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Abstract 

The role played by epistasis between alleles at unlinked loci in shaping population 

fitness has been debated for many years and the existing evidence has been mainly 

accumulated from model organisms. In model organisms, fitness epistasis can be 

systematically inferred by detecting non-independence of genotypic values between loci in a 

population and confirmed through examining the number of offspring produced in two-locus 

genotype groups. No systematic study has been conducted to detect epistasis of fitness in 

humans owing to experimental constraints. In this study, we developed a novel method to 

detect fitness epistasis by testing the correlation between local ancestries on different 

chromosomes in an admixed population. We inferred local ancestry across the genome in 
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16,252 unrelated African Americans and systematically examined the pairwise correlations 

between the genomic regions on different chromosomes. Our analysis revealed a pair of 

genomic regions on chromosomes 4 and 6 that show significant local ancestry correlation (p-

value = 4.01 × 10
-8

) that can be potentially attributed to fitness epistasis. However, we also 

observed substantial local ancestry correlation that cannot be explained by systemic ancestry 

inference bias. To our knowledge, this study is the first to systematically examine evidence of 

fitness epistasis across the human genome.   

 

Key words:  Admixed population, Coevolution, Epistasis of fitness, Natural selection  

 

 

Introduction 

Epistasis between alleles in unlinked loci has been considered to play an important role 

in shaping genetic variation, and the empirical evidence is mainly restricted to model 

organisms [Corbett-Detig, et al. 2013; Cutter 2012; Presgraves 2010]. In inbreeding studies 

of mice, functionally related unlinked genes under selection exhibited greater gametic phase 

disequilibrium (GPD) than did unrelated genes [Petkov, et al. 2005]. A recent experiment 

using Drosophila melanogaster recombinant inbred lines demonstrated that genetic 

incompatibilities are widespread within the species, and that the Dobzhansky-Muller model 

of reproductive incompatibilities, often used to explain reproductive isolation between 

species, did not need to be invoked to account for this observation [Rohlfs, et al. 2010]. In 
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humans, epistasis is frequently suggested as a potential explanation for the missing 

heritability observed in genome-wide association studies, although this hypothesis still has a 

very limited evidentiary basis [Manolio, et al. 2009; Zuk, et al. 2012]. Recently, many cis 

interactions of two SNPs on gene expression levels have been reported in humans [Hemani, 

et al. 2014]. However, these interactions are likely to be explained by single variants in GPD 

in each of the interacting SNPs [Dudbridge and Fletcher 2014], suggesting the challenge in 

detecting true interactions.  

Only a few studies have investigated fitness epistasis in human subjects, also known as 

coevolution [Raj, et al. 2012; Rohlfs, et al. 2010; Single, et al. 2007]. Based on the 

assumption that a functional interactive coevolution could be maintained through 

complementary mutations over evolutionary history [Jothi, et al. 2006; Rohlfs, et al. 2010], a 

protein-protein network study reported that by using polygenetic distance metrics of the 

large-scale high-throughput protein-protein interaction data the Alzheimer’s disease (AD) 

associated genes PICALM, BIN1, CD2AP, and EPHA1 present coevolution evidence [Raj, et 

al. 2012]. The killer immunoglobulin receptor (KIR) and HLA loci have shown a signature of 

coevolution, with strong negative correlation, between the gene frequencies of KIR and the 

corresponding HLA ligand [Single, et al. 2007]. Combinations of KIR and HLA variants have 

different degrees of resistance to infectious diseases that affect human survival during 

epidemics [Parham 2005]. Rohlfs, et al. developed a method using composite linkage 

disequilibrium and genotype association scores to detect GPD between the candidate 

coevolved gamete-recognition genes ZP3 and ZP3R [Rohlfs, et al. 2010]. However, a recent 

experiment showed that ZP3R is not involved in sperm-zona pellucida binding in mouse 

fertilization and suggested that there is no coevolution evidence between ZP3 and ZP3R 
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[Muro, et al. 2012]. Crucially, no study has convincingly reported an interaction between two 

unlinked loci on fitness epistasis in humans, largely because of the scarcity of available data 

and inadequate statistical power. Thus, how epistasis, through its effect on fitness, shapes 

genetic variation at the population level is largely unknown in humans.   

The European population is estimated to have migrated from Africa 90-120 thousand 

years ago [Tishkoff and Williams 2002]. The regional sub-populations evolved independently 

to adapt to a range of environments before contemporary gene flow occurred as a result of 

geographic cohabitation in the Western Hemisphere. African-Americans inherit their genome 

from both African and European ancestors. Fitness epistasis can result in ancestry 

correlations between different chromosome regions. Genotyping technologies and analysis 

algorithms now make it possible to distinguish European from African ancestry sequences at 

a high resolution across the genome [Baran, et al. 2012; Price, et al. 2009; Tang, et al. 2006]. 

As a consequence, we hypothesized that the dense SNPs genotyped in large African-

American GWAS studies should make it possible to test fitness epistasis in humans by testing 

ancestry correlations across the genomic regions. In this study, we propose to develop a new 

approach to detect fitness epistasis in an admixed population. 

 

Methods  

Theoretical model of fitness epistasis on different chromosomes in an admixed 

population 
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We assumed that the African and European populations have been exposed to different 

environments. Besides genetic random drift, adaptation will also contribute to the variation of 

genotype frequencies in each population. It is reasonable to assume that some alleles with 

selective advantage in one population may have selective disadvantage or be neutral in 

another population because of different environments (e.g. the thrifty gene hypothesis [Neel 

1962]). Under this assumption we expect substantial allele frequency difference between 

African and European populations at loci under selection pressure. In particular, the African 

and European genomes may carry different variants that have either a selective advantage or 

a selective disadvantage in North America.  Theoretically, we demonstrated that the presence 

of a two-locus fitness epistasis, defined as a two-locus fitness not equal to the product of the 

corresponding marginal fitnesses, can create correlations between local ancestries at unlinked 

loci.  

We use African Americans as an example to demonstrate our model.  We assume that 

the i
th

 and j
th

 loci are located on two different chromosomes and there is no linkage between 

them during transmission from one generation to the next generation. Both the i
th

 and j
th

 loci 

have two alleles, Ai and ai, and Aj and aj. We use superscript A and E to respectively 

represent an African and a European allele, i.e.  𝐴𝑖
𝐴

 and 𝐴𝑖
𝐸

 represent an African and a 

European Ai allele, respectively. The parameters used in this section are described in Table 1. 

The genotype frequencies before selection are the products of allele frequencies as presented 

in Table 2. We assume a general fitness model for two-locus genotypes as well as the 

marginal fitnesses that are displayed in Table 3. The two-locus genotype frequencies after 

selection can be calculated using the above tables, assuming independence between the i
th
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and j
th

 locus. For a two-locus genotype, we count the number of alleles inherited from 

African ancestral population as an individual’s local ancestry at a locus. 

Let Xi and Xj be random variables representing the number of African ancestry alleles at 

the i
th

 and j
th

 loci in an individual, respectively. The covariance between Xi and Xj after 

selection can be written as, after some algebra, 

cov(𝑋𝑖, 𝑋𝑗) =  𝐸(𝑋𝑖𝑋𝑗) − 𝐸(𝑋𝑖)𝐸(𝑋𝑗) 

= 4𝜆2𝑐2(𝑝𝑚𝑖
− 𝑝𝐴𝑖

) (𝑝𝑚𝑗
− 𝑝𝐴𝑗

) 

{𝑝𝑚𝑖

2 𝑝𝑚𝑗

2 (𝑠22𝑠11 − 𝑠21𝑠12) + 𝑝𝑚𝑖

2 𝑝𝑚𝑗
(1 − 𝑝𝑚𝑗

)(𝑠22𝑠01 − 𝑠21𝑠02) 

+𝑝𝑚𝑖
(1 − 𝑝𝑚𝑖

)𝑝𝑚𝑗

2 (𝑠22𝑠10 − 𝑠20𝑠12)

+ 𝑝𝑚𝑖
(1 − 𝑝𝑚𝑖

)𝑝𝑚𝑗
(1 − 𝑝𝑚𝑗

) (𝑠22𝑠00 − 𝑠20𝑠02) 

+(1 − 𝑝𝑚𝑖
)

2
𝑝𝑚𝑗

2 (𝑠21𝑠10 − 𝑠20𝑠11) + (1 − 𝑝𝑚𝑖
)

2
𝑝𝑚𝑗

(1 − 𝑝𝑚𝑗
) (𝑠21𝑠00 − 𝑠20𝑠01) 

+𝑝𝑚𝑖

2 (1 − 𝑝𝑚𝑗
)

2
(𝑠01𝑠12 − 𝑠11𝑠02) + 𝑝𝑚𝑖

(1 − 𝑝𝑚𝑖
) (1 − 𝑝𝑚𝑗

)
2

(𝑠12𝑠00 − 𝑠10𝑠02) 

+(1 − 𝑝𝑚𝑖
)

2
(1 − 𝑝𝑚𝑗

)
2

(𝑠11𝑠00 − 𝑠10𝑠01)},        

where c is the inverse of the average fitness: 

1

𝑐
= 𝑝𝑚𝑗

2 [𝑝𝑚𝑖

2 𝑠22 + 2𝑝𝑚𝑖
(1 − 𝑝𝑚𝑖

)𝑠21 + (1 − 𝑝𝑚𝑖
)

2
𝑠20] 

+2𝑝𝑚𝑗
(1 − 𝑝𝑚𝑗

)[𝑝𝑚𝑖

2 𝑠12 + 2𝑝𝑚𝑖
(1 − 𝑝𝑚𝑖

)𝑠11 + (1 − 𝑝𝑚𝑖
)

2
𝑠10] 

+(1 − 𝑝𝑚𝑗
)

2
[𝑝𝑚𝑖

2 𝑠02 + 2𝑝𝑚𝑖
(1 − 𝑝𝑚𝑖

)𝑠01 + (1 − 𝑝𝑚𝑖
)

2
𝑠00]. 
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When only the i
th

 locus contributes the fitness variation, we have 𝑠22 = 𝑠21 = 𝑠20 , 

𝑠12 = 𝑠11 = 𝑠10 and 𝑠02 = 𝑠01 = 𝑠00. In this case, it is easy to check that cov(𝑋𝑖, 𝑋𝑗) = 0. 

In the case of the multiplicative model, two-locus fitness is the product of corresponding 

marginal fitness, that is, 𝑠𝑘𝑙 = 𝑢𝑘𝑣𝑙 for k=0, 1 or 2 and l=0, 1 or 2. In this case, cov(𝑋𝑖, 𝑋𝑗) =

0. The other special cases of two-locus fitness will not lead to covariance of 0 (Appendix 1).  

The above theoretical calculation suggests that all the fitness models except the multiplicative 

fitness model will create correlations between unlinked local ancestries. 

 A combination of an African allele at one locus and a European allele at the other locus 

may have fitness advantage, resulting in a negative local ancestry correlation. A positive 

correlation suggests that alleles from the same ancestral population at unlinked loci are more 

likely to be transmitted together. In this case, two alleles from the same ancestral population 

have a fitness advantage. Our model assumes local ancestry does not contribute to fitness in a 

two-locus genotype. Since the local ancestry frequency has smaller variation across the 

genome than the frequency of a genetic variant in the African-American population, testing 

the correlation between local ancestries is more powerful than testing the correlation between 

SNPs. Furthermore, admixture linkage disequilibrium extends much further than background 

linkage disequilibrium (LD); therefore, testing correlations between local ancestries has less 

statistical penalty because of multiple comparisons than testing the correlation between SNPs.    

 

Statistical Model  
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Because of high correlation between adjacent local ancestries, we divided the genome 

into bins with average length 400kb. The local ancestry at the middle marker was used to 

represent the local ancestry of a bin. To estimate the correlations between the bins, we 

propose to use a linear regression model between pairs of bins on different chromosomes, 

described by 

𝑋𝑖 = 𝛽0 + 𝛽1𝑋𝑗 + 𝛽2𝑋̅−𝑖 + 𝜀                    (1) 

where 𝑋𝑖 is the local African ancestry in the  i
th

 bin, 𝑋𝑗 is the local African ancestry in the j
th

 

bin, and  𝑋̅−𝑖 is the average ancestry calculated by excluding the chromosome where the i
th

 

bin is located. We did not perform this analysis for bins falling on the same chromosomes, 

because of the high local ancestry correlation within a chromosome.  

Using  𝑋̅−𝑖  instead of the average of the local ancestries across the whole genome, 

denoted as 𝑋̅, to control the effect of population admixture or population structure, results in 

unbiased estimates. To see this, it is reasonable to assume that the background correlations 

between bins on different chromosomes are created by common population admixture 

history; therefore, the background correlation between different chromosomes is the same. In 

this model, 𝑋𝑖 and 𝑋𝑗 are not on the same chromosome, nor are 𝑋𝑖 and 𝑋̅−𝑖. Thus, 

𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗 − 𝑋̅−𝑖) = 𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗) − 𝑐𝑜𝑣(𝑋𝑖, 𝑋̅−𝑖) = 0. Since model (1) is equivalent to 

𝑋𝑖 = 𝛽0 + 𝛽1(𝑋
𝑗

− 𝑋̅−𝑖) + 𝛽2𝑋̅−𝑖 + 𝜀, under the null hypothesis, 

𝛽̂1 =
𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗−𝑋̅−𝑖)

𝑉𝑎𝑟(𝑋𝑗−𝑋̅−𝑖)
= 0. 
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 On the other hand, using 𝑋̅ to control the effect of population admixture results in a negative 

bias because 𝑋̅ includes local ancestries on the chromosome that 𝑋𝑖 is located on and these 

are highly positively correlated with 𝑋𝑖 . Thus, 𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗 − 𝑋̅ ) = 𝑐𝑜𝑣(𝑋𝑖, 𝑋𝑗) −

𝑐𝑜𝑣(𝑋𝑖, 𝑋̅) < 0 under the null hypothesis. We also compared regression model (1) with the 

following two regression models:  

𝑋𝑖 = 𝛽0 + 𝛽1𝑋𝑗 + 𝛽2𝑋̅ + 𝜀                                              (2) 

and 

𝑋𝑖 = 𝛽0 + 𝛽1𝑋𝑗 + 𝛽2𝑃𝐶1 + ⋯ + 𝛽11𝑃𝐶10 + 𝜀                  (3), 

where 𝑃𝐶1, … , 𝑃𝐶10 are the first 10 principal components calculated using LD-pruned 

genome-wide markers.  

 

Samples and local ancestry inferences 

We applied the statistical models to the African-American samples with available 

genome-wide genotypes from three large datasets: 1) the Candidate Gene Association 

Resources (CARe) study initiated by the National Heart, Lung, and Blood Institute (NHLBI), 

which includes 8,367 African-American subjects collected from five cohorts, the 

Atherosclerosis Risk in Communities study (ARIC), the Jackson Heart Study (JHS), the 

Coronary Artery Risk Development in Young Adults study (CARDIA) the Cleveland Family 

Study (CFS), and the Multi-Ethnic Study of Atherosclerosis (MESA) [Zhu, et al. 2011] --  the 
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Affymetrix 6.0 platform was used for genotyping. These genotype data was downloaded from 

the dbGAP database; 2)  the Family Blood Pressure Program (FBPP), also initiated by the 

National Heart, Lung, and Blood Institute, which collected 3,636 African-American subjects 

from three center networks, GenNet, GENOA and HyperGEN [2002] -- the genotyping 

platforms used were Affymetrix 6.0 and Illumina 1M; 3) the Women’s Health Initiative 

(WHI), with 8150 African-American subjects who were genotyped with the Affymetrix 6.0 

platform. Standard quality controls for SNPs were performed.  

We inferred local ancestries (the probabilities of an allele being inherited from parental 

populations) at each genetic locus across the genome for the three datasets using the software 

HAPMIX [Price, et al. 2009] and SABER+ [Tang, et al. 2006]. Both HAPMIX and SABER+ 

can be applied to dense genetic markers allowing for gametic phase disequilibrium between 

markers. HAPMIX was applied to the CARe for inferring local ancestries, while SABER+ 

was applied to the CARe, FBPP and WHI.  SABER+ has been substantially improved since 

the first version, which results in similar performance compared to other software (correlation 

with HAPMIX is 0.97 ± 0.01 in the CARe). It has been demonstrated that both SABER+ and 

HAPMIX can reliably make local ancestry inference for African-American subjects. We 

eliminated related samples and samples with extremely low (≤5%) or high (≥98%) African 

proportions (Supplementary Fig. S1). After that, 16,252 samples were used in the 

downstream analysis. 

Because of high correlation between adjacent local ancestries, we divided the genome 

into 7,389 bins with average length of 400kb. The local ancestry at the middle marker was 

used to represent the local ancestry of a bin. There are 213 bins located within 2 Mb of the 
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chromosome boundaries or centromeres, and these bins were excluded in the analysis, as 

suggested by Bhatia et al [Bhatia, et al. 2014] because of potential larger inference errors. We 

also conducted inverse-variance weighted meta-analysis to combine the results of the three 

datasets using the METAL software [Willer, et al. 2010]. 

 

Simulation of African Americans under no selection 

We also simulated three cohorts of African-Americans using the method described in 

HAPMIX [Price, et al. 2009]. The sample sizes are 6238, 1864, and 8150, which equal the 

sample sizes of the CARe, FBPP, and WHI after applying sample quality control. In order to 

save computation time, we chose one out of every three markers in the HapMap phase 3 data, 

resulting in 461,005 markers. We applied the HapMap YRI and CEU phased haplotypes as 

ancestral haplotypes to construct the haploid genome of an admixed individual. We randomly 

sampled YRI and CEU haplotypes with 80%/20% probabilities. Beginning with the first 

marker of a chromosome, we randomly sampled a haplotype based on haplotype frequencies 

in the sampled ancestry population. When a recombination event occurred, a new sampling 

was drawn from the reference haplotypes with the same probability. A recombination event 

between two adjacent markers was sampled with probability (1 − 𝑒−𝑑𝑡), where d is the 

genetic distance (in Morgans) and t is the number of generations since admixture for an 

individual. We added variability to the local ancestries by generating an integer t from the 

normal distribution 𝑁(6,1)  to make the distribution more similar to the real data 

(Supplementary Fig. S2). We recorded genotypes and true local ancestries and inferred the 

local ancestries using SABER+ [Tang, et al. 2006]. HapMap YRI and CEU populations were 
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used as reference ancestral panels. We selected the same 7176 bins after excluding the 213 

bins as used in the real data and applied the statistical models. The performance of the 

different methods was evaluated using both true and inferred ancestries. We expect no 

epistasis effect since the different chromosomes were simulated independently. We also 

performed meta-analysis to combine the results of the three simulated datasets. 

 

Results 

Testing fitness epistasis on different chromosomes 

Simulation 

We compared the performance of the three statistical models (1), (2) and (3) in the 

simulated 6,238 African Americans. The distributions of true and estimated global ancestry 

are similar and are shown in Supplementary Fig. S3. The inference accuracy between inferred 

and true local ancestries over the 7176 bins is 99.2%. The estimated coefficients of 𝑋𝑗 using 

both true local ancestry and estimated local ancestry are presented in Supplementary Figs. 

S3-S5. In model (1), under the null hypothesis 𝛽1 = 0 , we would expect the mean of 

estimated 𝛽1  between two local ancestries on two different chromosomes to be 𝛽̅1 = 0 . 

Among the three regression models, model (1) results in the smallest mean (-9.72×10
-

5
±0.0126 for true ancestry, -9.55×10

-5
±0.0127 for inferred local ancestry), followed by model 

(3) (-0.0003±0.0236, -0.00035±0.0238) and model (2) (-0.0103±0.0132, -0.0104±0.0132), 

respectively. As we expected, both models (2) and (3) resulted in negative 𝛽̅1 . We also 

observed that regression model (1) resulted in a uniform distribution of p-values as well as an 
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uninflated QQ plot, but neither model (2) nor model (3) do (Supplementary Figs. S3-S5). The 

other two simulated datasets with sample sizes 1864 and 8150 had similar results 

(Supplementary Table S1). We performed meta-analysis of the results from model (1) of the 

three simulated datasets. We did not observe any inflation for testing 𝛽1 = 0  (𝜆𝐺𝐶 = 0.976). 

 

Real data 

We applied model (1) to the CARe, FBPP and WHI. The average African ancestry 

distributions for the three cohorts were similar (Supplementary Fig. S1). The total number of 

pairwise correlations between the bins on different chromosomes is 24,314,538. The 

distributions of estimated 𝛽1 and the corresponding p-values, and the QQ plots for the CARe, 

FBPP and WHI are presented in Supplementary Fig. S6. The genomic control parameters 𝜆𝐺𝐶 

are 1.206, 1.203 and 1.251 in the CARe, FBPP and WHI, respectively. Adjusting for either 

the global ancestry or 10 principal components leads to negative biased mean 𝛽1 and large 

genomic control parameters (Supplementary Figs. S7 and S8), which is consistent with our 

simulation. Thus, we used the results from regression model (1) for the following analysis.  

We combined the results from the CARe, FBPP and WHI using genomic control 

corrected inverse-variance weighted meta-analysis in METAL [Willer, et al. 2010]. Fig. 1 

presents the distributions of the estimated 𝛽1 and p-values, and the QQ plot for testing 𝛽1 =

0 . The average of estimated 𝛽1  is 0.0007±0.009, which is comparable to the means of 

individual cohort analysis. Although we applied the genomic control procedure before the 

meta-analysis, the QQ plot still shows a substantial departure from the diagonal line (𝜆𝐺𝐶 =
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1.097), indicating that true signals drive this departure. We examined the mutual consistency 

of the signals in the three cohorts by examining how many of the top independent pairwise 

correlations (p-value < 10
-5

) in one cohort were replicated in another cohort. We observed 

that 11-20% of the pairwise correlations in one cohort could be replicated (Supplementary 

Table S2), which is substantially larger than the expectation of 5% under the null. 

We are concerned about the inflated 𝜆𝐺𝐶 value of the meta-analysis. Since there was no 

inflation in the meta-analysis of simulated data (𝜆𝐺𝐶 = 0.976), the observed inflated 𝜆𝐺𝐶 

value in real data might be driven by true epistasis. We applied a Bonferroni multiple 

comparison method to determine the genome-wide significance level for the pairwise 

correlation tests. The number of independent bins 𝑁chr𝑖
 for each chromosome was estimated 

using the method of Li and Ji [Li and Ji 2005]. We estimated 1232, 1272 and 1160 

independent bins across the genome in the CARe, FBPP and WHI, respectively. The total 

number of independent tests in our analysis was calculated as 𝑁 = ∑ 𝑁chr𝑖
(∑ 𝑁chr𝑗

)22
𝑗=𝑖+1

21
𝑖=1 . 

We calculated this number for the CARe, FBPP and WHI separately. The maximum of the 

three values is 765,342, from FBPP, corresponding to a genome-wide significance level p-

value = 6.5 × 10
-8

.  Using this threshold, we observed one pair of bins, at chromosome 4: 

56.04Mb and chromosome 6: 84.41Mb, to be significantly correlated (p-value = 4.01×10
-8

). 

The three dimensional plot of –log10 (p-value) between the chromosome 4 and chromosome 6 

is shown in Fig. 2 A. We next examined whether the chromosome 4 and 6 regions 

demonstrate any selection evidence individually. We calculated the integrated haplotype 

score (iHS) [Voight, et al. 2006] statistic scanning for evidence of recent positive selection in 

the regions of chromosome 4: 55.4-56.6Mb and chromosome 6: 83.8-85.0Mb using HapMap 
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YRI, CEU and CARe samples (Fig. 2 B). The selection signals with |iHS| > 2.5 correspond to 

the extreme 1% of |iHS| values across the genome [Voight, et al. 2006]. We observed 

multiple loci with positive selection evidence in Africans, Europeans and African Americans 

in the correlated regions. Additionally, we observed 36 independent pairwise regions with 

suggestive correlation evidence (p-value < 10
-5

; Table 4). Similar selection patterns were also 

observed for these regions by iHS statistic scanning (regions with p-value <10
-6 

are shown in 

Supplementary Fig. S9).  

To investigate whether the significant correlation between the regions on chromosomes 

4 and 6 is due to the inferred local ancestry error, we analyzed the Mendelian inconsistency 

of inferred local ancestry in 50 nuclear families sampled from the Cleveland Family Study 

from CARe. The number of offspring varies from 1 to 6. We calculated the Mendelian 

inconsistency using PLINK software [Purcell, et al. 2007] and observed 6.8% Mendelian 

inconsistency per bin per family. However, the Mendelian inconsistencies are 1.8% and 3.9% 

in the two genomic regions with significant local ancestry correlation. Note the Mendelian 

inconsistency rate is not the same as the real local ancestry error rate. In our simulation, the 

correlation between the errors of local ancestry inference among different chromosomes is 

0.046 ± 0.018 with a variance of error estimated to be 0.0007. Notably, the local ancestry 

estimation accuracy could decrease if the ancestral panel was misspecified. The CEU and 

YRI reference samples from HapMap are reasonable ancestral panels for African Americans 

and we do not expect a substantial increment of error rate [Brisbin, et al. 2012].  

 

Impact of biases introduced by systematic errors 
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We next examined how much bias could be induced by the local ancestry inference 

error. Assuming that an observed local ancestry is the sum of a true ancestry and an inference 

error, that is 𝑋𝑖 = 𝑋𝑖
𝑇 + 𝜀𝑖 at locus i, where 𝑋𝑖

𝑇
  is the true ancestry and 𝜀𝑖 is the error at locus 

i, then the correlation between the i
th

 and j
th 

loci is   

𝜌 = 𝐶𝑜𝑟𝑟(𝑋𝑖, 𝑋𝑗) =
𝐶𝑜𝑣(𝑋𝑖,𝑋𝑗)

√𝑉𝑎𝑟(𝑋𝑖)𝑉𝑎𝑟(𝑋𝑗)
=

𝐶𝑜𝑣(𝑋𝑖
𝑇,𝑋𝑗

𝑇)+𝐶𝑜𝑣(𝑋𝑖
𝑇,𝜀𝑗)+𝐶𝑜𝑣(𝑋𝑗

𝑇,𝜀𝑖)+𝐶𝑜𝑣(𝜀𝑖,𝜀𝑗)

𝑉𝑎𝑟(𝑋𝑖
𝑇)+2𝐶𝑜𝑣(𝑋𝑖

𝑇,𝜀𝑖)+𝑉𝑎𝑟(𝜀𝑖)
=

𝜌
𝑋𝑇𝑉𝑎𝑟(𝑋𝑖

𝑇)+2𝜌𝑋𝜀2
√𝑉𝑎𝑟(𝑋𝑖

𝑇)𝑉𝑎𝑟(𝜀𝑖)+𝜌𝜀𝑉𝑎𝑟(𝜀𝑖)

𝑉𝑎𝑟(𝑋𝑖
𝑇)+2𝜌𝑋𝜀1

√𝑉𝑎𝑟(𝑋𝑖
𝑇)𝑉𝑎𝑟(𝜀𝑖)+𝑉𝑎𝑟(𝜀𝑖)

= 𝜌
𝑋𝑇 +

(𝜌𝜀−𝜌
𝑋𝑇)𝑉𝑎𝑟(𝜀𝑖)+2√𝑉𝑎𝑟(𝑋𝑖

𝑇)𝑉𝑎𝑟(𝜀𝑖)(𝜌𝑋𝜀2−𝜌𝑋𝜀1𝜌
𝑋𝑇)

𝑉𝑎𝑟(𝑋𝑖
𝑇)+2𝜌𝑋𝜀1

√𝑉𝑎𝑟(𝑋𝑖
𝑇)𝑉𝑎𝑟(𝜀𝑖)+𝑉𝑎𝑟(𝜀𝑖)

,   (4) 

where 𝜌𝑋𝑇  is the true local ancestry correlation between the i
th

 and j
th 

loci, 𝜌𝜀  is the 

correlation between 𝜀𝑖 and 𝜀𝑗, 𝜌𝑋𝜀1 is the correlation between the true local ancestry and the 

error at the same locus, and 𝜌𝑋𝜀2 is the correlation between the true local ancestry at the i
th

 

locus and the error at the j
th 

locus. The second term in equation (4) is the bias. Since 𝑉𝑎𝑟(𝜀𝑖) 

is negligible compared to 𝑉𝑎𝑟(𝑋𝑖
𝑇) , the bias can be approximated by 

2√𝑉𝑎𝑟(𝑋𝑖
𝑇)𝑉𝑎𝑟(𝜀𝑖)(𝜌𝑋𝜀2−𝜌𝑋𝜀1𝜌

𝑋𝑇)

𝑉𝑎𝑟(𝑋𝑖
𝑇)+2𝜌𝑋𝜀1√𝑉𝑎𝑟(𝑋𝑖

𝑇)𝑉𝑎𝑟(𝜀𝑖)
. Using simulated data, we estimated that 𝜌𝑋𝜀1 is between -0.2 

and 0.1, 𝜌𝑋𝜀2 is between -0.04 and 0.05, and |𝜌𝑋𝑇| is less than 0.1. We estimated that the bias 

is less than 0.003, which does not explain the observed local ancestry correlations.  

 

Candidate genes 
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Only a few genes have previously been reported to have a phylogenetic history 

consistent with coevolution or co-adaptation [Raj, et al. 2012; Rohlfs, et al. 2010; Single, et 

al. 2007] in humans. We tested the local ancestry correlations between a set of these genes in 

our combined CARe, FBPP and WHI data and were able to verify coevolution between 

EPHA1 and PICALM (p-value = 0.0077, Table 5). We did not observe co-evolution between 

ZP3 and ZP3R, which is consistent with the report by Muro et al [Muro, et al. 2012]. 

 

Testing natural selection by examining excess of local ancestry 

There is a debate that testing excess of local ancestry may not be a powerful method to 

detect positive selection because of the biases introduced by random genetic drift, sampling 

error, and local ancestry inference error [Bhatia, et al. 2014; Jin, et al. 2012]. Briefly, a 

statistic =
𝑋𝑖−𝑋̅

√𝑉𝑡𝑜𝑡
 , is used to test for natural selection at the i

th
 locus, where 𝑋𝑖  and 𝑋̅  are 

defined as before, and 𝑉𝑡𝑜𝑡 is the variance of 𝑋𝑖 calculated across the genome. S follows a 

standard normal distribution if there is no natural selection. We tested the excess of local 

ancestry in the CARe, FBPP and WHI separately, as well as in the pooled data using the 

inverse-variance weighted method.  Although we observed a few regions whose local 

ancestries were 3 standard deviations away from the mean in individual cohorts (Fig. 3A), the 

excesses disappeared after pooling the three cohorts. We did not observe any significant 

regions after correcting for multiple comparisons.  Similar to the previous report [Bhatia, et 

al. 2014], we observed high pairwise correlations of local ancestries among the three cohorts 

(Fig. 3B), which can be attributed to genetic random drift and historical recombination.  
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We investigated why we were unable to identify any selection evidence by examining 

the excess of local ancestry when we increased the sample size. It is possible that our 

combined sample size still does not have good power to detect any selection evidence. 

However, we noted that 𝑉𝑡𝑜𝑡 is the squared standard deviation instead of the standard error, 

and it does not approach 0 as the sample size increases. To verify this,  𝑉𝑡𝑜𝑡  consists of two 

components: variance due to sampling error (𝑉𝑠𝑎𝑚𝑝𝑙𝑒) and variance due to random genetic 

drift (𝑉𝑑𝑟𝑖𝑓𝑡). According to the Wright-Fisher’s random genetic drift model [Hartl and Clark 

2007], the variance of an allele with an initial frequency p, after t generation is:  

𝑉𝑑𝑟𝑖𝑓𝑡 =  𝑝(1 − 𝑝) − (1 −
1

2𝑁
)

𝑡
𝑝(1 − 𝑝),       (5) 

where N is the effective population size. The sampling variance is 𝑉𝑠𝑎𝑚𝑝𝑙𝑒 =
𝑝(1−𝑝)

2𝑛
 , where n 

is the sample size. Here we considered African ancestry as an allele. Then p is the average 

African ancestry that can be estimated for each cohort. After knowing both 𝑉𝑡𝑜𝑡 and 𝑉𝑠𝑎𝑚𝑝𝑙𝑒, 

𝑉𝑑𝑟𝑖𝑓𝑡 = 𝑉𝑡𝑜𝑡 − 𝑉𝑠𝑎𝑚𝑝𝑙𝑒. We estimated the variance components 𝑉𝑡𝑜𝑡 , 𝑉𝑠𝑎𝑚𝑝𝑙𝑒  and 𝑉𝑑𝑟𝑖𝑓𝑡 for 

the CARe, FBPP and WHI, as well as the large cohort studied in Bhatia et al. [Bhatia, et al. 

2014] (Table 6). We observed that 𝑉𝑑𝑟𝑖𝑓𝑡 is consistent in all four cohorts and is less dependent 

on the sample size than 𝑉𝑠𝑎𝑚𝑝𝑙𝑒. When the sample size increases, the proportion of variance 

due to genetic drift increases. Thus, the power of test statistic S will be determined by 

sampling error when the sample size is small and by the variance due to genetic drift when 

the sample size is large. In other words, the statistic S does not have adequate power, even 

when the sample size is increased, unless the excess of local ancestry is substantial and 

largely caused by selection pressure, such as observed by Tang et al [Tang, et al. 2007]. This 
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observation is also consistent with Bhatia et al., who did not identify directional selection 

evidence since admixture [Bhatia, et al. 2014].  In this analysis, the estimated sample 

variance assumes all the individuals are independent because we eliminated related subjects 

in our QC. However, we estimated pairwise kinship coefficients using GCTA [Yang, et al. 

2010] and using them estimated the effective sample sizes for both the CARe and FBPP. The 

effective sample sizes for the CARe and FBPP are 5886 and 1783, respectively. Using these 

effective sample sizes, the estimated 𝑉𝑑𝑟𝑖𝑓𝑡 is similar. Given the estimated variance due to 

random genetic drift in Table 6, we can estimate the effective population size by applying 

equation (5). Assuming African Americans have been admixed for 8 to 12 generations, the 

effective population size is estimated to be between 32,000 and 48,000.  

 

Discussion 

Although fitness epistasis has been a widely accepted guiding principle in studying the 

genetic basis of intrinsic, post-zygotic reproductive isolation [Orr and Turelli 2001], few 

attempts have been made to test this question in humans. Because of recent admixture, the 

African-American population makes fitness epistasis detectable. We developed a new method 

to detect fitness epistasis by testing the correlation between local ancestries on different 

chromosomes in an admixed population after separating out the background correlation. A 

negative correlation indicates two alleles from different ancestral populations have fitness 

advantage, while a positive correlation indicates two alleles from the same ancestral 

population have fitness advantage. Simulation data suggest that our method (Equation 1) is 
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unbiased (Supplementary Fig. S3). Alternative methods that adjust for either global ancestry 

or principal components result in biased correlation estimates (Supplementary Figs. S4 and 

S5). Applying this method to three large African-American cohorts, the CARe, FBPP and 

WHI, allowed us to observe a pair of significantly correlated genomic regions: chromosome 

4: 56.04Mb and chromosome 6: 84.41Mb (p-value = 4.01×10
-8

). Multiple loci in both regions 

show selection evidence by iHS statistical scanning [Voight, et al. 2006] in Africans, 

Europeans and African Americans (Fig. 2B).    

We reported an additional 36 pairs of regions with suggestive correlation signals (Table 

4. p-value < 10
-5

). These regions harbor multiple genes whose selection evidence has been 

reported in the literature. The hemoglobin beta (HBB) gene (11p25.5) protecting against 

sickle cell anemia has been detected with selection signals of high population differentiation 

frequencies and long haplotype signals [Ohashi, et al. 2004; Pagnier, et al. 1984]. The matrix 

metallopeptidase 3 (MMP3) protein (11q22.3) is involved in multiple physiological 

processes, such as embryo development, reproduction, and disease processes. It has been 

suggested to show positive selection evidence of low nucleotide diversity and population 

differentiation (Fst) [Rockman, et al. 2004]. The MDR1 multidrug transporter (7q21.12) has 

been detected with the selection signal of a long haplotype [Tang, et al. 2004]. The CD59 

molecule complement regulatory protein (11p13) associating with hemolytic anemia and 

thrombosis [Osada, et al. 2002], and the broad antiviral enzyme APOBEC3G [Zhang and 

Webb 2004] (22q13.1-q13.2) encoding an inhibitor of HIV, have been reported to show 

strong positive selection by comparing the function-altering mutations between species. 

Besides these genes reported to be under selective pressure in the literature, all the detected 

genome regions in this study demonstrate evidence of selection on using the iHS statistic 
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[Voight, et al. 2006], although the iHS signals may not directly contribute to epistasis signals. 

Thus, our results add a new aspect of interactions among genes that were already reported to 

undergo natural selection. However, replication studies are warranted to further confirm or 

refute the epistasis in these pairwise genomic regions.  

Since selection is often associated with phenotypes, it is possible that our detected 

regions with selection signals may harbor variants or genes associated with phenotypes. 

Consequently, any regions showing association evidence to phenotypes will further 

strengthen our findings. However, our three cohorts are population-based samples; therefore, 

we are unable to conclude that our detected potential epitasis evidence reflects any specific 

disease associations. 

We applied multiple methods to separate the local ancestry correlation from the 

confounding of global ancestry, including either controlling the global ancestry or adjusting 

for principal components of genotype data across the genome. Our simulations suggest that 

the best approach is to adjust for the global ancestry by excluding one of the two 

chromosomes where a locus is located (Supplementary Figs. S3-S5).  This approach also has 

the smallest bias in estimating local ancestry correlations in real data (Supplementary Figs. 

S6-S8). However, we also observed an inflated 𝜆𝐺𝐶 value (1.097), which may be driven by 

either some systemic biases, such as inaccurate local ancestry inference and the confounding 

of global ancestry, or true genome-wide distributed weak fitness epistasis, which requires a 

large sample size to detect. Since we applied the genomic control procedure when combining 

the three cohorts, it is less likely that the observed inflated 𝜆𝐺𝐶 value is driven by the former. 

In our simulations, we did not observe an inflated 𝜆𝐺𝐶 when fitness epistasis was absent. As 
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observed in the simulated data, the use of estimated local ancestries generates similar 

genomic control values as those from true local ancestries (Supplementary Table S1). Our 

simulations thus suggest that local ancestry inference error cannot explain the ancestry 

correlation we observed. Because admixture LD may expand to over a 20cM region 

[Patterson, et al. 2004; Zhu, et al. 2006], a small number of epistasis loci would lead to a 

large departure of the QQ plot from the diagonal line, resulting in an inflated 𝜆𝐺𝐶 value. This 

phenomenon is similar to admixture mapping analysis by examining the excess of local 

ancestry. We simulated marginal admixture mapping signals to understand the inflation of p-

values due to admixture LD. We randomly selected one of the 7176 bins as the causal bin in 

the 6238 simulated African Americans with effect size b = 0.3. We then generated a binary 

trait from a binomial distribution with 𝑝 =
1

1+exp (−𝑏𝑋)
, where X is the local ancestry of the 

causal bin. We performed association tests between the generated trait and the 7176 bins and 

calculated the 𝜆𝐺𝐶 . This simulation was repeated 100 times, and we observed that one 

associated bin can cause the 𝜆𝐺𝐶 value to be1.04 ± 0.12. 26% of the 𝜆𝐺𝐶 values were larger 

than 1.1. Therefore, we expect a small number of fitness epistasis loci will lead to a large 

departure of the QQ plot from the diagonal line, or an inflated 𝜆𝐺𝐶 value. 

We focused on examining the correlation of local ancestry only on different 

chromosomes. Since the random genetic drift on different chromosomes is independent 

because of independent segregations, it less likely affects the observed correlations between 

two different chromosome regions. In fact, this is one of the advantages of examining the 

correlation of local ancestry on different chromosomes for testing epistasis. 
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In our analysis, we divided chromosomes into bins with average size 400kb in order to 

reduce the computational burden. It is well known that the local ancestry in neighboring bins 

are highly correlated since the admixture LD can extend to 20 cM [Patterson, et al. 2004; 

Zhu, et al. 2006]. Thus, the 24,314,538 pairwise tests are not independent. We therefore 

applied the widely used method of Li and Ji to calculate the number of independent tests [Li 

and Ji 2005]. We calculated the number of independent tests in the three cohorts separately,  

resulting in 1232, 1272, and 1160 tests in the CARe, FBPP and WHI, which falls into the 

range between 1,000 to 1,500 estimated by Bhatia et al [Bhatia, et al. 2014]. We further 

performed genomic control corrected meta-analysis for reducing the potential bias.  Hence, 

our analysis method could still be conservative. It is a concern that random genetic drift, 

sampling error, and local ancestry inference error may introduce bias in estimating local 

ancestry correlation [Bhatia, et al. 2014]. However, this bias cannot explain the observed 

local ancestry correlation.  

We noted that the replication rates among the CARe, FBPP and WHI are relatively low 

(Supplementary Table S2). Given the weak correlation between local ancestries, we expect 

the power of our study to be still low. Because of the winner’s curse, we may have 

overestimated the effect sizes. We used the median of absolute effect sizes that have P-value 

< 0.05. The median is 0.02 and the power for sample sizes 6238, 1864, 8150 is 0.352, 0.139 

and 0.439, respectively, at the significance level 0.05. Since the correlations of local 

ancestries we tested fall on two different chromosomes, the independent segregation of 

different chromosomes will reduce the correlation created by fitness interaction in each 

generation, which leads to even more challenges in detecting epistasis.  It should also be 

noted that our method is only applicable to detect fitness interactions in recently admixed 
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populations such as African Americans or Hispanics. However, the fitness interactions 

detected in this study may also exist in other populations if similar environmental adaptation 

processes occur. 

Our analysis only replicated previously reported coevolution between EPHA1 and 

PICALM (p-value = 0.0077, Table 5). We did not observe coevolution between ZP3 and 

ZP3R, which is consistent with the report by Muro et al, who suggested a lack of 

experimental support [Muro, et al. 2012]. The fitness epistasis between HLA and KIR was 

identified through examining the correlations between the frequencies of functionally 

relevant receptor-ligand pairs in these two genes across 30 geographically distinct world 

populations [Single, et al. 2007]. This current study examines local ancestry correlation in the 

African-American population, a population with a short history. Thus, the power of the 

current study is still limited.  

The problem of epistasis in non-model systems is challenging. Future analyses are 

needed to further confirm the fitness epistasis signals detected in this study. The current 

regression model in equation (1) may be affected by the potential confounders such as local 

ancestry inference error. Improving the accuracy of local ancestry inference will improve the 

statistical model of detecting fitness epistasis. With the technological improvement and cost 

reduction of next generation sequencing, we would expect new statistical methods will be 

emerged for local ancestry inference. In particularly, such new statistical methods using 

whole genome sequencing data will increase the accuracy of local ancestry inference. 

However, improving local ancestry inference using whole genome sequencing data is our 

future direction to extend the current work. 
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Our work demonstrates that local genomic correlation can be induced by fitness epistasis 

and does not necessarily parallel global population structure, which is largely attributable to 

migration and population admixture. It is also challenged in controlling local ancestry 

correlation between different genomic regions, owing to the confounding global ancestry in 

admixed populations. Current genetic association analysis either applies genomic control 

[Devlin, et al. 2001] or principal components approaches [Price, et al. 2006; Zhang, et al. 

2010; Zhu, et al. 2008; Zhu, et al. 2002] to control the effect of cryptic relatedness or 

population structure. These approaches may work well for population structure that can be 

inferred using whole genome data, but may be less effective when local population structure 

exists, such as the correlated local genomic regions on different chromosomes arising from 

natural selection.  In particular, conditioning on local ancestry, fine mapping is possible, as 

suggested by Qin et al. [Qin, et al. 2010; Wang, et al. 2011]. We demonstrated that paired 

correlated genomic regions on different chromosomes exist. Since these paired genomic 

regions are located on different chromosomes, recombination presumably weakens the 

correlation created by natural selection in each generation. Thus, the observed local ancestry 

correlations may reflect a compromise between natural selection and recombination. It is 

therefore unlikely to observe high correlation induced by fitness epistasis.  
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Appendix 1. Special cases of two-locus fitness model.  

The notations and definitions are the same as described in Methods. 

In an additive model, 𝑠𝑘𝑙 = 𝑢𝑘 + 𝑣𝑙 
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cov(𝑋𝑖, 𝑋𝑗) = −4𝜆2𝑐2(𝑝𝑚𝑖
− 𝑝𝐴𝑖

) (𝑝𝑚𝑗
− 𝑝𝐴𝑗

) ⋅ 

[𝑝𝑚𝑖

2 (𝑣2 − 𝑣1) + 𝑝𝑚𝑖
(1 − 𝑝𝑚𝑖

) (𝑣2 − 𝑣0) + (1 − 𝑝𝑚𝑖
)2

(𝑣1 − 𝑣0)] ⋅ 

[𝑝𝑚𝑗

2 (𝑢2 − 𝑢1) + 𝑝𝑚𝑗
(1 − 𝑝𝑚𝑗

) (𝑢2 − 𝑢0) + (1 − 𝑝𝑚𝑗
)2

(𝑢1 − 𝑢0)]. 

In this case, cov(𝑋𝑖 , 𝑋𝑗) ≠ 0. 

Here we show two special cases in the additive model: 

1) When both marginal fitnesses are additive, we have 

𝑢2 − 𝑢1 = 𝑢1 − 𝑢0 ≜ 𝑎𝑢, 𝑢2 − 𝑢0 = 2𝑎𝑢, 

and  

𝑣2 − 𝑣1 = 𝑣1 − 𝑣0 ≜ 𝑎𝑣, 𝑣2 − 𝑣0 = 2𝑎𝑣, 

then 

cov(𝑋𝑖, 𝑋𝑗) = −4𝜆2𝑐2(𝑝𝑚𝑖
− 𝑝𝐴𝑖

) (𝑝𝑚𝑗
− 𝑝𝐴𝑗

) 𝑎𝑢𝑎𝑣. 

2) When both marginal fitnesses are dominant, we have 

𝑢2 − 𝑢0 = 𝑢1 − 𝑢0 ≜ 𝑑𝑢, 𝑢2 − 𝑢1 = 0, 

and  

𝑣2 − 𝑣0 = 𝑣1 − 𝑣0 ≜ 𝑑𝑣, 𝑣2 − 𝑣1 = 0, 

then 

cov(𝑋𝑖, 𝑋𝑗) = −4𝜆2𝑐2(𝑝𝑚𝑖
− 𝑝𝐴𝑖

) (𝑝𝑚𝑗
− 𝑝𝐴𝑗

) 𝑑𝑢𝑑𝑣(1 − 𝑝𝑚𝑖
) (1 − 𝑝𝑚𝑗

). 

In a heterogeneity model, 𝑠𝑘𝑙 = 𝑢𝑘 + 𝑣𝑙 − 𝑢𝑘𝑣𝑙, we have exactly the same expression as the 

additive model 
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cov(𝑋𝑖, 𝑋𝑗) = −4𝜆2𝑐2(𝑝𝑚𝑖
− 𝑝𝐴𝑖

) (𝑝𝑚𝑗
− 𝑝𝐴𝑗

) ⋅ 

[𝑝𝑚𝑖

2 (𝑣2 − 𝑣1) + 𝑝𝑚𝑖
(1 − 𝑝𝑚𝑖

) (𝑣2 − 𝑣0) + (1 − 𝑝𝑚𝑖
)2

(𝑣1 − 𝑣0)] ⋅ 

[𝑝𝑚𝑗

2 (𝑢2 − 𝑢1) + 𝑝𝑚𝑗
(1 − 𝑝𝑚𝑗

) (𝑢2 − 𝑢0) + (1 − 𝑝𝑚𝑗
)2

(𝑢1 − 𝑢0)] ≠ 0. 

In the special case of heterogeneity when 𝑠22 = 𝑠21 = 𝑠20 = 𝑠12 = 𝑠02 = 1 and 𝑠11 = 𝑠10 =

𝑠01 = 𝑠00 = 0,  

  AjAj Ajaj ajaj 

  1 0 0 

AiAi
 

1 1 1 1 

Aiai 0 1 0 0 

aiai 0 1 0 0 

 

we have cov(𝑋𝑖, 𝑋𝑗) = −4𝜆2𝑐2(𝑝𝑚𝑖
− 𝑝𝐴𝑖

) (𝑝𝑚𝑗
− 𝑝𝐴𝑗

) 𝑝𝑚𝑖
𝑝𝑚𝑗

. 

In the case  𝑠22 = 1 and 𝑠𝑘𝑙 = 𝑠 for all other k and l, which assumes selection advantage only 

occurs to individuals carrying both AiAi and AjAj genotypes, we have 

𝐶𝑜𝑣(𝑋𝑖, 𝑋𝑗) =
4𝜆2𝑠(1 − 𝑠)𝑝𝑚𝑖

𝑝𝑚𝑗
(𝑝𝑚𝑖

− 𝑝𝐴𝑖
)(𝑝𝑚𝑗

− 𝑝𝐴𝑗
)

[𝑝𝑚𝑖
2 𝑝𝑚𝑗

2 + 𝑠(1 − 𝑝𝑚𝑖
2 𝑝𝑚𝑗

2 )]
2  

and 

𝑉𝑎𝑟(𝑋𝑖) =
4𝜆2𝑠(1−𝑠)𝑝𝑚𝑗

2 (𝑝𝑚𝑖
−𝑝𝐴𝑖

)2

[𝑝𝑚𝑖
2 𝑝𝑚𝑗

2 +𝑠(1−𝑝𝑚𝑖
2 𝑝𝑚𝑗

2 )]
2 [1 + 𝑓(𝑝𝐴𝑖

, 𝑝𝑚𝑖
, 𝑝𝑚𝑗

)]. 

where  



 

 

 

This article is protected by copyright. All rights reserved. 

32 

 

𝑓 (𝑝𝐴𝑖
, 𝑝𝑚𝑖

, 𝑝𝑚𝑗
) =

(1−𝜆)𝑝𝑚𝑖
2

2𝜆(𝑝𝑚𝑖
−𝑝𝐴𝑖

)2 +
𝑝𝐴𝑖

(1−𝜆𝑝𝐴𝑖
)(𝑠+(1−𝑠)𝑝𝑚𝑖

2 𝑝𝑚𝑗
2 )

2𝜆𝑠𝑝𝑚𝑖
2 +

(1−𝜆)𝑠

2𝜆(1−𝑠)𝑝𝑚𝑗
2 (𝑝𝑚𝑗

−𝑝𝐴𝑖
)2. 

Noticeably,  𝑝𝑚𝑖
  falls in the range between 𝑝𝐴𝑖

 and 𝑝𝐸𝑖
, and 𝑝𝑚𝑗

 is between 𝑝𝐴𝑗
 and 𝑝𝐸𝑗

.  

When positive selection at the i
th

 locus occurs mainly in one ancestral population, e.g. the 

African population, and selection at the j
th

 locus mainly occurs in the other ancestral 

population, e.g. the European population, we would expect  and , which 

results in .  Furthermore, we can write out the correlation between the local 

ancestries as 

𝜌 =
𝑠𝑖𝑔𝑛(𝑝𝑚𝑖

−𝑝𝐴𝑖
)𝑠𝑖𝑔𝑛(𝑝𝑚𝑗

−𝑝𝐴𝑗
)

√[1+𝑓(𝑝𝐴𝑖
,𝑝𝑚𝑖

,𝑝𝑚𝑗
)][1+𝑓(𝑝𝐴𝑗

,𝑝𝑚𝑗
,𝑝𝑚𝑖

)]

 . 

The above fitness models will create correlations between unlinked local ancestries. 

 

 

Figure 1. Correlations of local ancestries and the corresponding statistical evidence. (A) 

Distribution of estimated local ancestry correlations in the genomic control corrected meta-

analysis. (B) Distribution of corresponding p-values in the genomic control corrected meta-

analysis. (C) QQ-plot of p-values in the genomic control corrected meta-analysis.  

i im Ap p
j jm Ap p

cov( , ) 0i jX X 



 

 

 

This article is protected by copyright. All rights reserved. 

33 

 

 

 

 

 

 

 

 

 

 

 

Figure 2. Correlation features and recent selection evidence of significant pairwise 

regions on chromosome 4 and chromosome 6. (A) –log10 (P-value) for testing the local 

ancestry correlations between chromosomes 4 and 6 in meta-analysis. (B) The recent 
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selection signals (|iHS| > 2.5) on chromosome 4: 55.4-56.6Mb and chromosome 6: 83.8-

85.0Mb, detected using HapMap Phase II YRI (blue), CEU (red) and CARe (black).  

 

 

 

 

 

 

 

 

 

 

Figure 3. Average local ancestries across the genome in the CARe, FBPP and WHI. (A) 

Differences between average local ancestries and their means across the genome in the 
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CARe, FBPP and WHI. Red lines highlight the boundary of +/-3 standard deviation departure 

from the mean. (B) Scatter plots and correlations of local ancestries among the CARe, FBPP 

and WHI.  
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Table 1. Definition of parameters used in theoretical model. 

𝜆 The average proportion of African ancestry 

𝑝𝐴𝑖
 The Ai allele frequency at the i

th
 locus in the African population 

𝑝𝐸𝑖
 The Ai allele frequency at the i

th
 locus in the European population 

𝜆𝑝𝐴𝑖
 The 𝐴𝑖

𝐴
 allele frequency at the i

th
 locus in the African-American 

population before selection 

𝜆(1 − 𝑝𝐴𝑖
) The 𝑎𝑖

𝐴 allele frequency at the i
th

 locus in the African-American 

population before selection 

(1 − 𝜆)𝑝𝐸𝑖
 The 𝐴𝑖

𝐸
 allele frequency at the i

th
 locus in the African-American 

population before selection 

(1 − 𝜆)(1 − 𝑝𝐸𝑖
) The 𝑎𝑖

𝐸 allele frequency at the i
th

 locus in the African-American 

population before selection 

𝑝𝑚𝑖
 = 𝜆𝑝𝐴𝑖

+ (1

− 𝜆)𝑝𝐸𝑖
 

The Ai allele frequency at the i
th

 locus in the African-American 

population before selection 
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Table 2. Genotype frequencies at i
th

  locus in African-Americans before selection.   

Genotype at A locus Genotype frequency 

Ai
A
Ai

A 
𝜆2𝑝𝐴

2
𝑖
 

Ai
A
ai

A
 2𝜆2𝑝𝐴𝑖

 (1 − 𝑝𝐴𝑖
) 

Ai
A
Ai

E
 2𝜆(1 − 𝜆)𝑝𝐴𝑖

𝑝𝐸𝑖
 

Ai
A
ai

E
 2𝜆(1 − 𝜆)𝑝𝐴𝑖

(1 − 𝑝𝐸𝑖
) 

ai
A
ai

A
 𝜆2(1 − 𝑝𝐴𝑖

)2
 

ai
A
Ai

E
 2𝜆(1 − 𝜆)(1 − 𝑝𝐴𝑖

)𝑝𝐸𝑖
 

ai
A
ai

E
 2𝜆(1 − 𝜆)(1 − 𝑝𝐴𝑖

)(1 − 𝑝𝐸𝑖
) 

Ai
E
Ai

E
 (1 − 𝜆)2𝑝𝐸𝑖

2  

Ai
E
ai

E
 2(1 − 𝜆)2𝑝𝐸𝑖

(1 − 𝑝𝐸𝑖
) 

ai
E
ai

E
 (1 − 𝜆)2(1 − 𝑝𝐸𝑖

)2
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Table 3. Relative fitness corresponding to two-locus genotypes and corresponding 

marginal fitness in a general two-locus model. 

Genotype Aj
A
Aj

A
 Aj

A
Aj

E
 Aj

E
Aj

E
 Aj

A
aj

A
 Aj

A
aj

E
 Aj

E
aj

E
 Aj

E
aj

A
 aj

A
aj

A
 aj

A
aj

E
 aj

E
aj

E
 Marginal 

fitness at 

locus i 

Ai
A
Ai

A 
s22 s22 s22 s21 s21 s21 s21 s20 s20 s20 u2 

Ai
A
Ai

E
 s22 s22 s22 s21 s21 s21 s21 s20 s20 s20 u2 

Ai
E
Ai

E
 s22 s22 s22 s21 s21 s21 s21 s20 s20 s20 u2 

Ai
A
ai

A
 s12 s12 s12 s11 s11 s11 s11 s10 s10 s10 u1 

Ai
A
ai

E
 s12 s12 s12 s11 s11 s11 s11 s10 s10 s10 u1 

Ai
E
ai

E
 s12 s12 s12 s11 s11 s11 s11 s10 s10 s10 u1 

Ai
E
ai

A
 s12 s12 s12 s11 s11 s11 s11 s10 s10 s10 u1 

ai
A
ai

A
 s02 s02 s02 s01 s01 s01 s01 s00 s00 s00 u0 

ai
A
ai

E
 s02 s02 s02 s01 s01 s01 s01 s00 s00 s00 u0 

ai
E
ai

E
 s02 s02 s02 s01 s01 s01 s01 s00 s00 s00 u0 

Marginal 

fitness at 

locus j 

v2 v2 v2 v1 v1 v1 v1 v0 v0 v0  

Note: 0 ≤ 𝑢𝑘, 𝑢𝑙 , 𝑠𝑘𝑙 ≤ 1, k = 0, 1, 2 and l = 0, 1, 2. 
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Table 4. Top pairwise local ancestry correlated regions in the meta-analysis of the CARe, 

FBPP and WHI (p-value < 10
-5

).

Region 1 (Mb) Gene
a
 Region 2 (Mb) Gene

a
 P-value

b 
Beta

c 

chr1:20.61-21.45 

 

chr3:21.09-25.52 

 

1.46E-06 -0.0418 

chr1:44.52-44.92 

 

chr6:77.65-78.05 

 

5.09E-06 -0.0408 

chr1:155.29-156.13 

 

chr10:3-3.4 

 

3.42E-06 0.0401 

chr1:91.19-101.08 

 

chr11:2.79-7.57 HBB 3.88E-06 0.0405 

chr1:228.03-239.48 

 

chr17:3.64-5.87 

 

1.92E-06 0.0419 

chr2:50.59-50.99 

 

chr6:17.59-17.99 

 

6.96E-06 0.0401 

chr2:235.61-236.01 

 

chr3:58.44-58.84 

 

7.51E-06 0.0395 

chr3:39.94-42.54 

 

chr5:178.47-178.87 

 

1.36E-06 0.0426 

chr3:125.6-126.18 

 

chr19:37.05-44.57 

 

1.51E-06 0.0421 

chr4:10.29-10.69 

 

chr6:16.04-16.97 

 

8.61E-06 -0.0391 

chr4:34.58-37.21 

 

chr18:73.35-74.01 

 

4.84E-06 0.0403 

chr4:47.19-72.67 

 

chr6:52.66-88.81 

 

4.01E-08 -0.0488 

chr4:86.88-87.28 

 

chr9:137.46-138.31 

 

7.58E-06 0.039 

chr4:187.04-187.44 

 

chr20:2.37-3.17 

 

4.06E-06 0.0404 

chr5:14.89-18.73 

 

chr11:123.69-131.24 

 

5.60E-07 0.0445 

chr5:150.56-150.96 

 

chr18:70.09-70.49 

 

4.90E-06 0.0409 

chr6:24.35-24.75 

 

chr12:130.09-130.49 

 

8.48E-06 0.0397 

chr6:39.76-40.16 

 

chr21:43.03-43.73 

 

3.71E-06 0.0409 

chr6:149.25-151.82 

 

chr11:95.41-106.44 MMP3 2.53E-06 -0.0416 

chr7:13.85-16.57 

 

chr16:48.36-49.29 

 

3.77E-06 0.0407 
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chr7:41.88-42.92 

 

chr9:35.05-37.11 

 

4.17E-06 -0.0407 

chr7:80.48-90.76 MDR1 chr12:128.44-130.49 

 

1.41E-07 0.0475 

chr9:20.07-24.49 

 

chr21:38.79-41.35 

 

1.82E-06 0.0421 

chr10:113.9-114.3 

 

chr21:37.82-38.22 

 

9.92E-06 0.0389 

chr11:24.63-25.03 

 

chr17:74.69-75.09 

 

7.35E-06 0.0395 

chr11:26.43-34.23 CD59 chr22:16.7-21.26 

 

3.74E-07 0.0449 

chr11:34.57-35.74 

 

chr17:72.51-75.09 

 

4.06E-06 0.041 

chr12:115.24-115.64 

 

chr13:21.16-21.56 

 

8.39E-06 0.0378 

chr12:129.3-130.49 

 

chr21:42.45-45.05 

 

1.88E-06 0.0414 

chr13:38.44-38.84 

 

chr16:81.87-82.41 

 

5.72E-06 0.0391 

chr13:79.41-79.81 

 

chr19:12.82-13.22 

 

9.72E-06 0.038 

chr13:86.01-93.96 

 

chr22:35.91-43.32 APOBEC3G 2.37E-06 0.0408 

chr13:106.5-109.28 

 

chr21:16.09-20.73 

 

4.38E-06 0.0411 

chr14:65.07-65.47 

 

chr17:76.16-76.56 

 

6.93E-06 0.0393 

chr17:28.1-29.03 

 

chr20:10.97-12.92 

 

8.54E-07 0.0438 

chr18:46.33-54.84 

 

chr19:50.42-50.82 

 

5.18E-06 0.0397 

chr20:58-58.81 

 

chr21:27.67-28.07 

 

2.65E-06 0.041 

a Previous reported genes with selection evidence in the corresponding regions. b Minimum p-

value in each region. c β value corresponding to the minimum p-value.  

 

 

 

Table 5. Correlations between ancestral markers in candidate genes. 
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Gene1 Gene2 p 
a 

β 
b 

HLA KIR 0.7836 -0.0025 

BIN1 CD2AP 0.2981 -0.0093 

BIN1 EPHA1 0.2475 0.0104 

BIN1 PICALM 0.242 -0.0105 

CD2AP EPHA1 0.7385 -0.003 

CD2AP PICALM 0.3006 -0.0092 

EPHA1 PICALM 0.0077 -0.0234 

ZP3R ZP3 0.9292 0.0008 

a
P-value in meta-analysis of CARe, FBPP and WHI. 

b
β value in meta-analysis. 

 

 

 

 

 

 

 

Table 6. Variance components in the CARe, FBPP, WHI and a larger African-

American data from five cohorts.  
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Data n p 𝑽𝒕𝒐𝒕 𝑽𝒔𝒂𝒎𝒑𝒍𝒆 𝑽𝒅𝒓𝒊𝒇𝒕 
% variance due to 

genetic random drift 

FBPP 1864 0.833 6.08×10
-5

 3.72×10
-5

 2.36×10
-5

 0.39 

CARe 6238 0.804 2.61×10
-5

 1.26×10
-5

 1.35×10
-5

 0.52 

WHI 8150 0.773 3.53×10
-5

 1.08×10
-5

 2.45×10
-5

 0.69 

Cohorts in 

Bhatia et al 

[Bhatia, et al. 

2014]  

29141 0.796 1.30×10
-5

 0.29×10
-5

 1.01×10
-5

 0.78 
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