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ABSTRACT

Advancement in imaging technology has made hyperspectral images gath-

ered from remote sensing much more common. The high-dimensional nature

of these large scale data coupled with wavelength and spatial dependency ne-

cessitates high-dimensional and efficient computation methods to address these

issues while producing results that are concise and easy to understand. The

thesis addresses these issues by examining high-dimensional methods in the

context of hyperspectral image classification, unmixing and wavelength corre-

lation estimation.

Chapter 2 re-examines the sparse Bayesian learning (SBL) of linear

models of [88] in a high-dimensional setting with sparse signal. The hard-

thresholded version of the SBL estimator, under orthogonal design, achieves

non-asymptotic error rate that is comparable to LASSO of [87]. We also estab-

lish in the chapter that with high-probability the estimator recovers the spar-

sity structure of the signal. The ability to recover sparsity structures in high

dimensional settings is crucial for unmixing with high-dimensional libraries

in the next chapter. In Chapter 3, the thesis investigates the application of

SBL on the task of linear/bilinear unmixing and classification of hyperspec-

tral images. The proposed model in this chapter uses latent Markov random

fields to classify pixels and account for the spatial dependence between pix-

els. In the proposed model, the pixels belonging to the same group share the

same mixture of pure endmembers. The task of unmixing and classification

xi



are performed simultaneously, but this method does not address wavelength

dependence. Chapter 4 is a natural extension of the previous chapter that con-

tains the framework to account for both spatial and wavelength dependence

in the unmixing of hyperspectral images. The classification of the images are

performed using approximate spectral clustering while the unmixing task is

performed in tandem with sparse wavelength concentration matrix estimation.
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CHAPTER 1

Introduction

The past decade in statistics has been defined by the exponential growth of data and com-
putational power. However, abundance of data in the absence of insight is sometimes more
detrimental than the absence of data because no inference is better than wrong/spurious
inference. In addition, the pace of data growth shows no sign of slowing down as the
data grows ever more complex. The increase in ability to store large amounts of high-
dimensional data coupled with diminishing cost involved in such endeavors necessitate
principled and structured approaches to draw inference and gain insight from data.

The increase in complexity of the data gathered means the number of parameters very
often far exceeds the number of samples. Under such conditions, classical solutions to
problems such as the ordinary least squares are often sub-optimal and inconsistent. As a
result, research into shrinkage estimators such as LASSO [84, 87] (and its consistency in
model selection [22, 61, 90, 103]) and its derivative elastic net [104] have been introduced
to induce sparse structures in the solution to high-dimensional models. The methods men-
tioned thus far are frequentist methods. At the other end of the spectrum, Bayesian methods
involve regularization via prior formulation [52, 71] with Gaussian cases particularly well
understood [94]. On the the other hand, there is also some work on empirical Bayes cali-
bration, computation and variable selection as documented in [8, 24, 25, 41, 55, 62].

High dimensional methods are particularly relevant in the field of hyperspectral data
processing. The rest of the chapter is an introduction to high-dimensional methods in the
field of hyperspectral data processing. Section 1.1 is an introduction to an empirical Bayes
method that is useful in hyperpectral modeling. Section 1.2 is an overview of hyperspectral
data, models, and application of aforementioned empirical Bayes method in hyperspectral
classification and unmixing. Section 1.3 is an introduction to the extension of the hyper-
spectral model to account for wavelength dependence.
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1.1 The SBL in High-Dimensional Settings

As noted earlier, high-dimensional variable selection has become an important topic in
statistics due to increase in data complexity. The LASSO [87] is the most widely used
method in tackling this problem. Although this method has proven to be successful, there
are issues regarding the right level of regularization. Choosing the appropriate level of
penalization remains a computer-intensive issue for many models. In addition to the fre-
quentist approach, there is the Bayesian variable selection approach [16, 26, 53, 71, 73].
The Bayesian approach to this problem often generates intractable posteriors that require
extensive MCMC simulations. In the middle of the frequentist and Bayesian spectrum, lies
the empirical Bayes alternative known as sparse Bayesian learning (SBL) [37, 88, 96, 97]
which is less popular. Chapter 2 contains a reexamination of an empirical Bayes approach
to penalized regression. The method examined in this chapter has the advantage of setting
penalization level automatically via setting the hyperparameters to the maximum likeli-
hood estimate (MLE). The method as outlined in [88] is inconsistent and only selects the
true zero for each variable about 70% of the time. Even though the estimator as originally
formulated does not recover the true zeros, many of the actual zeros are estimated as close
to zero. We proposed an empirical threshold and show that the thresholded estimator that
is consistent in terms of estimation error and model selection for the case with orthogo-
nal design. With high probability, we show that the estimation error is of the same order
as the LASSO and the sparsity structure is recovered provided the signal is not too weak.
According to the simulation study comparing the method to LASSO, SBL outperforms the
LASSO if the signal is sufficiently strong. However, under weak signal conditions, LASSO
outperforms SBL.

1.2 Unmixing and Classification of Hyperspectral Images

Structure can also come in the form of parsimony via classification. The complex task of
drawing inference from image based data is often simplified by classification which brings
us to the focus of Chapter 3 and Chapter 4 of this thesis: hyperspectral images. A regular
image is a collection of pixels with each pixel containing readings on the visible spectrum
(typically 0.4µm to 0.7µm). In contrast, a hyperspectral image is a collection of pixels with
each pixel containing readings on a very wide spectrum (typically 0.4µm to 2.5µm) [82]. In
other words, hyperspectral images are more saturated in terms of wavelength bands. Figure
1.1 shows an illustrated example of what consist of a hyperspectral image. The high spec-
tral resolution captured in each pixel enables what is commonly referred to as “unmixing”
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in the field. In hyperspectral images, due to the limited spatial resolution of the sensors, a
pixel often contains a mixture of a few endmember (“pure” material) spectral signatures.
Hyperspectral unmixing is the task of decomposing a pixel into its constituent endmem-
bers [82]. Due to recent advances remote sensing technology, large (as large as several
megapixels) hyperspectral images with high spectral resolutions have become ubiquitous.
This opens up more possibilities in terms of application of this class of data in forest con-
servation, resource management etc. Presenting the results of the unmixing at the pixel
level leads to information overload and is counter productive. This is where classification
of pixels comes in handy. Typically pixels belonging to the same class share certain com-
mon characteristics that can be modeled parsimoniously and concisely represented. The
unmixing of hyperspectral images, however, is complicated by the atmospheric attenuation
of the signal received by the sensor and the angle at which the electromagnetic radiation
reaches the sensor [82]. The problem of atmospheric attenuation would not be an issue
in the case of medical hyperspectral images [57], but the modeling considerations remain
the same (ie. unmixing and classification). The hyperspectral data analyzed in this thesis
document covers mainly remote sensing data coming from satellites.

Figure 1.1: An illustrated example of a hyperspectral scene

An endmember is the spectral signature of a material of interest and an unmixing “li-
brary” is a set of endmembers compiled into a matrix. The unmixing of the hyperspectral
images requires a library of reference spectral signatures (endmembers) which can either
be lab-generated or spectral signatures extracted from the images. Either library has its
own sets of assumptions and shortcomings. The lab-generated libraries [11] assume that
the atmospheric distortion is minimal and does not drastically alter the spectral signature

3



of endmembers. These kind of libraries may require some on-site calibration [30] which is
potentially difficult and expensive. In addition, these libraries are usually high-dimensional
because there are usually more endmembers than spectral bands (spectral resolution) in the
library. These high-dimensional libraries require the use of regularized methods such as
LASSO [87] in order to recover a mixture that contains relatively few endmembers. Other
than LASSO, there are other more exotic regularization such as the Laplacian regulariza-
tion [7], sparsity promoting priors [102], and spatial LASSO regularization [81]. On the
other hand, the extraction of spectral signatures from the images to form a library assumes
the existence of a “pure” pixel in the image. Spectral extraction methods involve the solv-
ing for the library in addition to the mixture of the endmembers which complicates the task
of unmixing further. In addition, this technique necessitates an additional post-processing
step of identifying the spectral signatures extracted from the image via comparison.

Mixing models can be either linear or nonlinear, with the linear model being commonly
used. Figure 1.2 shows an illustration of the linear and nonlinear mixing of endmembers in
a pixel. Although there are microscopic mixtures and methods to unmix them [19, 29, 65]
(Figure 1.2 (b)), the focus of nonlinear mixing in this document is primarily on the bilinear
model [47]. When we mention nonlinear mixing in this document, we generally refer
to mixing examples falling in category Figure 1.2 (c) unless explicitly stated otherwise.
Nonlinear mixing appears when there are macroscopic interactions of spectral signatures,
which is most common to scenes with multi-layered configurations. In this type of scenes,
the light scattered by a material is reflected off another material as seen in Figure 1.2
(c). This usually happens in scenes with forest canopy where light scattered by foliage
is reflected off the ground. Bilinear unmixing models are commonly used for this type
of images. [34] and the references therein are a good starting point for further details on
nonlinear unmixing.
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Figure 1.2: An illustrated example of linear and nonlinear mixing schemes [34]: (a) Linear
mixing model: pixel contains linear mixture of two materials, (b) Intimate mixture: pixel
contains microscopic mixture of several materials, (c) Bilinear model: pixel contains two
endmembers, tree and soil.

Besides unmixing, there is also significant work on the classification of hyperspectral
images. These methods are used in conjunction with unmixing to present data in manage-
able chunks. It is typical that the pixels sharing the same class also have similar charac-
teristics. For instance in [89], the pixels belonging to the same class share the same first
and second moment of abundances (mixtures) while [6] presents a model where the sparse
abundances in the local neighborhood are correlated a priori. In addition to simplifying
the data generative model, classification of images also have the advantage of introduc-
ing spatial dependence between the pixels: pixels belonging to the same class are more
spatially correlated to each other relative to pixels belonging to another class. Due to the
utility of image classification, it is no surprise that classification of hyperspectral images
is an active area of research. Spatial dependence modeling is usually introduced into the
unmixing model via Markov random fields [64]. Empirical methods such as support vec-
tor machine (SVM) [63, 85] have been applied on observed spectral signatures in order to
separate pixels into classes. Besides that, there are Bayesian methods which assume that
the mixture of endmembers in the same group share the same first and second moment in
a Markov random field framework [89]. For a review of methods used in hyperspectral
image classification, [3, 21] and the references therein are good resources. For alterna-
tive spatial dependence models utilizing the distance between the abundances belonging to
neighboring pixels, [51, 92] are good references.

In most hyperspectral literature, the task of umixing and classification are implemented
in a two-stage process. In Chapter 3, we examine a framework in which both these tasks
are performed simultaneously. Under the framework outlined, the library used can either
be lab-based or generated from spectral extraction methods such as N-FINDR [76, 95],
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VCA [66], and Pixel Purity Index [15]. In addition, the columns of the library used can
also be either linear or nonlinear. Spatial dependence between the pixels is modeled using
Markov random fields. The model outlined builds on the Bayesian framework outlined
in [89] with a notable difference: our model is more parsimonious in terms of the number
of parameters. This enables the use of much higher-dimensional libraries. Besides that,
we adopt the SBL [88] approach in Chapter 2 in order to recover sparse solutions for the
mixtures.

1.3 Hyperspectral Unmixing with Wavelength Dependence

Extensions of sparse linear methods naturally lead into penalized covariance/concentration
[54, 74, 78] estimation. Typically these estimates are constructed around finding the pe-
nalized MLE of the Gaussian likelihood. Under the classical setting where the number of
samples far exceeds the number of parameters, the MLE of the covariance matrix under
the Gaussian likelihood is the sample covariance matrix. However, in the high-dimensional
case, the MLE is not well behaved hence the interest in the penalized MLE. The penalized
MLE for covariance/concentration matrix seeks to set a large number of off-diagonals to
zero [4, 75]. An off-diagonal zero entry of the covariance matrix for Gaussian data implies
marginal independence for the two respective variables while an off-diagonal zero entry for
the concentration matrix under similar condition implies conditional independence. The in-
dependence implied by the respective sparsity structures is important in the general theme
of imposing structure on an abundance of data.

To the best of our knowledge, there is no existing method that incorporates wavelength
dependence in modeling hyperspectral unmixing. In Chapter 4 we try to address both spa-
tial and spectral wavelength dependence in the unmixing of hyperspectral data. Figure 1.3
shows some example spectral signatures of common endmembers in hyperspectral images.
Note the smooth curves exhibited by the spectral signatures. If there is no wavelength de-
pendence, the curves would be more erratic and jagged. Empirical evidence suggests, the
contiguous wavelength bands are likely to be correlated with each other if there is no abnor-
mal/significant absorbtion in contiguous bands. This motivates the inclusion of wavelength
dependence in our modeling considerations. We modeled the wavelength dependence ex-
plicitly via the concentration (inverse of the covariance) matrix in the multivariate Gaus-
sian. As noted in Section B.1, a zero entry in the off-diagonal of the Gaussian precision
matrix implies conditional independence of the wavelength bands. Therefore, we intend
to recover sparse concentration (sparse off-diagonal) matrix to only account for the most
correlated/dependent wavelength bands. We implement a penalized likelihood approach in

6



estimating the sparse concentration matrix.

Figure 1.3: Examples of spectral signatures of endmembers such as vegetation, soil, and
water within wavelength bands ranging from 0.4 µm to 2.5 µm

In addition to solving for the concentration matrix, this chapter also covers the con-
strained optimization problem of solving for the abundances (unmixing) of endmembers.
The abundances are constrained to sum up to one and must be positive. While the wave-
length dependence is explicitly modeled as a parameter in this model, spatial dependence
of the pixels is implicitly modeled via classification of the pixels using spectral clustering.
Spectral clustering requires the use of affinity/adjacency/weighting matrix with a distance
based kernel [58]. The main idea of using spectral clustering is to group pixels based on
the relative spectral signature distance to each other. In our implementation, we used the
euclidean distance in the kernel. Although empirical evidence suggests this method is ex-
tremely effective, the memory and computation constraints of spectral clustering limits its
use to small hyperspectral images. Parallel spectral clustering can be done by performing
spectral clustering on small partitions of the hyperspectral image. The approach we take to
tackling this problem involves approximate spectral clustering using the Nystrom method.
Accounting for spatial and wavelength dependence in this model necessitates a two-stage
method where the pixels are classified before unmixing with spatial dependence is per-
formed within each class. Results from the real data simulation are compared to alternative
methods using BIC and extended BIC.
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CHAPTER 2

On the Sparse Bayesian Learning of Linear
Models

2.1 Introduction

High-dimensional variable selection has become an important topic in modern statistics.
The LASSO of [87] is probably the most widely used method for this problem and has
span an extensive literature (see e.g. the monograph [20]). Despite its success, the method
has many shortcomings. For instance choosing the right amount of regularization remains
a difficult and computer-intensive issue for many models. In parallel to the frequentist
approach, Bayesian variable selection for high-dimensional problems has also generated a
large literature (see for instance [16, 26, 53, 71, 73] and the reference therein). But most
Bayesian variable selection methods often lead to intractable posterior distributions that
require a heavy use of Markov Chain Monte Carlo simulation. Between these two well-
established frameworks lies an empirical Bayes alternative known as SBL [37, 88, 96, 97],
which has received much less attention in the statistics literature.

This chapter is a re-examination of the SBL for linear regression in a high-dimensional
setting. An interesting question is whether the SBL procedure recovers the sparsity struc-
ture of underlying signals. This problem was considered by [96] which establishes that in
the noiseless setting the SBL indeed recovers the sparsity structure of the regression coef-
ficients. However the method behaves differently in a noisy setting. For orthogonal design
matrices, we show that the SBL indeed produces a sparse solution of the regression coeffi-
cients, but does not in general recover the sparsity structure of the regression coefficients.
To remedy this limitation we propose a hard-thresholded version of the SBL estimator. We
show that with high probability the thresholded estimator achieves the same estimation er-
ror of O(σ

√
s log(p)/n) as LASSO, where n is the sample size, σ is the regression model

standard deviation, p the number of regressors and s the number of non-zero regression
coefficients. Furthermore we show that with high probability this thresholded estimator
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recovers the sparsity structure of the regression coefficients provided that the signal is not
too weak.

Finally we did a simulation study comparing SBL, thresholded SBL, and LASSO. We
find that the performance of the thresholded SBL depends on the strength of the signal
(defined here as the minimum of the absolute value of the non-zero coefficients). With a
weak signal the thresholded SBL performs poorly compared to LASSO, but outperforms
LASSO when the signal is strong.

2.2 Sparse Bayesian learning of linear regression models

Suppose that we observe a vector y ∈ Rn that is a realization of a random variable Y such
that

Y = Xβ?+ ε, (2.1)

for a known and non-random design matrix X ∈Rn×p, a vector β? ∈Rp, and a random error
term ε ∈ Rn such that

E(ε) = 0, and E(εε′) = σ2
?In, (2.2)

for σ2
? > 0, where In is the n-dimensional identity matrix. Our objective is to estimate

β? and σ2
?. Although (2.1-2.2) does not make any specific distributional assumption on

Y , we will consider the following possibly misspecified model: Y ∼ N(Xβ,σ2In), with
parameter (β,σ2) ∈Rp× (0,∞), where N(µ,Σ) denotes the Gaussian distribution with mean
µ and covariance matrix Σ. The parameter σ2 is taken as fixed, and we assign to β a prior
distribution of the form

πγ(dβ) def
=

p∏
j=1

pγ j(dβ j). (2.3)

for a (hyper)-parameter γ = (γ1, . . . ,γp) ∈ Θ
def
= [0,∞)p, where for a > 0, pa denotes the

distribution of N(0,a), the Gaussian distribution on R with mean 0 and variance a, and
p0(du) def

= δ0(du) denotes the Dirac measure at 0. The posterior distribution of β given Y = y

and given the hyper-parameter (γ,σ2) is therefore

πn(dβ|y,σ2,γ) ∝
(

1
2πσ2

)n/2

exp
(
−

1
2σ2 ‖y−Xβ‖2

)
πγ(dβ). (2.4)

Sampling from the posterior distribution πn(·|y,σ2,γ) is straightforward. Indeed, for
γ = (γ1, . . . ,γp) ∈ Θ, denote Iγ

def
= {1 ≤ j ≤ p : γ j 6= 0} the sparsity structure defined by γ.

Notice that for j /∈ Iγ (that is γ j = 0), πγ puts probability mass 1 on the event {β j = 0}, and
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so does the posterior distribution πn(·|y,σ2,γ). Hence πn(·|y,σ2,γ) is the distribution of the
random variable (B1, . . . ,Bp) obtained by simulating {B j, j ∈ Iγ} from N(µγ,σ2Vγ), and by
setting the remaining components to 0, where

µγ = VγX′γy, Vγ =
(
X′γXγ +σ2Γ̄−1

γ

)−1
, (2.5)

where Xγ is the matrix obtained from X by removing the columns j for which γ j = 0, and Γ̄γ

is the diagonal matrix with diagonal elements given by {γ j, j ∈ Iγ}. With this Gaussian linear
model, and prior (2.3), it is easy to check that the marginal distribution of y is N(0,Cγ),
where

Cγ
def
= σ2In +

∑
j∈Iγ

γ jx jx′j,

and x j is the j-th column of X. Therefore, up to a normalizing constant that we ignore, the
log-likelihood of (σ2,γ) is given by

`(σ2,γ) def
= −

1
2

logdet(Cγ)−
1
2

Tr
(
C−1
γ yy′

)
.

The SBL estimator of β? as proposed by [37, 88] is the empirical Bayes estimator of β
given by

β̂n =

∫
βπn(dβ|y, σ̂2

n, γ̂n), (2.6)

where
(σ̂2

n, γ̂n) = Argmax(σ2,γ)∈R+×Θ `(σ
2,γ). (2.7)

Notice that β̂n is straightforward to compute once σ̂2
n and γ̂n are available. Indeed given σ̂2

n

and γ̂n, β̂n, j = 0 for all j such that γ̂n, j = 0, and for the other components j ∈ Iγ̂n , we have
from (2.5) that

(β̂n, j) j∈Iγ̂n
=

(
X′γ̂n

Xγ̂n + σ̂2
nΓ̄−1

γ̂n

)−1
X′γ̂n

y.

Remark 1. The presentation of the SBL given above is slightly different from the original

presentation of [37, 88]. The key difference here is that in the prior distribution πγ we

allow the components of γ to take the value zero. This is needed for the estimator γ̂n to be

well-defined, and for the well-posedness of the question of whether the procedure produces

sparse solutions.

�

Remark 2. The solution for β as outlined above is of the same form as the solution for

ridge regression with one notable difference. In the SBL formulation, the penalization

level/hyperparameters for each variable is set to the MLE while in the ridge regression
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setting, the optimal penalization level is typically set using cross-validation. In addition, if

we assume H1-2 hold and (β?) j 6= 0, the estimated penalization level γ̂ j ∼O([β?]2
j) scales

with the square magnitude of the signal/effect size. This implies that the shrinkage effect is

small for large positive or negative signals. In fact, the SBL is equivalent to ridge regression

with adaptive penalization.

�

Computationally, the optimization problem (2.7) is not a “nice” problem because the
objective function `(σ2,γ) is non-concave and typically attains its maximum at the bound-
ary of the domain Θ (that is some of the components of its solution(s) are exactly zeros).
We return to the issue of solving (2.7) in Section 2.2.3. But statistically (2.7) is interesting
as it yields a sparse solution γ̂n as we shall see.

2.2.1 Existence of γ̂n

Since the log-likelihood function ` is not concave in general, it is not immediately clear
that the optimization problem (2.7) has a solution. The following result is a re-statement of
the analysis of [37] and shows that a solution to (2.7) always exists, and is sparse. We give
a straightforward proof below.

Proposition 1. Fix y ∈ Rn, X ∈ Rn×p, and σ2 = σ2
?. Then the maximization problem

Argmaxγ∈Θ`(γ,σ
2) has at least one solution γ̂ = (γ̂1, . . . , γ̂p) which has the following prop-

erty:

γ̂ j =


(
x′jC

−1
j y

)2
−x′jC

−1
j x j(

x′jC
−1
j x j

)2 if
(
x′jC

−1
j y

)2
> x′jC

−1
j x j

0 otherwise ,
(2.8)

where C j is given by

C j
def
= σ2In +

∑
k∈Iγ̂\{ j}

γ̂kxkx′k.

Proof. See Section 2.4.1.

It is important to notice that there is no randomness involved in the above result: y and
X are given and fixed. In particular we do not assume (2.1) nor (2.2). It is clear that this
result does not give the expression of the maximizer since the right-hand side of (2.8) also
depends on γ̂. Rather it gives coherence relationships between components of the solution.
But more importantly the proposition shows that the optimization problem (2.7) leads to
sparse solutions γ̂. One can interpret the term x′jC

−1
j y as a measure of correlation between
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the y and the j-th column x j of X. Hence the result shows that if the correlation between
x j and y is sufficiently weak then γ̂n, j (and hence β̂n, j) is set exactly equal to zero. It is
known from [96] Theorem 2 that even local maximum of ` are sparse. Proposition 1 is
more precise than [96] Theorem 2, and give some insight into the sparsity structure of the
global maximizer(s) of `.

Of course Proposition 1 is useful only to the extent that the inequality
(
x′jC

−1
j y

)2
≤

x′jC
−1
j x j is satisfied with high probability when β?, j = 0. We investigate this below. Unfor-

tunately we will see that in general γ̂ j 6= 0 even when (β?) j = 0, under the most favorable
setting. We make the following distributional assumption.

H 1. The data generating model (2.1-2.2) holds and ε ∼ N(0,σ2
?In), for some σ2

? > 0.

We shall also focus our analysis on the idealized case where the matrix X has orthogonal
columns.

H 2. The design matrix X ∈ Rn×p is such that 〈xk, x j〉 = 0 whenever j 6= k and 〈xk, xk〉 = n.

Proposition 2. Suppose that H1-2 hold, and σ2 = σ2
?. Then for any j ∈ {1, . . . , p} such that

β?, j = 0,

P
[
γ̂n, j = 0

]
= P

[
Z2 ≤ 1

]
≈ 0.68,

where Z ∼ N(0,1).

Proof. See Section 2.4.2.

Remark 3. Proposition 2 holds regardless of σ? > 0 and n. The result might seem surpris-

ing a first. To convince the skeptical reader, consider for instance the trivial case where

n = p = 1, and X = 1. In that case without even using (2.8), it is straightforward to see that

the log-likelihood is `(σ?,γ) = −(1/2) log(σ2
? +γ)− (1/2)y2/(σ2

? +γ) + cst. It is then easy

to see that the maximizer of ` is γ̂ = 0 if y2 ≤ σ2, and γ̂ = (y2 −σ2
?) is y2 > σ2

?. Now, if

Y ∼ N(0,σ2
?), and we compute γ̂ using Y , then γ̂ = 0 means that Y2 ≤ σ2

?, and this holds

with probability ≈ 0.68, regardless of σ2
? > 0.

The result above shows that even in the idealized setting of H2, and under the Gaussian
linear model assumption, the SBL procedure will set γ̂ j to 0 (for j /∈ I) only about 70%
of the time, regardless of σ2

? and the sample size. We do not know whether this result
continue to hold for more general design matrices. The behavior of the solution of (2.7) for
a general design matrix is technically more challenging.

Another important limitation of the SBL procedure is the computation of γ̂n and σ̂2
n.

Typically iterative methods (such as the EM algorithm, see Section 2.2.3) are used. The
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EM algorithm does not promote sparsity, and converges to the solution only at the limit.
Therefore, in finite time, the solutions generated by the EM algorithm are typically not
sparse at all.

These two shortcomings limit the usefulness of the basic SBL procedure as an interest-
ing method for sparse signal recovery. However, we observe that when β?, j = 0, and the

condition
(
x′jC

−1
j,γ̂n

Y
)2
≤ x′jC

−1
j,γ̂n

x j fails, assuming again the most favorable setting of H2, γ̂ j

is given

γ̂n, j =
σ2(Z2

j −1)

〈x j, x j〉
,

where Z j ∼N(0,1). Hence γ̂ j has mean zero and variance of order O(‖x j‖
−4) ≈O(n−2). We

conclude that when SBL fails to set to zero a component j such that β?, j = 0, the computed
SBL solution γ̂ j is typically very small. This suggests that a thresholded version of γ̂n

should be able to set these terms to zero. We pursue this approach in Section 2.2.2.

2.2.2 A thresholded version and its statistical properties

We saw in Section 2.2.1 that although sparse, γ̂n does not recover in general the sparsity
structure of β?. To improve on this we propose a modified, hard-thresholded version of γ̂n

denoted γ̃n and defined as follows. For 1 ≤ j ≤ p,

γ̃n, j
def
=

 γ̂n, j if γ̂n, j >
σ̂2

nz?
‖x j‖2

0 otherwise
, (2.9)

for a thresholding parameter z?. The corresponding modified estimator of β? is

β̃n
def
=

∫
βπn(dβ|y, σ̂2

n, γ̃n).

Theorem 1. Assume H1-2, and suppose that σ2
? is known, log s ≥ 1, and z? = c0 log p, for

some constant c0 > 2, where s = |Iγ? |. Then

‖β̃n−β?‖2 ≤ 2σ
√

2 + c0

√
s log(p)

n
, (2.10)

with probability at least 1− 1
p(c0 s)/8 −

1
exp(s) .

Proof. See Section 2.4.3.

We deduce the following corollary. For u ∈ Rp, sign(u) = (s1, . . . , sp) where for each i,
si = 0 if ui = 0, si = 1 is ui > 0, and si = −1 if ui < 0.
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Corollary 1. In addition to the assumptions of Theorem 1, suppose that

min
{ j: |β?, j|>0}

|β?, j| > 2σ
√

2 + c0

√
s log(p)

n
. (2.11)

Then with probability at least 1− 1

p
c0 s
8
− 1

exp(s) −
1

p
c0
2 −1

, sign(β̃n) = sign(β?).

Proof. See Section 2.4.4.

Remark 4. Theorem 1 shows that the thresholded SBL achieves the same `2 convergence

rate as LASSO (see for instance Corollary 2 in [68] and the references therein). And

Corollary 1 shows that the estimator recovers the sparsity structure of the signal with high-

probability. Theorem 1 is obtained under the orthonormal design matrix assumption (H2)

that is much stronger than the restricted eigenvalue assumption typically needed for LASSO

( [13, 68]). However, the simulation results reported below suggest that these results con-

tinue to hold more broadly.

Remark 5. Theorem 1 suggests using z? = c0 log(p). As a practical matter, we need a value

of c0 to implement the thresholded SBL. We propose setting c0 = c(1 + |ρ̂|), for a constant

c, and where ρ̂ is an estimate of the largest correlation among the columns of X. We found

that c ≈ 2 gives reasonably good value. Alternatively, one can tune c using BIC.

2.2.3 Computing σ̂2
n and γ̂n

Here we address the issue of solving (2.7). Because the function `(σ2,γ) is not concave, and
typically attains its maximum at the boundary of the domain Θ, the optimization (2.7) is not
a smooth problem. The strategy originally developed by [88] focuses instead on the smooth
problem obtained by maximizing ` over the open domain R+p+1, where R+

def
= (0,∞). That

is, find
Argmax(σ2,γ)∈Rp+1

+
`(σ2,γ). (2.12)

The EM algorithm proposed by [88] for solving (2.12) is as follows.

2.2.3.1 EM algortihm

repeat
Given ({σ2}(k), γ(k)) ∈ Rp+1

+ = (0,∞)p+1, we compose the matrix Γ(k) = diag(γ(k)
1 , . . . ,γ(k)

p ).

Compute V (k) =
(
X′X + {σ2}(k){Γ(k)}−1

)−1
, and µ(k) = V (k)X′y.

Set
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γ(k+1)
j = {µ(k)

j }
2 + {σ2}(k)V (k)

j, j , j = 1, . . . , p,

{σ2}(k+1) = 1
n

(
‖y−Xµ(k)‖2 + {σ2}(k)Tr(V (k)X′X)

)
.

until convergence

Clearly, Problem (2.12) has no solution whenever the solution of (2.7) occurs at the
boundary of Θ. Nevertheless, we will see that the above EM algorithm produces sequences
that converge to the solution of (2.7). To simplify the analysis we assume again that H2
holds and that σ2 is fixed. Hence we focus only on the recursion in γ:

γ(k+1)
j = {µ(k)

j }
2 +σ2V (k)

j, j , j = 1, . . . , p.

With the assumption that the design matrix is orthogonal, we can work out explicitly the
terms V (k) =

(
X′X +σ2{Γ(k)}−1

)−1
and µ(k) = V (k)X′y, which leads to

γ(k+1)
j =

〈x j,y〉2(
‖x j‖2 + σ2

γ
(k)
j

)2 +
σ2

‖x j‖2 + σ2

γ j(k)

, j = 1, . . . , p. (2.13)

Proposition 3. Fix y ∈ Rn, and X ∈ Rn×p such that H2 holds. Fix σ2 > 0. Let {γ(k), k ≥ 0}
denote the sequence produced by the recursion (2.13) for some initial γ(0) with positive

components. Then for all j ∈ {1, . . . , p},

lim
k→∞

γ(k)
j = γ̂n, j =

 〈y,x j〉
2−σ2n
n if 〈y, x j〉

2 > σ2n

0 otherwise
.

Proof. See Section 2.4.5

2.2.4 A simulation study

We investigate by simulation the behavior of the proposed thresholded SBL. The behavior
of the method described in Theorem 1 and Corollary 1 are obtained under the very strong
assumption H2, which implies in particular that p ≤ n. The simulation study in this section
explores how the method holds up in settings where some of these assumptions fail.

2.2.4.1 Synthetic Data Sets

We investigate by simulation the behavior of the SBL procedure and its thresholded version,
and how they compare with LASSO. For all the simulations, n = 100 and p = 500. We
generate the design matrix X by simulating each row independently from the Gaussian
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distribution N(0,Σ) where Σii = 1 and Σi j = ρ for i 6= j. We consider two values of ρ: ρ= 0 for
which X is close to satisfy H2, and ρ = 0.9 which produces a design matrix X with strongly
correlated variables. We simulate the dependent variable Y from the N(Xβ?,σ2

?In), with
σ? = 1. We consider four (4) different scenarios of sparsity, with s = 3,15,25, and s = 50
where s is the number of non-zero elements of β?. The magnitude of the non-zero elements
also play an important role in the recovery. We generate all the non-zeros components of
β? from the uniform distribution U(a,a+1), for a ranging from 0 to 9. In addition, the sign
of the non-zeros are determined via a coin flip.

For each value of ρ, each sparsity level, and each signal strength a, we repeat each
estimator 30 times, and we compute the relative error rate (‖β̂− β?‖/‖β?‖), the sensitivity
and the specificity, averaged over these 30 replications. The sensitivity (SEN) and the
specificity (SPE) of a given estimator β̂ are defined as

SEN(β̂) =

∑p
j=1 1{β̂ j 6=0}1{β?, j 6=0}∑p

j=1 1{β?, j 6=0}
, and SPE(β̂) =

∑p
j=1 1{β̂ j 6=0}1{β?, j 6=0}∑p

j=1 1{β̂ j 6=0}
.

These measures are valid for any estimator β̂, and we compute them for the thresholded
version of SBL, the non-thresholded version of SBL, as well as for the LASSO estimator.
For the thresholded SBL, we use z? = c(1+ |ρ̂|) log p, where c is determined by minimizing
the BIC: ‖y−Xβ̂‖

2σ̂2 + s log(n).
We compute the LASSO estimator using the function cv.glmnet of the package GLM-

Net ( [40]) where we select the penalty term λ by a 10-fold cross-validation procedure. In
the cross-validation, the regulation parameter selected minimizes the prediction error.

The simulation results are presented in Figure 2.1-2.8. As one can see from these fig-
ures, the main conclusion is that SBL is more sensitive than LASSO to the strength of
the signal (defined here as as the parameter a). With a weak signal it performs poorly,
but outperforms LASSO when the signal is strong enough. Another interesting finding
is that, overall, LASSO performs poorly in selecting the non-zeros components (variable
selection). This is consistent with recent results ( [60]) which shows that variable selec-
tion consistency of LASSO requires the irrepresentable condition, which actually is a very
strong condition that often does not hold in practice. For instance, the irrepresentable con-
dition fails for all the design matrices of this simulation study, except for the design matrix
behind Figure 2.2.
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Figure 2.1: Sensitivity, specificity and relative error for SBL and LASSO as function of a.
s = 3.
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Figure 2.2: Sensitivity, specificity and relative error for SBL and LASSO as function of a.
s = 15.
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Figure 2.3: Sensitivity, specificity and relative error for SBL and LASSO as function of a.
s = 25.
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Figure 2.4: Sensitivity, specificity and relative error for SBL and LASSO as function of a.
s = 50.
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Figure 2.5: Sensitivity, specificity and relative error for SBL and LASSO as function of a.
s = 3.
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Figure 2.6: Sensitivity, specificity and relative error for SBL and LASSO as function of a.
s = 15.
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Figure 2.7: Sensitivity, specificity and relative error for SBL and LASSO as function of a.
s = 25.
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Figure 2.8: Sensitivity, specificity and relative error for SBL and LASSO as function of a.
s = 50.

2.2.4.2 A simulated real data example

In this example, we consider a micro-array data concerning genes involved in the produc-
tion of riboflavin. The data is made publicly available at

http://www.annualreviews.org/doi/suppl

/10.1146/annurev-statistics-022513-115545

and contains n = 71 samples and p = 4088 covariates corresponding to 4088 genes. Each
of the sample contains a real valued response consisting of the logarithm of the riboflavin
production rate and 4088 real valued covariates consisting of the logarithm of the genes’
expression levels.

Given the very high dimensionality of this dataset, the lack of any true value of the
parameter, and given also the fact that micro-array data are well-known to be very noisy,
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direct comparison of different regression methods on such dataset cannot be very insight-
ful. For a more meaningful comparison, we use the riboflavin design matrix X ∈ R71×4088

to generate simulated levels of riboflavin production rate using the sparse regression model
Y = Xβ+ε where ε ∼ N(0,σ2I71), with σ2 = 1. The magnitude of the non-zero components
of β are uniformly simulated β j ∼ U(a,a + 1) with a = {0,1, . . . ,9}. We set the number of
non-zeros elements in the vector β to 5. Figure 2.9 shows the results of the simulation eval-
uated using the aforementioned metrics. Under such extreme high-dimensional conditions,
both methods perform poorly. SBL has found all the relevant variables but has also selected
many non-relevant variables. LASSO has produced more sparse solutions, but has missed
some important variables. The results remain essentially the same even when we set σ2

(the variance of the noise ε) to 0.1.
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Figure 2.9: Sensitivity, specificity and relative error for SBL(thresholded) and LASSO as
function of a. s = 5. The results of this simulation is generated using the riboflavin data
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One final word on computing times. We compute the SBL estimate using Algorithm
2.2.3.1, and we use the package GLMNet to compute LASSO. We implemented Algorithm
2.2.3.1 in R. The core of the GLMNet package is written in Fortran and the result is very
fast. The comparison of the computing times is largely in favor of GLMNet. Comparing
computing times is always tricky as it depends to a large extent on the programming lan-
guage and skills. But beyond the implementation differences, it seems clear that LASSO
has a computational advantage over SBL in that it leads to “easier” (convex) optimization
problems, compared to SBL.

2.3 Conclusion

The contribution of this chapter is two-fold. First, we show that in high-dimensional re-
gression with sparse signals, the plain SBL estimator does not recover the sparsity structure
of the signal in general. To remedy this, we have proposed a hard-thresholded version of
the SBL estimator. We show that for orthogonal design matrices, this hard-thresholded ver-
sion of the SBL achieves the same `2 convergence rate of Mσ

√
s log p/n, as LASSO. We

have also established that with high-probability the thresholded estimator recovers the spar-
sity structure of the signal. Furthermore our simulation results show that the thresholded
estimator compares very well with LASSO, and outperforms LASSO when the signal is
strong.

One important and pressing issue is the extension of these results to non-orthogonal
design matrices. In particular we wish to understand the type of design matrix X for which
these results continue to hold. This SBL theory and its comparison with the recently de-
veloped LASSO theory (see for instance [13, 60]) could potentially give new insight into
high-dimensional regression analysis. The generalized singular value decomposition (see
e.g. [43]) of Xγ and Γγ seems to be a promising approach to tackle this problem. The
challenge in this approach appears to be the development of an appropriate differentiability
theory for the components of the GSVD decomposition as a function of γ.

The SBL method can be extended in several directions. It can be easily extended to deal
with generalized linear models, and graphical models. But in these extensions, the com-
putation of the estimator might require some new algorithms. Another possible extension
of the method would be to replace the Gaussian distribution in the prior πγ by some other
distribution. Some work in this direction include [10, 97].
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2.4 Proofs

2.4.1 Proof of Proposition 1

Proof. For any i ∈ {1, . . . , p},

`(γ) ≤ −
1
2

logdet(Cγ) ≤ −
1
2

logdet
(
σ2In +γixix′i

)
↓ −∞,

as γi →∞. This together with the continuity of γ 7→ `(γ) imply the existence of a max-
imizer. For any such maximizer γ̂, consider the vector γ such that the j-th component
of γ is free to vary and the remaining components γ− j are fixed to γ̂− j. Then we write
Cγ = C j +γ jx jx′j and use the matrix identity (A + uu′)−1 = A−1− A−1uu′A−1

1+u′A−1u to deduce that

C−1
γ = C−1

j −
γ jC−1

j x jx′jC
−1
j

1 +γ jx′jC
−1
j x j

.

Therefore,

`(γ) = −
1
2

logdet
(
C j +γ jx jx′j

)
+

1
2

γ j
(
x′jC

−1
j y

)2

1 +γ jx′jC
−1
j x j
−

1
2

y′C−1
j y.

Since C j does not depend on γ j, we easily see that γ j 7→ `(γ) is differentiable on (0,∞) and

∂

∂γ j
`(γ) = −

1
2

x′jC
−1
j x j +

1
2

γ j
(
x′jC

−1
j x j

)2

1 +γ jx′jC
−1
j x j

+
1
2

(
x′jC

−1
j y

)2

(
1 +γ jx′jC

−1
j x j

)2

=
1
2

(
x′jC

−1
j y

)2
−γ j

(
x′jC

−1
j x j

)2
− x′jC

−1
j x j(

1 +γ jx′jC
−1
j x j

)2

If
(
x′jC

−1
j y

)2
≤ x′jC

−1
j x j, ∂

∂γ j
`(γ) < 0 and γ j 7→ `(γ) attains its maximum at 0. Similarly if(

x′jC
−1
j y

)2
> x′jC

−1
j x j, it is easy to check that γ j 7→ `(γ) attains its maximum at (

(
x′jC

−1
j y

)2
−

x′jC
−1
j x j)/

(
x′jC

−1
j x j

)2
. Now if γ̂ j differs from the maximizer just found, we can improve

on the likelihood by setting γ̂ j equal to that maximizer, which would be a contradiction.
Hence the result.
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2.4.2 Proof of Proposition 2

Proof. Recall that I = {1 ≤ j ≤ p : β?, j 6= 0} is the sparsity structure of β?. For γ ∈ Θ, and

1 ≤ j ≤ p, we define I0
def
= I∩ Iγ \{ j}, and I1

def
= Ic∩ Iγ \{ j}, where in order to keep the notation

easy, we omit the dependence of I0 and I1 on (γ, j). We will also write XI0 (resp. XI1) to
denote the matrix obtained by collecting the columns of X whose indexes belong to I0 (resp.
I1). We define

C j,γ
def
= σ2In +

∑
k∈Iγ\{ j}

γkxkx′k

= σ2In +
∑
k∈I0

γkxkx′k +
∑
k∈I1

γkxkx′k.

By the Woodbury matrix identity and the assumption X′I0 XI1 = 0, we get:

C−1
j,γ =

1
σ2 In−

1
σ4 XI0

(
Γ−1

I0
+

1
σ2 X′I0 XI0

)−1

X′I0 −
1
σ4 XI1

(
Γ−1

I1
+

1
σ2 X′I1 XI1

)−1

X′I1 .

Hence, for k ∈ I, and using the fact that j /∈ I, we have

x′jC
−1
j,γxk = 0, and x′jC

−1
j,γx j =

1
σ2 n.

Therefore, if Y = Xβ?+ ε, we get

x′jC
−1
j,γY =

1
σ2 〈x j, ε〉 ∼ N

(
0,σ2n

)
.

Now, the matrix C j defined in Proposition 1 is C j = C j,γ̂n . Hence

P
[
γ̂n, j = 0

]
= P

[(
x′jC

−1
j,γ̂n

Y
)2
≤ x′jC

−1
j,γ̂n

x j

]
= P

[
Z2 ≤ 1

]
,

where Z ∼ N(0,1). Hence the result.

2.4.3 Proof of Theorem 1

Proof. Under H2, x jC−1
j,γ̂n

Y = 〈x j,Y〉/σ2, and x jC−1
j,γ̂n

x j = n/σ2. Hence

γ̃ j =

 〈x j,Y〉2−σ2n
n if 〈x j,Y〉2 > σ2n(1 + z?)

0 otherwise.
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Similarly, under H1 β̂n, j has the explicit form β̂n, j =
〈Y,X j〉

n+ σ2
γ̂n, j

. It follows that

β̃n, j =


〈Y,x j〉

n+ σ2
γ̂n, j

if 〈Y, x j〉
2 > σ2n(1 + z?)

0 otherwise .

Again using the orthogonality assumption of X, we obtain 〈Y, x j〉 = β?, jn + 〈ε,X j〉. We set

t j
def
= 〈ε,X j〉. Then it follows that

β̃n, j−β?, j =



0 if β?, j = 0, and
( t j

n

)2
≤ σ2

n (1 + z?)
t j

n+ σ2
γ̃n, j

if β?, j = 0, and
( t j

n

)2
> σ2

n (1 + z?)

−β?, j if β?, j 6= 0 and
( t j

n +β?, j
)2
≤ σ2

n (1 + z?)
nβ?, j+t j

n+ σ2
γ̃n, j

−β?, j if β?, j 6= 0 and
( t j

n +β?, j
)2
> σ2

n (1 + z?).

Suppose that j ∈ I = Iγ? and
( t j

n +β?, j
)2
≤ σ2

n (1 + z?). Then with Z j
def
=

t j

σ
√

n
,

|β?, j| ≤

∣∣∣∣∣ t j

n

∣∣∣∣∣+ σ
√

n

√
1 + z? =

σ
√

n

(
|Z j|+

√
1 + z?

)
.

Hence for such index j,

β2
?, j ≤

2σ2

n

(
Z2

j + 1 + z?
)
. (2.14)

But for j ∈ Iγ? , such that
( t j

n +β?, j
)2
> σ2

n (1 + z?), γ̃n, j =
( t j

n +β?, j
)2
− σ2

n . Using this
with some easy algebra, we obtain that for such index j,

nβ?, j + t j

n + σ2

γ̃n, j

−β?, j =
t j

n
−

σ2

t j + nβ?, j
. (2.15)

It follows that ∣∣∣∣∣∣∣∣nβ?, j + t j

n + σ2

γ̃n, j

−β?, j

∣∣∣∣∣∣∣∣ ≤ σ
√

n

(
1 + |Z j|

)
. (2.16)

With (2.14) and (2.16), we get

∑
j∈Iγ?

(
β̃n, j−β?, j

)2
≤

2σ2

n

∑
j∈Iγ?

(1 + z?+ Z2
j ),
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Set s def
= |Iγ? |. By [86] Lemma 5, E(|Z2

j −1|k) ≤ k!2k−2, k > 2. Hence by Bernstein’s inequal-
ity (see e.g. [91] Lemma 2.2.11), we conclude that

P

 ∑
j∈Iγ?

(1 + z?+ Z2
j ) > 2(1 + z?)s

 ≤ P
 ∑

j∈Iγ?

(Z2
j −1) > z?s


≤ exp

(
−

z2
?s2

4(1 + z?s)

)
≤ exp

(
−

z?s
8

)
≤

1
pc0s/8 .

Hence with probability at least 1− 1
pc0 s/8 ,

∑
j∈Iγ?

(
β̃n, j−β?, j

)2
≤

4σ2

n
(1 + z?) s ≤

4(1 + c0)σ2s log p
n

. (2.17)

On the other hand, from (2.15), t j

n+ σ2
γ̃n, j

=
t j
n −

σ2

t j
, hence

∑
j/∈Iγ?

(
β̃n, j−β?, j

)2
=

∑
j/∈Iγ? ,Z

2
j>1+z?

σ2

n

(
Z j−

1
Z j

)2

≤
σ2

n

∑
j/∈Iγ?

Z2
j 1{Z2

j>1+z?}

≤
σ2

n

p∑
j=1

Z2
j 1{Z2

j>1+z?}.

Now for any κ ∈ (0,1/2), a > 0, and by Markov’s inequality

P

 p∑
j=1

Z2
j 1{Z2

j>1+z?} > a

 = P

exp

 p∑
j=1

κZ2
j 1{Z2

j>1+z?}

 > eaκ


≤ exp

[
−aκ+ p logE

[
exp

(
κZ2

11{Z2
1>1+z?}

)]]
. (2.18)

We calculate that

E
[
exp

(
κZ2

11{Z2
1>1+z?}

)]
= 2

∫ √
1+z?

0

e−x2/2
√

2π
dx + 2

∫ ∞

√
1+z?

e−
1
2 (1−2κ)x2

√
2π

dx

≤ 1 + 2
∫ ∞

√
1+z?

e−
1
2 (1−2κ)x2

√
2π

dx

≤ 1 +
exp

(
−

z?(1−2κ)
2

)
1−2κ

,

where the last inequality uses some easy algebra and the well known bound on the Gaussian
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cdf:
∫ ∞

t
1√
2π

e−x2/2a2
dx ≤ a2e−t2/2a2

t
√

2π
, valid for all t > 0. With z? = c0 log p, We deduce that

p logE
[
exp

(
κZ2

11{Z2
1>1+z?}

)]
≤ p log

1 +
p−

c0(1−2κ)
2

(1−2κ)

 ≤ pc0κ

1−2κ
.

Hence with a = 2−2κ
κ

pc0κ

1−2κ ≤ 4κ−1 pc0κ, (2.18) gives

P

 p∑
j=1

Z2
j 1{Z2

j>1+z?} > a

 ≤ exp
(
−aκ+

pc0κ

1−2κ

)
≤ exp

(
−pc0κ

)
.

We conclude that with probability at least 1−exp(−pc0κ),
∑p

j=1 Z2
j 1{Z2

j>1+z?} ≤ a ≤ 4κ−1 pc0κ,
so that ∑

j/∈Iγ?

(
β̃n, j−β?, j

)2
≤

4σ2

n
κ−1 pc0κ, (2.19)

with probability at least 1− exp(−pc0κ). Combining (2.17) and (2.19) it follows that

‖β̃n−β?‖
2
2 ≤

4σ2

n

(
(1 + c0)s log p +

pc0κ

κ

)
,

with probability at least 1− 1
pc0 s/8 − exp(−pc0κ). Finally since log s > 1, we can take κ =

log(s)/(c0 log(p)) ∈ (0,1/2) to achieve s = pc0κ. With this choice,

pc0κ

κ
=

s log(p)
c0 log(s)

≤
s log(p)

c0
,

and the theorem follows easily.

2.4.4 Proof of Corollary 1

Proof. Recall that I = Iγ? = {1 ≤ j ≤ p : β?, j 6= 0}. We write uIγ? = (u j, j ∈ Iγ?), and uIcγ?
=

(u j, j /∈ Iγ?). It is clear that whenever (2.11) holds and |β̃n, j −β?, j| ≤
√

Mσ2s log(p)/n, we
have sign(β̃n, j) = sign(β?, j). Since |β̃n, j−β?, j| ≤ ‖β̃n−β?‖2, we conclude that sign(β̃n,Iγ? ) =

sign(β?,Iγ? ), with probability at least 1− 1
p(c0 s)/8 −

1
exp(s) .

For the other part, it follows from the definition of β̃n that for β?, j = 0, sign(β̃n, j) 6= 0
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implies that Z2
j ≥ 1 + z?. Hence

P
(
sign(β̃n,Icγ?

) 6= sign(β?,Icγ? )
)
≤

p∑
j=1

P
(
Z2

j > 1 + z?
)

=

p∑
j=1

2P
(
Z j >

√
1 + z?

)
≤

p∑
j=1

e−
1
2 (1+z?) ≤ exp

(
log p−

c0

2
log p

)
≤

1

p
c0
2 −1

.

The results follows.

2.4.5 Proof of Proposition 3

Proof. We fix an arbitrary j ∈ {1, . . . , p}. We define xk = nγ(k)
j , where we omit the depen-

dence on j to keep the notation simple. It follows from (2.13) that

xk+1 = B
(

xk

σ2 + xk

)2

+
σ2xk

σ2 + xk
= Ψ(xk),

where B = 〈y,X j〉
2/n, and

Ψ(x) = B
( x
σ2 + x

)2
+

σ2x
σ2 + x

.

Notice that for all x ≥ 0, Ψ(x) ∈ [0,σ2 + B]. Hence the sequence {xk, k ≥ 0} is bounded.
The equation Ψ(x) = x is equivalent to x2(x +σ2) = x2B. If B ≤ σ2, Ψ(x) = x has a unique
solution x = 0. If B > σ2, then Ψ(x) = x has two solutions x = 0 and x = B−σ2. The
derivatives of Ψ are given by

Ψ′(x) =
σ4

(σ2 + x)2 +
2xσ2B

(σ2 + x)3 , Ψ
′′

(x) =
−2σ2x(σ2 + 2B) + 2σ4(B−σ2)

(σ2 + x)4 .

We consider two cases

1. Case 1: B ≤ σ2. Then Ψ
′′

(x) ≤ 0 for all x ≥ 0. Hence Ψ is concave. This implies
that for all x ≥ 0,

Ψ(x) ≤ Ψ(0) +Ψ′(0)x = x.

This implies that xk = Ψ(xk−1) ≤ xk−1. This means that the sequence {xk, k ≥ 0} is
bounded and non-increasing, hence has a limit x?. By continuity of Ψ, the limit point
x? satisfies Ψ(x?) = x?. Hence x? = 0, since we have seen above that 0 is the only
fixed-point of Ψ when B ≤ σ2.
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2. Case 2: B>σ2: Then Ψ
′′

(0)> 0, and by Taylor expansion, in a neighborhood of 0,
we have Ψ(x) ≥Ψ(0)+Ψ′(0)x = x for all x > 0 small enough. If x? = B j−σ

2 denotes
the unique positive fixed point of Ψ, we can conclude that for all x ∈ [0, x?], Ψ(x)≥ x,
and for x > x?, Ψ(x) < x. Therefore, if x0 ∈ [0, x?], then {xk, k ≥ 0} is increasing and
bounded, hence converges to the unique positive fixed point x? (recall that x0 > 0).
Whereas, if x0 > x?, then {xk, k ≥ 0} is decreasing and bounded, hence converges to
the unique positive fixed point x?.
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CHAPTER 3

Simultaneous Unmixing and Classification of
Hyperspectral Images

3.1 Introduction

Hyperspectral imaging in remote sensing increases the spectral resolution of sensors and
enables computer object-identification from observed pixels. However, the recovery pro-
cess remains a challenging task. Indeed, due to the limited spatial resolution of the sensors,
each pixel in a hyperspectral image is typically a mixture of few endmember spectral sig-
natures. Hyperspectral unmixing is the task of identifying these mixtures.

The unmixing task can be performed using either a lab-generated library or spectral
signatures extracted from the images. Either approach has its own set of assumptions and
shortcomings. Lab-generated libraries assumes that the atmospheric distortion does not al-
ter the spectral signature of the endmembers too much while spectral extraction methods
assumes that there exists a “pure” pixel in the image. In addition, spectral extraction meth-
ods involve solving for the library in addition to the mixture which complicates the task of
unmixing further. Some notable spectral extraction methods are N-FINDR [95], VCA [66],
and Pixel Purity Index [15]. On the other hand, lab-generated libraries are usually very
large in comparison to the spectral resolution of the remote sensor. The high-dimensional
library requires the use of regularization methods such as LASSO [87] in order to recover
a sparse mixture ( [14, 49, 80]).

Mixing models in hyperspectral imaging can be either linear or nonlinear, the linear
model being the most commonly used. Nonlinear unmixing appears when there are macro-
scopic interactions of spectral signatures, which occur typically in multilayered configu-
rations. In this type of scenes, the light scattered by a material is reflected off another
material. This type of scenes are commonly seen for example when there is significant
tree/plant canopy where light scattered by the canopy is reflected off the ground. Bilin-
ear unmixing models are commonly used for this type of images. There are also other
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microscopic interaction of spectral signatures, but in this chapter we focus mainly on the
bilinear model. For further details on nonlinear unmixing we point the reader to [34] and
the references therein.

Unmixed hyperspectral images in isolation are not easily summarized. In order to in-
crease the interpretability of hyperspectral images, classification methods have been used
to classify the pixels. It is standard practice to have pixels belonging to the same class
either share the similar mixture or have similar observed spectral signatures. With this in
mind, it is common practice to use classification of pixels to introduce spatial dependence
between the pixels. This is usually done by introducing Markov random fields. A review of
the use of Markov random field in remote sensing can be found in [64]. In another instance
of classification, SVM [85] [63] has been applied on observed spectral signatures in order
to separate pixels into classes. Besides that, there are Bayesian methods which assumes
that the mixture of endmembers in the same group share the same first and second mo-
ment [89]. For a review of methods used in hyperspectral image classification, [3, 21] and
the references therein are good resources. In addition [51] also has an alternative method
for dealing with spatial dependence.

Both unmixing and classification are usually done separately. In this chapter we pro-
pose a model that addresses the unmixing and the classification problems jointly, using
high-dimensional libraries. Our framework uses a generic library, and can be used with a
lab-generated library or a library extracted from the image [69]. In addition, the library can
be augmented with nonlinear combinations of the columns in order to cover nonlinear un-
mixing. The statistical model underpinning our methodology is a regression model driven
by a Markov random field, that builds on the work of [89]. However the model developed
here is more parsimonious than [89], which makes it possible to apply our method with
higher dimensional libraries. Unlike the fully Bayesian approach taken in [89], we adopt
the sparse Bayesian learning approach of [88] in order to recover sparse solutions for the
mixtures. The method used in this paper requires the use of stochastic EM via MCMC. For
further references on stochastic approximation via MCMC, [45] and the references therein
are good resources.

3.2 Hyperspectral Unmixing and Classification

3.2.1 The statistical model

We view the hyperspectral data as a three-dimensional data cube with pixels indexed by
p ∈ {1, . . . ,P}. At a given pixel p, the observed L-spectrum vector yp is assumed to contain
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a noisy linear mixture of end-members from the library. We make the assumption that each
pixel p has a group assignment zp ∈ {1, . . . ,K}, and we make the following distributional
assumption:

yp ∼ N(Xβzp , s
2
zp

IL) p = 1, . . . ,P. (3.1)

In the above display, X = [x1, . . . ,xR] is a known L×R matrix containing the spectral signa-
tures of the end-members that are present in the library, L is the number of spectral bands,
zp denotes the group label assigned to pixel p, and βi ∈ RR, 1 ≤ i ≤ K are parameters.
Hence the implicit assumption made in the model is that two pixels with the same group
assignment contains the same linear mixture of end-members from the library. However,
the observed data at these two pixels might still be different due to the added random noise
in (3.1). Also note that the level of noise in each group may be different according to the
formulation above. The endmembers xk in this case are generic. They may come from lab-
generated spectral signatures, spectral signatures extracted from the scene, and/or nonlinear
combination of the other endmembers.

Spatial dependence is introduced in the model through the latent group assignments
{zp, 1 ≤ p ≤ P} which are assumed spatially dependent. More precisely we assume that the
group assignments {zp, 1 ≤ p ≤ P} follows a Potts-Markov random field distribution

f (z|θ) =
1

G(θ)
exp


P∑

p=1

∑
p′∈V(p)

θδ(zp− zp′)

 , (3.2)

where V(i) is the neighborhood (defined here as the four nearest pixel) around pixel i, θ is
the granularity parameter that we assume known, G(θ) is the normalizing constant, δ(·) is
the Kronecker function (δ(x) = 1 if x = 0, and 0 otherwise), and z = [z1, . . . ,zp]. For further
reference on hidden Markov models, [23] is a good reference.

Our model is inspired by, and shares some common features with the model proposed
by [89]. However, our formulation is more parsimonious which is key for fast computation.
In [89], each pixel has its own coefficient β, and the β’s coefficient of the pixels belonging
to the same group (same value of z) have the same distribution. This model leads to a very
large number of β parameters to estimate, and would not scale well to large images and
high-dimensional libraries. We should also mention that the use of the Potts model and
other discrete Markov random fields for modeling spatially distributed phenomenon has
been explored by other authors (see e.g. [44] and the references therein).

Organizing data for an image with P pixels using standard matrix notation: Y = [y1, . . . ,yP]
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and β = [β1, . . . ,βP], the likelihood for the data is:

f (Y|z,β, s2) ∝
P∏

p=1

 1
s2

zp

L/2

exp

− 1
2s2

zp

‖yp−Xβzp‖
2

 .
Where s2 = (s2

1, . . . s
2
K) is the different noise levels within the groups. In order to promote

sparse solutions for the abundances, we impose on βk a prior distribution πΣk(dβ) for some
hyper-parameter Σk = diag(σ1,k, . . . ,σR,k), where σi,k ≥ 0. More precisely, we assume the
components of βk are independent, and β jk = 0 if σ jk = 0, and β jk ∼ N(0,σ2

jk), if σ jk > 0.
We have identified (and will continue to do so in the sequel) the matrix Σk with the vector
(σ1,k, . . . ,σR,k). It should be noted that under this formulation, negative abundances are
possible. One possible amendment to the formulation to guarantee nonnegative abundance
is to utilize the truncated Gaussian prior instead. Formally, this alternative formulation can
be implemented similarly as below, but is computationally more challenging, and would
limit the scalability of the proposed approach. See Section 3.5.1 for further discussion on
how we deal with the negative abundances.

With that in mind, we maintained the same form of prior described in Chapter 2 which
yields the joint posterior distribution for both β and z

π(dβ,z|Y, s2,Σ, θ) ∝ f (z|θ) f (Y|z,β, s2)
K∏

k=1

πΣk(dβk). (3.3)

The estimator for the abundances which minimizes risk is the posterior mean of the abun-
dances:

β̂ = β̂(s,Σ, θ) =

∫∫
βπ(dβ,z|Y, s2,Σ, θ)dz. (3.4)

In (3.4), the integral with respect to z should be interpreted as a summation. We note that
this estimator depends on unknown parameters Σ, and s2. We recall that θ is assumed
known. Under the full Bayesian treatment, which is the approach taken by [89], further
priors are introduced for the hyperparameters. Here we take an empirical Bayes approach,
and following the SBL method of [88], we propose to estimate (Σ, s) by maximizing the
marginal log-likelihood

(Σ̂, ŝ2) = argmin
Σ,s2

`(s2,Σ;θ,Y) (3.5)
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where

`(s2,Σ;θ,Y) = log

∫∫
f (z|θ) f (Y|z,β, s2)

K∏
k=1

πΣk(dβk)dβdz

 .
This problem is a difficult non-concave optimization problem. Building on the EM algo-
rithm of [88, 100], we develop below a Monte Carlo EM algorithm to locate its stationary
points. The Monte Carlo EM [93] is a well established method for cases where the compu-
tation of the E-step requires Monte Carlo estimates.

Once the hyperparameters (Σ̂, ŝ2) are obtained, the estimate for the classification and
the mixture is computed by generating MCMC samples from the joint posterior (3.3). The
estimate for the classification is set to the posterior mode class for each pixel while the
mixture is set to the posterior mean mixture for a given class. For a discussion on the EM
algorithm, the seminal paper [33] is a good reference.

3.3 Computation of the hyper-parameters (Σ̂, ŝ2) by Monte
Carlo EM

As stated, setting the hyperparameters to the MLE is non-trivial. This necessitates the use
of EM algorithm to find an approximate solution. The EM algorithm [33] is an iterative
method in finding the maximum likelihood estimate from unwieldy likelihoods. We begin
the review of the algorithm by supposing that we observe X with a set of unobserved latent
data Z and a set of parameters of interest Θ with complete data likelihood L(Θ; X,Z) =

f (X,Z|Θ). The maximum likelihood of Θ is obtained by maximizing the data observed
likelihood:

L(Θ; X) =

∫
f (X,z|Θ)dz

In many cases, this likelihood is intractable. The EM algorithm circumvents this problem
by defining a surrogate conditional expectation function of the log likelihood in place of
the above likelihood:

Q(Θ|Θt) = EZ|X,Θt[log L(Θ; X,Z)]
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This step is called the E-step. After the E-step, we maximize the surrogate function with
respect to Θ which is often easier than the original optimization function.

Θt+1 = argmax
Θ

Q(Θ|Θt)

This is called the M-step. The EM algorithm iterates the E-step and the M-step for a large
number of iterations or until a convergence criteria is met. In our case, our implementation
begins by treating the marginalized variables (β,z) as latent variables. Given (θ,Σt, s2

t ), the
complete data log-likelihood is:

`comp(θ, s2
t ,Σt;Y,β,z) = log

{
f (Y|β, s2

t ) f (β|z,Σt) f (z|θ)
}

= −

K∑
k=1

|Ik|L
2

log s2
k,t −

P∑
p=1

‖yp−Xβzp‖
2

2s2
zp,t

−

K∑
k=1

1
2

log |Σk,t|+
βT

k Σ
−1
k,tβk

2


− logG(θ) +

P∑
p=1

∑
p′∈V(p)

θδ(zp− zp′).

The surrogate function in the EM algorithm is evaluated by taking expectation of the com-
plete data log-likelihood with respect to the posterior distribution. This gives the E-step of
the algorithm:

• E-step:

Qt = E
{
`comp(θ, s2

t ,Σt;Y,β,z)|Y
}

Defining the following terms:

uk,t =

∫∫ ∑
p∈Ik

‖yp−Xβk‖
2π(β,z|Y, s2

t ,Σt, θ)dzdβ (3.6)

vr,k,t =

∫∫
β2

r,kπ(β,z|Y, s2
t ,Σt, θ)dzdβ (3.7)

w =

P∑
p=1

∑
p′∈V(p)

δ(zp− zp′)
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The surrogate function becomes:

Qt = −
1
2

 K∑
k=1

|Ik|L log s2
t +

uk,t

s2
k,t



−

1
2

K∑
k=1

R∑
r=1

{
logσr,k,t +

vr,k,t

σr,k,t

}
− logG(θ) + θw

By maximizing the surrogate function Qt in (s2
t ,Σt), we are solving a simpler problem

than the original optimization problem. However, it should be noted that expressions (3.6)
and (3.7) which make up the complete surrogate function involves simulating from the
joint posterior distribution for the pixel labels and abundances. MCMC is used in order to
estimate those three terms. The MCMC used to sample from the distributions are detailed
in Section 3.4.1 . In addition, [27] is a good reference for Gibbs sampling in the context of
empirical Bayes. We then use the terms in the M-step of the EM algorithm to update the
hyper-paramters.

• M-step:

s2
t+1 = argmax

s2
t

Qt

Σt+1 = argmax
Σt

Qt

The solution to the M-steps are:

dQt

ds2
k,t

= −
|Ik|L
2s2

k,t

+
uk,t

2(s2
k,t)

2
=⇒ s2

k,t+1 =
uk,t

|Ik|L
(3.8)

dQt

dσr,k,t
= −

1
2σr,k,t

+
vr,k,t

2σ2
r,k,t

=⇒ σr,k,t+1 = vr,k,t (3.9)

The pseudocode for the EM algorithm is outlined below.

repeat
Given s2

t , σr,k,t and θ
Compute s2

t+1 and σr,k,t+1 according to equations (3.8) and (3.9)
ut and vr,k,t are computed via MCMC simulation.

until convergence
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3.4 The MCMC Sampler

3.4.1 Sampling from the posterior π(β,z|Y, s2,Σ, θ)

Before we go into sampling the hyperparameters, It may be instructive to review Gibb’s
sampling [28]. Suppose we have a multivariate distribution for random variable x ∈ Rp

that has the following joint distribution f (x) = f (x1, . . . , xp) and we need to sample n copies
from the aforementioned distribution. In addition, we have the full conditional distribution
as f (x j|x− j) where x− j = {x1, . . . , x j−1, x j+1, . . . xp}. Usually, simulating from the full condi-
tional distribution is much more convenient relative to sampling from the joint distribution.
Defining copy i from the f (x) distribution as x(i) = (x(i)

1 , . . . , x
(i)
p ), the Gibb’s sampling takes

the following form:

1. Initialize x(0).

2. The iterative update successively sample copy x(i+1)
j from the full conditional distri-

bution f (x j|x
(i+1)
1 , . . . , x(i+1)

j−1 , x
(i)
j+1, . . . , x

(i)
p ). Update x(i+1) is a complete sweep of the

marginal variables.

3. Repeat steps 1. and 2. until the required number of samples n.

The sequence x(i) for i = {1, . . . ,n} approximates the sample from the joint distribution. The
sample from marginal distribution for each x j is approximated by x(i)

j for i = {1, . . . ,n}. The
mean of the joint distribution can be approximated by averaging all the samples x(i).

As noted earlier, every EM iteration update contains expressions, (3.6) and (3.7), that
require MCMC sampling from the posterior distribution π(β,z|Y, s2

t ,Σt, θ). Sampling from
the non-standard distribution involves Gibbs Sampling which samples from the following
full conditional distributions iteratively:

π(z|β,Y, s2,Σ, θ) ∝ f (Y|z,β, s2) f (z|θ) (3.10)

π(βk|z,β−k,Y, s
2,Σ, θ) ∼ N(γk, s2

kΓk) (3.11)

Where γk = ΓkXT
(∑

p∈Ik yp

)
and Γk =

[
|Ik|XT X + s2

kΣ
−1
k

]−1
. Sampling from the mul-

tivariate normal distribution is trivial, but the full conditional for the pixel assignment is
much more complex. One approach is to update the each pixel individually, but that method
is time consuming and does not scale well for larger images. An alternative/scalable algo-
rithm is outlined in Section 3.4.2.
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3.4.2 Wolff Clustering Algorithm

The algorithm described in this subsection is commonly applied in the drawing of samples
from the Pott’s model. In our case, the goal of the algorithm is to draw samples from the
following distribution:

π(z|β,Y, s2,Σ, θ) ∝ exp


P∑

p=1

∑
p′∈V(p)

θδ(zp− zp′)

×
P∏

p=1

exp

−‖yp−Xβzp‖
2

2s2


Samples from the aforementioned distribution is required in the computation of the E-step
of the EM algorithm. We initially applied Gibb’s sampler, but found the sampler to be
slow for anything larger than 100 pixels. This motivated the use of the Wolff Clustering
Algorithm.

The algorithm, first described in [98], involves the use of granularity parameter θ in
order to select a cluster with the same class label z. Once the cluster has been determined, a
randomly selected proposal label z̃ 6= z for the cluster is compared to the original class label
z via the likelihood ratio π(z̃)

π(z) . The probability of the cluster’s label being “flipped” to the
proposed class label is min(1, π0(z̃)

π0(z) ).
This algorithm updates the image classification very efficiently compared to the use

of the Gibb’s sampler when applied to the drawing of the full posterior distribution for
the pixel assignment. The algorithm updates the image assignment by deciding whether
to change pixel assignment at the cluster level whereas the Gibb’s sampler updates the the
pixel assignment at the pixel level. This improves the speed of the EM algorithm and scales
better to larger images.

We begin the description of the algorithm by defining the cluster growth probability
and the likelihoods used in the comparison of proposed versus original class label. The
cluster must be grown systematically using the acceptance probabilities derived from the
following:

bs,l = exp {θ}

The comparison of the proposed and the original class labels is done using the following
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likelihoods:

π0(z1, . . . ,zC0) ∝

exp

−∑
p∈C0

‖yp−XβC0‖
2

2s2




π0(z̃)
π0(z)

= exp

−∑
p∈C0

‖yp−Xβz̃‖

2s2
z̃

−
‖yp−Xβz‖

2s2
z




With the necessary cluster growth probability and likelihoods defined, the algorithm takes
the following form:

Given z = {z(s), s ∈ S}, randomly select s ∈ C0 and set C0 = {s}

Repeat
For each l ∈ C0 and l′ ∈Dl

If z(l) = z(l′)
Set δl,l′ = 1 with probability 1− 1

bs,l

Set δl,l′ = 0 with probability 1
bs,l

If z(l) 6= z(l′)
Set δl,l′ = 0

Add l′ to C0 if δl,l′ = 1
End for

Until C0 can no longer grow
If z(s) = i, ∀s ∈ C0

Randomly select j ∈ {1, . . . ,K}\{i} as the proposal z̃(s) = j, ∀s ∈ C0

Accept z̃(s) = j, ∀s ∈ C0 with probability min(1, π0(z̃)
π0(z) )

3.5 Numerical Experiments

Two simulation studies are performed to evaluate the method’s performance. The first
involves data sets simulated from a synthetic misspecified model. The second simulation
study uses a real world agricultural scene with ground truth classification. For the simulated
data experiments, we generate images from the following model.

Yp ∼ N
(
Xβp, I200

)
βp ∼ N

(
µzp , τ

2I500
)

Where k = 1, . . . ,6 and τ ∈ {0.1,0.25,0.5}. The mean of the mixtures µk are assumed sparse
with about 1% nonzero entries coming from a uniform distribution U(1,2). This model is
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exactly the same model proposed in [89], and under this model, the β’s of pixels sharing the
same class share the same first and second moments, but are allowed to be different. This
is in contrast to our model where the β’s are held constant within a given class. We choose
to work with a misspecified model because we would like to examine the performance
of the method in the highly likely event that real world conditions present us with diverse
intraclass mixtures. The size of the image is 150×150 pixels. We evaluate the performance
of the method by computing the misclassification error, and the residual

ŝ2 =

∑P
p=1 ‖yp−Xβ̂p‖

L×P

We performed our estimation using different granularity constants θ = {0.1,0.3,0.5}.
The choice of θ dictates the strength of the spatial correlation when it comes to informing
the class of the pixel which influences the mixture of the pixel. Figure 3.1 shows the
classification recovery for τ = 0.1. There is negligible difference in the recovery of the
classification under different θ conditions. Figure 3.2 shows the classification recovery for
τ = 0.25. Once again, there is negligible difference in the recovery of the classification
with varying θ. Figure 3.3 shows the classification recovery for τ = 0.5. Under τ = 0.5, the
classification recovery rate deteriorates with the increase of θ.

Figure 3.1: The ground truth of the synthetic data is on the top left and the other three plots
are the recovered class assignment for different θ with τ = 0.1
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Figure 3.2: The ground truth of the synthetic data is on the top left and the other three plots
are the recovered class assignment for different θwith τ = 0.25

Figure 3.3: The ground truth of the synthetic data is on the top left and the other three plots
are the recovered class assignment for different θ with τ = 0.5

The use of different θ levels necessitates the use of residuals of the observed spectral
signature in order to determine the optimal θ. In our synthetic simulation, the residuals for
low to moderate levels of misspecification, τ = {0.1,0.25}, show very little difference for
different levels of spatial correlation θ. However, when the model is highly misspecified,
τ = 0.5, there is very little difference in the residuals for θ = {0.1,0.3} but increased dra-
matically for θ = 0.5. This implies that a low-to-medium θ is optimal to the recovery of the
classification for highly misspecified models. For further reference, Table 3.1 and Table
3.2 are the misclassification rates and residuals for the different scenarios described.

τ = 0.1 τ = 0.25 τ = 0.5

θ = 0.1 0 0.014 0.226
θ = 0.3 0 0.012 0.296
θ = 0.5 0 0.010 0.758

Table 3.1: Misclassification rate for synthetic data
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τ = 0.1 τ = 0.25 τ = 0.5

θ = 0.1 5.99 32.20 125.66
θ = 0.3 5.99 32.20 125.83
θ = 0.5 5.99 32.20 137.60

Table 3.2: s2 estimates for synthetic data

Besides selecting θ, we also performed simulation studies on different values of K in
our models. In this instance, we performed the study on a synthetic scene with K = 6 and
about 1% nonzero entries coming from a uniform distribution U(5,10) with τ = 0.1. We
used different values of K = 3, . . . ,20 in our recovery algorithm to see if we could determine
the optimal K. The criteria we used to evaluate the suitability of K is BIC:

BIC = −2log f (Y |X, β̂) + 2KR× log(PL)

Figure 3.4 shows a plot of how the BIC changes based on the K used in the recovery
algorithm. It is seen from the figure that any increase in the number of groups used in
recovery does not decrease the BIC anymore. In fact we observe fluctuations in BIC after
the actual K = 6 has been reached. This shows that once the model reaches appropriate
saturation in terms of number of groups K, any additional parameters will not produce
much gain in terms of model fit. Based on this we can conclude K = 6 is the optimal
number of groups for the recovery algorithm.
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Figure 3.4: Plot of BIC vs the number of classes used in the recovery algorithm.

As a comparison, we also performed the unmixing at the pixel level by solving a con-
strained optimization problem using alternating direction method of multipliers (ADMM).
This method assumes that there is no spatial dependence in the data and fits the data subject
to the positivity and additivity constraints. It should be noted that this method results in a
solution that has very low residuals, but a high number of parameters (one β for each pixel).
The constrained optimization problem takes the form

argmax
β:β j≥0,

∑
j β j=1
‖y−Xβ‖
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Due to the low residuals of the fitted model, we use the penalized residuals of the following
form in order to compare this model to the parsimonious model proposed in this chapter.
Once again, recall the BIC:

BIC = −2log f (Y |X,β) + 2× (number of parameters)× log(PL)

The results of this comparison is presented in Table 3.3. It is notable that under low and
moderate deviations from the proposed model, the model with no spatial dependence per-
forms worse in terms of penalized residuals. However, the non-spatial model is more robust
to model misspecification.

τ = 0.1 τ = 0.25 τ = 0.5

BIC(Spatial) 27,061,609 144,983,014 565,586,619
BIC(Non-Spatial) 345,878,235 348,074,227 355,351,184

Table 3.3: BIC for the spatial and non-spatial model for varying levels of mispecification

3.5.1 Negative entries for β

As noted earlier, under the current formulation, it is possible that the entries of β to be
negative. This is undesirable because a negative abundance of end-member is not mean-
ingful. In those cases, the researcher has the option of amending the model using the
truncated Gaussian instead of the regular Gaussian used in order to ensure non-negativity
of the entries. However, this requires significant reworking of the MCMC within the EM
iterations which increases the computational complexity. Another approach is to set the
negative values to zero. This is the approach that we intend to take in this chapter. From
our observations, the method returns negative values that are generally small for scenes
with properly matched libraries. Significantly large negative entries suggests the mismatch
of the library to the scene as the algorithm reconstructs the observed spectral signature from
non-related end-members in the library. As seen in Figure 3.5, even in the case of severe
misspecification τ = 0.5, the negative values are still small relative to the signal as long as
the library X is appropriate to the scene.
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Figure 3.5: Plots of the βs for θ = 0.3 with τ = 0.5. The black lines are the actual signal and
the red lines are the actual signal

3.5.2 Indian Pines Scene

In this simulation study, we examine an agricultural scene with ground-truth. The scene
comes from Indian Pines which is an agricultural scene with 4 notable zones. The image is
a subset of the Indian Pines data set obtained from the website: http://www.ehu.es/
ccwintco/index.php?title=Hyperspectral_Remote_Sensing_Scenes.
We analyze this scene using a nonagricultural United States Geological Survey (USGS)
vegetation library taken from the website: http://speclab.cr.usgs.gov/spectral.
lib06/). It should be noted that the library used in this case is a mismatched with the
scene. It is important to note that crops in different developmental stages exhibit differ-
ent spectral signatures. For instance, maize when unripened will look green on the visible
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spectrum. Ripened maize looks yellow on the visible spectrum. In this example, there is
significant difference in terms of the spectral signature on the visible spectrum and non-
visible spectrum for the same kind of crop in different stages of development. In addition,
remote sensing libraries are created to assist in the survey of areas that are not inhabited
and dangerous. An agricultural scene is usually inhabited and there is less motivation to
remotely survey agricultural scene due to the relatively inexpensive on-site survey. Even
though the library used in this case is mismatched to the scene, we should be able to draw
some conclusions regarding the classification even if the abundances recovered in this case
is meaningless due to how the model is set up.

The recovery of the classification using lab-generated library is presented in Figure 3.6.
Note that the algorithm has collapsed the image into roughly two classes even though we
initialized our simulation with 4 classes. In this case, the algorithm is unable to differentiate
corn from soybean and considers them as one class. In addition, the algorithm has also
collapsed the areas covered by trees, grass and oats into one class.

Ground Truth Recovered Classification

Figure 3.6: Classification plots of the ground truth and the recovered classes. Red is grass
and trees, blue is soybean, green is corn, black is oats.
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In addition to using the USGS library, we used a library extracted from the Indian Pines
image using VCA [66]. VCA is an iterative algorithm that extracts endmembers from
observed spectral signature in the image. This method assumes that there is at least one
pure pixel in the image. The algorithm takes the following form:

1. Begin by select a random pixel from the image as an endmember in the library. The
first endmember can be taken from the pixel with the largest spectral signature.

2. Find the space that is orthogonal to the column space of the library.

3. From the remaining pixels, the pixel with the largest orthogonal projection is added
into the library as an endmember.

4. Repeat steps 2 and 3 until an appropriate number of endmembers are included in the
library. It is obvious that the maximum number of endmembers cannot exceed the
number of pixels in the image.

In this exercise, we extracted 5 endmembers from the image and augmented the 5 end-
members with bilinear combinations resulting in a library containing 20 endmembers. The
resulting classification plot is displayed in Figure 3.7. There is very little difference in the
classification plots recovered using lab-generated library and VCA recovered nonlinear li-
brary. In fact, both libraries are able to differentiate between the grass and trees from the
crops fairly well, but are unable to distinguish between different crops. Table 3.4 shows
results from the algorithm applied to the lab-generated library and bilinear VCA library for
the Indian Pines scene. The results in this table is averaged over twenty repetitions with
random initializations for entries of Σ and s2 drawn from U(1,5)
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Ground Truth Recovered Classification

Figure 3.7: Classification plots of the ground truth and the recovered classes. This plot is
recovered using the proposed algorithm with VCA recovered endmembers and their bilin-
ear combinations. Red is grass and trees, blue is soybean, green is corn, black is oats.

Misclassification ŝ2

Lab Library 0.3408 0.0064
VCA Library 0.2404 0.0004

Spectral Clustering 0.2515 N/A

Table 3.4: Misclassification rates and residual ŝ2 estimates for classification and unmixing
of the Indian Pines scene with lab-generated library and VCA library. The spectral cluster-
ing result is recovered using the observed spectral signatures observed from the scene.

As a comparison, we conducted spectral clustering in order to provide a data driven
approach to classify the pixel based on the l2 distance between the spectral signature. The
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spectral clustering method builds an adjacency matrix W using the following kernel:

Wi j = exp

−‖yi− y j‖
2
2

L


From the adjacency matrix W we construct the Laplacian matrix U:

D = diag

∑
j

Wi j


U = D−W

Ln = UD−1

where Ln is the normalized Laplacian. Once this has been constructed, we apply the eigen-
decomposition to Ln.

The number of groups K is determined by examining the smallest eigenvalues. The
eigenvalues of Ln are mostly close to 1. Suppose the eigenvalues of Ln are arranged in
ascending order {e(1), . . .e(P)}

K = min{i : (1− e(i)) ≥ τ, i = 1, . . .P}

Where τ is the threshold for setting the number of groups. This threshold is dependent
on the observed data. Setting this requires a certain amount of judgement regarding the
number of groups compared to the number of pixels in an image.

Once K has been established, we collect K eigenvectors associated with the K smallest
eigenvalues into the matrix V ∈ RP×K . We then apply K-means clustering on the P K-
dimensional row-vectors.

Figure 3.8 shows the classification results from spectral clustering. This is recovered
using just the distance between observed spectral signatures. From the plots, we can see
that the resulting classification is consistent with the results using the proposed method.
The difference in spectral signature between the crops are too small to differentiate between
them. This classification method is also able to differentiate between the non-crop pixels
and the crop pixels reasonably well. This validates the results recovered using the proposed
method.
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Ground Truth
Spectral Clustering 

 Recovered Classification

Figure 3.8: Classification plots of the ground truth and the recovered classes. This plot is
recovered using spectral clustering. Red is grass and trees, blue is soybean, green is corn,
black is oats.

3.6 Conclusion

The main contribution of this chapter is the application of the unmixing and classification
of hyperspectral images simultaneously. As mentioned earlier, most preexisting literature
approach to this as a two-stage problem. The classification of the images also introduces
spatial dependence through the Potts-model parameter θ. In our synthetic data simulations,
the greater the spatial dependence, the less robust the method is to model misclassification.
However, in real data simulations, the results of the classification is encouraging. The
results of the unmixing is only relevant if the library is well matched with the scene. As
seen in [100], the unmixing utilizing SBL is dependent on the strength of the signal relative
to the noise and the maximal correlation between the columns of the library. If the lab-
generated library is not available, the library of spectral signatures can be extracted from
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the scene and augmented with nonlinear combinations to account for nonlinear mixtures.
This shows the flexibility of the model in dealing with nonlinear unmixing in a scene.
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CHAPTER 4

Hyperspectral Unmixing with Wavelength
Dependence

4.1 Introduction

Hyperspectral images have become ubiquitous due to recent technological advancement in
imaging technology. These images typically contain thousands of pixels with each pixel
containing a vector of observed spectral signature. The length of these vectors depends on
the spectral resolution of the sensor. The area represented by each pixel depends on the
spatial resolution of the sensor. The task of unmixing is incredibly complex because the
low spatial resolution means each pixel contains a mixture of endmembers in addition to
attenuation of the signal reaching the sensor.

These challenges spawned extensive literature on the subject. Some literature [63, 64,
85, 89] incorporates spatial dependence in order to classify and/or unmix the data. Spatial
correlation improves the unmixing of the data due to pixels being grouped together contain
similar mixing properties. Most of the literature makes use of Markov random fields in
order to classify the pixels. Pixels belonging to the same class usually share the same first
and/or second moment properties [89].

Some methods make use of lab-generated libraries [50, 101] instead of pixel derived
libraries [66,89,95] in order to unmix the data. Due to the size of lab-generated libraries, the
problem becomes a high-dimensional (number of parameters ≥ number of samples) one.
This necessitates that the method recover a sparse solution to the mixture problem [50]. In
some cases, the recovery of the library from the image is as important as recovery of the
mixture [77, 92].

Wavelength dependence has not been as well studied as spatial dependence in the con-
text of hyperspectral unmixing. To the best of our knowledge, there is no existing literature
that incorporates wavelength dependence in hyperpectral modeling. In this chapter we try
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to address both spatial and spectral wavelength dependence in the unmixing of hyperspec-
tral data. The endmember library used in this chapter is generic: the library can be linear
or nonlinear. In the real data simulation, the VCA-recovered [66] library can be augmented
to accommodate nonlinear (bilinear) [34, 67] endmember mixtures. We introduce spatial
dependence by classifying the pixels using spectral clustering. Within each class of pixels,
we proceed to unmix the pixels while estimating spectral wavelength dependence. To mo-
tivate the inclusion of wavelength dependence, we included Figure 4.1 of three randomly
selected pixels from a scene (Reno) used in this chapter. From the plots, it is obvious that
the spectral signatures display wavelength dependence due to the smooth portions of the
curves. Therefore, assuming that there is minimal absorbtion in contiguous wavelength
bands, the spectral signature should be smooth. We used the concentration matrix in the
multivariate gaussian to model the dependence among the wavelengths. The concentration
of the multivariate gaussian is appealing because a zero entry in the off-diagonal of the con-
centration matrix implies conditional independence as shown in Section B.1. We intend to
recover somewhat sparse concentration matrix which will contain non-zero entries only for
the most correlated wavelength bands.
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Figure 4.1: Plots of spectral signature for 3 randomly selected pixels from Reno
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4.2 The Unmixing Model

The unmixing model as described in this section makes use of a generic library X which has
columns denoting the actual spectral signature of endmembers and/or the spectral signature
of nonlinear combinations of the original endmember spectral signatures. We assume that
each group of pixels have the same linear mixture of endmembers. Specifically, a pixel in
a given group has the following linear form:

Yi = Xβ+ ε

where ε ∼ N(0,Σ), Yi ∈ RL, X ∈ RL×R, and β ∈ RR
+. The library X is recovered within

each group of pixels using VCA from [66]. β dictates the mixture of end-members for
the group. In most applications, the mixture is determined at the pixel level. However,
our approach assumes the pixels has been grouped in the manner described in Section 4.4
which has put pixels with similar observed spectral signatures into groups. This is done
in order to simplify the formulation by assuming that pixels belonging to the same group
have the same endmember mixture β. In addition, the mixture is governed by the following
constraints:

R∑
j=1

β j = 1, β j ≥ 0

The two constraints are known as the additivity and positivity constrain respectively which
is standard in hyperspectral unmixing literature [14, 49, 50, 92]. With this formulation,
the likelihood of the model takes the form of a multivariate gaussian with a non-diagonal
covariance matrix:

fβ,Σ(Y) =

N∏
i=1

(2π)−
L
2 |Σ−1|

1
2 exp

{
−

1
2

(Yi−Xβ)T Σ−1(Yi−Xβ)
}

Typically, the covariance matrix in this model is diagonal, implying that there is no wave-
length correlation. In practice, we frequently observe spectral signatures that are smooth
as seen in Figure 4.1. This means the adjacent wavelength bands are correlated im-
plying some of the off-diagonal values of the concentration matrix are non-zero. Sup-
pose we define the concentration matrix Θ = Σ−1 and the empirical covariance matrix
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S (β) = 1
N
∑N

i=1(Yi−Xβ)(Yi−Xβ)T , the negative log-likelihood takes the form:

`(β,Θ) = −
1
2

log |Θ|+
1
2

tr{ΘS (β)}

We perform graphical LASSO and hyperspectral unmixing by minimizing the function
above subject to some constraint/regularization on the variables Θ and β. With the addition
of the constraints/regularization, the constrained optimization problem becomes:

(β̂, Θ̂) =argmin
Θ,β
−

1
2

log |Θ|+
1
2

tr{ΘS (β)}+
∑
i, j

αλ|θi j|+
1−α

2
λθ2

i j

s.t. β j ≥ 0,
R∑

j=1

β j = 1

Where Regλ(Θ) =
∑

i, jαλ|θi j|+
1−α

2 λθ2
i j with α ∈ [0,1] is the constraints/regularization im-

posed on Θ to to promote sparsity in the concentration matrix Θ which is desirable due
to the conditional independence of the wavelengths implied by the zero entries. In addi-
tion, the constraints of β is imposed to ensure the positivity of the entries and to ensure
the entries sum up to 1. This optimization problem is bi-convex, but solving for both Θ

and β parameters simultaneously is challenging due to the constraints imposed on both
parameters.

4.3 Computation

Solving the optimization as defined in the previous section is difficult. However, we solve
this by breaking the complex constrained optimization problem into blocks of simpler con-
strained optimization problems [99]. The blocks in question are the β and Θ blocks. Sup-
pose we define the unconstrained optimization function as

L(Θ,β) =−
1
2

log |Θ|+
1
2

tr{ΘS (β)}+
∑
i, j

αλ|θi j|+
1−α

2
λθ2

i j

+ m(βT 1R−1) +
λm

2
(βT 1R−1)2 + I+(β)

Where RegλΘ
(Θ) =

∑
i, jαλ|θi j|+

1−α
2 λθ2

i j and Regλβ(β) = m(βT 1R−1)+
λm
2 (βT 1R−1)2 + I+(β)

are appropriate regularization/Lagrangian which incorporate the constraints for Θ and β

respectively. The block coordinate descent algorithm alternately optimizes the objective
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function:

β̂(t+1) = argmin
β

L(Θ(t),β) (4.1)

Θ̂(t+1) = argmin
Θ

L(Θ,β(t+1)) (4.2)

If the objective function L(Θ,β) is convex, the block coordinate updates will converge to the
optimal solution [99]. The unconstrained optimization problem (augmented Lagrangian)
for (4.1) takes the form:

argmin
β

1
2

N∑
i=1

(Yi−Xβ)T Θ(Yi−Xβ) + m(βT 1R−1) +
λm

2
(βT 1R−1)2 + I+(β)

Meanwhile, the unconstrained optimization problem for (4.2) takes the form

argmin
Θ
− logdetΘ+ tr(ΘS ) +

∑
i, j

αλ|θi j|+
1−α

2
λθ2

i j

With α ∈ [0,1]. Under the special case where α = 1, the problem is analogous to the
LASSO [87] applied to the estimation of the concentration matrix. The addition of the
second term corresponding to α 6= 1 is comparable to the elastic net [104] to aid in terms of
variable selection. The regularization parameter λ in conjunction with α regulates the level
of sparsity of the concentration matrix.

However, due to the complexity of (4.1) and (4.2) blocks, we adopt an modified version
of the block coordinate descent. Under normal block coordinate descent, the optimization
blocks (4.1) and (4.2) have to be solved directly in each iteration. Our modification will
only solve the two blocks approximately by iteratively applying one cycle of the updates
in Section 4.3.1 and Section 4.3.2 at each step of the algorithm. The algorithm outlined as
pseudocode is in Section 4.3.3

4.3.1 The β Updates

The β optimization block can be solved using ADMM [5, 18] . In order to provide context
on how ADMM works, it is useful to go over the building blocks of the method. Suppose
we have the following equality-constrained optimization problem:

minimize f (x) subject to Ax = b
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Where x ∈ Rn, A ∈ Rm×n and f (x) ∈ R is convex. The Lagrangian of the problem takes the
form:

L(x,y) = f (x) + yT (Ax−b)

The dual ascent method consists of iterating the following updates:

x(s+1) = argmin L(x,y(s))

y(s+1) = y(s) +α(s)(Ax(s+1)−b)

Intuitively the dual ascent method minimizes the function with the first step while it updates
the “price” for violating the constraints Ax = b in the second step. With an appropriate
choice of α(s) and some regularity conditions/assumptions hold, the dual ascent method
minimizes the function f while increasing the “price” for violating the constraints thus
ensuring the the solution solves the constrained optimization function. [31, 32] are good
references on the dual ascent method.

However, the assumptions necessary for the convergence of the dual ascent method do
not hold in many applications ( f is not strictly convex or f is not bounded above). There-
fore, augmented Lagrangian methods were developed in order to address this issue and
make the dual ascent method more robust. The augmented Lagrangian of the aforemen-
tioned constrained optimization is:

Lρ(x,y) = f (x) + yT (Ax−b) +
ρ

2
‖Ax−b‖2

The iterative method for solving this is called the Method of Multipliers that takes the
following form:

x(s+1) = argmin L(x,y(s))

y(s+1) = y(s) +ρ(Ax(s+1)−b)

Where ρ is used as step-size updates in place of α(s). The method of multipliers converges
under far more general conditions including cases when f is not convex and unbounded
from above. In order to motivate the choice of ρ, let’s suppose f is differentiable. The
optimality conditions for the constrained optimization is primal and dual feasibility:

Ax?−b = 0

O f (x?) + AT y? = 0
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By definition, if x(s+1) minimizes Lρ(x,y(s)),

0 = OxLρ(x(s+1),y(s))

= Ox f (x(s+1)) + AT (y(s) +ρ(Ax(s+1)−b))

= Ox f (x(s+1)) + AT y(s+1)

Which means the pair (x(s+1),y(s+1)) is dual feasible. The further along the algorithm, the
smaller the primal residual Ax(s+1) − b becomes, thus ensuring primal and dual feasibility
which results in an optimal solution. [12, 48] are good references on the method of multi-
pliers.

ADMM builds on the decomposability of dual ascent and convergence properties of
method of multipliers. In order to see that, suppose we have the following optimization
problem

minimize f (x) + g(z) subject to Ax + Bz = b

Where x ∈ Rn, z ∈ Rm, A ∈ Rp×n, and B ∈ Rp×m, and c ∈ Rp. Assuming that f and g are
convex, the resultant augmented Lagrangian of the optimization problem is:

Lρ(x,y.z) = f (x) + g(z) + yT (Ax + Bz− c) +
ρ

2
‖Ax + Bz− c‖2

The crucial difference between this formulation compared to the earlier formulation is the
splitting of variable x from earlier into two parts x and z. Solving the Lagrangian using
ADMM involves the following iterations:

x(s+1) = argmin
x

Lρ(x,z(s),y(s))

z(s+1) = argmin
x

Lρ(x(s+1),z,y(s))

y(s+1) = y(s) +ρ(Ax(s+1) + Bz(s+1)− c)

ADMM as outlined above is very similar to the dual ascent and method of multipliers
updates outlined earlier, but with a crucial difference. Under the method of multipliers the
update (x(s+1),z(s+1)) are jointly found while ADMM “alternates” between the two variables
in its updates.

The constraints on β lead naturally to the formulation of the augmented Lagrangian
[92]. In this section, we estimate β via one iteration of ADMM at each cycle of the main
algorithm in Section 4.3.3. Building on the formulation outlined, we introduce the aug-
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mented Lagrangian in order to convert the constrained optimization problem to an uncon-
strained one:

L(β) =
1
2

N∑
i=1

(Yi−Xβ)T Θ(Yi−Xβ) + m(βT 1R−1) +
λm

2
(βT 1R−1)2 + I+(β)

The first term governs the fit of the model while the second and third term represents
the additivity constraint and its augmented Lagrangian. The final term is the positivity
constraint where:

I+(β) j =

0 if β j ≥ 0

∞ if β j < 0

This constraint limits the solution space of the β to the positive quadrant of the RR space.
In order to implement ADMM, we implement an auxiliary variable u in order to split the
optimization problem. With the introduction of the auxiliary variable, the optimization
problem becomes:

L(β) =
1
2

N∑
i=1

(Yi−Xβ)T Θ(Yi−Xβ) + m(βT 1R−1) +
λm

2
(βT 1R−1)2

+ qT (β−u) +
λq

2
‖β−u‖2 + I+(u)

Assuming Θ is known, solving this optimization problem results in the following iterative
updates:

βk+1 =
(
NXT ΘX +λk

m1R1T
R +λqIR

)−1 (
XT Θ(NȲ)−mk1R +λk

m1R−qk +λquk
)

uk+1 =

qk1R +λqβ
k+1

λq

+

mk+1 = mk +λm(1T
Rβ

k+1−1) (4.3)

qk+1 = qk +λq(βk+1−uk+1)

λk+1
m = ρmλ

k
m

λk+1
q = ρqλ

k
q

These updates are repeated once in each iteration in the main algorithm in Section 4.3.3.
These updates are the β block update in (4.1). This represents part of one iteration in
Section 4.3.3. This update in conjunction with (4.6) form one complete iteration in Section

63



4.3.3.

4.3.2 The Θ Updates

In this section, we address the presence of wavelength dependence in our model. Assuming
β is known in this case, solving for the concentration matrix Θ = Σ−1 is equivalent to solving
the following optimization problem:

Θ̂ = argmin
Θ
− logdetΘ+ tr(ΘS ) + Regλ(Θ)

Recall S = 1
N
∑N

i=1(Yi − Xβ)(Yi − Xβ)T is the empirical covariance matrix and Regλ(Θ) =∑
i, jαλ|θi j|+

1−α
2 λθ2

i j . The regularization term in the optimization problem is imposed in
order to induce a sparse concentration matrix and to ensure the recovered concentration
has a large condition number. This is desirable because zero entries in the concentration
matrix implies conditional independence of the respective wavelength bands as a result
of the multivariate normal distribution. Section B.1 contains a simple proof of this fact.
Suppose we define the optimization such that:

Θ̂ = argmin
Θ

f (Θ) + gλ(Θ) (4.4)

where f (Θ) =− logdetΘ+ tr(ΘS ) and gλ(Θ) = Regλ(Θ). In addition, we define the proximal
operator [35, 72] on the function h as

proxψh(v) = argmin
x

{
h(x) +

1
2ψ
‖x− v‖2

}
The intuition behind the proximal operator proxψh(v) is to minimize the function h while
being in the proximity of v while the scaling parmeter ψ is the trade-off between minimizing
the function h and being close to v. An alternate interpretation of the the proximal operator,
under certain assumptions [72], takes the form of a gradient update proxψh(v) ≈ v−Oh(v).

Using the proximal operator, the solution to optimization problem (4.4) can be solved
by recursively applying the following update:

Θk+1 = proxδkg {Θk −δkO f (Θk)} (4.5)

The update is repeated until convergence. If g(Θ) = Regλ(Θ) =
∑

i, jαλ|θi j|+
1−α

2 λθ2
i j, the
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proximal operator has this simple form [9]:

proxψg{Θ} = argmin
t

{
g(x) +

1
2ψ
‖t−Θ‖2

}

(
proxψg{Θ}

)
i j

=


0 if |θi j| < αλψ

θi j−αλψ

1+(1−α)λψ if θi j ≥ αλψ

θi j+αλψ

1+(1−α)λψ if θi j ≤ −αλψ

Note that O f (Θ) = S −Θ−1. Therefore (4.5) takes the form:

(Θk+1)i j =
(
proxδkg{Θk −δkO f (Θk)}

)
i j

=
(
proxδkg{Θk −δk(S −NΘ−1

k )}
)
i j

=


0 if |[Θk −δk(S −Θ−1

k )]i j| < αλδk
[Θk−δk(S−Θ−1

k )]i j−αλδk
1+(1−α)λδk

if [Θk −δk(S −Θ−1
k )]i j ≥ αλδk

[Θk−δk(S−Θ−1
k )]i j+αλδk

1+(1−α)λδk
if [Θk −δk(S −Θ−1

k )]i j ≤ −αλδk

(4.6)

These updates are repeated once in each iteration in the main algorithm in Section 4.3.3.
This represents the update for the Θ block update in (4.2). This represents half of one
iteration of the pseudocode in Section 4.3.3. This update in conjunction with (4.3) form
one complete iteration of the pseudocode in Section 4.3.3.

4.3.3 Pseudocode

The algorithm combines updates (4.3) and (4.6) at each iteration to form one complete
iteration of the updates to the parameters of interest (β,Θ). Also note that this algorithm
combines one update step from ADMM and proximal gradient algorithm which updates
the parameters in tandem. The pseudocode is as follows:

repeat
Given (βk,uk,mk,qk,λk

m,λ
k
q) and Θk

Update (βk+1,uk+1,mk+1,qk+1,λk+1
m ,λk+1

q ) according to updates in (4.3)
while holding Θk constant.

Update Θk+1 according to updates derived in (4.6)
while holding βk+1 constant.

until convergence
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4.4 Spectral Clustering

While the wavelength dependence/correlation is parameterized explicitly in the unmixing
model, the spatial dependence is a bit more subtle. Assuming that the hyperspectral image
can be partitioned into G number of groups in which pixels within the group share a library
and each pixel is a linear combination of the endmembers in the library as defined in Sec-
tion 4.2. We model the spatial dependence by grouping “similar” pixels into groups. We
assume the pixels belonging to the same group contain the same mixture parameter β and
wavelength dependence parameter Θ. We begin by classifying the hyperspectral image into
separate groups using spectral clustering [58]. Spectral clustering is used to partition the
pixels into groups. Suppose there are P pixels in the image, the method begins by building
an adjacency matrix W ∈ RP×P using the following kernel:

Wi j = exp

−‖yi− y j‖
2
2

L


where yi is the spectral signature observed at pixel i. The kernel used here only depends
on the distance between the spectral signatures. The kernel may be altered to incorporate
various measures which can be used to quantify how “similar” the pixels are hence W is
often referred to as the similarity or adjacency matrix, but for the purpose of this paper
we will concentrate on the distance between the spectral signatures. Once the adjacency
matrix has been constructed, we proceed to build the Laplacian matrix U:

D = diag

∑
j

Wi j


Ln = D−1/2WD−1/2

where Ln is the normalized Laplacian. Once this has been constructed, we apply the eigen-
decomposition to Ln. It is important to note that there are alternate ways to define the
Laplacian. In this formulation, the leading eigenvalues are most pertinent, while the formu-
lation as in [58] will result in the case where the smallest eigenvalues are most meaningful
to spectral clustering. The number of groups G is determined by examining the largest
eigenvalues. Suppose the eigenvalues of Ln are arranged in descending order {e(P), . . .e(1)},
the number of groups is:

G = max{P− i : e(i) ≥ τ, i = 1, . . .P}
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Where τ is the threshold for setting the number of groups. At this point, it is important to
note that spectral clustering is not an unsupervised approach to clustering. The threshold τ
is dependent on the observed data and setting this requires a certain amount of judgement
regarding the number of groups relative to the number of pixels in the image.

Once G has been established, we collect G eigenvectors associated with the G smallest
eigenvalues into the matrix V ∈ RP×G. We then apply K-means clustering on the P G-
dimensional row-vectors. Once the classes of the pixels have been established, we then
perform hyperspectral unmixing with graphical LASSO to the data within each group of
pixels. Figure 4.2 is an example of a classification plot recovered from a synthetic G = 4
problem. For intuition on spectral clustering, please refer to Section B.2.

Figure 4.2: Classification plots of the ground truth (left) and the recovered (right) classes
for synthetic data using exact spectral clustering. Although this method is extremely ac-
curate in terms of classification, it does not scale for larger images due to memory and
computation constraints placed in storing large exact adjacency matrix and diagonalizing
it.
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4.4.1 Introduction to the Nystrom Method

Before presenting the Nystrom method as applied in spectral clustering, we review the Nys-
trom method as a general method designed to approximate solutions to integral equations.
Specifically, we are interested in integral equations of the form:∫ 1

0
W(x,y)φ(y)dy = λφ(y)

Where x,y ∈ R, φ(x) represents the eigenfunction, and W(x,y) is the similarity between x

and y. The goal in this case is to solve for the eigenvalues λ and eigenvectors φ(·) that
satisfy the integral equation. The Nystrom method approximates the integral equation as:

1
m

m∑
i=1

W(x,yi)φ̂(yi) = λ̂φ̂(x)

Where y1, . . . ,ym are the m� n sampled points from the data, λ̂ and φ̂(x) are the the ap-
proximate eigenvalue and approximate eigenfunction respectively. Suppose we define the
W̃i j = W(yi,y j) as the similarity matrix for all the sampled points, we arrive at the familiar
linear equations for eigendecomposition:

W̃Φ̂ = mΛ̂Φ̂

Where Φ̂ = [φ̂1, . . . , φ̂m] and Λ̂ = diag(λ̂1, . . . , λ̂m). This smaller scale problem can be solved
exactly. Approximating the j-th eigenfunction at unsampled point x can be performed with
the following:

φ̂ j(x) ≈
1

mλ̂ j

m∑
i=1

W(x,yi)φ̂ j(yi)

In essence, the Nystrom method as presented in this case reduces the rank of the matrix that
needs to be eigendecomposed and approximates eigenfunctions evaluated at unsampled
points. For further reference on the Nystrom method [42,79] and the references therein are
useful.

4.4.2 Spectral Clustering via the Nystrom Method

Although the empirical results of spectral clustering is impressive, the storage of the adja-
cency matrix W grows very quickly for large images. Suppose the image contains P pixels,
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the matrix W ∈RP×P. Exact spectral clustering as described earlier in this section, involves
memory cost that is prohibitive. In this section we describe a low-rank approximation to W

that can be used to perform spectral clustering [17,38]. For an introduction to the Nystrom
method, please refer to Section 4.4.1. Suppose we sample n� P pixels and partition the
adjacency matrix as:

W =

 A B

BT C


Where A ∈Rn×n is the adjacency matrix computed from the n sampled pixels, B ∈Rn×(P−n)

consists of the adjacency computed from the n sampled points with respect to the P−n non-
sampled points, and C ∈ R(P−n)×(P−n) is the adjacency between the non-sampled points.
Under this formulation, the approximate eigenvectors Û for W via the Nystrom method
takes the following form:

Û =

 U

BT UΛ−1


Where U contains orthogonal eigenvectors of A and Λ is diagonal containing eigenvalues
of A. Therefore, A = UΛUT . The low rank representation/approximation of W takes the
following form:

Ŵ = ÛΛÛT

=

 A

BT

A−1
[
A B

]
From the formulation above, the low-rank representation of W via Nystrom method ap-
proximates the matrix C ≈ BT A−1B. Suppose we define A−1/2 as the symmetric positive
definite square root of the matrix A, Z = A + A−1/2BBT A−1/2, and Z ∈ Rn×n is diagonalized
as UZΛZUT

Z . The matrix V defined as:

V =

 A

BT

A−1/2UZΛ
−1/2
Z

will be the the matrix of eigenvectors which will diagonalize Ŵ = VΛZVT . Suppose we
wish to perform spectral clustering that solves the regularized optimization of the form
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(B.1), we need the row sums of Ŵ which can be computed as

d = Ŵ1

=

 A1n + B1(P−n)

BT 1n + BT A−1B1(P−n)


We then “normalize” the matrix by replacing the entries of A and B with:

Ãi j←
Ai j√
did j

∀i, j = 1, . . .n

B̃i j←
Bi j√
did j

∀i = 1, . . .n, j = n + 1, . . . ,P

After renormalization we may use the renormalized version of the eigenvectors:

Ṽ =

 Ã

B̃T

 Ã−1/2UZ̃Λ
−1/2
Z̃

Where Z̃ = Ã + Z̃−1/2B̃B̃T Ã−1/2. The number of groups G̃ is determined by examining
the leading eigenvalues given by the diagonal values of ΛS̃ . Suppose once more we have
eigenvalues arranged in descending order {ẽ(n), . . . ẽ(1)}, the number of groups is:

G̃ = max{n− i : ẽ(i) ≥ τ̃, i = 1, . . .n} (4.7)

Note that the low-rank approximation only requires the storage of matrix A ∈ Rn×n and
B ∈ Rn×(P−n) and the diagonalization of the matrix S ∈ Rn×n which is significantly less
complex than the storage and the diagonalization of the matrix W ∈ RP×P. Similar to the
group number determination in exact spectral clustering, τ̃ is dependent on the observed
data and setting it requires a judgmental call regarding the number of groups relative to the
number of pixels in the image. Once G̃ has been established, we collect G̃ eigenvectors
associated with the G̃ largest eigenvalues into matrix Ẽ ∈ RP×G̃. We then apply K-means
clustering on the P G̃-dimensional row-vectors.

However, the Nystrom method is not without its drawbacks. It is less accurate in terms
of its classification. In order to demonstrate this, we conducted an experiment with syn-
thetic data containing 600× 600 pixels (which is comparable to the number of pixels in
the image from the Gulf Wetlands) with 7 groups. For each of the group, we generated a
random β with number of non-zeros set at 15% of its entries. A library X is chosen from
the group of libraries extracted from the Reno scene for each group. In addition, each li-
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brary is augmented with bilinear combinations resulting in each library having 20 columns
(ie. X ∈ R356×20). Each pixel in a given group will have the following observed spectral
signature:

Yi = Xβ+ εi εi ∼ N(0,0.1252I356)

In our experiments we tested the low-rank approximation with different number of sampled
pixels used. We experimented with ñ ∈ {100,200,300,400,500,600,700,800} sampled pix-
els and Table 4.1 contains the average misclassification rate for these experiments over 20
repetitions. As reference, we included classification plots for some interesting cases of
the recovery using Nystrom method in Figure 4.3. It is important to note that increasing
the number of pixels sampled increases the computational burden in terms of memory and
operations by the order of O(ñ2) while results of the experiments with synthetic data does
not show dramatic improvement in the classification rate. Based on these results, we chose
n = 300 pixels in our application of the proposed method in real data simulations in order
to strike a balance between accuracy and computational complexity.
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# sampled 100 200 300 400 500 600 700 800

Error rate 0.2568 0.2773 0.2567 0.2209 0.2464 0.2256 0.2382 0.2081

Table 4.1: Misclassification rates using the low-rank approximation to spectral clustering.

Figure 4.3: Classification for the ground truth and the recovered classification for different
sampled pixels.

4.5 Simulation and Results

This section contains the simulation studies conducted using the proposed methodology
and the results of the simulation studies. The simulation will start off with a controlled
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experiment using synthetic data set which has known parameters Θ and β from which the
synthetic spectral signatures are generated. Note that the updates for both parameters Θ

and β are implemented in parallel groups [59] using R and Rcpp [36].
In addition to synthetic data simulation, we also performed the spectral clustering and

unmixing on real data sets. The real data sets we used in the following sections are re-
flectance data obtained from remote sensors and are publicly available at the website listed
in the reference section [2]. It is also important to note that the reflectance data is trans-
formed from radiance data detected by the remote sensor via the radiance to reflectance
equation [1].

In the real data experiments, we generated the library X using VCA [66]. VCA is an
iterative algorithm that extracts endmembers from observed spectral signature in the image.
This method assumes that there is at least one pure pixel in the image (pixel group). The
algorithm takes the following form:

1. Begin by select a random pixel from the image as an endmember in the library. The
first endmember can be taken from the pixel with the largest spectral signature.

2. Find the space that is orthogonal to the column space of the library.

3. From the remaining pixels, the pixel with the largest orthogonal projection is added
into the library as an endmember.

4. Repeat steps 2 and 3 until an appropriate number of endmembers are included in the
library. It is obvious that the maximum number of endmembers cannot exceed the
number of pixels in the image.

From our observation of the recovered endmembers from VCA, only the first few iterations
of VCA are needed. We augmented the library with bilinear combinations of the original
spectral signatures.

4.5.1 Synthetic Data

We document the synthetic and real data simulation results in this section. The synthetic
data involves a 50× 50 image consisting of 4 classes. Spectral clustering does a good job
of separating the pixels correctly as evidenced by Figure 4.2. Within each class, we imple-
mented the algorithm described in Section 4.3.3 in order to recover the abundances and the
structure of the wavelength dependence. We measure the accuracy of the recovered con-
centration matrix Θ within each group using the relative Frobenius error which is defined
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as

RelFrobΘ(Θ̂) =
‖Θ− Θ̂‖2

‖Θ‖2

Where Θ is the concentration matrix used to generate the synthetic wavelength dependence
in the synthetic data and Θ̂ is the recovered concentration matrix. Figures 4.4(a) - 4.4(d)
shows how the relative Frobenius error of the concentration matrix decreases as a function
of the number of iterations. This shows that iterating the updates Θk from (4.6) are con-
verging. The relative l2 error for the abundances are negligible for all 4 groups as evidenced
by Figures 4.5(a) - 4.5(d).

Figure 4.4: Relative Frobenius error of the estimated wavelength dependence as a function
of iterations. This provides empirical proof that the algorithm produces a sequence of Θs
that converges.
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Figure 4.5: Relative l2 error of the estimated abundances as a function of iterations. This
provides empirical proof that the algorithm produces a sequence of βs that converges.

4.5.2 Reno Scene

We also applied the methodology described in this chapter on a scene from Reno obtained
from [2]. The scene is an urban area from Reno, Nevada contains 600× 320 pixels. The
scene contains buildings, roads, parking lots, and a river. This scene was chosen because
of the distinctive features of the urban environment enables some form of “eyeball” valida-
tion of the classification plots using images taken on the visible spectrum. We performed
exact spectral clustering on the 100× 100 subset of the scene in the exploratory analysis.
The classification recovered from the exact spectral clustering can be seen in Figure 4.6.
We also performed approximate spectral clustering via the Nystrom method as outlined in
Section 4.4.2 on the whole image.
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Figure 4.6: Classification plot of a subset of the Reno data using exact spectral clustering.

In the approximation, we sampled n = 300 pixels from 600×320 pixels and performed
spectral clustering utilizing a low-rank approximation of W. In this instance, by examining
the eigenvalues ΛZ̃ of the diagonalization of Z̃ ∈ R300×300, we determined that there are
G = 14 distinct groups in the image. The K-means clustering is performed on the row
vectors of Ẽ ∈ R(600×320)×14 which contains the 14 eigenvectors associated with the 14
largest eigenvalues of Z̃. Figure 4.7 shows the classification plot relative to the image on
the visible spectrum.

Pay special attention to the upper left hand corner of Figure 4.7(b) and compare it to
Figure 4.6. From these two classification plots, we can see that there is very little loss
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in fidelity in utilizing the low-rank approximation of the adjacency W to perform spectral
clustering because the classification plot for the approximate spectral clustering is still able
to capture the building and the parking lot covered in the classification plot recovered from
exact spectral clustering. This exercise confirms that the loss in fidelity in utilizing a low-
rank representation of W for spectral clustering is minimal. Also note that there appears to
be attenuation based on the “wavy” appearance of the roads and rivers in the image. This
may be an artifact of image processing which converts the radiance data from the remote
sensor into reflectance data via the radiance to reflectance equation in [1].

Figure 4.7: Complete classification of the Reno scene using Nystrom method.
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After classification, we performed VCA within each class to recover endmembers for
the library. In this exercise, we extracted 5 endmembers from the each group of pixels and
augmented the 5 endmembers with bilinear combinations resulting in a library containing
20 endmembers (columns). Once we have the library X, we applied the updates outlined in
Sections 4.3.1 - 4.3.2 .

In order to achieve 10
L×L level of sparsity for Θ, we can set α ≈ 0.9 with λ ∝

√
L
|Gi|

where |Gi| is the number of pixels within group Gi. For the Reno scene we set α = 0.5 and
λ = c

√
L
|Gi|

. The constant c ∈ {0,0.025, . . . ,0.25} is found by grid search evaluating a model
selection criterion.

Selecting the penalization level requires a metric that measures the fit of the model
while penalizing for model complexity. For most cases, the Bayesian Information Criterion
(BIC) as defined below is adequate

BICλ(Θ̂, β̂) = −2log L(Θ̂, β̂) + R|Θ̂|0 log |Gi|

Where |Gi| is the number of pixels in group i. However, in the estimation of the concen-
tration matrix it is often that we run into cases where the number of parameters (number
of non-zeros in the concentration matrix) is growing with the sample size which violates
one of the assumption required for BIC consistency [39]. In lieu of the regular BIC as a
criterion for selecting c, we used the extended BIC [39] which allows for the growth of
the number of non-zero entries in the concentration matrix. The extended BIC takes the
following form for group Gi :

˜BICλ(Θ̂, β̂) = −2log L(Θ̂, β̂) + R|Θ̂|0 log |Gi|+ 4|Θ̂|0λ log L (4.8)

Note the additional penalization term in the extended BIC which means the extended BIC
is more punitive towards complex models. The resultant BICs are compared for different
values of c ∈ {0,0.025, . . . ,0.25} and the one with the lowest value is chosen as the optimal
λ?. The estimates are then computed using λ?. The resultant estimates of Θ̂ and β̂ are taken
as the ideal estimates.

In order to gain insight into the improvement spatial dependence and wavelength de-
pendence brings to our model, we performed hyperspectral unmixing on different scenarios
which are listed below:

1. Each group has one mixture parameter β without accounting for wavelength depen-
dence. This model accounts for spatial dependence while leaving out wavelength
dependence. Hereforth we would refer to this as Model 1.

78



2. Each pixel in groups have a mixture parameter β without accounting for wavelength
dependence. This model is similar to Model 1 in terms of accounting for spatial
dependence but has more mixture parameters β which results in a better fit residual-
wise. Hereforth we would refer to this as Model 2.

3. Each pixel in the image has a mixture parameter βwithout accounting for wavelength
dependence. This model does not account for spatial and wavelength dependence.
Essentially, this model performs pixel level unmixing. The library used in this model
is extracted from the whole image rather than at the group level. Hererforth we would
refer to this as Model 3.

In order to compare the proposed to the 3 models listed above, we calculated the regular
BIC for the 3 models listed and compared them to the extended BIC (eBIC) of the proposed
model. The regular BIC for the challenger models:

BIC(β̂) = −2log L(β̂) + R log(number of pixels) (4.9)

Note that the extended BIC is just the regular BIC with additional penalties for non-zero
values for the concentration matrix. Table 4.2 documents the BIC/eBIC computed for the
models as a comparison. The reason we chose BIC/eBIC as a comparison is to provide a
meaningful way to compare model fit for models with different number of parameters. As
evidenced from the results, even with the extra penalization term in eBIC, the model with
the best fit is the one that incorporates spatial and wavelength dependence.

Model Proposed Model 1 Model 2 Model 3

BIC/eBIC 81,012,682 125,765,996 165,615,242 179,195,286

Table 4.2: The BIC for the 3 challenger models and extended BIC for the proposed model
applied to the Reno scene.

4.5.3 Gulf Wetlands (Suwannee River) Scene

Beside the Reno scene, we also examined a scene from the Suwannee River obtained from
[2]. The scene contains a river delta, wetlands, and plants indigenous to swamp lands. The
image contains 1200×320 pixels. We performed the approximate spectral clustering using
the low-rank approximation of W using 300 sampled pixels and recovered G = 13 groups
from the scene. Figure 4.8 contains the classification plot and the image on the visible
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spectrum. From the classification plot, we can tell that approximate spectral clustering is
able to clearly distinguish the river from the wetlands overgrown with indigenous plants.

Figure 4.8: Complete classification of the Gulf Wetlands (Suwannee River) scene using
Nystrom method.
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In addition, we also performed similar comparisons via the BIC/eBIC relative to the
3 challenger models as described in Section 4.5.2. Table 4.3 documents the resultant
BIC/eBIC computed for the models as a comparison between the models. In this case,
the improvement in model fit is more dramatic when compared to the Reno scene.

Model Proposed Model 1 Model 2 Model 3

BIC/eBIC 110,079,432 254,101,067 335,344,801 352,905,313

Table 4.3: The BIC for the 3 challenger models and extended BIC for the proposed model
applied to the Gulf Wetlands (Seuannee River) scene.

4.6 Conclusion

The method is novel because it incorporates both spatial and wavelength dependence in
hyperspectral unmixing and classification. Empirical evidence from the synthetic data sim-
ulation shows that the algorithm converges for both the mixing and wavelength correla-
tion parameter. Based on the results shown in the simulation. especially from the Reno
and Suwannee scenes, the incorporation of spatial and wavelength correlation improve
the model fit. Spectral clustering is able to accurately classify the pixels in the images.
However, spectral clustering is computationally (in terms of memory and computational
operations) demanding for larger images. However, approximate spectral clustering us-
ing low-rank approximation enables the approximate classification of large images. The
increase in the number of samples in the approximate spectral clustering does not bring
dramatic improvement to the classification so the sample size in the Nystrom approxima-
tion has to be balanced between the accuracy of classification and the computational burden
involved.
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APPENDIX A

Appendix: Simultaneous Unmixing and
Classification of Hyperspectral Images

A.1 Optional: Estimation of the Granularity Constant θ

Throughout the write-up of this document, we assumed the granularity constant is fixed.
Optimizing with respect to the granularity constant is omitted because the addition of the
granularity updates increases the complexity of the algorithm of the EM algorithm signifi-
cantly without notable gains in either classification and model fit as seen in Table 3.1 and
Table 3.2

However, it is possible to estimate the strength of the spatial dependence. It is not
possible to solve explicitly for θ. However, it may be possible to implement a gradient
algorithm similar to the one outlined in [56] using the first and second derivative of Qt

with respect to θt. Once the first and second derivatives of Qt as evaluated below apply the
following update to β at each iteration of the EM Algorithm:

θt+1 = θt −
dQt

dθt

[
d2Qt

dθ2
t

]−1

(A.1)

Since the rate of convergence is quadratic, only one iteration of this is required for each
iteration of the EM algorithm.

Remark 6. It should be noted that, the gradient update is not exactly the same as [56]

due to the fact that the first and second derivatives are not evaluated directly in this case.

Both these quantities are calculated using a combination of an algorithm similar to Section
3.4.2 (to sample from f (z|β)) and Monte Carlo (to evaluate both expectations).
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G(θt) =
∑

z∈{1,...,K}P
exp

θt

P∑
p=1

∑
p′∈V(p)

δ(zp− zp′)


G′(θt) =

∑
z∈{1,...,K}P

exp

θt

P∑
p=1

∑
p′∈V(p)

δ(zp− zp′)


P∑

p=1

∑
p′∈V(p)

δ(zp− zp′)

G′′(θt) =
∑

z∈{1,...,K}P
exp

θt

P∑
p=1

∑
p′∈V(p)

δ(zp− zp′)




P∑
p=1

∑
p′∈V(p)

δ(zp− zp′)


2

dQt

dθt
= −

G′(θt)
G(θt)

+ wt

d2Qt

dθ2
t

= −
G(θt)G′′(θt)−G′(θt)2

G(θt)2

= −
G′′(θt)
G(θt)

+

[
G′(θt)
G(θt)

]2

Note that the both the first and second derivatives are a form of expectation due to the
following:

G′(θt)
G(θt)

=
∑

z∈{1,...,K}P

exp
{
θt

∑P
p=1

∑
p′∈V(p) δ(zp− zp′)

}
Gθt)

P∑
p=1

∑
p′∈V(p)

δ(zp− zp′)

=
∑

z∈{1,...,K}P


P∑

p=1

∑
p′∈V(p)

δ(zp− zp′)

 f (z|θt)

= E

 P∑
p=1

∑
p′∈V(p)

δ(zp− zp′)


G′′(θt)
G(θt)

=
∑

z∈{1,...,K}P

exp
{
θt

∑P
p=1

∑
p′∈V(p) δ(zp− zp′)

}
G(θt)


P∑

p=1

∑
p′∈V(p)

δ(zp− zp′)


2

=
∑

z∈{1,...,K}P


P∑

p=1

∑
p′∈V(p)

δ(zp− zp′)


2

f (z|θt)

= E




P∑
p=1

∑
p′∈V(p)

δ(zp− zp′)


2

The expectations in the gradient expressions are with respect to the Potts-Markov distribu-
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tion. Recall the Potts-Markov distribution is of the following form:

f (z|θ) =
1

G(θ)
exp


P∑

p=1

∑
p′∈V(p)

θδ(zp− zp′)

 ,
Sampling from this distribution is not trivial. The sampling algorithm requires the used
of the MCMC algorithm described in Section 3.4.2 with the likelihood ratio set to π(z̃)

π(z) =

1. It should be noted that the gradient as described is an approximate gradient. Due to
the squared convergence rate of the gradient method only one iteration of the gradient is
required for each EM iteration according to [56].

A.2 Markov Property of Potts-Markov Model

In this section we document an interesting property of the Potts-Markov model. Suppose
we define V(i) as the first order neighbors of the pixel i as illustrated in Figure A.1 .

Figure A.1: The first order neighbor of pixel i.

We observe that the Potts-Markov model has Markov property whereby a pixel is only
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dependent on its first order neighbors:

f (z|θ) =
1

G(θ)
exp


P∑

p=1

∑
p′∈V(p)

θδ(zp− zp′)


f (zi|z−i) =

f (z|θ)
f (z−i|θ)

=

1
G(θ) exp

{∑P
p=1

∑
p′∈V(p) θδ(zp− zp′)

}
∑K

zi=1
1

G(θ) exp
{∑P

p=1
∑

p′∈V(p) θδ(zp− zp′)
}

=

1
G(θ) exp

{∑P
p=1

∑
p′∈V(p) θδ(zp− zp′)

}
1

G(θ) exp
{∑

p6=i
∑

p′∈V(p) θδ(zp− zp′)
}∑K

zi=1 exp
{∑

p′∈V(i) θδ(zi− zp′)
}

=
exp

{∑
p′∈V(i) θδ(zi− zp′)

}
∑K

zi=1 exp
{∑

p′∈V(i) θδ(zi− zp′)
}

= f (zi|zV(i))
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APPENDIX B

Appendix: Hyperspectral Unmixing with
Wavelength Dependence

B.1 Conditional Independence of Multivariate Normal

For X ∈Rp and X ∼ N(0,Σ). Defining the concentration matrix as Θ = Σ−1, prove that Xi is
conditionally independent of X j given X−i j if θi j = θ ji = 0.

Proof. Without loss of generality, suppose σ12 =σ21 = 0. Then partition the concentration:

Θ =

 Θ12 M

MT Θ−12



Θ−12 =


θ33 θ34 · · · θ3p

θ43 θ44 · · · θ4p
...

... . . . ...
θp3 θp4 · · · θpp


M =

θ13 θ14 · · · θ1p

θ23 θ24 · · · θ2p



Θ12 =

θ11 0
0 θ22

 XT =
(
XT

12XT
−12

)
Therefore, the square term in the exponent of the multivariate normal is:

XT ΘX = XT
12Θ12X12 + XT

 0 M

MT 0

X + XT
−12Θ−12X−12

XT

 0 M

MT 0

X = 2XT
12MX

= 2X1

p∑
j=1

X jθ1 j + 2X2

p∑
j=1

X jθ2 j
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Note:

f (X−12) ∝ exp
{
−

1
2

XT
−12Θ−12X−12

}
∴ f (X12|X−12) =

f (X)
f (X−12)

∝ exp
{
−

1
2

[
XT

12Θ−12X12 + 2XT
12MX

]}
Since there are no X1X2 terms in the exponent(separable), f (X12|X−12) = f (X1|X−12) ḟ (X2|X−12).
Therefore, X1 is conditionally independent of X2 given X−12 if θ12 = θ21 = 0. For arbitrary
Xi and X j, just rearrange the variables (assuming the concentration matrix is permutation
invariant), and proceed accordingly.

B.2 Intuition for Spectral Clustering

Spectral clustering is an empirical approach to cluster pixels using eigenvectors of matrices
derived from data associated with the pixels [70]. The method involves the use of an
adjacency/weight matrix constructed via a distance kernel applied to the pixels. Intuitively,
the method seeks to group pixels in such a way that the weights between pixels belonging to
the same group (intra-group weights) are large while the weights between pixels belonging
to different groups (inter-group weights) are small. This means the pixels within the same
group are more similar to each other while the pixels belonging to different groups are
dissimilar to each other. Suppose we define the the weights between pixels in group A

and B as W(A,B) =
∑

i∈A, j∈B Wi j and AC is the complement of group A, [58] states that the
spectral clustering problem is the choice of partition A1, . . . ,AK such that the following is
minimized:

Â1, . . . , ÂG = arg min
A1,...,AG

1
2

K∑
i=1

W(Ai,AC
i )

The fraction 1
2 is added because the adjacency matrix as outlined above is symmetric. In

practice, the solution to this optimization problem does not lead to a satisfactory partition
because it usually leads to groups that contain only one pixel. Therefore, [83] suggested
normalized partitions of the form:

Â1, . . . , ÂG = arg min
A1,...,AG

1
2

G∑
i=1

W(Ai,AC
i )

vol(Ai)
(B.1)
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Where vol(Ai) is the sum of the weights within group Ai. Alternatively, [46] proposed the
following:

Â1, . . . , ÂG = arg min
A1,...,AG

1
2

G∑
i=1

W(Ai,AC
i )

|Ai|

Where |Ai| is the number of pixels within group Ai. Both contain regularizations that en-
courage each partition Ai to be “reasonably large”.
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