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Abstract 

Accurate assessment of erosion rates remains an elusive problem because soil loss is 

strongly non-unique with respect to the main drivers. In addressing the mechanistic causes of 

erosion responses, we discriminate between macro-scale effects of external factors - long 

studied and referred to as ‘geomorphic external variability’, and micro-scale effects, 

introduced as ‘geomorphic internal variability’. The latter source of erosion variations 

represents the knowledge gap, an overlooked but vital element of geomorphic response, 

significantly impacting the low predictability skill of deterministic models at field - catchment 

scales. This is corroborated with experiments using a comprehensive physical model that 

dynamically updates the soil mass and particle composition. As complete knowledge of micro-

scale conditions for arbitrary location and time is infeasible, we propose that new predictive 

frameworks of soil erosion should embed stochastic components in deterministic assessments 

of external and internal types of geomorphic variability. 

 

1. Introduction  

Quantifying the rates of overland soil erosion is essential for a range of problems, including 

the understanding of soil loss impacts on agricultural productivity, erosion-related sink of carbon, 

water quality due to non-point source pollutants, and flood control structure design [Pimentel et al., 

1995; Syvitski et al., 2005; Montgomery, 2007; Van Oost et al., 2007; Quinton et al., 2010; 

Chappell et al., 2015]. Economic costs of soil conservation have amounted to billions of dollars 

[Pimentel et al., 1995; Trimble and Crosson, 2000; Adhikari and Nadella, 2011] and therefore 
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improvement of skill in soil loss prediction continues to be strongly desirable and has far reaching 

practical implications. While much research has shed light on crucial controlling factors, a complete 

understanding of process interdependencies across scales and therefore improvements of predictive 

capabilities have remained an elusive problem [Trimble and Crosson, 2000; Montgomery, 2007].  

One of the essential challenges is that soil erosion is non-unique [Kim and Ivanov, 2014; 

Kim et al., 2016b] for the same rainfall or runoff – the two primary forcings conventionally used to 

describe the erosion potential [Selby, 1993]. This is vividly demonstrated when data from adjacent 

plots undergoing the same experimental conditions are cross-compared [USDA, 1965; Boix-Fayos 

et al., 2006; Kim et al., 2016a]: the non-uniqueness can exhibit up to two orders of magnitude 

difference [Bagarello and Ferro, 2004; Boix-Fayos et al., 2007; Nearing et al., 2007]. Erosion has 

been mostly attributed to the effects of macro-scale (1) surface conditions such as soil and land use 

types, rock fraction, crop management, and conservation practices [Harmel et al., 2007; Sharmeen 

and Willgoose, 2007; Ward et al., 2009; Garcia-Ruiz, 2010; Notebaerta et al., 2011; Defersha and 

Melesse, 2012; Jomaa et al., 2013], (2) site characteristics such as topography and slope [Lane et al., 

1997; Phillips, 2003; Boix-Fayos et al., 2006; Defersha et al., 2011], (3) rainfall properties such as 

intensity sequence, duration, and volume [Edwards and Owens, 1991; González-Hidalgo et al., 

2009; Kim and Ivanov, 2014]. Variability of soil loss caused by these macro-scale factors will be 

referred to hereafter as ‘geomorphic external variability’.  

The influence of micro-scale conditions has also been indicated as a potential cause of 

variability in soil erosion [Tisdall and Oades, 1982; Kwaad and Mucher, 1994; Bryan, 2000; 

Arnau-Rosalén et al., 2008; Bussi et al., 2014], and was numerically investigated to illustrate how 
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hysteresis loops in sediment transport arise [Sander et al., 2011; Zhong, 2013] with a direct 

connection between the hysteretic phenomenon and the initial state of the surficial sediment layer 

and its evolution. We will refer to such micro-scale characteristics as ‘geomorphic internal 

variability’. Specifically, the effect of (1) pedologic properties has been attributed to soil texture, 

aggregation, and shear strength [Bryan, 2000]. Among these, bulk soil texture can be reasonably 

assumed static, due to its slowly changing nature; its importance has been long recognized and is 

typically included in the geomorphic external variability [Middleton, 1930; Bouyoucos, 1935; 

Knapen et al., 2007; Gumiere et al., 2009]. The other pedologic properties – aggregation and shear 

strength –  are much more variable in time and space and their implications for erosion have 

remained largely unexplained [Bryan, 2000], likely due to limited capabilities to measure them. 

Additionally, one needs to recognize that micro-scale variations of (2) soil structure and degree of 

saturation lead to spatiotemporal variations of soil hydraulic properties and wetness conditions, thus 

inducing variability of the hydrologic partition [i.e., rainfall loss and runoff, Noto et al., 2008]. 

Finally, variability of (3) surface roughness and surface elevation can result in contributions to 

geomorphic internal variability due to hydraulic effects. The random distribution of micro-scale 

topographic gradients and roughness elements can result in localized areas of flow acceleration and 

deceleration, with pronounced feedback regions (e.g., rill network development) [Lei et al., 1998; 

Simpson and Castelltort, 2006; Nord and Esteves, 2010; Papanicolaou et al., 2010; Kim et al., 

2012a; McGuire et al., 2013]. Few laboratory and field experimental studies dealt with the issue of 

micro-scale variations in soil surface and subsurface conditions, and their inferences have remained 

case-specific and difficult to generalize.  

This article is protected by copyright. All rights reserved.



5 
 

Variations of properties intrinsic to the system or caused by external factors have been 

recognized in various disciplines. They are referred to as ‘endogenous’ and ‘exogenous’ in geology, 

‘autogenic’ and ‘allogenic’ in sedimentary geology, and ‘internal’ and ‘external’ in climate science. 

However, the meaning is different in each discipline (see SM.1). Similarly, we introduce here the 

notions of geomorphic external and internal variability to unequivocally distinguish the impacts of 

macro-scale external and micro-scale intrinsic factors on soil erosion. Furthermore, among the 

potential causes of internal variability we single out surface erodibility as, a priori, it may represent 

the dominant effect on erosion susceptibility [e.g., Sidorchuk, 2005]. The primary objective of this 

study is to demonstrate that these micro-scale spatiotemporal variations of soil erodibility are a 

fundamental source of internal variability at the scale of a single erosion event, with direct 

consequences for erosion predictability.  

 

2. Data Analysis  

To demonstrate the non-uniqueness and heavy-tailed frequency distributions of soil loss 

from upland areas, a comprehensive long-term dataset, the one used to derive the Universal Soil 

Loss Equation (USLE, [Wischmeier and Smith, 1978]), is used. The USLE experimental design 

included monitoring replicated hillslopes with the same topography, soil type, rainfall and 

meteorological forcings, and land use conditions. The database integrated information from multiple 

locations and contains data on event-scale geomorphic and hydrologic variables such as storm 

characteristics, runoff, soil loss, and site-specific descriptions. USLE data are ideally suited to study 

the effects of micro-scale soil erodibility, given the replicated land-surface and forcing conditions. 
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The original data (1,400 plot-years) were filtered to ensure consistency required for plot-to-plot 

comparisons [Kim et al., 2016a]. The resultant analysis data set includes 1,218 plot-years (102 

individual plots) for 10 locations, totaling in 884 erosion events. The number of replicated plots for 

studied locations varies between 4 and 16. In this study, two representative locations, Clarinda, IA 

(312 events with 9 replicate plots, over 1932-1959), and Watkinsville, GA (213 events with 6 plots, 

over 1940-1960), are discussed in more detail due to their highest data availability. As we contend, 

however, the inferences are general and applicable to most hillslope-scale erosion assessments. 

2.1. Geomorphic Variability 

An interesting feature that emerges from the USLE data is the high non-uniqueness of 

geomorphic response for the same magnitude of event runoff (Fig. 1a, 1b). While the high 

variability of soil loss is frequently observed in empirical data at various spatial scales [e.g., 

Nearing et al., 2007], we note that Fig. 1a and 1b show the total variability (referred to as the 

Geomorphic Total Variability) because it is generated by many erosion events in all of the 

replicated plots. The spread of soil loss averaged over the replicate plots (Fig. 1c, 1d)  

approximately refers to the variability that is external to the plot properties, i.e., what we have 

referred to above as the ‘geomorphic external variability’; numerous studies have addressed it in 

various detail. In contrast, Fig. 1e and 1f show soil loss variations that are intrinsic to the soil 

system: identical plot-scale topographic characteristics, soil texture, landuse, and 

rainfall/meteorologic forcing of replicated plots result in nearly identical runoff. The observed 

erosion differences in Fig. 1e and 1f must be caused by variations in soil erodibility properties or 

some other internal properties of the system (such as pedologic, hydrologic or hydraulic types of 
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geomorphic internal variability, Sec. 1). As clearly seen, soil erosion responses exhibit very high 

variability, reaching up to two orders of magnitude difference for the same forcing (Fig. 1e, 1f). 

Relevant processes that lead to micro-scale variations in soil surface conditions are due to the non-

uniform supply of finer particles (weathering) [Sharmeen and Willgoose, 2006; Cohen et al., 2010], 

aggregate breakdown by trapped air (slaking), dryness of slaked clayey soil (sealing and crust 

formation), protection of the original soil layer by comparatively larger particles (shielding), 

chemical repelling interactions between cations (dispersion), and animal, plant, or human activities 

(bioturbation and management). These processes lead to soil surface erodibility, hydraulic 

properties, and spatial connectivity that is inevitably variable, space-time dependent, and ultimately 

unpredictable, providing the basis for why one cannot specify accurate initial conditions of soil 

particles distribution and spatial arrangements in deterministic erosion models. 

2.2. Heavy-Tailed Distribution of Soil Loss 

When inspected closely, the conditional frequency distributions of soil loss from the USLE 

database reveal heavy tails. This feature is apparent in the plots showing the power law behavior 

(Fig. 2a, 2b). The larger (i.e., less negative) the slope of the tail [i.e., the Pareto index, Hill, 1975], 

the heavier the tail of the distribution, and thus the larger its departure from Gaussian. The 

corresponding Lorenz curves [Lorenz, 1905] (Fig. 2c, 2d) show that the mass of the top 15 – 20 % 

of soil loss events nearly equals the mass of the 80 – 85 % smaller events. Such a heavy tailed 

distribution is characteristic of systems where random anthropogenic, climatic, pedologic, 

hydrologic, and hydraulic perturbations constantly disrupt geomorphic state of the system, thereby 

moving it away from theoretical equilibrium [Kim et al., 2016a]. These perturbations are very 
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common and they therefore generate high variance of upland soil loss. As a result, erosion 

magnitudes much higher than the mean can occur at non-negligible probabilities: more ‘frequently’ 

than implied by the usual, implicit assumption of Gaussian variations, adopted in large-scale 

assessments [e.g., the National Resources Inventory, NRI, Nusser and Goebel, 1997].  

 

3. Modeling Analysis  

One logical hypothesis from the analysis of empirical data at the event scale (Fig. 1e, 1f), 

also adopted in other independently carried out, pioneering studies of erosion variability [Sander et 

al., 2011; Zhong, 2013], is that for a given rainfall and runoff amount, the initial condition of soil 

substrate erodibility and its dynamic evolution exert a strong control on the event-scale geomorphic 

response. The possibility of large uncertainties in the characterization of geomorphic internal 

variability and thus low predictability power provide strong incentives for a systematic exploration 

of variations in hydrology-hydraulic-erosion-sediment transport processes. Below, we directly 

address the impact of uncertainty in geomorphic internal variability on soil loss at a unit-plot and 

runoff-event scales using a state-of-the-science two-dimensional model of overland flow and 

sediment transport, tRIBS-VEGGIE-FEaST [Ivanov et al., 2004; Ivanov et al., 2008; Kim et al., 

2012b, see also SM.2; Kim et al., 2013; Kim and Ivanov, 2015; Kim et al., 2016a]. 

3.1. Modeling Soil Surface Erodibility in Numerical Experiments  

Recent studies demonstrated potential clues to how the initial and temporal evolution of 

geomorphic internal variability can impact soil loss [Sander et al., 2011; Jomaa et al., 2013; Zhong, 

2013; Kim and Ivanov, 2014; Kim et al., 2016b]. Specifically, during a runoff event, rainfall and 

This article is protected by copyright. All rights reserved.



9 
 

overland flow simultaneously drive erosion processes of detachment, entrainment, and deposition 

on original soil that is relatively intact and cohesive and in which contact forces bind the particles. 

Part of eroded materials is thus continuously re-deposited over soil surface and some fraction of re-

deposited materials is re-eroded. These deposited, loose soil materials have higher erodibility than 

the original intact soil, with the difference reaching up to two orders of magnitude [Proffitt et al., 

1991; Jomaa et al., 2010; Heng et al., 2011]. Further re-entrainment and transport of deposited soil 

particles is thus promoted, leading to a complex intra- and inter-event temporal evolution of 

variations of surface erodibility. The deposited soil layer can exhibit two conflicting roles: it could 

both increase and decrease soil erosion of the subsequent event for the same magnitude and timing 

of overland flow according to the degree of shielding or exposure of fine loose material [Sander et 

al., 2011; Zhong, 2013; Kim and Ivanov, 2014; Kim et al., 2016a]. 

In order to represent the likely continuum of micro-scale surface erodibility characteristics 

and its variation among the replicate plots, we develop a large number of scenarios for the deposited 

(loose) soil mass in terms of its cover fraction and particle size distribution, with all other conditions 

remaining invariant. Specifically, we consider an exemplary location from the USLE database, 

Clarinda (IA), and an erosion event that took place on July 31st, 1932 (chosen among 312 events as 

a representative event – yielding mean soil loss and runoff for that location, Fig. S2). We use the 

USLE unit plot domain with 1.8 m (width), 22.1 m (length), and 1 m (depth). The scenarios of 

initial soil erodibility serve as input to tRIBS-VEGGIE-FEaST to address how the lack of 

knowledge on soil substrate composition and erodibility impacts the geomorphic response. 

Specifically, our approach considers multi-size particle distributions of two soil surface types: the 
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original, intact (cohesive) soil layer, and the deposited (non-cohesive) soil layer, exhibiting different 

shear strengths [Hairsine and Rose, 1991; 1992]. The detachability in both layers is differentiated 

with two detachment parameters (Eqs. 7 and 8 in Kim et al. [2013] and Table S1). The resistance to 

flow-driven entrainment in the original soil layer is accounted for with a parameter called the 

‘specific energy of entrainment’, while the resistance of the deposited layer to re-entrainment is 

associated with the submerged weight of loose materials (Eqs. 10 and 11 in Kim et al. [2013] and 

Table S1). One thousand random particle size distributions (PSDs) are generated to characterize the 

possible composition of the antecedent deposited layer (Fig. 3a) for ten magnitudes of its cover 

fraction (H). PSDs are obtained by the generation of combinations of six random numbers ranging 

from 0 to 1, satisfying the summation to one. Thus, the corresponding total number of model 

simulations is 10,000 (e.g., H = 0.1…1, Fig. 3b and 3c) plus one (H = 0) representing intact soil. 

Other relevant details of the numerical setup are provided in Kim et al. [2016a]. In summary, the 

modeling design yields cases with exactly the same dynamics and amounts of infiltration, runoff, 

and surface flow, while the variability of soil initial conditions in the ensemble leads to differences 

in soil erosion. By using a number of particle sizes with different shear strengths (i.e., intact vs. 

loose soil), the approach mimics the dynamics of soil properties by representing the amount, degree, 

and cohesiveness of aggregations that are dynamically (temporally and spatially) updated within the 

model.  

3.2. Model Results 

The stochastic characterization of the initial condition with 10,001 soil substrates leads to 

the probability density function of soil loss that spans the variability of empirical observations for 
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the nine replicate plots (Fig. 3b). While the distribution extends to soil loss magnitudes (Fig. 3b up 

to 1.373 kg m-2) that are larger than the observed maximum, this simply conveys the theoretical 

plausibility of these responses with small probability that were not represented in the replicated 

plots (as well as, the potential effect of biases in model assumptions). The results of Fig. 3b 

demonstrate that the initial condition of soil erodibility strongly controls the magnitude of the 

geomorphic response. A narrower range of plausible yield magnitudes can be predicted only if soil 

surface conditions are better characterized. This is, however, unlikely and impractical, and therefore 

the predictive skill of erosion models at the hillslope and event-scale will likely remain severely 

handicapped. 

To illustrate the relative importance of composition of antecedent deposited soil substrate on 

geomorphic response, a set of multiple linear regressions is developed using the 10,001 simulation 

cases to compute soil loss (SL) (Fig. 3c): 𝑆𝐿 = 𝑆𝐿0 +  𝐻 ∙ ∑ 𝑤𝑖𝑓𝑖6
𝑖=1  [kg m-2] (see Supplementary 

Material SM.3). The term SL0 is the intercept for the case of a soil surface that is entirely “intact” 

(i.e., H is zero). The coefficients wi represent weights for the fractions (fi) of the six particle size 

classes. We find high sensitivity of soil loss to antecedent composition and that initially loose 

materials may not necessarily increase soil erosion. Specifically, for a fixed H, a higher fraction of 

loose, lighter materials on the soil surface intensifies soil erosion. A larger fraction of coarser, 

heavier particles can however result in a ‘shielding’ layer (the negative signs of w, see 

Supplementary Material) and thus inhibit erosion [Kim and Ivanov, 2014], when compared to the 

initially “intact” soil conditions. For example, the ‘minSL’ PSD case in Fig. 3d has the highest 
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fractions of the three classes of coarser particles and the regression equation yields a negative slope 

(-0.0106) of dependence on H. Positive slopes are characteristic of most other PSD cases. 

For a given H, the large range of possible PSDs characterizing antecedent deposited soil 

material generates a positively skewed probability distribution of soil loss with a tail exhibiting a 

nearly exponential decay (Fig. 3c). This response of non-uniqueness is entirely determined by the 

initial conditions of soil bed, since overland flow characteristics are identical [Sander et al., 2011; 

Zhong, 2013; Kim and Ivanov, 2014]. As suggested above, the resultant variability in erosion 

response should be referred to as ‘geomorphic internal variability’, a more properly constrained 

reference than ‘natural variability’ [Nearing et al., 1999] because the latter can include any kind of 

natural (e.g., including rainfall or radiation) external variability. A stochastic approach that accounts 

for the mass and distribution of materials of different erodibility characteristics (such as the two-bin 

conceptualization of ‘intact’ and ‘loose’ substrate types in Fig. 3a) seems a suitable approximation 

to reflect the uncertainty of soil bed characteristics. 

 

4. Discussion  

4.1. Geomorphic Internal Variability and Soil Loss Assessments 

The importance of spatiotemporal variations of micro-scale soil erodibility  has been 

relatively ignored in erosion assessment studies, especially over large heterogeneous areas [Kim et 

al., 2016a]. One example is the approach used for monitoring of trends in erosion by the U.S. 

Department of Agriculture, which has contributed to the National Resources Inventory [i.e., NRI, 

Nusser and Goebel, 1997]. Erosion monitoring is the result of statistically stratified spatial 
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applications of a modeling tool, the Universal Soil Loss Equation [USLE, Wischmeier and Smith, 

1978] to assess the erosion potential at ~800,000 sample points throughout the United States 

[Nusser and Goebel, 1997]. Importantly, soil erosion rates computed in NRI for each sample point 

are based on time-invariant erosivity potential (rainfall) and erodibility (soil) factors, and the long-

term assessment essentially consists of tracking changes of only site-specific parameters 

representing land use and management practices. In the context of research developed here, NRI 

[and most other contemporary erosion assessments, e.g., Panagos et al., 2014; Panagos et al., 2015] 

account for the variance of soil loss among unit areas (i.e., mostly the external variability), 

implicitly assuming that the variance within a unit area – the ‘sampling variance’ attributed to the 

geomorphic internal variability here – is negligible. This research demonstrates that it is a 

misconception to equate the external variability to the total geomorphic variability since 

heterogeneities in particle size and erodibility characteristics of soil surfaces are always expected to 

be significant. 

Furthermore, large-scale assessments (such as NRI or European Union-driven soil loss 

assessment) focus on the long-term soil loss averages that are perceived to be more relevant to 

policy makers or planners than the loss frequency distribution, reflecting our perception that with 

the average one “can’t be too far off” from the “likeliest expected”. However, as seen in the USLE 

data, even at large temporal scales, there is distinct evidence of high variability of soil loss (e.g., Fig. 

1 and  Kim et al. [2016a]) and long tail in the distribution cannot be discarded in certain problems of 

high relevance to policy-making. This calls for a shift in erosion assessment paradigm, changing the 

focus from the first moment property to metrics characterizing distribution tails. The development 
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of approaches that include stochastic principles to address key uncertainties will make policy-

making process better informed. 

4.2. Soil Loss as a Stochastic Problem from Deterministic Principles 

It is infeasible (and impractical) to characterize varying soil surface conditions for any 

arbitrary location and time, implying low a priori predictability skill of many contemporary 

deterministic models. The development of stochastic principles that explicitly address quantification 

of uncertainty in erosion related to geomorphic internal variability is therefore essential. Methods 

that combine elements of deterministic and stochastic approaches can stem from solutions described 

in the literature [Nearing, 1991; Wright and Webster, 1991; Lisle et al., 1998; Bryan, 2000; 

Sidorchuk, 2009]. However, existing stochastic approaches, being derived in principle for erosion 

rates only, are still far from practical utility. Complete knowledge on the probability distribution of 

key stochastic variables (e.g., flow velocity, aggregate size, and soil cohesion within and between 

aggregates [Sidorchuk, 2005; 2009], or shear stress, and local soil resistance [Nearing, 1991]) are 

almost impossible to attain/parameterize from measurements in the real world. The approach used 

in this study is however flexible and can be applied to practical problems. This could be achieved 

by coupling physical hydraulic, hydrologic, and erosion and sediment transport models (e.g., tRIBS-

VEGGIE-FEaST) to dynamically update soil properties (i.e., the amount, degree, and cohesiveness 

of aggregation) in time and space. Such an approach requires stochasticity in the definition of initial 

conditions and preserves the merits of mechanistic representation in computing the redistributions 

of flow and sediment. 

4.3. Sources of Geomorphic Internal Variability 
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The sources of geomorphic internal variability have been conceptually attributed to micro-

scale characteristics of pedologic, hydrologic, and hydraulic factors. Rather than directly accounting 

for all of them - an overly ambitious feat for a single study - we focus only on the spatiotemporal 

variations of soil erodibility, which are shown to lead to a level of soil loss variability 

commensurate with that of the event response of replicate experimental plots. Arguably, the ensuing 

implication is that geomorphic internal variability due to surface erodibility is a predominant factor 

determining envelopes of plot-, event-scale erosion response. While, a priori, this can be true for a 

range of other environmental settings, subsequent research should address the relative importance of 

all relevant sources of geomorphic internal variability. As is the case for uncertainty partition in 

other environmental sciences, the contributing components may result in non-additive behavior [e.g., 

Kim et al., 2015; Fatichi et al., 2016], implying that only relative (i.e., with respect to each other) 

importance can be estimated. Nevertheless, such a step is necessary to decipher the role of 

individual factors that determine the internal variability.  

 

 

4.4. Upscaling Variability 

Scaling variability to larger spatial scales is extremely challenging as the USLE program did 

not accommodate geomorphic forms that exhibit spatial structure and connectivity, focusing solely 

on plots. No empirical datasets containing observations for replicate catchments are currently 

available. Nevertheless, sediment yield data for several smaller-scale watersheds located within a 

larger nesting basin [e.g., Fig. 2 in Nearing et al., 2007] suggest high total variability. It is likely to 
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be attributed to both the external (e.g., shrub vs. grass cover condition) and internal variability, such 

as variations in surface forms that may include incised channels and rills, swales at different 

developmental stages, etc. The latter characteristics are conveyed at much smaller scales, as 

compared to the scale of the nesting watershed, and are not easy to address in watershed erosion 

studies. Therefore, they should be dealt with in the context of internal variability and further studies 

should address scaling properties of geomorphic internal variability within contiguous hillslopes 

and watersheds.  

 

5. Concluding Remarks 

Despite the perceived importance and the high costs of soil conservation efforts, assessment 

of erosion rates remains a poorly constrained problem. Current large-scale erosion studies reflect a 

view that the integration over environmental conditions – i.e., accounting for geomorphic ‘external 

variability’ only – yields estimates that are informative of the process. However, data from multiple 

environments demonstrate that soil loss is extremely variable and its frequency distributions exhibit 

heavy tails, implying that conventional assessments of soil loss focusing on central tendencies (and 

thus implicitly assuming Gaussian nature of variations) understate the true degree of predictive 

uncertainty.   

Why is erosion loss estimation uncertain?  This study contends that in addition to the 

commonly understood effect of geomorphic external variability (i.e., variations of rainfall properties, 

land use and management types, topography, soil texture, etc.), the response of multi-sized sediment 

to surface runoff events is strongly controlled by ‘geomorphic internal variability’, i.e., 
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contributions from micro-scale variations in pedologic, hydrologic, and hydraulic processes. Space-

time, dynamic variations of soil bed erodibility are emphasized as likely to be the most important 

[see also Saletti et al., 2015].  

It is currently impossible to accurately assess the relative contributions of geomorphic 

internal and external variability as well as their partition through available empirical observations 

only.  As precise knowledge of the associated internal processes will remain intangible, we have to 

accept that geomorphic predictive skill at the event scale is likely to remain poor, no matter how 

detailed erosion models will become in the future. The broader practical implication is that current 

practices of soil erosion assessment need to abandon not only the philosophy that entails symmetry 

of system behavior around ‘average’ – central tendencies are plainly misinformative for physical 

systems driven by episodic, extreme inputs – but also the methodology that attributes the variance 

to a single source of factors. 

To address the gap, we advocate the following endeavors in experimental and numerical 

studies. (i) Future long-term observations should be attained from as many replicated plots as 

possible to account for the geomorphic internal variability, as had already been emphasized in other 

studies [Rüttimann et al., 1995; Nearing et al., 1999]. Data from all previous research programs 

(e.g., the complete set of USLE observations) on rainfall, runoff, soil loss, and other vital 

supplementary measurements should be made available to scientists and practitioners. New types of 

monitoring, augmenting characterization of erosion process with data, for example, on micro-scale 

variability [e.g., Hohenthal et al., 2011] are also warranted. (ii) In terms of erosion models, new 

approaches that address the challenge of unavoidable uncertainties should be developed, and 
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appropriate quantification of variability and tails of soil loss should become a standard practice. (iii) 

Confidence interval, risk, or other uncertainty measures need to accompany soil loss assessments. 

The development of methods that combine elements of deterministic and stochastic approaches, 

such as the one used in this study, or other approaches that attempt to partition the uncertainty 

related to geomorphic external and internal types of variability across various spatial scales should 

be pursued to develop a new predictive framework of soil erosion.  
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Figure 1. Measured soil loss versus runoff for the locations of Clarinda, IA (312 events with 9 
replicate plots), and Watkinsville, GA (213 events with 6 plots). (a-b) Geomorphic Total 
Variability (all data from all replicate plots) and (c-d) Geomorphic External Variability (soil loss 
and runoff are averaged over the replicate plots). Several temporal scales are shown: event-scale 
(black), annual (magenta), and 5-year (green). Boxplot inserts represent residuals from the 
regression line (thick lines) between runoff and soil loss, expressed as the order of magnitude 
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difference (ΔO) computed for the three temporal scales (boxplots in (a-b are Fig. 1d and 1j in 
Kim et al., [2016a]). In each boxplot, the central mark is the median, the edges of the box are the 
25th and 75th percentiles, and the upper and lower whiskers are the maximum and minimum, 
except for outliers (“+” symbols) that are 1.5 times smaller or larger than the interquartile range 
from the 25th or 75th percentiles. The shaded areas in light grey, magenta, and green illustrate 
the order of magnitude differences corresponding to the upper and lower bounds in each boxplot, 
respectively. Calendar years are used to compute averages at the annual aggregation scale. To 
estimate 5-year values, a moving average is computed over each five consecutive calendar years 
(thus resulting in correlated 5-year averages). (e-f) Event-scale Geomorphic Internal Variability 
illustrated for clarity for five selected rainfall-runoff events only. The selected events correspond 
to small coefficients of variation for runoff and illustrate the high variability of the corresponding 
soil loss. 
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Figure 2. (a-b) Survival functions, Prob{X > x}; (c-d) Lorenz curves [Lorenz, 1905], computed 
from the conditional frequency distributions of soil loss corresponding to the binned ranges of 
surface runoff (in mm): the blue, red, green, magenta, cyan, and brown colors correspond to (0.1, 
2), (2, 4), (4, 8), (8, 15), (15, 25), and (> 25) for Clarinda, IA, and (0.1, 4), (4, 9.5), (9.5, 17), (17, 
32), (32, 45.5), and (> 45.5) for Watkinsville, GA. The variable ‘X’ is event-scale sediment loss. 
The slopes in (a-b) representing the Pareto index are computed using the approach of Hill [1975] 
based on the maximum likelihood method.  
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Figure 3. (a) A set of 1,000 random particle size distributions (PSDs) characterizing the fractions 
of six particle size classes composing the antecedent deposited layer. (b) A comparison of soil 
loss and runoff data for 9 plots from the USLE database (black dots, erosion event on July 31st, 
1932) and the results of 10,001 simulations (red bar with horizontal lines representing the 5th, 
25th, 50th, 75th, and 95th percentiles; the blue line represents the mean). (c) Empirical 
probability density functions (PDFs) representing 10,000 simulations of soil loss. The ten PDFs 
(black line), each representing the results from 1,000 ensemble members, correspond to varying 
conditions of the fraction of deposited soil material (H): from relatively intact (H=0.1), to 
completely loose (H=1.0) antecedent soil substrate. The overall PDF (red line) illustrates 
variation of soil loss for all simulation cases. (d) Particle compositions for three selected PSDs 
(marked as “minSL”, “midSL”, “maxSL”) of antecedent deposited layer. The “minSL” and 
“maxSL” compositions correspond to the minimum and maximum amount of soil loss for each 
scenario of H fraction. The “midSL” has the same PSD as the original, intact soil layer.  
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