas 10/29/12 MDIW HG     
Heated Gas 10/30/12 AAS HG     
25°C Equil Gas 10/31/12 AAS CO2-H2O 25C     
Heated Gas 11/01/12 Evap HG     
25°C Equil Gas 11/01/12 MDIW CO2-H20 25C     
25°C Equil Gas 11/02/12 Evap CO2-H2O 25C     
Heated Gas 11/02/12 MDIW HG     
Heated Gas 11/03/12 AAS HG     
25°C Equil Gas 11/03/12 AAS CO2-H2O 25C     
Heated Gas 11/04/12 Evap HG     
25°C Equil Gas 11/04/12 Evap CO2-H2O 25C     
25°C Equil Gas 11/05/12 MDIW CO2-H2O 25C     
Heated Gas 11/06/12 Barbados Coral HG     
25°C Equil Gas 11/06/12 AAS CO2-H2O 25C     
Heated Gas 11/07/12 Matheson HG     
25°C Equil Gas 11/07/12 Evap CO2-H2O 25C     
Heated Gas 11/08/12 AAS HG     
25°C Equil Gas 11/08/12 MDIW CO2-H2O 25C     
Heated Gas 11/10/12 MDIW HG     
25°C Equil Gas 11/10/12 AAS CO2-H2O 25C     
Heated Gas 11/11/12 Evap HG     



  137 

Type Date Name Δ47-[SGvsWG]0 Δ47-RF
a Δ47-RF-AC

b Tc 
   ‰ ‰ ‰ °C 

25°C Equil Gas 11/11/12 MDIW CO2-H2O 25C     
Heated Gas 11/12/12 AAS HG     
25°C Equil Gas 11/14/12 MDIW CO2-H2O 25C     
Heated Gas 11/14/12 Matheson HG     
Sample 11/14/12 Muroc -0.271 0.678 0.744 9.1 
Sample 11/15/12 Lavic -0.304 0.642 0.709 20.5 
25°C Equil Gas 11/15/12 Evap CO2-H2O 25C     
Heated Gas 11/15/12 Evap HG     
25°C Equil Gas 11/16/12 AAS CO2-H2O 25C     
Heated Gas 11/16/12 MDIW HG     
Heated Gas 11/17/12 AAS HG     
25°C Equil Gas 11/18/12 MDIW CO2-H2O 25C     
25°C Equil Gas 11/19/12 Evap CO2-H2O 25C     
Heated Gas 11/19/12 Evap HG     
Sample 11/19/12 Muroc -0.272 0.676 0.743 9.5 
Sample 11/19/12 Lavic -0.284 0.664 0.731 13.3 
25°C Equil Gas 11/20/12 AAS CO2-H2O 25C     
Heated Gas 11/20/12 Evap HG     
Sample 11/20/12 Muroc -0.293 0.654 0.721 16.4 
Sample 11/20/12 Lavic -0.277 0.671 0.738 11.1 
Heated Gas 11/21/12 MDIW HG     
25°C Equil Gas 11/21/12 MDIW CO2-H20 25C     

Sept–Oct 2012       
Heated Gas 10/19/13 Math HG     
Heated Gas 10/19/13 AAS HG     
Heated Gas 10/20/13 BCoral HG     
Heated Gas 10/20/13 BCoral HG     
Heated Gas 10/20/13 Evap HG     
Heated Gas 10/20/13 MCB HG     
Heated Gas 10/20/13 Barbados Coral HG     
Heated Gas 10/21/13 Cararra HG     
Heated Gas 10/21/13 MCB HG     
Heated Gas 10/21/13 BCoral HG     
Heated Gas 10/21/13 Carerra HG     
Heated Gas 10/21/13 MCB HG     
Heated Gas 10/22/13 BCoral HG     
Heated Gas 10/22/13 Carerra HG     
25°C Equil Gas 10/22/13 AAS 25C     
25°C Equil Gas 10/22/13 MDIW 25C     
Heated Gas 10/22/13 Cararra HG     
25°C Equil Gas 10/22/13 Evap 25C     
Heated Gas 10/23/13 MCB HG     
Heated Gas 10/23/13 AAS HG     
25°C Equil Gas 10/23/13 AAS 25C     
25°C Equil Gas 10/23/13 Evap 25C     
25°C Equil Gas 10/23/13 MDIW 25C     
Standard 10/24/13 ActualCarerra     
Heated Gas 10/24/13 Evap HG     
25°C Equil Gas 10/24/13 AAS 25C     
Standard 10/24/13 Cararra 75C rxn     
25°C Equil Gas 10/25/13 Evap 25C     
Heated Gas 10/26/13 MCB HG     
25°C Equil Gas 10/26/13 MDIW 25C     
Heated Gas 10/28/13 MCB HG     

25°C Equil Gas 10/28/13 AAS 25C    
25°C Equil Gas 10/29/13 Evap 25C    
Heated Gas 10/29/13 Cararra HG    
Heated Gas 10/30/13 Barbados Coral HG    
25°C Equil Gas 10/30/13 MDIW 25C    
Standard 10/30/13 Cararra #1 75C BL    
Standard 10/31/13 Cararra #2 75C BL    
25°C Equil Gas 10/31/13 AAS 25C    
Heated Gas 10/31/13 Evap HG    
Standard 11/01/13 Cararra #3 75C WD    
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Type Date Name Δ47-[SGvsWG]0 Δ47-RF
a Δ47-RF-AC

b Tc 
   ‰ ‰ ‰ °C 
Heated Gas 11/01/13 MCB HG    
25°C Equil Gas 11/01/13 MDIW 25C    
Heated Gas 11/03/13 AAS HG    
25°C Equil Gas 11/03/13 Evap 25C    
Standard 11/03/13 Carerra #4 75C WD    
25°C Equil Gas 11/04/13 AAS 25C    
Heated Gas 11/04/13 Evap HG    
Heated Gas 11/05/13 BCoral HG    
25°C Equil Gas 11/05/13 MDIW 25C    
Heated Gas 11/06/13 Cararra HG    
25°C Equil Gas 11/07/13 Evap 25C     
Heated Gas 11/08/13 MCB HG     
25°C Equil Gas 11/08/13 AAS 25 C     
Heated Gas 11/09/13 MDIW HG     
25°C Equil Gas 11/09/13 MDIW 25C     
Sample 11/10/13 Clamo -0.343 0.630 0.696 24.8 
Heated Gas 11/10/13 AAS HG     
25°C Equil Gas 11/10/13 Evap 25C     
Sample 11/10/13 Clamo -0.328 0.647 0.714 18.9 
Sample 11/10/13 Clamo -0.335 0.639 0.706 21.6 
25°C Equil Gas 11/11/13 AAS 25C BL     
Heated Gas 11/11/13 EVAP HG BL     

aConverted to the universal reference frame following the approach detailed in Dennis et al. (2011) 
bAll samples were reacted at 75°C, and an acid fractionation correction of 0.067 was used (Hren et al., 2013). 
cTemperature calculated using the >70°C composite calibration of Defliese et al. (2015). 
dIrregular heated gas, excluded from the reference frame calculations 
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Table A.6    Run intervals and corresponding transfer function values used 

 
Run Intervala Equilibrated Gas 

Line Slope 
Empirical Transfer 
Function Slope 

Empirical Transfer 
Function Intercept 

May – June 2012 
May 13 – May 22 0.0316 1.1085 1.0453 
May 24 – June 12 0.0316 1.0973 1.0315 
    

October – November 2012 
Oct 24 - Nov 2 0.0252 1.0895 1.0035 
Nov 3 - Nov 24 0.0282 1.0819 0.9711 
    

October – November 2013 
Oct 19 - Oct 30 0.0250 1.1778 1.0602 
Oct 31 - Nov 11 0.0288 1.0858 1.0029 

aChange in slopes correspond to lab power outages and equipment shut-downs 

 

 

Table A.7    Corrected stable isotope data and δ18O soil water calculations 
 

Site/Soil δ13Craw 
(‰) 
VPDB 

δ13Cppq
a 

(‰) 
VPDB  

δ18Oraw 
(‰) 
VSMOW 

δ18Oppq
a 

(‰) 
VSMOW 

δ18OAF
b 

(‰) 
VSMOW 

δ18OAF 
(‰) 
VPDB

Δ47- 
Temp. 
(°C) 

103lnαc δ18OSW
d 

(‰) 
VSMOW 

Muroc -5.6 -5.5 29.4 29.7 21.3 -9.4 11.7 31.371  -10.3 
Lavic -3.4 -3.3 28.2 28.6 20.1 -10.5 15.0 30.595  -10.6 
Guvo -3.7 -3.6 33.5 33.8 25.3 -5.4 16.3 30.286  -5.3 
Cross-Apache -6.5 -6.4 30.2 30.6 22.1 -8.5 6.8 32.585  -10.6 
Cornville -0.6 -0.5 28.9 29.2 20.7 -9.9 20.6 29.319  -8.7 
Plughat–Pit 1 -6.4 -6.3 30.6 30.9 22.5 -8.2 5.6 32.883  -10.6 
Plughat–Pit 2 -6.5 -6.4 29.7 30.0 21.5 -9.1 8.8 32.071  -10.7 
Montecito -4.5 -4.4 29.9 30.3 21.8 -8.8 5.8 32.832  -11.2 
Witt -5.0 -4.9 32.3 32.6 24.1 -6.6 9.0 32.039  -8.2 
Kranzburg -0.6 -0.5 33.7 34.0 25.5 -5.3 21.8 29.074  -3.9 
Clamo -0.7 -0.6 32.8 33.2 24.7 -6.1 13.1 31.038  -6.6 

aCorrected for temperature dependent fractionations associated with Porapak-Q column held at -25°C (Petersen et al., 2016) 
bCorrected using the acid fractionation factor of 1.00830 for calcite reacted at 75°C (Swart et al., 1991) 
cCalcite-water fractionation factor of Friedman and O’Neil (1977) using the Δ47-Temp 
dCalculated δ18O of the soil water using the corresponding calcite-water fractionation factor 
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Figure A.1 Additional plots of calculated δ18O values of the soil water (δ18Osw) plotted against different scenarios of 
OIPC-derived weighted δ18O values of precipitation (δ18Oprecip). Standard Error (S.E.) calculated relative to the 
1:1 line. 
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Appendix B 

Supplemental Data for Chapter 3 

 
Table B.1   SCAN stations, climate normal stations, and excluded data 
 

Scan Station Climate Normal Station Soil Moisture Data Soil Temperature Data 
 Temperature Precipitation 51 cm 102 cm 51 cm 102 cm 

2021 454679 454679     
2198 94129 94129     
2074 355174 355174     
2218 Excluded Excluded     
2214 48873 48873     
2192 48873 48873     
2215 40943 40943     
2149 40684 44881     
2191 43369 45280     
2187 42331 42331     
2217 43083 43083     
2190 48200 48200  Excluded   
2186 263316 263316     
2189 46154 46154   Excluded  
2219 46154 46154     
2185 Excluded Excluded     
2183 42410 42410  Excluded  Excluded 
2184 42410 42410     
674 106174 106174  Excluded  Excluded 

2148 108412 357736 Excluded Excluded Excluded Excluded 
750 4139 4139  Excluded  Excluded 

2216 Excluded Excluded  Excluded  Excluded 
2116 264698 264698     
2170 260507 260507     
2143 Excluded Excluded  Excluded  Excluded 
2144 Excluded Excluded     
2145 265400 265400     
2142 265400 265400     
2141 265400 265400     
2146 265400 265400 Excluded Excluded Excluded Excluded 
2160 423486 423486     
2153 427408 427408     
2135 428668 428668     
2136 421918 421918     
2151 4111 4111  Excluded  Excluded 
2150 4111 4111     
2133 425826 425826     
2152 423348 423348     
2154 424342 424342     
2134 420074 420074     
2155 422253 422253     
2167 422257 422257 Excluded    
2165 424174 424174     
2137 426135 426135     
2132 427026 93141     
2126 422578 422578     
2163 422607 422607     
2127 426357 426357     
2131 423418 423418     
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Scan Station Climate Normal Station Soil Moisture Data Soil Temperature Data 
 Temperature Precipitation 51 cm 102 cm 51 cm 102 cm 

2164 429152 429152     
2129 23176 23176     
2156 420527 412012     
2125 421432 421432     
2166 424947 424947     
2139 425805 425805     
2130 421308 421308     
2138 420738 420738     
2140 420738 420738     
2158 422592 422592     
2157 426601 426601     
2162 426534 428847     
2161 426181 Excluded     
2128 422558 422558     
2159 424968 424968     
2026 28619 28619     
2019 243110 243110     
2118 248233 248233     
2117 241974 241974     
2120 247560 247560     
581 245045 248169     

2121 241231 94051     
2119 245761 245761     
808 248363 245123     

2018 94053 94053     
2017 94074 94074     
2197 94074 94074     
2172 290245 290245     
2169 295150 295150     
2171 290915 290915     
2015 292095 292096     
2108 291445 291445     
2107 292207 292207     
2168 294426 3074     
2020 325479 325479     
2072 4990 4990     
2001 94995 94995     
2111 256552 254110     
2093 146378 146378     
2094 141408 141408     
2147 3997 3997     
2092 13932 13932     
2022 342818 342818     
2006 411267 411267     
2202 419346 419346 Excluded Excluded Excluded Excluded 
2201 410708 416146     
2104 418232 23042     
2105 415183 415183     
2106 416074 416074     
2203 3969 3969     
2200 416499 416499     
2199 415611 415611  Excluded   
2207 410613 410613     
2016 410655 410655     
2204 414907 411007     
2206 12928 12928     
2205 419588 419588 Excluded Excluded Excluded Excluded 
2050 216787 216787     
2002 14926 14926     
2068 133909 133909     
2031 130200 130200     
2047 237963 237963     
2061 232568 232568     
2195 231482 235541     
2220 232591 232591 Excluded Excluded Excluded Excluded 
2193 232511 232511     
2060 235862 235862  Excluded   
2194 238583 238583     
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Scan Station Climate Normal Station Soil Moisture Data Soil Temperature Data 
 Temperature Precipitation 51 cm 102 cm 51 cm 102 cm 

2048 230735 235207     
2085 53959 53959     
2090 33200 34938     
2030 31102 31102     
2084 34638 34638     
2091 36920 36920     
2083 35754 35754     
2003 474582 474582     
2196 476646 476646     
2004 113940 113940     
2034 228998 228998     
2024 222773 220488     
2025 222773 220488     
2035 224869 224869     
2046 221743 221743     
2064 228374 228374     
2109 221738 221738     
2070 30234 13939     
2032 226009 226009     
2086 220660 220660     
2087 227560 227560     
2110 229860 229860     
2033 227560 227560     
2082 229157 53858     
2005 156580 156580     
2079 151391 155097     
2077 409800 409800     
2075 403074 403074     
2076 407459 407459     
2053 403074 403074     
2078 403074 403074     
2057 3856 3856     
2173 224455 224455     
2055 13575 63866     
2056 12840 12840     
2113 12096 63867     
2179 13620 13620     
2175 18608 10369     
2174 10184 10178     
2114 14798 14798     
2176 14274 63897     
2177 15553 15553  Excluded   
2178 15439 15439     
2115 15439 15439     
2182 92738 92738     
2181 10402 10402     
2180 16988 16988     
2073 336389 336389     
2014 334681 334681     
2013 98950 98950     
2027 98703 98703     
2009 88756 88756     
2012 85076 85076     
2051 84095 84095 Excluded Excluded Excluded Excluded 
2069 273415 270681     
2043 273530 273530     
2041 Excluded Excluded     
2042 439591 Excluded     
2011 303184 303184     
2036 368449 368449     
2028 367931 367931     
2049 183675 183675     
2039 446712 446712     
2088 445685 444876     
2040 444044 444044     
2089 448170 448170     
2008 316853 316853     
2037 383111 383111     
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Scan Station Climate Normal Station Soil Moisture Data Soil Temperature Data 
 Temperature Precipitation 51 cm 102 cm 51 cm 102 cm 

2038 92055 383906     
2052 664702 664702  Excluded  Excluded 
2188 662934 662934     
2112 666073 666073 Excluded Excluded Excluded Excluded 

15 665908 665908     
2045 Excluded Excluded Excluded Excluded   
2122 667292 667292     
2067 662316 665693 Excluded Excluded Excluded Excluded 
2066 665097 665097     
2123 11624 11624     
965 26616 26642  Excluded  Excluded 

2212 26533 26533 Excluded Excluded Excluded Excluded 
2213 26617 26617     
2210 503212 503212 Excluded Excluded Excluded Excluded 
2081 26435 26435     
2221 26502 26502 Excluded Excluded Excluded Excluded 
2211 26502 26502 Excluded Excluded Excluded Excluded 
2080 509313 509313     
2065 26615 26615     
2208 26615 26615     
2062 503682 503682  Excluded  Excluded 
1233 25506 25506     
1232 26615 26615     
1234 502457 502457     
2209 25503 25503     
2097 Excluded Excluded     
2099 Excluded Excluded     
2102 Excluded Excluded     
2103 Excluded Excluded     
2100 514459 514459     
2098 Excluded Excluded  Excluded  Excluded 
2101 Excluded Excluded  Excluded  Excluded 
2096 518552 512751  Excluded  Excluded 
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Table B.2   Average maximum and minimum monthly air and soil temperatures 
 

SCAN Site 
Monthly Avg. Air Temperature Monthly Average Soil Temperature 

Max (°C) Min (°C) 
51 cm 102 cm 

Max (°C) Min (°C) Max (°C) Min (°C) 
2021 21.6 -1.7 23.5 2.9 21.1 5.3 
2198 18.7 -1.1 19.6 2.6 17.6 4.4 
2074 19.1 -0.4 21.2 2.3 19.5 3.6 
2218    24.8 6.3 22.1 8.0 
2214 18.4 -3.1 22.7 1.1 24.0 1.4 
2192 18.4 -3.1 22.9 0.8 20.7 2.7 
2215 13.3 -5.2 15.8 1.0 14.5 2.5 
2149 20.3 -1.2 24.6 5.1 23.8 6.5 
2191 16.4 -2.5 22.2 4.7 22.5 9.9 
2187 24.1 0.0 25.7 3.5 23.3 6.2 
2217 26.7 8.3 34.3 11.6 31.9 15.1 
2190 32.8 9.3 36.0 11.5 32.9 13.4 
2186 29.9 5.6 31.6 9.1 28.8 11.3 
2189 24.2 8.1    30.8 15.4 
2219 24.2 8.1 30.1 10.1 27.9 14.1 
2185    34.9 12.6 33.0 13.4 
2183 34.0 11.5 38.8 16.7    
2184 34.0 11.5 36.8 17.3 34.7 21.0 
674 24.3 -1.3 24.5 1.6    
2148 21.4 -2.3       
750 17.0 -2.5 20.5 4.0    
2216    19.8 1.0    
2116 23.3 -0.8 23.0 4.6 19.3 8.2 
2170 21.9 -0.6 19.1 0.8 16.3 2.9 
2143          
2144          
2145 18.2 -0.1 17.7 1.8 15.8 3.5 
2142 18.2 -0.1 18.0 2.8 15.4 4.7 
2141 18.2 -0.1 21.6 2.2 20.0 3.5 
2146 18.2 -0.1       
2160 20.6 -4.8 20.5 2.1 19.1 3.5 
2153 22.3 -3.8 22.9 1.6 20.5 4.3 
2135 22.6 -6.1 22.6 2.2 19.7 4.0 
2136 23.4 -4.6 18.3 1.9 16.2 3.7 
2151 19.2 -6.2 18.1 0.5    
2150 19.2 -6.2 15.9 0.7 14.1 2.1 
2133 21.8 -4.3 19.6 1.1 18.1 1.9 
2152 25.3 -2.6 22.9 5.2 21.2 7.9 
2154 22.8 -7.9 25.1 -0.2 22.3 2.1 
2134 20.2 -6.6 17.5 1.4 15.8 2.8 
2155 21.5 -6.7 21.3 0.2 18.8 2.1 
2167 25.6 -2.8 23.6 2.4 22.7 3.2 
2165 20.9 -2.7 21.9 0.5 20.0 3.7 
2137 23.7 -2.1 22.4 2.5 20.2 4.1 
2132 23.3 -4.0 24.7 0.1 22.8 2.4 
2126 20.6 -5.6 19.2 1.7 17.6 3.4 
2163 24.2 -2.2 30.4 1.2 27.7 3.9 
2127 25.8 -1.9 24.9 1.6 23.0 4.7 
2131 26.6 -2.6 29.6 -1.0 26.8 2.4 
2164 24.8 -1.8 24.3 1.5 22.1 4.4 
2129 23.6 -2.3 22.7 3.0 20.5 5.5 
2156 26.0 5.4 20.4 1.7 18.2 3.4 
2125 21.7 -1.9 20.0 0.4 17.7 3.8 
2166 21.4 -3.3 21.5 1.3 19.0 3.4 
2139 20.5 -3.9 21.0 0.4 19.1 2.3 
2130 21.7 -2.6 20.4 2.1 19.1 3.7 
2138 24.6 0.1 23.0 1.9 21.7 2.8 
2140 24.6 0.1 25.2 2.9 23.8 5.5 
2158 23.3 -0.9 24.9 2.3 22.1 3.5 
2157 18.5 -5.5 16.3 0.4 14.1 3.3 
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SCAN Site 
Monthly Avg. Air Temperature Monthly Avg. Air Temperature 

Max (°C) Min (°C) 
51 cm 102 cm 

Max (°C) Min (°C) Max (°C) Min (°C) 
2162 20.6 -1.1 19.9 1.1 17.9 2.8 
2161    22.5 1.3 20.3 2.3 
2128 22.8 -2.1 23.7 2.0 21.3 4.9 
2159 29.0 5.1 30.0 4.9 27.5 7.7 
2026 26.3 8.7 28.0 12.0 26.7 14.8 
2019 21.3 -7.0 20.2 1.1 17.7 2.6 
2118 20.5 -5.9 21.3 -0.8 18.8 1.3 
2117 18.8 -5.6 18.7 -0.6 16.7 1.6 
2120 22.3 -8.2 18.7 -0.8 16.6 0.8 
581 20.4 -7.9 19.9 -0.2 17.6 1.4 
2121 21.1 -8.2 21.6 -1.3 20.1 0.7 
2119 18.9 -4.1 18.3 1.3 17.0 2.2 
808 18.8 -6.7 18.7 0.8 16.3 2.5 
2018 23.3 -2.7 23.6 0.7 21.5 3.1 
2017 21.4 -2.9 22.4 0.9 21.0 3.4 
2197 21.4 -2.9 22.8 0.2 20.4 1.9 
2172 21.9 -1.1 26.1 1.7 23.0 4.5 
2169 25.0 1.6 26.0 5.5 24.7 7.6 
2171 25.6 1.9 28.1 5.0 26.2 7.6 
2015 20.8 0.6 24.3 4.7 22.2 6.4 
2108 24.9 3.6 28.4 5.9 27.0 7.3 
2107 24.9 3.5 28.2 6.2 26.6 9.4 
2168 26.2 3.8 29.3 8.0 27.3 11.4 
2020 21.4 -10.7 16.4 -0.2 14.0 1.8 
2072 22.1 -9.6 19.5 -0.2 17.3 1.0 
2001 24.7 -4.4 22.0 2.1 19.6 3.5 
2111 23.6 -3.5 21.5 1.0 19.7 3.0 
2093 26.6 -1.7 22.8 2.8 20.9 4.6 
2094 24.8 -3.7 21.3 3.7 19.7 5.8 
2147 25.7 -1.5 23.1 3.3 21.2 5.5 
2092 27.1 0.9 25.0 4.9 23.9 6.7 
2022 27.3 2.2 23.1 6.2 21.8 7.8 
2006 24.7 1.7 23.9 5.6 22.4 7.7 
2202 29.1 4.9       
2201 28.9 6.0 30.8 6.1 29.0 8.8 
2104 26.8 4.6 27.9 7.0 25.9 9.1 
2105 26.1 4.1 28.0 7.0 26.2 9.3 
2106 25.6 3.9 29.0 7.4 27.2 9.1 
2203 28.1 6.5 28.0 8.1 26.4 10.4 
2200 28.1 7.2 30.0 9.6 28.2 12.6 
2199 28.9 8.6 29.0 11.7 27.0 13.7 
2207 28.4 10.9 28.6 11.9 27.0 14.2 
2016 28.6 10.2 28.2 13.8 27.0 15.0 
2204 28.7 10.8 27.7 12.2 27.8 15.9 
2206 29.6 14.0 30.3 14.8 28.1 16.6 
2205 30.1 15.5       
2050 20.2 -14.6 16.7 -0.5 15.3 1.4 
2002 21.3 -11.3 17.9 -0.5 16.6 0.8 
2068 23.1 -7.6 21.1 0.7 18.7 2.7 
2031 23.3 -6.3 17.3 2.8 15.9 3.6 
2047 24.6 -4.6 22.2 3.7 20.6 5.3 
2061 24.9 -2.3 23.6 5.1 22.3 6.4 
2195 25.2 -1.8 23.3 2.7 21.0 5.2 
2220 25.4 -0.9       
2193 25.7 -0.1 23.9 5.1 21.8 6.7 
2060 25.4 0.3 24.4 5.2 23.5 6.8 
2194 24.9 0.2 22.1 3.8 21.6 5.2 
2048 27.0 1.7 26.2 5.8 24.4 7.3 
2085 27.2 3.7 28.7 7.1 26.0 9.2 
2090 27.0 3.4 27.1 7.8 25.5 9.1 
2030 27.1 4.1 26.9 8.4 25.0 9.5 
2084 27.5 4.2 28.1 8.1 26.2 9.6 
2091 27.6 4.3 28.2 8.4 26.8 9.7 
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SCAN Site 
Monthly Avg. Air Temperature Monthly Avg. Air Temperature 

Max (°C) Min (°C) 
51 cm 102 cm 

Max (°C) Min (°C) Max (°C) Min (°C) 
2083 27.8 5.3 27.5 9.2 26.1 10.3 
2003 18.0 -11.1 14.6 1.8 13.2 2.5 
2196 22.1 -7.9 19.4 0.2 17.3 2.0 
2004 24.8 -3.7 23.6 3.0 22.4 3.9 
2034 27.9 4.7 25.8 7.9 24.6 10.4 
2024 26.7 4.4 24.7 8.3 24.4 10.3 
2025 26.7 4.4 22.7 9.3 21.2 10.2 
2035 27.8 4.7 27.4 8.4 26.2 9.6 
2046 27.8 5.2 28.6 8.7 26.4 10.7 
2064 27.3 5.6 27.4 9.7 25.6 11.1 
2109 27.8 5.0 31.0 8.4 29.5 9.6 
2070 27.8 5.7 30.0 9.4 27.9 10.9 
2032 27.8 5.9 28.1 10.1 25.8 11.1 
2086 27.9 6.3 26.8 9.3 25.6 11.3 
2087 27.9 6.7 28.8 10.7 26.5 13.1 
2110 27.4 6.7 26.4 10.1 24.6 12.0 
2033 27.9 6.7 28.5 10.5 26.4 12.1 
2082 27.4 10.3 27.0 14.3 26.2 15.1 
2005 25.9 2.3 23.8 6.5 22.7 7.4 
2079 25.8 2.7 24.5 6.2 22.3 7.0 
2077 24.7 3.7 23.7 6.9 22.2 8.1 
2075 26.1 4.4 25.4 7.1 23.4 8.3 
2076 25.4 2.8 22.9 6.9 22.2 9.3 
2053 26.1 4.4 25.3 8.0 22.5 10.7 
2078 26.1 4.4 25.3 7.8 23.6 8.6 
2057 27.0 5.3 25.0 7.2 23.5 8.5 
2173 25.4 3.3 27.2 7.2 24.8 8.9 
2055 26.6 5.1 25.5 7.8 23.4 9.4 
2056 26.2 4.3 23.8 7.9 23.4 9.1 
2113 25.5 4.4 26.9 8.6 25.4 9.4 
2179 27.3 5.8 26.0 7.8 25.0 8.9 
2175 25.6 5.6 26.9 10.1 26.1 10.5 
2174 27.2 6.3 26.5 9.7 25.3 11.4 
2114 27.1 6.9 28.0 11.2 26.8 12.1 
2176 27.1 7.3 28.7 10.8 27.5 12.2 
2177 27.2 7.9 28.1 11.5 26.2 12.8 
2178 27.4 7.6 29.3 10.2 26.3 12.6 
2115 27.4 7.6 29.2 11.5 27.7 12.5 
2182 28.4 9.9 27.4 13.2 26.6 14.5 
2181 27.3 8.9 27.3 11.5 26.5 12.9 
2180 27.3 9.7 28.8 13.3 27.8 14.4 
2073 22.8 -1.9 21.2 1.5 20.0 3.5 
2014 22.8 -3.1 21.4 4.1 19.4 5.4 
2013 26.4 5.4 25.1 8.7 24.1 9.7 
2027 27.1 8.9 28.7 12.2 27.3 13.8 
2009 27.9 10.4 27.0 13.5 25.9 14.6 
2012 27.7 13.7 29.9 17.0 29.6 17.9 
2051 28.0 18.8       
2069 19.0 -8.7 15.1 2.5 13.8 3.3 
2043 18.9 -8.8 14.6 2.1 13.4 3.0 
2041    14.1 2.0 13.0 2.9 
2042    14.1 2.0 12.8 2.9 
2011 21.4 -4.7 20.3 3.3 18.5 4.0 
2036 22.3 -2.7 21.0 2.7 18.7 3.3 
2028 22.8 -2.6 22.6 2.0 21.8 3.0 
2049 24.8 0.2 24.3 4.3 21.0 5.3 
2039 24.7 1.3 25.3 5.4 23.0 7.2 
2088 24.0 1.1 21.9 3.9 20.9 5.9 
2040 26.2 4.3 25.7 8.1 24.6 8.3 
2089 24.1 2.7 24.4 5.7 23.2 6.8 
2008 26.5 6.2 26.6 9.2 24.8 10.6 
2037 27.7 6.7 27.5 10.3 26.3 11.1 
2038 27.6 8.9 27.8 11.6 26.6 12.9 
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SCAN Site 
Monthly Avg. Air Temperature Monthly Avg. Air Temperature 

Max (°C) Min (°C) 
51 cm 102 cm 

Max (°C) Min (°C) Max (°C) Min (°C) 
2052 26.7 23.3 28.1 23.9    
2188 26.6 22.8 26.7 23.6 26.5 23.9 
2112 27.2 24.2       

15 23.3 20.3 22.1 20.4 22.2 21.0 
2045    22.5 20.1 21.4 19.6 
2122 28.1 24.8 30.6 25.9 29.9 26.3 
2067 28.6 25.4       
2066 27.3 23.6 29.5 24.9 28.9 25.8 
2123 28.8 25.7 29.2 26.3 28.9 26.7 
965 10.1 -19.1 3.3 -7.4    
2212 15.4 -23.3       
2213 11.2 -14.9 2.7 -12.4 0.2 -11.7 
2210 15.9 -22.9       
2081 16.1 -21.2 11.3 -2.8 9.0 -0.7 
2221 14.2 -21.3       
2211 14.2 -21.3       
2080 15.3 -24.1 10.6 -5.7 7.5 -4.2 
2065 13.4 -14.1 7.1 -2.6 5.5 -0.6 
2208 13.4 -14.1 0.6 -5.2 -0.5 -4.0 
2062 12.4 -4.8 6.2 0.5    
1233 13.4 -8.1 5.6 -2.8 2.2 -1.6 
1232 13.4 -14.1 7.0 -1.2 5.7 -0.2 
1234 12.8 -9.4 9.9 -0.7 9.0 0.1 
2209 13.1 -8.8 7.7 -0.3 5.5 0.2 
2097    23.4 20.5 23.4 21.0 
2099    19.5 17.8 19.3 18.0 
2102    18.7 15.8 18.7 16.6 
2103    19.4 17.0 20.4 18.5 
2100 23.1 19.8 22.6 19.5 22.2 19.8 
2098    13.2 10.2    
2101 9.6 5.8 14.6 9.6    
2096 22.1 19.8 24.7 21.8    
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Table B.3   Driest 30-day intervals and corresponding soil temperatures 
 

SCAN 
Site 

MAAT 
(°C)a 

Driest 30-day Interval Largest 30-day Soil Moisture Decline 
51 cm 102 cm 51 cm 102 cm 

First Dayb Temp (°C) First Dayb Temp (°C) First Dayb Temp (°C) First Dayb Temp (°C) 
2021 9.9 38 8.2 1 6.0 125 14.4 154 15.8 
2198 8.6 283 11.5 37 9.4 141 14.6 157 13.9 
2074 8.7 278 12.8 296 11.4 215 21.1 153 14.5 
2218   298 13.4 313 12.9 99 14.0 155 18.4 
2214 7.0 38 2.6 345 1.3 34 4.4 286 1.4 
2192 7.0 247 18.6 247 18.6 158 19.9 164 17.8 
2215 3.2 3 1.6 322 4.9 179 15.9 217  
2149 9.1 324 8.0 325 9.9 16 14.8 111 14.0 
2191 5.9 38 9.6 167 2.8 13 16.0 149 18.8 
2187 11.9 34 4.2 5 6.2 171 25.2 351 6.9 
2217 17.6 1 11.6 334 16.7 298 19.9 199 31.5 
2190 20.9 1 11.5   35 11.2   
2186 17.2 1 1.9 4 11.4 35 9.3 35 12.6 
2189 15.3   2 16.9   346 16.5 
2219 15.3 1 1.3 18 14.2 35 9.6 281 24.2 
2185   39 18.5 15 23.7 251 31.8 211 33.1 
2183 22.7 1 16.7   35 16.6   
2184 22.7 349 17.5 336 22.4 313 22.8 151 31.1 

674 10.8 298 9.6   127 14.5   
2148 8.6         

750 6.1 38 7.9   134 13.5   
2216   312 4.3   146 14.0   
2116 10.7 341 6.3 249 20.0 314 1.1 189 17.9 
2170 9.4 292 7.7 351 4.7 148 14.4 154 12.7 
2143   328 -1.5   313 -0.6   
2144   326 7.6 326 9.9 121 14.7 132 13.7 
2145 8.1 311 5.8 324 7.1 289 9.3 81 4.8 
2142 8.1 32 5.8 328 7.7 115 1.2 173 14.1 
2141 8.1 182 21.4 216 20.0 6 5.7 118 12.3 
2146 8.1         
2160 7.3 318 4.9 352 4.4 152 15.3 166 15.7 
2153 8.3 295 1.3 1 4.4 281 13.6 292 13.6 
2135 7.7 321 4.7 336 6.3 17 2.5 24 19.7 
2136 9.2 314 6.4 1 4.4 145 12.2 165 12.4 
2151 5.5 339 1.9   163 15.2   
2150 5.5 32 4.2 224 14.2 165 13.1 162 1.8 
2133 8.3 286 1.2 362 2.5 351 1.7 122 9.9 
2152 10.6 329 8.7 5 8.4 123 13.4 351 9.9 
2154 8.6 36 0.4 36 2.1 21 25.3 298 12.4 
2134 6.7 336 2.2 337 4.1 149 13.6 161 13.4 
2155 8.0 8 0.2 166 17.1 219 2.3 219 18.7 
2167 10.8 43 4.5 12 3.4 8 2.5 233 21.7 
2165 8.4 325 3.5 347 5.2 264 15.4 28 19.9 
2137 10.2 327 5.4 3 5.0 18 1.4 29 13.6 
2132 9.3 5 0.2 8 2.3 266 17.5 291 13.3 
2126 7.2 1 1.8 35 3.4 121 1.7 21 17.2 
2163 10.6 294 12.7 13 3.7 165 28.7 351 5.3 
2127 11.1 332 4.5 22 4.6 115 13.4 267 18.8 
2131 12.5 364 -1.9 3 2.3 294 11.3 276 18.3 
2164 11.1 1 1.5 25 4.2 353 2.5 293 14.6 
2129 10.2 7 2.8 22 5.5 295 11.9 291 14.9 
2156 15.9 322 4.9 327 6.9 141 14.2 61 4.2 
2125 9.4 329 4.2 25 3.7 143 15.3 169 15.2 
2166 8.4 327 3.9 346 5.3 139 15.5 89 7.4 
2139 7.9 1 0.5 12 2.6 118 1.8 214 19.6 
2130 8.9 35 7.4 8 4.0 148 15.8 169 16.9 
2138 11.8 356 2.4 1 3.4 114 12.6 351 4.5 
2140 11.8 364 2.9 2 5.9 112 14.9 39 13.3 
2158 10.8 36 9.8 34 5.7 12 16.2 314 9.2 
2157 5.9 328 3.3 175 12.7 14 11.4 11 3.7 
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SCAN 
Site 

MAAT 
(°C)a 

Driest 30-day Interval Largest 30-day Soil Moisture Decline 
51 cm 102 cm 51 cm 102 cm 

First Dayb Temp (°C) First Dayb Temp (°C) First Dayb Temp (°C) First Dayb Temp (°C) 
2162 9.0 213 19.9 325 6.2 138 14.9 152 14.2 
2161   181 21.9 212 2.4 143 17.5 143 15.3 
2128 9.6 325 5.9 325 9.7 117 14.0 166 18.2 
2159 16.8 173 29.4 324 13.0 77 15.4 11 18.5 
2026 17.6 36 18.5 12 14.8 217 26.8 346 16.0 
2019 7.2 35 2.3 33 2.5 18 18.9 216 17.8 
2118 7.2 25 -0.8 74 3.5 196 21.7 262 14.6 
2117 6.2 14 -0.5 58 1.6 361 -0.6 1 2.3 
2120 7.6 42 -0.8 52 0.7 178 17.9 47 0.8 

581 5.9 229 18.6 321 5.2 185 2.6 183 17.0 
2121 6.4 14 -1.2 42 0.7 168 19.6 213 2.7 
2119 6.6 336 3.4 336 4.9 165 14.9 169 13.8 

808 6.1 336 2.4 347 4.3 167 15.8 282 11.5 
2018 9.3 16 0.6 251 18.9 154 19.5 158 17.5 
2017 8.4 2 0.9 353 4.5 162 2.1 171 18.8 
2197 8.4 36 0.1 336 3.8 149 18.4 161 17.2 
2172 10.2 1 1.6 1 4.5 351 2.0 35 5.5 
2169 13.2 4 5.6 15 7.6 184 25.8 319 13.0 
2171 13.7 2 5.0 4 7.5 351 5.5 34 16.3 
2015 10.5 19 5.3 357 6.6 35 4.7 125 16.6 
2108 14.5 334 7.9 361 7.6 265 22.5 32 12.8 
2107 14.6 363 6.1 17 9.2 148 26.7 258 24.0 
2168 14.9 335 11.8 18 11.2 262 25.7 3 2.5 
2020 5.9 39 -0.3 51 1.8 178 15.6 258 12.6 
2072 7.2 39 -0.3 61 1.0 166 17.8 35 3.4 
2001 10.5 213 22.0 235 19.4 197 22.8 196 19.1 
2111 9.4 353 1.3 244 18.2 175 2.8 22 19.6 
2093 11.9 334 6.4 346 7.6 162 19.3 161 16.2 
2094 11.0 28 21.4 235 19.6 185 2.6 192 18.9 
2147 12.7 2 23.6 311 12.8 16 21.2 184 2.3 
2092 14.4 254 21.4 281 18.5 192 25.4 212 23.9 
2022 14.8 25 23.2 265 19.5 14 19.8 188 2.9 
2006 13.1 249 21.8 23 7.7 199 23.8 351 9.3 
2202 17.2         
2201 17.7 33 15.4 27 1.5 193 3.6 27 28.8 
2104 15.9 2 28.6 28 9.6 256 23.6 17 16.5 
2105 15.2 1 7.0 336 11.7 149 25.3 318 14.3 
2106 14.9 6 7.6 353 9.9 149 26.6 87 15.3 
2203 17.6 257 25.8 274 23.8 196 27.8 25 26.2 
2200 18.2 1 9.6 12 12.2 138 22.2 138 21.2 
2199 19.2 268 23.5   29 29.4   
2207 20.4 217 28.4 238 26.4 22 28.9 223 26.9 
2016 20.0 214 28.2 236 26.8 98 2.6 26 26.9 
2204 20.3 1 12.2 51 16.3 35 14.5 351 17.8 
2206 22.6 215 3.4 241 28.9 186 28.7 78 19.1 
2205 23.6         
2050 4.2 39 -0.5 49 1.3 165 14.9 178 14.8 
2002 6.1 39 -0.6 213 16.6 171 16.5 189 15.9 
2068 8.6 45 0.7 1 4.1 357 1.8 35 5.7 
2031 9.7 3 2.8 29 11.7 347 4.7 35 6.5 
2047 10.7 25 22.3 323 2.0 187 21.9 212 2.6 
2061 12.0 2 23.7 365 7.5 184 23.2 18 2.9 
2195 12.3 292 13.8 72 6.5 359 4.2 232 2.7 
2220 13.1         
2193 13.3 215 23.9 229 21.5 191 23.2 192 2.7 
2060 13.3 228 23.7   22 24.5   
2194 13.0 23 21.7 236 21.2 159 19.8 186 2.5 
2048 14.9 274 18.7 277 19.4 44 6.9 153 2.8 
2085 16.1 231 27.5 38 9.3 162 26.8 182 24.4 
2090 15.6 216 27.5 238 24.8 194 27.2 194 25.7 
2030 16.1 214 27.0 267 22.2 164 25.7 25 24.8 
2084 16.6 28 28.1 225 26.2 156 25.3 138 2.3 
2091 16.6 24 28.2 24 26.6 152 25.6 56 11.1 
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SCAN 
Site 

MAAT 
(°C)a 

Driest 30-day Interval Largest 30-day Soil Moisture Decline 
51 cm 102 cm 51 cm 102 cm 

First Dayb Temp (°C) First Dayb Temp (°C) First Dayb Temp (°C) First Dayb Temp (°C) 
2083 17.1 229 26.8 262 23.6 151 25.1 128 20.0 
2003 4.4 257 12.1 262 11.4 18 13.8 191 12.7 
2196 8.1 28 11.4 276 13.5 182 19.3 25 17.1 
2004 11.4 213 23.7 253 2.3 176 23.0 198 22.4 
2034 17.0 239 24.7 252 23.8 24 25.6 212 24.6 
2024 16.2 253 22.4 248 23.2 195 24.8 164 22.8 
2025 16.2 254 2.8 274 18.9 95 14.7 134 16.8 
2035 17.1 229 26.7 239 25.6 167 26.9 142 21.7 
2046 17.1 256 24.2 255 24.6 148 25.3 192 25.7 
2064 16.9 222 27.1 25 2.0 187 27.2 327 15.3 
2109 17.3 238 28.7 92 16.9 156 28.9 53 11.5 
2070 17.4 214 3.4 214 27.9 23 3.4 94 16.7 
2032 17.7 274 22.3 45 11.4 158 26.8 248 24.9 
2086 18.0 268 21.9 263 23.4 213 26.8 173 24.7 
2087 18.0 16 1.5 237 26.4 268 23.9 194 25.6 
2110 17.7 17 10.0 26 12.1 194 26.7 263 23.4 
2033 18.0 251 26.1 319 17.5 199 28.5 261 24.6 
2082 19.4 31 19.3 37 19.8 266 24.1 266 24.5 
2005 14.8 249 21.4 254 2.8 118 17.2 238 22.1 
2079 14.9 217 24.5 213 22.3 193 24.6 161 20.0 
2077 14.7 27 23.7 217 22.2 122 17.5 119 15.1 
2075 15.7 219 25.4 219 23.4 118 17.9 144 18.9 
2076 14.6 158 3.0 15 18.9 88 13.2 87 13.3 
2053 15.7 241 23.6 235 22.6 92 15.0 13 16.8 
2078 15.7 162 23.4 28 23.5 119 17.7 157 2.5 
2057 16.7 165 23.6 29 23.4 124 18.7 119 16.3 
2173 14.8 291 16.5 256 22.4 157 26.3 6 9.2 
2055 16.4 227 24.9 239 23.0 188 25.2 26 23.2 
2056 15.5 228 23.5 245 22.6 2 23.7 146 19.7 
2113 15.4 187 26.6 23 25.2 166 25.8 123 18.7 
2179 17.2 273 19.8 255 22.3 153 24.1 115 17.6 
2175 16.0 235 26.7 235 25.5 357 1.6 6 12.5 
2174 17.3 184 26.6 196 26.0 168 26.2 179 24.6 
2114 17.4 267 23.8 275 23.1 145 25.1 141 22.8 
2176 17.6 252 26.3 261 25.3 23 27.8 128 22.5 
2177 18.1 178 27.3   126 23.4   
2178 18.0 32 17.3 32 19.1 42 12.3 45 13.0 
2115 18.0 25 29.3 24 27.8 94 19.9 95 18.7 
2182 19.9 229 26.6 23 26.6 15 3.0 18 2.4 
2181 18.8 242 26.4 257 25.9 21 27.5 21 26.5 
2180 19.1 27 23.6 25 27.8 68 17.4 189 27.5 
2073 10.8 226 2.6 266 16.4 351 3.9 21 2.1 
2014 10.4 256 18.1 258 17.6 237 2.2 26 19.4 
2013 16.2 14 2.8 231 24.0 124 18.8 24 9.8 
2027 18.6 295 19.8 31 2.5 358 12.5 98 19.4 
2009 19.8 127 23.6 136 22.7 218 26.9 72 18.2 
2012 21.4 132 28.4 129 27.3 79 23.1 272 27.1 
2051 23.8         
2069 5.9 33 2.6 33 3.7 11 5.7 17 5.8 
2043 5.7 232 14.3 231 13.5 11 5.7 157 1.2 
2041   236 13.6 24 12.9 113 5.6 362 3.9 
2042   243 13.2 252 12.2 17 4.6 156 9.5 
2011 8.7 273 14.5 236 18.2 179 19.8 113 9.7 
2036 10.1 21 21.2 264 16.0 98 10.0 1 7.8 
2028 10.3 216 22.5 217 21.7 99 1.4 348 5.6 
2049 12.6 239 22.4 237 2.5 224 23.5 36 7.1 
2039 13.2 215 25.3 217 23.1 143 21.7 15 18.7 
2088 12.7 197 22.6 215 2.9 155 19.8 154 17.9 
2040 15.4 192 25.7 221 24.5 134 2.5 167 23.0 
2089 13.7 218 24.2 219 23.2 195 24.6 357 8.5 
2008 16.6 164 25.4 192 24.2 144 23.3 351 12.7 
2037 17.5 163 26.2 212 26.3 11 19.0 16 17.5 
2038 18.5 125 23.7 127 21.9 92 19.4 92 18.4 
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SCAN 
Site 

MAAT 
(°C)a 

Driest 30-day Interval Largest 30-day Soil Moisture Decline 
51 cm 102 cm 51 cm 102 cm 

First Dayb Temp (°C) First Dayb Temp (°C) First Dayb Temp (°C) First Dayb Temp (°C) 
2052 25.1 58 24.8   259 27.5   
2188 24.9 199 26.7 96 24.8 188 26.7 325 25.6 
2112 26.0         

15 21.9 59 2.4 46 21.1 31 21.6 31 22.8 
2045           
2122 26.6 135 29.9 13 29.2 344 26.7 351 26.5 
2067 27.2         
2066 25.7 35 25.6 36 26.0 345 25.2 31 27.6 
2123 27.2 199 28.9 99 27.4 15 28.3 184 28.2 

965 -5.8 38 -6.1   199 0.7   
2212 -4.7         
2213 -2.6 21 -14.3 25 -12.5 296 -0.2 282 -0.4 
2210 -3.3         
2081 -2.7 44 -2.8 88 -0.7 343 -3.0 351 0.3 
2221 -3.8         
2211 -3.8         
2080 -3.9 32 -5.4 54 -4.9 298 -0.7 33 -0.7 
2065 -0.7 43 -2.3 112 -0.6 162 1.9 31 -0.8 
2208 -0.7 69 -5.8 7 -4.7 337 -0.3 34 -1.4 
2062 3.3 22 0.6   1 0.8   
1233 2.1 65 -2.3 81 -1.4 37 -0.3 9 -1.2 
1232 -0.7 31 -1.1 27 0.2 13 -0.7 157 -0.2 
1234 1.3 73 -0.7 74 0.2 13 -0.2 342 1.3 
2209 1.8 75 -0.3 78 0.3 33 -0.9 284 3.4 
2097   156 22.8 28 23.3 12 21.4 23 23.4 
2099   299 19.2 195 19.2 231 19.6 152 18.7 
2102   22 18.7 237 18.7 98 16.8 229 18.7 
2103   18 18.9 24 2.3 153 18.5 99 18.7 
2100 21.7 274 22.3 253 22.2 78 19.9 144 3.0 
2098   233 13.1   351 1.8   
2101  281 13.5   127 12.9   
2096 21.0 336 22.5   319 23.1   

aMAAT–mean annual air temperature 
bListed day is the first day (1–365) of the 30-day interval 
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Appendix C 

Supplemental Data and Figure for Chapter 4 

 
Table C.1   Raw Clumped Isotope Data 1 of 2 
 

Day Date Int.a Name d13C d18O d45 d46 d47 d48 d49 
September 2014 run        
Heated Gasses and 25°C Waters        

1 9/9 1 MCBHG -2.85 23.32 0.41 -11.256 -11.911 -14.707 8.5 
1 9/9 1 MixHG -3.08 25.14 0.25 -9.499 -10.249 -15.566 4.15 
1 9/9 1 CararraHG 2.04 36.86 5.44 1.83 6.662 8.818 6.291 
1 9/9 1 OoidsHG 4.34 37.36 7.62 2.313 9.491 16.855 2.893 
1 9/9 1 AAS25C -41.51 17.01 -36.09 -17.422 -55.164 -35.217 5.359 
2 9/10 1 MixHG -3.04 26.57 0.34 -8.11 -8.79 -17.448 8.411 
2 9/10 1 MCBHG -3.35 20.99 -0.135 -13.499 -14.698 -26.647 5.635 
2 9/10 1 MDIWHG -41.34 28.97 -35.539 -5.883 -44.328 -13.7 12.117 
2 9/10 1 AAS25C -41.19 17.96 -35.76 -16.509 -54.047 -33.31 11.596 
2 9/10 1 Evap25C -40.43 47.15 -34.1 11.674 -24.83 35.797 6.319 
2 9/10 1 MDIW25C -41.49 30.58 -35.631 -4.327 -42.071 -8.086 10.362 
3 9/11 1 CararraHG 2.10 36.73 5.489 1.704 6.605 5.159 9.811 
3 9/11 1 MixHG -2.99 22.49 0.251 -12.055 -12.87 -30.131 9.655 
3 9/11 1 Evap25C -40.44 46.64 -34.13 11.177 -25.349 33.492 11.157 
3 9/11 1 MDIW25C -41.42 30.66 -35.561 -4.245 -41.883 -9.768 11.184 
4 9/12 1 MixHG -2.94 27.52 0.459 -7.2 -7.743 -16.278 9.873 
4 9/12 1 MDIW25C -41.52 30.26 -35.67 -4.637 -42.371 -9.213 10.28 
4 9/12 1 MDIW25C -41.34 30.80 -35.483 -4.111 -41.67 -8.524 12.104 
6 9/14 2 MCBHG -3.08 22.31 0.163 -12.229 -13.104 -32.319 39.987 
6 9/14 2 AAS25 -41.66 15.35 -36.28 -19.028 -56.976 -48.441 15.571 
7 9/15 2 CarraraHG 1.88 37.10 5.297 2.058 6.744 6.355 7.239 
7 9/15 2 AAS25C -41.48 17.31 -36.054 -17.139 -54.978 -43.085 12.317 
8 9/16 2 CararraHG 2.11 37.61 5.527 2.552 7.475 7.937 7.971 
8 9/16 2 Evap25 -40.50 46.96 -34.171 11.49 -25.106 30.507 9.12 
9 9/17 2 Evap25C -41.39 46.40 -35.028 10.948 -26.552 28.88 8.238 
10 9/18 2 MixHG -3.09 24.95 0.244 -9.677 -10.485 -24.863 8.803 
11 9/19 2 MCBHG -3.05 21.82 0.172 -12.699 -13.609 -31.356 9.77 
11 9/19 2 MDIW25C -41.37 29.27 -35.562 -5.595 -43.208 -14.264 13.339 
12 9/20 3 AASHG -41.55 16.41 -36.142 -18.005 -56.782 -46.34 10.931 
12 9/20 3 AAS25C -41.36 17.11 -35.944 -17.328 -55.082 -45.269 16.377 
14 9/22 3 MDIWHG -41.24 26.66 -35.524 -8.105 -46.492 -20.759 10.947 
14 9/22 3 AAS25 -41.45 17.37 -36.021 -17.072 -54.902 -45.649 23.501 
15 9/23 3 CararraHG 2.02 33.60 5.312 -1.318 3.335 -3.535 8.089 
15 9/23 3 Evap25C -41.35 46.74 -34.977 11.27 -26.222 29.66 9.621 
16 9/24 3 EVAPHG -41.39 45.16 -35.067 9.744 -27.79 25.269 10.19 
16 9/24 3 AAS25 -41.46 17.51 -36.026 -16.944 -54.785 -44.182 15.208 
18 9/26 3 MDIWHG -41.15 29.36 -35.349 -5.499 -43.793 -15.192 14.339 
18 9/26 3 AAS25C -41.57 17.24 -36.134 -17.199 -55.149 -43.67 14.154 
19 9/27 3 AASHG -41.34 16.96 -35.933 -17.472 -56.066 -44.062 12.093 
19 9/27 3 Evap25C -41.31 47.04 -34.928 11.56 -25.901 31.689 10.317 
20 9/28 3 MixHG -3.35 26.44 0.04 -8.247 -9.255 -21.547 10.202 
20 9/28 3 AAS25C -41.33 17.70 -35.896 -16.754 -54.52 -43.932 15.737 
21 9/29 3 Carrara2HG 2.35 35.20 5.679 0.223 5.258 -0.597 10.267 
21 9/29 3 MDIW25C -41.26 30.66 -35.413 -4.249 -41.857 -11.468 12.923 
23 10/1 3 EvapHG -41.34 39.76 -35.194 4.534 -33.891 11.114 13.361 
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Day Date Int.a Name d13C d18O d45 d46 d47 d48 d49 
Carbonate Standards        

3 9/11 1 Carrara1 1.78 36.45 5.183 1.426 6.308 4.789 5.048 
3 9/11 1 Carrara2 1.96 37.03 5.374 1.994 7.116 6.363 4.853 
16 9/24 3 Cararra3 1.97 37.09 5.38 2.047 7.119 4.746 8.162 
22 9/30 3 Carrara4 1.70 36.17 5.102 1.161 5.953 2.844 8.006 

           
Samples        

5 9/13 1 NS-WP-079-V -9.00 24.70 -5.32 -9.936 -16.168 -24.087 9.861 
5 9/13 1 NS-WP-148-V -8.63 24.25 -4.982 -10.369 -16.195 -25.729 10.302 
5 9/13 1 DO14-117-8-L -4.94 31.23 -1.294 -3.626 -5.513 -9.192 8.647 
5 9/13 1 NS-WP-421-J -6.42 30.35 -2.713 -4.475 -7.914 26.775 7.451 
5 9/13 1 NS-WP-148-N -9.69 27.40 -5.874 -7.33 -14.102 3.309 6.918 
7 9/15 2 NS-WP-079-V -9.02 24.61 -5.335 -10.025 -16.287 -25.195 9.517 
8 9/16 2 NS-WP-148-V -8.65 24.22 -5 -10.396 -16.25 -26.639 10.903 
8 9/16 2 DO14-117-8-L -4.90 31.31 -1.257 -3.546 -5.399 -9.347 9.746 
8 9/16 2 NS-WP-079-V -9.31 24.04 -5.628 -10.569 -17.16 -27.534 10.923 
8 9/16 2 NS-WP-421-J -6.43 30.32 -2.725 -4.505 -7.961 6.465 8.119 
8 9/16 2 NS-WP-148-N -9.56 27.29 -5.763 -7.432 -14.083 -3.53 8.443 
11 9/19 2 NS-WP-148-V -8.93 24.32 -5.263 -10.297 -16.438 -26.975 10.698 
11 9/19 2 DO14-117-8-L -4.96 31.39 -1.305 -3.467 -5.357 -6.208 6.366 
12 9/20 3 NS-WP-421-J -6.56 30.32 -2.841 -4.501 -8.061 2.594 9.025 
12 9/20 3 NS-WP-148-N -9.68 27.36 -5.867 -7.365 -14.149 -13.098 10.31 
16 9/24 3 NS-WP-079-V -8.91 24.61 -5.236 -10.023 -16.203 -26.091 9.475 
16 9/24 3 NS-WP-421-J -6.44 30.36 -2.73 -4.464 -7.943 -2.011 9.65 
16 9/24 3 NS-WP-148-N -9.57 27.58 -5.756 -7.151 -13.801 -12.888 9.871 
16 9/24 3 NS-WP-079-N -8.03 28.95 -4.267 -5.825 -10.92 57.879 6.909 
16 9/24 3 NS-WP-442-J -8.02 30.24 -4.221 -4.585 -9.598 -8.844 9.171 
21 9/29 3 NS-WP-442-J -7.78 30.50 -3.98 -4.336 -9.107 -8.801 11.609 
21 9/29 3 NS-WP-079-N -7.70 28.97 -3.957 -5.806 -10.554 0.878 9.832 
21 9/29 3 NS-WP-442-J -7.95 30.15 -4.151 -4.675 -9.639 -10.236 9.905 
22 9/30 3 NS-WP-079-N -7.69 28.97 -3.952 -5.812 -10.534 8.849 5.759 

           
December 2015 run        
Heated Gasses and 25°C Waters        

1 11/30 1 2xEVHG -41.05 55.10 -34.433 19.345 -18.366 43.117 9.901 
1 11/30 1 CarraraHG 1.91 29.47 5.075 -5.303 -0.957 -13.812 11.722 
1 11/30 1 MDIWHG -41.14 28.16 -35.378 -6.665 -44.381 -16.789 18.081 
1 11/30 1 2xEV25C -41.12 70.45 -34.01 34.153 -2.829 78.119 7.844 
1 11/30 1 MDIW25C -41.04 30.66 -35.205 -4.245 -41.07 -11.085 19.309 
1 11/30 1 Evap25C -41.05 47.56 -34.672 12.061 -24.807 26.907 13.02 
2 12/1 1 2xEVHG -41.00 58.52 -34.268 22.646 -15.029 53.083 -7.263 
2 12/1 1 2xEV25C -41.26 71.12 -34.12 34.799 -2.323 80.261 6.126 
3 12/2 1 OoidsHG 4.41 36.59 7.652 1.573 8.694 26.203 3.286 
3 12/2 1 MDIW25C -41.39 30.17 -35.552 -4.72 -41.867 -11.533 14.261 
4 12/3 1 EvapHG -41.02 35.40 -35.033 0.33 -37.24 -0.491 15.538 
5 12/4 1 CarraraHG 1.82 35.88 5.205 0.876 5.401 0.706 7.365 
5 12/4 1 Evap25C -41.02 47.43 -34.649 11.942 -24.885 26.746 12.8 
6 12/5 1 MDIW25C -41.05 30.44 -35.219 -4.463 -41.251 -11.197 20.901 
7 12/6 1 EvapHG -41.11 42.19 -34.896 6.876 -30.851 14.069 13.45 
7 12/6 1 2xEV25C -41.07 70.50 -33.961 34.208 -2.717 79.033 4.478 
8 12/7 1 OoidsHG 4.25 32.07 7.358 -2.789 3.958 20.402 5.56 
8 12/7 1 MDIWHG -40.87 28.45 -35.12 -6.376 -43.819 -14.661 12.235 
9 12/8 1 CarraraHG 2.09 31.65 5.32 -3.2 1.451 -8.889 10.069 
9 12/8 1 Evap25C -40.91 47.79 -34.528 12.287 -24.417 27.154 13.023 
11 12/10 1 EvapHG -41.08 44.59 -34.793 9.192 -28.538 19.784 13.012 
11 12/10 1 MDIW25C -41.19 30.06 -35.361 -4.831 -41.764 -10.742 10.731 
12 12/11 1 2xEV25C -41.14 71.17 -34.005 34.849 -2.173 80.53 7.15 
13 12/12 1 2xEVHG -40.96 65.30 -34.016 29.189 -8.446 66.634 9.761 

           
Carbonate Standards        

2 12/1 1 Carrara1 1.91 36.95 5.316 1.909 6.831 3.03 10.315 
2 12/1 1 Carrara2 1.96 37.03 5.366 1.99 7.002 3.439 9.453 
2 12/1 1 Ooids1 4.70 39.09 8.006 3.98 12.038 8.529 0.336 
2 12/1 1 Ooids2 4.77 39.28 8.08 4.166 12.3 8.651 8.885 
4 12/3 1 Carrara3 1.71 36.40 5.119 1.384 6.129 1.971 2.199 
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Day Date Int.a Name d13C d18O d45 d46 d47 d48 d49 
6 12/5 1 Ooids3 4.70 39.29 8.017 4.179 12.246 8.463 8.437 
9 12/8 1 Carrara4 1.89 36.85 5.298 1.813 6.771 3.363 3.769 
12 12/11 1 Ooids5 4.74 39.30 8.053 4.185 12.311 9.516 4.294 
13 12/12 1 Carrara5 1.86 36.75 5.272 1.723 6.615 2.917 8.226 

           
Samples        

5 12/4 1 NS-WP-338-V -7.78 26.79 -4.106 -7.913 -12.61 -19.35 15.82 
6 12/5 1 NS-WP-056-J -6.91 30.19 -3.174 -4.631 -8.42 6.84 12.193 
6 12/5 1 NS-WP-442-J -7.92 30.16 -4.124 -4.661 -9.436 -10.437 14.002 
6 12/5 1 NS-WP-338-V -7.71 26.92 -4.038 -7.791 -12.422 -18.822 14.469 
8 12/7 1 NS-WP-338-V -7.66 26.81 -3.991 -7.898 -12.462 -19.2 14.825 
8 12/7 1 PL-12-09 -2.35 21.69 0.832 -12.822 -12.437 -29.625 13.657 
8 12/7 1 NS-WP-442-J -7.88 30.12 -4.09 -4.7 -9.435 -11.355 13.696 
8 12/7 1 PL-12-09 -2.15 21.73 1.017 -12.783 -12.269 -30.277 15.946 
           

February 2016 run        
Heated Gasses and 25°C Waters        

1 2/22 1 EvapHGleaky -41.11 39.39 -34.985 4.18 -33.598 7.883 12.412 
1 2/22 1 2xEV25C -41.08 70.60 -33.967 34.306 -2.656 79.343 2.481 
1 2/22 1 CarraraHG 1.88 34.96 5.228 -0.006 4.519 -1.604 7.286 
1 2/22 1 OoidsHG 4.33 26.17 7.241 -8.484 -1.872 -20.389 8.129 
2 2/23 1 MDIW25C -41.22 29.91 -35.397 -4.969 -41.99 -12.704 16.856 
2 2/23 1 Evap25C -41.34 46.12 -34.991 10.678 -26.479 23.864 8.748 
2 2/23 1 MDIW25C -41.08 30.51 -35.251 -4.397 -41.286 -11.259 16.578 
2 2/23 1 2xEVHG -41.11 50.75 -34.628 15.142 -22.602 34.089 6.075 
3 2/24 2 EvapHG -41.06 37.45 -35.006 2.31 -35.411 3.742 13.986 
4 2/25 2 2xEV25C -40.50 71.36 -33.405 35.04 -1.336 81.49 3.755 
5 2/26 2 Evap25C -40.70 46.99 -34.363 11.512 -25.041 25.73 9.713 
5 2/26 2 MATHHG -3.76 30.70 -0.2 -4.134 -5.273 -10.835 9.714 
6 2/27 2 OoidsHG 4.70 36.17 7.915 1.163 8.549 0.986 8.425 
7 2/28 2 MDIW25C -40.79 30.42 -34.978 -4.482 -41.106 -11.644 16.389 
7 2/28 2 2xEVHG -40.64 62.14 -33.822 26.141 -11.247 60.416 8.875 
8 2/29 2 2xEV25C  -40.67 71.17 -33.563 34.851 -1.731 84.043 -0.094 
8 2/29 2 MATHHG -3.96 30.07 -0.411 -4.736 -6.108 -11.757 8.733 
9 3/1 2 Evap25C -40.98 46.20 -34.645 10.749 -26.07 24.31 9.023 
9 3/1 2 CarraraHG 0.00 34.98 3.467 0.007 3.187 0.286 9.486 
10 3/2 2 MDIW25C -40.93 30.28 -35.118 -4.612 -41.413 -11.897 13.825 
11 3/3 2 OoidsHG 4.60 37.78 7.875 2.72 10.113 132.966 -11.829 
12 3/4 2 2xEV25C -40.57 71.10 -33.472 34.784 -1.665 82.303 2.754 
13 3/5 3 EvapHG -40.84 31.88 -34.98 -3.073 -40.624 -8.779 14.391 
14 3/6 3 Evap25C -40.92 46.19 -34.596 10.746 -26.068 24.492 10.685 
14 3/6 3 MDIWHG -40.76 26.64 -35.073 -8.127 -45.631 -20.715 14.095 

           
Carbonate Standards        

2 2/23 1 Carrara1 1.94 36.93 5.347 1.89 6.832 2.76 9.783 
2 2/23 1 Carrara2 1.94 37.02 5.355 1.981 6.93 3.099 10.417 
2 2/23 1 Ooids1 4.82 39.32 8.126 4.211 12.359 8.401 8.5 
4 2/25 2 Ooids3 4.76 39.37 8.077 4.252 12.374 8.63 7.465 
6 2/27 2 Carrara3 1.85 36.97 5.261 1.931 6.834 3.199 8.836 
8 2/29 2 Ooids4 4.53 39.10 7.854 3.991 11.861 8.135 7.016 
10 3/2 2 Carrara4 1.95 37.06 5.361 2.02 7.021 3.639 6.665 
12 3/4 2 Ooids5 4.69 39.33 8.011 4.219 12.309 8.974 5.238 
14 3/6 2 Carrara5 1.92 36.93 5.328 1.891 6.846 3.039 8.055 

           
Samples        

4 2/25 2 NS-WP-148-N001 -9.62 27.76 -5.798 -6.985 -13.517 -15.1 12.161 
6 2/27 2 PI2-52-2 -12.15 30.58 -8.082 -4.266 -13.204 -10.879 9.374 
6 2/27 2 WC18-47-9 -9.20 27.28 -5.419 -7.445 -13.646 -16.782 12.01 
6 2/27 2 WC18-49-7 -2.86 31.59 0.671 -3.268 -3.068 -8.972 10.771 
7 2/28 2 PI2-52-2 -12.35 30.43 -8.277 -4.411 -13.529 -11.451 11.28 
7 2/28 2 WC18-49-7 -2.95 31.54 0.585 -3.319 -3.197 -9.202 10.192 
9 3/2 2 WC18-49-7 -2.77 31.67 0.759 -3.197 -2.892 -8.906 9.941 
10 3/2 2 PI2-50-2 -12.31 30.11 -8.246 -4.723 -13.838 -12.276 11.695 
10 3/2 2 NS-WP-442-J -7.58 30.25 -3.802 -4.573 -9.028 -9.403 9.319 
10 3/2 2 PL-12-09 -2.63 21.45 0.562 -13.054 -12.967 -31.621 11.396 
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Day Date Int.a Name d13C d18O d45 d46 d47 d48 d49 
13 3/5 2 DO6-62-9 -3.95 32.81 -0.315 -2.1 -2.92 -6.25 8.66 
13 3/5 2 DO6-62-9 -4.16 32.41 -0.525 -2.481 -3.507 -7.242 8.73 
13 3/5 2 PI2-50-2 -12.51 30.52 -8.424 -4.326 -13.623 -11.679 10.826 
13 3/5 2 DO6-62-9 -4.10 32.73 -0.452 -2.173 -3.125 -6.413 8.422 
14 3/6 2 CHC-12-04 -0.88 31.16 2.513 -3.682 -1.534 -10.113 9.01 
14 3/6 2 CHC-12-04 -0.88 31.03 2.515 -3.811 -1.686 -10.101 9.68 
14 3/6 2 CHC-12-04 -0.87 31.21 2.523 -3.637 -1.462 -9.454 8.507 

aReference Frame Interval 
*Red samples or standards were excluded due to high mass-48 anomalies or leaks 
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Table C.2   Raw Clumped Isotope Data 2 of 2 
 

Day Date Int.a Name D47 D48 D49 
September 2014 run    
Heated Gasses and 25°C Waters    

1 9/9 1 MCBHG -1.269 7.855 30.75 
1 9/9 1 MixHG -1.172 3.406 22.9 
1 9/9 1 CararraHG -0.752 5.137 -3.094 
1 9/9 1 OoidsHG -0.653 12.167 -9.689 
1 9/9 1 AAS25C -1.537 -0.701 82.278 
2 9/10 1 MixHG -1.167 -1.308 24.322 
2 9/10 1 MCBHG -1.294 0.174 33.024 
2 9/10 1 MDIWHG -2.198 -1.991 64.194 
2 9/10 1 AAS25C -1.617 -0.584 86.614 
2 9/10 1 Evap25C -0.753 12.03 20.692 
2 9/10 1 MDIW25C -1.28 0.554 59.197 
3 9/11 1 CararraHG -0.736 1.742 0.588 
3 9/11 1 MixHG -1.278 -6.316 33.751 
3 9/11 1 Evap25C -0.77 10.77 26.625 
3 9/11 1 MDIW25C -1.241 -1.308 59.803 
4 9/12 1 MixHG -1.137 -1.958 23.826 
4 9/12 1 MDIW25C -1.244 0.04 59.806 
4 9/12 1 MDIW25C -1.233 -0.321 60.398 
6 9/14 2 MCBHG -1.251 -8.21 65.274 
6 9/14 2 AAS25 -1.64 -11.169 97.027 
7 9/15 2 CarraraHG -0.748 2.225 -2.451 
7 9/15 2 AAS25C -1.658 -9.422 89.112 
8 9/16 2 CararraHG -0.743 2.811 -2.936 
8 9/16 2 Evap25 -0.781 7.228 23.981 
9 9/17 2 Evap25C -0.822 6.717 25.134 
10 9/18 2 MixHG -1.224 -5.713 28.013 
11 9/19 2 MCBHG -1.305 -6.278 35.281 
11 9/19 2 MDIW25C -1.288 -3.14 64.9 
12 9/20 3 AASHG -2.606 -11.048 89.614 
12 9/20 3 AAS25C -1.696 -11.301 93.761 
14 9/22 3 MDIWHG -2.281 -4.691 67.63 
14 9/22 3 AAS25 -1.679 -12.209 100.959 
15 9/23 3 CararraHG -0.835 -0.902 5.024 
15 9/23 3 Evap25C -0.851 6.837 25.841 
16 9/24 3 EVAPHG -0.881 5.577 29.571 
16 9/24 3 AAS25 -1.678 -10.949 91.765 
18 9/26 3 MDIWHG -2.222 -4.272 65.496 
18 9/26 3 AAS25C -1.692 -9.905 91.318 
19 9/27 3 AASHG -2.603 -9.761 89.452 
19 9/27 3 Evap25C -0.855 8.244 25.914 
20 9/28 3 MixHG -1.191 -5.207 26.744 
20 9/28 3 AAS25C -1.728 -11.073 91.76 
21 9/29 3 Carrara2HG -0.814 -1.043 3.754 
21 9/29 3 MDIW25C -1.367 -3.015 61.461 
23 10/1 3 EvapHG -1.955 2.006 43.5 

Carbonate Standards    
3 9/11 1 Carrara1    
3 9/11 1 Carrara2 -0.444 1.929 -3.266 
16 9/24 3 Cararra3 -0.395 2.362 -4.77 
22 9/30 3 Carrara4 -0.451 0.645 -1.604 

    -0.454 0.519 0.274 
Samples    

5 9/13 1 NS-WP-079-V    
5 9/13 1 NS-WP-148-V -0.974 -4.4 35.754 
5 9/13 1 DO14-117-8-L -0.922 -5.206 36.722 
5 9/13 1 NS-WP-421-J -0.619 -1.968 17.279 
5 9/13 1 NS-WP-148-N -0.731 36.026 19.319 
7 9/15 2 NS-WP-079-V -0.889 18.18 28.019 
8 9/16 2 NS-WP-148-V -0.993 -5.353 35.598 
8 9/16 2 DO14-117-8-L -0.933 -6.08 37.414 
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Day Date Int.a Name D47 D48 D49 
8 9/16 2 NS-WP-079-V -0.621 -2.283 18.188 
8 9/16 2 NS-WP-421-J -1.036 -6.647 38.49 
8 9/16 2 NS-WP-148-N -0.737 15.596 20.069 
11 9/19 2 NS-WP-148-V -0.883 11.448 29.662 
11 9/19 2 DO14-117-8-L -0.951 -6.624 37.291 
12 9/20 3 NS-WP-421-J -0.608 0.718 14.672 
12 9/20 3 NS-WP-148-N -0.722 11.68 21.104 
16 9/24 3 NS-WP-079-V -0.909 1.601 31.547 
16 9/24 3 NS-WP-421-J -1.011 -6.271 35.443 
16 9/24 3 NS-WP-148-N -0.754 6.959 21.542 
16 9/24 3 NS-WP-079-N -0.884 1.382 30.538 
16 9/24 3 NS-WP-442-J -0.823 70.312 23.191 
21 9/29 3 NS-WP-442-J -0.761 0.307 22.929 
21 9/29 3 NS-WP-079-N -0.761 -0.149 24.632 
21 9/29 3 NS-WP-442-J -0.792 12.602 25.783 
22 9/30 3 NS-WP-079-N -0.786 -0.917 23.778 

    -0.772 20.679 21.651 
December 2015 run    
Heated Gasses and 25°C Waters    

1 11/30 1 2xEVHG    
1 11/30 1 CarraraHG -1.216 3.9 9.608 
1 11/30 1 MDIWHG -0.946 -3.27 16.862 
1 11/30 1 2xEV25C -1.654 -3.552 71.93 
1 11/30 1 MDIW25C -0.141 8.084 -21.053 
1 11/30 1 Evap25C -0.773 -2.636 67.899 
2 12/1 1 2xEVHG -0.494 2.576 27.366 
2 12/1 1 2xEV25C -1.177 6.958 -14.015 
3 12/2 1 OoidsHG -0.129 8.827 -23.8 
3 12/2 1 MDIW25C -0.749 22.982 -7.893 
4 12/3 1 EvapHG -0.764 -2.137 64.016 
5 12/4 1 CarraraHG -1.477 -1.151 54.207 
5 12/4 1 Evap25C -0.828 -1.044 0.089 
6 12/5 1 MDIW25C -0.483 2.656 27.355 
7 12/6 1 EvapHG -0.732 -2.313 70.043 
7 12/6 1 2xEV25C -1.422 0.265 38.484 
8 12/7 1 OoidsHG -0.133 8.832 -24.476 
8 12/7 1 MDIWHG -0.86 26.118 3.241 
9 12/8 1 CarraraHG -1.627 -1.975 64.862 
9 12/8 1 Evap25C -0.867 -2.516 10.73 
11 12/10 1 EvapHG -0.468 2.37 26.755 
11 12/10 1 MDIW25C -1.407 1.291 33.243 
12 12/11 1 2xEV25C -0.75 -1.115 60.322 
13 12/12 1 2xEVHG -0.15 8.982 -23.024 

    -1.054 6.989 -9.87 
Carbonate Standards    

2 12/1 1 Carrara1    
2 12/1 1 Carrara2 -0.535 -0.788 0.868 
2 12/1 1 Ooids1 -0.496 -0.543 -0.197 
2 12/1 1 Ooids2 -0.164 0.549 -15.837 
4 12/3 1 Carrara3 -0.162 0.3 -7.864 
6 12/5 1 Ooids3 -0.514 -0.796 -5.94 
9 12/8 1 Carrara4 -0.164 0.086 -8.265 
12 12/11 1 Ooids5 -0.482 -0.265 -5.41 
13 12/12 1 Carrara5 -0.143 1.118 -12.39 

    -0.521 -0.529 -0.789 
Samples    

5 12/4 1 NS-WP-338-V    
6 12/5 1 NS-WP-056-J -0.631 -3.644 36.343 
6 12/5 1 NS-WP-442-J -0.611 16.23 24.937 
6 12/5 1 NS-WP-338-V -0.623 -1.147 27.874 
8 12/7 1 NS-WP-338-V -0.632 -3.354 34.64 
8 12/7 1 PL-12-09 -0.615 -3.522 35.171 
8 12/7 1 NS-WP-442-J -0.675 -4.253 38.792 
8 12/7 1 PL-12-09 -0.618 -1.995 27.606 
    -0.735 -5.002 40.851 
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Day Date Int.a Name D47 D48 D49 
February 2016 run    
Heated Gasses and 25°C Waters    

1 2/22 1 EvapHGleaky    
1 2/22 1 2xEV25C -1.529 -0.49 43.005 
1 2/22 1 CarraraHG -0.159 8.931 -26.591 
1 2/22 1 OoidsHG -0.862 -1.592 1.721 
2 2/23 1 MDIW25C -0.928 -3.554 17.322 
2 2/23 1 Evap25C -0.813 -2.82 67.079 
2 2/23 1 MDIW25C -0.525 2.344 26.15 
2 2/23 1 2xEVHG -0.798 -2.507 65.413 
3 2/24 2 EvapHG -1.27 3.47 14.2 
4 2/25 2 2xEV25C -1.552 -0.88 48.484 
5 2/26 2 Evap25C -0.134 9.504 -27.317 
5 2/26 2 MATHHG -0.531 2.516 24.755 
6 2/27 2 OoidsHG -1.005 -2.606 18.189 
7 2/28 2 MDIW25C -0.76 -1.339 -2.286 
7 2/28 2 2xEVHG -0.82 -2.725 65.07 
8 2/29 2 2xEV25C  -1.175 7.075 -5.171 
8 2/29 2 MATHHG -0.181 12.256 -30.53 
9 3/1 2 Evap25C -1.031 -2.329 18.64 
9 3/1 2 CarraraHG -0.545 2.639 25.894 
10 3/2 2 MDIW25C -0.394 0.273 5.76 
11 3/3 2 OoidsHG -0.861 -2.72 62.822 
12 3/4 2 2xEV25C -0.698 126.829 -25.266 
13 3/5 3 EvapHG -0.149 10.762 -27.742 
14 3/6 3 Evap25C -1.704 -2.659 60.03 
14 3/6 3 MDIWHG -0.591 2.822 27.534 

    -1.841 -4.602 70.467 
Carbonate Standards    

2 2/23 1 Carrara1    
2 2/23 1 Carrara2 -0.547 -1.019 0.346 
2 2/23 1 Ooids1 -0.548 -0.863 0.787 
4 2/25 2 Ooids3 -0.196 -0.038 -8.379 
6 2/27 2 Carrara3 -0.17 0.108 -9.424 
8 2/29 2 Ooids4 -0.498 -0.665 -0.582 
10 3/2 2 Carrara4 -0.194 0.135 -9.128 
12 3/4 2 Ooids5 -0.502 -0.405 -3.013 
14 3/6 2 Carrara5 -0.136 0.514 -11.482 

    -0.516 -0.743 -1.349 
Samples    

4 2/25 2 NS-WP-148-N001    
6 2/27 2 PI2-52-2 -0.717 -1.196 32.583 
6 2/27 2 WC18-47-9 -0.717 -2.385 26.73 
6 2/27 2 WC18-49-7 -0.784 -1.978 32.95 
7 2/28 2 PI2-52-2 -0.545 -2.463 16.571 
7 2/28 2 WC18-49-7 -0.701 -2.672 29.178 
9 3/2 2 WC18-49-7 -0.534 -2.591 16.185 
10 3/2 2 PI2-50-2 -0.528 -2.539 15.5 
10 3/2 2 NS-WP-442-J -0.738 -2.88 30.201 
10 3/2 2 PL-12-09 -0.631 -0.28 22.596 
13 3/5 2 DO6-62-9 -0.702 -5.835 37.252 
13 3/5 2 DO6-62-9 -0.531 -2.063 13.178 
13 3/5 2 PI2-50-2 -0.527 -2.298 14.237 
13 3/5 2 DO6-62-9 -0.727 -3.072 28.706 
14 3/6 2 CHC-12-04 -0.524 -2.081 13.232 
14 3/6 2 CHC-12-04 -0.494 -2.783 13.644 
14 3/6 2 CHC-12-04 -0.521 -2.512 14.574 

aReference Frame Interval 
*Red samples or standards were excluded due to high mass-48 anomalies or leaks 
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Figure C.1 

Solid state reordering modelling results when varying the initial Δ47 value. A–D plot the different 
thermal history scenarios. E–H plot the modelled reordering results corresponding to the above thermal 
history at initial temperatures of 10, 20, and 30°C. The thick orange vertical line represents the observed 
range of Δ47 values from the sedimentary/early-diagenetic pool, and the thin orange line corresponds to 
the error window of this sample pool 
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