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Chapter 1 Introduction 

 

 With recent rising demand for energy all over the world, renewable energy resources are 

considered as necessary alternatives for the traditional fossil fuels since the oil reserves on the 

earth are shrinking. Another widely accepted issue of using petroleum, coal, or natural gas is 

global warming, which is caused by the emission of CO2. Renewable energy resources include 

solar, wind, biomass, hydropower, geothermal, and etc. These energy resources are constantly 

replenished and generate almost zero CO2 during the energy conversion process. As a result, 

renewable energy resources can help replace the finite-lifetime and polluting fossil fuels. Based 

on the latest U.S. energy consumption report published by the Lawrence Livermore National 

Laboratory,[1] which is also known as the energy flow chart, renewable energy resources 

contribute to approximately 10% of the total usable energy generated. This number is still 

increasing since a great many scientists and engineers in both academia and industry dedicate 

themselves to enhancing the efficiency of renewable energy conversion and reducing the cost. 

The energy flow chart does not take energy conversion efficiency into account; however, it 

quantitatively illustrates the efficiency of energy consumption. It is important to note that more 

than 60% of the total usable energy dissipates as waste heat. While improving the efficiency of 

energy consumption is an effective approach, directly converting waste heat energy into 

electricity is also appealing. Unfortunately, most of the traditional heat engines are not capable of 

making use of waste industrial heat energy effectively.  
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Figure 1.1 Energy flow chart 2016. Source: LLNL March, 2016. Data is based on DOE/EIA MER (2015). The work was 

performed by Lawrence Livermore National Laboratory and the Department of Energy. LLNL-MI-410527 

  

An interesting phenomenon related to heat conversion was discovered by German 

physicist Thomas Johann Seebeck more than two centuries ago, and is now known as the 

Seebeck effect. It is a fundamental material property that a temperature gradient across a piece of 

material leads to an electrical potential difference between the hot end and the cold end. Such a 

property opens up a possibility to directly convert waste heat energy to electricity, the process 

referred to as the thermoelectric energy conversion. The direct application of the Seebeck effect 

was restricted to accurate temperature measurement using thermocouples until the mid of last 

century, when NASA successfully implemented thermoelectric generators (TEG) on spacecraft 

for reliable electricity generation.[2] Containing no moving parts makes thermoelectric 

generators are much more reliable and maintenance free compared to traditional heat engines. 
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Because of the advantages mentioned above, thermoelectric generators stood out among other 

heat engines and were selected to serve in deep space missions.  

 With the success of thermoelectricity in deep space missions, it is natural to extend its 

potentials to daily life. As mentioned at the beginning of the chapter, more than 60% of the total 

usable energy generated dissipates in the form of waste heat. If only 15% of waste heat energy 

was recovered by thermoelectricity, it would be equal to the total energy generated by all other 

renewable resources. Alphabet Energy, a thermoelectrics startup, has developed thermoelectric 

generators recovering exhaust-gas heat to optimize its use with large engines.[3] Such generators 

can also be rescaled for waste heat recovery in vehicles to save gasoline. Thus, thermoelectricity 

has held scientists’ and engineers’ attention during the past two decades.  

 Fortunately, the University of Michigan led a project funded by both the U.S. and China 

Department of Energy. As part of the team, we focus on engineering bulk polycrystalline 

inorganic materials for thermoelectric energy conversion efficiency enhancement. The 

engineered materials will eventually be used for thermoelectric generators fabrication. The 

project created an opportunity for us to make an improvement in the fundamental material-wise 

problem, which plays a crucial role in the commercialization of thermoelectricity. 

 

1.1 Basic Concepts 
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As mentioned above, the Seebeck effect is a fundamental material phenomenon that a 

temperature gradient results in an electrical potential difference. A coefficient quantifying the 

ratio of the electric field and the temperature gradient is defined as the Seebeck coefficient 𝑆: 

𝑆 =
𝑑𝑉

𝑑𝑥⁄

𝑑𝑇
𝑑𝑥⁄
=

𝑑𝑉

𝑑𝑇
     Equation 1.1 

The Seebeck coefficient depends on other properties of the material, such as band structure and 

scattering processes of the carriers, and thus can be used to characterize the fundamental 

properties of materials in many areas of condensed matter physics, including superconductivity, 

for example. In the field of thermoelectricity, the Seebeck coefficient is a material-dependent 

parameter directly measuring the voltage generated by a unit temperature difference. Obviously, 

high Seebeck coefficient is desired for thermoelectric applications because high electrical 

voltage is desired. The Seebeck coefficient can be either positive or negative, corresponding to 

holes or electrons as the majority carriers, respectively.  

The efficiency of thermoelectric energy conversion does not only depend on the Seebeck 

coefficient. Insulators usually have large Seebeck coefficients; however, it is not hard to imagine 

that insulators cannot be used for thermoelectricity since the carriers hardly move in these 

materials. This leads to another material-dependent property, the electrical conductivity or 

resistivity, which quantifies how conductive the materials are. High electrical conductivity (or 

low resistivity) is desired for thermoelectric applications. Another important material-based 

property that affects thermoelectric performance is thermal conductivity, which characterizes 

how much heat conducts through the materials per unit temperature gradient without being 

converted into electricity. Low thermal conductivity is desired since it prevents heat from 

“escaping”. It can be understood in another way that a low thermal conductivity results in a large 
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temperature gradient per unit heat flow, hence a large voltage. In summary, combining the three 

factors discussed above, we define a material-wise thermoelectric figure of merit as: 

𝑍𝑇 =
𝑆2𝜎𝑇

𝜅
      Equation 1.2 

where 𝜎  is the electrical conductivity, 𝜅  is the thermal conductivity, and 𝑇  is the absolute 

temperature. The thermoelectric figure of merit ZT is directly related to the thermoelectric energy 

conversion efficiency as:[4] 

𝜙𝑚𝑎𝑥 =
𝑇𝐻−𝑇𝐶

𝑇𝐻
∙
√1+𝑍𝑇̅−1

√1+𝑍𝑇̅+
𝑇𝐶
𝑇𝐻

     Equation 1.3 

where 𝜙𝑚𝑎𝑥 is the maximum thermoelectric conversion efficiency, assuming energy loss in other 

forms to be zero, 𝑇𝐻  is the hot-end temperature, 𝑇𝐶  is the cold-end temperature, and 𝑇̅ is the 

average temperature of the thermoelectric material. A high thermoelectric figure of merit leads to 

high thermoelectric energy conversion efficiency and it is only a material-dependent parameter. 

Thus, increasing ZT is the main goal of engineering materials for thermoelectric applications.  

Besides power generation at high temperatures, thermoelectricity also possesses a great 

potential for cooling applications at room or lower temperatures. The inverse Seebeck effect, 

also known as the Peltier effect, describes that passing an electric current through a junction 

between two different semiconductors will result in absorption of heat, which is different from 

the normal irreversible Joule heating associated with charge carrier scattering. Since 

thermoelectric cooling systems require neither Freon refrigerants nor moving parts, they are 

exceptionally reliable and quiet. Similarly, the thermoelectric cooling coefficient of performance 

is positively related to the thermoelectric figure of merit. Thus, engineering thermoelectric 

materials to enhance ZT is beneficial for both power generation and cooling. 
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1.2 Challenges and Approaches 

  

The major challenge for enhancing the thermoelectric figure of merit is the three 

interrelated material-dependent parameters. A high Seebeck coefficient usually results in a low 

electrical conductivity, and vica versa. A high electrical conductivity also leads to a high thermal 

conductivity, since charge carriers also carry heat energy during the electrical conduction. 

Extensive research has been carried out to reduce the thermal part of the total thermal 

conductivity by scattering phonons; however, few significant progresses on the enhancement of 

the power factor, defined as 𝑆2𝜎, have been made. Since the Seebeck coefficient and electrical 

conductivity are closely related to the details of the band structure and scattering processes, the 

work in this thesis focuses on engineering the band structure and scattering processes to enhance 

the power factor. In the following chapters, I will demonstrate the detailed approach and 

discoveries of my Ph.D. research. The contents of the following chapters are summarized as 

follows: in Chapter 2, I will discuss experimental aspects of the work including sample synthesis 

and measuring techniques; in Chapter 3, I will demonstrate the approach and discoveries of 

enhancing the thermoelectric figure of merit in p-type binary skutterudite CoSb3 via 

incorporation of Sn dopants; in Chapter 4, thermoelectric properties of p-type filled skutterudites 

are discussed; in Chapter 5, a novel doping method to improve the average thermoelectric 

performance over a wide temperature range is proposed and its application in GeTe-CuInTe2 

composites is presented. in Chapter 6, I will present the numerical calculation results on the 

relation between the power factor and band dispersion index and a high dispersion index is 
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suggested for improving power factor; Chapter 7 will present the conclusion and suggestions for 

future work. 
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Chapter 2 Synthesis and Measurement Setup 

 

 In this chapter, I will demonstrate the experimental setups for thermoelectric materials 

synthesis and characterization. 

 

2.1 Thermoelectric Materials Synthesis 

 

 An OmniLab glovebox provides an inert gas (N2 or Ar) environment to minimize 

oxidation during sample preparation, such as raw elements weighing and mixing. The oxygen 

and moisture levels are maintained below 0.12 ppm and 0.5 ppm, respectively. A quartz sealing 

station provides a vacuum environment (~10
-4

 Torr) for ampoule creation to minimize oxidation 

during the process of high temperature heat treatment. Programmable high temperature furnaces 

calibrated beforehand are used for the synthesis and heat treatment of thermoelectric materials. 

Powders ground from the as-cast ingots are densified using spark plasma sintering (SPS) 

apparatus, with the sintering pressure and temperature programmable. An SPS and a homemade 

hot press setup are installed at the General Motors Research Labs and at the Michigan State 

University for pellet sintering, respectively. 

 



 

9 

 

2.2 Crystallographic and Microstructural Characterization 

 

Powder X-ray diffraction (XRD) characterization was carried out using Rigaku and 

Scintag XRD diffractometers at the Electron Microbeam Analysis Laboratory – Central Campus 

(EMAL) at the University of Michigan. Phase identification and lattice parameters were 

determined by analyzing the diffraction peak patterns using the Rietveld method with the 

Maud.[5] The XRD equipment generally has a detection limit of ~5%. Backscattered Electron 

(BSE) Microscopy, Energy Dispersive X-ray Spectroscopy (EDS), and Secondary Electron 

Microscopy (SEM) were carried out with an FEI Helios and a JEOL – 7800FLV FE scanning 

electron microscope at the Michigan Center for Materials Characterization (MC
2
) at the 

University of Michigan for micron-scale phase identification and structural analysis. Actual 

elemental composition and its distribution were characterized with an SX-100 Electron 

Microprobe at EMAL. Transmission electron microscopy (TEM) was performed by Dr. Douglas 

Medlin at the Sandia National Laboratory and Dr. Wenpei Gao at the Oak Ridge National 

Laboratory for the determination of nano-scale phase identification and structural analysis. 

Ultraviolet and X-ray photoemission spectroscopy (UPS and XPS) were performed in Professor 

Stephen Forrest’s Lab at the University of Michigan for Fermi level detection.  

 

2.3 Transport Measurements 

 

2.3.1 High Temperature Electrical Properties Measurement 
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 High temperature measurements of the Seebeck coefficient and electrical conductivity 

were performed from room temperature to 800 K using a custom setup. 3×3×10 mm
3
 specimens 

were cut from sintered pellets and the measurement configuration shown schematically in Figure 

2.1 was used. A heater was attached on top of the bar-shaped sample to generate a temperature 

gradient. Two Type-R (Platinum-Platinum/Rhodium) thermocouples were attached with silver 

epoxy on the side of the sample to measure the temperature. The platinum wires of the 

thermocouples were also used to measure the voltage signal across the sample between the tips 

of the two thermocouples. Two copper wires were connected to the bottom and the top of the 

sample to generate a current through the sample. The whole setup was placed in a high 

temperature furnace, which can reach a temperature of 1000 K. The Seebeck coefficient was 

measured by fitting the voltage vs. temperature curve, the data taken continuously after the 

heater was turned on. Electrical conductivity was measured by fitting the voltage vs. current 

curve. The furnace, together with the sample, was installed in an argon environment with a 

constant argon flow to prevent oxidation at high temperatures.  
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Figure 2.1 Schematic of the high temperature Seebeck coefficient and electrical conductivity measurement setup. 

 

2.3.2 Low Temperature Thermoelectric Transport Properties Measurement 

 

 Low temperature measurements of the Seebeck coefficient and electrical conductivity 

were very similar to those at high temperature. In addition, low temperature thermal conductivity 

was measured at the same time in our setup. 3×3×10 mm
3
 bars were cut from sintered pellets. A 
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strain gauge heater was attached on top of the bar-shaped sample using varnish as the glue to 

build up a temperature gradient across the sample for Seebeck coefficient and thermal 

conductivity measurements. To provide an electrical current for resistivity measurements, a 

copper wire was also attached on top of the sample, under the heater, using indium. The sample 

was placed on a bronze holder used as the heat sink and electrical conductor. Two Type-T 

thermocouples (Constantan-Copper) were attached on the side of the sample using indium as 

contact points and the copper wires were used to read the voltage signal. A steady-state method 

was used to measure the Seebeck coefficient and thermal conductivity. The voltage and the 

temperatures of the two thermocouples were read when they stabilized at a certain heating power. 

Taking the temperatures of the hot and cold end of the sample as 𝑇ℎ and 𝑇𝑐, the Seebeck voltage 

as 𝑉𝑠, the power generated in the heater as 𝑊ℎ = 𝐼ℎ𝑉ℎ, the cross-sectional area of the sample to 

be 𝐴 and the distance between the two thermocouple tips as 𝑙, then the thermal conductivity and 

Seebeck coefficient can be expressed as, respectively: 

𝑆𝑒𝑒𝑏𝑒𝑐𝑘 =
𝑉𝑠

𝑇ℎ−𝑇𝑐
      Equation 2.1 

𝑇ℎ𝑒𝑟𝑚𝑎𝑙 𝐶𝑜𝑛𝑑𝑢𝑐𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑊ℎ∙𝑙

(𝑇ℎ−𝑇𝑐)∙𝐴
    Equation 2.2 

The sample with the holder was placed in a cryostat, and liquid nitrogen or liquid helium 

was used to cool the samples to ~70 K or 4 K, respectively. The sample was surrounded by a 

radiation shield to reduce thermal radiation induced measurement error, and the cryostat was 

pumped down to 10
-6

 Torr to suppress convection induced measurement error. The temperatures 

of the holder and the radiation shield were kept at a known temperature using a heater controlled 

by a Cernox thermometer. The measurement setup is schematically shown in Figure 2.2a. 
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 Although thermal conductivity can be measured at room temperature or below, thermal 

radiation losses introduce a large error especially near room temperature, for low thermal 

conductivity materials. Thus, it is crucial to correct for radiation loss. Taking the holder and the 

radiation shield to be at temperature 𝑇0, the temperatures of the cold and hot thermocouple tips to 

be 𝑇𝑐 and 𝑇ℎ, the emissivity to be  𝜀𝑒, and Stefan’s constant to be 𝜎𝑟, the radiation loss in steady 

state is: 

𝑊𝑟𝑎𝑑𝑖𝑎𝑡𝑖𝑜𝑛 𝑙𝑜𝑠𝑠 = 𝜎𝑟𝜀𝑒 {(
𝑇ℎ+𝑇𝑐

2
+ 𝑇0)

4

− 𝑇0
4}    Equation 2.3 

Since we cannot accurately determine the value of 𝜎𝑟𝜀𝑒 , this amount of heat must be 

measured experimentally. Each time after the regular measurement (with the samples attached to 

the holder), we detached the sample from the holder with all of the other wires untouched. The 

detached sample was then suspended in the chamber using a thin thread (a thermal and electrical 

isolator). The radiation loss power was then measured by adjusting the heater power to make the 

average temperature rise of the sample identical with the previous value during the regular 

measurement: 

𝑇ℎ + 𝑇𝑐 = 𝑇ℎ
′ + 𝑇𝑐

′      Equation 2.4 

where 𝑇ℎ
′  and 𝑇𝑐

′ are the temperatures of the hot and cold tips of the two thermocouples during 

the radiation loss measurement. Then the heater power will be equal to the radiation loss power 

and the value of 𝜎𝑟𝜀𝑒 solved by Eqn. 2.3 will be used to estimate the radiation loss at lower 

temperatures. The radiation loss measurement setup is schematically shown in Figure 2.2b. 
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Figure 2.2 Low temperature thermoelectric transport measurement setup for (a) normal measurement and (b) radiation loss 

 

2.3.3 High Temperature Thermal Conductivity Measurement 

 

 High temperature thermal conductivity cannot be measured using the steady state method 

due to the much larger radiation loss at elevated temperatures. Instead, high temperature thermal 

conductivity is measured using an indirect method, according to the relation: 

𝜅 = 𝐷 ∙ 𝐶𝑝 ∙ 𝜌      Equation 2.5 

where D is the thermal diffusivity, 𝐶𝑝 is the specific heat capacity, and 𝜌 is the density. Thermal 

diffusivity was measured using the laser flash method [6] on a disc-shaped sample of thickness 

from 1 mm to 3 mm. The time-dependent temperature profiles of the bottom of the sample were 

detected after a laser pulse hit on the top of the sample. Thermal diffusivity was then determined 

by fitting the temperature profile with the solution of the thermal diffusion equation. Specific 

heat capacity was measured using differential scanning calorimetry (DSC). Density was then 

measured using the Archimedes method.  
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2.3.4 Hall Effect Measurement 

 

 The high temperature Hall coefficient was measured using a custom setup with a 

superconducting magnet cooled to 4.2 K to generate a steady magnetic field up to 1T. Low 

temperature Hall coefficient was measured using a Quantum Design Magnetic Properties 

Measurement System (MPMS). For both high temperature and low temperature Hall 

characterization, an AC resistance bridge was implemented to measure the Hall signal. 
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Chapter 3 Resonant Density of States in p-type CoSb3 

 

3.1 Background 

 

 As discussed in Chapter 1, thermoelectric technology has been recognized as a promising 

technique to make use of waste heat energy. Since many applications of high temperature 

thermoelectric power generation occur in environments with significant vibrations, such as car 

electricity recovery, thermoelectric devices should possess good mechanical properties to survive 

occasional mechanical vibrations. Among many promising thermoelectric materials, 

skutterudites have attracted a lot of attention during the past several decades not only due to their 

excellent electrical properties, but also their outstanding mechanical properties. Both 

measurements and calculations have verified that CoSb3, a binary paradigm of this large class, is 

a narrow-gap semiconductor possessing high mobility.[7-11] However, the high thermal 

conductivity (on the order of 10 Wm
-1

K
-1

 at room temperature) is too high for practical 

thermoelectric applications.[9, 10] The special crystal structure of this class of materials opens 

the possibility of reducing its intrinsic thermal conductivity by filling the structure with guest 

elements. The near square planar rings composed of 4 pnicogen atoms fill up 6 out of the 8 cubes 

formed by the M atoms in the binary skutterudites MX3, where M stands for Co, Rh, or Ir while 

X represents P, As, or Sb.[12] Guest elements with small ionic radius can then be filled in the 

two remaining “empty” cubes in the unit cell, which are often referred to as “voids” or “cages”. 
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These guest elements are often denoted as “fillers”, and the resulting filled lattice structure is 

known as a filled skutterudite. The weakly bonded fillers significantly reduce thermal 

conductivity by resonantly scattering phonons without dramatically affecting the electrical 

properties; this effect has been studied using a variety of elements.[13-21] A ZT as high as 1.7 

was reported in the n-type filled skutterudites Ba0.08La0.05Yb0.04Co4Sb12,[18] which is a dramatic 

enhancement compared to the binary CoSb3 compound (~0.1). Unfortunately, due to an 

unfavorable valence band structure, p-type skutterudites, even filled with guest elements, have 

proven to be a challenging area of study to achieve a ZT value above 1.[19-21]  

On the one hand, introducing dopants to create mass disorder or “rattling” states to 

reduce the lattice thermal conductivity is an effective means to improve the thermoelectric 

performance of CoSb3-based materials. On the other hand, the numerator of ZT, known as the 

thermoelectric power factor S
2
σ, offers a complementary approach in which electronic transport 

properties are improved. Here, the Seebeck coefficient 𝑆 and the electrical conductivity 𝜎 are 

both determined by the band structure, the Fermi level position, and the scattering processes. 

Usually, 𝑆 and 𝜎 are closely interdependent, and increasing both factors simultaneously is very 

difficult. A promising approach to improve the power factor given the trade-off between S and  

is to explore dopants that may form resonant density of states that can increase the density of 

states over a small range of carrier energies.[22-24] In order to realize an increase in Seebeck 

coefficient over typical dopant concentrations without sacrificing electrical conductivity, the 

Fermi level must also fall in the range of energies at which the band experiences a distortion due 

to the impurity. This approach has been successfully demonstrated using the dopant Tl in 

PbTe[25] and the dopant Sn in Bi2Te3.[26] 
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 In this chapter, I report the exploration on Sn substitution for Sb as a potential means to 

form a resonant contribution to the density of states of CoSb3. I predicted by band structure 

calculations that Sn, when substituted for Sb, should distort the density of states in a way that is 

reminiscent of the behavior of Tl in PbTe and Sn in Bi2Te3. I then conducted experiments where 

we substitute Sn for Sb, and find that the solubility limit of Sn in CoSb3 is too low to achieve 

hole concentrations sufficient to make the Fermi level reach the energies at which the valence 

band is distorted. 

 

3.2 Prediction of Resonant Density of States in CoSb3 through 

incorporation of Sn by Band Structure Calculation 

 

 Ab initio calculations were carried out at AGH University of Science and Technology by 

Dr. Janusz Tobola. Electronic structure calculations of skutterudite-type (space group Im-3, No. 

204) CoSb3-xSnx (x=0, 0.01, 0.025, 0.05 and 0.1) were performed using the all-electron self-

consistent Korringa-Kohn-Rostoker (KKR) method, combined with the coherent potential 

approximation (CPA), which allows us to model the chemical disorder on the Sb site.[27, 28] In 

all computations, experimental values of the lattice constants and atomic positions, determined 

from XRD, were used. A self-consistent crystal potential of muffin-tin form was constructed 

with the local density approximation (LDA) framework and employed the Perdew-Wang 

expression for the exchange-correlation part.[29] For well-converged atomic charges (below 10
-3

 

e) and potentials (below 1 mRy), the total and partial density of states (DOS) decomposed 

according to site (atoms) and angular momentum (s orbit, p orbit, d orbit, etc.) were computed 
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using the integration tetrahedron method in reciprocal space (~130 k-space points in the 

irreducible part of the Brillouin zone). The Fermi level (EF) was precisely determined from the 

generalized Lloyd formula,[30] which appears to be particularly important in systems on the 

verge of semiconductor-metal crossovers. Core states were calculated fully relativistically, while 

valence states were treated in a nonrelativistic approach.  

The calculated density of states (DOS) is shown in Fig. 3.1. The figure clearly shows that 

Sn shifts the Fermi level into the valence band, and thus it should act as a p-type acceptor 

impurity. Fig. 3.1c shows a maximum in the DOS due to Sn impurity at approximately 0.3 eV 

below the valence band edge, and 0.05 eV below the Fermi energy. Fig. 3.1d suggests that 

substituting 3% of the Sb atoms with Sn atoms (x=0.1) should bring the Fermi level into the 

region of the valence band that is distorted by the presence of Sn. The ab initio calculations 

clearly predict that Sn impurities should enhance the Seebeck coefficient without sacrificing too 

much electrical conductivity by generating the resonant density of states and moving the Fermi 

level to their vicinity simultaneously.[24] In the following sections, I explore this possibility 

experimentally. 
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Figure 3.1 Density of electronic states (DOS) calculation results as a function of energy for CoSb3=xSnx for (a) x~0, (b) x=0.01, 

(c) x=0.05, and (d) x=0.1 samples. 

 

3.3 Sample Synthesis and Pellet Sintering 
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 Polycrystalline CoSb3-xSnx samples with various Sn doping concentrations (x = 0, 0.01, 

0.025, 0.05, 0.1 and 0.15) were prepared for this study.  Cobalt (powder, 99.998%), antimony 

(shot, 99.9999%), and tin (99.995% pure powder for x>0.01 and 99.9999% pure shot for x=0.01) 

were weighed and mixed in quartz tubes in the OmniLab glovebox to minimize oxidation. The 

tubes were then evacuated to a pressure below 10
-3 

Torr and sealed to prevent oxidation during 

the high temperature heat treatment. The materials were melted at 1373 K for 12 hours followed 

by annealing at 1023
 
K for 7 days. The annealed ingots were ground by hand to micron-size 

powders, of which a portion was examined by powder XRD. The remaining powders were 

sintered to high density ingots (cylinders of 12 mm diameter and 10 mm height) using SPS at 

923 K and 50 MPa for 5-10 min. Ingot density was measured using the Archimedes method, 

after which the ingots were cut into various sizes for transport measurements. Small ingot pieces 

were reserved for high-temperature heat capacity measurements, and others were polished for 

electron microprobe analysis (EMPA), scanning electron microscopy (SEM), and transmission 

electron microscopy (TEM) studies. Certain pieces that contained secondary phases of Sb or Sn 

(based on the results of XRD before SPS), were ground to powders again for XRD after SPS to 

study whether SPS suppressed the formation of Sb or Sn secondary phases with low melting 

point. 

 

3.4 Crystallographic and Microstructural Characterization 

 

Powder XRD results before and after the SPS process are shown in Fig. 3.2a and Fig. 

3.2b, respectively. Three CoSb3-xSnx with x=0.01, 0.05, and 0.1 were selected in particular to 
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clearly show the trend. The majority phase was confirmed to be CoSb3. Secondary phases were 

identified as Sb for lightly and moderately doped samples (x=0.01 and 0.05) and Sn and CoSb2 

for the heavily doped one (x=0.1). Powder elements adhering to the inner walls of the ampoules 

caused the unavoidable loss of cobalt powder during the preparation process. This resulted in an 

excess of Sb in lightly and moderately doped samples, while the appearance of Sn and CoSb2 

phases in the heavily doped sample (x=0.1) were due to the small solubility limit (x<0.1 for 

CoSb3-xSnx) of Sn on the Sb sites. The moderately doped sample (x=0.05) was verified to be free 

of Sn or CoSb2 secondary phases, suggesting a solubility limit larger than 0.05 for the CoSb3-

xSnx compounds. A decrease in the concentration of the secondary phases was observed after the 

samples were subjected to SPS, suggesting that SPS significantly suppressed the formation of Sb 

and Sn secondary phases. The Rietveld refinement results performed using the MAUD program 

are shown in Table 3.1.[5] The lattice parameter was verified to increase with Sn concentration 

for x<0.15, which is consistent with the fact that Sn ions have a larger atomic radius [31] 

(0.294nm) than Sb atoms (0.245nm). The most heavily doped sample (x=0.15) constitutes an 

exception: it has a smaller lattice parameter than the x=0.1 sample, indicating that not all the Sn 

went into solution. 
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Nominal Composition Density (g/cm
3
) Actual matrix composition Lattice parameter 

(Å) 

CoSb3 7.04 CoSb3.0487 9.0323 

CoSb2.99Sn0.01 7.14 CoSb3.0419Sn0.0028 9.0394 

CoSb2.975Sn0.025 7.2 CoSb3.0284Sn0.0059 9.0437 

CoSb2.95Sn0.05 7.65 CoSb3.0122Sn0.0158 9.0462 

CoSb2.9Sn0.1 7.69 CoSb2.9719Sn0.0772 9.0462 

CoSb2.85Sn0.15 7.62 CoSb2.9737Sn0.0867 9.0443 

 

Table 3.1 Density, actual matrix composition, and lattice parameter of CoSb3-xSnx samples. 

 

 

Figure 3.2 (a) Powder XRD patterns of three samples (CoSb3-xSnx with x=0.01, 0.05, and 0.1) before SPS. (b) Powder XRD 

patterns of two samples (with x=0.01 and 0.1) after SPS. 

 

 The results of the density and actual matrix elemental compositions are also included in 

Table 3.1 to show the quality of the polycrystalline (with micron-size grains) CoSb3-xSnx samples 

synthesized in this work. CoSb3-xSnx samples with x=0, 0.01, and 0.025 have densities only 92% 
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of the theoretical value that was calculated from the lattice parameter determined from the 

Rietveld analysis of the powder XRD results. Heavily doped samples (x=0.05, 0.1 and 0.15) 

exhibit larger densities in excess of 98%. Taken from at least 5 random positions selected within 

the matrix region for each sample, the results from Electron Microprobe Analysis (EMPA) 

reflect the actual composition of the matrix instead of the total composition that counts the 

sediments between the grains. The pure, lightly and moderately doped samples with x=0.01, 

0.025, and 0.05 still exhibit an excess of Sb. This is consistent with the XRD observation of the 

Sb peak after SPS, indicating that the SPS process cannot eliminate the secondary phases that 

have already segregated in the matrix. The actual Sn concentration is lower than the nominal 

values for all of the samples, due to the unavoidable loss of Sn powder during the preparation 

process (similar to cobalt), evaporation during the melting process, and sedimentation of Sn 

between the grains. Yet, except for the x=0.15, the actual Sn concentration in solid solution 

increases with the nominal concentration x as expected. 

 More accurate phase information from backscattered electron microscopy (BSE) for three 

lightly and moderately doped samples (x=0.01, 0.05 and 0.1) is shown in Fig. 3.3a-c. Since BSE 

images are more sensitive for detecting secondary phases than SEM images, we used BSE 

instead of SEM to show the phase composition more accurately. In Fig. 3.3a, many dark spots 

were present, verifying that the low density of the lightly doped samples (x=0.01) was caused by 

severe porosity, which is also shown by SEM in Fig. 3.3d. Heavily doped samples (x=0.05 and 

0.1) are much denser than the lightly doped ones as much fewer dark spots are present in Fig. 

3.3b and Fig. 3.3c. Secondary phases with the size of approximately 50 μm (gray spots) in the 

heavily doped sample (x=0.1) were observed, which is consistent with the conclusion drawn 

from powder XRD that the solubility limit of Sn on Sb sites is below x=0.1. Similar gray spots 
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observed in the CoSb2.9Sn0.1 sample are barely visible in the CoSb2.95Sn0.05, suggesting that the 

solubility limit is still larger than x=0.05. I believe that the porosity of the lightly doped sample 

was due to the fact that the SPS condition used in this work was only optimized for high Sn 

concentration. This suggested explanation is consistent with a previous study using SPS for 

ceramics,[32] which also found that an additional low melting impurity (Sn in this case) can 

improve densification during SPS. 

 

Figure 3.3 (a) BSE image of the x=0.01 sample. (b) BSE image of the x=0.05 sample. (c) BSE image of the x=0.1 sample. (d) 

SEM image of the x=0 sample. 
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Scanning transmission electron microscopy (STEM) images from three samples (x=0, 

0.05 and 0.15) are shown in Fig. 3.4 to show finer microstructure down to nanometer scale. 

Energy dispersive x-ray spectroscopy (EDS) measurements in STEM identified Sb as a 

secondary phase at grain boundaries in the undoped sample, which further confirmed the results 

obtained from the powder XRD and EMPA. An example of one such inclusion is shown in 

Figure 3.4a. A small amount of Sn-rich inclusions was also observed at grain boundaries in the 

moderately doped sample (x=0.05) and heavily doped sample (x=0.15). These cannot be detected 

by either powder XRD due to its detection limit or BSE because of its limit in spatial resolution. 

These observations suggest that the solubility limit is close to x=0.05 and that the precipitation of 

a small amount of Sn or Sn-rich phase is due to local inhomogeneity. Analysis of diffractograms 

from high resolution high angle annular dark field STEM images obtained at several different 

orientations, an example of which is shown in Figure 3.4d, were consistent with SnO2.[33] The 

presence of SnO2 impurities explains why the Sn concentration of the x=0.15 sample is larger 

than that of the x=0.1 sample in the matrix, even though x=0.1 is already greater than the 

solubility limit. An imperfect vacuum during annealing or SPS likely caused the formation of the 

SnO2 impurities. 
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Figure 3.4 STEM analyses found the presence of some secondary phases localized to intergranular regions. (a) x=0 sample: 

example of Sb-rich intergranular phase. (b) x=0.05 and (c) x=0.15 samples show Sn-rich inclusions at grain-boundaries. (d) 

High resolution HAADF-STEM image of inclusion in (c). Inset shows diffractogram calculated from Fourier transform of STEM 

image. Spacings and angular relationships from this and other orientations identify the phase as SnO2 (Cassiterite). The image in 

(d) is oriented along a [111] zone axis. 

 

To summarize the structural characterization of the samples, I observed that the solubility 

limit for Sn is between x=0.05 and 0.1 for CoSb3-xSnx, and probably more toward the lower end 
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of that range, as the TEM results suggest that the solubility limit is close to 0.05. This value falls 

within the range from 0.0045 reported by Zobrina et al.[34] to 0.3 reported by Kim et al.[35] and 

comparable to the value of 0.14 by Tobola et al.[36] Moderately doped samples were confirmed 

to be homogenous and dense, lightly doped samples were found to be porous and heavily doped 

samples were found to contain Sn-rich impurities. 

 

3.5 Thermoelectric Properties 

 

 Before I move to the discussion of the thermoelectric transport properties, the possibility 

that the secondary phases observed in the previous chapter will influence the transport 

coefficients needs to be ruled out. Indeed, the type and size of the inclusions observed in Fig. 3.3 

and Fig. 3.4 were not expected to affect the Seebeck coefficient of the samples significantly, 

which is the most sensitive probe of the presence of a resonant state. The thermoelectric 

properties of composites have been theoretically studied by Bergman and co-workers,
34,35

 who 

showed that spherical or cube-like inclusions of a metallic phase with a low Seebeck coefficient 

in a matrix of a more insulating semiconductor material with a high Seebeck coefficient reduces 

the Seebeck coefficient only slightly at inclusion concentrations below the percolation limit. 

Experimentally[37] adding metallic silver (S  +2 V/K at 300 K) into polycrystalline Bi (S  -

72 V/K at 300 K) reduces the absolute value of the Seebeck coefficient of the composite (S  -

60 V/K at 300 K) by only 15% when the Ag concentration is 40% by volume, and much less 

for the concentrations observed in Fig. 3.3. The electrical conductivity is expected to be linearly 

dependent on the volume percentage of the inclusions or pores, which can be seen to be small in 
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Fig. 3.3. So, we do not need to worry about the influence of the secondary phases on the Seebeck 

coefficient and electrical conductivity. 

High temperature Hall measurement results for all samples are shown in Fig. 3.5. For a 

single band with only one type of carrier (here holes), the Hall coefficient can be expressed 

as:[38] 

𝑅𝐻 =
𝐴

𝑝𝑒
      Equation 3.1 

where 𝑅𝐻 is the Hall coefficient, 𝑝 is the hole concentration, 𝑒 is the elementary charge (of a 

hole), and 𝐴 is the Hall factor, a parameter accounting for the anisotropy of the Fermi surface 

and the dominant scattering mechanism. The positive Hall coefficients of all samples and the 

greatly reduced Hall coefficients of the doped CoSb3-xSnx samples compared to pure CoSb3 

verify that Sn is an effective p-type dopant in CoSb3. The Hall coefficient peaked at a certain 

temperature, presumably due to the interband excitation of minority electrons at high 

temperatures, and the peaks occur at progressively higher temperatures with increasing Sn 

content. An interesting feature of the Hall data for samples with x>0 is the rising magnitude of 

RH from room temperature to a peak value between 673K and 773K. Under the assumption of A 

= 1 (valid for simple bands with parabolic band dispersion) in Eqn. 3.1, carrier concentration 

decreases as temperature increases. Because this is not physically reasonable, a more complex 

band dispersion is warranted. Singh and Pickett[8] have shown previously that the top of the 

valence band of CoSb3 exhibits linear dispersion. Replacing parabolic band dispersion with a 

linearly dispersing valence band, the carrier concentration deduced from the Hall coefficient 

indeed rises with temperature at high temperatures, as shown in Fig. 3.5b, up to the temperature 

at which minority electrons are thermally excited and RH decreases again.  
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Figure 3.5 (a) Hall coefficients measured in all of the samples from room temperature to 800 K. The x values in the legend 

correspond to the Sn fraction in CoSb3-xSnx. (b) The calculated temperature dependence of the Hall coefficient using a linearly 

dispersing valence band, assuming two constant carrier concentrations and a constant scattering parameter. 

 

The Seebeck coefficient was measured over a wide temperature range from 300 K to 800 

K, as shown in Fig. 3.6a-b. The positive Seebeck coefficient measured confirms hole conduction 

in all samples. At low temperatures before the onset of interband excitation, S increases with T, 

confirming that the samples are degenerately doped and have metallic behavior. At higher 

temperatures above the appearance of minority electron thermal excitation, a negative slope for 

𝑑𝑆/𝑑𝑇 sets in at temperatures coinciding with the Hall coefficient peaks. For a degenerate carrier 

system, the Seebeck coefficient can be described by the Mott relation:[39] 

𝑆 = −
𝜋2

3

𝑘

𝑒
𝑘𝑇[𝑑𝑙𝑛(𝜇𝑔(𝐸))/𝑑𝐸]|

𝐸=𝐸𝐹
    Equation 3.2 

where 𝜇 is the carrier mobility and 𝑔(𝐸) is the carrier density of states. If the term in brackets 

remains temperature-independent, the Seebeck coefficient is then expected to be linearly 
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dependent on temperature. This linear dependence was observed in the two most heavily doped 

samples (x=0.1 and 0.15) at high temperatures. Figure 3.6b shows that the Seebeck coefficients 

of the CoSb3-xSnx samples typically follow the conventional Pisarenko relation at low 

temperatures. The deviation from the conventional Pisarenko relation at high temperatures 

originate from the intrinsic excitation of the minor carriers in the lightly doped samples. The 

Pisarenko relation at low temperatures will also be discussed in detail later in this section. 

 

 

Figure 3.6 (a) Seebeck coefficients measured in all of the samples from room temperature to 800 K. The x values in the legend 

correspond to the Sn fraction in CoSb3-xSnx. (b) Seebeck coefficients as a function of nominal Sn concentration x at 330 K, 560 K, 

and 800 K. 

 

Electrical conductivity was measured from 300 K to 800 K, as shown in Fig. 3.7. The 

increase in hole concentration introduced by Sn dopants results in an enhanced electrical 

conductivity at room temperature. Electrical conductivity was observed to be highest for the 

x=0.025 sample and decreases with a further increase in Sn concentration beyond x=0.025 due to 

deterioration of carrier mobility. All Sn-doped samples exhibit a decreasing electrical 
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conductivity with temperature, reflecting metallic behavior. At high temperatures, all samples 

tend to converge to a similar value of approximately 375 S/cm.  

 

 

Figure 3.7 Electrical conductivity measured in all of the samples from room temperature to 800 K. The x values in the legend 

correspond to the Sn fraction in CoSb3-xSnx. 

 

 The thermoelectric power factor (𝑆2𝜎) is shown in Fig. 3.8. Below 573 K, the highest 

power factor is achieved with pure CoSb3, confirming that such binary compounds possess 
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excellent electrical properties. At higher temperatures (above 673 K), the best power factor is 

obtained for x=0.05, reaching a value of 9 μWcm
-1

K
-2

, due to the carrier concentration 

enhancement with the introduction of Sn dopants.   

 

 

Figure 3.8 Power factor from room temperature to 800 K. The x values in the legend correspond to the Sn fraction in CoSb3-xSnx. 

 

A Pisarenko plot, which illustrates the relationship between Seebeck coefficient and 

carrier concentration, is shown in Fig. 3.9 to determine whether or not any improvement in the 
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Seebeck coefficient due to the presence of band resonant states is realized. If the parabolic band 

structure is not altered (no resonant levels present near Fermi level), the relationship between 

Seebeck coefficient and carrier concentration should simply follow the solid line of S(p) plotted 

in Fig. 3.9, which is calculated using:[9] 

𝑆 = (
2𝜋𝑘𝐵

2𝑇

3𝑒𝑎
) (

𝜋

3𝑝
)

1

3
      Equation 3.3 

Unfortunately, at room temperature and above, no significant improvement due to the presence 

of resonant impurity levels can be observed. The experimental data points generally lie on the 

calculated solid line without any distortion.  

 We now show that our experimental findings are consistent with the theory, and no 

enhancement of the Seebeck coefficient was observed because the Fermi energy simply never 

reaches the valence band distortion predicted in Fig. 3.1, because the solubility limit of Sn 

precludes the introduction of more carriers. 
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Figure 3.9 Measured data points compared to the Pisarenko relation at room temperature. 

 

 

In order to calculate the Fermi energy EF (with respect to the valence band edge) from the 

Hall carrier concentration, we assume a linear band dispersion and primarily acoustic phonon 

scattering at room temperature. We write the Hall coefficient by solving the Boltzmann transport 

equation within the relaxation time approximation as: 

𝑅 =
3

[1+𝑒𝑥𝑝(−𝜂∗)]
9

4
𝑞(𝑘𝑇)3𝐹1/2

2 (𝜂∗)
𝜋

(𝜋𝑎)3

     Equation 3.4 
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where 𝜂∗ =
𝐸𝐹

𝑘𝑇
⁄  is the reduced Fermi level, 𝐹𝑗(𝑥) is the j-th order Fermi integral and 𝑎 is the 

proportionality constant of the linear band dispersion 𝐸 = 𝑎|𝑘⃗ | with a value of 3.1eVÅ from the 

literature.[9] From the Hall coefficient, we can calculate EF for various samples at room 

temperature and then calculate the carrier concentration through the equation I derived: 

𝑝 =
𝜋

(𝜋𝑎)3
(𝑘𝑇)3𝐹2(𝜂

∗)     Equation 3.5 

The results are shown in Fig. 3.10. Here, the energy of holes increases as they move deeper into 

the valence band, and so does Fermi level. It is obvious that as the Sn concentration increases, 

the Fermi level is pushed deeper into the valence band, and reaches EF = 0.3 eV for the most 

heavily doped samples. This should have been sufficient to observe the effect of Sn as a resonant 

level according to Fig. 3.1. It is possible that the overestimation of the Fermi level assuming only 

one linear band over the whole energy range in all the model calculations is such that the 

resonant levels are much deeper, and in the end, it is impossible to add enough Sn in solid 

solution into the Sb sites of CoSb3 to enhance the Seebeck coefficient at high temperature. 

Indeed, the fact that the Fermi level does not change when the Sn concentration increases from 

0.1 to 0.15 suggests that the solubility limit of Sn in CoSb3 is less than x=0.1, consistent with the 

microscopy data in Figs 3.3 and 3.4 and indicative of the inability to further push down the 

Fermi level. 
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Figure 3.10 Fermi energy and carrier concentration as a function of x in CoSb3-xSnx. 

 

 Thermal conductivity data above room temperature, presented in Fig. 3.11a, exhibit a 

decrease as Sn dopant concentration increases. The lowest room-temperature thermal 

conductivity of approximately 2 W/m-K was achieved in the most heavily doped sample 

(x=0.15), presumably due to strong impurity scattering of acoustic phonons. The temperature 

dependence of the thermal conductivity is indicative of Umklapp scattering. A slight upturn in 

the high-temperature thermal conductivity (T>770 K) is likely due to an electronic contribution 

from the onset of the minority electrons, which also contributes to downturns in the Seebeck 

coefficient and Hall coefficient. Using the Wiedemann-Franz law (with a fully degenerate value 

of the Lorenz number of 2.44×10
-8 

WΩK
-2

) to approximately separate the electronic and lattice 
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contributions to thermal conductivity, the lattice contribution is plotted in Fig. 3.11b. The fact 

that this value does not decrease monotonically with temperature is an indication that the 

assumption of a constant Lorenz number was only very approximate, and it does not account for 

a bipolar contribution one might expect in the presence of minority electrons. The lattice thermal 

conductivity is reduced quite effectively by Sn dopants; at room temperature, the samples with 

highest Sn doping have a lattice thermal conductivity that is lower than that of pure CoSb3 by a 

factor of more than five. Because Sn and Sb are neighboring elements in the periodic table and 

their atomic masses (118.69 for Sn and 121.75 for Sb) are similar, it is unlikely that this arises 

from alloy scattering alone. Rather, Sn may also be filling voids in the crystal structure and 

scatter acoustic phonons by rattling. The filler (Sn in voids) together with the dopant (Sn 

substituting for Sb) may also cause a change in the temperature dependence of the lattice thermal 

conductivity from negative to temperature-independence, as has also been observed elsewhere 

(Yb filler together with Sn dopant).[40] However, the fraction of Sn dopants that acts as fillers is 

believed to be small, since it does not influence electronic transport as dramatically as thermal 

transport. 
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Figure 3.11 (a) Total thermal conductivity from room temperature to 825 K. The x values in the legend correspond to the Sn 

fraction in CoSb3-xSnx. (b) Lattice thermal conductivity from room temperature to 825 K derived by subtracting the electronic 

thermal conductivity (approximated using the Wiedemann-Franz law) from the total measured thermal conductivity. x values in 

the legend correspond to the Sn fraction in CoSb3-xSnx. 

 

 Calculated ZT values are shown in Fig. 3.12. The highest ZT (~0.2) was achieved for the 

x=0.05 sample at 723 K. Improvements in ZT arise primarily from reductions in thermal 

conductivity rather than improvements in power factor. 
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Figure 3.12 ZT values from room temperature to 800 K. x values in the legend correspond to the Sn fraction in CoSb3-xSnx. 

 

3.6 Summary 

 

 By using spark plasma synthesis, I successfully made Sn-doped CoSb3-xSnx materials 

with various x values. The solubility limit was determined to be x≈0.05. Based on transport 

measurements and calculations, I did not observe any significant evidence of band resonant 

states in Sn-doped CoSb3 within the dopant concentration range explored. I explained this by the 

fact that the Sn solubility limit is too low to achieve the hole concentration levels needed to put 
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the Fermi level near the Sn resonant state as calculated ab-initio. As a consequence, the figure of 

merit was enhanced only slightly; this enhancement is primarily due to a reduction in thermal 

conductivity potentially caused by a small portion of Sn filling voids in the crystal structure. My 

study indicates that the doping limit of Sn in CoSb3 is below 2% and that the synthesis of 

samples with very low Sn concentrations is difficult because of porosity and inhomogeneous 

dopant distribution. Other approaches to enhance the thermoelectric properties in p-type 

skutterudites are desired.  
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Chapter 4 Thermoelectric Properties of p-type Filled Skutterudites 

YbzFeyCo4-ySb12-xSnx 

 

4.1 Background 

 

 In Chapter 3, I have shown by both calculation and experiment that low solubility of Sn 

dopants on Sb sites in CoSb3 is not capable of introducing enough charge carriers to push the 

Fermi level deep into the valence band to the vicinity of the generated resonant levels. A 

straightforward approach to solve such problem is to further push the Fermi level by introducing 

a second p-type dopant. The solubility limit of a second p-type dopant on Sb sites is likely to be 

low, and thus incorporating Fe on Co sites is selected. Indeed, numerous previous work indicates 

that Fe is able to substitute all Co, though adding interstitial fillers is required for stabilizing the 

crystal structure.[41, 42] In this chapter, Yb was selected as the filler and Fermi level is tuned by 

varying both Yb and Fe concentrations. Sn concentration is fixed at ~1%. In addition to 

experiments, numerical thermoelectric transport coefficient fitting is attempted. Thermoelectric 

measurements suggest that substituting Co by Fe is able to increase the carrier concentration; 

however, the Fermi level is still pinned above the energy vicinity of the generated resonant states 

by Sn. Such Fermi level pinning is caused by the moving Fe heavy band as the Fe concentration 

increases. Though transport coefficient fitting fails probably due to the unknown temperature 

dependence of the scattering processes, I am still able to conclude that the convergence of the 
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Fe-d band and the Sb-p band is beneficial for thermoelectric performance. An approach to 

further improve the thermoelectric performance of p-type filled skutterudites is also proposed.  

 

4.2 Materials Synthesis and Pellets Sintering 

 

 Ytterbium (99%, Alfa Aesar), iron (99.98%, Alfa Aesar), cobalt (99.98%, Alfa Aesar), 

antimony (99.9999%, Alfa Aesar), and tin (99.9999% Alfa Aesar) elements were weighed based 

on the chemical formula of 6 various compositions: Yb0.3FeCo3Sb12, Yb0.3FeCo3Sb11.9Sn0.1, Yb-

0.6Fe2Co2Sb12, Yb0.6Fe2Co2Sb11.9Sn0.1, Yb0.8Fe3CoSb12, and Yb0.8Fe3CoSb11.9Sn0.1 in the 

glovebox. The reason I selected these 6 particular compositions will be discussed in the 

following sections. The weighed elements are then mixed and sealed in the evacuated quartz 

tubes. The mixed raw elements are heated up to 1373
 
K at a rate of 0.5 K/min, held at 1373 K for 

6 hours, and then quenched in cold salt water. The quenched ingots were then sealed again in 

quartz tubes and annealed at 923 K for 4 days. Following annealing, the as-cast ingots were 

hand-ground to powders, after which SPS was performed under 50 MPa pressure and 873 K 

temperature for ~15 min.  

 

4.3 Crystallographic and Microstructural Characterization 

 

 Powder XRD patterns of 6 YbzFe4-yCoySb12-xSnx samples are shown in Fig. 4.1. The 

major phase is identified as skutterudite with minor secondary phases identified as FeSb2, Yb2O3, 
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and Sb. The existence of the secondary phases in p-type filled skutterudites seems unavoidable 

and these microscale secondary phases do not influence the thermoelectric properties much.[40-

43] The measured density, actual elemental composition of the matrix, lattice parameters 

determined by the Rietveld analysis of the powder XRD patterns, and the calculated carrier 

concentration for the nominal composition of YbzFe4-yCoySb12-xSnx are listed in Table 4.1. The 

valence state of Yb is taken to be 2.62 in filled skutterudites.[44] All samples are well densified 

and have densities greater than 94% of the theoretical value. The actual elemental composition 

only deviates slightly from the nominal value, probably due to the unavoidable oxidation of the 

elements or segregation of the secondary phases. The lattice parameter increases with Yb and Fe 

concentration, caused by the larger Fe ionic radius with respect to Co and the interstitial Yb 

incorporation. The effect of Sn dopants on the lattice parameter is observed to be negligible. The 

calculated carrier concentration from the nominal composition shows that the carrier 

concentration increases as the Fe concentration increases. 
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Figure 4.1 Powder XRD results of all the skutterudite samples from 5o to 85o. Secondary phases in the skutterudites samples can 

be identified by comparing the powder XRD results of the samples to the powder XRD patterns of the references 
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Nominal 

Composition 

Density 

(g/cm
3
) 

Actual matrix composition Lattice 

parameter 

(Å) 

Estimated carrier 

concentration 

based on nominal 

composition(cm
-3

) 

Yb0.3FeCo3Sb12 7.55 Yb0.23Fe1.03Co2.99Sb12 9.068 5.740×10
20

 

Yb0.3FeCo3Sb11..9Sn0.1 7.59 Yb0.21Fe0.94Co3.05Sb11.9Sn0.07 9.073 8.408×10
20

 

Yb0.6Fe2Co2Sb12 7.36 Yb0.59Fe2.00Co2.04Sb12 9.102 1.135×10
21

 

Yb0.6Fe2Co2Sb11.9Sn0.1 7.84 Yb0.55Fe1.80Co2.18Sb11.9Sn0.06 9.101 1.401×10
21

 

Yb0.8Fe3CoSb12 7.50 Yb0.84Fe3.02Co1.03Sb12 9.140 2.368×10
21

 

Yb0.8Fe3CoSb11.9Sn0.1 7.69 Yb0.84Fe2.80Co1.18Sb11.9Sn0.03 9.124 2.644×10
21

 

Table 4.1 Nominal composition, density measured by Archimedes method, actual matrix composition measured by electron 

microprobe analyzer (EMPA), lattice parameters calculated from the Rietveld analysis of the powder XRD data, and estimated 

carrier concentration calculated from the nominal composition. 

 

4.4 Transport Fitting Theory 

 

Ab initio band structure calculation results reported by Yang et al. suggest that three 

valence bands contribute to the hole conduction in p-type filled skutterudites YbzFe4-

yCoySb12.[45] The three valence bands include a light non-parabolic Sb-p band and a heavy 

parabolic Fe-d band with both of their energy maximums located at Γ point, and another light 

parabolic band with its energy extreme located between H and N points. Electrical transport 

coefficients of each band will be derived in this section. The total transport coefficients will then 

be calculated from the contribution of each band.  
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For the light Sb-p band, the band dispersion relation is described by the Kane model:[46] 

ħ2𝑘2

2𝑚𝑣1
∗ = 𝐸(1 + 𝛼𝐸)      Equation 4.1 

where ħ is the reduced Planck constant. 𝑘 is the wave vector, 𝑚𝑣1
∗  is its effective mass, 𝐸 is the 

energy, and 𝛼  is the nonparabolicity parameter. The electrical transport coefficients can be 

written as:[46-48] 

𝜎𝑣1 =
𝑒2

3𝜋2
2(2𝑚𝑣1

∗ )
1
2

ħ3
∫ (−

𝜕𝑓0

𝜕𝐸
) 𝜏𝑡𝑜𝑡𝑎𝑙𝑣1(𝐸 + 𝛼𝐸

2)3/2(1 + 2𝛼𝐸)−1𝑑𝐸
∞

0
  Equation 4.2 

𝑆𝑣1 =
1

𝑒𝑇
[
∫ (−

𝜕𝑓0
𝜕𝐸
)𝜏𝑡𝑜𝑡𝑎𝑙𝑣1𝐸(𝐸+𝛼𝐸

2)
3/2

(1+2𝛼𝐸)−1𝑑𝐸
∞
0

∫ (−
𝜕𝑓0
𝜕𝐸
)𝜏𝑡𝑜𝑡𝑎𝑙𝑣1(𝐸+𝛼𝐸

2)3/2(1+2𝛼𝐸)−1𝑑𝐸
∞
0

+ 𝐸𝐹]   Equation 4.3 

𝑅𝐻𝑣1 =
∫ (−

𝜕𝑓0
𝜕𝑧
)𝜏𝑡𝑜𝑡𝑎𝑙𝑣1
2 (𝑧+𝛽𝑧2)

3/2
(1+2𝛽𝑧)−2𝑑𝑧 ∫ (−

𝜕𝑓0
𝜕𝑧
)(𝑧+𝛽𝑧2)

3/2
𝑑𝑧

∞
0

∞
0

[∫ (−
𝜕𝑓0
𝜕𝑧
)𝜏𝑡𝑜𝑡𝑎𝑙𝑣1(𝑧+𝛽𝑧

2)3/2(1+2𝛽𝑧)−1𝑑𝑧
∞
0 ]

2
𝑒𝑝𝑣1

   Equation 4.4 

where 𝑓0 is the Fermi distribution function, 𝜏𝑡𝑜𝑡𝑎𝑙𝑣1 is the total relaxation time of Sb-p band, 

𝛽 = 𝛼𝑘𝐵𝑇 , 𝑧 =
𝐸

𝑘𝐵𝑇
, and 𝑝𝑣1  is the carrier concentration of Sb-p band. Various scattering 

processes contribute to the total relaxation time obeying Matthiessen’s rule as:[46] 

 
1

𝜏𝑡𝑜𝑡𝑎𝑙
=

1

𝜏𝑎𝑐
+

1

𝜏𝑛𝑝𝑜
+

1

𝜏𝑝𝑜
+

1

𝜏𝑖𝑚𝑝
+

1

𝜏𝑖𝑣
     Equation 4.5 

in which 𝜏𝑎𝑐 , 𝜏𝑛𝑝𝑜 , 𝜏𝑝𝑜 , 𝜏𝑖𝑚𝑝 , and 𝜏𝑖𝑣  are the relaxation times of acoustic phonon scattering, 

nonpolar optical phonon scattering, polar optical phonon scattering, ionized impurities scattering, 

and the intervalley transition scattering. The intervalley transition scattering can be broken down 

into two parts as: 

1

𝜏𝑖𝑣
=

1

𝜏𝑖𝑣12
+

1

𝜏𝑖𝑣13
      Equation 4.6 
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where 𝜏𝑖𝑣12  and 𝜏𝑖𝑣13  account for intervalley transitions between the Sb-p band and the Fe-d 

band and between the Sb-p band and the light H-N band, respectively. The detailed expressions 

for the relaxation time of various scattering processes are:[46-49] 

1

𝜏𝑎𝑐
=

(2𝑚𝑣1)
3/2𝐸𝑎𝑐𝑣1

2 𝑘𝐵𝑇

2𝜋ħ4𝜌𝑣𝑙
2 (𝐸 + 𝛼𝐸2)1/2(1 + 2𝛼𝐸)𝐹𝑎𝑐    Equation 4.7 

1

𝜏𝑝𝑜
=

𝑒2

4𝜋

(2𝑚𝑣1)
1/2𝑘𝐵𝑇

ħ2
(
1

𝜀∞
−

1

𝜀𝑠
)

1+2𝛼𝐸

(𝐸+𝛼𝐸2)1/2
𝐹𝑝𝑜   Equation 4.8 

1

𝜏𝑖𝑚𝑝
=

𝜋𝑁𝑖𝑚𝑝

(2𝑚𝑣1)1/2
(
𝑒2

4𝜋𝜀𝑠
)
2

1+2𝛼𝐸

(𝐸+𝛼𝐸2)3/2
𝐹𝑖𝑚𝑝    Equation 4.9 

1

𝜏𝑛𝑝𝑜
=

1

2
(
𝐸𝑛𝑝𝑜

𝐸𝑎𝑐𝑣1
)
2 𝜃𝐷

𝑇
(𝑒𝜃𝐷/𝑇 − 1)

−1
× [(1 +

𝑘𝐵𝜃𝐷

𝐸
)
1/2

+ 𝑒𝜃𝐷/𝑇 (1 −
𝑘𝐵𝜃𝐷

𝐸
)
1/2

]
1

𝜏𝑎𝑐
  Equation 4.10 

1

𝜏𝑖𝑣12
=

𝑀𝑣2

2
(
𝑚𝑣2

𝑚𝑣1
)
3/2

(
𝐸𝑖𝑣

𝐸𝑎𝑐𝑣1
)
2 𝜃𝑖𝑣

𝑇

1

𝑒𝑥𝑝(𝜃𝑖𝑣/𝑇)−1
× [(1 +

𝑘𝐵𝜃𝑖𝑣

𝐸
)
1/2

+ 𝑒𝑥𝑝(𝜃𝑖𝑣/𝑇) (1 −
𝑘𝐵𝜃𝑖𝑣

𝐸
)
1/2

]
1

𝜏𝑎𝑐
  

 Equation 4.11 

where 𝐸𝑎𝑐𝑣1 is the acoustic-phonon deformation potential of Sb-p band, 𝜌 is the density, 𝑣𝑙 is the 

sound velocity of longitudinal acoustic phonons,  𝜀∞ is the high frequency dielectric constant, 𝜀𝑠 

is the static dielectric constant,  𝑁𝑖𝑚𝑝  is the concentration of ionized impurities, 𝐸𝑛𝑝𝑜  is the 

nonpolar optical phonon deformation potential, 𝜃𝐷 is the Debye temperature, 𝑘𝐵𝜃𝑖𝑣 = ħ𝜔𝑖𝑣 with 

𝜔𝑖𝑣 being the phonon angular frequency, 𝐸𝑖𝑣 is the intervalley transition deformation potential, 

𝐹𝑎𝑐 , 𝐹𝑝𝑜 , and 𝐹𝑖𝑚𝑝  are the functions of 𝐸  defined by Zawadzki.[49] The electrical transport 

coefficients shown above can easily be extended to parabolic bands (Fe-d band and light H-N 

band in this work) by setting the nonparabolicity parameter to be zero. 𝜃𝑖𝑣 can be assumed to be 

approximately equal to the Debye temperature.[46] 
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 The charge carrier concentration of the non-parabolic Sb-p band is expressed as:[46] 

𝑝𝑣1 = 2(
𝑚𝑣1𝑘𝐵𝑇

2𝜋ħ2
)
3/2 4

3√𝜋
𝐿0
3/2(𝜂, 𝛽) 

0      Equation 4.12 

where 𝐿𝑘
𝑚(𝜂, 𝛽) 

𝑛  is the generalized Fermi-Dirac integral defined as:[46] 

𝐿𝑘
𝑚(𝜂, 𝛽) 

𝑛 = ∫ (−𝜕𝑓0/𝜕𝑧)𝑧
𝑛(𝑧 + 𝛽𝑧2)𝑚(1 + 2𝛽𝑧)𝑘𝑑𝑧

∞

0
   Equation 4.13 

For the Fe-d and light H-N parabolic bands, the charge carrier concentration is:[38] 

𝑝𝑣2,𝑣3 = 2(
2𝜋𝑚𝑣2,𝑣3𝑘𝐵𝑇

ℎ2
)
3/2

𝐹1/2 (
𝐸𝐹−𝐸𝑔2,𝑔3

𝑘𝐵𝑇
)    Equation 4.14 

where 𝐹𝑗(𝜂) = ∫
𝜂𝑗

1+exp (𝜂−𝜂∗)
𝑑𝜂

∞

0
 is the Fermi integral of j-th order. 𝐸𝑔2 and 𝐸𝑔3 are the energies 

at the top of the Fe-d band and the light H-N band with respect to the energy at the top of the Sb-

p band. 

Because YbzFe4-yCoySb12-xSnx samples are degenerate p-type semiconductors, the 

contribution of conduction bands is negligible. Thus, the charge neutrality condition is: 

𝑝𝑣1 + 𝑝𝑣2 + 𝑝𝑣3 = 𝑁𝐴     Equation 4.15 

where 𝑁𝐴 is the concentration of the p-type dopants. The total electric transport coefficients can 

be written as:[38] 

𝜎 = 𝜎𝑣1 + 𝜎𝑣2 + 𝜎𝑣3 = 𝑒(𝑛𝑣1𝜇𝑣1 + 𝑛𝑣2𝜇𝑣2 + 𝑛𝑣3𝜇𝑣3)  Equation 4.16 

𝑅𝐻 =
𝑅𝐻𝑣1𝜎𝑣1

2 +𝑅𝐻𝑣2𝜎𝑣2
2 +𝑅𝐻𝑣3𝜎𝑣3

2

𝜎2
    Equation 4.17 

𝑆 =
(𝜎𝑣1𝑆𝑣1+𝜎𝑣2𝑆𝑣2+𝜎𝑣3𝑆𝑣3)

𝜎
     Equation 4.18 
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4.5 Thermoelectric Transport Properties 

 

Actual carrier concentration at room temperature can be derived from Hall coefficient 

measurement as: 

𝑝 =
𝐴

𝑒𝑅𝐻
      Equation 4.19 

where 𝐴 is a numerical proportionality factor, which depends on the band structure and the 

scattering processes. In this chapter, we set 𝐴 to be 1 for a rough estimation.[38] The estimated 

actual room temperature carrier concentrations and high temperature Hall coefficients of 6 

YbzFe4-yCoySb12-xSnx samples are shown in Fig. 4.2. The results confirm that varying Yb and Fe 

concentration effectively tunes the charge carrier concentration, except for slight deviations from 

the expected trend shown in the estimated carrier concentration probably caused by the 

formation of the defects or secondary phases. 
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Figure 4.2 High temperature Hall coefficient of YbzFe4-yCoySb12-xSnx samples. The room temperature carrier concentration of 

different samples is labeled in the figure. 

 

 Temperature-dependent electrical conductivity and Seebeck coefficient measured from 

300 K to 800 K are shown in Fig. 4.3a-b. The electrical conductivity decreases as temperature 

increases for all 6 samples, suggesting that they are degenerate semiconductors. Positive Seebeck 

and Hall coefficients confirm that YbzFe4-yCoySb12-xSnx samples are all p-type semiconductors. 

The influence of Yb, Fe, and Sn dopants on electrical conductivity is quite significant. Electrical 

conductivity is related to carrier concentration and mobility as: 
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𝜎 = 𝑒𝑝𝜇      Equation 4.20 

Since the Fe dopant concentration effectively tunes the carrier concentration, the electrical 

conductivity dramatically increases with the Fe concentration. On the contrary, Sn dopants have 

larger impact on the mobility than the carrier concentration, as shown in Figure 4.4a. Thus, Sn-

doped samples exhibit lower electrical conductivity compared to their Sn-free counterparts. 

Incorporating Sn dopants does not significantly affect the Seebeck coefficient, which suggests 

that the approach to enhance the thermoelectric power factor by generating Sn resonant levels is 

not successful in YbzFe4-yCoySb12-xSnx filled skutterudites. On the other hand, varying Yb and Fe 

doping concentration influences the Seebeck coefficient in a complex manner. In addition to 

modifying the magnitude of thermopower, a significant change of the temperature dependence of 

the Seebeck coefficient is observed, which implies a significant dependence of the band structure 

on the Yb and Fe concentrations. The change of the temperature dependence of the Seebeck 

coefficient likely originates from the energy shift of the heavy Fe-d band as the Fe concentration 

increases. This change of the band structure details can also be seen from the Pisarenko relation 

between the Seebeck coefficient and carrier concentration, as shown in Figure 4.4b. The Seebeck 

coefficients of the 6 YbzFe4-yCoySb12-xSnx samples do not follow the Pisarenko trend in which the 

Seebeck coefficient decreases as the carrier concentration increases. The increasing Seebeck 

coefficient with increasing carrier concentration suggests that incorporating Fe dopants 

significantly enhance the band effective mass.  

 In order to corroborate this assumption, fitting of electrical transport coefficients was 

attempted. A least square method was applied to solve for the simultaneous best fit to the Hall 

coefficient, Seebeck coefficient, and electrical conductivity data. However, no satisfactory fits 

were found, likely due to the unknown temperature-dependent band structure and scattering 
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processes. Recently, an ab initio band structure calculation corroborated the assumption that the 

increasing Fe concentration indeed moves the heavy Fe-d band closer to the light Sb-p band.[50] 

On the one hand, the energy upshift of the heavy Fe-d band pins the Fermi level above the 

vicinity of the Sn resonant levels, nullifying the influence of the resonant density of states. On 

the other hand, the convergence of the heavy Fe-d band and the light Sb-p band is beneficial for 

thermoelectric power factor. The power factor is enhanced approximately 60% from 

Yb0.3FeCo3Sb12 to Yb0.8Fe3CoSb12, as shown in Figure 4.5.   

 

 

 

Figure 4.3 High temperature (a) electrical conductivity and (b) Seebeck coefficient from 300 K to 800 K. 

 

 Though the contribution of the heavy holes from the Fe-d band leads to a moderately 

high thermopower at high carrier concentration, these heavy holes are much less mobile than the 

light holes due to their large effective mass. This is detrimental to the mobility, as shown in Fig. 

4.4a. The mobility drops significantly as the Fe concentration increases. The reduced mobility 
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partly negates the enhancement from the increased carrier concentration. Another drawback from 

incorporating large concentration of Fe dopants is the high carrier concentration. This large 

carrier concentration leads to a reduction on the thermopower at high temperatures, as shown in 

Fig. 4.3b. Such influence is not observed at low temperatures due to the narrow Fermi window. 

This suggests that an optimized Fermi level exists for maximum power factor. To achieve this, 

carrier concentration needs to be further modified. Incorporating other dopants is not promising, 

because extra impurities introduce too much scattering, similar with what Sn dopants do in 

YbzFe4-yCoySb12-xSnx. Novel doping methods will be demonstrated in the next chapter, which has 

the potential to maintain the mobility.  

 

 

Figure 4.4 (a) Room temperature mobility vs. carrier concentration for all 6 YbzFeyCo4-ySb12-xSnx samples. (b) Room temperature 

Seebeck coefficient vs. carrier concentration. 
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Figure 4.5 High temperature power factor of YbzFe4-yCoySb12-xSnx samples. 

 

 In spite of the strong scattering on the carriers, Sn dopants significantly scatter acoustic 

phonons. The total and lattice thermal conductivities of the Sn-doped samples were greatly 

reduced compared to those of the Sn-free samples, as shown in Fig. 4.6. However, Yb and Fe 

dopants increase the total thermal conductivity. The independence of the lattice thermal 

conductivity on the Yb and Fe concentration indicates that Yb and Fe dopants mainly contribute 
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to the electronic part of the total thermal conductivity. A slightly enhanced thermoelectric figure 

of merit was achieved using Sn dopants, as shown in Fig. 4.7. 

 

 

Figure 4.6 (a) Thermal conductivity from 300 K to 800 K. (b) Lattice thermal conductivity from 300 K to 800 K. 
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Figure 4.7 High temperature thermoelectric figure of merit. 

 

4.6 Summary 

 

 A secondary p-type dopant Fe was successfully incorporated on the Co sites and the 

carrier concentration was thus increased. However, thermoelectric transport measurements 

indicate that the influence of Sn resonant levels is still not visible. This is attributed to the upshift 
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of the heavy Fe-d band as the Fe concentration increases. Sn dopants did prove beneficial for 

thermoelectric figure-of-merit by reducing thermal conductivity. 

In addition, we found that increasing the Fe concentration moves the Fe-d band closer to 

the Sb-p band, which is confirmed by a recent ab initio calculation. Such convergence of the 

heavy Fe band and the light Sb band is beneficial to the thermoelectric performance, confirmed 

by an enhancement of power factor from 15 μWcm
-1

K
-2

 for Yb0.3FeCo3Sb12 to 25 μWcm
-1

K
-2

 for 

Yb0.8Fe3CoSb12. The contribution of the heavy holes in the heavy Fe band keeps the 

thermopower at a moderate value in spite of a large carrier concentration. Thus the Seebeck 

coefficient of Yb0.8Fe3CoSb12 is higher than that of Yb0.3FeCo3Sb12 at room temperature. 

However, the situation reverses at higher temperatures. This is attributed to the widening of the 

Fermi window as the temperature increases. As lower temperature, the contribution from the 

deep heavy Fe band is negligible and the Seebeck coefficient is determined primarily by the 

contribution of light holes. As the temperature increases, the widening Fermi level gradually 

touches the heavy Fe band and thus the Seebeck coefficient of Yb0.3FeCo3Sb12 exceeds the value 

of Yb0.8Fe3CoSb12 at higher temperatures become of a smaller carrier concentration. Such 

tradeoff between the carrier concentration and the heavy holes suggests an existence of an 

optimized carrier concentration for maximum power factor. A conventional doping method 

based on the ionization of impurity atoms has drawbacks due to the severe ionized impurity 

scattering introduced. A novel doping mechanism is desired, such as that described in the next 

chapter. 
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Chapter 5 Engineering Temperature-Dependent Carrier 

Concentration for Average Power Factor Enhancement via Novel 

Doping Method 

 

5.1 Introduction 

 

 Conventional doping is to incorporate guest elements into the matrix. Such method is 

effective to adjust the carrier concentration. However, most of the dopants have low excitation 

energies, and thus they can be fully ionized at low temperatures.[51] As a result, the carrier 

concentration of conventionally doped materials is temperature independent over a wide 

temperature range. The simulation results presented later, together with the experimental results 

reported in literature suggest that the carrier concentration needed to optimize the power factor 

varies with temperature.[52] Thus, a temperature-dependent carrier concentration is desired for 

high temperature thermoelectric power generation. In this work, we proposed a novel method of 

incorporating secondary phase materials with a different temperature dependence of Fermi level 

than the matrix. The charge transfer across the interface of the matrix and the secondary phase 

aggregates causes a dramatic change of the carrier concentration in the matrix. Numerical 

simulation also indicates that the charge transfer is sensitive to the Fermi level offset between the 

matrix and the aggregates. Since the Fermi level offset is temperature-dependent caused by the 
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distinct temperature dependence of the Fermi level in matrix and secondary-phase aggregates, 

the carrier concentration in matrix is temperature-dependent. By applying this method to the 

GeTe-CuInTe2 composites with CuInTe2 as the secondary-phase dopants, the average power 

factor within a wide temperature range is achieved. Compared to the mobility of GeTe-In2Te3 

solid solutions, the mobility of secondary-phase-doped GeTe is significantly higher. The 

synthesis process of the composites is suggested to be important for the doping method. Indeed, 

by changing from mechanically mixing the micron-size particles of the two materials to direct 

quenching the mixture of the melts, the thermoelectric power factor is doubled. For the GeTe-

CuInTe2 composites with GeTe as the secondary-phase dopants, the thermoelectric power factor 

is also enhanced, though through a different mechanism. The power factor of CuInTe2 is 

significantly enhanced at approximately 600 K. Such enhancement is attributed to the energy 

filtering effect.  

 

5.2 Material Synthesis and Pellet Sintering 

 

 Raw elements of germanium, copper, indium, and tellurium were purchased from Alfa 

Aesar with the following purities: Ge (pieces, 99.9999+%), Cu (shot, 99.999%), In (ingots, 

99.9999+%), and Te (lumps, 99.999+%). The starting materials were weighed in the glovebox 

according to the stoichiometric ratio (Ge2Te2)x%(CuInTe2)1-x% with x=100, 95, 90, 87.5, 85, 70, 

30, 15, 10, and 0. In this chapter, the samples are denoted as GT-x, where x represents the 

concentration of GeTe in the sample. The weighed materials were then put in carefully cleaned 

quartz ampoules and sealed under the pressure of less than 10
-4

 Torr and placed in a furnace 
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heated according to the following schedule: slow heating up to 1273 K at the rate of 1.5
 
K/min; 

rest at 1273
 
K for 12 hours; slow cooling down to 873 K at 2

 
K/min; annealing at 873 K for 4 

days; and finally slow cooling down to room temperature at 2
 
K/min. The as-cast ingots were 

hand-milled to powders under argon atmosphere and hot-pressed at the temperature of ~773
 
K 

under the pressure of ~60 MPa for 30 min. 

 

5.3 Crystallographic and Microstructural Characterization 

 

The density of all samples as measured by the Archimedes method is given in Table 5.1. 

All GeTe rich samples (samples with the GeTe concentration larger than or equal to 70%) have 

densities above 6.07 g/cm
3
, while the CuInTe2-rich samples (samples with the content of GeTe 

less than or equal to 30%) have densities below 5.88 g/cm
3
. If we take the theoretical density of 

GeTe from the literature to be 6.14 g/cm
3
,[53] and 6.07 g/cm

3
[54] for CuInTe2, then the 

theoretical density of the composites can be calculated as below, assuming the phases are 

separated: 

𝜌 =
𝜌𝐶𝑢𝐼𝑛𝑇𝑒2(1+

𝑚𝐶𝑢𝐼𝑛𝑇𝑒2
×(1−𝑥%)

𝑚𝐺𝑒2𝑇𝑒2
×𝑥%

)

𝜌𝐶𝑢𝐼𝑛𝑇𝑒2
𝜌𝐺𝑒𝑇𝑒

+
𝑚𝐶𝑢𝐼𝑛𝑇𝑒2

×(1−𝑥%)

𝑚𝐺𝑒2𝑇𝑒2
×𝑥%

    Equation 5.1 

where 𝜌𝐶𝑢𝐼𝑛𝑇𝑒2 is the theoretical density of CuInTe2, 𝜌𝐺𝑒𝑇𝑒 is the theoretical density of GeTe, 

𝑚𝐶𝑢𝐼𝑛𝑇𝑒2 is the molecular mass of CuInTe2, 𝑚𝐺𝑒2𝑇𝑒2 is the molecular mass of Ge2Te2, and 𝑥 is 

the concentration of GeTe in the composites. The results of the theoretical densities of the 

composites together with the corresponding relative densities of the samples are also listed in 
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Table 5.1. All the GeTe-rich samples have relative densities above 98.9%, while CuInTe2-rich 

samples only have relative densities between 93% and 97%. This difference suggests that the 

optimized hot-pressing conditions for GeTe-rich and CuInTe2-rich composites are different and 

the one we use in this study is optimized only for GeTe-rich composites. The powder XRD 

patterns of 5 selected samples (GT-100, GT-90, GT-70, GT-30, and GT-10) are presented in 

Figure 5.1. The major phases of all the samples are identified as those of GeTe and CuInTe2 for 

the GeTe-rich and the CuInTe2-rich samples, respectively, according to the known peak positions 

of the minerals (GeTe: ref. 06-0469 and CuInTe2: ref. 06-0605). There are also traces of the 

secondary phase of Ge in the pure GeTe sample (Ge: ref. 03-0478). Several major Cu 𝛽 

diffraction peaks are also identified and labeled in Figure 5.1, due to the strong Cu 𝛽 radiation of 

the X-ray source. As the concentration of CuInTe2 increases, the intensity of the CuInTe2 peaks 

increases, while that of the GeTe peaks decreases. The peak of Ge impurity disappears for all the 

CuInTe2-added samples, indicating that the amount of trace Ge falls below the detection limit of 

powder XRD. The coexistence of GeTe and CuInTe2 peaks confirms that GeTe and CuInTe2 can 

only form composites, due to the different space group of the two compounds (CuInTe2 has a 

tetragonal structure with the space group I4̅2d, while GeTe crystallizes with a rhombohedral 

structure in the space group 𝑅4𝑚).[53, 54] The secondary phase of Ge is present because Ge 

forms as a consequence of native defects in GeTe. 
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Sample 

Name 

GT- 

100 

GT- 

98 

GT- 

95 

GT- 

92.5 

GT- 

90 

GT- 

87.5 

GT- 

85 

GT- 

80 

GT- 

70 

GT- 

30 

GT- 

15 

GT- 

10 

Density 

(g/cm
3
) 

6.099 6.121 6.071 6.130 6.087 6.143 6.122 6.146 6.082 5.875 5.676 5.664 

Theoretical 

Density 

(g/cm
3
) 

6.140 6.139 6.136 6.134 6.132 6.131 6.129 6.125 6.118 6.090 6.080 6.076 

Relative 

Density (%) 
99.3 99.7 98.9 99.9 99.3 >100 99.9 >100 99.4 96.5 93.4 93.2 

 

Table 5.1 Measured densities, theoretical densities, and relative densities of (Ge2Te2)x%(CuInTe2)1-x%. 

 

 

Figure 5.1 Powder XRD patterns of 5 typically selected samples, GT-100, GT-90, GT-70, GT-30, and GT-10. 
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 The BSE images of the GT-98 and GT-95 samples are presented to illustrate the 

segregation of CuInTe2 secondary phases, as shown in Figure 5.2a-b. The segregation of 

CuInTe2 in GT-98 sample suggests that the solubility limit of Cu or In in the GeTe matrix is 

below 2%. The contrast of light and dark regions in the BSE image clearly confirms the 

existence of two phases with the light-colored “bubbles” depicting the CuInTe2 phase with its 

larger average atomic weight of 433.566, while the dark background corresponds to the GeTe 

matrix having a smaller average atomic weight of 400.460. Two macroscale BSE images of GT-

70 and GT-90 are presented for comparison, shown in Figure 5.2c-d. The size of the segregated 

CuInTe2 varies from several micrometers for GT-90 to 50 micrometers for GT-70, and various 

shapes of the segregated phase can be identified as bubbles, dots, polygons, or stripes in the GT-

70 sample. As the concentration of CuInTe2 decreases from 30% to 10%, the extent of the 

segregated CuInTe2 also decreases, and the shape tends to be only spherical.  
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Figure 5.2 (a): Back scattered electron (BSE) image of the GT-98 sample with 10000× magnification. (b): BSE image of the GT-

95 sample with 10000× magnification. (c): BSE image of the GT-90 sample with 800× magnification. (d): BSE image of GT-70 

sample with 800× magnification. 

 

 EDS element mapping further verifies the phase separation of GeTe and CuInTe2, as 

shown in Figure 5.3a, where the target element accumulates in the lighter area. A small amount 

of pure Ge is detected in the Ge mapping image as a very light spot and this spot corresponds to 

the dark spot in the Te mapping image, though the concentration of Ge is so small that powder 

XRD is not able to detect it. No In or Cu rich secondary phases were detected in the region tested. 

Since BSE or EDS has detection resolution of approximately 1 μm, nano-scale secondary-phase 
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aggregates cannot be observed using such technique. High resolution TEM image of a small 

region of the GT-70 sample is shown in Fig. 5.3b to confirm the nanoscale phase aggregation. 

The large matrix bears a rhombohedral GeTe structure, well fitted with the overlaid GeTe atomic 

model. In the matrix, the highlighted area shows an atomic lattice corresponding to the 

chalcopyrite CuInTe2 structure, confirming the existence of the nano-size CuInTe2 secondary 

phase. The shape of these nano-size segregations is not spherical. The work function of GeTe 

and CuInTe2 are determined by UPS. An offset of approximately 0.3 eV is determined. The work 

function shift shown in the GT-95 sample suggests the interface density is high since the Fermi 

level is a spatial constant and the local vacuum level bends with the band bending, as illustrated 

in the middle inset of Fig. 5.3c. This is also confirmed in the XPS peak shifts shown in Fig. 5.3d. 

The top insets of Fig. 5.3c are the spectroscopy data focusing on the lower (left) and higher (right) 

kinetic energy range. The right inset verifies that the Fermi levels of the tested 3 samples are all 

aligned with the measurement system during the measurement, calibrated by measuring Fermi 

step of a freshly deposited Au film. 
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Figure 5.3 (a): EDS mapping of Ge, Cu, In, and Te elements on the GT-70 sample.(b): High resolution TEM image on a small 

region of the GT-70 sample. (c): UPS results on the GT-100, GT-95, and GT-00 samples. (d): XPS Te-3d core levels. 

 

 It will be demonstrated in the next section by calculation that high density of nanoscale 

CuInTe2 segregations is crucial for the matrix carrier concentration adjustment. However, it is 

not easy to have a statistical distribution of these nanoscale particles from a single TEM image. 

Instead, an EDS mapping on a region of ~300 nm size confirms that the signal of Cu and In is 
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almost everywhere, confirming that the nanoscale CuInTe2 is distributed homogenously in the 

matrix, as shown in Fig. 5.4. 

 

 

Figure 5.4 EDS mapping of Cu, Ge, In, and Te on a small region in the GT-70 sample. 
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5.4 Poisson Model 

 

For simplicity, the inclusions of CuInTe2 are assumed to be spheres and the GeTe phase 

surrounds the CuInTe2 inclusions. The radius of CuInTe2 inclusions is related to that of the GeTe 

phase by the mole concentration of CuInTe2 as: 

𝑥 = (
𝑅𝐶𝐼𝑇

𝑅𝐺𝑇
)
3

      Equation 5.2 

where 𝑥 is the doping ratio. The common energy reference is set as the valence band maximum 

of pure GeTe. Note that we are studying the effect of holes, thus the energy increases deeper into 

the valence band. The spatial distribution of the electrostatic potential 𝑉(𝑟) is caused by the 

charge redistribution after the two phases come into contact, and the potential distribution can be 

determined via the Poisson equation.  

For 𝑟 ≤ 𝑅𝐶𝐼𝑇 in the CuInTe2 region, the Poisson equation can be written as: 

1

𝑟

𝑑2

𝑑𝑟2
𝑟𝑉(𝑟) = −

𝑒

𝜀𝐶𝐼𝑇𝜀0
𝑝𝐶𝐼𝑇−𝑛𝑒𝑡(𝑟)    Equation 5.3 

For 𝑅𝐶𝐼𝑇 ≤ 𝑟 ≤ 𝑅𝐺𝑇 in the GeTe region, the Poisson equation can be written as: 

1

𝑟

𝑑2

𝑑𝑟2
𝑟𝑉(𝑟) = −

𝑒

𝜀𝐺𝑇𝜀0
𝑝𝐺𝑇−𝑛𝑒𝑡(𝑟)    Equation 5.4 

where 𝜀𝐶𝐼𝑇 is the dielectric constant of CuInTe2, 𝜀𝐺𝑇 is the dielectric constant of GeTe, 𝜀0 is the 

vacuum permittivity, 𝑝𝐶𝐼𝑇−𝑛𝑒𝑡(𝑟) is the net charge concentration in the CuInTe2 region, and 

𝑝𝐺𝑇−𝑛𝑒𝑡(𝑟) is the net charge concentration in the GeTe region. 
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At a given temperature, the defect concentration in GeTe and CuInTe2 determines their 

carrier concentrations. If a certain amount of free carriers move away from a region, it will be 

left with net charges, which can be written as: 

𝑝𝑛𝑒𝑡 = 𝑝[𝜇(𝑟)] − 𝑝0      Equation 5.5 

where 𝑝[𝜇(𝑟)] is the new carrier concentration determined by the chemical potential 𝜇(𝑟) after 

the charge redistribution, and 𝑝0 is carrier concentration under neutral condition before contact, 

which is decided by the temperature and defect concentration. If we further assume each material 

possesses a parabolic band structure (more complex band structure can easily be implemented, 

here we use parabolic band structure for simplicity), then we have: 

𝑝𝑛𝑒𝑡 =
4𝜋(2𝑚∗𝑘𝐵𝑇)

3
2

ℎ3
∫

𝜂
1
2𝑑𝜂

1+𝑒𝑥𝑝{𝜂−
𝐸𝐹−𝐴𝐶−𝐸𝑉𝐵𝑀−𝐴𝐶

𝑘𝐵𝑇
}

∞

0
− 𝑝0   Equation 5.6 

with 𝐸𝐹−𝐴𝐶  representing the Fermi energy after two phases come into contact, and 𝐸𝑉𝐵𝑀−𝐴𝐶 

representing the energy of the maximum of the valence band after two phases come into contact. 

Plugging Eqn. 5.6 into 5.3 and 5.4, we have: 

For 𝑟 ≤ 𝑅𝐶𝐼𝑇, 

1

𝑟

𝑑2

𝑑𝑟2
𝑟𝑉(𝑟) = −

𝑒

𝜀𝐶𝐼𝑇𝜀0
{
4𝜋(2𝑚𝐶𝐼𝑇𝑘𝐵𝑇)

3
2

ℎ3
∫

𝜂
1
2𝑑𝜂

1 + exp {𝜂 −
𝐸𝐹−𝐴𝐶 − 𝑒𝑉(𝑟) − 𝐸𝑜𝑓𝑓

𝑘𝐵𝑇
}

∞

0

− 𝑝𝐶𝐼𝑇−0} 

Equation 5.7 

where 𝐸𝑜𝑓𝑓 is the energy offset between the maximum of the valence bands of the two phases. 

And for 𝑅𝐶𝐼𝑇 ≤ 𝑟 ≤ 𝑅𝐺𝑇 
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1

𝑟

𝑑2

𝑑𝑟2
𝑟𝑉(𝑟) = −

𝑒2

𝜀𝐺𝑇𝜀0
{
4𝜋(2𝑚𝐺𝑇𝑘𝐵𝑇)

3
2

ℎ3
∫

𝜂
1
2𝑑𝜂

1 + 𝑒𝑥𝑝 {𝜂 −
𝐸𝐹−𝑎𝑐 − 𝑒𝑉(𝑟)

𝑘𝐵𝑇
}

∞

0

− 𝑝𝐺𝑇−0} 

Equation 5.8 

In order to solve for V(r) within the domain that we are interested in, additional boundary 

conditions are needed. At the center of the CuInTe2 inclusion, we set the electric field to be zero, 

that is: 

−
𝑑𝑉(𝑟)

𝑑𝑟
|
𝑟=0

= 0     Equation 5.9 

On the other hand, since the total charge within the domain of 𝑟 ≤ 𝑅𝐺𝑇 is conserved, based on 

Gauss’s law, the electric field at 𝑟 = 𝑅𝐺𝑇 is also zero: 

−
𝑑𝑉(𝑟)

𝑑𝑟
|
𝑟=𝑅𝐺𝑇

= 0     Equation 5.10 

On the interface between the CuInTe2 and GeTe phases, the discontinuity of the electrostatic 

potential depends on the interface dipole, which is material dependent. Also, the electrical field 

discontinuity is decided by the interface free charge density. Here, for simplicity, we set them 

both to be zero. Thus, the third and fourth boundary conditions on the interface are: 

𝑉(𝑟 = 𝑅𝐶𝐼𝑇
− ) − 𝑉(𝑟 = 𝑅𝐶𝐼𝑇

+ ) = 0    Equation 5.11 

−𝜀𝐶𝐼𝑇
𝑑𝑉(𝑟)

𝑑𝑟
|
𝑟=𝑅𝐶𝐼𝑇

−
= −𝜀𝐺𝑇

𝑑𝑉(𝑟)

𝑑𝑟
|
𝑟=𝑅𝐶𝐼𝑇

+
   Equation 5.12 

We used the fourth-order Runge-Kutta algorithm with the shooting method to numerically solve 

the Poisson equation with the above boundary conditions. The electrostatic potential, electric 
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field, and charge distribution profile at the interfaces are shown as Fig. 5.5a. To estimate the bulk 

matrix carrier concentration change due to such a charge transfer effect, we divide the total 

amount of charge transferred across the interface by the total volume of the sample in the manner 

of “averaging” the charge transfer effect. 

The band bending and charge distribution profiles, together with the average carrier 

concentration change in the matrix, depend on many parameters, including the Fermi level offset, 

band structure details, the dielectric constant of each phase, the electrostatic potential drop across 

the interface, the original carrier concentration in each phase before contact, the secondary phase 

inclusion size, and secondary phase volume fraction. Other parameters are not included in the 

model, such as surface states, charge accumulation, and the non-spherical geometry of the 

inclusion shape. Many of these parameters are fixed when two specific materials are selected, 

thus a more detailed and rigorous model regarding the whole parameter space must be developed 

as material selection criteria. Here, we focus on the parameters that change significantly in the 

GeTe-CuInTe2 system, such as Fermi level offset, secondary inclusion size, secondary phase 

volume fraction, and the inclusion shape. The average bulk matrix carrier concentration change 

depending on these parameters is shown as Fig. 5.5b-d. 
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Figure 5.5 (a): Room temperature carrier concentration change, electric field, and electrostatic potential distribution near the 

interface between GeTe and CuInTe2 phases. (b): Average room temperature carrier concentration depletion over the bulk 

region as a function of secondary phase concentration with various secondary phase geometries of different surface area to 

volume ratio. (The size of the secondary phase is set to be 3 nm) (c): Average carrier concentration depletion over the bulk 

region as a function of valence band offset. (The size of the secondary phase is set to be 3 nm and the doping ratio is set to be 5 

mol%) (d): Average room temperature carrier concentration depletion over the bulk region as a function of the size of the 

CuInTe2 inclusions. (The doping ratio is set to be 5 mol% and the surface to volume ratio is set to be 10 times larger than that of 

spheres) 

 

5.5 Transport Properties Calculation 
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For a single parabolic band, the Hall coefficient, the Seebeck coefficient, and the 

electrical conductivity can be expressed as below by solving the Boltzmann transport equation 

with the relaxation time assumption: 

𝑅𝐻 =
1

𝑒
(

ħ2

2𝑚∗𝑘𝐵𝑇
)

3

2
3𝜋2

1

2

𝐹
−
1
2

(𝜂∗)

(𝐹0(𝜂∗))
2    Equation 5.13 

𝜎 = 𝑒2𝑤
2

3𝜋2ħ2
(
ħ2

2𝑚∗)
−
1

2
𝑘𝐵𝑇𝐹0(𝜂

∗)      Equation 5.14 

𝑆 =
𝑘𝐵

𝑒
{2

𝐹1(𝜂
∗)

𝐹0(𝜂∗)
− 𝜂∗}            Equation 5.15 

where 𝑒 is the elementary charge, ħ is the reduced Planck’s constant, 𝑚∗ is the effective mass, 

𝑘𝐵 is the Boltzmann constant, 𝑇 is the absolute temperature, 𝑤 is the proportionality constant, 

𝜂∗ =
𝐸𝐹

𝑘𝐵𝑇
 is the reduced Fermi level, and 𝐹𝑗(𝜂

∗) = ∫
𝜂𝑗

1+exp(𝜂−𝜂∗)
𝑑𝜂

∞

0
 is the Fermi integral of the 

j-th order. The relaxation time has the energy dependence as: 

𝜏 = 𝑤𝐸𝑟      Equation 5.16 

where 𝑤 is the proportionality constant, which we set to a value of 1.2 × 10−23 in this work. 

With acoustic phonon scattering assumed as the dominant scattering process, the scattering 

parameter 𝑟 has the value of −
1

2
.  

The carrier concentration of a parabolic band can be expressed as: 

𝑝 =
4𝜋(2𝑚∗𝑘𝐵𝑇)

3
2

ℎ3
𝐹1
2

(𝜂∗)     Equation 5.17 
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 The dependence of power factor on the temperature and carrier concentration is shown in 

Figure 5.6. Relaxation time assumption is applied here and the dominant scattering mechanism is 

assumed to be acoustic phonon scattering. An unambiguous conclusion can be drawn that the 

carrier density for the peak power factor changes with the varying temperatures. The changing 

effective mass of the parabolic band will only alter the specific carrier concentration value for 

the peak power factor corresponding to the cases of certain materials. Such special dependence 

originates from the fact that the Fermi-Dirac distribution, which decides the total carrier density 

and power factor, highly depends on the temperature. 
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Figure 5.6 (a)-(c): Normalized power factor as a function of carrier concentration and temperature for single parabolic bands of 

various effective masses. (d): Temperature-dependent power factor with carrier concentration following the trajectories shown in 

(c). 

 

5.6 Thermoelectric Transport Properties 

 

 The temperature-dependent heat capacity clearly indicates that a phase transition has 

taken place at around 650 K for all the samples, Figure 5.7. It is also noticeable that both the 
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phase transition temperature and the heat capacity value generally decrease as the mole fraction 

of CuInTe2 increases. The decreasing phase transition temperature suggests that a small amount 

of Cu and In might go into the GeTe lattice to alter the phase transition temperature, which has 

also been observed in a previous study on the In-doped GeTe;[55] however, the phase transition 

temperature shift in our samples is only around 15 K, much smaller than the value observed in 

the In-doped GeTe of 125 K, indicating that the amount of Cu and In that went into the GeTe 

lattice in our sample is much smaller than that of In-doped GeTe in the previous study.[55] The 

decreasing heat capacity value is consistent with our previous microstructure analysis that GeTe 

and CuInTe2 form composites with two separated phases and each phase contributes to the heat 

capacity individually. Three consecutive heat capacity measurements were also done on the GT-

87.5 sample to confirm the repeatability of the measurement, inset of Figure 5.7. An abnormal 

upturn of the heat capacity after the phase transition peak can be observed in the GeTe-rich 

samples. This feature is confirmed by the three consecutive measurements on the GT-87.5 

sample and another measurement at Michigan State University. We qualitatively attribute such 

an upturn feature to Te vaporization at high temperatures, since we observed the Te deposition 

layer both inside and outside the crucible after each measurement. 
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Figure 5.7 Specific heat capacity data of the GeTe-CuInTe2 samples. Results of 3 consecutive measurements on the GT-87.5 

sample are shown as the inset. 

  

High temperature electrical transport properties of GeTe-CuInTe2 composites are shown 

in Figure 5.8. Pure GeTe exhibits the typical metallic conduction feature that the Seebeck 

coefficient and electrical conductivity have a positive and negative monotonic dependence on the 

temperature, respectively, confirming that the natural defects on the Ge site make pure GeTe a 

heavily doped semiconductor. Though the phase transition of pure GeTe is observed in the 

specific heat capacity curve, it does not influence the electrical transport properties. However, a 
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distinct mark from 575 K to 625 K on the temperature dependence of the electrical transport 

parameters of four GeTe-rich composites was observed, which corresponds to the temperature 

range that is slightly lower than the phase transition peak in the heat capacity data. In the inverse 

Hall coefficient data that will be discussed later, the temperature range of 575 K to 625 K 

features convergent inverse Hall coefficient data for all the GeTe-rich samples. I attributed this 

distinct mark on both the temperature dependence of the electrical transport parameters and the 

inverse Hall coefficient between 575 K and 625 K to the convergence of the Fermi energy.  

According to Fig. 5.5, the incorporation of CuInTe2 secondary phases decreases the 

electrical conductivity and increases the Seebeck coefficient within the whole temperature range. 

As the molar fraction of CuInTe2 increases above 70%, the significantly increased Seebeck 

coefficient and decreased electrical conductivity suggest that the carrier concentration is 

significantly decreased. The anomalous discontinuity of the temperature dependence of the 

Seebeck coefficient and electrical conductivity can also be observed for the CuInTe2-rich 

samples around 600 K. However, the fact that it occurs over the expanded temperature range 

from 500 K to 700 K indicates that it is not related to the phase transition. Another anomaly is 

that both the Seebeck coefficient and electrical conductivity increase from 500 K to 600 K for 

the GT-15 and GT-30 samples. The simultaneous increasing Seebeck coefficient and electrical 

conductivity result in a sharp increase in the power factor within the temperature range from 500 

K to 650 K, nearly tripling the power factor. Though the simultaneously increasing electrical 

parameters are not observed for the GT-10 sample, a similar feature of rapidly increasing power 

factor is still present due to the fact that the increasing electrical conductivity has much larger 

temperature dependence than that of the decreasing Seebeck coefficient. Despite having almost 

identical power factors with the pure GeTe sample at high temperatures, the GT-95 and GT-90 
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samples exhibit significantly enhanced power factors at lower temperatures resulting in a much 

improved average power factor over the whole temperature range. The GT-85 and GT-70 

samples have much lower power factors than that of pure GeTe at elevated temperatures, 

suggesting that incorporating more than 15% mole fraction of CuInTe2 is detrimental for the 

power factor. 
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Figure 5.8 High temperature (a) electrical conductivity, (b) Seebeck coefficient, and (c) power factor of 8 GeTe-CuInTe2 samples. 
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In the XRD phase identification and BSE, SEM, and TEM microstructural analyses, we 

have confirmed that GeTe and CuInTe2 segregate as separated phases. Below we will show in 

detail that this two-phase separation feature is crucial for understanding the electrical transport 

properties in the GeTe-CuInTe2 composites. Electronic band structure schematics of the 

heterojunction at the interface of GeTe and CuInTe2 phases in the GeTe-rich composites before 

and after contact at various temperatures are shown in Figure 5.9.  

 

 

Figure 5.9 Schematics of the band alignment on the interface between GeTe and CuInTe2 phases in GeTe-rich composites (a) 300 

K before contact, (b) 300 K after contact, (c) 600 K before contact, (d) 600 K after contact, (e) 800 K before contact, and (f) 800 

K after contact. 

 

The determination of the temperature-dependent Fermi energy relative to the valence 

band maximum of the CuInTe2 phase was based on Boltzmann transport theory and the 

experimental high temperature Seebeck coefficient, assuming a single parabolic valence band 
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located at the Γ point, as suggested by previous band structure calculations.[56, 57] The Seebeck 

coefficient for a single parabolic band is expressed as: 

𝑆 =
𝑘

𝑒
[
2𝐹1(𝜂)

𝐹0(𝜂)
− 𝜂]                 Equation 5.18 

where 𝑘 is the Boltzmann constant, 𝑒 is the elementary charge, 𝜂 = 𝐸𝑓/𝑘𝑇 is the reduced Fermi 

level, and 𝐹𝑟(𝜂) is the Fermi integral defined as: 

𝐹𝑟(𝜂) = ∫
𝜀𝑟

1+𝑒𝑥𝑝(𝜀−𝜂)
𝑑𝜀

∞

0
    Equation 5.19 

The determination of the temperature dependent Fermi energy in the pure GeTe phase 

relative to its light band edge is more complicated. It is believed that GeTe has 4-fold degenerate 

light valence bands at 𝐿 point and deeper 12-fold degenerate heavy valence bands at Σ point with 

an energy difference of 0.27 eV – 0.38 eV at 300 K.[55, 58-60] Here, we take the value of 0.36 

eV obtained by Sun et al.[55] The energy difference between the light 𝐿 band and the heavy Σ 

band also decreases as the temperature increases.[47, 60, 61] Here, we take the temperature 

dependence of the energy difference to be −1.2 × 10−3 eV/K to meet the requirement that these 

two bands converge at around 600 K, which was suggested by the Hall coefficient measurement 

in this work shown in Figure 5.10a and previous work.[47, 60] The two band model for GeTe 

Fermi energy determination is then expressed as:[55] 

 𝑝𝑙 = 4𝜋 (
2𝑚𝑙

∗𝑘𝑇

ℎ2
)
3/2

𝐹1/2(𝜂𝑙)    Equation 5.20 

𝑝ℎ = 4𝜋 (
2𝑚ℎ

∗ 𝑘𝑇

ℎ2
)
3/2

𝐹1/2(𝜂ℎ)    Equation 5.21 

∆𝐸 = (𝜂𝑙 − 𝜂ℎ) ∙ 𝑘𝑇      Equation 5.22 
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𝑆 =
𝑝ℎ

𝑝ℎ+𝑝𝑙∙𝑏
𝑆ℎ +

𝑝𝑙∙𝑏

𝑝ℎ+𝑝𝑙∙𝑏
𝑆𝑙    Equation 5.23 

𝑆𝑙,ℎ =
𝑘

𝑒
[
2𝐹1(𝜂𝑙,ℎ)

𝐹0(𝜂𝑙,ℎ)
− 𝜂𝑙,ℎ]     Equation 5.24 

where 𝑝 is the hole concentration, 𝑚∗ is the effective mass, ℎ is the Planck constant, 𝑇 is the 

temperature, ∆𝐸 is the energy difference between the light 𝐿 band and the heavy Σ band, 𝑏 is the 

mobility ratio of light holes to heavy holes. The subscripts ℎ and 𝑙 in all the equations correspond 

to the heavy and light holes, respectively. In this work, we take the parameters from the literature 

to be 𝑚𝑙
∗ = 0.5𝑚0, 𝑚ℎ

∗ = 2.5𝑚0 , ∆𝐸 = 0.36 − 1.2 × 10−3(𝑇 − 300) eV, 𝑏 = 4.[55] With the 

room temperature Fermi level offset determined to be 0.3 eV from UPS measurement, the 

temperature dependent Fermi energy of GeTe and CuInTe2 relative to the CuInTe2 Γ valence 

band maximum before contact is shown in Figure 5.10b. It is also worth noting that the positive 

energy direction is pointing toward the valence band since we are studying holes instead of 

electrons. Thus, the positive Fermi energy value in Figure 5.10b means that the Fermi level is 

below the CuInTe2 Γ band maximum. 

 

 



 

85 

 

 

Figure 5.10 (a) High temperature inverse Hall coefficient of 5 GeTe-rich composites, (b) High temperature Fermi energy of pure 

CuInTe2 and pure GeTe referred to the valence band maximum of CuInTe2 calculated from the measured transport coefficients, 

and (c) High temperature power factor of the GT-100 and GT-95 samples for comparison. The carrier concentration dependent 

power factor at various temperatures for a single parabolic band with an effective mass of 0.5 me is shown as the inset of (c). The 

black and red lines in the inset of (c) schematically correspond to the temperature dependence of the carrier concentration of 

GT-100 and GT-95 samples, respectively. 



 

86 

 

 With the Fermi energy and band offset energy determined, now we are able to discuss in 

detail how the band alignment and the charge transfer at the interface between the GeTe and 

CuInTe2 phases influence the transport properties. First, let’s discuss the GeTe-rich composites. 

Figure 5.10b shows that the Fermi energy of GeTe sits at a higher energy than that of CuInTe2 at 

300 K before contact, which is schematically illustrated in Figure 5.9a. After the two phases 

make contact, the carriers in the GeTe phase with larger Fermi energy start to diffuse into the 

CuInTe2 to build up an electrostatic potential to compensate the Fermi energy difference before 

contact, and eventually keep the Fermi energy constant over the whole composite material. 

Consequently, the bands bend near the interface in both the phases, resulting in an accumulation 

region and a depletion region in the CuInTe2 phase and GeTe phase, respectively, as shown in 

Figure 5.9b. Such a depletion effect reduces the carrier concentration in the GeTe phase near 

room temperature significantly, as confirmed by the Hall coefficient measurement shown in 

Figure 5.10a. The carrier concentration drops from 8×10
20

 cm
-3

 to below 5×10
20

 cm
-3

 at 300 K. 

As the temperature increases, the Fermi energy difference between the GeTe phase and CuInTe2 

phase starts to decrease and at around 600 K, the Fermi energy converges before contact, as 

shown in Figure 5.9c. Since there is no Fermi energy difference between the two phases, the 

carriers will not diffuse across the interface after contact, resulting in negligible band bending 

near the interface, as shown in Figure 5.9d. Thus, CuInTe2 will not deplete the carriers in the 

GeTe phase at this temperature and the inverse Hall coefficient of the pure GeTe and other 

GeTe-rich composites converges slightly above 600 K, as shown in Figure 5.10a. It is worth 

noting that the temperature of the converged inverse Hall coefficient is slightly higher than 600 

K due to the fact that the carriers are contributed only by the GeTe phase, which is smaller than 
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the volume that we use to calculate the carrier concentration. Thus, the carrier concentration of 

GeTe-rich composites is smaller than that of pure GeTe at 600 K.  

As the temperature continues going up, the Fermi energy of CuInTe2 sits higher than that 

of GeTe before contact, as shown in Figure 5.9e. The carriers now diffuse from the CuInTe2 

phase into GeTe after contact and an accumulation region and depletion region are formed in the 

GeTe phase and CuInTe2 phase, respectively, shown in Figure 5.9f. This results in a higher 

carrier concentration for GeTe-rich composites than that of the pure GeTe, illustrated in Figure 

5.10a. The temperature dependent Fermi energy difference between the GeTe and CuInTe2 

phases enhances the temperature dependence of the carrier concentration of the GeTe-rich 

composites compared to that of the pure GeTe by the temperature dependent de-doping effect. 

The red straight line in the inset of Figure 5.10c represents how the carrier concentration of the 

GT-95 sample changes as the temperature changes, while the black straight line represents that 

of the pure GeTe sample. The inset of Figure 5.10c also depicts how the power factor depends on 

the carrier concentration at various temperatures for a single parabolic band. I conclude that the 

carrier concentration for the optimized power factor increases as the temperature increases, 

which is consistent with a previous study.[52] Since the de-doping effect in our sample only 

happens at lower temperatures while not influencing the carrier concentration at elevated 

temperatures, the power factor is enhanced at lower temperatures and kept optimized at higher 

temperatures, resulting in an enhanced average power factor over the whole temperature range. 

This novel mechanism of temperature-dependent de-doping effect is suitable for enhancing the 

average power factor of other heavily doped semiconductors that can only be optimized at high 

temperature via traditional doping method. 
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Figure 5.11 Schematics of the band alignment at the interface between GeTe and CuInTe2 phases in CuInTe2-rich composites at 

(a) 300 K before contact, and (b) 300 K after contact. 

 

While CuInTe2 secondary phases act as de-dopants in the GeTe-rich composites, GeTe 

secondary phases function quite differently in the CuInTe2-rich composites, which is the next 

topic of discussion. The band alignment on the interface between the GeTe and CuInTe2 phases 

at 300 K before and after contact is shown in Figure 5.11. As discussed above, the accumulation 

region is in the CuInTe2 phase while the depletion region is in the GeTe. However, the Hall 

coefficient measurement on the CuInTe2-rich samples does not show a dramatic enhancement of 

the carrier concentration in GT-10 or GT-15 samples compared to the pure CuInTe2 at 300 K, 

shown in Figure 5.12a. The approximate 4×10
18

 cm
-3

 carrier concentration enhancement at room 

temperature in the GT-10 and GT-15 samples compared to the pure CuInTe2 is much smaller 

than the 3×10
20

 cm
-3

 carrier concentration drop in the GT-95 compared to the pure GeTe. We 

attribute this large difference to the fact that the GeTe secondary phase segregates at larger size. 

As mentioned in the Poisson Model section, the nanoscale secondary phase segregation is crucial 

to the carrier concentration adjustment. The GeTe secondary phases with larger scale do not 

significantly influence the carrier concentration in CuInTe2. Indeed, no Ge signal can be 
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observed in CuInTe2 in Fig. 5.3a. Hall measurement shows that the carrier concentration of the 

GT-15 and GT-10 samples increases faster with temperature than the pure CuInTe2 does. This 

feature is caused by the temperature dependence of the Fermi energy in the CuInTe2 phase. From 

Figure 5.10b, the Fermi energy of CuInTe2 is around 60 meV at room temperature, increases to a 

little above 0.1 eV at around 500 K, and then starts to decrease again above 500 K to a value 

below 0.1 eV. 60 meV corresponds to an excitation energy of ~700 K, which is well above 300 

K. Thus, only a very small amount of carriers in the GeTe phase can be thermally excited over 

the energy barrier, which is equal to the value of the Fermi energy of CuInTe2. As temperature 

goes up, more and more carriers in the GeTe tend to be thermally excited, however, the 

increasing energy barrier keeps the carrier concentration at a fairly low value. This behavior is 

seen in the carrier concentration plateau from 300 K to 500 K in Figure 5.12a. As the 

temperature goes up above 500 K, more and more carriers tend to conduct across the barrier and 

the barrier height starts to decrease, thus a sudden increase in the carrier concentration of the GT-

10 and GT-15 samples was observed. I can conclude now that the carrier concentration increase 

in the GT-10 and GT-15 compared to the pure CuInTe2 comes from the thermal excitation of the 

carriers from the GeTe phase to the CuInTe2 phase, instead of the depletion or accumulation at 

the interface, which is the main cause for the de-doping effect in the GeTe-rich composites. 
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Figure 5.12 (a) High temperature carrier concentration of 3 CuInTe2-rich composites, (b) High temperature Seebeck coefficient 

and electrical conductivity of the GT-15 sample, and (c) high temperature power factor of the GT-15 sample. 
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With the charge transfer image in the CuInTe2-rich samples clear in mind, now it is not 

difficult to explain the simultaneously increasing Seebeck coefficient and electrical conductivity 

observed in the GT-15 sample. On the one hand, as the temperature increases above 500 K, a 

large amount of carriers start to be thermally excited over the barrier and contribute to the 

conduction, thus the electrical conductivity starts to increase dramatically. On the other hand, 

these excited carriers will continuously move between the CuInTe2 phase and the GeTe phase, 

thereby experiencing extra scattering. These carriers also tend to occupy the lowest energy in the 

CuInTe2 bands, since they are excited from even lower energy levels. So a significant amount of 

low energy carriers have a reduced mobility due to the extra scattering, resulting in an enhanced 

energy dependence of mobility, which is the well-known effect of energy filtering effect. The 

enhancement of the Seebeck coefficient is clearly stated in the Mott formula: 

𝑆 = −
𝜋2

3

𝑘

𝑒
𝑘𝑇 {

1

𝑔(𝐸)

𝑑𝑔(𝐸)

𝑑𝐸
+

1

𝜇(𝐸)

𝑑𝜇(𝐸)

𝑑𝐸
}|
𝐸=𝐸𝐹

    Equation 5.25 

where 𝑔(𝐸) is the density of states, and 𝜇(𝐸) is the energy-dependent mobility of the carriers. 

The simultaneously increasing Seebeck coefficient and electrical conductivity of the GT-15 

sample, shown in Figure 5.12b, results in a rapid increase of the power factor, shown in Figure 

5.12c. The temperature range of this enhancement starts from 500 K, which corresponds to the 

onset of the thermal excitation discussed earlier. It is also worth noting that this energy filtering 

effect does not influence the transport properties of the GeTe-rich composites very much by the 

following argument. At lower temperatures, the carrier concentration increase due to the thermal 

excitation from the GeTe phase to the CuInTe2 phase in the GT-15 is around 5×10
18

 cm
-3

. Taking 

the fact that GeTe is 95% of the whole material in GT-95 rather than 15% in GT-15, the carrier 

concentration increase due to such thermal excitation over the barrier at low temperature in GT-



 

92 

 

95 will be less than 3.0×10
19

 cm
-3

, which is less than 6% of the total carrier concentration of 

5×10
20

 cm
-3

. Thus, most of the carriers will be blocked by the CuInTe2 secondary phases, and the 

change of the energy dependence of the mobility contributed by the energy filtering effect is 

negligible. 

In order to uncover the scattering processes in the GeTe-CuInTe2 composites, I 

performed low temperature transport measurements, the results of which are shown in Figure 

5.13. The temperature dependence of the electrical conductivity for the samples GT-x with x>30 

is negative, while GT-15 and GT-10 possess positive temperature-dependent electrical 

conductivity, Figure 5.13a. This suggests that GeTe dominates the electrical transport properties 

for the samples with GeTe concentration larger than 30%, which is larger than the percolation 

threshold, where GeTe forms a continuous path through the material. The electrical conductivity 

generally decreases as the concentration of CuInTe2 increases. The carrier concentration data 

also confirms that 30% exceeds the percolation threshold of GeTe in the GeTe-CuInTe2 

composites as a large jump of carrier concentration from GT-15 to GT-30 sample can be 

observed, Figure 5.13b. Low temperature Hall mobility was calculated using the relation: 

𝜎 = 𝑒𝑝𝜇      Equation 5.26 

The negative temperature dependence of the mobility of 5 GeTe-rich composites suggests mixed 

scattering processes by acoustic phonons, defects and grain boundaries, while a positive 

temperature-dependent mobility of the GT-10 and GT-15 samples indicates that only scattering 

by defects and grain boundaries dominates, as shown in Figure 5.13c. GT-30 shows highly 

temperature-independent mobility, which represents a transition from GeTe-rich composites to 

CuInTe2-rich composites near the percolation of GeTe, indicating a suppression of the acoustic 



 

93 

 

phonon scattering. The mobility generally decreases as the CuInTe2 concentration increases till 

70%, when the mobility reaches the minimum. Then the mobility starts to increase as the 

CuInTe2 concentration continues increasing until 70%. It is of great interest to compare the room 

temperature mobility of this work to that of a previous work on In-doped GeTe.[55] As shown in 

the inset of Figure 5.13c, it is obvious that the mobility of GeTe-CuInTe2 composites is 

significantly larger than that of GeTe-In2Te3 solid solutions. It suggests that forming nano-size 

secondary phases scatters the carriers less significantly than disturbing the lattice by doping does. 

As discussed earlier, the carrier de-doping effect from the formation of composites, together with 

enhanced mobility, is a novel mechanism to optimize the thermoelectric performance of 

semiconductors.  

Low temperature thermal conductivity also shows quite different phonon scattering 

processes between GeTe-rich and CuInTe2-rich samples, Figure 5.13d. The exponentially 

decreasing thermal conductivity for the CuInTe2-rich samples is due to phonon-phonon 

scattering processes, while the almost temperature-independent thermal conductivity for the 

GeTe-rich samples suggests that the phonons are mostly scattered by the grain boundaries and 

dislocations.  
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Figure 5.13 Low temperature (a) electrical conductivity, (b) carrier concentration, (c) Hall mobility, and (d) thermal 

conductivity of GeTe-CuInTe2 composites. The inset of (c) is the comparison of room temperature mobility between GeTe-

CuInTe2 composites in this work and GeTe-In2Te3 solid solutions. 

 

High temperature thermal conductivity from room temperature to 800 K of all GeTe-

CuInTe2 composites generally exhibit negative monotonic temperature dependence, showing the 

dominance of Umklapp scattering processes, except an anomalous bump from 650 K to 700 K 

for the GeTe-rich composites, which is related to the phase transition of GeTe, Figure 5.14a. 

Since GeTe has a much higher thermal conductivity than that of CuInTe2, the total thermal 

conductivity generally decreases as the mole fraction of CuInTe2 increases. However, the GT-95 
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sample shows a remarkable deviation from such a trend with its thermal conductivity lower than 

that of the GT-90 and GT-85 samples and almost identical with that of the GT-70 sample. Such 

behavior can be attributed to the large amount of small CuInTe2 phases (~500 nm) that can 

significantly scatter phonons, which was observed in the BSE and SEM images. The large 

amount of small secondary phase only happens in the GT-95 sample, suggesting that the size of 

the micron-size CuInTe2 phase is strongly correlated to the mole fraction of CuInTe2 and 5% of 

CuInTe2 reaches the optimization for the phonon scattering in our study. Because of the 

enhanced power factor and the suppressed thermal conductivity of the GT-95 sample, the 

thermoelectric figure of merit ZT is greatly enhanced within the whole temperature range studied 

in this paper from room temperature to 800 K. The 800 K ZT is improved from 0.8 to 1.12 by 

almost 50%, Figure 5.14b. Remember that this ZT value is only a lower bound, since we 

overestimated the thermal conductivity value due to the high temperature Te evaporation effect 

mentioned before. 
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Figure 5.14 High temperature (a) thermal conductivity and (b) thermoelectric figure of merit ZT of 8 GeTe-CuInTe2 composites. 
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5.7 Summary 

 

 The composites of GeTe and CuInTe2 were successfully synthesized over a wide range of 

GeTe concentration from 0% to 100% using a solid state reaction method followed by hot 

pressing process. The phase separation of GeTe and CuInTe2 major phases was confirmed by the 

powder XRD characterization, together with the BSE, SEM, and EDS microstructural study. 

TEM and nanoscale EDS results confirmed the formation and distribution of the nanoscale 

segregations. UPS and XPS results determined the Fermi level offset between GeTe and CuInTe2 

at room temperature and confirmed the existence of the high density of the nano CuInTe2 

segregations. Distinct scattering processes of carriers and phonons between the GeTe-rich and 

CuInTe2-rich samples were characterized by low temperature thermoelectric transport properties 

measurement. By detailed theoretical and experimental analysis, we successfully enhanced the 

average power factor over a wide temperature range in the GeTe-CuInTe2 composites. We 

proved that such enhancement originated from the temperature-dependent Fermi level offset 

between the matrix and secondary phase. Such temperature-dependent mechanism results in a 

temperature-dependent carrier concentration, which is beneficial for thermoelectric power factor 

enhancement. Small amount of CuInTe2 secondary phases formed nano-size inclusions that 

strongly scatter phonons and resulted in a much lowered thermal conductivity in the GT-95 

sample, confirmed by the BSE and SEM structural analysis and high temperature thermal 

conductivity measurement. The combined enhanced average power factor and the reduced 

thermal conductivity made a great improvement on the thermoelectric figure of merit of the GT-

95 sample over the whole temperature range from 300 K to 800 K to a peak value of 1.12 at 800 

K. The GeTe secondary phases in the CuInTe2-rich samples acted as carrier donors by injecting 



 

98 

 

carriers at higher temperature into the CuInTe2 phase. Such carrier transfer effect not only 

increased the electrical conductivity by increasing the carrier concentration, but also increased 

the Seebeck coefficient by enhancing the energy dependence of the mobility. As a result, the 

power factor tripled at approximately 600 K. We proposed that this novel secondary-phase 

doping method demonstrated in the GeTe-CuInTe2 composites in this study can potentially be 

applied to other composite systems. 
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Chapter 6 Thermoelectric Power Factor Enhancement from High 

Order Band Dispersion 

 

6.1 Introduction 

 

The dispersion relation of low energy charge carriers near the band edge is usually 

parabolic, and thus the thermoelectric transport properties of most of the lightly or moderately 

doped materials can be well described with a parabolic band model. However, exceptions can 

exist under certain circumstances. Nonparabolicity has been demonstrated in various narrow 

bandgap semiconductors and the band dispersion follows the Kane relation.[51] Moreover, some 

low dimensional materials with high symmetry can have a band dispersion relation other than 

parabolic. A well-known example in 2D is graphene. In this chapter, we will study how changing 

the band dispersion influences the electrical transport properties in a thermoelectric material. We 

derived the transport coefficients by solving Boltzmann transport equation (BTE) with the 

relaxation time assumption. We also only consider the acoustic phonon scattering, which is the 

dominant scattering process at room temperature and above for most thermoelectric materials. 

The numerical calculation results indicate that higher order band dispersion relations indeed 

dramatically enhance the thermoelectric power factor compared to the parabolic band. Though 

engineering a material with high order band dispersion relation is very challenging, I propose 

that the results from this study may open up a new direction to enhance the electrical transport 



 

100 

 

properties of thermoelectric materials. In addition, real materials may have complex band 

structures that have parabolic and higher-order contributions,[62] and this work may be 

considered (from a power series context) quantify non-parabolic contributions to the 

thermoelectric properties. 

 

6.2 Theory 

 

For simplicity, an isotropic and spherical Fermi surface is assumed in the derivation, 

which can be extended to more complex cases by changing the one-dimensional integrals to 

three-dimensional. Applying the relaxation time assumption, the scattering term in the BTE is 

written as: 

−
𝑓(𝐸)−𝑓0(𝐸)

𝜏
      Equation 6.1 

where 𝑓(𝐸)  is the perturbed distribution function of the charge carriers, 𝑓0(𝐸)  is the Fermi 

distribution function, and 𝜏 is the relaxation time. The band dispersion relation is isotropic for a 

spherical Fermi surface, and thus we have: 

𝐸(𝑘⃗ ) = 𝑎|𝑘⃗ |
𝑛
      Equation 6.2 

where 𝑎 is the band dispersion proportionality constant that depends on the effective mass of the 

charge carriers, and 𝑛 is the order index of the band dispersion. Then the density of states is: 

𝜑(𝐸) =
8𝜋

(2𝜋)3
1

𝑎𝑛
(
𝐸

𝑎
)

3−𝑛

𝑛
          Equation 6.3 
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with the band effective mass is defined as: 

1

𝑚∗
=

1

ħ2

𝜕2𝐸(𝑘⃗ )

𝜕𝑘⃗ 2
      Equation 6.4 

For a parabolic band, band effective mass is independent of the energy of charge carriers; 

however, higher order dispersive bands have energy-dependent band effective mass. Such a 

difference makes it necessary to modify the simplified BTE:  

𝑞

𝑚∗ (𝐸⃗ + 𝑣 × 𝐵⃗ ) ∙ 𝛻𝑣⃗ 𝑓(𝐸) + 𝑣 ∙ 𝛻𝑟 𝑓(𝐸) = −
𝑓(𝐸)−𝑓0(𝐸)

𝜏
   Equation 6.5 

to a more generalized form: 

𝛻𝑝 𝐸(𝑘⃗ ) ∙ 𝛻𝑟 𝑓(𝐸) + 𝑞(𝐸⃗ + 𝛻𝑝 𝐸(𝑘⃗ ) × 𝐵⃗ ) ∙ 𝛻𝑝 𝑓(𝐸) = −
𝑓(𝐸)−𝑓0(𝐸)

𝜏
   Equation 6.6 

where 𝑝  is the momentum of the charge carriers, 𝐸(𝑘⃗ ) is the band dispersion relation, 𝑞 is the 

charge of the carriers, 𝐸⃗  is the electrical field, and 𝐵⃗  is the magnetic field. The derivation of the 

transport coefficients of high order dispersive bands is quite similar with that for parabolic 

band,[38] though the assumption of a constant effective mass needs to be abandoned throughout 

the whole derivation, which I present below. 

 The solution of the BTE, 𝑓(𝐸), which is also the perturbed distribution function, is 

supposed to have the form of:  

𝑓(𝐸) = 𝑓0(𝐸) − 𝑣 (𝐸) ∙ 𝑐 (𝐸)
𝑑𝑓0

𝑑𝐸
     Equation 6.7 
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where 𝑐 (𝐸) is a function of carrier energy. Plugging Eqn. 6.7 into Eqn. 6.6, the BTE can be 

rewritten as: 

𝑣 ∙ 𝛻𝑟 (𝑓0 − 𝑣 ∙ 𝑐 
𝑑𝑓0

𝑑𝐸
) + 𝑞(𝐸⃗ + 𝑣 × 𝐵⃗ ) ∙ 𝛻𝑝 (𝑓0 − 𝑣 ∙ 𝑐 

𝑑𝑓0

𝑑𝐸
) =

𝑣⃗ ∙𝑐 

𝜏

𝑑𝑓0

𝑑𝐸
  Equation 6.8 

where v⃗ = ∇p⃗⃗ E(k⃗ ) is the velocity of the charge carriers. So far, solving for 𝑓(𝐸) is equivalent to 

solving for 𝑐 (𝐸). Each term of the BTE can be further simplified in order to solve for 𝑐 (𝐸). 

With the assumption of weak perturbation, the case for thermoelectric applications, the 

deviation of the perturbed distribution function and its derivative from the unperturbed functions 

is small: 

𝑣 ∙ 𝑐 
𝑑𝑓0

𝑑𝐸
≪ 𝑓0     Equation 6.9 

𝛻𝑟 (𝑣 ∙ 𝑐 
𝑑𝑓0

𝑑𝐸
) ≪ 𝛻𝑟 𝑓0    Equation 6.10 

𝛻𝑝 (𝑣 ∙ 𝑐 
𝑑𝑓0

𝑑𝐸
) ≪ 𝛻𝑝 𝑓0    Equation 6.11 

Thus the first and the second term of the left side of the BTE (Eqn. 6.8) are approximated as: 

𝑣 ∙ 𝛻𝑟 (𝑓0 − 𝑣 ∙ 𝑐 
𝑑𝑓0

𝑑𝐸
) ≈ 𝑣 ∙ 𝛻𝑟 𝑓0 = 𝑣 ∙ 𝛻𝑟 (

1

𝑒𝑥𝑝(
𝐸−𝐸𝐹
𝑘𝐵𝑇

)+1
) = 𝑣 ∙ 𝛻𝑟 (

𝐸−𝐸𝐹

𝑘𝐵𝑇
) (𝑘𝐵𝑇

𝑑𝑓0

𝑑𝐸
)  = 𝑣 ∙

{− [𝑘𝐵𝑇𝛻𝑟 (
𝐸𝐹

𝑘𝐵𝑇
) +

𝐸

𝑘𝐵𝑇
𝛻𝑟 (𝑘𝐵𝑇)]}

𝑑𝑓0

𝑑𝐸
   Equation 6.12 

𝑞𝐸⃗ ∙ 𝛻𝑝 (𝑓0 − 𝑣 ∙ 𝑐 
𝑑𝑓0

𝑑𝐸
) ≈ 𝑞𝐸⃗ ∙ 𝛻𝑝 𝑓0 = 𝑞𝑣 ∙ 𝐸⃗ 

𝑑𝑓0

𝑑𝐸
  Equation 6.13 

Since 𝑓0 =
1

𝑒𝑥𝑝(
𝐸−𝐸𝐹
𝑘𝐵𝑇

)+1
 only depends on the energy of the carriers, thus: 
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𝑞𝑣 × 𝐵⃗ ∙ 𝛻𝑝 𝑓𝑜(𝐸) =  𝑞𝑣 × 𝐵⃗ ∙ 𝛻𝑝 𝐸
𝑑𝑓0

𝑑𝐸
=  𝑞𝑣 × 𝐵⃗ ∙ 𝑣 

𝑑𝑓0

𝑑𝐸
= 0  Equation 6.14 

Then the third term on the left side of the BTE is approximated as: 

𝑞𝑣 × 𝐵⃗ ∙ 𝛻𝑝 (𝑓0 − 𝑣 ∙ 𝑐 
𝑑𝑓0

𝑑𝐸
) = −𝑞𝑣 × 𝐵⃗ ∙ 𝛻𝑝 (𝑣 ∙ 𝑐 

𝑑𝑓0

𝑑𝐸
)   Equation 6.15 

where: 

𝛻𝑝 (𝑣 ∙ 𝑐 
𝑑𝑓0

𝑑𝐸
) = 𝛻𝑝 (𝛻𝑝 𝐸 ∙ 𝑐 

𝑑𝑓0

𝑑𝐸
) = (

𝜕

𝜕𝑝𝑥
𝑖̂ +

𝜕

𝜕𝑝𝑦
𝑗̂ +

𝜕

𝜕𝑝𝑧
𝑘̂) [(

𝜕𝐸

𝜕𝑝𝑥
𝑐𝑥 +

𝜕𝐸

𝜕𝑝𝑦
𝑐𝑦 +

𝜕𝐸

𝜕𝑝𝑧
𝑐𝑧)

𝑑𝑓𝑜

𝑑𝐸
]  =

{(
𝜕2𝐸

𝜕𝑝𝑥
2 𝑐𝑥 +

𝜕𝐸

𝜕𝑝𝑥

𝜕𝑐𝑥

𝜕𝑝𝑥
+

𝜕2𝐸

𝜕𝑝𝑥𝜕𝑝𝑦
𝑐𝑦 +

𝜕𝐸

𝜕𝑝𝑦

𝜕𝑐𝑦

𝜕𝑝𝑥
+

𝜕2𝐸

𝜕𝑝𝑥𝜕𝑝𝑧
𝑐𝑧 +

𝜕𝐸

𝜕𝑝𝑧

𝜕𝑐𝑧

𝜕𝑝𝑥
)
𝑑𝑓0

𝑑𝐸
+ (

𝜕𝐸

𝜕𝑝𝑥
𝑐𝑥 +

𝜕𝐸

𝜕𝑝𝑦
𝑐𝑦 +

𝜕𝐸

𝜕𝑝𝑧
𝑐𝑧)

𝜕

𝜕𝑝𝑥

𝑑𝑓0

𝑑𝐸
} 𝑖̂  + {(

𝜕2𝐸

𝜕𝑝𝑦𝜕𝑝𝑥
𝑐𝑥 +

𝜕𝐸

𝜕𝑝𝑥

𝜕𝑐𝑥

𝜕𝑝𝑦
+
𝜕2𝐸

𝜕𝑝𝑦
2 𝑐𝑦 +

𝜕𝐸

𝜕𝑝𝑦

𝜕𝑐𝑦

𝜕𝑝𝑦
+

𝜕2𝐸

𝜕𝑝𝑦𝜕𝑝𝑧
𝑐𝑧 +

𝜕𝐸

𝜕𝑝𝑧

𝜕𝑐𝑧

𝜕𝑝𝑦
)
𝑑𝑓0

𝑑𝐸
+

(
𝜕𝐸

𝜕𝑝𝑥
𝑐𝑥 +

𝜕𝐸

𝜕𝑝𝑦
𝑐𝑦 +

𝜕𝐸

𝜕𝑝𝑧
𝑐𝑧)

𝜕

𝜕𝑝𝑦

𝑑𝑓0

𝑑𝐸
} 𝑗̂  + {(

𝜕2𝐸

𝜕𝑝𝑧𝜕𝑝𝑥
𝑐𝑥 +

𝜕𝐸

𝜕𝑝𝑥

𝜕𝑐𝑥

𝜕𝑝𝑧
+

𝜕2𝐸

𝜕𝑝𝑧𝜕𝑝𝑦
𝑐𝑦 +

𝜕𝐸

𝜕𝑝𝑦

𝜕𝑐𝑦

𝜕𝑝𝑧
+
𝜕2𝐸

𝜕𝑝𝑧
2 𝑐𝑧 +

𝜕𝐸

𝜕𝑝𝑧

𝜕𝑐𝑧

𝜕𝑝𝑧
)
𝑑𝑓0

𝑑𝐸
+ (

𝜕𝐸

𝜕𝑝𝑥
𝑐𝑥 +

𝜕𝐸

𝜕𝑝𝑦
𝑐𝑦 +

𝜕𝐸

𝜕𝑝𝑧
𝑐𝑧)

𝜕

𝜕𝑝𝑧

𝑑𝑓0

𝑑𝐸
} 𝑘̂  = 𝑀𝑎𝑡𝑟𝑖𝑥 (

1

𝑚∗) ∙ 𝑐 
𝑑𝑓0

𝑑𝐸
+ {(𝑣 ∙

𝜕

𝜕𝑝𝑥
𝑐 
𝑑𝑓0

𝑑𝐸
) 𝑖̂ +

(𝑣 ∙
𝜕

𝜕𝑝𝑦
𝑐 
𝑑𝑓0

𝑑𝐸
) 𝑗̂ + (𝑣 ∙

𝜕

𝜕𝑝𝑧
𝑐 
𝑑𝑓0

𝑑𝐸
) 𝑘̂} + (𝑣 ∙ 𝑐 

𝑑2𝑓0

𝑑𝐸2
) 𝑣  = 𝑀𝑎𝑡𝑟𝑖𝑥 (

1

𝑚∗) ∙ 𝑐 
𝑑𝑓0

𝑑𝐸
+ (𝑣 ∙

𝜕

𝜕𝐸
𝑐 
𝑑𝑓0

𝑑𝐸
) 𝑣 +

(𝑣 ∙ 𝑐 
𝑑2𝑓0

𝑑𝐸2
) 𝑣          Equation 6.16 

where 𝑀𝑎𝑡𝑟𝑖𝑥 (
1

𝑚∗
) is the effective mass matrix for the high order dispersive band. A vector is 

defined as: 
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𝐴 = 𝑀𝑎𝑡𝑟𝑖𝑥 (
1

𝑚∗
) ∙ 𝑐 (𝐸) =

(

 
 
 

𝜕2𝐸

𝜕𝑝𝑥
2

𝜕2𝐸

𝜕𝑝𝑥𝜕𝑝𝑦

𝜕2𝐸

𝜕𝑝𝑥𝜕𝑝𝑧

𝜕2𝐸

𝜕𝑝𝑦𝜕𝑝𝑥

𝜕2𝐸

𝜕𝑝𝑦
2

𝜕2𝐸

𝜕𝑝𝑦𝜕𝑝𝑧

𝜕2𝐸

𝜕𝑝𝑧𝜕𝑝𝑥

𝜕2𝐸

𝜕𝑝𝑧𝜕𝑝𝑦

𝜕2𝐸

𝜕𝑝𝑧
2 )

 
 
 
∙ (

𝑐𝑥
𝑐𝑦
𝑐𝑧
) =

1

ħ2

(

 
 
 

𝜕2𝐸

𝜕𝑘𝑥
2

𝜕2𝐸

𝜕𝑘𝑥𝜕𝑘𝑦

𝜕2𝐸

𝜕𝑘𝑥𝜕𝑘𝑧

𝜕2𝐸

𝜕𝑘𝑦𝜕𝑘𝑥

𝜕2𝐸

𝜕𝑘𝑦
2

𝜕2𝐸

𝜕𝑘𝑦𝜕𝑘𝑧

𝜕2𝐸

𝜕𝑘𝑧𝜕𝑘𝑥

𝜕2𝐸

𝜕𝑘𝑧𝜕𝑘𝑦

𝜕2𝐸

𝜕𝑘𝑧
2 )

 
 
 
∙ (

𝑐𝑥
𝑐𝑦
𝑐𝑧
) Equation 6.17 

Then, the third term (Eqn. 6.15) can be further simplified as: 

𝑇ℎ𝑒 𝑡ℎ𝑖𝑟𝑑 𝑙𝑒𝑓𝑡 𝑠𝑖𝑑𝑒 𝑡𝑒𝑟𝑚 = −𝑞𝑣 × 𝐵⃗ ∙ 𝐴 
𝑑𝑓0

𝑑𝐸
= −𝑞𝑣 ∙ (𝐵⃗ × 𝐴 )

𝑑𝑓0

𝑑𝐸
 Equation 6.18 

Substituting Eqn. 6.12, 6.13, and 6.18 into the BTE, then we have: 

𝑣 ∙ {− [𝑘𝐵𝑇𝛻𝑟 (
𝐸𝐹

𝑘𝐵𝑇
) +

𝐸

𝑘𝐵𝑇
𝛻𝑟(𝑘𝐵𝑇)]}

𝑑𝑓0

𝑑𝐸
+ 𝑞𝑣 ∙ 𝐸⃗ 

𝑑𝑓0

𝑑𝐸
− 𝑞𝑣 ∙ (𝐵⃗ × 𝐴 )

𝑑𝑓0

𝑑𝐸
=

𝑣⃗ ∙𝑐 

𝜏

𝑑𝑓0

𝑑𝐸
  

 Equation 6.19 

The solution 𝑐 (𝐸) is derived by rearranging the terms in Eqn. 6.19 as: 

𝑐 = −𝑞𝜏(𝐵⃗ × 𝐴 ) + 𝑞𝜏𝐸⃗ − 𝜏𝑘𝐵𝑇𝛻𝑟 (
𝐸𝐹

𝑘𝐵𝑇
) − 𝜏

𝐸

𝑘𝐵𝑇
𝛻𝑟(𝑘𝐵𝑇)  Equation 6.20 

Without losing generality, the electric field and temperature gradient are set in the x-y 

plane and the magnetic field is set along the z direction:  

𝐸⃗ = 𝐸𝑥𝑖̂ + 𝐸𝑦𝑗̂;  𝐵⃗ = 𝐵𝑧𝑘̂    Equation 6.21 

Then the vector 𝑐 (𝐸) only contains x and y components: 
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{
𝑐𝑥 = 𝛽 + 𝑞𝜏𝐵𝑧

1

ħ2
(

𝜕2𝐸

𝜕𝑘𝑦𝜕𝑘𝑥
𝑐𝑥 +

𝜕2𝐸

𝜕𝑘𝑦
2 𝑐𝑦)

𝑐𝑦 = 𝛾 − 𝑞𝜏𝐵𝑧
1

ħ2
(
𝜕2𝐸

𝜕𝑘𝑥
2 𝑐𝑥 +

𝜕2𝐸

𝜕𝑘𝑥𝜕𝑘𝑦
𝑐𝑦)

   Equation 6.22 

where,  

𝛽 = 𝜏 {𝑞𝐸𝑥 − 𝑘𝐵𝑇
𝜕

𝜕𝑥
(
𝐸𝐹

𝑘𝐵𝑇
) −

𝐸

𝑘𝐵𝑇

𝜕

𝜕𝑥
(𝑘𝐵𝑇)}   Equation 6.23 

𝛾 = 𝜏 {𝑞𝐸𝑦 − 𝑘𝐵𝑇
𝜕

𝜕𝑦
(
𝐸𝐹

𝑘𝐵𝑇
) −

𝐸

𝑘𝐵𝑇

𝜕

𝜕𝑦
(𝑘𝐵𝑇)}   Equation 6.24 

With the weak field assumption, the x and y components of the solution 𝑐 (𝐸) can be further 

simplified as: 

{
𝑐𝑥 = {1 + 𝑞𝜏𝐵𝑧

𝜕2𝐸

𝜕𝑘𝑥𝜕𝑘𝑦

1

ħ2
} 𝛽 + 𝑞𝜏𝐵𝑧

𝜕2𝐸

𝜕𝑘𝑦
2

1

ħ2
𝛾

𝑐𝑦 = −𝑞𝜏𝐵𝑧
𝜕2𝐸

𝜕𝑘𝑥
2

1

ħ2
𝛽 + {1 − 𝑞𝜏𝐵𝑧

𝜕2𝐸

𝜕𝑘𝑥𝜕𝑘𝑦

1

ħ2
} 𝛾

  Equation 6.25 

 With the perturbed distribution function solved, thermoelectric transport coefficients can 

now be calculated. The current density along the x-direction is the integral over the whole k-

space: 

𝑗𝑥 = ∑ 𝑞
𝑉(𝑘𝑥,𝑘𝑦,𝑘𝑧)𝑛(𝑘𝑥,𝑘𝑦,𝑘𝑧)

𝑑𝑆𝑑𝑡𝑘𝑥,𝑘𝑦,𝑘𝑧  = ∭𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝑞
𝑣𝑥(𝑘𝑥,𝑘𝑦,𝑘𝑧)𝑑𝑆𝑑𝑡𝑓(𝑘𝑥,𝑘𝑦,𝑘𝑧)𝜑(𝑘𝑥,𝑘𝑦,𝑘𝑧)

𝑑𝑆𝑑𝑡
 =

∭𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝑞 𝑣𝑥(𝑘𝑥, 𝑘𝑦, 𝑘𝑧)𝑓(𝑘𝑥, 𝑘𝑦, 𝑘𝑧)𝜑(𝑘𝑥, 𝑘𝑦, 𝑘𝑧)  Equation 6.26 

where 𝑉(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) is the volume in the real space in which the electrons or holes with the 

momentum (𝑘𝑥, 𝑘𝑦, 𝑘𝑧)  will travel through the cross section 𝑑𝑆  in the time interval 𝑑𝑡 ; 

𝑛(𝑘𝑥, 𝑘𝑦, 𝑘𝑧)  is the electrons or holes concentration with the momentum (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) ; 

𝑣𝑥(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) is the velocity of the electrons or holes with the momentum (𝑘𝑥, 𝑘𝑦, 𝑘𝑧) in the x-
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direction; 𝑓(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) is the distribution function of the electrons or holes with the momentum 

(𝑘𝑥, 𝑘𝑦, 𝑘𝑧); and 𝜑(𝑘𝑥, 𝑘𝑦 , 𝑘𝑧) is the density of states of electrons or holes with the momentum 

(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) . For an isotropic and spherical Fermi surface as assumed, the integral can be 

simplified as: 

𝑗𝑥 = ∑ ∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝐸𝑛𝑒𝑟𝑔𝑦
𝑆ℎ𝑒𝑙𝑙

𝑞𝑣𝑥(𝑘𝑥 , 𝑘𝑦, 𝑘𝑧)𝑓(𝑘𝑥, 𝑘𝑦, 𝑘𝑧)𝜑(𝑘𝑥, 𝑘𝑦, 𝑘𝑧)𝑒𝑎𝑐ℎ 𝑠ℎ𝑒𝑙𝑙   

 Equation 6.27 

Since 𝑓(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) is only a function of the energy of the carriers and: 

𝜑(𝑘𝑥, 𝑘𝑦, 𝑘𝑧) =
2

(2𝜋)3
     Equation 6.28 

Thus we have: 

𝑗𝑥 = ∑ ∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝐸𝑛𝑒𝑟𝑔𝑦
𝑆ℎ𝑒𝑙𝑙

𝑞𝑣𝑥(𝑘𝑥, 𝑘𝑦, 𝑘𝑧)𝑓(𝐸)
2

(2𝜋)3𝑒𝑎𝑐ℎ 𝑠ℎ𝑒𝑙𝑙   Equation 6.29 

Substitute 𝑓(𝐸) solved from BTE into Eqn. 6.28, we have: 

𝑗𝑥 = ∑ ∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝐸𝑛𝑒𝑟𝑔𝑦
𝑆ℎ𝑒𝑙𝑙

𝑞𝑣𝑥(𝑘𝑥 , 𝑘𝑦, 𝑘𝑧) [𝑓0(𝐸) − 𝑣 (𝐸) ∙ 𝑐 (𝐸)
𝑑𝑓0

𝑑𝐸
]

2

(2𝜋)3𝑒𝑎𝑐ℎ 𝑠ℎ𝑒𝑙𝑙  =

∑ ∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝑞𝑣𝑥 {𝑓0(𝐸) − 𝑣𝑥𝑐𝑥
𝑑𝑓0

𝑑𝐸
− 𝑣𝑦𝑐𝑦

𝑑𝑓0

𝑑𝐸
}

2

(2𝜋)3
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝐸𝑛𝑒𝑟𝑔𝑦
𝑆ℎ𝑒𝑙𝑙

𝑒𝑎𝑐ℎ 𝑠ℎ𝑒𝑙𝑙    

 Equation 6.30 

Similarly, the current density in the y-direction is: 
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𝑗𝑦 = ∑ ∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝑞𝑣𝑦 {𝑓0(𝐸) − 𝑣𝑥𝑐𝑥
𝑑𝑓0

𝑑𝐸
− 𝑣𝑦𝑐𝑦

𝑑𝑓0

𝑑𝐸
}

2

(2𝜋)3
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝐸𝑛𝑒𝑟𝑔𝑦
𝑆ℎ𝑒𝑙𝑙

𝑒𝑎𝑐ℎ 𝑠ℎ𝑒𝑙𝑙   

 Equation 6.31 

Several terms in the integrals are zero due to the high symmetry of the constant-energy surface: 

∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝐸𝑛𝑒𝑟𝑔𝑦
𝑆ℎ𝑒𝑙𝑙

𝑞𝑣𝑥𝑓0(𝐸)
2

(2𝜋)3
=∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡

𝐸𝑛𝑒𝑟𝑔𝑦
𝑆ℎ𝑒𝑙𝑙

𝑞𝑣𝑦𝑓0(𝐸)
2

(2𝜋)3
= 0 

 Equation 6.32 

For high order dispersive bands: 

𝐸 = 𝑎|𝑘⃗ |
𝑛
= 𝑎(√𝑘𝑥2 + 𝑘𝑦2 + 𝑘𝑧2)

𝑛
   Equation 6.33 

The derivatives of the carrier energy with respect to the momentum are: 

𝜕2𝐸

𝜕𝑘𝑥2
= 𝑎𝑛(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2)
𝑛
2
−1
+ 𝑎𝑛(𝑛 − 2)𝑘𝑥

2(𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2)
𝑛
2
−2

 

Equation 6.34 

𝜕2𝐸

𝜕𝑘𝑦2
= 𝑎𝑛(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2)
𝑛
2
−1
+ 𝑎𝑛(𝑛 − 2)𝑘𝑦

2(𝑘𝑥
2 + 𝑘𝑦

2 + 𝑘𝑧
2)
𝑛
2
−2

 

Equation 6.35 

𝜕2𝐸

𝜕𝑘𝑥𝜕𝑘𝑦
= 𝑎𝑛(𝑛 − 2)𝑘𝑥𝑘𝑦(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2)
𝑛

2
−2

  Equation 6.36 

𝑣𝑥 =
1

ħ

𝜕𝐸

𝜕𝑘𝑥
=

1

ħ
𝑎𝑛𝑘𝑥(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2)
𝑛

2
−1

   Equation 6.37 

and 



 

108 

 

𝑣𝑦 =
1

ħ

𝜕𝐸

𝜕𝑘𝑦
=

1

ħ
𝑎𝑛𝑘𝑦(𝑘𝑥

2 + 𝑘𝑦
2 + 𝑘𝑧

2)
𝑛

2
−1

   Equation 6.38 

Substitute Eqn. 6.33 to 6.37 into the current density integrals, we have: 

𝑗𝑥 = ∑ ∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝑞
1

ħ
𝑎𝑛𝑘𝑥 (|𝑘⃗ |

2
)

𝑛
2−1

{−
1

ħ
𝑎𝑛𝑘𝑥 (|𝑘⃗ |

2
)

𝑛
2−1

[{1

𝐸𝑛𝑒𝑟𝑔𝑦
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑆ℎ𝑒𝑙𝑙

𝑒𝑎𝑐ℎ 𝑠ℎ𝑒𝑙𝑙

+ 𝑞𝜏𝐵𝑧𝑎𝑛(𝑛 − 2)𝑘𝑥𝑘𝑦 (|𝑘⃗ |
2
)

𝑛
2−2 1

ħ2
}𝛽

+ 𝑞𝜏𝐵𝑧 [𝑎𝑛 (|𝑘⃗ |
2
)

𝑛
2−1

+ 𝑎𝑛(𝑛 − 2)𝑘𝑦
2 (|𝑘⃗ |

2
)

𝑛
2−2

]
1

ħ2
𝛾]
𝑑𝑓0
𝑑𝐸

−
1

ħ
𝑎𝑛𝑘𝑦 (|𝑘⃗ |

2
)

𝑛
2−1

[−𝑞𝜏𝐵𝑧 [𝑎𝑛 (|𝑘⃗ |
2
)

𝑛
2−1

+ 𝑎𝑛(𝑛 − 2)𝑘𝑥
2 (|𝑘⃗ |

2
)

𝑛
2−2

]
1

ħ2
𝛽

+ {1 − 𝑞𝜏𝐵𝑧𝑎𝑛(𝑛 − 2)𝑘𝑥𝑘𝑦 (|𝑘⃗ |
2
)

𝑛
2−2 1

ħ2
} 𝛾]

𝑑𝑓0
𝑑𝐸
}

2

(2𝜋)3
 

= ∑ ∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝑞
1

ħ
𝑎𝑛𝑘𝑥 (|𝑘⃗ |

2
)

𝑛
2−1

{−
1

ħ
𝑎𝑛𝑘𝑥 (|𝑘⃗ |

2
)

𝑛
2−1

[𝛽

𝐸𝑛𝑒𝑟𝑔𝑦
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑆ℎ𝑒𝑙𝑙

𝑒𝑎𝑐ℎ 𝑠ℎ𝑒𝑙𝑙

+ 𝑞𝜏𝐵𝑧 [𝑎𝑛 (|𝑘⃗ |
2
)

𝑛
2−1

]
1

ħ2
𝛾]
𝑑𝑓0
𝑑𝐸
}

2

(2𝜋)3
 

= − ∑ ∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝑞
1

ħ2
𝑎2𝑛2𝑘𝑥

2 (|𝑘⃗ |
2
)
𝑛−2

[𝛽

𝐸𝑛𝑒𝑟𝑔𝑦
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑆ℎ𝑒𝑙𝑙

𝑒𝑎𝑐ℎ 𝑠ℎ𝑒𝑙𝑙

+ 𝑞𝜏𝐵𝑧𝑎𝑛 (|𝑘⃗ |
2
)

𝑛
2−1 1

ħ2
𝛾]
𝑑𝑓0
𝑑𝐸

2

(2𝜋)3
 

Equation 6.39 

Similarly, the current density in the y direction is: 
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𝑗𝑦 = ∑ ∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝑞𝑣𝑦 {−𝑣𝑥𝑐𝑥
𝑑𝑓0
𝑑𝐸

− 𝑣𝑦𝑐𝑦
𝑑𝑓0
𝑑𝐸
}

2

(2𝜋)3
𝐸𝑛𝑒𝑟𝑔𝑦
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑆ℎ𝑒𝑙𝑙

𝑒𝑎𝑐ℎ 𝑠ℎ𝑒𝑙𝑙

= ∑ ∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝑞
1

ħ
𝑎𝑛𝑘𝑦 (|𝑘⃗ |

2
)

𝑛
2−1

{−
1

ħ
𝑎𝑛𝑘𝑥 (|𝑘⃗ |

2
)

𝑛
2−1

[{1

𝐸𝑛𝑒𝑟𝑔𝑦
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑆ℎ𝑒𝑙𝑙

𝑒𝑎𝑐ℎ 𝑠ℎ𝑒𝑙𝑙

+ 𝑞𝜏𝐵𝑧𝑎𝑛(𝑛 − 2)𝑘𝑥𝑘𝑦 (|𝑘⃗ |
2
)

𝑛
2−2 1

ħ2
} 𝛽 + 𝑞𝜏𝐵𝑧 [𝑎𝑛 (|𝑘⃗ |

2
)

𝑛
2−1

+ 𝑎𝑛(𝑛 − 2)𝑘𝑦
2 (|𝑘⃗ |

2
)

𝑛
2−2

]
1

ħ2
𝛾]
𝑑𝑓0
𝑑𝐸

−
1

ħ
𝑎𝑛𝑘𝑦 (|𝑘⃗ |

2
)

𝑛
2−1

[−𝑞𝜏𝐵𝑧 [𝑎𝑛 (|𝑘⃗ |
2
)

𝑛
2−1

+ 𝑎𝑛(𝑛 − 2)𝑘𝑥
2 (|𝑘⃗ |

2
)

𝑛
2−2

]
1

ħ2
𝛽

+ {1 − 𝑞𝜏𝐵𝑧𝑎𝑛(𝑛 − 2)𝑘𝑥𝑘𝑦 (|𝑘⃗ |
2
)

𝑛
2−2 1

ħ2
} 𝛾]

𝑑𝑓0
𝑑𝐸
}

2

(2𝜋)3
 

= ∑ ∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝑞
1

ħ
𝑎𝑛𝑘𝑦 (|𝑘⃗ |

2
)

𝑛
2−1

{−
1

ħ
𝑎𝑛𝑘𝑦 (|𝑘⃗ |

2
)

𝑛
2−1

[−𝑞𝜏𝐵𝑧𝑎𝑛 (|𝑘⃗ |
2
)

𝑛
2−1 1

ħ2
𝛽

𝐸𝑛𝑒𝑟𝑔𝑦
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑆ℎ𝑒𝑙𝑙

𝑒𝑎𝑐ℎ 𝑠ℎ𝑒𝑙𝑙

+ 𝛾]
𝑑𝑓0
𝑑𝐸
}

2

(2𝜋)3
 

= ∑ ∭ 𝑑𝑘𝑥𝑑𝑘𝑦𝑑𝑘𝑧𝑞
1

ħ2
𝑎2𝑛2𝑘𝑦

2 (|𝑘⃗ |
2
)
𝑛−2

[𝑞𝜏𝐵𝑧𝑎𝑛 (|𝑘⃗ |
2
)

𝑛
2−1 1

ħ2
𝛽 − 𝛾]

𝑑𝑓0
𝑑𝐸

2

(2𝜋)3
𝐸𝑛𝑒𝑟𝑔𝑦
𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡
𝑆ℎ𝑒𝑙𝑙

𝑒𝑎𝑐ℎ 𝑠ℎ𝑒𝑙𝑙

 

Equation 6.40 

After changing the Cartesian coordinates to the spherical coordinates, the integrals can be 

simplified as: 
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𝑗𝑥 = −∫ 𝑑𝑘
∞

0

∫ 𝑑𝜑
2𝜋

0

∫ 𝑑𝜃
𝜋

0

2

(2𝜋)3
𝑑𝑓0
𝑑𝐸

𝑞
1

ħ2
𝑎2𝑛2𝑘2𝑛𝑠𝑖𝑛3𝜃𝑐𝑜𝑠2𝜑[𝛽 + 𝛿𝑎𝑛𝑘𝑛−2𝛾]  

= −∫ 𝑑𝐸
1

ħ2
𝑞𝑎𝑛

3𝜋2
𝑑𝑓0
𝑑𝐸

(
𝐸

𝑎
)

𝑛+1
𝑛
𝛽

∞

0

−∫ 𝑑𝐸
1

ħ2
𝑞𝑎2𝑛2𝛿

3𝜋2
𝑑𝑓0
𝑑𝐸

(
𝐸

𝑎
)

2𝑛−1
𝑛
𝛾

∞

0

 

= −∫ 𝑑𝐸
1

ħ2
𝑞𝑎−

1
𝑛𝑛

3𝜋2
𝑑𝑓0
𝑑𝐸

𝐸
𝑛+1
𝑛 𝛽

∞

0

−∫ 𝑑𝐸
1

ħ2
𝑞𝑎

1
𝑛𝑛2𝛿

3𝜋2
𝑑𝑓0
𝑑𝐸

𝐸
2𝑛−1
𝑛 𝛾

∞

0

 

Equation 6.41 

𝑗𝑦 = ∫ 𝑑𝑘
∞

0

∫ 𝑑𝜑
2𝜋

0

∫ 𝑑𝜃
𝜋

0

2

(2𝜋)3
𝑑𝑓0
𝑑𝐸

𝑞
1

ħ2
𝑎2𝑛2𝑘2𝑛𝑠𝑖𝑛3𝜃𝑠𝑖𝑛2𝜑[𝛿𝑎𝑛𝑘𝑛−2𝛽 − 𝛾]  

= ∫ 𝑑𝐸
1

ħ2
𝑞𝑎2𝑛2𝛿

3𝜋2
𝑑𝑓0
𝑑𝐸

(
𝐸

𝑎
)

2𝑛−1
𝑛
𝛽

∞

0

−∫ 𝑑𝐸
1

ħ2
𝑞𝑎𝑛

3𝜋2
𝑑𝑓0
𝑑𝐸

(
𝐸

𝑎
)

𝑛+1
𝑛
𝛾

∞

0

 

= ∫ 𝑑𝐸
1

ħ2
𝑞𝑎

1
𝑛𝑛2𝛿

3𝜋2
𝑑𝑓0
𝑑𝐸

𝐸
2𝑛−1
𝑛 𝛽

∞

0

−∫ 𝑑𝐸
1

ħ2
𝑞𝑎−

1
𝑛𝑛

3𝜋2
𝑑𝑓0
𝑑𝐸

𝐸
𝑛+1
𝑛 𝛾

∞

0

 

Equation 6.42 

where 𝛿 =
𝑞𝜏𝐵𝑧

ħ2
, and 𝑘 = |𝑘⃗ |. Substitute 𝛽 and 𝛾 into the integrals, we have: 
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𝑗𝑥 = −∫ 𝑑𝐸
1

ħ2
𝑞𝑎−

1
𝑛𝑛

3𝜋2
𝑑𝑓0
𝑑𝐸

𝐸
𝑛+1
𝑛 𝜏 {𝑞𝐸𝑥 − 𝑘𝐵𝑇

𝜕

𝜕𝑥
(
𝐸𝐹
𝑘𝐵𝑇

) −
𝐸

𝑘𝐵𝑇

𝜕

𝜕𝑥
(𝑘𝐵𝑇)}

∞

0

−∫ 𝑑𝐸
1

ħ2
𝑞𝑎

1
𝑛𝑛2𝛿

3𝜋2
𝑑𝑓0
𝑑𝐸

𝐸
2𝑛−1
𝑛 𝜏 {𝑞𝐸𝑦 − 𝑘𝐵𝑇

𝜕

𝜕𝑦
(
𝐸𝐹
𝑘𝐵𝑇

) −
𝐸

𝑘𝐵𝑇

𝜕

𝜕𝑦
(𝑘𝐵𝑇)}

∞

0

 

= −∫ 𝑑𝐸
1

ħ2
𝑞𝑎−

1
𝑛𝑛

3𝜋2
𝑑𝑓0
𝑑𝐸

𝐸
𝑛+1
𝑛 𝜏𝑘𝐵𝑇 {−

𝜕

𝜕𝑥
(
𝑞𝑉 + 𝐸𝐹
𝑘𝐵𝑇

) + 𝑞𝑉
𝜕

𝜕𝑥
(
1

𝑘𝐵𝑇
)

∞

0

+ 𝐸
𝜕

𝜕𝑥
(
1

𝑘𝐵𝑇
)}

− ∫ 𝑑𝐸
1

ħ2
𝑞𝑎

1
𝑛𝑛2𝛿

3𝜋2
𝑑𝑓0
𝑑𝐸

𝐸
2𝑛−1
𝑛 𝜏𝑘𝐵𝑇 {−

𝜕

𝜕𝑦
(
𝑞𝑉 + 𝐸𝐹
𝑘𝐵𝑇

) + 𝑞𝑉
𝜕

𝜕𝑦
(
1

𝑘𝐵𝑇
)

∞

0

+ 𝐸
𝜕

𝜕𝑦
(
1

𝑘𝐵𝑇
)} 

Equation 6.43 

𝑗𝑦 = ∫ 𝑑𝐸
1

ħ2
𝑞𝑎

1
𝑛𝑛2𝛿

3𝜋2
𝑑𝑓0
𝑑𝐸

𝐸
2𝑛−1
𝑛 𝜏𝑘𝐵𝑇 {−

𝜕

𝜕𝑥
(
𝑞𝑉 + 𝐸𝐹
𝑘𝐵𝑇

) + 𝑞𝑉
𝜕

𝜕𝑥
(
1

𝑘𝐵𝑇
) + 𝐸

𝜕

𝜕𝑥
(
1

𝑘𝐵𝑇
)}

∞

0

−∫ 𝑑𝐸
1

ħ2
𝑞𝑎−

1
𝑛𝑛

3𝜋2
𝑑𝑓0
𝑑𝐸

𝐸
𝑛+1
𝑛 𝜏𝑘𝐵𝑇 {−

𝜕

𝜕𝑦
(
𝑞𝑉 + 𝐸𝐹
𝑘𝐵𝑇

) + 𝑞𝑉
𝜕

𝜕𝑦
(
1

𝑘𝐵𝑇
)

∞

0

+ 𝐸
𝜕

𝜕𝑦
(
1

𝑘𝐵𝑇
)} 

Equation 6.44 

where 𝐸⃗ = −𝛻𝑟 𝑉. Define integrals: 
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{
 
 
 
 

 
 
 
 𝐼1 = ∫ 𝑑𝐸

1

ħ2
𝑎
−
1
𝑛𝑛

3𝜋2
𝑑𝑓0

𝑑𝐸
𝐸
𝑛+1

𝑛 𝜏
∞

0

𝐼2 = ∫ 𝑑𝐸
1

ħ2
𝑎
−
1
𝑛𝑛

3𝜋2
𝑑𝑓0

𝑑𝐸
𝐸
2𝑛+1

𝑛 𝜏
∞

0

𝐼3 = ∫ 𝑑𝐸
1

ħ2
𝑎
1
𝑛𝑛2𝛿

3𝜋2
𝑑𝑓0

𝑑𝐸
𝐸
2𝑛−1

𝑛 𝜏
∞

0

𝐼4 = ∫ 𝑑𝐸
1

ħ2
𝑎
1
𝑛𝑛2𝛿

3𝜋2
𝑑𝑓0

𝑑𝐸
𝐸
3𝑛−1

𝑛 𝜏
∞

0

   Equation 6.45 

Then, Eqn. 6.43 and 6.44 can be rearranged: 

𝜕

𝜕𝑥
(
𝑞𝑉 + 𝐸𝐹
𝑘𝐵𝑇

) =
𝐼1

𝑘𝐵𝑇(𝐼1
2 + 𝐼3

2)

𝑗𝑥
𝑞
−

𝐼3

𝑘𝐵𝑇(𝐼1
2 + 𝐼3

2)

𝑗𝑦

𝑞
+ (𝑞𝑉 +

𝐼1𝐼2 + 𝐼3𝐼4

𝐼1
2 + 𝐼3

2 )
𝜕

𝜕𝑥
(
1

𝑘𝐵𝑇
)

+ (
𝐼1𝐼4 − 𝐼2𝐼3

𝐼1
2 + 𝐼3

2 )
𝜕

𝜕𝑦
(
1

𝑘𝐵𝑇
) 

Equation 6.46 

𝜕

𝜕𝑦
(
𝑞𝑉 + 𝐸𝐹
𝑘𝐵𝑇

) =
𝐼3

𝑘𝐵𝑇(𝐼1
2 + 𝐼3

2)

𝑗𝑥
𝑞
+

𝐼1

𝑘𝐵𝑇(𝐼1
2 + 𝐼3

2)

𝑗𝑦

𝑞
− (

𝐼1𝐼4 − 𝐼2𝐼3

𝐼1
2 + 𝐼3

2 )
𝜕

𝜕𝑥
(
1

𝑘𝐵𝑇
)

+ (𝑞𝑉 +
𝐼1𝐼2 + 𝐼3𝐼4

𝐼1
2 + 𝐼3

2 )
𝜕

𝜕𝑦
(
1

𝑘𝐵𝑇
) 

Equation 6.47 

Define the quantities: 

{
  
 

  
 𝐴11 =

𝐼1

𝑘𝐵𝑇(𝐼1
2+𝐼3

2)

𝐴12 =
𝐼3

𝑘𝐵𝑇(𝐼1
2+𝐼3

2)

𝐴13 = (𝑞𝑉 +
𝐼1𝐼2+𝐼3𝐼4

𝐼1
2+𝐼3

2 )

𝐴14 = (
𝐼1𝐼4−𝐼2𝐼3

𝐼1
2+𝐼3

2 )

    Equation 6.48 

Then Eqn. 6.46 and 6.47 turn into a more compact form as: 
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{

𝜕

𝜕𝑥
(
𝑞𝑉+𝐸𝐹

𝑘𝐵𝑇
) = 𝐴11

𝑗𝑥

𝑞
− 𝐴12

𝑗𝑦

𝑞
+ 𝐴13

𝜕

𝜕𝑥
(
1

𝑘𝑇
) + 𝐴14

𝜕

𝜕𝑦
(
1

𝑘𝑇
)

𝜕

𝜕𝑦
(
𝑞𝑉+𝐸𝐹

𝑘𝐵𝑇
) = 𝐴12

𝑗𝑥

𝑞
+ 𝐴11

𝑗𝑦

𝑞
− 𝐴14

𝜕

𝜕𝑥
(
1

𝑘𝑇
) + 𝐴13

𝜕

𝜕𝑦
(
1

𝑘𝑇
)
  Equation 6.49 

 The electrical transport coefficients can now be calculated based on their own definitions. 

The electrical conductivity is defined as: 

𝜎 =
𝑗𝑥

𝐸𝑥
      Equation 6.50 

with conditions: 

𝑑𝑇

𝑑𝑥
=

𝑑𝑇

𝑑𝑦
= 𝑗𝑦 = 0        Equation 6.51 

Substituting Eqn. 6.48, 6.50, and 6.51 into 6.49, then we have: 

𝜎 = −
𝑞2

𝑘𝐵𝑇𝐴11
= −

𝑞2(𝐼1
2+𝐼3

2)

𝐼1
    Equation 6.52 

The Seebeck coefficient is defined as: 

𝑆 = 𝐸𝑥/
𝑑𝑇

𝑑𝑥
     Equation 6.53 

with conditions: 

𝑗𝑥 = 𝑗𝑦 =
𝑑𝑇

𝑑𝑦
= 0        Equation 6.54 

Plugging Eqn. 6.48, 6.53, and 6.54 into 6.49, then we have: 

𝑆 =
𝑘𝐵

𝑞
(
𝐴13

𝑘𝐵𝑇
−
𝑞𝑉+𝐸𝐹

𝑘𝐵𝑇
) =

𝑘𝐵

𝑞
(
𝑞𝑉+

𝐼1𝐼2+𝐼3𝐼4

𝐼1
2+𝐼3

2

𝑘𝐵𝑇
−
𝑞𝑉+𝐸𝐹

𝑘𝐵𝑇
) =

𝑘𝐵

𝑞
(
𝐼1𝐼2+𝐼3𝐼4

𝑘𝐵𝑇(𝐼1
2+𝐼3

2)
−

𝐸𝐹

𝑘𝐵𝑇
)   

 Equation 6.55 
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The Hall coefficient is defined as: 

𝑅𝐻 =
𝐸𝑦

𝑗𝑥𝐵𝑧
     Equation 6.56 

with conditions: 

𝑗𝑦 =
𝑑𝑇

𝑑𝑦
=

𝑑𝑇

𝑑𝑥
= 0         Equation 6.57 

Substitute Eqn. 6.55 and 6.56 into 6.48, then we have: 

𝑅𝐻 = −
𝑘𝐵𝑇

𝑞2𝐵𝑧
𝐴12 = −

𝑘𝐵𝑇

𝑞2𝐵𝑧

𝐼3

𝑘𝐵𝑇(𝐼1
2 + 𝐼3

2)
= −

1

𝑞2𝐵𝑧

𝐼3

𝐼1
2  

Equation 6.58 

With the energy-dependent relaxation time having the form of: 

𝜏 = 𝑤𝐸𝑟     Equation 6.59 

where 𝑤  is the proportionality constant and 𝑟  is the scattering parameter depending on the 

scattering processes, the transport coefficients can be written as: 

 𝜎 = 𝑞2
𝑛

3ħ2
1

𝜋2
𝑎−

1

𝑛𝑤 (
𝑛+1

𝑛
+ 𝑟) (𝑘𝐵𝑇)

𝑛+1

𝑛
+𝑟𝐹1

𝑛
+𝑟
(𝜂∗)  Equation 6.60 

𝑆 =
𝑘𝐵

𝑞
{
2𝑛+1

𝑛
+𝑟

𝑛+1

𝑛
+𝑟
∙
𝐹𝑛+1

𝑛
+𝑟
(𝜂∗)

𝐹1
𝑛
+𝑟
(𝜂∗)

− 𝜂∗}   Equation 6.61 

𝑅𝐻 =
1

𝑞
(
𝑎

𝑘𝐵𝑇
)

3

𝑛
3𝜋2

(
2𝑛−1

𝑛
+2𝑝)

(
𝑛+1

𝑛
+𝑝)

2

𝐹𝑛−1
𝑛

+2𝑝
(𝜂∗)

(𝐹1
𝑛
+𝑝
(𝜂∗))

2       Equation 6.62 
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where 𝜂∗ =
𝐸𝐹

𝑘𝐵𝑇
 is the reduced Fermi level, and 𝐹𝑗(𝜂

∗) = ∫
𝜂𝑗

1+𝑒𝑥𝑝(𝜂−𝜂∗)
𝑑𝜂

∞

0
 is the Fermi integral 

of jth order. 

 

6.3 Results and Discussion 

 

Firstly, we explore the influence of doping on the electrical transport properties for high 

order dispersive bands. Since we only focus on the transport properties near room temperature, at 

which acoustic phonon scattering processes dominate, the dopants are considered to be fully 

ionized and the carrier concentration is equal to the doping concentration: 

𝑝 =
8𝜋

(2𝜋)3
1

𝑎𝑛
(
1

𝑎
)

3−𝑛

𝑛 (𝑘𝑇)
3

𝑛𝐹3−𝑛
𝑛

(𝜂∗) = 𝑁𝐴   Equation 6.63 

where 𝑝  is the hole concentration and 𝑁𝐴  is the concentration of the impurities. The 

proportionality constant 𝑎 in Eqn. 6.2 is set to a function of band dispersion order as:  

𝑎 = 𝑒 × Å𝑛 = (1.6 × 10−19𝐶) × (10−10𝑚)𝑛  Equation 6.64 

For acoustic scattering in parabolic bands, the scattering parameter 𝑟 is equal to -0.5. This value 

originates from the results of the Fermi Golden Rule that the probability of scattering carriers 

from their initial states to final states is proportional to the density of the final states: 

1

𝜏
∝ 𝐷𝑂𝑆 = 𝜑(𝐸)     Equation 6.65 

Thus, both the scattering parameter 𝑟 and the proportionality parameter 𝑤 are functions of the 

band dispersion order 𝑛 as: 
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𝑤 =
𝑛

2
(𝑒 × Å2)

−
3

2(𝑒 × Å𝑛)
3

𝑛𝑤0         Equation 6.66 

𝑝 = 1 −
3

𝑛
             Equation 6.67 

The Fermi level, electrical conductivity, Seebeck coefficient, and power factor are then 

numerically calculated as a function of doping concentration. The results are shown in Fig. 6.1. 

In this chapter, I use m
-3

 instead of cm
-3

 as the unit of carrier concentration. 

  

 

Figure 6.1 Carrier concentration dependent (a) Fermi level, (b) Seebeck coefficient, (c) electrical conductivity, and (d) power 

factor for various band dispersions with acoustic phonon scattering parameter at 300 K. 



 

117 

 

 

Without losing generality, we select holes as the charge carriers and thus all conduction is 

p-type. The Fermi level is pushed into the valence band as the doping concentration increases for 

all the band dispersion orders studied here. Below the doping concentration of 10
28

 m
-3

, the 

Fermi level of lower order dispersive bands is pushed deeper into the valence band. This trend is 

reversed as the doping concentration increases above 10
28

 m
-3

. This feature is caused by the 

change of the density of states as the band dispersion index increases, which will be discussed 

later. The electrical conductivity increases significantly with the increasing doping concentration. 

As the doping concentration increases above 10
22

 m
-3

, lower order dispersive bands exhibit 

higher electrical conductivity. Expectedly, the Seebeck coefficient follows the opposite trend, 

decreasing as the carrier concentration increases. Higher band dispersion order leads to a larger 

thermopower. As a result, the peak power factor is enhanced by almost an order of magnitude as 

the band dispersion order 𝑛 increases from 2 to 10, as shown in Fig. 6.1d. Interestingly, the 

optimized doping concentration for the peak power factor also moves to a higher value as the 

band dispersion order increases.  

It is worth noting that the discussion with the acoustic phonon scattering assumption is 

only valid for 𝑛 ≥ 2. If we apply the model to linearly dispersive band, an infinite thermopower 

and zero electrical conductivity will be obtained. It is not hard to see that the parameter 𝐴11 is 

zero and 𝐴13 is infinity for linear bands. This indicates that the current along x or y direction does 

not contribute to an electrochemical potential drop along that direction, while a finite 

temperature gradient yields an infinite electrochemical potential drop. The unreasonable results 

are probably caused by the assumption that only acoustic phonon scattering exists. On the other 
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hand, such results also indicate that the carriers scattered by acoustic phonons in a linear band do 

not contribute to the conduction.  

 From the discussion above, a conclusion can be drawn that high order dispersive bands 

are beneficial for the thermoelectric power factor. As the band dispersion order n increases from 

2 to 10, as long as the acoustic phonon scattering process dominates, the power factor can be 

enhanced by an order of magnitude compared to the parabolic bands. In order to understand how 

high order dispersive band leads to a higher thermoelectric power factor, more details of the 

change on the band structure caused by the high band dispersion order are needed. Since the 

improvement mostly comes from the enhancement of the Seebeck coefficient, it may be helpful 

to explore what causes the Seebeck coefficient to increase. For degenerate semiconductors, the 

Seebeck coefficient can be expressed as the Mott relation as: 

𝑆 =
𝜋2

3

𝑘𝐵

𝑒
𝑘𝐵𝑇 [

𝑑𝑙𝑛(𝜇(𝐸)𝜑(𝐸))

𝑑𝐸
]
𝐸𝐹
    Equation 6.68 

where 𝜇(𝐸) is the energy-dependent carrier mobility. The enhancement of the Seebeck 

coefficient suggests that the derivative of the product of the mobility and the density of states 

with respect to the energy must increase. From Eqn. 6.3, the energy-dependent density of states 

and its derivative with respect to energy are shown in Fig. 6.2.  
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Figure 6.2 (a) Density of states and (b) its energy dependence for various band dispersions. 

 

 The energy-dependent density of states is quite different for high order dispersive bands 

than the parabolic one. The density of states approaches to infinity as the energy approaches to 

the band edge for band dispersion order larger than 3 and energies near the valence band edge. 

Such a feature leads to a significantly enhanced magnitude of the derivative of the density of 

states with respect to the energy near band edge, as shown in Fig. 6.2b. This also explains the 

trend of the calculated Fermi level shown in Fig. 6.1a. The energy-dependent mobility can be 

calculated from electrical conductivity: 

𝜎 = ∫ 𝑒𝜑(𝐸)𝜇(𝐸)𝑓(𝐸)[1 − 𝑓(𝐸)]𝑑𝐸    Equation 6.69 

The energy-dependent mobility is then written as: 

𝜇(𝐸) = 𝑞𝑎
2

𝑛𝑤
𝑛2

3ħ2
(
𝑛+1

𝑛
+ 𝑝)𝐸1−

2

𝑛
+𝑝(1 + 𝑒𝑥𝑝(𝜂∗ − 𝜂))    Equation 6.70 

The results are plotted in Fig. 6.3 for two different doping concentrations. The corresponding 

Fermi levels are also labeled in the figures. 
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Figure 6.3 Energy-dependent mobility for various band dispersions of carrier concentration of (a) 5×1027 m-3 and (b) 5×1028 m-3. 

 

It is obvious that the energy dependence of the mobility depends heavily on doping 

concentration. At the doping concentration of 5×10
27

 m
-3

, the energy dependence of the mobility 

has an abrupt change near the Fermi level. This feature is absent in Fig. 6.3b, since the Fermi 

level falls out of the energy range presented. The product of the energy-dependent density of 

states and mobility is shown in Fig. 6.4 for the doping concentration of 5×10
27

 m
-3

. As the band 

dispersion order increases, the Fermi level is pushed closer to the band edge, where the 

derivative of the product of density of states and mobility with respect to the energy increases. 

This is why the Seebeck coefficient is significantly enhanced for higher order dispersive bands. 

 



 

121 

 

 

Figure 6.4 The mobility multiplied by the density of states as a function of carrier energy. 

 

 Room temperature mobility for various band dispersion orders and various doping 

concentrations is shown in Figure 6.5a. The mobility of parabolic bands is larger than that of 

high order dispersive bands up to a doping concentration of 10
28

 m
-3

. The results above 10
28

 m
-3

 

are not discussed here, since most materials do not possess that high carrier concentration. It is 

also interesting that varying the effective mass of a parabolic band only alters the optimized 

doping concentration for the maximum power factor. The maximum value is not influenced, as 
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shown in Fig. 6.5b. It suggests that band engineering of a single parabolic band is not capable of 

enhancing the power factor. 

 

 

Figure 6.5 (a) Room temperature mobility of various band dispersions at different carrier concentrations. (b) Carrier 

concentration dependent power factor for a single parabolic band with various effective mass. 

 

6.4 Summary 

 

 Electrical transport coefficients were derived for higher order dispersive bands assuming 

that the acoustic phonon scattering dominates in this chapter. Numerical calculations are shown 

for the comparison between the higher order dispersive bands and the parabolic band. I find that 

the thermoelectric power factor can be enhanced by an order of magnitude by increasing the 

band dispersion order from 2 to 10. Detailed density of states and mobility analysis suggests that 

the enhancement mostly originates from the enhanced energy dependence of the product of 

density of states and mobility. Numerical calculations also show that changing the effective mass 
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of a parabolic band only changes the optimized carrier concentration for the maximum power 

factor, but not the maximum power factor value. This suggests that engineering a single 

parabolic band will not benefit the thermoelectric power factor. 
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Chapter 7 Conclusion 

 

In this work, we have shown that Sn dopants can be successfully incorporated in the 

binary skutterudite CoSb3 via bulk polycrystalline materials synthesis. Ab initio calculation 

predicts that Sn resonant electronic levels lie approximately 0.3 eV below the valence band 

maximum of CoSb3. However, experimental studies did not find a significant enhancement of 

the power factor. Detailed phase identification and microstructural characterization on the CoSb3-

xSnx samples using XRD, SEM, and TEM suggests that the solubility limit of Sn in CoSb3 is too 

low to move the Fermi level deep enough into the valence band to reach the Sn resonant levels. 

On the other hand, we have shown that Sn dopants significantly reduce the thermal conductivity 

of CoSb3, leading to an enhanced thermoelectric figure of merit.  

An additional approach to further push the Fermi level into the valence band to the 

vicinity of the Sn resonant levels was pursued. Fe was incorporated on the Co sites as a 

secondary p-type dopant. In order to stabilize the crystal structure and further reduce the thermal 

conductivity, Yb was also filled in the interstitial sites. Microstructural analysis corroborated that 

Sn, Fe, and Yb were successfully incorporated in the matrix of YbzFe4-yCoySb12-xSnx. However, 

thermoelectric transport measurement results still did not exhibit the influence of the Sn resonant 

levels. The Sn-doped samples exhibited lower power factor compared to the Sn-free samples. 

We attributed this to Fermi level pinning by the heavy Fe-d-band, which moves to the valence 

band maximum as the Fe concentration increases.  
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While Fe doping did not move the Fermi energy sufficiently far to access the Sn resonant 

levels, we found the convergence of the heavy Fe-d band and the light Sb-p band to be beneficial 

for the thermoelectric performance of filled skutterudites. Yb0.8Fe3CoSb12 exhibits the best 

power factor of ~25 µW/cmK
2
. In spite of its greatly increased carrier concentration, 

Yb0.8Fe3CoSb12 still exhibits an enhanced thermopower compared to Yb0.3FeCo3Sb12 and 

Yb0.6Fe2Co2Sb12 at room temperature due to the contribution of the heavy carriers in the Fe-d 

band. However, the Seebeck coefficient of Yb0.3FeCo3Sb12 exceeds that of Yb0.8Fe3CoSb12 at 

high temperatures, because the Fermi window at high temperatures becomes so wide that the 

heavy carriers in the Fe-d band start to contribute to the conduction even in Yb0.3FeCo3Sb12 and 

thus the Seebeck coefficient is mainly dependent on the carrier concentration. The benefits from 

the large effective mass and the drawback of the low mobility suggest that an optimized Fermi 

level exists for thermoelectric performance. Conventional doping on the Sb sites is able to tune 

the carrier concentration and adjust the Fermi level; however, ionized impurity scattering makes 

such a method less promising. Thus, a novel doping mechanism is desired. 

In addition to ionic impurity scattering, the low ionization energy of most of dopants 

results in a temperature-independent carrier concentration above the deionization temperature 

(this temperature is usually very low). Numerical calculation results indicate that a temperature-

independent carrier concentration is not beneficial for thermoelectric applications over a wide 

temperature range. The peak carrier concentration of the power factor varies with temperature. 

Instead of using elements, secondary phase materials are intentionally incorporated in the matrix. 

With the Fermi level offset between the matrix and the secondary phase varying with 

temperature, the charge transfer across the interface is also temperature-dependent. This leads to 

a temperature-dependent carrier concentration in the matrix. We demonstrate the novel doping 
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method in GeTe-CuInTe2 composites. The average power factor over a wide temperature range 

is significantly enhanced. Moreover, the mobility of GeTe-CuInTe2 composites is significantly 

larger than GeTe-In2Te3 solid solutions, suggesting that doping with secondary phase materials is 

able to tune the carrier concentration without sacrificing the mobility. This novel method can be 

used in other materials, such as filled skutterudites as proposed in Chapter 4. 

Finally, engineering band dispersion is proposed as a potential method of enhancing 

thermoelectric power factor. As the band dispersion index n increases from 2 to 10, the power 

factor can be enhanced by almost one order of magnitude. Such enhancement originates from the 

enhancement of the thermopower. Detailed band structure analysis suggests that the 

enhancement on the thermopower comes from the increased energy dependence of the product of 

density of states and mobility.  

Future work proposed based on the discoveries made in this work has three aspects. 

Firstly, other elements with their resonant electronic levels in CoSb3 closer to the top of the 

valence band compared to Sn should be considered. Secondly, the novel doping method devised 

in Chapter 5 has the potential to be applied to other materials. For those materials which have 

optimized power factor only at high temperatures, such as heavily doped semiconductors, 

materials carefully selected based on their temperature dependence of the Fermi levels can be 

incorporated as secondary phases to optimize the matrix carrier concentration over a wide 

temperature range, and hence enhance the average thermoelectric performance. For materials 

that need to be further optimized for thermoelectric performance, such as filled skutterudites 

discussed in Chapter 4, materials with appropriate Fermi level offset with respect to the matrix 

can be incorporated to further adjust the matrix carrier concentration without deteriorating 

mobility to further enhance power factor. Finally, engineering band dispersion in materials can 
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be beneficial for thermoelectric applications. Theoretically, transport coefficients of higher order 

dispersive bands need to be derived for other scattering processes. Moreover, mechanisms with 

potentials to achieve higher order dispersive bands, such as introducing strong spin-orbit 

interaction or altering the symmetry of the lattice structure, need to be confirmed theoretically. 

Once confirmed by theory, materials with specific properties will be explored experimentally. 
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