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Abstract

Accurate assessment of erosion rates remains an elusive problem because soil loss is
strongly non-unique with respect to the main drivers. In addressing the mechanistic causes of
erosion.ﬁmnses, we discriminate between macro-scale effects of external factors - long
studied @ eferred to as ‘geomorphic external variability’, and micro-scale effects,
introdu e ‘geomorphic internal variability’. The latter source of erosion variations
represe e knowledge gap, an overlooked but vital element of geomorphic response,
significantly impacting the low predictability skill of deterministic models at field - catchment
scales. TMIS™S corroborated with experiments using a comprehensive physical model that
dynamimlpdates the soil mass and particle composition. As complete knowledge of micro-
scale co@ns for arbitrary location and time is infeasible, we propose that new predictive
framewa soil erosion should embed stochastic components in deterministic assessments

of ext d internal types of geomorphic variability.

1. Introduction

Quautifying the rates of overland soil erosion is essential for a range of problems, including
the undeéding of soil loss impacts on agricultural productivity, erosion-related sink of carbon,
water m.Eiue to non-point source pollutants, and flood control structure design [Pimentel et al.,
1995; mi'et al., 2005; Montgomery, 2007; Van Oost et al., 2007; Quinton et al., 2010;

ChappeI;., 2015]. Economic costs of soil conservation have amounted to billions of dollars

[Pime(al., 1995; Trimble and Crosson, 2000; Adhikari and Nadella, 2011] and therefore
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improvement of skill in soil loss prediction continues to be strongly desirable and has far reaching
practical implications. While much research has shed light on crucial controlling factors, a complete
understanding of process interdependencies across scales and therefore improvements of predictive
capabil.iq'ﬁ.hjve remained an elusive problem [Trimble and Crosson, 2000; Montgomery, 2007].
e essential challenges is that soil erosion is non-unique [Kim and Ivanov, 2014;

Kim etfaf =2®1.6b] for the same rainfall or runoff — the two primary forcings conventionally used to
describe ghegrosion potential [Selby, 1993]. This is vividly demonstrated when data from adjacent
plots un 0ing the same experimental conditions are cross-compared [USDA, 1965; Boix-Fayos
et al., 2008; Kim et al., 2016a]: the non-uniqueness can exhibit up to two orders of magnitude
diﬁerenagarello and Ferro, 2004; Boix-Fayos et al., 2007; Nearing et al., 2007]. Erosion has
been moktly attributed to the effects of macro-scale (1) surface conditions such as soil and land use
types, rmction, crop management, and conservation practices [Harmel et al., 2007; Sharmeen
and Wy , 2007; Ward et al., 2009; Garcia-Ruiz, 2010; Notebaerta et al., 2011; Defersha and
Melevs\§; Jomaa et al., 2013], (2) site characteristics such as topography and slope [Lane et al.,
1997; Phillips, 2003; Boix-Fayos et al., 2006; Defersha et al., 2011], (3) rainfall properties such as
intensity ence, duration, and volume [Edwards and Owens, 1991; Gonzalez-Hidalgo et al.,
2009; Kﬁ Ivanov, 2014]. Variability of soil loss caused by these macro-scale factors will be
referredEeafter as ‘geomorphic external variability’.

-1lhe_in'fluence of micro-scale conditions has also been indicated as a potential cause of

variabili;oil erosion [Tisdall and Oades, 1982; Kwaad and Mucher, 1994; Bryan, 2000;

Arnau@n et al., 2008; Bussi et al., 2014], and was numerically investigated to illustrate how
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hysteresis loops in sediment transport arise [Sander et al., 2011; Zhong, 2013] with a direct
connection between the hysteretic phenomenon and the initial state of the surficial sediment layer
and its evolution. We will refer to such micro-scale characteristics as ‘geomorphic internal
variabwecifically, the effect of (1) pedologic properties has been attributed to soil texture,
aggrega shear strength [Bryan, 2000]. Among these, bulk soil texture can be reasonably
assum®d"seamre, due to its slowly changing nature; its importance has been long recognized and is
typically jncluded in the geomorphic external variability [Middleton, 1930; Bouyoucos, 1935;
Knapen QZOO?; Gumiere et al., 2009]. The other pedologic properties — aggregation and shear
strength **af much more variable in time and space and their implications for erosion have
remainealy unexplained [Bryan, 2000], likely due to limited capabilities to measure them.
Additio@one needs to recognize that micro-scale variations of (2) soil structure and degree of
saturatim to spatiotemporal variations of soil hydraulic properties and wetness conditions, thus
inducﬁbility of the hydrologic partition [i.e., rainfall loss and runoff, Noto et al., 2008].

Finall ility of (3) surface roughness and surface elevation can result in contributions to
geomorphic internal variability due to hydraulic effects. The random distribution of micro-scale
topographig.gradients and roughness elements can result in localized areas of flow acceleration and
deceleraﬁxith pronounced feedback regions (e.g., rill network development) [Lei et al., 1998;
Simps&astelltort, 2006; Nord and Esteves, 2010; Papanicolaou et al., 2010; Kim et al.,
2012a;-|\*EUIi re et al., 2013]. Few laboratory and field experimental studies dealt with the issue of

micro-sc;iriations in soil surface and subsurface conditions, and their inferences have remained

case-s@md difficult to generalize.
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Variations of properties intrinsic to the system or caused by external factors have been
recognized in various disciplines. They are referred to as ‘endogenous’ and ‘exogenous’ in geology,
‘autogenic’ and ‘allogenic’ in sedimentary geology, and ‘internal’ and ‘external’ in climate science.
Howe\q_mﬂneaning is different in each discipline (see SM.1). Similarly, we introduce here the
notions orphic external and internal variability to unequivocally distinguish the impacts of
macro®séareexternal and micro-scale intrinsic factors on soil erosion. Furthermore, among the
potential gayses of internal variability we single out surface erodibility as, a priori, it may represent
the domépeffect on erosion susceptibility [e.g., Sidorchuk, 2005]. The primary objective of this
study is mwonstrate that these micro-scale spatiotemporal variations of soil erodibility are a
fundameEource of internal variability at the scale of a single erosion event, with direct
consequinces for erosion predictability.

(©

2. Da Sis

onstrate the non-uniqueness and heavy-tailed frequency distributions of soil loss
from upland areas, a comprehensive long-term dataset, the one used to derive the Universal Soil
Loss Equation (USLE, [Wischmeier and Smith, 1978]), is used. The USLE experimental design
includedatoring replicated hillslopes with the same topography, soil type, rainfall and
meteonEl forcings, and land use conditions. The database integrated information from multiple
Iocatiomcontains data on event-scale geomorphic and hydrologic variables such as storm

characte;, runoff, soil loss, and site-specific descriptions. USLE data are ideally suited to study

the eﬂ{micro-scale soil erodibility, given the replicated land-surface and forcing conditions.
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The original data (1,400 plot-years) were filtered to ensure consistency required for plot-to-plot
comparisons [Kim et al., 2016a]. The resultant analysis data set includes 1,218 plot-years (102
individual plots) for 10 locations, totaling in 884 erosion events. The number of replicated plots for
studied.“na.ﬁ]ns varies between 4 and 16. In this study, two representative locations, Clarinda, 1A
(312 ev@ 9 replicate plots, over 1932-1959), and Watkinsville, GA (213 events with 6 plots,
over 19/=1¥80), are discussed in more detail due to their highest data availability. As we contend,

howeverg‘binferences are general and applicable to most hillslope-scale erosion assessments.

2.1. GeomQrphic Variability

mresﬁng feature that emerges from the USLE data is the high non-uniqueness of
geomorDSponse for the same magnitude of event runoff (Fig. 1a, 1b). While the high
variabili@oil loss is frequently observed in empirical data at various spatial scales [e.g.,
Nearingeﬁ 2007], we note that Fig. 1a and 1b show the total variability (referred to as the
Geom samk Otal Variability) because it is generated by many erosion events in all of the
replicﬁs. The spread of soil loss averaged over the replicate plots (Fig. 1c, 1d)
approximately refers to the variability that is external to the plot properties, i.e., what we have
referred tgabove as the ‘geomorphic external variability’; numerous studies have addressed it in
various Q In contrast, Fig. 1e and 1f show soil loss variations that are intrinsic to the soil
systern'.mal plot-scale topographic characteristics, soil texture, landuse, and

rainfall/meteorologic forcing of replicated plots result in nearly identical runoff. The observed

erosion anes in Fig. 1e and 1f must be caused by variations in soil erodibility properties or

some @ernal properties of the system (such as pedologic, hydrologic or hydraulic types of
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geomorphic internal variability, Sec. 1). As clearly seen, soil erosion responses exhibit very high
variability, reaching up to two orders of magnitude difference for the same forcing (Fig. le, 1f).
Relevant processes that lead to micro-scale variations in soil surface conditions are due to the non-
uniforw of finer particles (weathering) [Sharmeen and Willgoose, 2006; Cohen et al., 2010],
aggrega @ kdown by trapped air (slaking), dryness of slaked clayey soil (sealing and crust
formatftd™eTotection of the original soil layer by comparatively larger particles (shielding),
chemicalgepelling interactions between cations (dispersion), and animal, plant, or human activities
(biotuer&md management). These processes lead to soil surface erodibility, hydraulic
propertig,fa% spatial connectivity that is inevitably variable, space-time dependent, and ultimately
unpredim providing the basis for why one cannot specify accurate initial conditions of soil
particlesydistribution and spatial arrangements in deterministic erosion models.
2.2, HeWiled Distribution of Soil Loss

inspected closely, the conditional frequency distributions of soil loss from the USLE
databEl heavy tails. This feature is apparent in the plots showing the power law behavior
(Fig. 2a, 2b). The larger (i.e., less negative) the slope of the tail [i.e., the Pareto index, Hill, 1975],
the heavi e tail of the distribution, and thus the larger its departure from Gaussian. The
correspo@ Lorenz curves [Lorenz, 1905] (Fig. 2c, 2d) show that the mass of the top 15 - 20 %
of soil.lEnts nearly equals the mass of the 80 — 85 % smaller events. Such a heavy tailed
distribution is characteristic of systems where random anthropogenic, climatic, pedologic,

hydrologd hydraulic perturbations constantly disrupt geomorphic state of the system, thereby

movi@y from theoretical equilibrium [Kim et al., 2016a]. These perturbations are very
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common and they therefore generate high variance of upland soil loss. As a result, erosion
magnitudes much higher than the mean can occur at non-negligible probabilities: more “frequently’
than implied by the usual, implicit assumption of Gaussian variations, adopted in large-scale

assessm‘w.g., the National Resources Inventory, NRI, Nusser and Goebel, 1997].

O

3. MoteM™MT A nalysis

(;-e_gical hypothesis from the analysis of empirical data at the event scale (Fig. 1e, 1f),
also adan other independently carried out, pioneering studies of erosion variability [Sander et
al., 2011} ng, 2013], is that for a given rainfall and runoff amount, the initial condition of soil
substratembility and its dynamic evolution exert a strong control on the event-scale geomorphic
responsdl The possibility of large uncertainties in the characterization of geomorphic internal
variabilim thus low predictability power provide strong incentives for a systematic exploration
of varE hydrology-hydraulic-erosion-sediment transport processes. Below, we directly

addre pact of uncertainty in geomorphic internal variability on soil loss at a unit-plot and
runoff-event scales using a state-of-the-science two-dimensional model of overland flow and
sediment transport, tRIBS-VEGGIE-FEaST [Ivanov et al., 2004; lvanov et al., 2008; Kim et al.,
2012b, sﬁo SM.2; Kim et al., 2013; Kim and lvanov, 2015; Kim et al., 2016a].
3.1 MﬂE Soil Surface Erodibility in Numerical Experiments

-F!m studies demonstrated potential clues to how the initial and temporal evolution of

geomor;ternal variability can impact soil loss [Sander et al., 2011; Jomaa et al., 2013; Zhong,

2013; (nd Ivanov, 2014; Kim et al., 2016b]. Specifically, during a runoff event, rainfall and

This article is protected by copyright. All rights reserved.



overland flow simultaneously drive erosion processes of detachment, entrainment, and deposition
on original soil that is relatively intact and cohesive and in which contact forces bind the particles.
Part of eroded materials is thus continuously re-deposited over soil surface and some fraction of re-
deposi;eﬂ.majerials is re-eroded. These deposited, loose soil materials have higher erodibility than
the origit soil, with the difference reaching up to two orders of magnitude [Proffitt et al.,
1991;9omreEeEet al., 2010; Heng et al., 2011]. Further re-entrainment and transport of deposited soil
particles js tQus promoted, leading to a complex intra- and inter-event temporal evolution of
variatiorgbjsurface erodibility. The deposited soil layer can exhibit two conflicting roles: it could
both incr®s®and decrease soil erosion of the subsequent event for the same magnitude and timing
of overlmw according to the degree of shielding or exposure of fine loose material [Sander et

al., 201% Zhong, 2013; Kim and Ivanov, 2014; Kim et al., 20164a].

IMr to represent the likely continuum of micro-scale surface erodibility characteristics

and it N among the replicate plots, we develop a large number of scenarios for the deposited
(Ioosezss in terms of its cover fraction and particle size distribution, with all other conditions
remaining invariant. Specifically, we consider an exemplary location from the USLE database,
Clarinda , and an erosion event that took place on July 31st, 1932 (chosen among 312 events as
a represed/e event — yielding mean soil loss and runoff for that location, Fig. S2). We use the
USLEﬂEt domain with 1.8 m (width), 22.1 m (length), and 1 m (depth). The scenarios of
initial ;)qmo'dibility serve as input to tRIBS-VEGGIE-FEaST to address how the lack of
knowled;soil substrate composition and erodibility impacts the geomorphic response.

Speci@ur approach considers multi-size particle distributions of two soil surface types: the
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original, intact (cohesive) soil layer, and the deposited (non-cohesive) soil layer, exhibiting different
shear strengths [Hairsine and Rose, 1991; 1992]. The detachability in both layers is differentiated
with two detachment parameters (Egs. 7 and 8 in Kim et al. [2013] and Table S1). The resistance to
flow-dmtrainment in the original soil layer is accounted for with a parameter called the
‘specifiof entrainment’, while the resistance of the deposited layer to re-entrainment is
associat@mmth the submerged weight of loose materials (Egs. 10 and 11 in Kim et al. [2013] and
Table S1 e thousand random particle size distributions (PSDs) are generated to characterize the
possiblersition of the antecedent deposited layer (Fig. 3a) for ten magnitudes of its cover
fraction (™).®SDs are obtained by the generation of combinations of six random numbers ranging
from 0 tatisfying the summation to one. Thus, the corresponding total number of model
simulatiqps is 10,000 (e.g., H=0.1...1, Fig. 3b and 3c) plus one (H = 0) representing intact soil.
Other rem details of the numerical setup are provided in Kim et al. [2016a]. In summary, the

modeﬁn yields cases with exactly the same dynamics and amounts of infiltration, runoff,

and s w, while the variability of soil initial conditions in the ensemble leads to differences
in soil erosion. By using a number of particle sizes with different shear strengths (i.e., intact vs.
loose soil)the approach mimics the dynamics of soil properties by representing the amount, degree,
and cohedess of aggregations that are dynamically (temporally and spatially) updated within the
modelc

3.2. Model Results

Tg)chastic characterization of the initial condition with 10,001 soil substrates leads to

the pr@/ density function of soil loss that spans the variability of empirical observations for

10
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the nine replicate plots (Fig. 3b). While the distribution extends to soil loss magnitudes (Fig. 3b up
to 1.373 kg m™) that are larger than the observed maximum, this simply conveys the theoretical
plausibility of these responses with small probability that were not represented in the replicated
plots (Ws, the potential effect of biases in model assumptions). The results of Fig. 3b
demons the initial condition of soil erodibility strongly controls the magnitude of the
geomdrpMeTEsponse. A narrower range of plausible yield magnitudes can be predicted only if soil
surface cgndjtions are better characterized. This is, however, unlikely and impractical, and therefore
the predglbeskill of erosion models at the hillslope and event-scale will likely remain severely
handica .

TEstrate the relative importance of composition of antecedent deposited soil substrate on
geomor@sponse, a set of multiple linear regressions is developed using the 10,001 simulation
cases to Mte soil loss (SL) (Fig. 3c): SL = SLy + H - Y5_, w;f; [kg m] (see Supplementary
Materi ). The term SL, is the intercept for the case of a soil surface that is entirely “intact”
(i.e., }E The coefficients w; represent weights for the fractions (f;) of the six particle size
classes. We find high sensitivity of soil loss to antecedent composition and that initially loose
materials not necessarily increase soil erosion. Specifically, for a fixed H, a higher fraction of
loose, Iig@materials on the soil surface intensifies soil erosion. A larger fraction of coarser,
heaviaﬁGes can however result in a “shielding’ layer (the negative signs of w, see
Supple?n'ﬁr'y Material) and thus inhibit erosion [Kim and lvanov, 2014], when compared to the

initially

<C

t” soil conditions. For example, the *‘minSL’ PSD case in Fig. 3d has the highest

11
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fractions of the three classes of coarser particles and the regression equation yields a negative slope
(-0.0106) of dependence on H. Positive slopes are characteristic of most other PSD cases.

For a given H, the large range of possible PSDs characterizing antecedent deposited soil
materialpanﬂates a positively skewed probability distribution of soil loss with a tail exhibiting a
nearly eal decay (Fig. 3c). This response of non-uniqueness is entirely determined by the
initial tJME™Ns of soil bed, since overland flow characteristics are identical [Sander et al., 2011,
Zhong, 2013, Kim and Ivanov, 2014]. As suggested above, the resultant variability in erosion
response@?uld be referred to as ‘geomorphic internal variability’, a more properly constrained
referenc ‘natural variability’ [Nearing et al., 1999] because the latter can include any kind of
natural (:quding rainfall or radiation) external variability. A stochastic approach that accounts
for the n@nd distribution of materials of different erodibility characteristics (such as the two-bin

conceptfﬁion of “intact” and ‘loose’ substrate types in Fig. 3a) seems a suitable approximation

to refl ncertainty of soil bed characteristics.

4. Discussion
4.1. Geo hic Internal Variability and Soil Loss Assessments

Tﬁportance of spatiotemporal variations of micro-scale soil erodibility has been
relativalgred in erosion assessment studies, especially over large heterogeneous areas [Kim et
al., ZOm'ne example is the approach used for monitoring of trends in erosion by the U.S.
Departmg Agriculture, which has contributed to the National Resources Inventory [i.e., NRI,

Nusse@ebel, 1997]. Erosion monitoring is the result of statistically stratified spatial

12
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applications of a modeling tool, the Universal Soil Loss Equation [USLE, Wischmeier and Smith,
1978] to assess the erosion potential at ~800,000 sample points throughout the United States
[Nusser and Goebel, 1997]. Importantly, soil erosion rates computed in NRI for each sample point
are basa'.nnjme-invariant erosivity potential (rainfall) and erodibility (soil) factors, and the long-
term ass@ essentially consists of tracking changes of only site-specific parameters
represBn®™M™and use and management practices. In the context of research developed here, NRI
[and mos} other contemporary erosion assessments, e.g., Panagos et al., 2014; Panagos et al., 2015]
account me variance of soil loss among unit areas (i.e., mostly the external variability),
implicitly*as%uming that the variance within a unit area — the *sampling variance’ attributed to the
geomorDternal variability here — is negligible. This research demonstrates that it is a
misconc@ to equate the external variability to the total geomorphic variability since
heterogms in particle size and erodibility characteristics of soil surfaces are always expected to
be sig s

more, large-scale assessments (such as NRI or European Union-driven soil loss
assessment) focus on the long-term soil loss averages that are perceived to be more relevant to
policy makers or planners than the loss frequency distribution, reflecting our perception that with
the aveere “can’t be too far off” from the “likeliest expected”. However, as seen in the USLE
data, enmrge temporal scales, there is distinct evidence of high variability of soil loss (e.g., Fig.
1and R'm_et'al. [2016a]) and long tail in the distribution cannot be discarded in certain problems of
high reIQ to policy-making. This calls for a shift in erosion assessment paradigm, changing the

focus he first moment property to metrics characterizing distribution tails. The development

13
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of approaches that include stochastic principles to address key uncertainties will make policy-
making process better informed.
4.2. Soil Loss as a Stochastic Problem from Deterministic Principles

.q.is.in‘easible (and impractical) to characterize varying soil surface conditions for any
arbitrarn and time, implying low a priori predictability skill of many contemporary
deternirffS®e™models. The development of stochastic principles that explicitly address quantification
of uncertginty in erosion related to geomorphic internal variability is therefore essential. Methods
that comgélements of deterministic and stochastic approaches can stem from solutions described
in the litoratde [Nearing, 1991; Wright and Webster, 1991; Lisle et al., 1998; Bryan, 2000;
SidorchLE)Q]. However, existing stochastic approaches, being derived in principle for erosion
rates on@still far from practical utility. Complete knowledge on the probability distribution of
key stochariables (e.q., flow velocity, aggregate size, and soil cohesion within and between
aggre adorchuk, 2005; 2009], or shear stress, and local soil resistance [Nearing, 1991]) are
almosﬁble to attain/parameterize from measurements in the real world. The approach used
in this study is however flexible and can be applied to practical problems. This could be achieved
by coupli hysical hydraulic, hydrologic, and erosion and sediment transport models (e.g., tRIBS-
VEGGIIQST) to dynamically update soil properties (i.e., the amount, degree, and cohesiveness

of aggng) in time and space. Such an approach requires stochasticity in the definition of initial

conditioHs and preserves the merits of mechanistic representation in computing the redistributions

of flow ;diment.
4.3. S@f Geomorphic Internal Variability

14
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The sources of geomorphic internal variability have been conceptually attributed to micro-
scale characteristics of pedologic, hydrologic, and hydraulic factors. Rather than directly accounting
for all of them - an overly ambitious feat for a single study - we focus only on the spatiotemporal
variatiWil erodibility, which are shown to lead to a level of soil loss variability
commeith that of the event response of replicate experimental plots. Arguably, the ensuing
implicatM™™ e that geomorphic internal variability due to surface erodibility is a predominant factor
determinjnggnvelopes of plot-, event-scale erosion response. While, a priori, this can be true for a
range ofgﬁgenvironmental settings, subsequent research should address the relative importance of
all relevmurces of geomorphic internal variability. As is the case for uncertainty partition in
other en\mnental sciences, the contributing components may result in non-additive behavior [e.g.,
Kim et &, 2015; Fatichi et al., 2016], implying that only relative (i.e., with respect to each other)

importam\ be estimated. Nevertheless, such a step is necessary to decipher the role of

indivi ors that determine the internal variability.

4.4. Upscgling Variability

Sﬁg variability to larger spatial scales is extremely challenging as the USLE program did
not acmmate geomorphic forms that exhibit spatial structure and connectivity, focusing solely
on plot?.'We'mpirical datasets containing observations for replicate catchments are currently

availablgertheless, sediment yield data for several smaller-scale watersheds located within a

Iarger@basin [e.g., Fig. 2 in Nearing et al., 2007] suggest high total variability. It is likely to

15
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be attributed to both the external (e.g., shrub vs. grass cover condition) and internal variability, such
as variations in surface forms that may include incised channels and rills, swales at different
developmental stages, etc. The latter characteristics are conveyed at much smaller scales, as
compa.me scale of the nesting watershed, and are not easy to address in watershed erosion
studies. e, they should be dealt with in the context of internal variability and further studies

should®* ™SS scaling properties of geomorphic internal variability within contiguous hillslopes

and wateChis.
5. Conch)g Remarks

IEe the perceived importance and the high costs of soil conservation efforts, assessment
of erosi@s remains a poorly constrained problem. Current large-scale erosion studies reflect a
view thmntegration over environmental conditions — i.e., accounting for geomorphic ‘external
variabissesaly — yields estimates that are informative of the process. However, data from multiple
envir demonstrate that soil loss is extremely variable and its frequency distributions exhibit
heavy tails, implying that conventional assessments of soil loss focusing on central tendencies (and
thus impligitly assuming Gaussian nature of variations) understate the true degree of predictive
uncertai@

-\E erosion loss estimation uncertain? This study contends that in addition to the
commo-rﬂm'derstood effect of geomorphic external variability (i.e., variations of rainfall properties,

land useganagement types, topography, soil texture, etc.), the response of multi-sized sediment

to sur@ff events is strongly controlled by ‘geomorphic internal variability’, i.e.,

16
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contributions from micro-scale variations in pedologic, hydrologic, and hydraulic processes. Space-
time, dynamic variations of soil bed erodibility are emphasized as likely to be the most important
[see also Saletti et al., 2015].

.q.imrrently impossible to accurately assess the relative contributions of geomorphic
internal rnal variability as well as their partition through available empirical observations
only. "A&"BT®®ise knowledge of the associated internal processes will remain intangible, we have to
accept thgt geomorphic predictive skill at the event scale is likely to remain poor, no matter how
detailed gﬂ?)n models will become in the future. The broader practical implication is that current
practicesmil erosion assessment need to abandon not only the philosophy that entails symmetry
of systermvior around ‘average’ — central tendencies are plainly misinformative for physical
systems@ by episodic, extreme inputs — but also the methodology that attributes the variance
toa sinWrce of factors.

ress the gap, we advocate the following endeavors in experimental and numerical
studie ure long-term observations should be attained from as many replicated plots as
possible to account for the geomorphic internal variability, as had already been emphasized in other
studies [Rigttimann et al., 1995; Nearing et al., 1999]. Data from all previous research programs
(e.q., the&plete set of USLE observations) on rainfall, runoff, soil loss, and other vital
supplemg measurements should be made available to scientists and practitioners. New types of
monitMgmenting characterization of erosion process with data, for example, on micro-scale

variabilig., Hohenthal et al., 2011] are also warranted. (ii) In terms of erosion models, new

appro@at address the challenge of unavoidable uncertainties should be developed, and

17
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appropriate quantification of variability and tails of soil loss should become a standard practice. (iii)
Confidence interval, risk, or other uncertainty measures need to accompany soil loss assessments.
The development of methods that combine elements of deterministic and stochastic approaches,
such am used in this study, or other approaches that attempt to partition the uncertainty
related trphic external and internal types of variability across various spatial scales should

be purSu®®™®™develop a new predictive framework of soil erosion.
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AO

AO

easured soil loss versus runoff for the locations of Clarinda, IA (312 events with 9
replicate plots), and Watkinsville, GA (213 events with 6 plots). (a-b) Geomorphic Total
Variability (all data from all replicate plots) and (c-d) Geomorphic External Variability (soil loss
and runoff are averaged over the replicate plots). Several temporal scales are shown: event-scale
(black), annual (magenta), and 5-year (green). Boxplot inserts represent residuals from the
regression line (thick lines) between runoff and soil loss, expressed as the order of magnitude
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difference (AO) computed for the three temporal scales (boxplots in (a-b are Fig. 1d and 1j in
Kim et al., [2016a]). In each boxplot, the central mark is the median, the edges of the box are the
25th and 75th percentiles, and the upper and lower whiskers are the maximum and minimum,
except for outliers (“+” symbols) that are 1.5 times smaller or larger than the interquartile range
fromw or 75th percentiles. The shaded areas in light grey, magenta, and green illustrate
the ord agnitude differences corresponding to the upper and lower bounds in each boxplot,
respecmalendar years are used to compute averages at the annual aggregation scale. To
estimatgmauear values, a moving average is computed over each five consecutive calendar years
(thus rgulting in correlated 5-year averages). (e-f) Event-scale Geomorphic Internal Variability
illustrated for clarity for five selected rainfall-runoff events only. The selected events correspond
to small cogffficients of variation for runoff and illustrate the high variability of the corresponding
soil loss.
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