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ABSTRACT

Scaling causality analysis for production systems

by

Michael C. Chow

Chair: Jason Flinn

Causality analysis reveals how program values influence each other. It is important

for debugging, optimizing, and understanding the execution of programs. This thesis

scales causality analysis to production systems consisting of desktop and server ap-

plications as well as large-scale Internet services. This enables developers to employ

causality analysis to debug and optimize complex, modern software systems. This

thesis shows that it is possible to scale causality analysis to both fine-grained instruc-

tion level analysis and analysis of Internet scale distributed systems with thousands

of discrete software components by developing and employing automated methods to

observe and reason about causality.

First, we observe causality at a fine-grained instruction level by developing the

first taint tracking framework to support tracking millions of input sources. We also

introduce flexible taint tracking to allow for scoping different queries and dynamic

filtering of inputs, outputs, and relationships.

Next, we introduce the Mystery Machine, which uses a “big data” approach to

discover causal relationships between software components in a large-scale Internet

service. We leverage the fact that large-scale Internet services receive a large number

x



of requests in order to observe counterexamples to hypothesized causal relationships.

Using discovered casual relationships, we identify the critical path for request execu-

tion and use the critical path analysis to explore potential scheduling optimizations.

Finally, we explore using causality to make data-quality tradeoffs in Internet ser-

vices. A data-quality tradeoff is an explicit decision by a software component to return

lower-fidelity data in order to improve response time or minimize resource usage. We

perform a study of data-quality tradeoffs in a large-scale Internet service to show the

pervasiveness of these tradeoffs. We develop DQBarge, a system that enables bet-

ter data-quality tradeoffs by propagating critical information along the causal path

of request processing. Our evaluation shows that DQBarge helps Internet services

mitigate load spikes, improve utilization of spare resources, and implement dynamic

capacity planning.
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CHAPTER I

Introduction

Software systems have become increasingly complex to reason about. This is

exhibited by the number of outages and bugs introduced by either errors from oper-

ators or the developers of these systems. For example, Jim Gray’s classic study [38]

attributes 42% of outages to system administration and 25% to software faults. Op-

penheimer et al. [67] found that large-scale Internet services, which handle millions

of requests a day with hundreds of software components, still suffer from these same

trends. They also found that the increased complexity of these systems caused out-

ages due to operator errors to take longer to repair. Li et. al [53] found that over

29,000 reported bugs in open source software systems were due to semantic bugs, or

bugs that arose from a programmer’s lack of understanding of the program design

requirements. Over 80% of their reported bugs were of this nature and the reported

time to diagnose and troubleshoot them was almost twice as long as other bugs. Li

et. al also found that many of these bugs can lead to security and privacy vulnerabil-

ities causing unintended consequences. Additionally, Enck et al. [34] found that in 30

Android applications, two-thirds of the applications used sensitive data suspiciously,

such as sending a user’s location to advertising servers without the user’s knowledge.

These bugs and outages arise because complexity makes it difficult for developers,

operators, and users to understand software systems, debug errors like misconfigu-
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rations, and determine how a program uses the data it reads. The complexity of

software systems makes fundamentally understanding and observing the causality of

program values difficult. Causality describes how a program value influences another

according to the data flow or control flow of the program.

Observing and understanding causality is fundamental for developers and users

to properly debug and optimize their programs. For example, developers have

used causality for debugging programs by tracing execution through causally related

events [59]. Fine-grained causality analysis at the byte-level has been used to detect

privacy leaks [34, 69, 55]. It has also been applied to debugging failures and perfor-

mance issues stemming from misconfigurations [8, 7]. Additionally, there are a large

number of systems that rely on tracking or inferring causality in order to understand

and troubleshoot large-scale distributed systems [3, 13, 23, 36, 58, 76, 99, 57]. In per-

formance debugging, understanding causality is fundamental to deriving the critical

path of execution. It has been applied in a wide variety of areas such as processor

design [82], distributed systems [12], and Internet and mobile applications [76, 95].

Causality is used in performing what-if analysis and predicting the impact of software

changes and optimizations [88, 25, 11].

However, due to the complexity of software systems, observing causality at a gran-

ularity that is useful for debugging and troubleshooting is challenging. At one end

of the spectrum, causality can be tracked at a very fine granularity at the byte level.

Fine-grained analysis, however, requires analyzing the execution at the machine in-

struction level. At this granularity, it requires analyzing the billions of instructions

that make up complex programs, which can lead to prohibitively high runtime over-

heads. The high performance overhead for fine-grained analysis is unacceptable for

online use in production systems. Therefore, offline analysis is needed. Tracking

causality at byte-level granularity requires tracking every single byte of interest that

a program reads or writes. Observing the causality between inputs and outputs at

2



byte granularity requires new techniques that scale to tracking the millions of causal

relationships between bytes as the program executes.

At the other end of the spectrum, tracing causality in large-scale systems is diffi-

cult due to the sheer size of the system and the large number of components that make

up the system. Observing causality in large-scale distributed systems can be accom-

plished by comprehensively instrumenting all middleware for communication, schedul-

ing, and/or synchronization to record component interactions [3, 7, 36, 58, 76, 78, 87].

This assumes that all components within the system are homogeneous; Dapper [87],

for instance, instruments a small set of middleware components that are widely used

within Google. However, many systems grow organically over time. This can result in

a broad diversity in programming languages, communication middleware, execution

environments, and scheduling mechanisms. Adding instrumentation retroactively to

such an infrastructure is a Herculean task. Further, the end-to-end pipeline may in-

clude client software such as Web browsers, and adding detailed instrumentation to

all such software is not feasible. Thus, scalable methods for observing causality that

include automated instrumentation and inference are needed for these systems.

Modern Internet services often involve hundreds of distinct software components

cooperating to handle a single user request. Each component must balance the com-

peting goals of minimizing service response time and maximizing the quality of the

service provided. This leads to low-level components making data-quality tradeoffs,

which we define to be explicit decisions to return lower-fidelity data in order to im-

prove response time or minimize resource usage. The complexity of these large-scale

systems makes it difficult for low-level components to make decisions without ad-

ditional information. We hypothesize that propagating data along the causal path

of request processing can help these systems can make better decisions that lead to

improved data-quality tradeoffs.

The goal of this research is to provide methods for observing causality at use-
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ful granularities for debugging, understanding program execution, and optimizing

production systems. We consider two different granularities at which causality is ob-

served. The first is at the instruction level. Fine-grained causality analysis at the

instruction level allows us to observe causality between the input bytes and output

bytes of machine-level instructions. This allows us to examine byte-level relationships

between program values with applications such as understanding the provenance of

program data. The second is at the level of individual software components in a

large-scale Internet service. This allows us to reason about large-scale Internet ser-

vices from end-to-end and perform analyses such as critical path analysis. This thesis

focuses on solving some of the challenges associated with scaling causality analysis to

production systems with the goal of using causality to automate the burden of de-

bugging and optimization in modern, complex software systems. Thus, the following

statement summarizes this thesis:

Causality analysis requires observing how a large number of program

values influence each other. It is possible to scale causality analysis to

both fine-grained instruction level analysis and Internet scale distributed

systems by developing automated methods to observe and reason about

causality.

The first part of this thesis shows how to scale taint tracking to millions of program

inputs. Taint tracking, or dynamic information flow tracking, is a fine-grained causal-

ity analysis with many practical applications, such as detecting privacy leaks [62],

misconfigurations [8, 7], and understanding provenance [32]. We have designed and

implemented a taint tracking framework that is able to track millions of inputs. The

challenge of tracking large numbers of inputs in a taint tracking framework is keep-

ing track of all intermediate causal dependencies; we use a data structure called the

merge log for this purpose. We also introduce the concept of a flexible taint track-

ing framework with multiple linkage functions. Linkage functions describe different

4



causal relationships between inputs and outputs.

In the second part of the thesis, we introduce a “big data” approach that discov-

ers causal relationships between software components in a large-scale Internet service.

Our approach, called the Mystery Machine, hypothesizes all possible casual relation-

ships between each pair-wise software component. We leverage the fact that large-

scale Internet services receive a large number of requests in order to observe coun-

terexamples to the hypothesized causal relationships. The remaining relationships

are the true casual relationships. We use this approach to discover happens-before,

mutual exclusion, and pipeline relationships among the components and to construct

a dependency graph among the components. Using discovered casual relationships,

we identify the critical path for request execution. The critical path describes the

list of components where increasing the latency of that component also increase the

end-to-end latency. We perform a brief survey of how requests are broken down by

critical path for Facebook request traffic. Then, we use the critical path and resulting

slack analysis to explore a potential scheduling optimization.

In the last part of the thesis, we explore using causality in order to make bet-

ter data-quality tradeoffs in Internet services. A data-quality tradeoff is an explicit

decision by a software component to return lower-fidelity data in order to improve re-

sponse time or minimize resource usage. First, we performed a study of data-quality

tradeoffs at Facebook in order to show the pervasiveness of these decisions. The re-

sults of our study show that most data-quality tradeoffs are suboptimal in two ways.

First, most data-quality tradeoffs are reactive, instead of proactive, and rely on time-

outs to make tradeoffs. Reactive tradeoffs waste resources and exacerbate system

overload. Second, software components make these tradeoffs with only local informa-

tion because they lack higher-level knowledge such as the provenance of data, system

load, and whether they are on the critical request path. Using these results from

the study, we introduce a system, DQBarge, which propagates information along the
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causal path of processing in order to make better tradeoffs. We show how DQBarge

can be used to handle load spikes, utilize spare resources, and dynamic capacity plan-

ning. By leveraging the propagation of causal information, DQBarge can make better

data quality tradeoffs.

1.1 Roadmap

The remainder of the thesis proceeds as follows. Chapter II discusses how we scale

the intraprocess taint tracking to millions of input bytes. Chapter III describes how

we scale causality analysis in order to discover causal relationships in a large-scale

Internet service. Chapter IV describes how causality can be used in order to make

better data-quality tradeoffs in these Internet services. Chapter V discusses related

work. Chapter VI concludes with directions for future work and summarizes the

contributions of this thesis.
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CHAPTER II

Scaling intraprocess taint analysis

2.1 Introduction

Dynamic information flow tracking (DIFT), sometimes called taint tracking, is a

means of tracking the causality of data as a program executes. It is a technique widely

used in computer security [62], privacy [34], information provenance [32], application

debugging [80], and troubleshooting misconfigurations [8, 7]. DIFT instruments the

program as it executes; it has been implemented in many different runtimes, such

as dynamic language interpreters [72], virtual machines [34], binary instruction in-

strumentation [62], and hardware [29]. However, current taint tracking systems have

limitations running in a production environment. First, prior systems have been lim-

ited in the number of taint labels or inputs that can be simultaneously tracked. Prior

implementations have supported only up to 8 taint labels [48]. In order to perform

detailed taint analysis, we would ideally support many orders of magnitude more

taint labels than supported by current systems. This would allows us to track taint

from millions of input bytes to millions of output bytes. Second, as the number of

taint labels increase, taint tracking systems impose a large runtime overhead, making

them infeasible to run in a production environment.

Our goal is to provide a scalable taint tracking framework that scales to millions

of input sources. This will enable fine-grain provenance queries that allow users to

7



derive the sources at byte granularity.

Traditionally, taint tracking has been used for online security checks in order to

detect the leaking of sensitive data. Sources of sensitive data, such as password files,

are tainted as they are read into the program. If a sink, such as an output to a network

socket, contains tainted data, then the program may be sending out sensitive data.

At runtime, this behavior can be detected and stopped. We refer to these queries, as

forward queries. In forward queries, the sensitive sources are known ahead of time

and the user wishes to know which sinks are causally affected. In other words, forward

queries answer the question of what data is affected by a source.

In this thesis we focus on enabling backward queries. In these queries, the user

is interested in what sources affected a sink. These queries are not run for online

security checking, but rather, they are run for offline forensic analysis. Backward

queries answer the question of what sources influenced a given output or program

value.

Creating a taint tracking system to support backward queries poses several chal-

lenges that do not exist in answering forward queries. In order to answer a forward

query, only the sources of interest need to be tracked. Therefore only a single bit or

a predefined small set of bits are required to answer the query: was the data derived

from a tainted data source or not? However, in order to answer a backward query,

all unique sources of input need to be tracked as the program executes so that the

specific sources can be determined at each sink. This is challenging because taint

tracking now requires keeping a taint set for each memory location, and because taint

sets grow to be larger as the number of unique sources increases. Resolving taint sets

at runtime leads to a large amount of overhead.

This work makes the following contributions. Our taint tracking framework is the

first taint tracking framework that supports tracking millions of input sources, and

the merge log is the key to this scaling. The merge log is a data structure that enables
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efficient operations on taint sets with a large number of distinct sources. Second, we

use deterministic replay in order to provide low runtime overhead while providing

the ability to perform offline forensic taint tracking queries. Finally, we provide a

flexible taint tracking framework that supports different propagation functions, called

linkage functions, that describe different lineages of data. Our flexible taint tracking

framework allows for scoping different queries by using various input and output

filters. Our evaluation shows how our framework can support tracking up to tens of

millions of unique sources in several desktop and server applications while providing

low online overhead.

2.2 Dynamic information flow tracking background

Dynamic information flow tracking (DIFT) traces how data flows through a pro-

gram by instrumenting an executing program. Taint tracking reveals which sources

(inputs) causally affect which sinks (outputs) according to a propagation function.

Sources of input are typically external program inputs such as bytes read from a file

or network socket. Sinks are typically external outputs such as data written to a file

or network socket. Taint tracking works by assigning a taint identifier to each unique

source. As the program executes, the analysis code maintains a taint set for each

location of memory. The taint set represents the sources that have affected that par-

ticular byte of memory at the point of the execution. At an output sink, taint tracking

identifies the set of taint identifiers that have affected each byte that is output. Taint

sets are updated for every instruction executed for the locations that the instruction

affects. The propagation function determines how these taint sets are updated for

each instruction. For example, using the basic data flow propagation function for an

instruction that does an add, x = y + z, the updated taint set for x would be the

union of the taint sets of y and z. Propagation functions can express a variety of

causal relationships between the source and destination operands of instructions. In
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section 2.3, we discuss how we leverage different propagation functions in order to

track various definitions of data provenance.

2.3 Flexible taint tracking

The goal of our work is to provide a taint tracking framework that allows expres-

sive, detailed queries on the provenance of data in programs.

First, the user may only be concerned with certain outputs of a program; e.g.

only program output sent to unknown destinations. Second, the user may only be

concerned about data from certain inputs of a program; e.g. data from files that

match a certain regex or only the data received from a network socket. Our taint

tracking framework is flexible in the ability to allow users to scope the inputs and

outputs of queries.

The user may wish to know not only what sources of data affected an output but

also how the sources influenced the output. For example, the user may query what

bytes of the output were directly copied from an input source. In another query, the

user may ask what bytes of the output were computed from an input source. In order

to accomplish this, our taint tracking framework is flexible in its propagation func-

tions. It supports queries that track different types of causal relationships between

data. We define several linkage functions that specify how outputs are influenced by

inputs. We provide several common linkage functions described below. Additional

linkage functions can be defined according to how an input influences its output. Our

predefined linkage functions are:

• Copy. An input influences an output only if the output copies the value of the

input (e.g., via a move instruction).

• Data flow. An input influences an output if the input is used to calculate the

value of the output (e.g., via an add instruction).
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• Index. An input influences an output if the input is used to calculate the

output or if the input is used as an index to load a value used to calculate the

output (e.g., via an array or lookup table index).

Our taint tracking framework tracks causality at a byte-level granularity. This

allows the user to understand the inputs that have influenced any byte that a program

outputs. Our taint tracking tool works at the machine instruction level using dynamic

binary instrumentation to instrument every instruction and propagate taint according

to the specified linkage function. Taint is propagated using a set of simple taint

operations:

• Set. The set operation sets the taint label for a specified location.

• Clear. The clear operation clears the taint label at a given location, setting

the taint label for that location to be the null taint.

• Copy. The copy operation sets the taint label at the destination location to be

the same as the source’s taint label.

• Merge. The merge operation takes two sets of taint labels and returns the

union of the taint sets. It is used to merge dependencies.

Linkage functions describe, for a particular instruction, the set of taint operations

that relate the instruction’s inputs and outputs. Table 2.1 shows an example program

and the subsequent taint operations for each of the supported linkage functions.

The copy linkage only tracks data copies. Therefore, for memory copy instructions,

such as mov, we execute a corresponding copy taint operation for each byte in order

to propagate the taint label for that byte. In the copy relationship, data operations

such as add result in clear taint operations. In Table 2.1, instructions 4 and 5 show

that the copy linkage clears taints, but the copy linkage maintains move and copy

relationships in instruction 6. The data flow relationship propagates taint if the input
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Instructions Copy Data Index
1. A = read() A: IN0 A: IN0 A: IN0

2. B = read() B: IN1 B: IN1 B: IN1

3. C = read() C: IN2 C: IN2 C: IN2

4. D = A + B D: {} D: {IN0, IN1} D: {IN0, IN1}
5. E = C + D E: {} E: {IN0, IN1, IN2} E: {IN0, IN1, IN2}
6. F = C F: {IN2} F: {IN2} F: {IN2}
7. Y = [1, 2, 3] Y: {} Y: {} Y: {}
8. Z = Y[D] Z: {} Z: {} Z: {IN0, IN1}
9. write(Z) OUT0: {} OUT0: {} OUT0: {IN0, IN1}

Table 2.1: Linkage function examples Taint tracking analysis of an example pro-
gram with the different linkage functions.

of an instruction is used to calculate the value of the output. In Table 2.1, for the

data flow relationship, instructions 4 and 5 merge the taint sets of the instructions’

inputs. The data flow analysis is a superset of the copy analysis so instruction 6

still maintains the relationships propagated in the copy analysis. The index linkage

function propagates taint if the input is used to calculate an output or if the input

is used as an index to load a value to calculate the output, such as via an array or

lookup table index. Instruction 8 shows using an instruction’s input as an index, so

that relationship is propagated through to the instruction’s output.

Our taint tracking tools use Pin [56] binary instrumentation to dynamically in-

strument a program as it executes. We chose Pin because it is a flexible and well-

documented tool. We make use of Pin’s dynamic binary instrumentation facility in

order to dynamically insert taint propagation logic to track and propagate taint for

every x86 instruction executed. Each linkage function is implemented as a separate

Pin tool that inserts the proper taint operation(s) for each x86 instruction. Our taint

tracking framework provides an interface of taint operations that a linkage function

Pin tool should implement. Implementing a new linkage tool only necessitates im-

plementing the functions of the interface, i.e, providing an implementation for each

taint operation.

There are several challenges with implementing a taint tracking framework using
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dynamic binary instrumentation. In order to track causality at such a fine-granularity,

all instructions of the application need to be instrumented so that the relationships

between inputs and outputs can be tracked. Instrumenting all instructions of an

application can lead to prohibitively high online overhead. Additionally, in order to

efficiently implement these taint operations, we need to be able to compactly represent

sets of taints, lookup the taint at any program location efficiently, and merge two taint

sets efficiently. We describe how we implement these operations in an efficient manner

in the next section.

2.4 Efficient taint representation

Every source byte that is tracked is assigned an integer taint identifier when

it is read into the program. We track all sources of input to the program from

external sources through the kernel by intercepting all input system calls using Pin.

Additionally, environment variables and arguments passed into the program via the

execve system call are tracked as sources of input.

We maintain a mapping of taint labels to the bytes read via input system calls.

Taint labels are represented as integers. A taint label represents a unique source of

input. The locations of the taint creation are initially set to their corresponding taint

label. For example, the taint at the address of each byte of a read buffer is set to the

newly created taint labels.

In order to efficiently track taint as the system propagates, we require data struc-

tures that allow us to quickly look up the taint of any location in the process’s address

space or CPU registers. We maintain an array of taint labels for each CPU register

for each thread of execution. In order to efficiently map the process’s address space,

we use a two-level page table structure that shadows the process’s address space. We

choose to map the address space using a page table since the address spaces of most

processes are sparse.
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Next, we need data structures that allow for fast implementation of all of the taint

operations (clear, set, copy, and merge). It is important that these operations are

fast since the number of taint operations that are executed is on the same order of

magnitude as the number of machine instructions executed. The clear and set taint

operations are made efficient using the page table structure for memory locations.

These operations are both O(1) operations in the number of input bytes. Using an

array for CPU registers also is an O(1) operation for clears and sets on registers.

However, supporting the merge taint operation requires additional data structures in

order to be fast.

When there is a limited number of taints, a taint label can be represented as a

bit vector or array. For example, using a bit vector representation, a 32-bit integer

representation of a taint label supports 32 possible input labels, with each bit posi-

tion representing a taint label. This representation makes set and merge operations

efficient. An initial set operation can be accomplished by performing a bitwise shift to

set the appropriate bit. A merge operation is accomplished by performing a bitwise

OR operation on the taint bit vector representations. However, the drawbacks of this

approach is that only a finite number of taints are representable.

Alternatively, a set of taints could be represented as a list of taint labels. However,

during the program execution, in order to propagate taint, we need to have a mapping

of all taint locations to set of taints. This representation is not very space efficient;

each location points to a separate list. There is also high memory overhead as nodes

in each list need to be allocated and deallocated as taint is added or removed from

the taint set. Also, this representation means that merging taints requires merging

two lists, which is a slow operation.

Thus, the merge operation adds an additional complication in choosing how to

represent taints; we not only wish to efficiently represent all input taint labels but we

also need to efficiently represent all possible sets of taints while the program executes.
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Figure 2.1: Taint graph. Representation of how sets of taint labels are represented
as a directed acyclic graph. A pointer to a node in the graph only needs to be stored
in order to represent a taint set. In order to resolve what input taint labels are in the
taint set, we walk upwards from the pointer until all root nodes have been resolved.

Our insight is that taint sets only need to be resolved at certain outputs. Only at these

outputs do we have to determine the set of input taint labels that have influenced the

output. Thus, we simply need to propagate enough information so that the taint set

can be calculated when needed.

In order to efficiently support the merge operation, we use an idea proposed by

Ruwase et al. [80] in which sets of taint values are represented by a binary tree. This

data structure takes advantage of the observation that all possible taint states must

be derived from an input taint label. For example, in Table 2.2, instruction 4 requires

merging the taint sets for the inputs A and B. The taint set {IN0, IN1}, is the result

of the merge of the input taint sets. Each merge set can be represented as a pointer

to its two parent taint sets. Thus, all merge states can be encoded in a directed,

acyclic graph where root nodes are inputs. Intermediate nodes represent taint labels

resulting from merge operations. In order to resolve the inputs that a particular

output depends on, we can perform a depth-first traversal of the root node entry to

discover the entire input set. Thus, instead of storing the taint set for every memory

location, all possible taint sets are encoded in the merge log. Then, instead of storing

the entire set of taints, we store a pointer into the merge log that represents the set

of taints that have influenced that location. A logical representation of this is shown

in Figure 2.1.

15



Instructions Data Merge log
1. A = read() A: IN0

2. B = read() B: IN1

3. C = read() C: IN2

4. D = A + B D: M [0] M [0] = {IN0, IN1}
5. E = C + D E: M [1] M [1] = {IN2,M [0]}
6. F = C F: IN2

7. Y = [1, 2, 3] Y: ∅
8. Z = Y[D] Z: ∅
9. write(Z) OUT0: {}

Table 2.2: Merge log example An example of how the merge log tracks and resolves
the union of taint sets in a data flow analysis.

Each entry in the merge log represents a binary tree of taint identifiers rooted at

that node. The merge log itself is an append-only log with each new entry representing

a new merge operation. The merge log leverages the property that the resulting taint

set of a merge operation is the union of two existing taint sets. Each entry in the

merge log represents the result of a merge operation. It contains two pointers to

the previous taint sets. A representation of the merge log is show in Figure 2.2.

Table 2.2 walks through an example program showing the contents of the merge log

as the program executes a data flow analysis. In order to make the merge log efficient,

merge operations are restricted to be binary operations with two inputs. For merges

that require more than two inputs, these merges are broken up into multiple pairwise

merge operations.

Our design differs from Ruwase et al.’s algorithm in that Ruwase et al. applied

the merge log to abstract taint values. They stored a symbolic representation of

where the taint for a particular location was derived from. Their design computed

the concrete taint value by resolving the symbolic representation for different tainted

inputs. The symbolic representation was applied to parallelize sequential taint track-

ing. Our enhancements to the merge log allows our taint tracking framework to scale

to millions of dependencies. Our merge log keeps track of concrete taint values and

defers resolving the union of taint sets. The merge log uses much less memory than
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Figure 2.2: Merge log. The left diagram shows the merge log. Each entry contains
the two pointers to the taint sets that were merged. Each entry in the merge log refers
to either a previous entry in the merge log or an input taint label. The right diagram
shows the directed acyclic graph of merge operations that the merge log encodes.

storing a set for each location. Memory usage is proportional to the number of merge

operations rather than the total size of all taint sets for every location. The cost of

using a merge log is that a tree traversal must be performed when resolving a root

node to a set of source identifiers.

There are, however, some tradeoffs in this design. By encoding taint sets as a

graph, the same taint set can exist in the graph if the taint set were created using a

different ordering of merge operations. This can lead to duplicate nodes in the graph.

We found that, in practice, this occurs rarely due to the nature of data flow analysis.

Since every taint set is encoded in this graph, in order to resolve the input taint

labels, the graph needs to be walked upwards for every single output byte. We can

amortize the cost of walking the graph by memoizing the resolution of intermediate

merge nodes.

Several optimizations are made in the merge operation. Merges with the null taint

set return the non-null taint set and do not create an entry in the merge log. Merges

between the same taint set (i.e., represented by the same pointer) return the same

taint set without creating a new merge log entry. Since taint sets are represented by

a pointer in the merge log implementation, the two merge operands are first ordered

before merging. The two pointers are then non-associatively hashed, for performance,
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and stored in a hash table with the resulting merged taint set. Therefore, repeated

merges of the same taint sets do not create a new merge log entry.

Another added benefit of using the merge log is the deferral of resolving taints

to an offline phase. For each output of interest, only the pointer into the merge log

needs to be saved in order to resolve it. Since the merge log is append-only, at the

end of execution all of the information to resolve a taint identifier in the merge log

still exists. This allows us to reduce the amount of instrumentation that needs to be

added at runtime, improving performance.

2.5 Interplay of deterministic replay with taint tracking

Another challenge with dynamic taint tracking is the large runtime overhead asso-

ciated with tracking a large number of taint inputs. Deterministic replay is a tried and

tested technique of faithfully reproducing an execution of a program. Deterministic

replay can be implemented at several abstraction layers such as the virtual machine

monitor [33], the operating system kernel [92], or a user-level library [71]. We wish

that our deterministic replay system provide a low runtime overhead while allowing

us to dynamically analyze the running execution. For this reason, we chose to use an

operating system level deterministic replay system [92].

We needed to make modifications to the replay implementation because of our

desire to use Pin to insert binary instrumentation into replayed executions. This

implementation faces a substantial challenge: from the point of view of the replay

system, the replayed execution is not the same as the recorded execution because it

contains additional binary instrumentation not present during recording. While Pin

is transparent to the application being instrumented, it is not transparent to lower

layers such as the OS.

Our replay system is instrumentation-aware; it compensates for the divergences

in replayed execution caused by dynamic instrumentation. Pin makes many system
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calls, so our replay system allocates a memory area that allows analysis tools run by

Pin to inform the replay kernel which system calls are initiated by the application

(and should be replayed from the log) and which are initiated by Pin or the analysis

tool (and should execute normally).

It also compensates for interference between resources requested by the recorded

application and resources requested by Pin or an analysis tool. For instance, Pin

might request that the kernel mmap a free region of memory. If the kernel grants Pin

an arbitrary region, it might later be unable to reproduce the effects of a recorded

application mmap that returns the same region. Our replay system avoids this trap by

initially scanning the replay log to identify all regions that will be requested by the

recorded application and pre-allocating them so that Pin does not ask for them and

the kernel does not return them.

The replay system avoid avoids conflicts for signal handlers in a similar manner.

Since Pin allows for the ability to perform an arbitrary action on receipt of a signal,

it must intercept all signal delivered to the application process first. This is at odds

with the replay system, which deterministically replays the delivery of signals to

the process. Our replay system avoid conflicts for signal handlers by allowing Pin to

register its signal handlers and signal masks during replay. Then, all signals, including

replayed signals, are delivered to Pin.

Finally, the replay system must avoid deadlock. The replay system adds synchro-

nization to reproduce the same order of system calls, synchronization events, and

racing instructions seen during recording. Pin adds synchronization to ensure that

application operations such as memory allocation are executed atomically with the

Pin code that monitors those events. Our replay system initially deadlocked because

it was unaware of Pin locking. To compensate, it now only blocks threads when it

knows Pin is not holding a lock; e.g., rather than block threads executing a system

call, it blocks them prior to the instruction that follows the system call.
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2.6 Evaluation

In this section we evaluate how effective the linkage tools are at achieving our

goals. In particular, we will answer the questions:

• What is the runtime overhead of the linkage tools?

• How much additional work is required to go from forward dynamic taint analysis

to backward dynamic taint analysis?

We evaluated on taint tracking framework on a 3.1GHz Xeon server with 8GB

of RAM. We used a deterministic replay system based on the 32-bit Linux kernel

3.5.7.13. Since our deterministic replay system schedules threads to execute on a

single core when replaying execution, our analysis uses only a single core.

2.6.1 Runtime overhead

First, we will look at the runtime overhead of the tools. Since all of the analy-

sis is performed offline, the runtime overhead is comprised of recording a process’s

execution.

We measured online overhead by comparing the throughput and latency of

Apache, lighttpd, postfix, and Postgre when they are recorded by our deterministic

replay system to results when the applications run on default Linux without record-

ing. For Apache and lighttpd, we used ab to send 5000 requests for a 35KB static

Web page with a concurrency of 50 requests at a time over an isolated network. For

Postfix, we used smtp-source to send 1000 64KB mail messages. For PostgreSQL, we

used pgbench to measure the number of transactions completed in 60 seconds with

a concurrency of 10 transactions at a time. Each transaction has one SELECT, three

UPDATEs, and one INSERT command.

Our system adds an average of 2.3% throughput overhead: 0.1% for Apache, 4.7%

for Postfix, 3.5% for PostgreSQL, and 0.8% for lighttpd. These values include the
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cost of logging data races previously detected by our offline data race detector. This

overhead is consistent with similar deterministic replay approaches [28]. Latency

overheads for Apache, PostgreSQL, and lighttpd are equivalent to the respective

throughput overheads; Postfix has no meaningful latency measure since its processing

is asynchronous. The recording log sizes were 2.8MB for Apache, 1.6MB for lighttpd,

321MB for PostgreSQL, and 15MB for Postfix. Apache and lighttpd have smaller

logs because they use sendfile to avoid copying data.

2.6.2 Scaling the linkage tools

Next, we look at the performance of the copy, data flow, and index linkage tools

in analyzing the input and output relationships in a set of programs and how they

scale to an increasing size of inputs and number of dependencies. We evaluated our

tools on 7 commonly used desktop programs and server workloads:

• Gzip – Zip a large file

• Ghostscript – Convert a research poster .ps to .pdf

• Evince – Open and view a research paper

• Mongodb – Yahoo cloud server benchmark

• Nginx – Serve static content

• OpenOffice – Edit a conference presentation

• Firefox – A long Facebook browsing section

We show the time to replay each benchmark without instrumentation as a base-

line. Note that replay time is not equivalent to the original application execution

time; instead, replay time can be one to two orders of magnitude faster [32] because

deterministic replay omits all user think-time (for interactive applications), network

delays and idle time (for servers), and external output.

For Gzip, Evince, Mongodb, Nginx, all of the linkage queries ask for all depen-

dencies between command-line, network, and file-system inputs to all such outputs.
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Running the all-to-all query for Ghostscript, OpenOffice, and Firefox produces a

large amount of data, so the queries were refined to produce manageable results. The

Ghostscript query only considers file system data from the input file, the OpenOffice

query only considers file system data from a portion of the input file, and the Firefox

query only considers cookies data to be sources and network output to specific sites

to be outputs.

First, we implemented a forward taint tracking tool to establish a baseline for eval-

uating the performance of our tools. It uses a single bit to track tainted or untainted

data and works with our deterministic replay system. We compare the performance

of our forward taint tracking implementation with an existing taint tracking imple-

mentation, libdft [48]. We used the baseline libdft tool that uses a single bit to track

tainted or untainted data. It tracks all input from the file system, except for shared

libraries, and all incoming network data. We ran the base libdft implementation 5

times on our computational benchmarks, Gzip and Ghostscript. As noted previously,

running libdft on our interactive and server benchmarks without deterministic replay,

on live execution, does not provide a sound comparison as replay time is not equiva-

lent to application execution time. For Gzip, the libdft analysis took on average 18.71

seconds with a standard deviation of 0.15. For Ghostscript, the libdft analysis took

on average 19.90 seconds with a standard deviation of 0.30. This is 8.6 times longer

than normal execution for Gzip and 46.3 times longer for Ghostscript. In comparison,

our forward taint tracking tool took 1.9 times longer than libdft for both Gzip and

Ghostscript. Unlike libdft, our forward taint tracking analysis is done offline using

deterministic replay.

Our forward taint tracking tool is slower than libdft for two main reasons. First,

libdft has a more efficient forward taint-tracking implementation and has made op-

timizations for faster Pin instrumentation. Libdft has optimized its taint tracking

analysis code to avoid branches and keeps its analysis code short so that Pin can
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Benchmark Execution time (s) libdft (s) Replay + null Pin (s) Replay + forward (s)
gzip 2.18 +− 0.03 18.71 +− 0.15 9.23 +− 0.07 35.11 +− 0.23

ghostscript 0.43 +− 0.01 19.90 +− 0.3 19.60 +− 0.38 38.47 +− 0.98

Table 2.3: Comparison with libdft This table show the evaluation of an existing
taint tracking framework, libdft, compared with our forward taint tracking implemen-
tation. Each result in the average analysis time taken over 5 runs with the standard
deviation.

inline it. Second, as previously stated, our forward taint tracking tool has been mod-

ified to work with our deterministic replay system. The required modifications are

described in section 2.5. These modifications require that Pin insert additional instru-

mentation to support our deterministic replay system; this adds overhead compared

with running libdft on live execution. To measure this overhead, we implemented a

null Pin tool. The null Pin tool adds the minimum instrumentation to support our

deterministic replay system; it is the lower bound on any Pin tool run with our deter-

ministic replay system. Over 5 runs, the null Pin tool took on average 9.23 seconds

with a standard deviation of 0.07 for Gzip. For Ghostscript, it took an average of

19.60 seconds with a standard deviation of 0.38. Adding our forward taint tracking

instrumentation increases the analysis time by 3.80 times (to 35.11 seconds) for Gzip

and 1.96 times (to 38.47 seconds) for Ghostscript. Table 2.3 provides a summary of

the overhead of libdft on live execution compared with the replay time of Gzip and

Ghostscript with the null Pin tool and our forward taint tracking tool.

Next, we compare the additional analysis time of our linkage tools compared with

our baseline forward taint tracking tool. Table 2.4 shows the results for each workload

evaluated under each linkage tool. For each benchmark, we show the number of input

bytes considered in each query and the number of input-output dependencies each

query produces. The replay time is the time to re-execute the program without any

analysis.

Our linkage tools, on average across all 7 benchmarks, track the relationships
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between 15,330,432.3 unique inputs to 48,338,413.3 unique outputs. Our tools were

able to track over 64 million unique inputs for Gzip and all but one benchmark

had millions of unique inputs. This is many orders of magnitude greater than prior

systems. Across all benchmarks, the copy, data flow, and index linkage tools took only

37.6%, 44.1%, and 182.3% longer than the forward tool, respectively. Additionally, we

show the flexibility of our taint tracking system. Our framework allows us to track

different relationships using the copy, data, and index linkages without drastically

changing the analysis time of each tool. The data flow tool took, on average, 9.6%

longer than the copy tool and the index tool took, on average, 68.1% longer than the

data flow tool.

The index linkage produces the longest queries as the index linkage function tracks

a significantly larger number of dependencies. The longest index linkage query was on

Firefox with a query runtime of approximately 82 minutes. However, as mentioned

previously, these queries are performed offline using deterministic replay. Since more

complicated linkage functions produce a greater number of dependencies, we envision

users employing these queries on targeted inputs.

2.6.3 Scalability of the merge log and limitations

Next we discuss the scalability of the merge log. Table 2.5 shows the merge log

size for each of the previous benchmarks. The copy linkage does not produce a merge

log since it performs no taint merge operations. The largest merge logs were with the

index linkage analyzing mongo and Firefox with 1.7GB and 1.3GB merge log sizes,

respectively. In all of these queries the merge log fits in the 32-bit process address

space. The current implementation keeps the merge log in memory for the duration

of the analysis. The Ghostscript, OpenOffice, and Firefox queries only considered a

subset of inputs since running the all-to-all queries would produce a merge log that

exceeded the process address space.

24



The merge log scales taint tracking to millions of inputs by enabling a merge

operation with an online cost comparable to a bitmask merge operation used by prior

systems. However, using the merge log results in an extra step of computation where

the outputs need to be resolved to inputs by traversing the graph encoded in the merge

log. Our system can become bottlenecked whenever traversing this graph becomes

prohibitively expensive since resolving every byte of output requires performing a

traversal of the graph.

One case where the traversal becomes prohibitively expensive is when the merge

log no longer fits in the process address space. Since the merge log is an append-only

data structure, segments of the merge log can be stored once the memory limit has

been reached and a new merge log segment can be allocated. However, a traversal of

the merge log can now span multiple segments that do not fit in memory. Therefore,

a traversal of the graph could require loading and unloading segments of the merge

log into memory. This would lead to a substantial slowdown.

A potential solution for solving this bottleneck would be to move the processing

of the merge log to a machine with a 64-bit address space so that the entire merge

log can fit in memory. Since the merge log is a directed acyclic graph, we can also

leverage existing graph databases that are optimized for large graphs and high query

throughput [79, 66]. Using these systems, we could potentially scale the processing

of the merge log to a large cluster. This would scale both the time to resolve a single

byte of output and allow for an increased parallelization of resolving outputs.

Another case where traversals can become expensive is if an output byte depends

on a large number of input bytes, so a traversal requires visiting many intermediate

nodes. Applications that perform operations on binary data often result in a large

number of data operations to track the propagation of taint. This results in a pattern

where a large number of input bytes have a relationship with a large number of

output bytes. For example, the encrypting of data can lead to such behavior. This
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taint explosion is common with taint tracking. Previous systems have mitigated taint

explosion by using taint abstraction [8]. Common well-defined library functions are

abstracted away using manual annotations describing how the inputs to the functions

affect the output. Therefore using taint abstraction techniques that are aware of

the binary formats can significantly reduce the analysis runtime (by eliding taint

propagation for these functions) and reduce the merge log size.

Another bottleneck of the merge log is that it is produced sequentially. Taint

tracking, by definition, is sequential since the analysis examines dependencies as a

program executes. The dependencies are recorded in the merge log as the program

executes. Because of this, the analysis is bound by the execution time of the program.

Even though we defer the analysis offline using deterministic replay, the analysis

requires the entire program to be re-executed in order to track dependencies between

inputs and outputs. For long running applications, such as a web server serving

traffic for days, this would require performing the analysis for the duration of the

program’s execution. Parallelizing the taint analysis so that it can be completed

faster is non-trivial and we leave this as future work [75].

2.7 Conclusion

In this chapter of this thesis, we have proposed a set of linkage tools used for un-

derstanding the relationships between inputs and outputs of a process. These linkage

tools make use of fine-grained instruction-level taint tracking that scales to a large

set of inputs. This enables determining of fine-grained, byte-level provenance of the

output of a process. We enable the use of such analysis by modifying a deterministic

replay system to be instrumentation-aware. We show that this allows for low online

runtime overhead by performing the analysis offline. Finally, we show the effectiveness

of our tools by analyzing a set of commonly used programs.
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Benchmark Replay Input Output Linkage Runtime (s) Dependencies
Time (s) bytes bytes

gzip 2.07 64,352,941 48,791,393

Forward 35.11 +− 0.23 36,586,765
Copy 66.65 +− 0.18 36,586,765
Data 67.71 +− 0.22 36,586,765
Index 74.60 +− 0.54 36,586,765

ghostscript 0.67 2,514,067 176,009

Forward 38.47 +− 0.98 14,682,254
Copy 54.82 +− 1.05 100,363
Data 56.34 +− 1.23 14,682,254
Index 190.35 +− 0.82 685,205,917

evince 7.81 10,302,848 104,061,604

Forward 124.28 +− 1.76 895,684
Copy 143.80 +− 1.43 144,670
Data 153.28 +− 3.93 895,684
Index 395.14 +− 3.65 70,842,186

nginx 2.88 10,412,627 35,000,000

Forward 83.01 +− 2.50 5,000,000
Copy 112.61 +− 0.97 5,000,000
Data 116.71 +− 1.03 5,000,000
Index 120.44 +− 0.41 5,000,000

mongo 15.63 8,863,855 116,592,809

Forward 133.68 +− 2.93 76,042,962
Copy 190.06 +− 0.74 76,042,962
Data 201.69 +− 3.16 76,042,962
Index 266.22 +− 0.47 76,538,822

openoffice 5.17 9,946,659 32,110,959

Forward 259.61 +− 3.5 1,764,494
Copy 282.02 +− 0.57 1,764,446
Data 292.56 +− 2.07 1,764,494
Index 294.88 +− 4.85 1,764,504

firefox 45.53 920,029 1,636,119

Forward 1002.85 +− 16.7 131,476
Copy 1295.23 +− 9.34 131,476
Data 1337.74 +− 9.09 131,476
Index 4945.06 +− 24.69 7,137,269

Table 2.4: Linkage tool evaluation This tables show the evaluation of our taint
tracking framework with our predefined linkage tools on several desktop and server
applications. It shows the number of unique inputs, output, and dependencies each
linkage tool tracked as well as the duration of the analysis time for each linkage
function. Each of the analysis time shown is the average analysis time taken over 5
runs with the standard deviation.
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Benchmark Linkage tool Merge log size (bytes)

gzip
Data 1,944
Index 127,844,552

ghostscript
Data 13,978,144
Index 51,765,000

evince
Data 6,853,304
Index 18,693,064

nginx
Data 16,012,056
Index 16,012,416

mongo
Data 299,222,288
Index 1,715,635,776

openoffice
Data 5,931,368
Index 5,925,264

firefox
Data 39,469,248
Index 1,343,744,416

Table 2.5: Merge log size This table shows the size of the merge log structure at
the end of the benchmark execution.
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CHAPTER III

The Mystery Machine: End-to-end performance

analysis of Internet services

In this part of the thesis, we develop performance analysis tools for measuring

and uncovering performance insights about complex, heterogeneous distributed sys-

tems. We apply these tools to the Facebook Web pipeline. Specifically, we measure

end-to-end performance from the point when a user initiates a page load in a client

Web browser, through server-side processing, network transmission, and JavaScript

execution, to the point when the client Web browser finishes rendering the page.

We develop a technique that generates a causal model of system behavior without

the need to add substantial new instrumentation or manually generate a schema of

application behavior. Instead, we generate the model via large-scale reasoning over

individual software component logs. Our key observation is that the sheer volume

of requests handled by modern services allows us to gather observations of the order

in which messages are logged over a tremendous number of requests. We can then

hypothesize and confirm relationships among those messages. We demonstrate the

efficacy of this technique with an implementation that analyzes over 1.3 million Face-

book requests to generate a comprehensive model of end-to-end request processing.

Logging is an almost-universally deployed tool for analysis of production software.

Indeed, although there was no comprehensive tracing infrastructure at Facebook prior
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to our work, almost all software components had some individual tracing mechanism.

By relying on only a minimum common content for component log messages (a request

identifier, a host identifier, a host-local timestamp, and a unique event label), we

unified the output from diverse component logs into a unified tracing system called

ÜberTrace.

ÜberTrace’s objective is to monitor end-to-end request latency, which we define to

be the time that elapses from the moment the user initiates a Facebook Web request

to the moment when the resulting page finishes rendering. ÜberTrace monitors a

diverse set of activities that occur on the client, in the network and proxy layers,

and on servers in Facebook data centers. These activities exhibit a high degree of

concurrency.

To understand concurrent component interactions, we construct a causality model

from a large corpus of ÜberTrace traces. We generate a cross-product of possible

hypotheses for relationships among the individual component events according to

standard patterns (currently, happens-before, mutual exclusive, and first-in-first-out

relationships). We assume that a relationship holds until we observe an explicit con-

tradiction. Our results show that this process requires traces of hundreds of thousands

of requests to converge on a model. However, for a service such as Facebook, it is triv-

ial to gather traces at this scale even at extremely low sampling frequencies. Further,

the analysis scales well and runs as a parallel Hadoop job.

Thus, our analysis framework, The Mystery Machine derives its causal model

solely from empirical observations that utilize only the existing heterogeneous com-

ponent logs. The Mystery Machine uses this model to perform standard analyses,

such as identifying critical paths, slack analysis, and outlier detection.

We also present a detailed case study of performance optimization based on results

from The Mystery Machine. First, we note that whereas the average request workload

shows a balance between client, server, and network time on the critical path, there is
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wide variance in this balance across individual requests. In particular, we demonstrate

that Facebook servers have considerable slack when processing some requests, but

they have almost no slack for other requests. This observation suggests that end-to-

end latency would be improved by having servers produce elements of the response

as they are needed, rather than trying to produce all elements as fast as possible. We

conjecture that this just-in-time approach to response generation will improve the

end-to-end latency of requests with no slack while not substantially degrading the

latency of requests that currently have considerable slack.

Implementing such an optimization is a formidable task, requiring substantial

programming effort. To help justify this cost by partially validating our conjecture,

we use The Mystery Machine to perform a “what-if” analysis. We use the inherent

variation in server processing time that arises naturally over a large number of requests

to show that increasing server latency has little effect on end-to-end latency when slack

is high. Yet, increasing server latency has an almost linear effect on end-to-end latency

when slack is low. Further, we show that slack can be predicted with reasonable

accuracy. Thus, the case study demonstrates two separate benefits of The Mystery

Machine: (1) it can identify opportunities for performance improvement, and (2) it

can provide preliminary evidence about the efficacy of hypothesized improvements

prior to costly implementation.

3.1 Background

There is a rich history of systems that understand, optimize, and troubleshoot

software performance, both in practice and in the research literature. Yet, most of

these prior systems deal poorly with the complexities that arise from modern Internet

service infrastructure. Complexity comes partially from scale; a single Web request

may trigger the execution of hundreds of executable components running in parallel

on many different computers. Complexity also arises from heterogeneity; executable
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components are often written in different languages, communicate through a wide

variety of channels, and run in execution environments that range from third-party

browsers to open-source middleware to in-house, custom platforms.

Fundamentally, analyzing the performance of concurrent systems requires a model

of application behavior that includes the causal relationships between components;

e.g., happens-before ordering and mutual exclusion. While the techniques for per-

forming such analysis (e.g., critical path analysis) are well-understood, prior systems

make assumptions about the ease of generating the causal model that simply do not

hold in many large-scale, heterogeneous distributed systems.

Many prior systems assume that one can generate such a model by comprehen-

sively instrumenting all middleware for communication, scheduling, and/or synchro-

nization to record component interactions [3, 7, 36, 58, 76, 78, 87]. This is a reasonable

assumption if the software architecture is homogeneous; for instance, Dapper [87] in-

struments a small set of middleware components that are widely used within Google.

However, many systems are like the Facebook systems we study; they grow organ-

ically over time in a culture that favors innovation over standardization (e.g., “move

fast and break things” is a well-known Facebook slogan). There is broad diversity

in programming languages, communication middleware, execution environments, and

scheduling mechanisms. Adding instrumentation retroactively to such an infrastruc-

ture is a Herculean task. Further, the end-to-end pipeline includes client software

such as Web browsers, and adding detailed instrumentation to all such software is

not feasible.

Other prior systems rely on a user-supplied schema that expresses the causal model

of application behavior [13, 91]. This approach runs afoul of the scale of modern

Internet services. To obtain a detailed model of end-to-end request processing, one

must assemble the collective knowledge of hundreds of programmers responsible for

the individual components that are involved in request processing. Further, any such
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model soon grows stale due to the constant evolution of the system under observation,

and so constant updating is required.

3.2 Life of a Facebook request

In the early days of the Web, a request could often be modeled as a single logical

thread of control in which a client executed an RPC to a single Web server. Those

halcyon days are over.

At Facebook, the end-to-end path from button click to final render spans a diverse

set of systems. Many components of the request are under Facebook’s control, but

several components are not (e.g., the external network and the client’s Web browser).

Yet, users care little about who is responsible for each component; they simply desire

that their content loads with acceptable delay.

A request begins on a client with a user action to retrieve some piece of content

(e.g., a news feed). After DNS resolution, the request is routed to an Edge Load

Balancer (ELB) [52]. ELBs are geo-distributed so as to allow TCP sessions to be

established closer to the user and avoid excessive latency during TCP handshake and

SSL termination. ELBs also provide a point of indirection for better load balancing,

acting as a proxy between the user and data center.

Once a request is routed to a particular data center, a Software Load Balancer

routes it to one of many possible Web servers, each of which runs the HipHop Virtual

Machine runtime [98]. Request execution on the Web server triggers many RPCs to

caching layers that include Memcache [64] and TAO [16]. Requests also occasionally

access databases.

RPC responses pass through the load-balancing layers on their way back to the

client. On the client, the exact order and manner of rendering a Web page are

dependent on the implementation details of the user’s browser. However, in general,

there will be a Cascading Style Sheet (CSS) download stage and a Document Object
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Model rendering stage, followed by a JavaScript execution stage.

As with all modern Internet services, to achieve latency objectives, the handling

of an individual request exhibits a high degree of concurrency. Tens to hundreds

of individual components execute in parallel over a distributed set of computers,

including both server and client machines. Such concurrency makes performance

analysis and debugging complex. Fortunately, standard techniques such as critical

path analysis and slack analysis can tame this complexity. However, all such analyses

need a model of the causal dependencies in the system being analyzed. Our work fills

this need.

3.3 ÜberTrace: End-to-end Request Tracing

As discussed in the prior section, request execution at Facebook involves many

software components. Prior to our work, almost all of these components had logging

mechanisms used for debugging and optimizing the individual components. In fact,

our results show that individual components are almost always well-optimized when

considered in isolation.

Yet, there existed no complete and detailed instrumentation for monitoring the

end-to-end performance of Facebook requests. Such end-to-end monitoring is vital

because individual components can be well-optimized in isolation yet still miss oppor-

tunities to improve performance when components interact. Indeed, the opportunities

for performance improvement we identify all involve the interaction of multiple com-

ponents.

Thus, the first step in our work was to unify the individual logging systems at

Facebook into a single end-to-end performance tracing tool, dubbed ÜberTrace. Our

basic approach is to define a minimal schema for the information contained in a log

message, and then map existing log messages to that schema.

ÜberTrace requires that log messages contain at least:
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1. A unique request identifier.

2. The executing computer (e.g., the client or a particular server)

3. A timestamp that uses the local clock of the executing computer

4. An event name (e.g., “start of DOM rendering”).

5. A task name, where a task is defined to be a distributed thread of control.

ÜberTrace requires that each <event, task> tuple is unique, which implies that

there are no cycles that would cause a tuple to appear multiple times. Although this

assumption is not valid for all execution environments, it holds at Facebook given

how requests are processed. We believe that it is also a reasonable assumption for

similar Internet service pipelines.

Since all log timestamps are in relation to local clocks, ÜberTrace translates them

to estimated global clock values by compensating for clock skew. ÜberTrace looks for

the common RPC pattern of communication in which the thread of control in an indi-

vidual task passes from one computer (called the client to simplify this explanation)

to another, executes on the second computer (called the server), and returns to the

client. ÜberTrace calculates the server execution time by subtracting the latest and

earliest server timestamps (according to the server’s local clock) nested within the

client RPC. It then calculates the client-observed execution time by subtracting the

client timestamps that immediately succeed and precede the RPC. The difference be-

tween the client and server intervals is the estimated network round-trip time (RTT)

between the client and server. By assuming that request and response delays are

symmetric, ÜberTrace calculates clock skew such that, after clock-skew adjustment,

the first server timestamp in the pattern is exactly 1/2 RTT after the previous client

timestamp for the task.

The above methodology is subject to normal variation in network performance.

In addition, the imprecision of using existing log messages rather than instrument-
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ing communication points can add uncertainty. For instance, the first logged server

message could occur only after substantial server execution has already completed,

leading to an under-estimation of server processing time and an over-estimation of

RTT. ÜberTrace compensates by calculating multiple estimates. Since there are many

request and response messages during the processing of a higher-level request, it makes

separate RTT and clock skew calculations for each pair in the cross-product of re-

quests. It then uses the calculation that yields the lowest observed RTT.

Timecard [77] used a similar approach to reconcile timestamps and identified the

need to account for the effects of TCP slow start. Our use of multiple RTT estimates

accomplishes this. Some messages such as the initial request are a single packet and

so are not affected by slow start. Other messages such as the later responses occur

after slow start has terminated. Pairing two such messages will therefore yield a

lower RTT estimate. Since we take the minimum of the observed RTTs and use its

corresponding skew estimate, we get an estimate that is not perturbed by slow start.

Due to performance considerations, Facebook logging systems use statistical sam-

pling to monitor only a small percentage of requests. ÜberTrace must ensure that

the individual logging systems choose the same set of requests to monitor; otherwise

the probability of all logging systems independently choosing to monitor the same

request would be vanishingly small, making it infeasible to build a detailed picture

of end-to-end latency. Therefore, ÜberTrace propagates the decision about whether

or not to monitor a request from the initial logging component that makes such a

decision through all logging systems along the path of the request, ensuring that the

request is completely logged. The decision to log a request is made when the request

is received at the Facebook Web server; the decision is included as part of the per-

request metadata that is read by all subsequent components. ÜberTrace uses a global

identifier to collect the individual log messages, extracts the data items enumerated

above, and stores each message as a record in a relational database.
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We made minimal changes to existing logging systems in order to map existing

log messages to the ÜberTrace schema. We modified log messages to use the same

global identifier, and we made the event or task name more human-readable. We

added no additional log messages. Because we reused existing component logging

and required only a minimal schema, these logging changes required approximately

one person-month of effort.

3.4 The Mystery Machine

The Mystery Machine uses the traces generated by ÜberTrace to create a causal

model of how software components interact during the end-to-end processing of a

Facebook request. It then uses the causal model to perform several types of dis-

tributed systems performance analysis: finding the critical path, quantifying slack

for segments not on the critical path, and identifying segments that are correlated

with performance anomalies. The Mystery Machine enables more targeted analysis

by exporting its results through a relational database and graphical query tools.

3.4.1 Causal Relationships Model

To generate a causal model, The Mystery Machine first transforms each trace

from a collection of logged events to a collection of segments, which we define to

be the execution interval between two consecutive logged events for the same task.

A segment is labeled by the tuple <task, start event, end event>, and the segment

duration is the time interval between the two events.

Next, The Mystery Machine identifies causal relationships. Currently, it looks for

three types of relationships:

1. Happens-before (→) We say that segment A happens-before segment B (A

→ B) if the start event timestamp for B is greater than or equal to the end
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Figure 3.1: Causal Relationships. This figure depicts examples of the three kinds
of causal relationship we consider. Happens-before relationships are when one seg-
ment (A) always finishes in its entirety before another segment (B) begins. FIFO
relationships exist when a sequence of segments each have a happens-before relation-
ship with another sequence in the same order. A mutual exclusion relationship exists
when two segments never overlap.

event timestamp for A in all requests.

2. Mutual exclusion (∨) Segments A and B are mutually exclusive (A ∨ B) if

their time intervals never overlap.

3. Pipeline (�) Given two tasks, t1 and t2, there exists a data dependency

between pairs of segments of the two tasks. Further, the segment that operates

on data element d1 precedes the segment that operates on data element d2 in

task t1 if and only if the segment that operates on d1 precedes the segment that

operates on d2 in task t2 for all such pairs of segments. In other words, the

segments preserve a FIFO ordering in how data is produced by the first task

and consumed by the second task.

We summarize these relationships in Figure 3.1. For each relationship we provide a

valid example and at least one counterexample that would contradict the hypothesis.

We use techniques from the race detection literature to map these static relation-

ships to dynamic happens-before relationships. Note that mutual exclusion is a static

property; e.g., two components A and B that share a lock are mutually exclusive.

Dynamically, for a particular request, this relationship becomes a happens-before re-
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Figure 3.2: Dependency model generation and critical path calculation. This
figure provides an example of discovering the true dependency model through iterative
refinement. We show only a few segments and relationships for the sake of simplicity.
Without any traces, the dependency model is a fully connected graph. By eliminating
dependency edges invalidated by counterexamples, we arrive at the true model. With
a refined model, we can reprocess the same traces and derive the critical path for
each.

lationship: either A → B or B → A, depending on the order of execution. Pipeline

relationships are similar. Thus, for any given request, all of these static relationships

can be expressed as dynamic causal relationships between pairs of segments.

3.4.2 Algorithm

The Mystery Machine uses iterative refinement to infer causal relationships. It first

generates all possible hypotheses for causal relationships among segments. Then, it

iterates through a corpus of traces and rejects a hypothesis if it finds a counterexample
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in any trace.

Step 1 of Figure 3.2 illustrates this process. We depict the set of hypotheses as

a graph where nodes are segments (”S” nodes are server segments, ”N” nodes are

network segments and ”C” nodes are client segments) and edges are hypothesized

relationships. For the sake of simplicity, we restrict this example to consider only

happens-before relationships; an arrow from A to B shows a hypothesized “A happens

before B” relationship.

The “No Traces” column shows that all possible relationships are initially hypoth-

esized; this is a large number because the possible relationships scale quadratically

as the number of segments increases. Several hypotheses are eliminated by observed

contradictions in the first request. For example, since S2 happens after S1, the hy-

pothesized relationship, S2 → S1, is removed. Further traces must be processed to

complete the model. For instance, the second request eliminates the hypothesized

relationship, N1 → N2. Additional traces prune new hypotheses due to the natural

perturbation in timing of segment processing; e.g., perhaps the second user had less

friends, allowing the network segments to overlap due to shorter server processing

time.

The Mystery Machine assumes that the natural variation in timing that arises over

large numbers of traces is sufficient to expose counterexamples for incorrect relation-

ships. Figure 3.3 provides evidence supporting this hypothesis from traces of over 1.3

million requests to the Facebook home page gathered over 30 days. As the number of

traces analyzed increases, the observation of new counterexamples diminishes, leaving

behind only true relationships. Note that the number of total relationships changes

over time because developers are continually adding new segments to the pipeline.
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Figure 3.3: Hypothesis Refinement. This graph shows the growth of number of
hypothesized relationships as a function of requests analyzed. As more requests are
analyzed, the rate at which new relationships are discovered and removed decreases
and eventually reaches a steady-state. The total number of relationships increases
over time due to code changes and the addition of new features.

3.4.3 Validation

To validate the causal model produced by the Mystery Machine, we confirmed

several specific relationships identified by the Mystery Machine. Although we could

not validate the entire model due to its size, we did substantial validation of two of the

more intricate components: the interplay between JavaScript execution on the client

and the dependencies involved in delivering data to the client. These components

have 42 and 84 segments, respectively, as well as 2,583 and 10,458 identified casual

relationships.

We confirmed these specific relationships by examining source code, inserting as-

sertions to confirm model-derived hypotheses, and consulting relevant subsystem ex-

perts. For example, the system discovered the specific, pipelined schedule according

to which page content is delivered to the client. Further, the model correctly reflects

that JavaScript segments are mutually exclusive (a known property of the JavaScript

execution engine) and identified ordering constraints arising from synchronization.
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3.4.4 Analysis

Once The Mystery Machine has produced the causal model of segment relation-

ships, it can perform several types of performance analysis.

3.4.5 Critical Path

Critical path analysis is a classic technique for understanding how individual com-

ponents of a parallel execution impact end-to-end latency [76, 95]. The critical path is

defined to be the set of segments for which a differential increase in segment execution

time would result in the same differential increase in end-to-end latency.

The Mystery Machine calculates the critical path on a per-request basis. It rep-

resents all segments in a request as a directed acyclic graph in which the segments

are vertices with weight equal to the segment duration. It adds an edge between all

vertices for which the corresponding segments have a causal relationship. Then, it

performs a transitive reduction in which all edges A → C are recursively removed if

there exists a path consisting of A → B and B → C that links the two nodes.

Finally, The Mystery Machine performs a longest-path analysis to find the critical

path from the first event in the request (the initiation of the request) to the last event

(which is typically the termination of some JavaScript execution). The length of the

critical path is the end-to-end latency of the entire request. If there are equal-length

critical paths, the first discovered path is chosen.

We illustrate the critical path calculation for the two example requests in Step 2

of Figure 3.2. Each request has a different critical path even though the dependency

graph is the same for both. The critical path of the first request is {S1, S2, N2, C2}.

Because S2 has a long duration, all dependencies for N2 and C2 have been met before

they start, leaving them on the critical path. The critical path of the second request

is {S1, N1, C1, C2}. In this case, S2 and N2 could have longer durations and not

affect end-to-end latency because C2 must wait for C1 to finish.
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Typically, we ask The Mystery Machine to calculate critical paths for large num-

bers of traces and aggregate the results. For instance, we might ask how often a

given segment falls on the critical path or the average percentage of the critical path

represented by each segment.

3.4.6 Slack

Critical path analysis is useful for determining where to focus optimization effort;

however, it does not provide any information about the importance of latency for

segments off the critical path. The Mystery Machine provides this information via

slack analysis.

We define slack to be the amount by which the duration of a segment may increase

without increasing the end-to-end latency of the request, assuming that the duration

of all other segments remains constant. By this definition, segments on the criti-

cal path have no slack because increasing their latency will increase the end-to-end

latency of the request.

To calculate the slack for a given segment, S, The Mystery Machine calculates

CPstart, the critical path length from the first event in the request to the start of S

and CPend the critical path length from the end of S to the last event in the request.

Given the critical path length for the entire request (CP ) and the duration of segment

S (DS), the slack for S is CP - CPstart - DS - CPend. The Mystery Machine’s slack

analysis calculates and reports this value for every segment. As with critical path

results, slack results are typically aggregated over a large number of traces.

3.4.7 Anomaly detection

One special form of aggregation supported by The Mystery Machine is anomaly

analysis. To perform this analysis, it first classifies requests according to end-to-end

latency to identify a set of outlier requests. Currently, outliers are defined to be
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Figure 3.4: The Mystery Machine data pipeline.

requests that are in the top 5% of end-to-end latency. Then, it performs a separate

aggregation of critical path or slack data for each set of requests identified by the

classifiers. Finally, it performs a differential comparison to identify segments with

proportionally greater representation in the outlier set of requests than in the non-

outlier set. For instance, we have used this analysis to identify a set of segments

that correlated with high latency requests. Inspection revealed that these segments

were in fact debugging components that had been returned in response to some user

requests.

3.5 Implementation

We designed The Mystery Machine to automatically and continuously analyze

production traffic at scale over long time periods. It is implemented as a large-scale

data processing pipeline, as depicted in Figure 3.4.

ÜberTrace continuously samples a small fraction of requests for end-to-end tracing.

Trace data is collected by the Web servers handling these requests, which write them

to Scribe, Facebook’s distributed logging service. The trace logs are stored in tables

in a large-scale data warehousing infrastructure called Hive [90]. While Scribe and

Hive are the in-house analysis tools used at Facebook, their use is not fundamental

to our system.

44



The Mystery Machine runs periodic processing jobs that read trace data from Hive

and calculate or refine the causal model based on those traces. The calculation of

the causal model is compute-intensive because the number of possible hypotheses is

quadratic with the number of segments and because model refinement requires traces

of hundreds of thousands of requests. Therefore, our implementation parallelizes this

step as a Hadoop job running on a compute cluster. Infrequently occurring testing and

debugging segments are automatically removed from the model; these follow a well-

defined naming convention that can be detected with a single regular expression. The

initial calculation of the model analyzed traces of over 1.3 million requests collected

over 30 days. On a Hadoop cluster, it took less than 2 hours to derive a model from

these traces.

In practice, the model must be recomputed periodically in order to detect changes

in relationships. Parallelizing the computation made it feasible to recompute the

model every night as a regularly-scheduled batch job.

In addition to the three types of analysis described above, The Mystery Machine

supports on-demand user queries by exporting results to Facebook’s in-house analytic

tools, which can aggregate, pivot, and drill down into the results. We used these

tools to categorize results by browser, connection speed, and other such dimensions;

we share some of this data in Section 3.7.

3.6 Discussion

A key characteristic of The Mystery Machine is that it discovers dependencies

automatically, which is critical because Facebook’s request processing is constantly

evolving. As described previously, The Mystery Machine assumes a hypothesized

relationship between two segments until it finds a counterexample. Over time, new

segments are added as the site evolves and new features are added. The Mystery

Machine automatically finds the dependencies introduced by the new segments by
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hypothesizing new possible relationships and removing relationships in which a coun-

terexample is found. This is shown in Figure 3.3 by the increase in number of total

relationships over time. To account for segments that are eliminated and invariants

that are added, one can simply run a new Hadoop job to generate the model over a

different time window of traces.

Excluding new segments, the rate at which new relationships are added levels off.

The rate at which relationships are removed due to counterexamples also levels off.

Thus, the model converges on a set of true dependencies.

The Mystery Machine relies on ÜberTrace for complete log messages. Log mes-

sages, however, may be missing for two reasons: the component does no logging at all

for a segment of its execution or the component logs messages for some requests but

not others. In the first case, The Mystery Machine cannot identify causal relationships

involving the unlogged segment, but causal relationships among all other segments

will be identified correctly. When a segment is missing, the model overestimates the

concurrency in the system, which would affect the critical path/slack analysis if the

true critical path includes the unlogged segment. In the second case, The Mystery

Machine would require more traces in order to discover counterexamples. This is

equivalent to changing the sampling frequency.

3.7 Results

We demonstrate the utility of The Mystery Machine with two case studies. First,

we demonstrate its use for aggregate performance characterization. We study live

traffic, stratifying the data to identify factors that influence which system components

contribute to the critical path. We find that the critical path can shift between three

major components (servers, network, and client) and that these shifts correlate with

the client type and network connection quality.

This variation suggests one possible performance optimization for Facebook
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servers: provide differentiated service by prioritizing service for connections where

the server has no slack while deprioritizing those where network and client latency

will likely dominate. Our second case study demonstrates how the natural variance

across a large trace set enables testing of such performance hypotheses without ex-

pensive modifications to the system under observation. Since an implementation that

provided differential services would require large-scale effort to thread through hun-

dreds of server components, we use our dataset to first determine whether such an

optimization is likely to be successful. We find that slack, as detected by The Mys-

tery Machine, indeed indicates that slower server processing time minimally impacts

end-to-end latency. We also find that slack tends to remain stable for a particular

user across multiple Facebook sessions, so the observed slack of past connections can

be used to predict the slack of the current connection.

3.8 Characterizing End-to-End Performance

In our first case study, we characterize the end-to-end performance critical path

of Web accesses to the home.php Facebook endpoint. The Mystery Machine analyzes

traces of over 1.3 million Web accesses collected over 30 days in July and August

2013.

Importance of critical path analysis. Figure 3.5 shows mean time breakdowns

over the entire trace dataset. The breakdown is shown in absolute time in the left

graph, and as a percent of total time on the right. We assign segments to one of

five categories: Server for segments on a Facebook Web server or any internal service

accessed from the Web server over RPC, Network for segments in which data traverses

the network, DOM for browser segments that parse the document object model,

CSS for segments processing cascading style sheets, and JavaScript for JavaScript

segments. Each graph includes two bars: one showing the stacked sum of total

processing time in each component ignoring all concurrency (“Summed Delay”) and
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Figure 3.5: Mean End-to-End Performance Breakdown. Simply summing delay
measured at each system component (“Summed Delay”) ignores overlap and under-
estimates the importance of server latency relative to the actual mean critical path
(“Critical Path”).

the other the critical path as identified by The Mystery Machine (“Critical Path”).

On average, network delays account for the largest fraction of the critical path,

but client and server processing are both significant. JavaScript execution remains a

major bottleneck in current Web browsers, particularly since the JavaScript execution

model admits little concurrency. The comparison of the total delay and critical path

bars reveals the importance of The Mystery Machine—by examining only the total

latency breakdown (e.g., if an engineer were profiling only one system component),

one might overestimate the importance of network latency and JavaScript processing

on end-to-end performance. In fact, the server and other client processing segments

are frequently critical, and the overall critical path is relatively balanced across server,

client, and network.

High variance in the critical path. Although analyzing the average case is

instructive, it grossly oversimplifies the performance picture for the home.php end-

point. There are massive sources of latency variance over the population of requests,

including the performance of the client device, the size of the user’s friend list, the

kind of network connection, server load, Memcache misses, etc. Figure 3.6 shows
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Figure 3.6: Cumulative distribution of the fraction of the critical path at-
tributable to server, network, and client portions

the cumulative distribution of the fraction of the critical path attributable to server,

network, and client segments over all requests. The key revelation of these distri-

butions is that the critical path shifts drastically across requests—any of the three

components can dominate delay, accounting for more than half of the critical path in

a non-negligible fraction of requests.

Variance is greatest in the contribution of the network to the critical path, as

evidenced by the fact that its CDF has the least curvature. It is not surprising that

network delays vary so greatly since the trace data set includes accesses to Facebook

over all sorts of networks, from high-speed broadband to cellular networks and even

some dial-up connections. Client processing always accounts for at least 20% of the

critical path. After content delivery, there is a global barrier in the browser before

the JavaScript engine begins running the executable components of the page, hence,

JavaScript execution is a factor in performance measurement. However, the client

rarely accounts for more than 40% of the critical path. It is unusual for the server to

account for less than 20% of the critical path because the initial request processing

before the server begins to transmit any data is always critical. Noticing this high

variance in the critical path was very valuable to us because it triggered the idea of

differentiated services that we explore in Section 3.9.

Stratification by connection type. We first consider stratifying by the type
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Figure 3.7: Critical path breakdowns stratified by browser, platform, con-
nection type, and computed bandwidth

of network over which a user connects to Facebook’s system, as it is clear one would

expect network latency to differ, for example, between cable modem and wireless

connections. Facebook’s edge load balancing system tags each incoming request with

a network type. These tags are derived from the network type recorded in the Au-

tonomous System Number database for the Internet service provider responsible for

the originating IP address. Figure 3.7 illustrates the critical path breakdown, in ab-

solute time, for the four largest connection type categories. Each bar is annotated

with the fraction of all requests that fall within that connection type (only a subset

of connection types are shown, so the percentages do not sum to 100%).

Perhaps unsurprisingly, these coarse network type classifications correlate only

loosely to the actual performance of the network connection. Mobile connections

show a higher average network critical path than the other displayed connection

types, but the data is otherwise inconclusive. We conclude that the network type

reported by the ASN is not very helpful for making performance predictions.

Stratification by client platform. The client platform is included in the HTTP

headers transmitted by the browser along with each request, and is therefore also
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available at the beginning of request processing. The client operating system is a hint

to the kind of client device, which in turn may suggest relative client performance.

Figure 3.7 shows a critical path breakdown for the five most common client platforms

in our traces, again annotated with the fraction of requests represented by the bar.

Note that we are considering only Web browser requests, so requests initiated by

Facebook cell phone apps are not included. The most striking feature of the graph is

that Mac OS X users (a small minority of Facebook connections at only 7.1%) tend

to connect to Facebook from faster networks than Windows users. We also see that

the bulk of connecting Windows users still run Windows 7, and many installations

of Windows XP remain deployed. Client processing time has improved markedly

over the various generations of Windows. Nevertheless, the breakdowns are all quite

similar, and we again find insufficient predictive power for differentiating service time

by platform.

Stratification by browser. The browser type is also indicated in the HTTP

headers transmitted with a request. In Figure 3.7, we see critical paths for the four

most popular browsers. Safari is an outlier, but this category is strongly correlated

with the Mac OS X category. Chrome appears to offer slightly better JavaScript

performance than the other browsers.

Stratification by measured network bandwidth. All of the preceding strat-

ifications only loosely correlate to performance—ASN is a poor indication of network

connection quality, and browser and OS do not provide a reliable indication of client

performance. We provide one more example stratification where we subdivide the

population of requests into five categories directly from the measured network band-

width, which can be deduced from our traces based on network time and bytes trans-

mitted. Each of the categories are equally sized to represent 20% of requests, sorted

by increasing bandwidth (p80 is the quintile with the highest observed bandwidth).

As one would expect, network critical path is strongly correlated to measured net-
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work bandwidth. Higher bandwidth connections also tend to come from more capable

clients; low-performance clients (e.g., smart phones) often connect over poor networks

(3G and Edge networks).

3.9 Differentiated Service using Slack

Our second case study uses The Mystery Machine to perform early exploration of

a potential performance optimization—differentiated service—without undertaking

the expense of implementing the optimization.

The characterization in the preceding section reveals that there is enormous vari-

ation in the relative importance of client, server, and network performance over the

population of Facebook requests. For some requests, server segments form the bulk

of the critical path. For these requests, any increase in server latency will result in a

commensurate increase in end-to-end latency and a worse user experience. However,

after the initial critical segment, many connections are limited by the speed at which

data can be delivered over the network or rendered by the client. For these connec-

tions, server execution can be delayed to produce data as needed, rather than as soon

as possible, without affecting the critical path or the end-to-end request latency.

We use The Mystery Machine to directly measure the slack in server processing

time available in our trace dataset. For simplicity of explanation, we will use the

generic term “slack” in this section to refer to the slack in server processing time

only, excluding slack available in any other types of segments.

Figure 3.8 shows the cumulative distribution of slack for the last data item sent

by the server to the client. The graph is annotated with a vertical line at 500 ms of

slack. For the purposes of this analysis, we have selected 500 ms as a reasonable cut-off

between connections for which service should be provided with best effort (< 500 ms

slack), and connections for which service can be deprioritized (> 500 ms). However,

in practice, the best cut-off will depend on the implementation mechanism used to
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Figure 3.8: Slack CDF for Last Data Item. Nearly 20% of traces exhibit consid-
erable slack—over 2 s—for the server segment that generates the last pagelet trans-
mitted to the client. Conversely, nearly 20% of traces exhibit little (< 250 ms) slack.

deprioritize service. More than 60% of all connections exhibit more than 500 ms of

slack, indicating substantial opportunity to defer server processing. We find that slack

typically increases monotonically during server processing as data items are sent to

the client during a request. Thus, we conclude that slack is best consumed equally

as several segments execute, as opposed to consuming all slack at the start or end of

processing.

Validating Slack Estimates It is difficult to directly validate The Mystery Ma-

chine’s slack estimates, as we can only compute slack once a request has been fully

processed. Hence, we cannot retrospectively delay server segments to consume the

slack and confirm that the end-to-end latency is unchanged. Such an experiment is

difficult even under highly controlled circumstances, since it would require precisely

reproducing the conditions of a request over and over while selectively delaying only

a few server segments.

Instead, we turn again to the vastness of our trace data set and the natural variance

therein to confirm that slack estimates hold predictive power. Intuitively, small slack

implies that server latency is strongly correlated to end-to-end latency; indeed, with

a slack of zero we expect any increase in server latency to delay end-to-end latency by
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Figure 3.9: Server vs. End-to-end Latency. For the traces with slack below 25ms
(left graph), there is strong correlation (clustering near y = x) between server and
end-to-end latency. The correlation is much weaker (wide dispersal above y = x) for
the traces with slack above 2.5s (right graph).

the same amount. Conversely, when slack is large, we expect little correlation between

server latency and end-to-end latency; increases in server latency are largely hidden

by other concurrent delays. We validate our notion of slack by directly measuring the

correlation of server and end-to-end latency.

Figure 3.9 provides an intuitive view of the relationship for which we are testing.

Each graph is a heat map of server generation time vs. end-to-end latency. The left

graph includes only requests with the lowest measured slack, below 25 ms. There are

slightly over 115,000 such requests in this data set. For these requests, we expect a

strong correlation between server time and end-to-end time. We find that this subset

of requests is tightly clustered just above the y = x (indicated by the line in the

figure), indicating a strong correlation. The right figure includes roughly 100,000

requests with the greatest slack (above 2500 ms). For these, we expect no particular

relationship between server time and end-to-end time (except that end-to-end time

must be at least as large as slack, since this is an invariant of request processing).

Indeed, we find the requests dispersed in a large cloud above y = x, with no correlation

visually apparent.

We provide a more rigorous validation of the slack estimate in Figure 3.10. Here,
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Figure 3.10: Server–End-to-end Latency Correlation vs. Slack. As reported
slack increases, the correlation between total server processing time and end-to-end
latency weakens, since a growing fraction of server segments are non-critical.

we show the correlation coefficient between server time and end-to-end time for equally

sized buckets of requests sorted by increasing slack. Each block in the graph corre-

sponds to 5% of our sample, or roughly 57,000 requests (buckets are not equally

spaced since the slack distribution is heavy-tailed). As expected, the correlation co-

efficient between server and end-to-end latency is quite high, nearly 0.8, when slack

is low. It drops to 0.2 for the requests with the largest slack.

Predicting Slack. We have found that slack is predictive of the degree to which

server latency impacts end-to-end latency. However, The Mystery Machine can dis-

cover slack only through a retrospective analysis. To be useful in a deployed system,

we must predict the availability or lack of slack for a particular connection as server

processing begins.

One mechanism to predict slack is to recall the slack a particular user experienced

in a prior connection to Facebook. Previous slack was found to be more useful in

predicting future slack than any other feature we studied. Most users connect to

Facebook using the same device and over the same network connection repeatedly.

Hence, their client and network performance are likely to remain stable over time.

The user id is included as part of the request, and slack could be easily associated
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Figure 3.11: Historical Slack as Classifier. The clustering around the line y = x
shows that slack is relatively stable over time. The history-based classifier is correct
83% of the time. A type I error is a false positive, reporting slack as available when
it is not. A type II error is a false negative.

with the user id via a persistent cookie or by storing the most recent slack estimate

in Memcache [64].

We test the hypothesis that slack remains stable over time by finding all instances

within our trace dataset where we have multiple requests associated with the same

user id. Since the request sampling rate is exceedingly low, and the active user

population is so large, selecting the same user for tracing more than once is a relatively

rare event. Nevertheless, again because of the massive volume of traces collected over

the course of 30 days of sampling, we have traced more than 1000 repeat users. We

test a simple classifier that predicts a user will experience a slack greater than 500 ms

if the slack on their most recent preceding connection was also greater than 500 ms.

Figure 3.11 illustrates the result. The graph shows a scatter plot of the first slack and

second slack in each pair; the line at y = x indicates slack was identical between the

two connections. Our simple history-based classifier predicts the presence or absence

of slack correctly 83% of the time. The shaded regions of the graph indicate cases

where we have misclassified a connection. A type I error indicates a prediction that

there is slack available for a connection when in fact server performance turns out to
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be critical–8% of requests fall in this category. Conversely, a type II error indicates a

prediction that a connection will not have slack when in fact it does, and represents

a missed opportunity to throttle service—9% of requests fall in this category.

Note that achieving these results does not require frequent sampling. The repeated

accesses we study are often several weeks separated in time, and, of course, it is

likely that there have been many intervening unsampled requests by the same user.

Sampling each user once every few weeks would therefore be sufficient.

Potential Impact. We have shown that a potential performance optimization

would be to offer differentiated service based on the predicted amount of slack avail-

able per connection. Deciding which connections to service is equivalent to real-time

scheduling with deadlines. By using predicted slack as a scheduling deadline, we can

improve average response time in a manner similar to the earliest deadline first real-

time scheduling algorithm. Connections with considerable slack can be given a lower

priority without affecting end-to-end latency. However, connections with little slack

should see an improvement in end-to-end latency because they are given scheduling

priority. Therefore, average latency should improve. We have also shown that prior

slack values are a good predictor of future slack. When new connections are received,

historical values can be retrieved and used in scheduling decisions. Since calculating

slack is much less complex than servicing the actual Facebook request, it should be

feasible to recalculate the slack for each user approximately once per month.
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CHAPTER IV

DQBarge: Improving data quality tradeoffs in

Internet services

4.1 Introduction

A data-quality tradeoff is an explicit decision by a software component to return

lower-fidelity data in order to improve response time or minimize resource usage.

Data-quality tradeoffs are often found in Internet services due to the need to balance

the competing goals of minimizing the service response time perceived by the end

user and maximizing the quality of the service provided. Tradeoffs in large-scale

services are pervasive since hundreds or thousands of distinct software components

may be invoked to service a single request, and each component may make individual

data-quality tradeoffs.

Data-quality tradeoffs in low-level software components often arise from defensive

programming. A programmer or team responsible for a specific component wishes to

bound the response time of their component even when the resource usage or latency

of a sub-service is unpredictable. For instance, a common practice is to time out

when a sub-service is slow to respond and supply a lower-fidelity value in lieu of the

requested data.

To quantify the prevalence of data-quality tradeoffs, we undertake a systematic
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study of software components at Facebook. We find that over 90% of components

perform data-quality tradeoffs instead of failing. Some tradeoffs we observe are using

default values, calculating aggregates from only a subset of input values, and retriev-

ing alternate values from a stale or lower-quality data source. Further, we observe

that the vast majority of data-quality tradeoffs are reactive rather than proactive,

e.g., components typically set timeouts and make a data-quality tradeoff when a

timer expires rather than attempt to predict and perform only those actions that can

be performed within a desired time bound.

These existing data-quality tradeoffs are suboptimal for three reasons. First, they

consider only local knowledge available to the low-level software component because

of the difficulty in accessing higher-level knowledge such as the provenance of data,

system load, and whether the component is on the critical request path. Second, the

tradeoffs are usually reactive (e.g., happening only after a timeout) rather than proac-

tive (e.g., issuing only the amount of sub-service requests that can be expected to

complete within a time bound); reactive tradeoffs waste resources and exacerbate sys-

tem overload. Finally, there is no mechanism to trace the set of data-quality tradeoffs

made during a request, and this makes understanding the quality and performance

impact of such tradeoffs on actual requests difficult.

DQBarge addresses these problems by propagating critical information related to

data-quality tradeoffs along the causal path of request processing. The propagated

data includes load metrics, as well as the expected critical path and slack for individual

software components. It also includes provenance for request data such as the data

sources queried and the software components that have transformed the data. Finally,

it includes the specific data-quality tradeoffs that have been made for each request;

e.g., data values left out of aggregations.

DQBarge uses this data to generate performance and quality models for low-level

tradeoffs in the service pipeline. It consults the models to proactively determine which
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tradeoffs to make for future requests.

DQBarge generates performance and quality models by sampling a small percent-

age of the total requests processed by the service and redundantly executing them

to compare the performance and quality when different tradeoffs are employed. Per-

formance models capture how throughput and latency are affected by specific data-

quality tradeoffs as a factor of overall system load and provenance. Quality models

capture how the fidelity of the final response is affected by specific tradeoffs as a

function of input data provenance.

These models enable better tradeoffs during subsequent request executions.

DQBarge passes extra data along the causal path of request processing. It pre-

dicts the critical path for each request and the components along the requests path

that will have substantial slack in processing time. It also measures current system

load. This global and request-specific state is attached to the request at ingress.

As the request propagates through software components, DQBarge annotates data

objects with provenance (e.g., the sources from which data was retrieved and the

algorithms used to generate the data). This information and the generated models

are propagated to the low-level components, enabling them to make better tradeoffs.

We investigate three scenarios in which better data-quality tradeoffs can help.

First, during unanticipated load spikes, making better data quality tradeoffs can

maintain end-to-end latency goals while minimizing the loss in fidelity perceived by

the end user. Second, when load levels permit, components with slack (because they

are off the critical path of request processing) can improve the fidelity of the response

without impacting the end-to-end latency. Finally, understanding the potential ef-

fects of low-level data-quality tradeoffs can inform dynamic capacity planning and

maximize utility as a function of the resources required to produce output.

Thus, this work makes the following contributions. We provide the first com-

prehensive study of low-level data-quality tradeoffs in a large-scale Internet service.
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Second, we observe that causal propagation of request statistics and provenance en-

ables better and more proactive data-quality tradeoffs. Finally, we demonstrate the

feasibility of this approach by designing, implementing, and evaluating DQBarge, an

end-to-end approach for tracing, modeling, and actuating data-quality tradeoffs in

Internet service pipelines.

We have added a complete, end-to-end implementation of DQBarge to Sirius [39],

an open-source, personal digital assistant service. We have also implemented and

evaluated the main components of the DQBarge architecture at Facebook and val-

idated it with production data. Our results show that DQBarge can meet latency

goals during load spikes, utilize spare resources without impacting end-to-end latency,

and maximize utility by dynamically adding capacity for a service.

4.2 Study of data-quality tradeoffs

In this section, we quantify the prevalence and type of data-quality tradeoffs in

production software at Facebook. We perform a comprehensive study of Facebook

client services that use an internal key-value store called Laser. Laser enables online

accessing of results of a batch offline computation such as a Hive [90] query.

We chose to study clients of Laser for several reasons. First, Laser had 463 client

services, giving us a broad base of software to examine. Second, many details about

timeouts and tradeoffs are specified in client-specific RPC configuration files for this

store. We were able to process these files automatically, which reduced the amount of

manual code inspection required for the study. Finally, we believe a key-value store

is representative of the low-level components employed by most large-scale Internet

companies.

Table 4.1 shows the results of our study for the 50 client services that invoke

Laser most frequently, and Table 4.2 shows the results for all 463 client services. We

categorize how clients make data-quality decisions along two dimensions: proactivity
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Failure Data-quality tradeoff
Default Omit Low fidelity

Reactive 5 14 30 1
Proactive 0 0 2 1

Table 4.1: Data-quality decisions of the top 50 Laser clients. Each box shows
the number of client services that make decisions according to the specified combina-
tion of reactive/proactive determination and resultant action. The total number of
values shown is greater than 50 since a few clients use more than one strategy.

Failure Data-quality tradeoff
Default Omit Low fidelity

Reactive 40 250 174 4
Proactive 0 3 7 1

Table 4.2: Data-quality decisions made by all Laser clients. Each box shows
the number of client services that make tradeoffs according to the specified combina-
tion of reactive/proactive determination and resultant action. The total number of
values shown is greater than 463 since a few clients use more than one strategy.

and resultant action. Each table entry lists the number of client services that make

at least one data quality decisions with a specific proactivity/action combination. We

find that most clients employ a single strategy for all of their requests; only a few use

different strategies for different requests. When a client uses multiple strategies, we

include it in all relevant categories. Thus, the total number of values in each table is

slightly more than the number of clients.

4.2.1 Proactivity

We consider a tradeoff to be reactive if the client service always initiates the request

and then uses a timeout or return code to determine if the request is taking too long

or consuming too many resources. For instance, we observed many latency-sensitive

clients that set a strict timeout for how long to wait for a response. If Laser takes

longer than the timeout, such clients make a data-quality tradeoff or return failure.

A proactive check predicts whether the expected latency or resource cost of pro-

cessing the request will exceed a threshold. If so, a data-quality tradeoff is made
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immediately without issuing the request. For example, we observed a client that

determines whether or not a query will require cross-data-center communication be-

cause such communication would cause it to exceed its latency bound. If there are no

hosts that can service the query in its data center, it makes a data-quality tradeoff.

4.2.2 Resultant actions

We also examine the actions taken in response to latency or resource usage ex-

ceeding a threshold. Failure shows the number of clients that require a response from

Laser. If the store responds with an error or timeout, the client service fails. Such

instances mean a programmer has chosen to not make a data-quality tradeoff.

The remaining categories represent different types of data-quality tradeoffs. De-

fault shows the number of client services that return a pre-defined default answer

when a tradeoff is made. For instance, we observed a client service that ranks chat

threads according to their activity level. The set of most active chat groups are re-

trieved from Laser and boosted to the top of a chat bar. If retrieving this set of active

chat groups fails or times out, chat groups and contacts are listed alphabetically.

The Omit category is common in client services that aggregate hundreds of values

from different sources; e.g., to generate a model. If an error or timeout occurs retriev-

ing values from one of these sources, those values are left out and the aggregation is

performed over the values that were retrieved successfully.

One specific example we observed is a recommendation engine that aggregates

candidates and features from several data sources. It is resilient to missing candi-

dates and features. Although missing candidates are excluded from the final rec-

ommendation and missing features negatively affect candidate scores in calculating

the recommendation, the exclusion of a portion of these values allows a usable, but

slightly lower-fidelity recommendation to be returned in a timely manner in the event

of failure or unexpected system load.
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The Low fidelity category denotes client services that make a tradeoff by retrieving

an alternate, reduced quality value from a different data source. For example, we

observed a client that requests a pre-computed list of top videos for a given user. If a

timeout or failure occurs retrieving this list, the client retrieves a more generic set of

videos for that user. As a further example, we observed a client that chooses among

a pre-ranked list of optimal data sources. On error or timeout, the client retrieves

the data from the next best data source. This process continues until a response is

received.

Before performing our study, we hypothesized that client services might try to

retrieve data of equal fidelity from an alternate data store in response to a failure.

However, we did not observe any instance of this behavior in our study (all alternate

sources had lower-fidelity data). Thus, we do not list this category in our results.

4.2.3 Discussion of results

Tables 4.1 and 4.2 show that data quality tradeoffs are pervasive in the client

services we study. 90% of the top 50 Laser clients and 91% of all 463 clients perform

a data-quality tradeoff in response to a failure or timeout; the remaining 9-10% of

clients consider the failure to retrieve data in a timely manner to be a fatal error.

Thus, in the Facebook environment, making data-quality tradeoffs is normal behavior,

and failures are the exception.

For the top 50 clients, the most common action when faced with a failure or

timeout is to omit the requested value from the calculation of an aggregate (60% of

the top 50 clients do this). The next most common action (28% of the top 50 clients)

is to use a default value in lieu of the requested data. These trends are reversed when

considering all clients. Only 36% of all 463 clients omit the requested values from an

aggregation, whereas 52% use a default value.

We were surprised that only a few clients react to failure or timeout by attempting
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to retrieve the requested data from an alternate source (4% of the top 50 clients and

1% of all clients). This may be due to tight time or resource constraints; e.g., if the

original query takes too long, there may be no time left to initiate another query.

Only 6% of the top 50 clients and 2% of all clients are proactive. The lack of

proactivity represents a significant lost opportunity for optimization because requests

that timeout or fail consume resources but produce no benefit. This effect can be

especially prominent when requests are failing due to excessive load; a proactive

strategy would decrease the overall stress on the system. Failure of a proactive check

always results in a data-quality tradeoff rather than a failure; this makes sense because

it would be very pessimistic for a client to return a failure without at least attempting

to fetch the needed data.

In our inspection of source code, we observed that low-level data-quality decisions

are almost always encapsulated within clients and not reported to higher-level com-

ponents or attached to the response data. Thus, there is no way for operators to

check how the quality of the response being sent to the user has been impacted by

low-level quality tradeoffs during request processing.

4.3 Design and implementation

Motivated by our study results, we designed DQBarge to help developers under-

stand the impact of data-quality tradeoffs and make better, more proactive tradeoffs

to improve quality and performance. Our hypothesis is that propagating additional

information along the causal path of request processing will provide the additional

context necessary to reach these goals.

Section 4.3.1 describes how DQBarge gathers and propagates data about request

processing, including system load, critical path and slack predictions, data prove-

nance, and a history of the tradeoffs made during request processing. Section 4.3.2

relates how DQBarge duplicates the execution of a small sample of requests to build
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models of performance and quality for potential data-quality tradeoffs. As described

in Section 4.3.3, DQBarge uses these models to make better tradeoffs for subsequent

requests: it makes proactive tradeoffs to reduce resource wastage, and it uses prove-

nance to choose tradeoffs that lead to better quality at a reduced performance cost.

Finally, Section 4.3.4 describes how DQBarge logs all tradeoffs made during request

processing so that operators can review how system performance and request quality

have been impacted.

4.3.1 Data gathering and propagation

DQBarge provides a library for developers to specify the information that should

be propagated along the critical path. Developers use the library interface to annotate

objects during request processing and query those annotations at later stages of the

pipeline. The DQBarge library has a RPC-package-specific back-end that modifies

and queries existing RPC objects to propagate the information.

DQBarge modifies RPC objects by adding additional fields that contain data to

be propagated along the causal path. It supports three object scopes: request-level,

component-level, and data-level.

Request-level objects are passed through all components involved in processing

the request, following the causal path of request execution. For example, the systems

in our case studies both have a global object containing a unique request identi-

fier. DQBarge appends request-level information to this object. Request-level data

includes system-wide load metrics, slack predictions, and a list of data-quality trade-

offs made during request execution. This technique for passing and propagating

information is widely used in other tracing systems that follow the causal path of

execution [36, 57].

Component-level objects persist from the beginning to end of processing for a

specific software component within the request pipeline. Such objects are passed to all
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Figure 4.1: DQBarge overview.

sub-components that are called during the execution of the higher-level component.

DQBarge appends component-specific data to these objects, so such data will be

automatically deallocated when execution passes beyond the specified component.

Component-specific load metrics are one example of data put in component-level

objects.

Data-level objects are the specific data items being propagated as a result of

request execution. DQBarge associates provenance with each data item, since the

provenance is meaningful only as long as the data item exists.

Our library provide a useful interface for manipulating RPC objects, but devel-

opers must still make domain-specific decisions, e.g., what metrics and provenance

values to add, what objects to associate with those values, and what rules should be

used to model the propagation of provenance. Figure 4.1 shows an overview of how

this data propagates through the system.

Load metrics may be relevant to the entire request or only to certain components.

Each load metric is represented as a typed key-value pair (e.g., a floating point value

associated with the key “requests/second”). Currently supported load metrics are

throughput, CPU load, and memory usage.

Critical path and slack predictions are specified as directed acyclic graphs. Each

software component in the graph has a weight that corresponds to its predicted slack

(the amount of additional time it could take to process a request without affecting

the end-to-end latency of the request). Components on the critical path of request
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execution have zero slack. Currently, slack predictions are made at request ingress

based on historical log data; such predictions may cover the entire request or only

specific components of the request.

DQBarge associates provenance with the data objects it describes. Provenance

can be a data source or the algorithm employed to generate a particular object. Prove-

nance is represented as an unordered collection of typed key-value pairs. DQBarge

supports both discrete and continuous types. The types allow DQBarge to extract

a schema from the data objects being passed to a component making a data-quality

decision. Components are treated as black boxes, so developers must specify how

provenance is propagated when a component modifies existing data objects or cre-

ates new ones.

Finally, DQBarge stores the tradeoffs that were made during request processing in

a request-level object. As described in Section 4.3.4, this information may be logged

and used for reporting the effect of tradeoffs on quality and performance.

4.3.2 Model generation

For each potential tradeoff, DQBarge creates a performance model and a quality

model that capture how the tradeoff affects request execution. Performance models

predict how throughput and latency are affected by specific data-quality tradeoffs as

a factor of overall system load and the provenance of input data. Quality models

capture how the fidelity of the final response is affected by specific tradeoffs as a

function of provenance.

DQBarge uses request duplication to generate models from production traffic with-

out adversely affecting the user experience. At the RPC layer, it randomly samples

incoming requests from production traffic, and it routes a copy of the selected re-

quests to one or more request duplication pipelines. Such pipelines execute isolated,

redundant copies of the request for which DQBarge can make different data-quality
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tradeoffs. These pipelines do not return results to the end user and they are prevented

from making modifications to persistent stores in the production environment; in all

other respects, request execution is identical to production systems. Many production

systems, including those at Facebook, already have similar functionality for testing

purposes, so adding support for model generation required minimal code changes.

DQBarge controls the rate at which requests enter the duplication pipeline by

changing the sampling frequency. At each potential tradeoff site, software components

query DQBarge to determine which tradeoffs to make; DQBarge uses these hooks

to systematically explore different tradeoff combinations and generate models. At

the pipeline egress, DQBarge inserts meters that record both the request processing

latency and the final response, which it uses to calculate a service-specific measure of

quality.

To generate a performance model, DQBarge uses load testing [45]. Each data-

quality tradeoff offers multiple fidelities. A default value may be used or not. Different

types or percentages of values can be left out of an aggregation. Multiple alternate

data stores may be used. For each fidelity, DQBarge starts with a low request rate

and increases the request rate until the latency exceeds a threshold. Thus, the result-

ing model shows request processing latency as a function of request rate and tradeoffs

made (i.e., the fidelity of the tradeoff selected). DQBarge also records the prove-

nance of the input data for the component making the tradeoff; the distribution of

provenance is representative of production traffic since the requests in the duplica-

tion pipeline are a random sampling of that traffic. DQBarge determines whether the

resulting latency distribution varies as a result of the input provenance; if so, it gener-

ates separate models for each provenance category. However, in the systems we have

examined, provenance has not had a statistically significant effect on performance

(though it significantly affects quality).

Even though generating performance models is performed offline, there is still a
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non-trivial cost with producing these models. First, resources must be allocated in

order to understand and reach the full limits of the service. Additionally, performing a

parameter sweep of the request rate can take up to approximately an hour. Producing

the performance curves for each tradeoff rate can be done in parallel but at the expense

of additional resources. The request rate is held until the variance has settled so that

accurate measurements of performance in production can be gathered. For example,

for systems running on the JVM with a JIT, additional requests are needed to warm

up the system to accurately model the distribution of request latencies.

Quality models capture how the fidelity of the final response is affected by data-

quality tradeoffs during request processing. To generate a quality model, DQBarge

sends each request to two duplication pipelines. The first pipeline makes no trade-

offs, and so produces a full-fidelity response. The second pipeline makes a specified

tradeoff, and so produces a potentially lower-fidelity response. DQBarge measures

the quality impact of the tradeoff by comparing the two responses and applying a

service-specific quality ranking. For example, if the output of the request is a ranked

list of Web pages, then a service-specific quality metric might be the distance between

where pages appear in the two rankings.

DQBarge next learns a model of how provenance affects request quality. As de-

scribed in the previous section, input data objects to the component making the

tradeoff are annotated with provenance in the form of typed key-value pairs. These

pairs are the features in the quality model. DQBarge uses multidimensional linear

regression to model the importance of each provenance feature in the quality of the

request result. For example, if a data-quality tradeoff omits values from an aggrega-

tion, then omitting values from one data source may have less impact on response

quality than omitting values from a different source.

Provenance can substantially reduce the number of observations needed to gener-

ate a quality model. Recall that all RPC data objects are annotated with provenance;
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thus, the objects in the final request result have provenance data. In many cases, the

provenance relationship is direct; an output object depends only on a specific input

provenance. In such cases, we can infer that the effect of a data-quality tradeoff would

be to omit the specified output object, replace it with a default value, etc. Thus, given

a specific output annotated with provenance, we can infer what the quality would be

if further data-quality tradeoffs were made (e.g., a specific set of provenance features

were used to omit objects from an aggregation). In such cases, the processing of one

request can generate many different data points for the quality model. If the prove-

nance relationship is not direct, DQBarge generates these data points by sampling

more requests and making different tradeoffs.

Because code changes will gradually render such models obsolete, we envision

that DQBarge will continuously or periodically update its models by sampling a low

percentage of production traffic.

4.3.3 Using the models

DQBarge uses its performance and quality models to make better, more proactive

data-quality tradeoffs. System operators specify a high-level goal such as maximizing

quality given a latency cap on request processing. Software components call DQBarge

at each potential tradeoff point during request processing; the library returns a deci-

sion as to whether a tradeoff should be made and, if appropriate, what fidelity should

be employed (e.g., which data source to use or which values to leave out of an aggre-

gation). The software component then implements that decision proactively; i.e., it

makes the tradeoff immediately.

DQBarge currently supports three high-level goals: maximizing quality subject

to a component-level latency constraint, maximizing quality while using only slack

execution time available during request processing, and maximizing utility as a func-

tion of quality and performance. These goals are useful for mitigating load spikes,

71



efficiently using spare resources, and implementing dynamic capacity planning, re-

spectively. We next describe these three goals in more detail.

4.3.3.1 Load Spikes

Services are provisioned to handle peak request loads. However, changes in usage

or traffic are unpredictable; e.g., the launch of a new feature may introduce additional

traffic. Thus, systems are designed to handle unexpected load spikes; the reactive

data-quality tradeoffs we saw in Section 4.2 are one such mechanism. DQBarge

improves on existing practice by letting an operator specify a maximum latency for

a request or a component of request processing. It maximizes quality subject to this

constraint by making data-quality tradeoffs.

At each tradeoff site, there may be many potential tradeoffs that can be made

(e.g., sets of values with different provenance may be left out of an aggregation or

distinct alternate data stores may be queried). DQBarge orders possible tradeoffs by

“bang for the buck” and greedily selects tradeoffs until the latency goal is reached.

It ranks each potential tradeoff by the ratio of the projected improvement in latency

(given by the performance model) to the decrease in request fidelity (given by the

quality model). The independent parameters of the model are the current system

load and the provenance of the input data. DQBarge selects tradeoffs in descending

order of this ratio until the performance model predicts that the latency limit will be

met.

4.3.3.2 Utilizing spare resources

Because DQBarge has a prediction of request processing time for each software

component, it can estimate which components are on the critical path and which com-

ponents have slack available in processing time. If a component has slack, DQBarge

can make tradeoffs that improve quality without negatively impacting the end-to-end
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request latency observed by the user. Similar to the previous scenario, DQBarge cal-

culates the ratio of quality improvement to latency decrease for each potential tradeoff

(the difference is that this goal involves improving quality rather than performance).

It then greedily selects tradeoffs according to this order until the additional latency

would exceed the projected slack time.

4.3.3.3 Dynamic capacity planning

DQBarge allows operators to specify the utility (e.g., the dollar value) of reducing

latency and improving quality. It then selects the tradeoffs that improve utility until

no more such tradeoffs are available. DQBarge also allows operators to specify the

impact of adding or removing resources (e.g., compute nodes) as a utility function

parameter. DQBarge compares the value of the maximum utility function with more

and less resources and generates a callback if adding or removing resources would

improve the current utility. Such callbacks allow dynamic re-provisioning.

4.3.3.4 Discussion

DQBarge does not guarantee an optimal solution since it employs greedy algo-

rithms to search through potential tradeoffs. However, an optimal solution is likely

unnecessary given the inevitable noise that arises from predicting traffic and from

errors in modeling. For the last use case, DQBarge assumes that operators can quan-

tify the impact of changes to service response times, quality, and the utilization of

additional resources. DQBarge also assumes that tradeoffs are independent, since

calculating models over joint distributions would be difficult.

4.3.4 Logging data-quality decisions

DQBarge logs all data-quality decisions and includes them in the provenance of

the request data objects. The information logged includes the software component,
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the point in the execution where a tradeoff decision was made, and the specific de-

cision that was made (e.g., which values were left out of an aggregation). To reduce

the amount of data that is logged, only instances where a tradeoff was made are

recorded. Timeouts and error return codes are also logged if they result in a reactive

data-quality tradeoff. This information helps system administrators and developers

understand how low-level data-quality tradeoffs are affecting the performance and

quality of production request processing.

4.4 Case studies

We have implemented the main components of DQBarge in a portion of the Face-

book request processing pipeline, and we have evaluated the results using Facebook

production traffic. Our current Facebook implementation allows us to track prove-

nance, generate performance and quality models and measure the efficacy of the

data-quality tradeoffs available through these models. This implementation thus al-

lows us to understand the feasibility and potential benefit of applying these ideas to

current production code.

We have also implemented the complete DQBarge system in Sirius [39], an open-

source personal digital assistant akin to Siri. Our Sirius implementation enables

end-to-end evaluation of DQBarge, such as observing how data-quality tradeoffs can

be used to react to traffic spikes and the availability of slack in the request pipeline.

4.4.1 Facebook

Our implementation of DQBarge at Facebook focuses on a page ranking service,

which we will call Ranker in this paper. When a user loads the Facebook home page,

Ranker uses various parameters of the request, such as the identity of the requester,

to generate a ranked list of page recommendations. Ranker first generates candidate

recommendations. It has a flexible architecture that allows the creation and use of
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multiple candidate generators; at the time of our study, there were over 30 candidate

generators that collectively produced hundreds of possible recommendations for each

request.

Ranker retrieves feature vectors for each candidate from Laser, the key-value store

we studied in Section 4.2. Ranker is a service that makes reactive data-quality trade-

offs. If an error or timeout occurs when retrieving features, Ranker omits the candi-

date(s) associated with those features from the aggregation of candidates and features

considered by the rest of the Ranker pipeline.

Ranker uses the features to calculate a score for each candidate. The algorithm

for calculating the score was opaque to us (it is based on a machine learning model

regenerated daily). It then orders candidate by score and returns the top N candi-

dates.

DQBarge leverages existing tracing and monitoring infrastructure at Facebook. It

uses a production version of the Mystery Machine tracing and performance analysis

infrastructure [30]. This tool discovers and reports performance characteristics of the

processing of Facebook requests, including which components are on the critical path.

From this data, we can calculate the slack available for each component of request

processing; prior results [30] showed that, given an observation of past requests by

the same user, slack for future requests can be predicted with high accuracy. Existing

Facebook systems monitor load at each component in the pipeline.

DQBarge annotates data passed along the pipeline with provenance. The data

object for each candidate is annotated with the generator that produced the data.

Similarly, features and other data retrieved for each candidate are associated with

their data source.

We implemented meters at the end of the Ranker pipeline that measure the latency

and quality of the final response. To measure quality, we compare the difference in

ranking of the top N pages returned from the full-quality response (with no data-
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quality tradeoffs made) and the lower-fidelity response (that includes some tradeoffs).

For example, if the highest-ranked page in the lower-fidelity response is the third-

ranked page in the full-quality response, the quality drop is two.

4.4.2 Sirius

We also added DQBarge to Sirius [39], an open-source personal assistant similar

to Apple’s Siri or Google Now. Sirius answers fact-based questions based on a set of

configurable data sources. The default source is an indexed Wikipedia database; an

operator may add other sources such as online search engines.

Sirius generates several queries from the question; each query represents a unique

method of parsing the question. For each query, it generates a list of documents

that are relevant to answering the query. Each document is passed through a natural

language processing pipeline to derive possible answers. Sirius assigns each answer a

numerical score and returns the top-ranked answer.

Data-quality tradeoffs in Sirius occur when aggregating values from multiple sub-

service queries. Our DQBarge implementation makes these tradeoffs proactively by

using quality and performance models to decide which documents to leave out of the

aggregation when the system is under load.

Initially, Sirius did not have request tracing or load monitoring infrastructure.

We therefore added the ability to trace and measure the performance by integrating

the Mystery Machine[30] software package. Each request has a unique identifier that

is propagated through every component of the pipeline. The performance of each

component is measured and the causal relationship among components is determined

through empirical observation of large sets of traces. This allows the request critical

path and slack for each component to be calculated offline. We also implemented a

slack predictor using this data that estimates the available slack for each component.

For load, we added counters at each pipeline stage to measure request rates. Addition-
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ally, we track the CPU load and memory usage of the entire service. The performance

data, predicted slack, and load information are all propagated by DQBarge as each

request flows through the Sirius pipeline.

In each stage of the Sirius pipeline, provenance is propagated along with data ob-

jects. For example, when queries are formed from the original question, the algorithm

used to generate the query is associated with the query object. Sirius provenance also

includes the data used to generate the list of candidate documents.

Since Sirius did not have a request duplication mechanism, we added the ability

to sample requests and send the same request through multiple instances of the Sirius

pipeline. User requests are read-only with respect to Sirius data stores, so we did not

have to isolate any modifications to service state from duplicated requests.

4.5 Evaluation

Our evaluation answers the following questions:

• Do data-quality tradeoffs improve performance?

• How much does provenance improve tradeoffs?

• How much does proactivity improve tradeoffs?

• How well does DQBarge meet end-to-end performance and quality goals?

4.5.1 Experimental setup

For Ranker, we perform our evaluation on Facebook servers using live Facebook

traffic by sampling and duplicating Ranker requests. Our entire implementation uses

request duplication pipelines, so as to not affect the results returned to Facebook

users. We change the system load by sampling a larger or smaller number of Ranker

requests.

For Sirius, we evaluated our end-to-end implementation of DQBarge on 16-core
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Figure 4.2: Ranker performance model This graph shows the effect of varying the
frequency of data-quality tradeoffs on Ranker request latency. We varied the request
rate by sampling different percentages of live production traffic at Facebook.

3.1GHz Xeon servers with 96GB of memory. We send Sirius questions sampled from

an archive from previous TREC conferences [89].

4.5.2 Performance benefits

We first measure the effect of data-quality tradeoffs on throughput and latency by

generating performance models for Ranker and Sirius. DQBarge performs a full pa-

rameter sweep through the dimensions of request rate, tradeoff frequency, and prove-

nance of the data being considered for each tradeoff, sampling at regular intervals.

For brevity, we report only a portion of these results.

4.5.2.1 Ranker

Figure 4.2 shows the latency-response curve for Ranker when DQBarge varies the

incoming request rate. Each curve shows the best fit for samples taken at a different

tradeoff rate, which we define to be the frequency at which data tradeoffs are made.

At a tradeoff rate of 0%, no candidates are dropped from the Ranker aggregation.

These results show that data-quality tradeoffs substantially improve Ranker la-

tency at low loads (less than 2500 requests/minute); e.g., at a 30% tradeoff rate,

latency decreases by 28%. Prior work has shown that server slack at Facebook is
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Figure 4.3: Sirius performance model. This graph shows the effect of varying
the frequency of data-quality tradeoffs on Sirius request latency. Each curve shows a
different tradeoff rate.

predictable on a per-request basis [30]. Thus, in this region, Ranker could make more

tradeoffs to reduce end-to-end response time when Ranker is on the critical path of

request processing, yet it could still provide full-fidelity responses when it has slack

time for further processing.

Data-quality tradeoffs also improve scalability under load. Taking 250ms as a

reasonable knee in the latency-response curve, Ranker can process approximately

2500 requests per minute without making tradeoffs, but it can handle 4300 requests

per minute when the tradeoff rate is 50% (a 72% increase). This allows Ranker to

run at a lower fidelity during a load spike.

DQBarge found that the provenance of the data values selected for tradeoffs does

not significantly affect performance. In other words, while the number of tradeoffs

made has the effect shown in Figure 4.2, the specific candidates that are proactively

omitted from an aggregation do not matter. Thus, we only show the effect of the

request rate and tradeoff rate.
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Figure 4.4: Impact of provenance on Ranker quality. We compare response
quality using provenance with a baseline that does not consider provenance. Each
graph shows the quality drop of the top ranked page, which is the difference between
where it appears in the Ranker rankings with and without data-quality tradeoffs. A
quality drop of 0 is ideal.

4.5.2.2 Sirius

Figure 4.3 shows results for Sirius. Like Ranker, the provenance of the data items

selected for tradeoffs did not affect performance, so we show latency-response curves

that vary both request rate and tradeoff rate.

The results for Sirius are similar to those for Ranker. A tradeoff rate of 50%

reduces end-to-end request latency by 26%. Under load, a 50% tradeoff rate increases

Sirius throughput by approximately 200%.

4.5.3 Effect of provenance

We next consider how much provenance improves the tradeoffs made by DQBarge.

We consider a baseline quality model that does not take into account any provenance;

e.g., given a target tradeoff rate, it randomly omits data values from an aggregation.

This is essentially the policy in existing systems like Ranker and Sirius because there

is no inherent order in requests from lower-level services and data stores and timeouts

therefore affect a random sampling of the values returned. In contrast, DQBarge uses

its quality model to select which values to omit, with the objective of choosing those

that affect the final output the least.
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Figure 4.5: Impact of provenance on Sirius quality. We compare response
quality using provenance with a baseline that does not consider provenance. Each
graph shows the quality drop of the Sirius answer, which is the difference between
where it appears in the Sirius rankings with and without data-quality tradeoffs. A
quality drop of 0 is ideal.

4.5.3.1 Ranker

We first used DQBarge to sample production traffic at Facebook and construct

a quality model for Ranker. DQBarge determined that, by far, the most important

provenance parameter affecting quality is the generator used to produce a candidate.

For example, one particular generator produces approximately 17% of the top-ranked

pages but only 1% of the candidates. Another generator produces only 1% of the

top-ranked pages but accounts for 3% of the candidates.

Figure 4.4 compares the quality of request results for DQBarge with a baseline

that makes tradeoffs without using provenance. We sample live Facebook traffic, so

the requests in this experiment are different from those used to generate the quality

model. We vary the tradeoff rate and measure the quality drop of the top ranked

page; this is the difference between where the page appears in the request that makes

a data-quality tradeoff and where it would appear if no data-quality tradeoffs was

made. The ideal quality drop is zero.

As shown in Figure 4.4a, at a low tradeoff rate of 10%, using provenance reduces

the percentage of requests that experience any quality drop at all from 11% to 6%.

With provenance, only 1% of requests experienced a quality drop of more than three,
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Figure 4.6: Performance of reactive tradeoffs. This graph compares the distri-
bution of request latencies for Sirius when tradeoffs are made reactively via timeouts
and when they are made proactively via DQBarge.

compared to 5% without provenance. Figure 4.4b shows a higher tradeoff rate of

50%. Using provenance decreases the percentage of requests with any quality drop

at all from 43% to 33%. Only 3% of requests experienced a quality drop of 10 or

more, compared to a baseline result of 17%. Figure 4.4c compares quality at a high

tradeoff rate of 80%. Use of provenance still provides a modest benefit: 59% of

requests experience a quality drop, compared to 62% for the baseline. Further, with

provenance, the quality drop is 10 or more for only 15% of request compared with

28% for the baseline.

4.5.3.2 Sirius

For Sirius, we used k-fold cross validation to separate our benchmark set of ques-

tions into training and test data. The training data was used to generate a quality

model based on provenance features, which included the language parsing algorithm

used, the number of occurrences of key words derived from the question, the length of

the data source document considered, and a weighted score relating the query words

to the source document.

Figure 4.5 compares the quality of Sirius results with DQBarge using provenance

with a baseline that does not use provenance. As shown in Figure 4.5a, at a trade-

off rate of 10%, provenance decreases the quality drop for the answer produced by
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Figure 4.7: This graph shows that using proactive tradeoffs at a tradeoff rate of 40%
can achieve higher quality tradeoffs than using reactive tradeoffs with a timeout of
1.5s in Sirius.

Sirius from 13% to 7%. Only 1% of requests see a quality drop of 10 or more using

provenance, compared to 6% for the basline. Figure 4.5b shows that, for a higher

tradeoff rate of 50%, provenance decreases the percentage of requests that see any

quality drop from 46% to 23%. Further, only 8% of requests see a quality drop of

10 or more using provenance, compared to 25% for the baseline. Figure 4.5c shows

a tradeoff rate of 80%; provenance decreases the percentage of requests that see any

quality drop from 73% to 48%.

4.5.4 Effect of proactivity

We next examine how proactivity affects data-quality tradeoffs. In this experi-

ment, we send requests to Sirius at a high rate of 120 requests per minute. Without

DQBarge, this rate occasionally triggers a 1.5 second timeout for retrieving docu-

ments, causing some documents to be left out of the aggregation. These tradeoffs are

reactive in that they occur only after a timeout expires. In contrast, with DQBarge,

tradeoffs are made proactively at a rate of 40%.

Figure 4.6 shows request latency as a CDF for both the reactive and proactive

methods of making data-quality tradeoffs. Comparing the two distributions shows

that DQBarge improves performance across the board; e.g., the median request la-

tency is 3.4 seconds for proactive tradeoffs and 3.6 seconds for reactive tradeoffs.
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Figure 4.8: Response to a load spike. DQBarge makes data-quality tradeoffs to
meet a median latency goal of 6s.

Figure 4.7 shows that proactive tradeoffs also improve quality. DQBarge slightly

decreases the number of requests that have no quality drop from 20% to 19%. More

significantly, it reduces the number of requests that have a quality drop of more than

10 from 18% to 6%.

Under high loads, reactive tradeoffs hurt performance because they waste resources

(e.g., trying to retrieve documents that are not used in the aggregation). Further,

their impact on quality is greater than with DQBarge because timeouts affect a

random sampling of the values returned, whereas proactive tradeoffs omit retrieving

those documents that are least likely to impact the reply.

4.5.5 End-to-end case studies

We next evaluate DQBarge with three end-to-end case studies on our Sirius

testbed.

4.5.5.1 Load spikes

In this scenario, we introduce a load spike to see if DQBarge can maintain end-to-

end latency and throughput goals by making data-quality tradeoffs. We set a target

median response rate of 6 seconds. Normally, Sirius receives 50 requests/minute,

but it experiences a two-minute load spike of 150 requests/minute in the middle of
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Figure 4.9: Quality improvement using spare resources. DQBarge uses slack
in request pipeline stages to improve response quality.

the experiment. Figure 4.8 shows that without DQBarge, the end-to-end latency

increases significantly due to the load spike. The median latency within the load

spike region averages 25.2 seconds across 5 trials.

In comparison, DQBarge keeps median request latency below the 6 second goal

throughout the experiment. Across 5 runs, the median end-to-end latency during

the spike region is 5.4 seconds. In order to meet the desired latency goal, DQBarge

generally selects a tradeoff rate of 50%, resulting in a mean quality drop of 6.7.

4.5.5.2 Utilizing spare resources

In the second scenario, we see if DQBarge can effectively use spare capacity and

slack in the request processing pipeline to increase quality without affecting end-to-

end latency. Sirius is configured to use both its default Wikipedia database and the

Bing Search API [14] to answer queries. Each source has a separate pipeline that

executes in parallel before results from all sources are compared at the end. The Bing

pipeline tends to take longer than the default pipeline, so slack typically exists in the

default pipeline stages.

As described in Section 4.4.2, DQBarge predicts the critical path for each request

and the slack for pipeline stages not on the critical path. If DQBarge predicts there is

slack available for a processing pipeline, it reduces the tradeoff frequency to increase
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Figure 4.10: Performance impact of using spare resources. When DQBarge
uses slack in request pipeline stages, it does not impact end-to-end latency.

quality until the predicted added latency would exceed the predicted slack. To give

DQBarge room to increase quality, we set the default tradeoff rate to 50% for this

experiment; note that this simply represents a specific choice between quality and

latency made by the operator of the system.

Figure 4.9 shows that DQBarge increases quality for this experiment by using spare

resources; the percentage of requests that exprience any quality drop decreases from

38% to 22% (as compared to a full-fidelity response with no data-quality tradeoffs).

Figure 4.10 shows a CDF of request response times; because the extra processing oc-

curs off the critical path, the end-to-end request latency is unchanged when DQBarge

attempts to employ only spare resources to increase quality.

4.5.5.3 Dynamic capacity planning

Finally, we show how DQBarge can be used in dynamic capacity planning. We

specify a utility function that provides a dollar value for reducing latency, improving

quality, and provisioning additional servers. The utility of latency and quality are

shown in Figure 4.11. DQBarge makes data-quality tradeoffs that maximize the

utility function at the incoming request rate.

In this scenario, we examine the benefit of using DQBarge to decide when to

provision addtional resrouces. We compare DQBarge with dynamic capacity planning
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Figure 4.11: Utility parameters for dynamic capacity planning. These values
are added together to calculate final utility.
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Figure 4.12: Benefit of dynamic capacity planning. With dynamic capacity
planning, DQBarge improves utility by provisioning an additional server.

against DQBarge without dynamic capacity planning. Figure 4.12 shows the total

utility of the system over time. When the request rate increases to 160 requests

per minute, DQBarge reports that provisioning another server would provide a net

positive utility. Using this server increases utility by an average of 58% compared to

a system without dynamic capacity planning.
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CHAPTER V

Related Work

The area of causality analysis is a well-studied field. The work presented in this

thesis builds on many foundational ideas.

Taint tracking initially was used in the security domain to detect software at-

tacks [62] online while a program is executing. Since its introduction, systems have

used taint tracking for understanding fine-grained causality outside of the security

domain. For example it has been applied to diagnose misconfigurations [8, 7], foren-

sics [49], finding privacy leaks [34, 69, 55], and data provenance [32].

Online taint tracking systems require low overheads to run in production. This

requires constraining the types of queries that can be run online. For example, a

typical online query tracks whether sensitive data is leaked during the execution of

a program [34]. The requirement of having low online overheads constrains the type

of supportable queries to be relative simple; these queries require knowing which

inputs are of interest beforehand. This constraint has limited the number of possible

taint sources that can be tracked. It has also led to specialized hardware support

to accelerate taint tracking [22, 93, 42]. Although these systems speed up online

propagation of taint, the number of supported taint sources are limited by hardware

constraints.

Our taint tracking framework is focused on after-the-fact analysis that is suit-
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able for tasks like forensics [49], debugging misconfigurations [8, 7], and data prove-

nance [32]. Our taint tracking framework differentiates itself from previous systems

in its ability to track millions of input sources, orders of magnitude greater than the

state of the art. The use of deterministic replay in our system enables low online

overheads. Replaying executions offline enables complex queries that are too heavy-

weight to perform online. These complex queries allow for answering what inputs

influenced a particular byte of output. Our taint tracking framework is able to sup-

port tens of millions of taint labels while also being able to support a wide variety of

complex, multi-threaded programs. Additionally, our taint tracking framework works

on application binaries, without the need of source code.

Besides taint tracking, there are other methods that have been used to under-

stand fine-grained causality with various tradeoffs in speed, complexity, and over-

head. Static taint analysis [6, 94] has been used to track causality from sources to

sinks by examining all possible static code paths from source to sink. It also has

the benefit of performing the analysis offline. However, these static techniques suffer

from imprecision and over-tainting. Additionally, the number of sources are limited

in order to have an efficient analysis. Reverse execution [68, 4] is a technique that

allows for stepping back through an execution and examining the effects of a par-

ticular instruction. Recap [68] achieves the appearance of this effect by periodically

taking checkpoints and logging system calls and shared memory accesses in order to

reproduce intervals of program execution. This is similar to a deterministic replay

system with checkpointing. Akgul et al. [4] statically produce a reverse execution

binary of the program and uses dynamic slicing in order to answer backward queries.

However, the static analysis required to produce a reverse execution version of the

binary does not scale beyond simple programs.

Symbolic execution is another technique for deriving causality in a program [19,

27]. Symbolic execution replaces inputs with symbolic values in order to reason about
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the program logically. It enables analyzing all possible paths of program execution.

Compared to taint tracking, the complexity in scaling symbolic execution is not in

dealing with a large number of inputs, since inputs are represented symbolically, but

rather the complexity of the program. Symbolic execution is prone to path explosion,

making it difficult to reason about complex multi-threaded programs.

On the other side of the spectrum, large-scale Internet systems have posed difficul-

ties in understanding causality between the software components that make up these

systems. The scale, heterogeneity, and fast-changing nature of these systems makes

understanding causality in these systems difficult. Previous systems have derived a

model of causal dependencies can be derived from comprehensively instrumenting all

middleware for communication, scheduling, and/or synchronization to record compo-

nent interactions [3, 7, 21, 36, 50, 58, 76, 78, 87]. In contrast to these prior systems,

The Mystery Machine is targeted at environments where adding comprehensive new

instrumentation to an existing system would be too time-consuming due to hetero-

geneity (e.g., at Facebook, there a great number of scheduling, communication, and

synchronization schemes used during end-to-end request processing) and deployment

feasibility (e.g., it is not feasible to add new instrumentation to client machines or

third-party Web browser code). Instead, The Mystery Machine extracts a causal

model from already-existing log messages, relying only a minimal schema for such

messages. Like these previous systems, The Mystery Machine uses the causal model

to perform well-known performance analyses such as critical path, slack, and what-if

analysis.

Finally, data-quality tradeoffs are a specific type of quality-of-service tradeoff [15,

65, 85], akin to recent work in approximate computing [10, 20, 44, 43, 84, 86]. The

distinguishing feature of data-quality tradeoffs is that they are embedded in low-level

software components within complex Internet pipelines. This leads to a lack of global

knowledge and makes it difficult for individual components to determine how making
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specific tradeoffs will impact overall service latency and quality. DQBarge addresses

this issue by incorporating principles from the literature on causal tracing [13, 21, 24,

36, 57, 76, 77, 87] to propagate needed knowledge along the path of request processing,

enabling better tradeoffs by providing the ability to assess the impact of tradeoffs.

The remainder of this chapter discusses specific prior work that has influenced the

work discussed in this thesis for scaling intraprocess taint tracking, scaling causality

to large-scale systems, and using causality to make better data quality tradeoffs.

5.1 Scaling intraprocess taint tracking

The earliest taint tracking frameworks, such as TaintCheck [62], only support a

single bit indicating whether data is tainted or untainted. TaintCheck focused on

tracking a limited set of input from unknown network sources. Since then, LIFT [74]

and libdft [48] are forward taint tracking frameworks with several optimizations that

are suited for speeding up online dynamic taint tracking. Their taint representa-

tions allow for fast taint merge operations through the use of bit vectors. However,

this fundamentally limits the number of taint labels that can be efficiently tracked.

DyTan [31] is similar to our framework in being flexible in scoping inputs and out-

puts and supports several taint propagation functions. Like libdft and LIFT, DyTan

uses a bit vector to represent taint sets so the number of unique sources it supports

is fundamentally limited by the length of the representation. TaintPipe [60] uses a

symbolic taint analysis to convert segments of machine code to the symbolic taint

operation. The symbolic representation allows them to support a larger number of

inputs compared with the previous systems’ bit-level representation. It is unclear

whether symbolic tracking can scale efficiently to millions of labels and dependencies.

Other prior work has sped up taint tracking using parallelization [63, 80, 47], but

they only support a limited number of taint sources.

The merge log is derived from the log optimization proposed by Ruwase et al. [80].
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Ruwase et al. and the merge log both offer a compact way of representing taint sets.

Ruwase et al. use a symbolic representation of taint operations, which is only resolved

when the taint of a location is needed. The merge log keeps a concrete representation

of all taint sets as the program executes and resolves the taint set of a location by

traversing the merge log. Our enhancements to the merge log allows us to support the

tracking of millions of input sources. The merge log structure is a flat data structure

of a DAG, which has been used in other applications such as the binary decision

diagram [17].

Deterministic replay is a well-studied technique for faithfully reproducing the ex-

ecution of programs. It has been used for debugging data races [5, 70, 92] and intru-

sion detection [33]. Our deterministic replay implementation has the unique ability to

cheaply record an uninstrumented execution and later replay the execution using Pin.

We leverage deterministic replay in order to reduce online overhead. Some previous

taint tracking systems have used the idea decoupling of execution from the DIFT

analysis in order to accelerate taint tracking for the same purpose [47, 60].

5.2 The Mystery Machine

Critical path analysis is an intuitive technique for understanding the performance

of systems with concurrent activity. It has been applied in a wide variety of ar-

eas such as processor design [82], distributed systems [12], and Internet and mobile

applications [76, 95].

Sherlock [11] also uses a “big data” approach to build a causal model. However,

it relies on detailed packet traces, not log messages. Packet traces would not serve

our purpose: it is infeasible to collect them on user clients, and they reveal nothing

about the interaction of software components that run on the same computer (e.g.,

JavaScript), which is a major focus of our work. Observing a packet sent between A

and B inherently implies some causal relationship, while The Mystery Machine must
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infer such relationships by observing if the order of log messages from A and B obey

a hypothesized invariant. Hence, Sherlock’s algorithm is fundamentally different: it

reasons based on temporal locality and infers probabilistic relationships; in contrast,

The Mystery Machine uses only message order to derive invariants (though timings

are used for critical path and slack analysis).

The lprof tool [99] also analyzes log messages to reconstruct the ordering of logged

events in a request. It supplements logs with static analysis to discover dependen-

cies between log points and uses those dependencies to differentiate events among

requests. Since static analysis is difficult to scale to heterogeneous production en-

vironments, The Mystery Machine used some manual modifications to map events

to traces and leverages a large sample size and natural variation in ordering to infer

causal dependencies between events in a request.

In other domains, hypothesizing likely invariants and eliminating those contra-

dicted by observations has proven to be a successful technique. For instance, likely

invariants have been used for fault localization [81] and diagnosing software er-

rors [35, 73]. The Mystery Machine applies this technique to a new domain.

Many other systems have looked at the notion of critical path in Web services.

WebProphet [54] infers Web object dependencies by injecting delays into the loading

of Web objects to deduce the true dependencies between Web objects. The Mystery

Machine instead leverages a large sample size and the natural variation of timings to

infer the causal dependencies between segments. WProf [95] modifies the browser to

learn browser page load dependencies. It also injects delays and uses a series of test

pages to learn the dependencies and applies a critical path analysis. The Mystery

Machine looks at end-to-end latency from the server to the client. It automatically

deduces a dependency model by analyzing a large set of requests. Google Pagespeed

Insight [37] profiles a page load and reports its best estimate of the critical path from

the client’s perspective. The Mystery Machine traces a Web request from the server
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through the client, enabling it to deduce the end-to-end critical path.

Chen et al. [26] analyzed end-to-end latency of a search service. They also analyzed

variation along the server, network, and client components. The Mystery Machine

analyzes end-to-end latency using critical path analysis, which allows for attributing

latency to specific components and performing slack analysis.

Many other systems have looked at automatically discovering service dependen-

cies in distributed systems by analyzing network traffic. Orion [25] passively observes

network packets and relies on discovering service dependencies by correlating spikes

in network delays. The Mystery Machine uses a minimum common content tracing

infrastructure finds counterexamples to disprove causal relationship dependencies.

WISE [88] answers ”what-if” questions in CDN configuration. It uses machine learn-

ing techniques to derive important features that affect user response time and uses

correlation to derive dependencies between these features. Butkiewicz et al. [18] mea-

sured which network and client features best predicted Web page load times across

thousands of websites. They produced a predictive model from these features across

a diverse set of Web pages. The Mystery Machine aims to characterize the end-to-end

latency in a single complex Web service with a heterogeneous client base and server

environment.

The technique of using logs for analysis has been applied to error diagnosis [5, 97,

96] and debugging performance issues [61, 83].

5.3 Data Quality Tradeoffs

Although there is an extremely rich history of quality-of-service tradeoffs [15, 65,

85] and approximate computing [10, 20, 44, 43, 84, 86] in software systems, our work

focuses specifically on using the causal propagation of request information and data

provenance to make better data-quality tradeoffs in low-level software components.

Our study revealed the need for such an approach: existing Facebook services make
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mostly reactive tradeoffs that are suboptimal due to limited information. Our eval-

uation of DQBarge showed that causal propagation can substantially improve both

request performance and response quality.

Many systems have used causal propagation of information through distributed

systems to trace related events [13, 21, 24, 36, 57, 76, 77, 87]. For example, Pivot

Tracing [57] propagates generic key-value metadata, called baggage, along the causal

path of request processing. DQBarge uses a similar approach to propagate specific

data such as provenance, critical path predictions, and load metrics.

DQBarge focuses on data quality tradeoffs in Internet service pipelines. Ap-

proximate Query Processing systems trade accuracy for performance during analytic

queries over large data sets [1, 2, 9, 41, 51]. These systems use different methods to

sample data and return a representative answer within a time bound. BlinkDB [2]

uses an error-latency profile to make tradeoffs during query processing. This is similar

to the performance and quality models that DQBarge applies to Internet pipelines.

Some Internet services have been adapted to provide partial responses after a la-

tency deadline [40, 46, 51]. They rely on timeouts to make tradeoffs, whereas the

tradeoffs DQBarge makes are proactive. PowerDial [44] adds knobs to server appli-

cations to trade performance for energy. These systems do not employ provenance to

make better tradeoffs.
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CHAPTER VI

Conclusion

This chapter describes directions for future work and summarizes the contributions

of this thesis.

6.1 Future work

In this thesis we focused on scaling causality analysis at both a fine-grain instruc-

tion level for a single process and for a large-scale distributed system with hundreds of

software components. We next discuss areas of future research for continuing scaling

DIFT and leveraging causality for debugging and troubleshooting.

6.1.1 Parallelizing DIFT

In chapter II, we describe a method for scaling taint tracking to millions of input

sources. However, our method only utilizes a single CPU core; parallelizing DIFT

is difficult since each step could have a large set of prior dependencies. There has

been previous work done in parallelizing DIFT [80, 63]. However, these systems only

scale to one computer and still do not provide the level of interactivity required to

run DIFT queries for long running, complicated programs. Scaling DIFT to a cluster

of machines would make queries interactive. Researchers are actively working on

parallelizing DIFT [75].
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6.1.2 Personalized performance

Our results from chapter III and chapter IV show that causal information yield op-

timizations that lead to better performance. We examined how causality can improve

data quality tradeoffs. As future research, we propose using causality to introduce

client-specific optimizations that improve performance. We hypothesize that using

client-specific information can lead to client-specific performance optimizations.

As our studies have shown, users of Internet services are increasingly diverse in

the networks and platforms they employ. These networks and platforms have varying

characteristics. For example, mobile networks are poorer than broadband connec-

tions. Different browsers have various Javascript interpreters. Increasingly web ap-

plications have been reliant on Javascript to provide an interactive and content-rich

experience, but browsers have different Javascript interpreters with different per-

formance variances. We propose exploring different client-side optimizations. For

example, Internet services can produce Javascript content that is specific to a user’s

platform and/or mobile network. If a user is currently on a low-bandwidth network,

the server can choose to send low-bandwidth updates in order to provide a better

experience. If a user is low on energy, the server can choose to send updates that

require less energy to display. We could extend DQBarge by supporting these models

and their possible optimizations.

6.1.3 Identifying data quality tradeoffs

Our study in chapter IV relies on a combination of manual and automated anal-

ysis in order to identify and understand data-quality tradeoffs. As future research,

we propose automating this method for two purposes. First, an automated means

of studying data quality tradeoffs gives operators of all software services and under-

standing of how their services are used. Second, automation allows for these studies

to be continually done over time to understand how data quality tradeoffs change as

97



systems evolve.

Using the categorizations from our study, we can train classifiers that statically

analyze code in order to identify existing data-quality tradeoffs in the code. This

would involve deriving a symbolic representation of the categorizations and match

the code to these patterns. For example, data quality tradeoffs that return a default

value should be match the same category even if they return different default values.

However, there are challenges in using static analysis as it can be prone to a high

false positive rate. Therefore, we plan on exploring automated means of verification,

such as sampling dynamic executions and evaluating the symbolic representation to

verify the correct classification.

6.2 Contributions

This thesis shows methods for scaling causality analysis for debugging and opti-

mization in programs and large-scale Internet services. First, we showed the ability

to scale fine-grain causality analysis to millions of input bytes. We demonstrated

this by scaling intraprocess taint tracking to millions of input bytes. This allows

for the ability to track the provenance of data from a particular output byte to any

particular set of input bytes. Next, we demonstrated how to scale causality analysis

to large-scale Internet services with hundreds of software components. We hypoth-

esized causal relationships between software components and rule out relationships

by leveraging the scale of these services and observing counter-examples. Using this

technique, we showed how we can use these causal relationships to understand perfor-

mance optimizations. Finally, we explored a new dimension that combines causality

with data quality tradeoffs. We conducted a study of data quality tradeoffs of a

production system at Facebook. We found that most data quality tradeoffs are reac-

tive and suboptimal. To address these issues, we developed DQBarge, a system that

uses causal propagation of information in order to make better data quality tradeoffs.
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We showed how we can make better data quality tradeoffs in situations such as load

spikes, utilization of spare resources, and dynamic capacity planning.
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