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There is increasing concern over deep uncertainty in the risk analysis field as probabilistic models 

of uncertainty cannot always be confidently determined or agreed upon for many of our most 

pressing contemporary risk challenges. This is particularly true in the climate change adaptation 

field, and has prompted the development of a number of frameworks aiming to characterize 

system vulnerabilities and identify robust alternatives. One such methodology is robust decision 

making, which uses simulation models to assess how strategies perform over many plausible 

conditions and then identifies and characterizes those where the strategy fails in a process termed 

scenario discovery. While many of the problems to which RDM has been applied are 
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characterized by multiple objectives, research to date has provided little insight into how 

treatment of multiple criteria impacts the failure scenarios identified. In this research, we 

compare different methods for incorporating multiple objectives into the scenario discovery 

process to evaluate how they impact the resulting failure scenarios. We use the Lake Tana basin 

in Ethiopia as a case study, where climatic and environmental uncertainties could impact multiple 

planned water infrastructure projects, and find that failure scenarios may vary depending on the 

method used to aggregate multiple criteria. Common methods used to convert multiple attributes 

into a single utility score can obscure connections between failure scenarios and system 

performance, limiting the information provided to support decision making. Applying scenario 

discovery over each performance metric separately provides more nuanced information 

regarding the relative sensitivity of the objectives to different uncertain parameters, leading to 

clearer insights on measures that could be taken to improve system robustness and areas where 

additional research might prove useful. 

Keywords: Robust decision making, deep uncertainty, climate change 

 

INTRODUCTION 

In recent years, there has been increasing concern and discussion over deep uncertainty 

in the risk analysis field.(1) The term “deep uncertainty” is commonly used to refer to situations 

where probabilistic models of uncertainty cannot be confidently determined or agreed upon(1) or 

where frequentist probabilities based on repeatable events cannot be developed.(2) Concerns over 

deep uncertainty have been particularly strong in the climate change adaptation field, with some 

arguing that traditional approaches to risk management, such as maximization of expected utility, 

are poorly suited to climate policy and adaptation problems.(3) This has led to interest in robust 

decision frameworks,(4) which include methods such as robust decision making (RDM),(5) 
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decision scaling,(6) and info-gap decision theory.(7) These methods are commonly contrasted with 

so-called “predict-then-act” frameworks by focusing on the identification of robust rather than 

optimal solutions, and by using analytics to first identify conditions where plans or strategies may 

fail, rather than first predicting what an uncertain future will look like.(4) These frameworks can 

be particularly useful in situations characterized by poorly understood nonlinear or threshold 

responses(8) or many stakeholders with conflicting values and beliefs about the future.(9) 

 RDM is one such framework that has been applied to a number of climate adaptation 

problems.(10–13) It is a multi-step, iterative approach that includes both analytical and deliberative 

components.(5) The analytical components of the process simulate how a system or policy 

alternatives will perform in many plausible future states of the world, and then use the results of 

these simulations to 1) identify robust alternatives (those that perform relatively well in many 

states of the world) and to 2) identify the conditions under which a preferred alternative will 

perform poorly.(5) This second objective has been referred to as scenario discovery, as it identifies 

the conditions that represent vulnerabilities for a proposed policy and thus the conditions under 

which an alternative solution would be preferred.(14) Scenario discovery uses the Patient Rule 

Induction Method (PRIM)(15) to identify regions of a multidimensional input variable space that 

result in undesirable values of the output variable. These regions are defined by quantitative 

logical conditions involving individual input variables. For instance, in one study a regional water 

plan was found to result in unacceptably high costs when precipitation declined by more than 

10%, groundwater recharge decreased by over 3%, and a water recycling program failed to meet 

its goals. (10,14) By identifying these conditions, the scenario discovery process can identify which 

uncertainties are most important for a given decision problem (and thus potentially inform 

research activities) and specify the vulnerable conditions for which decision-makers may want to 

prepare.    
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The PRIM algorithm was developed for problems where multiple input variables 

influence the value of a single response variable, and does not contain a mechanism for 

incorporating multiple response variables or outcome criteria. Because of this, existing RDM 

literature incorporates multiple criteria in a number of different ways. Some studies have 

conducted scenario discovery over a single outcome metric, such as cost,(10,16) system reliability,(17) 

expected utility,(18) or a single aggregated performance score.(5) A number of evaluations that do 

consider multiple criteria apply scenario discovery over each criterion separately.(12,17,19,20) By 

identifying the conditions that are likely to cause failure for each individual objective, this process 

can be highly informative but may be impractical for problems with a large number of 

performance metrics. Finally, some studies apply scenario discovery across multiple criteria 

where failure on any single criterion is equivalent to failure overall.(11,21–23) Collectively, these 

studies demonstrate that there are multiple methods that can be incorporated to conduct 

scenario discovery in a problem characterized by more than one performance metric. However, 

they provide little insight into how the choice of method used to incorporate multiple criteria 

might impact the scenarios identified by the PRIM algorithm and what methods may be the 

most informative for decision makers.  

In this study, we compare different methods for incorporating multiple objectives into 

the scenario discovery process to evaluate how the treatment of multiple criteria can impact the 

vulnerable scenarios identified within the RDM framework. We use the Lake Tana basin in 

Ethiopia as a case study, where multiple long-lived water infrastructure projects are planned for 

construction but whose effectiveness could be impacted by climatic and environmental 

uncertainties. The scenario discovery process is used to identify the conditions which are likely to 

cause unacceptable performance of this infrastructure with regard to multiple criteria, including 

provision of water to different economic sectors and downstream environmental conditions. We 

first identify failure scenarios by assessing each performance metric individually, and the 
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implications that these scenarios have for the design of system improvements and research 

efforts focused on key uncertainties. We then compare these to failure scenarios identified using 

different methods for aggregating the metrics into a single performance score. By evaluating the 

sensitivity of the scenario discovery process to the treatment of multiple criteria, this works aims 

to support more effective application of robust decision frameworks in contexts where 

performance across multiple economic and environmental metrics must be balanced.   

METHODS 

Study area 

Lake Tana is the source of the Blue Nile River, located in the highlands of northwest 

Ethiopia at an elevation of approximately 1790 meters. The lake has a surface area of 

approximately 3000 square kilometers, and the catchment draining to the lake encompasses 

approximately 12,000 square kilometers (Figure 1). The four main tributaries providing water to 

the lake are the Gilgel Abbay, Ribb, Gumara, and Megech Rivers, which collectively account for 

93% of the inflow to the lake.(24) The basin’s climate is characterized by distinct wet and dry 

seasons, with approximately 90% of rainfall and steamflow occurring during the wet period from 

May until October. Rainfall in the basin exhibits significant interannual variability, ranging from 

below 1000 mm/yr to over 1800 mm/year.(25) The basin’s population of 2.6 million is largely 

located in rural areas and reliant on rainfed subsistence agriculture, making the region quite 

vulnerable to climate variability and change. Population growth and expansion of agricultural and 

pastoral land use in the region have resulted in substantial deforestation and land degradation.(26–

28)   

The basin has seen extensive investment in planning and construction of water resources 

infrastructure in recent years. The Tana-Beles hydropower tunnel was completed in 2012, and is 

currently the largest hydropower facility in the country with a capacity of 460 MW. The 12-km 

tunnel collects water from Lake Tana and transfers it to the adjacent Beles River basin, taking 
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advantage of a 350-meter difference in elevation. A reservoir with 83 million cubic meters 

(MCM) of capacity was also constructed on the Koga River in 2010 to provide irrigation to a 

command area of approximately 7000 hectares.  There are five other reservoirs being planned for 

construction in the basin, ranging in volume from 80 to 220 MCM.(24) These reservoirs are 

generally designed to store water from the rainy season to support a second growing period 

during the dry season. Finally, there are three projects under consideration that would pump 

water directly from the lake to provide irrigation to surrounding areas. A summary of existing 

and planned water infrastructure is shown in Table I. 

While these projects have the potential to generate important economic growth for the 

region, there are a number of uncertainties which could impact their performance in the future. 

Climate change could dramatically impact the amount of water available in the basin, particularly 

considering the long life-span of the proposed infrastructure. However, projected changes in 

climate for Ethiopia are highly uncertain, with climate models disagreeing on even the direction 

of precipitation change.(29) Land cover in the basin has been dramatically altered over the past 

few decades, and could change further due to increasing agricultural development or expansion 

of conservation efforts. This impacts the amount and timing of runoff in the basin’s rivers, as 

well as amount of sediment that will be introduced to them. Finally, there is little data available in 

the basin to estimate certain operational parameters of this infrastructure even under current 

conditions. These data limitations make it difficult to predict future rates of reservoir 

sedimentation and evaporative losses with any degree of confidence.  

Simulation models 

A two-component simulation model was developed to assess how changes in climatic 

and environmental conditions would impact water resources in the basin. The first component 

consisted of empirical rainfall-runoff models that predicted monthly streamflow in each of the 

five rivers with proposed reservoirs (Gilgel Abbay, Gumara, Koga, Megech and Ribb) based on 
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monthly temperature, rainfall, rainfall intensity, and agricultural land cover. The models were 

each fit by regressing a 40-year monthly time series of streamflow in that river against historic 

climate data taken from Climate Research Unit (CRU) gridded datasets(30) and agricultural land 

cover as reported by data taken from Rientjes et al.,(26) Gebrehiwot et al.,(27) and Garede and 

Minale.(28) Multiple regression and machine-learning algorithms were compared in their predictive 

ability through random hold-out cross validation. The highest performing models based on out-

of-sample mean absolute error were used to generate streamflow predictions using climate and 

land cover data. These included a linear model, M5 model,(31) artificial neural network,(32) 

generalized additive model,(33) and random forest model.(34) Each basin’s model was compared to 

a null model which predicted streamflow in each month as simply the mean historic streamflow 

for that month. The models were able to achieve statistically significant reductions in predictive 

error based on bonferroni-corrected Wilcoxan signed rank tests. Additional details on model 

development is discussed by Shortridge et al.(35) 

The second component of the simulation model was a Water Evaluation and Planning 

(WEAP(36)) water allocation model developed for the basin by Alemayehu et al.(24) This model 

simulates natural hydrologic processes such as streamflow and evaporation, as well as human 

extraction and use of water. In each month, the model performs a mass balance to account for 

both extraction and inflows, allocating water to different demand nodes in order of user-defined 

priorities.(36) The monthly streamflow sequences derived from the empirical rainfall-runoff model 

for each river, as well as time series of evaporation from the lake and each reservoir, were used as 

model inputs. The model then calculated the amount of water allocated and coverage (percent of 

demand delivered) for different demand nodes, as well as lake elevation and downstream flows. 

Additional information on WEAP model development, calibration and validation is discussed by 

Alemayehu et al.(24) 



 

 

 
This article is protected by copyright. All rights reserved. 
 

RDM evaluation 

In the first step of the RDM evaluation, a range of feasible values was identified for each 

of the uncertain parameters that could impact infrastructure performance in the future (Table II). 

Because the objective of the scenario discovery process is to find conditions that result in 

unsatisfactory performance of the infrastructure, we used wide ranges of values to better identify 

the thresholds and tipping points that would result in poor performance.  

Possible impacts of climate change were represented by a change in temperature ranging 

from 0.5 to 5.5° C and a change in annual precipitation ranging from -20% to positive 35%. 

These values were taken from IPCC multi-model ensemble projections for the East Africa 

region for the period 2081-2100 under all representative concentration pathways.(29) Additionally, 

there is concern that climate change could result in an intensification of precipitation, even when 

overall amounts of precipitation decrease.(37–39) For this reason, we also considered increases in 

rainfall intensity (defined as the total amount of rainfall in a month divided by the days where 

rainfall occurs) from 0 to 20%. Specific sediment yield is the amount of sediment deposited in 

the reservoir normalized by the upstream area contributing sediment. A range of values for 

specific sediment yield were taken from sampling results from various rivers in the basin,(40,41) 

while future agricultural land cover was assumed to range from 50 to 90% based on values 

experienced over the past 50 years.(26–28) Finally, evaporation estimates were multiplied by a factor 

ranging from 0.8 to 1.2 to account for uncertainty arising from the limited meteorological data 

available to estimate evaporation from the reservoirs and lake. This parameter represents the 

degree to which actual evaporation differs from our estimates, with any value over 1.0 implying 

underestimation of evaporation.  

 To assess how the proposed projects would perform in various possible future states of 

the world, 5000 random combinations of the six uncertain parameters were generated to be used 

as inputs for the simulation model described above. Samples were generated using Latin 
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Hypercube sampling across a uniform distribution for the range of possible values for change in 

temperature, sedimentation rate, agricultural land cover, and the evaporation coefficient. While 

Latin hypercube sampling is often used to generate multivariate probabilistic distributions, here it 

is only used as a mechanism for generating a diverse sample of future conditions that could 

feasibly occur. These samples are used as input for exploratory modeling(42) that evaluates how 

the system responds to different multivariate conditions while making no inference regarding the 

likelihood of those states. Other methods for sample generation, including full combinatorial 

sampling across discrete uncertain parameters and GCM ensemble projections,(12,43) have been 

used in RDM evaluations and the application of further sample generation methods could be a 

valuable area for future research.  Changes in rainfall and rainfall intensity are likely to be 

correlated with changes in temperature, as greater climate forcing is expected to result in more 

extreme changes to both temperature and precipitation. To account for this, a correlation was 

induced between temperature and the rainfall and rainfall intensity parameters. For each of the 

5000 samples, the change in precipitation was randomly selected to be either positive or negative 

with an equal probability. For the n’th sample, a parameter   ̅̅̅̅  was calculated as in Equation 1 

and a parameter     ̅̅ ̅̅ ̅̅
 was calculated as in Equation 2. The change in rainfall and rainfall 

intensity for sample n were then randomly sampled from normal distributions with means equal 

to   ̅̅̅̅  and     ̅̅ ̅̅ ̅̅
   a coefficient of variation equal to 0.5.  

 Equation 1:  
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 Equation 2:  

    ̅̅ ̅̅ ̅̅
   

(         )

(            )
           

 Each of the 5000 samples could be thought of as a possible future state of the world 

under which the infrastructure might have to operate. The simulation model was then used to 

assess how well the infrastructure would be able to meet the multiple objectives required of it 

under each of the 5000 possible futures. For each possible future, the change in temperature, 

rainfall, and rainfall intensity was used to adjust the 40-year historic climate record in each basin 

using the delta-change method.(44) These adjusted climate scenarios were then used, along with 

estimates of agricultural land cover, to generate streamflow sequences for each river. 

Evaporation from Lake Tana and each reservoir was calculated using Penman’s equation.(45) 

These estimates used the adjusted temperature values reflective of climate change and historic 

monthly average values for wind speed, relative humidity and solar radiation from the Bahir Dar 

meteorological station as reported by Kebede et al.(46) These evaporation estimates were then 

multiplied by the EtC parameter to account for uncertainty stemming from the use of historic 

average values for calculating evaporation rates under future climates. The capacity of each 

reservoir diminished annually based on the specific sediment loading rate assumed for that 

possible future. 

 This resulted in 40-year sequences of monthly streamflow, evaporation, and reservoir 

capacity for each possible future. These sequences were then used as inputs to the WEAP model 

of the basin, which allocated water to agricultural and hydropower demand nodes and calculated 

the resulting downstream flows and lake levels. Five performance metrics identified based on 

stakeholder discussions were calculated to assess how well the infrastructure performed in each 

possible future (Table III). Previous studies have identified 1784.75 meters as the minimum 

elevation that Lake Tana can reach before negative impacts to the navigation and fishing 
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industries begin to occur.(47) Alemayhu et al.(24) calculated flow requirements needed to support 

tourism at the Tis Issat waterfall downstream of the lake, as well as environmental flow 

requirements for each of the tributaries to the lake. These were used to calculate the average 

percentage of flow requirement met as a measurement of impacts on tourism and environmental 

conditions. Table III shows baseline results for each metric, assuming that the infrastructure was 

operated under historic climate conditions. For each metric, an acceptable performance 

threshold was identified based on the project design documents (in the case of irrigation water 

delivery and reliability and hydropower delivery) or baseline performance levels (in the case of 

lake levels, Tis Issat flows, and environmental flows). These thresholds represent the minimum 

performance level for each metric that can be considered acceptable.    

Scenario discovery  

The RDM framework is a multi-step, iterative approach to decision support under 

uncertainty that contains both quantitative analysis and deliberation. The process includes two 

analytical components based on simulation model results. When multiple alternatives or policy 

options are available for a given system, the first analytical component of the approach identifies 

the most robust alternatives based on regret minimization or satisficing criteria.(5) The second 

analytical component, termed “scenario discovery,” aims to identify the conditions which cause 

unsatisfactory performance in a preferred alternative. In this work, we use the scenario discovery 

process to identify the conditions which cause unsatisfactory performance for the proposed 

infrastructure described in Table I.  

The scenario discovery process uses the results of the 5000 simulations described above 

to identify specific combinations of uncertain input parameters that are likely to result in poor 

performance. It is based on the patient rule induction method (PRIM) bump-hunting 

algorithm.(15) The objective of the PRIM algorithm is to find a region of the input variable space 

X that results in particularly low values of the output variable Y = f(X). This region is made up 



 

 

 
This article is protected by copyright. All rights reserved. 
 

of one or more “boxes” B that can be defined by simple logical conditions involving the value of 

individual input variables. To identify these boxes, the algorithm uses a process of top-down 

successive refinement, referred to as “peeling,” followed by bottom-up successive expansion 

(“pasting”). The peeling phase begins with a box B containing all of the data. At each iteration, a 

small sub-box b* is removed, resulting in a smaller box equal to B-b*. The sub-box b* chosen for 

removal is selected from a set of n candidate sub-boxes C(b), each of which is defined by a single 

input variable xj, to minimize the mean value of y within the resulting box.(15) This process is 

continued until the size of the box falls below a pre-specified value. The pasting process then 

readjusts the boundaries of this box by essentially reversing the peeling algorithm. In this stage, a 

small box b* is added to the existing box B from a set of candidate sub-boxes to minimize the 

mean in the new larger box B+b*. This process continues until the mean of the larger boxes 

starts to increase. This algorithm can be repeated on remaining sub-sets of the data to obtain a 

set of boxes that collectively include a sufficiently high portion of the in-put space where the 

output f(x) assumes low values.(15) 

The PRIM algorithm was implemented using the SD toolkit package in R.(48) This 

package provides an interactive implementation of the PRIM algorithm on a binary output 

variable, thus identifying scenarios that result in performance y below some user-defined 

threshold. The package generates a tradeoff-curve showing the sequence of boxes identified 

during the peeling process. Boxes are scored on the basis of 1) box density, which describes the 

percentage of points within the box where y is below the threshold, 2) box coverage, which 

describes the percentage of points where y is below the threshold that are described by the box, 

and 3) restricted variables, which describes the number of input variables xj used to define the 

box.(49) Ideally a box would have coverage and density equal to 1 while being described by only a 

small number of variables, but this will rarely be the case when applying the algorithm to 

complex, real-world systems. Generally, as the density of the boxes increases, the coverage 
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decreases and the numbers of variables needed to describe the box go up. By presenting a 

tradeoff curve showing these three parameters, the user can compare and select boxes that have 

sufficiently high coverage and density for their purposes while remaining interpretable. 

The PRIM algorithm does not include a method for considering multiple output 

variables, and requires that multiple outcomes be either separately evaluated, or aggregated into 

an overall performance score. In this work, we first apply the PRIM algorithm to each of the five 

performance metrics separately. This identifies the specific scenarios that are likely to result in 

unsatisfactory performance for each individual performance metric. We then use five different 

methods to aggregate the performance metrics into a single overall performance score, and apply 

the PRIM algorithm to these aggregated results. The aggregation methods are shown in Table 

IV. In the first method, if the infrastructure fails to meet any of the six performance criteria in a 

given possible future, that is considered a failure overall. This approach is similar to a 

multiplicative multi-attribute utility function applied to binary performance scores, as a score of 

zero for any single attribute results in a score of zero overall. This is the approach used 

previously by Kasprzyk et al.,(23) Herman et al.,(21,22) and Lempert et al.(11) This method is 

demonstrated in Equation 3, where yi,n is the binary performance score (1 for acceptable 

performance and 0 for unacceptable performance) for individual metric i in possible future n, 

and Yn is the overall performance score for possible future n. In the other four methods, an 

additive performance score is calculated, with the weights between different attributes varied to 

reflect different priorities. In this approach, the scores for each metric are normalized across the 

range of outcomes experienced in the 5000 possible futures and a weighted sum is calculated as 

in Equation 4, where ui,n is the normalized performance score on attribute i in possible future i, 

and wi is the weight assigned to attribute i.   

Equation 3: 
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Normalized weights were calculated using the rank sum weighting procedure based on four 

different possible rankings of attribute importance.(50) A summary of the four weighting schemes 

evaluated is presented in Table IV. For the additive aggregation schemes, an aggregated 

minimum acceptable performance threshold is calculated using Equation 4 and the performance 

thresholds presented in Table III.  

RESULTS 

A summary of the simulation results for each individual performance metric is presented 

in Table V. It is apparent that accounting for uncertainty in the parameters listed in Table II have 

the potential to result in dramatic ranges in performance, particularly with regard to irrigation 

reliability, the amount of water provided for hydropower, and the elevation of Lake Tana. The 

performance thresholds are not met in 36% to 66% of the simulated futures, depending on the 

metric assessed. It is important to note that these percentages should not be interpreted as a 

statement regarding the likelihood of failure, since that would implicitly assume that each 

simulated possible future was equally likely. However, it can provide information about the 

relative sensitivity of the different metrics to the uncertain parameters listed in Table II. For 

instance, the Lake Tana elevation metric appears relatively robust to this uncertainty (failing in 

only 36% of futures) whereas the hydropower delivery metric fails in 66% of them.  
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The scenario discovery process was used to identify combinations of uncertain input 

parameters that best described the simulations where performance thresholds were not met. 

These combinations can be interpreted as scenarios to which the proposed infrastructure is 

vulnerable (termed “failure scenarios” from here forward). Table VI shows the results of the 

scenario discovery process when it was run on each metric separately. Two failure scenarios were 

identified for each metric, and the box coverage and density are described for each individual 

scenario, as well as the ensemble as a whole, for each metric. When multiple conditions are listed 

on a single line, this describes conditions which must simultaneously occur for performance to 

drop below the threshold. Conversely, when conditions are listed in separate failure scenarios for 

a given metric, this implies that either of those conditions will cause failure.  For instance, 

irrigation reliability can fail if the change in precipitation is less than -3.8% or if EtC is greater 

than 1.09, whereas coverage for the Tis Issat falls tends to fail if both EtC is greater than 1.08 

and the change in precipitation is less than +16.4%. These scenarios are shown graphically in 

Figure 2. 

Unsurprisingly, precipitation plays a role in the failure scenarios for each metric, but the 

way in which it combines with other uncertain parameters differs. While a decrease in 

precipitation must be combined with certain conditions regarding temperature and evaporation 

estimates to cause failure for the lake elevation metric, it is enough to cause failure for the 

irrigation, hydropower, Tis Issat and environmental metrics on its own. Additionally, the relative 

sensitivity of the different metrics to changes in precipitation is apparent, with the Tis Issat 

metric vulnerable to any decrease beyond approximately 2% while environmental flow coverage 

is only vulnerable to decreases beyond approximately 8%. Another important insight is that both 

irrigation reliability and hydropower are vulnerable to underestimation of evaporation, even if 

climate conditions are favorable.  Interestingly, the only metrics that appeared sensitive to 

changes in temperature were lake elevation and environmental flows. This could be due to the 
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large role that evaporation off of Lake Tana plays in the basin’s water balance, which would be 

expected to increase with higher temperatures.  

Table VII shows the failure scenarios identified for the aggregated multiattribute 

performance measures. From looking at the percentage of simulations classified as failures based 

on each aggregation scheme, it is apparent that they give different pictures of overall system 

robustness. The multiplicative aggregation scheme is very strict when implemented in a binary 

fashion, since unsatisfactory performance on any single metric will result in failure overall. This 

results in a high percentage of simulations that were classified as failures when compared to the 

additive approaches, where poor performance on one metric can be compensated for by good 

performance on another. Because the additive aggregation methods are less strict than the 

multiplicative method, they provide a more optimistic view of system performance, with failure 

occurring in a smaller percentage of simulations. However, they do not provide any insight into 

which individual performance thresholds are being satisfied and which are not. While this 

method ensures that at least one performance threshold will be satisfied for the multi-criteria 

performance threshold to be met, it cannot ensure that any single metric (e.g., hydropower 

provision) is achieved.  

The failure scenarios for the multiplicative scheme closely mirror those for the 

hydropower water delivery, which was the most sensitive individual metric. This indicates that 

when such an aggregation scheme is used, it is possible for the resulting failure scenarios to be 

dominated by a single metric. When the additive method with a priority on hydropower delivery 

is used, the failure scenarios still indicate a vulnerability to evaporation overestimates, but do not 

indicate a vulnerability to decreases in precipitation unless combined with an increase in 

temperature. While three aggregation schemes (multiplicative, additive with equal weights and 

additive with a priority on irrigation) result in relatively consistent failure scenarios, the threshold 

values identified for the EtC and ∆P parameters differ between them. For instance, the additive 
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method with an irrigation priority appears the most sensitive to even small decreases in 

precipitation, while the multiplicative scheme is most sensitive to evaporation underestimates.  

Additional investigation into the conditions that cause failure for a given metric demonstrate 

how some insights and nuances about system performance can be lost when performance 

metrics are combined into a single score. The left hand side of Figure 4 shows a scatterplot 

demonstrating how changing precipitation and evaporation estimates impact hydropower 

performance. Filled in dots represent simulations where the threshold for hydropower water 

delivery was not met, and hollow dots represent those simulations where it was. A fairly distinct 

linear divide is apparent, demonstrating how the system’s tolerance for higher rates of 

evaporation relates to the level of precipitation experienced. While the hyper-rectangles identified 

by the PRIM algorithm are unable to capture this sort of relationship precisely (although 

orthogonal transformations have been used to address this issue(51)), the identification of 

precipitation and EtC as the key uncertainties driving performance, combined with a simple 

visualization, makes it apparent. However, when the same scatterplot is generated using the 

multiplicative performance metric, this relationship is no longer discernable.  

DISCUSSION 

To understand the potential implications of these results, it is important to consider the 

different ways in which such scenarios might be used to support decision making. One useful 

outcome of the scenario discovery process is that it can identify the uncertain parameters that 

have the greatest impact on system response and thus, the areas where a reduction in uncertainty 

could be the most valuable. It also may provide useful insights by identifying the parameters that 

are not as influential over system performance and thus don’t warrant as much concern.(9) In our 

analysis the parameters identified as important were generally consistent over different metrics 

and aggregation methods, with precipitation and evaporation uncertainty being the strongest 

drivers of vulnerability while precipitation intensity, future land cover, and sedimentation rates 
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were not identified as influential. However, there were some notable differences. One interesting 

result was that uncertainty in evaporation estimates could result in unacceptable levels of 

irrigation reliability and hydropower water delivered even in favorable climate conditions. This 

indicates that even without the impacts of climate change, the proposed infrastructure might be 

unable to meet its goals if current estimates of evaporation prove to be too low. While 

uncertainty surrounding future projections of climate change is unlikely to be reduced in the 

coming years,(3) additional meteorological monitoring, combined with the development of 

remote sensing products, could be used to refine evaporation estimates and gain a better sense of 

likely system performance. However, this sensitivity to evaporation alone is not apparent when 

the environmental priority additive weighting scheme is used, indicating that this insight could be 

lost if individual metrics aren’t separately assessed.  

Another useful aspect of the scenario discovery approach is that it not only identifies 

which uncertain parameters are most influential, but can also determine threshold levels beyond 

which performance levels are unacceptable. This is one of the main advantages of the approach 

when compared to variance-based methods for global sensitivity analysis such as Sobol indices, 

which identify variables to which an outcome is most sensitive but not necessarily thresholds 

within that variable space.(22) These thresholds can highlight the relative sensitivity of different 

performance metrics; for instance, Tis Issat flow coverage is more sensitive to decreases in 

precipitation than environmental coverage. These precipitation thresholds can also be 

informative when considering interannual variability in performance, even under current climate 

conditions. For example, during the 20-year period from 1977 to 1996 the basin experienced 

lower than average rainfall (Figure 4), and these decadal-scale dry periods would be expected to 

occasionally occur even without the impact of climate change. The average annual precipitation 

during this period was 1360 mm, which is approximately 8% less than the long-term average of 

1470 mm and thus below the threshold for hydropower performance. The amount of water 
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provided for hydropower thus appears sensitive not only to long-term climate change, but also 

to interannual variability experienced currently. However, if one were to assess performance 

using the additive weighting scheme with a priority on hydropower, this vulnerability would not 

be apparent. Finally, these thresholds could be used in additional probabilistic analysis to 

determine the relative likelihood of the different scenarios identified, as has been done by 

Lempert et al.(16) Because the probability of these scenarios is contingent on their quantitative 

definition, this could in turn impact the expected value and probability of failure.  

 A third way in which the scenario discovery process can help inform decision making is 

by highlighting the vulnerabilities that decision makers may want to address to make their system 

more robust. For instance, after recognizing that water supply costs were vulnerable to a 

decrease in the amount of groundwater recharge, Lempert and Groves(10) proposed additional 

investment in stormwater capture and groundwater replenishment facilities to help address this 

vulnerability. In this regard, the scenarios identified for the aggregated performance scores are 

much less informative than those identified for the individual metrics. In our example, the two 

metrics that are most sensitive to climatic and environmental uncertainty based on the number 

possible futures resulting in failure are the irrigation and hydropower metrics. This is despite the 

fact that these are the two objectives driving the large infrastructure investments in the region. 

Thus, decision makers may see this information and try to adopt policies or adapt the proposed 

infrastructure to make its performance with regard to those metrics more robust, particularly 

given their economic importance. For instance, the irrigation drainage systems could be adjusted 

to improve irrigation efficiency, or water allocation rules could be adapted to provide more water 

for hydropower. When the aggregated performance scores are used, these avenues for system 

improvement are not apparent.  

 Based on these results, the insights that can be obtained through a process like scenario 

discovery appear to be compromised when multiple performance objectives are combined into a 
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single score. While the uncertain parameters driving vulnerability were relatively consistent across 

the scenarios identified for different metrics and aggregation schemes, the more subtle ways in 

which uncertain parameters interact with each other to impact different objectives were not 

always apparent when the aggregated scores were used. It is also important to note that 

performance across the objectives in our example were relatively correlated, since a low 

availability of water impacts all of the objectives negatively. It is quite possible that the 

discrepancies in failure scenarios for aggregated metrics would be larger if other objectives were 

included that were impacted in the opposite direction, such as flood risk. Regardless of the 

aggregation method used, the information provided to decision makers using aggregated criteria 

cannot match the information provided through assessment of criteria individually. While we 

specifically evaluated the impact of aggregating objectives through multiplicative and additive 

utility functions, this result is likely to also occur when other methods, such as conversion of 

metrics to monetary flows through cost benefit analysis, are used. Admittedly, performing a 

separate scenario discovery on each of our metrics was made easier in our example problem due 

to the relatively small number of performance metrics assessed, and repeating this process may 

become increasingly impractical as the number of objectives under consideration increases, as 

may be the case in participatory processes involving many stakeholders. One potentially 

promising way to address this issue could be by identifying groups of objectives that are 

vulnerable to similar conditions and grouping them together so that failure for performance 

objectives are described by the same scenarios. This would likely reduce the coverage and density 

of the failure scenarios for some objectives, but would make the evaluation’s results more 

interpretable and avoid the need to weigh and aggregate the objectives of competing groups early 

in the analysis.  
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CONCLUSIONS 

Robust decision frameworks are becoming increasingly popular in both research and 

practice, particularly in the climate adaptation field. By identifying the conditions to which a 

given system or policy is vulnerable, these tools can provide valuable insights in situations with 

multiple deeply uncertain parameters that could impact the system of interest. These methods 

are increasingly being applied in sectors that have to balance performance across multiple 

criteria, such as water resource management, infrastructure protection, and energy policy. This 

research demonstrates that common methods used to aggregate multiple criteria into a single 

utility score can lead to inconsistent failure scenarios and obscure the relationship between key 

uncertainties and system performance. Applying scenario discovery over each performance 

metric separately provides more nuanced information regarding the relative sensitivity of the 

performance objectives and the ways in which they are impacted by different uncertain 

parameters. This in turn can provide insights on measures that could be taken to improve system 

robustness, as well as areas where additional research might prove useful. Because the RDM 

framework was designed to provide quantitative decision support in contexts where there may be 

conflicting beliefs about what the future will look and contentious disagreements about the best 

course of action, it is important that the steps of the process remain as transparent as possible. 

To this end, the additional effort required to apply scenario discovery to each metric separately 

provides valuable benefits by identifying failure scenarios that inform a more complete picture of 

system performance and provide more detailed guidance for vulnerability-reduction efforts.  
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Project              
Name Type 

Annual 
demand 
(MCM) 

Reservoir 
capacity 
(MCM) 

Average 
annual flow 
into dam site 

(MCM) 

Catchment 
area    

(km2) 

Irrigable 
Area 
(km2) Min Max 

Existing Projects 

Koga Irrigation reservoir 62 86 83 114 185 70 

Tana-Beles Hydropower tunnel 2681 2681 NA NA NA NA 

Planned Projects 

Gumara Irrigation reservoir 115 161 60 236 385 140 

Megech Irrigation reservoir  63 98 182 172 424 73 

Ribb Irrigation reservoir  172 220 234 210 677 199 

NE Lake Pumped irrigation 50 50 NA NA NA 57 

NW Lake Pumped irrigation 54 54 NA NA NA 67 

Gilgel Abbay Irrigation reservoir 104 142 563 1883 2044 103 

Jema Irrigation reservoir 57 80 200 128 218 78 

SW Lake Pumped irrigation 42 42 NA NA NA 51 
Table I: Existing and proposed water resources infrastructure in the Lake Tana basin. 

 

 

 

Uncertain parameter Symbol Range of values 

Change in temperature ∆T 0.5 to 5.5° C 

Change in rainfall  ∆P -20% to +35% 

Change in rainfall intensity ∆Int 0% to +20% 

Specific sediment loads SedRate 80 to 2400 tons/km2 annually 

Agricultural land cover AgLC 50% to 90% 

Evaporation coefficient EtC 0.8 to 1.2 
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Table II: Uncertain parameters 

 

 

 

Objective Metric Units 
Baseline 
Results 

Acceptable 
Performance 

Threshold 

Maximize irrigation water reliability 
Percentage of years when minimum 
demand is met % 98% 90% 

Maximize hydropower water 
delivered Average water delivered annually MCM 2699 2681 

Minimize percent of time where 
lake elevation is below minimum 
acceptable level 

Percent of months where lake is above 
1784.75 amsl % 100% 90% 

Maximize flows over  
Tis Issat waterfall Average flow requirement met for Tis Issat % 33% 30% 

Maximize environmental flows Average flow requirement met for all rivers % 78% 70% 
Table III: Performance metrics. Baseline performance is based on historic climate conditions, an annual specific sediment 
yield of 1000 tons/km2, 50% agricultural land cover and an evaporation coefficient of 1.0. 

 

 

 

 Aggregation Method Multiplicative Additive – 

equal 

weighting 

Additive – 

agricultural 

priority 

Additive – 

hydropower 

priority 

Additive – 

environmental 

priority 

W
ei

gh
ts

 

Irrigation water 

reliability 

NA 

0.2 (1) 0.5 (1) 0.33 (2) 0.05 (4) 

Hydropower water 

delivery 

NA 

0.2 (1) 0.33 (2) 0.5 (1) 0.05 (4) 

Lake levels NA 0.2 (1) 0.06 (3) 0.06 (3) 0.4 (1) 

Tis Issat falls coverage NA 0.2 (1) 0.06 (3) 0.06 (3) 0.2 (3) 

Environmental flow 

coverage 

NA 

0.2 (1) 0.06 (3) 0.06 (3) 0.3 (2) 

 Acceptable performance 

threshold 

1.0 0.75 0.87 0.88 0.69 

Table IV: Weighting schemes used to calculate aggregate performance scores. Numbers in parenthesis are the 
importance rankings of each criteria for a given weighting scheme.  
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Metric 

Acceptable 

performance 

level 

Minimum Maximum Futures where 

threshold is unmet 

Irrigation reliability 0.90 0.02 1.00 57% 

Hydropower water delivered 2681 271 2855 66% 

Lake Tana elevation 0.95 0.10 1.00 36% 

Tis Issat Falls coverage 0.30 0.26 0.39 46% 

Environmental flow coverage 0.76 0.64 0.83 48% 

Table V: Simulation results. Baseline results assume historic climate conditions, a specific sediment yield of 1000 
tons/km2, 50% agricultural land cover, and EtC = 1.0. 

 

 

 

 

Metric Percent 

failures 

Failure Scenarios Box 

density 

Box 

coverage 

Ensemble 

density 

Ensemble 

coverage 

Irrigation 

reliability 

57% 1. ∆P < -3.8% 0.86 0.56 0.83 0.79 

2. EtC > 1.09 0.77 0.25 

Hydropower 

water delivery 

66% 1. EtC > 0.99 0.91 0.73 0.91 0.93 

2. ∆P < -5.5% 0.91 0.93 

Lake elevation 36% 1. ∆P < 1.4%, EtC > 0.94, ∆T >1.16° 0.85 0.68 0.82 0.77 

2. ∆T > 4.1°, ∆P < 6.6% 0.65 0.1 

Tis Issat Falls 

coverage 

46% 1. ∆P < -2.2% 0.8 0.71 0.82 0.9 

2. EtC > 1.08, ∆P < 16.4% 0.9 0.19 

Environmental 

flow coverage 

48% 1. ∆P < -7.8% 0.7 0.38 0.61 0.78 

2. ∆T > 2.6° 0.55 0.40 

Table VI: Failure scenarios for individual performance metrics 
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Table VII 

Aggregation Scheme Percent 

failures 

Failure Scenarios Box 

density 

Box 

coverage 

Ensemble 

density 

Ensemble 

coverage 

Multiplicative 77% 1. EtC > 0.96 0.91 0.7 
0.91 0.86 

2. ∆P < -5.5% 0.92 0.15 

Additive – equal 

weighting 

52% 1. ∆P < -4.6% 0.87 0.57 
0.84 0.79 

2. EtC > 1.11 0.77 0.22 

Additive – irrigation 

priority 

59% 1. ∆P < -3.7% 0.88 0.55 
0.87 0.78 

2. EtC > 1.10 0.86 0.23 

Additive – 

hydropower priority 

60% 1. EtC > 1.03 0.85 0.61 
0.86 0.86 

2. ∆T > 2.8°, ∆P < 7.0% 0.92 0.25 

Additive – 

environmental priority 

46% 1. ∆P < -0.34%, ∆T > 1.96° 0.85 0.64 
0.84 0.83 

2. EtC > 1.1, ∆P < 16.9% 0.81 0.19 

Table VIII: Failure scenarios for aggregated performance scores 

 

 

 

 

 

Figure 1: Map of Lake Tana, the surrounding watershed, and planned infrastructure developments. 
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Figure 2: Failure scenarios for individual performance metrics. Diagonal lines indicate a condition that has to occur in 
conjuction with specific conditions regarding the other parameters identified by diagonal lines. Boxes with hash marks 
indicate conditions that are sufficient to cause failure on their own, regardless of the values taken on by other 
parameters.  
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Figure 3: Failure scenarios for aggregated performance scores. Diagonal lines and hash marks are as in Figure 2. 
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Figure 4: Scatterplots showing simulations with hydropower performance and multiplicative aggregated perfomrance 
above their respective thresholds. Filled in circles represent simulations where the threshold was not met, and empty 

circles indicate simulations where it was. 

 

 

  

 

Figure 5: Total annual precipitation (Gilgel Abbay). Horizontal lines indicate the thresholds for annual average 
precipitation identified by the PRIM algorithm. 

 

 


