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Abstract 

Lithium ion battery has been considered as a promising candidate to improve the current 

fossil fuels based energy economy. Massive efforts have been put in the optimal design of 

lithium ion batteries with the assistance of simulation models. But to our knowledge, the 

application of multi-objective optimization in this process has not been well discussed. The 

purpose of this thesis is to study the multi-objective optimization problems that could be applied 

on the optimal design of lithium ion batteries with the assistance of simulation models.  

A two-objective problem is firstly constructed with the performance measures of energy 

per unit separator area for the discharge rate of 0.5C and the mass per unit separator area. The 

reaction zone model and genetic algorithm are employed to solve this problem qualitatively. The 

resulted Pareto front comes out to be a concave curve in the 2D plane of the two performance 

measures. Three case studies are guided to illustrate the advantages and applications of 

employing the multi-objective optimization in the design process.  

A DAE based simulation model is then employed and tuned to have a satisfying fit to the 

charge and discharge curves for the cycling rates up to 4C. With the assistance of this precise 

simulation model, the properties of the Pareto front of the two-objective optimization is then 

validated quantitatively.  

A three-objective optimization problem with the objectives of energy performance of 

0.25C and 4C discharge and mass performance is then constructed to extend the analysis of 

applications of multi-objective oriented studies in lithium-ion battery designs. The problem is 

quantitatively resolved with the assistance of the DAE based simulation model and genetic 
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algorithm. The Pareto front comes out to be a curved surface in the 3D space of the three 

objectives. The properties of the Pareto front are expected to offer perspectives and references to 

product designs in the industry. 
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Chapter 1. Introduction 

Lithium Ion batteries have been considered as one of the most promising energy storage 

devices for improving the current fuel economy. A well designed cell which has better 

performance in some perspectives is obviously preferred in many applications.  

The purpose of this research is to explore the application of multi-objective optimization 

in Lithium-ion battery cell design. This chapter offers the background and motivation of this 

research. The objectives of this research is listed in Section 1.2. After that, a literature review is 

given in Section 1.3. Section 1.4 will presents approaches used for the research and the thesis 

layout. 

 

1.1 Background and Motivation 

It is widely believed that most of the global environmental issues are closely related with 

the current energy economy based on fossil fuels. This situation is required to be changed 

urgently. The general agreement is that the share of the sustainable energy sources needs to 

greatly increase [1][2]. However, many sustainable energy sources, such as wind energy and 

solar power, rely heavily on environmental conditions which vary day to day. Therefore, these 

energy sources tend to be intermittent and their daily energy production might be difficult to 

control. To compensate for the limitations of sustainable sources, high-performance energy 

storage systems are required so that the excess produced energy during “good times” can be well 

stored for future use in “bad times”. 
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It is often stated that the CO2 issues and the air pollutions in large urban areas may be 

solved only by replacing internal combustion engine (ICE) cars with zero emission vehicles, i.e. 

electric vehicles (EVs) or controlled emission vehicles, i.e. hybrid electric vehicles (HEVs) and 

plug-in hybrid electric vehicles (PHEVs). These vehicles also require high performance energy-

storage devices so that they can provide a proper power performance and an adequate daily 

operation range. 

Among the current candidates, one of the most promising energy storage devices for the 

aforementioned applications is the Lithium Ion battery. A Ragon plot is often used for 

performance comparisons of various energy-storage devices [3]. It is a plot where both specific 

energy and specific power are shown, such that people can have a good understanding of both 

energy performance and power performance for energy storage devices. As it can be seen in 

Figure 1-1, the fuel cells are very good at specific energy, but for high power applications, their 

power performance is not adequate. In contrast, the capacitors have a very good power density, 

while their energy density is not high enough for energy storage purposes.  

The conventional electrochemical batteries, although performing relatively poor in high 

power applications, are well capable in energy storage for low rate applications. Therefore, they 

are be considered as one of the most promising candidates for compensating for the intermittent 

characteristic of sustainable sources [2]. As shown in Figure 1-1, among all the electrochemical 

batteries, Lithium-ion batteries have best performance in terms of both energy density and power 

density. Thus, in recent years, more and more attentions have been paid to the lithium-ion 

batteries due to their high specific energy, high efficiency and long life. 
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Figure 1-1 Ragon Plot for Electrochemical Devices 

 

The optimal design of Lithium-Ion batteries has been a popular topic and heavily 

discussed by researchers in recent years. These researches, however, are mostly focused on 

single objective optimization while an actual product design process needs to consider multiple 

performance measurements.  

The motivation of this research is to explore the application of multi-objective 

optimization to the lithium-ion battery designs and its advantages when compared to the single 

objective oriented studies. The results of this study are expected to become valuable references 

for design of experiments (DOE) and product design in the industry. 

 

1.2 Research Objectives 

 The purpose of this research is to study a novel methodology for optimal design of 

Lithium Ion battery cells by using electrochemical simulation models and multi-objective 

optimization as tools. The objectives of the research include: 
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 Construct a multi-objective optimization problem for optimal design of lithium-ion 

battery cells, which is widely applicable to multiple real world problems. 

 Study simulation models that are proper for qualitative and quantitative analysis 

respectively, discuss the tuning and validation process for electrochemical simulation 

models. 

 Explore the characteristics of the Pareto front of constructed multi-objective optimization 

problem and illustrate the capability of the solutions for the constructed problem. 

 Quantitatively obtain the Pareto optimal set for a LiFePO4-Graphite Li-Ion battery with a 

well-tuned electrochemical simulation model. Use the results to validate the 

characteristics of the Pareto front discussed, illustrate the application of the solutions. 

 Discuss the relationship between the outcomes of this research and the industry. 

 

1.3 Literature Reviews 

This section reviews the application of simulation models and optimization problems for 

battery optimal designs. 

Regarding the simulation models for lithium-ion battery charging and discharging 

activities, Shriram Santhanagopalan[4] reviewed the three mostly commonly used types of 

simulation models in his work, which are P2D models, SP models and PP models. The pseudo 

2D model (P2D model) is the most computational expensive. In this model, the solid phase is 

assumed to be comprised of identical spherical particles of a predetermined size and diffusion in 

the radial direction is assumed to be the predominant mode of transport. The solution phase 

concentration and potential were assumed to vary in only one direction (from positive electrode 

to negative electrode), thus the discharging or charging became a 2D process based on 
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movements of ions and electrons. The P2D model is often considered as a complete model 

because of its high accuracy. Some researchers even use the predictions of the P2D model as a 

reference to validate the other simulation models. The single particle model (SP) and the porous 

electrode model with the polynomial approximation (PP) model are two approximate models. In 

a SP model, each electrode is represented by a single spherical particle whose area is equivalent 

to that of the active area of the solid phase in the porous electrode. This assumption massively 

reduced the scale of the P2D model because only one spherical particle needs to be considered 

for each electrode. Thus, the computation costs of SP model is much lower than the P2D model. 

However, It was shown that SP model is not capable to hold a good precision when the discharge 

rate is higher than 1C although it is more efficient [4, 16]. Weilin Luo [5] extended the SP model 

so that it can be applied to higher discharge rates up to 4C with a sufficient accuracy. SP model 

is a great candidate for real time battery management systems because of its high efficiency, but 

to study the mechanics or optimal design of lithium-ion batteries, a PP model is more appropriate. 

A PP model does not assume each electrode has only one single particle and holds all the 

assumptions used in the P2D model so that it is not as computationally efficient as the SP model. 

However, by employing mathematically simpler polynomial approximations in the model, its 

computational cost is still greatly reduced compared with the P2D model. Besides, as the 

computing power of PC has been improving in a fast pace, the PP model can already be efficient 

enough for optimization purposes. Beyond these three most commonly used simulation models, 

another simple simulation model, which is called the reaction zone model, was introduced in [6]. 

This model, however, seems only valid for some qualitative analysis because of its simplicity. 

Studies on the optimization of lithium-ion battery cell designs are reported in the 

literature [6-13]. However, most of these efforts are single-objective oriented. In [6] and [7], the 
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specific energy of battery cells was optimized by changing the porosity and thickness of cathode, 

while in [8], the influence of cathode porosity and thickness on the electronic conductivity was 

studied and ionic conductivity was maximized the specific energy with these two design 

variables as well. In [9], the ohimic drop across the cell was minimized by modifying the 

distribution profile of porosity in the electrodes. The minimum usable capacity of cell for a range 

of discharge rates was optimized in [10] by changing the distribution of porosity and particle size. 

All these single-objective based studies were targeted at identifying one optimal design which 

gives the best value for the performance measure selected by the authors.  

The specific energy and specific power are both employed as objectives in [11]. The 

result of the optimization was a Pareto front which consists of a set of non-dominated designs. 

These designs were the trade-offs between the two objective functions and the designers were 

allowed to pick the most proper one from the Pareto front based on their target application. 

However, one of the design variable considered in this paper was the discharge rate, which 

should be determined by the target application and not appropriate to be considered as a design 

variable. Also, the construction of proper optimization problems for lithium-ion battery optimal 

designs was not well discussed by the authors.  

The most significant difference between multi-objective optimization problems (MO) and 

single-objective optimization problems (SO) is that instead of identifying a single solution to 

minimize or maximize an objective function, the target of MO is to determine a set of trade-offs 

between multiple contradictory objective functions [15][17][29]. This set is referred as Pareto 

optimal set or Pareto front. 

A design is defined to be dominated by another if it is no better in all objectives, and 

worse in at least one objective [11]. The designs included in the Pareto front are those which are 
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not dominated by any other designs. In concept, a design is said to be Pareto optimal if no other 

designs can be better in all objectives than this one. 

Genetic algorithm (GA) is one of the commonly used heuristic algorithms for solving 

optimization problems. To solve an SO, GA repeatedly generate generations by “mixing” the 

genes of randomly selecting pairs of individuals from the parent generations (crossover) and 

partially alter the genes of the individuals (mutation). By imitating the process of natural 

selection, the individuals with better fitness values will be maintained in each step as the new 

parent generation and used to generate the next child generation. With the mutation operation, 

the diversity of the individuals is enhanced. Because of the crossover operation, the more 

“adapted” genes in a generation are combined. Over successive generations, the population is 

likely to “evolve” to an optimal solution [20]. To solve an MO, although crossover and mutation 

are still used to generating each generation, but instead of identifying the single optimal 

individual, the algorithm identifies a set of non-dominated solutions.  The non-dominated 

solutions get closer to the Pareto-optimal set from generation to generation and an estimated 

Pareto front can be obtained after a number of generations. More details about GA can be found 

in [18] and [19]. 

 

1.4 Research Approach and Organization of the Thesis 

As stated in Section 1.3, many researches have been using simulation models to study the 

properties of lithium-ion batteries, some of them also considered the simulation models as the 

tool for optimal designs because of the relatively low costs of simulation compared with physical 

design of experiments.  
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Most of these studies were single-objective oriented. Only a few researches employed 

multi-objective optimization problems as the tool for lithium-ion battery optimal designs. 

However, to our knowledge, how to construct a multi-object optimization problem for the 

lithium-ion cell designs whose solutions can be applied for different target applications has not 

been well discussed. 

Two simulation models are employed in this thesis to discuss the multi-objective 

optimization problems for optimal designs of lithium-ion batteries. The first model studied is the 

reaction zone model. Introductions to this model can be found in Section 2.1 and Appendix I. 

although it is an overly simplified simulation model, it can still reflect the changes of energy 

performance of the cells when a couple of design variables are changed in a qualitative manner. 

The second model employed is a DAE-based PP model, while requires more computations than 

the reaction zone model does, it is quantitatively more accurate when predicting the charge and 

discharge curves at multiple cycling rates. Because of the properties of each model, the reaction 

zone model is used for qualitative discussion, the DAE based simulation model is used for 

quantitative analysis. 

A two-objective optimization problem for lithium-ion battery optimal designs is 

constructed in Chapter 2. The reaction zone model is implemented with MATLAB. With the 

assistance of the global optimization toolbox, the genetic algorithm is used to solve the two-

objective optimization problem. The Pareto front of the problem is revealed and the properties 

are discussed. Using three case studies, the wide applicability of the constructed problem is 

illustrated. The advantages of applying multi-objective optimization in product designs are 

demonstrated by the analysis performed in this chapter. However, due to the simplicity of the 

reaction zone model, the discussions in Chapter 2 are limited to qualitative ones. 
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To enhance the analysis capability to allow the quantitative analysis, a DAE based PP 

model is introduced and tuned in Chapter 3. A process of tuning parameter selection is illustrated 

in Section 3.2, a tuning problem is constructed and solved in Section 3.3. The tuned simulation 

model shows good agreement with the experiment data for cycling rates up to 4C and can be 

used to quantitatively estimate the Pareto front of multi-objective optimization problems 

constructed for lithium-ion battery designs. It is believed that the similar process can be applied 

for the tuning of other simulation models. 

Chapter 4 illustrates the quantitative analysis for the application of multi-objective 

optimization problems in the lithium-ion battery design domain. Section 4.1 validates the results 

and analysis in Chapter 2 by using the quantitatively precise DAE-based simulation model to 

solve the two-objective optimization problem constructed before. A three-objective optimization 

problem is constructed in Section 4.2 and solved in Section 4.3 with the tuned model. The 

obtained Pareto front for the three-objective problem is a curved surface. The properties and 

applications of this surface is discussed in Section 4.4.  

Chapter 5 is a summary chapter. The results and discussions of former chapters will be 

summarized in Section 5.1. The limitations of the current project and the future efforts will be 

discussed in Section 5.2.  
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Chapter 2. A Two-Objective Optimization Problem and the 

Qualitative Analysis for the Problem with A Reaction Zone Model 

In this chapter, a simple reaction zone simulation model is firstly introduced in Section 

2.1. This model is not as precise as a PP model or SP model is, but it elegantly shows the trend of 

responses when the values of some design variables are changed, thus can be a very proper tool 

for a qualitative analysis. 

A two-objective design problem is constructed in Section 2.2 and will be referred as the 

base problem in the thesis. This problem considers energy generated during discharging and the 

mass of the battery cell for unit separator areas as objectives.  

By analyzing the problem and the reaction zone model adopted, the anticipated shape of 

Pareto front is also discussed in Section 2.3. By using a genetic algorithm implemented by 

MATLAB and the introduced reaction zone model, the solutions for the base problem are 

obtained in Section 2.3, which is able to validate the anticipated Pareto front. 

Then three case studies are discussed in Section 2.4. These cases show that the solution to 

the base problem can be applied in different design problems, which means the base problem is 

widely applicable for different design purposes and do not need to be solved repeatedly 

 

Section 2.5 gives a discussion about the advantages of applying multi-objective 

optimization for the optimal design of lithium-ion battery cell. Also, some discussion about 
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qualitative analysis and quantitative solutions for the design problem is issued in this section as 

well. 

 

2.1 Reaction Zone Model 

This thesis adopted a reaction zone model for the first stage of analysis. Although 

simplified, a reaction zone model if capable of offering some perspectives of how the design 

variables will influence the performance of a battery and thus is considered as a proper tool for a 

qualitative analysis in the thesis. Figure 2-1 shows a schema for the reaction zone model [29]. 

 

Figure 2-1 Schema of a Reaction Zone Model 

 

In a reaction zone model, both positive and negative electrodes can be divided into the 

reacted and the unreacted regions. Between these two regions are the narrow reaction zones. All 

the chemical reactions are assumed to happen in the reaction zones. When discharging, the ionic 

current must flow from the reaction zone in negative electrode, through the porous reacted region 

in negative electrode, separator, the porous reacted region in positive electrode up to the reaction 

zone in positive electrode. The two reaction zones, during the discharging, will move from the 

separator to the current collectors since the active materials will be used up slowly [29]. 
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For different unit separator area, the distribution of active materials, the diffusion and the 

chemical reactions are assumed to be the same. Therefore, the problem can be simplified so that 

all the modeling could focus on a unit separator area. In the reaction zone model, the energy per 

unit separator area is calculated by Equation (2-1) 

 𝐸 = (𝑈 −
𝐿𝑠

𝜅𝑠
𝑖) 𝑖𝑡𝑑 −

𝑖3𝑡𝑑
2

2𝜅+(1−𝜖+)𝑞+
−

𝑖3𝑡𝑑
2

2𝜅−(1−𝜖−)𝑞−
 (2-1) 

where 𝑈 is the open circuit voltage, 𝐿𝑠 is the thickness of separator, 𝑖 is the discharge current 

density, 𝑡𝑑 is the discharge time, 𝜅𝑠, 𝜅+ and 𝜅−  are the effective conductivities of the electrolyte 

in separator, positive, and negative electrodes respectively, 𝜖+ and 𝜖− are the porosity of positive 

and negative electrodes respectively, 𝑞+ and 𝑞− are the capacity density of active materials in 

positive and negative electrodes respectively. See the Appendix I for more details about the 

reaction zone model [29]. 

The mass per unit separator area of the cell can be obtained by Equation (2-2). 

 𝑀 = 𝑀𝑟 + 𝑀𝑠 + 𝑀+ + 𝑀− (2-2) 

where 𝑀𝑟, 𝑀𝑠 , 𝑀+, and 𝑀− are the mass of remaining parts, separator, positive electrode and 

negative electrode in a unit separator area domain respectively. For separator, positive and 

negative electrodes, each of their unit area mass can be obtained by Equation (2-3) 

 𝑀𝑖 = [𝜌𝑖(1 − 𝜖𝑖) + 𝜌𝑒𝜖𝑖]𝐿𝑖 (2-3) 

where 𝜌𝑖 is the density of solid phase in electrode 𝑖 (can be 𝑠, + or -), 𝜖𝑖 is the porosity, 𝜌𝑒 is the 

density of electrolyte and 𝐿𝑖 is the thickness [29]. 

The mass of the remaining parts is assumed to be obtained with Equation (2-4). It 

consists of two parts, one is assumed to be proportional to the mass of separator, and the other is 

the mass of the aluminum current collectors. 

 𝑀𝑟 = 𝑏𝑀𝑠 + 𝑀𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 (2-4) 
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where 𝑏 is the assumed proportion, 𝑀𝑠 is the unit area mass of separator and 𝑀𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟 is the unit 

area mass of current collectors [29]. 

The parameters used in the model are summarized in Table 2-1. 

Table 2-1 Summary of Design Variables and Parameters in Model 

Design Variables Symbols Optimization Range 

Cathode thickness 𝐿+ 0~500 𝜇𝑚 

Cathode porosity 𝜖+ 0~0.99 

Parameters Symbols Value Used 

Cathode active material density (𝐿𝑖𝐹𝑒𝑃𝑂4)r 𝜌+ 3.6 𝑔/𝑐𝑚3 

Anode active material density (𝑔𝑟𝑎𝑝ℎ𝑖𝑡𝑒)r 𝜌− 2.27 𝑔/𝑐𝑚3 

Separator solid phase densityr 𝜌𝑠 0.9 𝑔/𝑐𝑚3 

Electrolyte densityr 𝜌𝑒  1.2 𝑔/𝑐𝑚3 

Current collectors density (𝐴𝑙𝑢𝑚𝑖𝑛𝑢𝑚)r 𝜌𝑐𝑜𝑙𝑙𝑒𝑐𝑡𝑜𝑟  2.7 𝑔/𝑐𝑚3 

Anode porosityr 𝜖− 0.33 

Separator porosityr 𝜖𝑠 0.55 

Open-circuit voltager 𝑈 3.3 𝑉 

Cut-off voltager 𝑉𝐶  2.5 𝑉 

Cathode solids capacity density 𝑞+ 2190.24 𝐶/𝑐𝑚3 

Anode solids capacity density 𝑞− 3023.64 𝐶/𝑐𝑚3 

Inherent electrolyte conductivityr 𝜅0 0.005 𝑆/𝑐𝑚 

Capacity ratio between electrodesa 𝑟 1.1 

Discharge timea 𝑡𝑑 2 ℎ𝑟𝑠 

Mass ratio between remaining parts and separatora 

(except for collector)a 

𝑏 2 

Total current collector thicknessr -- 55 𝜇𝑚 

   

a. Assumed 

r. Ref [7] 

  

 

 More details of reaction zone model can be found in Appendix I, as building a simulation 

model is not the purpose of the thesis, these contents are not included in the main chapters. 

 

2.2 Construction of a Two-Objective Design Problem (Base Problem) 

In former studies, several performance measures [6][7][8][9][10][11][12][13] of Li-ion 

batteries were adopted. However, the most common one of them can be specific energy for a 

fixed discharge time. Specific energy is defined as energy per unit mass, thus it simultaneously 

reflects two aspects of battery performance, the energy and the mass. But since only the ratio of 
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energy and mass is the objective while doing optimization, these studies were only able to find a 

single optimal design, which offers none flexibility when trade-off between energy and mass is 

required [29]. 

This chapter would also consider these two aspects at the same time, but not combined as 

a single objective (specific energy). Energy performance and mass performance are considered 

separately as two objectives and thus makes the problem a multi-objective optimization. Thus, 

more flexibility will be obtained when we need trade-off between energy and mass. To simplify 

the analysis, both objectives are measured in a unit separator area domain [29]. 

As Venkat Srinivasan [7] stated, changes to the design of the positive electrode would 

have more significant impact on performance than changes to the negative electrode do. This 

chapter therefore will focus on the design of positive electrode [29]. 

Thickness and Porosity of positive electrode are considered as design variables, while the 

porosity of negative electrode is assumed to be constant and the thickness of it is modified to 

keep the capacity ratio of two electrodes fixed (
𝐶−

𝐶+
 is usually larger than 1) [7]. The objectives for 

the problem are given as follows. 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒. 𝐸 = 𝑓1(𝐿+, 𝜖+) (2-5) 

 𝑀𝑖𝑛𝑚𝑖𝑧𝑒. 𝑀 = 𝑓2(𝐿+, 𝜖+) (2-6) 

where 𝐸  is the energy per unit separator area delivered by the cell for a predetermined 

discharging time, 𝑡𝑑 , 𝑀 is the mass per unit separator area of the cell. 𝐿+ is the thickness of 

positive electrode, and 𝜖+ is the porosity of positive electrode [29]. 

The constraints of the design variables include 

 0 < 𝜀+ < 1 (2-7) 

 0 ≤ 𝐿+ ≤ 𝐿𝑚𝑎𝑥 (2-8) 
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where 𝐿𝑚𝑎𝑥 is the largest allowed thickness for the positive electrode [29]. 

The problem illustrated in this section will be referred as the “base problem” in the thesis. 

The base problem will be solved in this chapter, and it’s showed that the solutions to this base 

problem are powerful enough to solve several different design problems in practice [29]. 

 

2.3 Qualitative Solutions to the Two-Objective Design Problem 

As the base problem is a multi-objective optimization problem, the result is expected to 

be a Pareto front which consists of a set of optimal solutions. The shape of this front can offer 

product designers general perspectives about how changes in design variables would influence 

the performance of lithium-ion batteries, thus guides them to do appropriate design of 

experiments and product designs [29]. 

As can be inferred, by employing a reaction zone model, the optimal Pareto front for the 

base problem would be a concave curve as shown in Figure 2-2. The slope of a straight line 

connecting any point on the front and the origin of coordinates corresponds to the specific energy 

of the corresponding designs, which is equal to the energy per unit area divided by the mass per 

unit area [29]. 

Since the parameters for the separator are assumed to be constant, when the thickness of 

positive electrode is zero, the cell will still have some mass because of the existence of separator 

and the remaining parts (current collectors for example). The Pareto front, therefore, would start 

at a non-zero point on the Mass (per unit area) axis. Once some active materials and electrolyte 

are added into the cell, some energy could be delivered although the unit area mass is increased a 

bit. This means the specific energy has increased from zero to some positive magnitude. At first, 

as the marginal return of unit area energy because of the increase of another unit area mass 



16 

 

would be large enough, the specific energy will stay increasing. However, as the marginal return 

is expected to reduce when the unit area mass becomes greater, after some point, the specific 

energy would start to decrease. More theoretical analysis about the expected shape of Pareto 

front can be found in Appendix II [29]. 

 

Figure 2-2 Expected Shape Pareto Front of the Base Problem 

 

To validate the expected shape of this Pareto front, a simulation model based on reaction 

zone model was built with MATLAB and the genetic algorithm was implemented to solve the 

optimization problem [29].  

To implement the GA, the function of gamultiobj in Global Optimization Toolbox was 

used. This function uses a controlled elitist genetic algorithm (a variant of NSGA-II) [21]. The 

options used for this function can be set with the function of gaoptimset [21]. The default values 

usually work well, but to better estimate the Pareto-optimal set in this case, the default 

population size, 50 is too small. Thus, the population size was set as 225, and the other options 

are kept at their default values in this study. The results of the optimization validated the 

expected shape of Pareto front, see Figure 2-3 [29].  



17 

 

 

Figure 2-3 Pareto Front of Simulation Model 

 

As can be shown in the Figure 2-2 and Figure 2-3, the former efforts of determining the 

design with the largest specific energy will only give people a particular solution included in the 

optimal solution set, while the whole front offer the designers much more flexibility since many 

more available options are included in the optimal set which may have a lower specific energy, 

but would be a lighter or smaller design [29]. 

In this thesis, a smaller design means smaller separator area required for target energy 

since the size of large energy cells will be mainly determined by the area, not the thickness. This 

is because that the thickness of cell electrodes will be at a level of micrometers, when the target 

energy is large, the area of separator will be at a much larger magnitude. Although making 

thicker electrodes also helps increasing the energy capacity of cells, the effect is limited. 

Appendix III gives a more detailed analysis for this problem [29]. 

In the next Section, the use of this Pareto front will be discussed with three design case 

studies.  

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50

100

150

200

250

300

Mass (g/cm2)

E
n
e
rg

y
 (

J
/c

m
2
)



18 

 

2.4 Case Studies 

Three case studies involving multi-objective optimization are carried out in this section. 

The first case adopts the objectives of maximizing the energy and minimizing mass and indicates 

that this is the same with maximizing specific energy. The second case adopts the objectives of 

minimizing separator area and cell mass while reaching a target energy requirement. This case 

makes sense when there is a target application. The third case adopts the objectives of 

maximizing unit area energy and specific energy. This case can be the reality when there isn’t a 

target application. It is demonstrated here that the solutions to the base problem in the Analysis 

Section are capable of handling all the three cases. Discussions about the limitations of this study 

and some possible future works are illustrated in section 2.5 [29]. 

Case Study 1: Maximize Total Energy and Minimize Total Mass 

In portable or EV applications, a general problem is to design a high-capacity battery of a 

light weight. This corresponds to an optimization problem of maximizing total energy and 

minimizing the total mass simultaneously [29]. 

The difference between this case and the base problem is that the separator area now 

becomes a design variable which will influence both objective functions [29]. 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒. 𝐸𝑛𝑒𝑟𝑔𝑦 = 𝐸×𝐴 (2-9) 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒. 𝑀𝑎𝑠𝑠 = 𝑀×𝐴 (2-10) 

The results of this problem could be illustrated in Figure 2-4. Figure 2-4(a) shows the 

Pareto front for the base problem in section 2.2, while Figure 2-4(b), which includes separator 

area as an additional design variable, is composed with a set of similar curves. The difference 

between these curves is due to the change of the area of separator. However, when total energy is 
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maximized and total mass is minimized simultaneously, the Pareto front will be a straight line 

which could envelop all the set of curves, which is the red dashed line in Figure 2-4(b) [29].  

This result indicates the same optimal design with the commonly used objective of 

maximizing the specific energy, which is point A1 in Figure 2-4(a) [29]. 

 

(a)Pareto front for a unit area 

 
(b)Pareto fronts for different area 

Figure 2-4 The Relationship Between Base Problem and Design for Maximized Specific 

Energy 
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Case Study 2: Minimize Area and Mass for a Target Energy 

This case concerns applications for which the battery designers have a predetermined 

target energy requirement with a fixed discharge time. Under this circumstance, the total energy 

required becomes a constraint, and minimizing the weight and the size of a cell become the 

objectives. The size of a cell was measured by the separator area, as stated in the Section 2.3, 

separator area is dominating in the cell size [29]. 

Thus, compared with the base problem, a new multi-objective optimization can be 

formulated as follows. 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒. 𝐴 =
𝑇𝐸

𝐸
 (2-11) 

 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒. 𝑀𝑎𝑠𝑠 = 𝑀×𝐴 (2-12) 

where 𝑇𝐸 is the target energy, 𝐸 and 𝑀 are unit area energy and unit area mass respectively [29]. 

The solutions of this multi-objective optimization, however, could be directly obtained 

from the Pareto front for the base problem and no additional optimization needs to be guided 

[29]. 

Figure 2-5(a) shows the Pareto front of the base problem, while Figure 2-5(b) shows the 

transformed Pareto front for this case from the solutions of the base problem (for an arbitrary 

determined target energy 1,000J). Point A1 in Figure 2-5(a) corresponds to the design which 

would maximize the specific energy, hence minimizing the mass when the required energy is 

given. Thus, it corresponds to the point A2 in Figure 2-5(b). The point B1 on the other hand, has 

the largest unit area energy according to the base problem, thus will give the smallest separator 

area in this case (B2) [29].  
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(a) Pareto front of the base problem 

 
(b) Pareto front of Case 2 

 

Figure 2-5 The Relationship between Base Problem and Design with a Target Application 
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we can always find another better design which could reduce the Mass while keeping the 

separator area fixed. This also means in the base problem, we can identify a design which could 

increase the unit area energy but keep the unit area mass fixed compared with C1. If so, the point 

C1 in Figure 2-5(a) no longer belongs to the Pareto optimal set, which is not consistent with the 

assumption. Thus, C1 has to correspond to a point belongs to the Pareto front in Figure 2-5(b), 

say C2 [29]. 

So, the solid magenta parts in the two plots are corresponding with each other. The 

dashed parts (lower parts for Figure 2-5(a) and upper parts of Figure 2-5(b)) are corresponding 

with each other as well. But as we are now identifying the Pareto front in this case, considering 

the dashed parts do not belong to the Pareto front for this case, no interests will be given to these 

parts. Note that the points in Figure 2-5(b) are not strictly composing a smooth curve. This is due 

to the computation limitation in GA optimization [29]. 

It can be observed that when having an energy target for a discharge time, designers do 

not have to guide another optimization to obtain the lightest or the smallest design, or a trade-off. 

Once the base problem is solved, the results of the base problem are enough to handle the 

problem put forward in this case [29]. 

 

Case Study 3: Maximize Unit Area Energy and Specific Energy 

In some cases, the designers may not have an energy target. The designers, however, 

know the expected discharge time and always want to design lighter and smaller cell. A lighter 

cell is often corresponding to a greater specific energy, while a smaller one corresponding to 

greater unit area energy. Thus, another multi-objective optimization problem can be formulated 

as follows 



23 

 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒. 𝐸 = 𝑓1(𝐿+, 𝜖+) (2-13) 

 𝑀𝑎𝑥𝑖𝑚𝑖𝑧𝑒. 𝑆𝐸 =
𝐸

𝑀
 (2-14) 

where 𝐸  and 𝑀  are unit area energy and unit area mass respectively, and 𝑆𝐸  is the specific 

energy for the discharge time [29]. 

Figure 2-6 is an illustration for the transformed results of this case from the solutions to 

the base problem. Still, it’s easy to infer that A1, B1 and C1 in Figure 2-6(a) are corresponding 

to A2, B2 and C2 in Figure 2-6(b) respectively through the logic illustrated in Case 2 [29].  

Thus, the Pareto front for this problem can be directly obtained from the solutions of the 

base problem as well. Under the context of multi-objective optimization, only the solid magenta 

parts (rights parts of Figure 2-6(a) and (b)) in the plots will be important. In Figure 2-6, point A1 

and point A2 still correspond to the design with the largest specific energy. Still, because of 

computation limitation in GA optimization, the points in Figure 2-6(b) failed to compose a 

smooth curve [29]. 

 

(a) Pareto front of the base problem 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
0

50

100

150

200

250

300

Mass (g/cm2)

E
n
e
rg

y
 (

J
/c

m
2
)

A1 

B1 

C1 



24 

 

 

(b) Pareto front of Case 3 

 

Figure 2-6 The Relationship Between Base Problem and Design without a Target 

Application 
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targets designers may encounter in the industry. As the solutions to the base problem are capable 

in multiple design cases, the multi-objective optimization problem does not need to be solved 

repeatedly when facing different problems, which compensate the high costs of solving such 

kinds of problems. 

In this chapter, only two design variables are considered, which are thickness and 

porosity of positive electrode due to the simplicity of reaction zone model. Researchers have 

been interested in other independent variables in the Li-ion battery design as well 

[7][8][9][10][11][12][16]. However, the chapter demonstrates the benefits of multi-objective 

optimization in lithium-ion batteries design [29].  

Conceptually, if more design variables such as particle size are included in the 

optimization, the authors believe a similar shape for the Pareto front of the base problem will be 

obtained and here give the reasons [29].  

When the electrode thickness is zero, no energy would be delivered by the cell, and the 

mass will be equal to the mass of separator and the remaining parts, so the Pareto front will start 

from a none-zero point on the axis of mass per unit area. Once some changes are made to the 

design, the specific energy of this cell would be increased from zero to some positive value. So 

after the beginning point, an increasing trend on the Pareto front for specific energy can be 

expected for some range of design variables.  However, when the constraints for design variables 

become binding and the contradiction between objectives becomes significant, the marginal gain 

of energy due to the increase in the mass would be reduced. Thus, most likely, after some point 

on the Pareto Front, the Specific Energy would start to fall [29]. 

If more design variables are considered, more degrees of freedom are given to the 

optimization. So a higher Pareto Front compared to the case where we have only two design 
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variables can be expected. But the shape of the Pareto front is expected to stay according to the 

discussion above [29]. 

This chapter only focused on the battery performance on the aspect of energy measures, 

the high power performance was not included. The expected output if a high power performance 

is added to the base problem as another objective to maximize is that the Pareto front becomes a 

surface in the three-dimensional space rather than a curve [29]. Also, because of the simplicity 

and limitations of the reaction zone model, the discussion in this chapter is limited in a 

qualitative manner. 

We expect to have more design variables and the high power performance measure 

included in the problem, and we wish the problem can be discussed quantitatively with accurate 

solutions and confident conclusions. These procedures acquire a more complex and accurate 

model (e.g. PP model). In chapter 3, a more advanced simulation model will be adopted and 

tuned. With the tuned model, the high power performance will be added into the base problem as 

another objective and this problem will be discussed and solved quantitatively in chapter 4. 
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Chapter 3. Tuning A DAE Based Simulation Model for LiFePO4-

Graphite Batteries 

Chapter 2 already described the shape of Pareto front of the constructed multi-objective 

optimization problem. Although qualitatively, the application of multi-objective optimization in 

Lithium-Ion Battery cell designs and its advantages have been well presented with such a 

discussion. However, it is not capable enough for a reaction zone model to give some 

quantitative results.  

To acquire quantitative results for this problem, a more advanced, accurate simulation 

model has to be adopted, tuned and validated so that we can be confident that the responses of 

the tuned simulation model will be close to the reality according to the change of design 

variables. 

This chapter gives a simple introduction to a DAE based simulation model for LiFePO4-

Graphite Li-Ion Batteries. The model is tuned to fit the experimental data of charging and 

discharging curves for multiple charge/discharge rates. To do so, another optimization problem is 

constructed with the objective of minimizing the sum of squared residuals between the model 

predictions and experimental charging/discharging curves. Section 3.2 illustrated the tuning 

parameters in this optimization problem. Genetic Algorithm is used to find the optimal tuning 

parameters in Section 3.3, by validating the simulation with multiple discharge/charge curves, 

the model is considered a good fit for further quantitative analysis in this thesis. 
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3.1 A Compact Differential-Algebraic Equations Model for LiFePO4-Graphite Li-

Ion Batteries 

 In a Pseudo two-dimensional model (P2D) [4], the solid phase is usually assumed to 

comprise of identical spherical particles of a predetermined size and the diffusion in the radial 

direction is assumed to be predominant mode of transport. The concentration of solution phase 

and the potentials were usually assumed to vary only in the ‘𝑥’ coordinate, which is shown in 

Figure 3-1. 

 

Figure 3-1 Schema of a P2D Electrochemical Model of Li-Ion BatteryError! Reference source not 

found. 

 

 The governing equations of a P2D model include solid-phase concentrations, electrolyte 

concentration, charge conservation in solid-phase and charge conservation in electrolyte. P2D 

model is often considered as a complete model to compare with the other approximate 
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methodologies in researches [4]. But a P2D model is not efficient enough for optimization and 

real time battery management purposes because of its high complexity. 

 This project adopted polynomial representations for the electrolyte concentration and 

solid-phase concentrations to derive a DAE system, which make the model a porous electrode 

model with the polynomial approximation (PP). Subramanian [23] discovered that the number of 

dependent variables can be made small by representing the pore-wall flux by a polynomial 

approximation as well, which is also adopted in the model of this project. To explain the 

measurable change in open circuit potentials during charging and discharging for LiFePO4 

batteries, the hysteresis phenomenon is also considered in the model.  

 More details of the simulation model can be found in [30]. As the purpose of this thesis is 

not constructing a simulation model, but to state the use of simulation and multi-objective 

optimization in battery designs, this part is not discussed in the main chapters. 

 

3.2 Tuning Parameters 

Before constructing an optimization problem, the tuning parameters needs to be discussed 

and addressed. 

In different literatures, the values of solid phase diffusion coefficients (𝐷𝑠𝑝, 𝐷𝑠𝑛) often 

vary from one to another [25][26][27][28]. To assess the influence of 𝐷𝑠𝑝 and 𝐷𝑠𝑛 to discharging 

curves in our simulation model, a simple experiment was performed. Figure 3-2 shows the 

influence of 𝐷𝑠𝑝 to the discharge curve at a discharge rate of 1C. In this figure, the value of 𝐷𝑠𝑝 

varies from 1×10−18 to 7×10−18 m2/s. Obviously, the change of 𝐷𝑠𝑝 only has a little influence 

on the beginning part the discharge curves, while the remaining parts of discharge curves are 

almost the same for different 𝐷𝑠𝑝 values.  
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Figure 3-2 Influence of Dsp to 1C Discharge 

 

 

Figure 3-3 Influence of Dsn to 1C Discharge 

 

On the other hand, Figure 3-3 shows the influence of 𝐷𝑠𝑛 to the discharge curve at the 

discharge rate of 1C. In the figure, the value of 𝐷𝑠𝑛 varies from 1×10−14 to 7×10−14 m2/s while 

the other parameters are kept as constants. As can be observed, the change of 𝐷𝑠𝑛 has a great 

impact to the discharge curves in our model.  
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Thus, although both 𝐷𝑠𝑛 and 𝐷𝑠𝑝 vary among literatures, based on the influence in our 

simulation model, only 𝐷𝑠𝑛 is selected as one of the tuning parameters. 

In our model, the exchange current densities are determined by the charge transfer rate 

constants, solid phase concentrations and charge transfer coefficients. For sake of simplicity and 

as performed in several reported battery models, the exchange current densities have been set as 

constants in discharging and charging operations[27]. By modifying the values of charge transfer 

rate constants (𝑘𝑛
0, 𝑘𝑝

0), an appropriate setting of exchange. As can be shown in Figure 3-4 

(varying 𝑘𝑛
0 while keeping the other parameters constant), the influence of 𝑘𝑛

0 to the discharge 

curves is significant. This kind of influence can be observed for 𝑘𝑝
0 with our simulation model as 

well. Thus, 𝑘𝑛
0 and 𝑘𝑝

0 are both considered as tuning parameters in this project. 

 

Figure 3-4 Influence of 𝒌𝒏
𝟎  to 1C Discharge 

 Figure 3-5 shows the influence of the initial value of hysteresis factor (Γ𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
0 ) to the 

discharge curve at the discharge rate of 1C. Again, only Γ𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
0  varies for different discharge 

curves shown in the figure, the other parameters are kept constant. As can be seen, Γ𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
0  has 
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a significant influence on discharge curves as well. To better reflect the hysteresis phenomena 

for LiFePO4 batteries, we considered Γ𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
0  and Γ𝑐ℎ𝑎𝑟𝑔𝑒

0  as two different tuning parameters in 

the model tuning process, the tuning process is expected to give the optimal values for both of 

these. If the values are close, we can assume Γ𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒
0 = Γ𝑐ℎ𝑎𝑟𝑔𝑒

0 . If not, it will be better to set 

the initial value of hysteresis factor differently for charging and discharging to get the optimal fit 

with experimental data. 

 

Figure 3-5 Influence of  𝜞𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆
𝟎  to 1C Discharge 

 

 It is often observed that the experimental discharging curve has a larger drop than the 

simulation predictions. This offset is explained by contact resistance (𝑅𝑐𝑜𝑛) in [25]. Thus, 𝑅𝑐𝑜𝑛 is 

considered as another tuning parameter in this project. 

As a summary for the above discussion, solid phase diffusion coefficient of negative 

electrode (𝐷𝑠𝑛), charge transfer rate constants (𝑘𝑝, 𝑘𝑛), initial values of hysteresis factor for 

charging and discharging (Γ𝑐ℎ𝑎𝑟𝑔𝑒
0 , Γ𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

0 ) and contact resistance (𝑅𝑐𝑜𝑛) are considered as 

tuning parameters in this project. 
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3.3 Model Tuning and Validation 

Forman, Joel C. [24] illustrated a process of using Genetic Algorithm to identify 

parameter values for LiFePO4 batteries. This thesis also adopts Genetic Algorithm to automate 

the process of model tuning.  

The experimental data used in model tuning is from the figures of Prada’s paper [27]. He 

and his team measured the discharge/charge curves of the commercial LiFePO4-graphite cells 

ANR26650M1 from A123 systems for the discharge/charge rates of 0.25C, 0.5C, 1C, 2C, 4C and 

8C. The curves reported by him are used as the reference for our simulation model, Table 3-1 

gives all the data points we picked from his discharge/charge curves for model tuning.  

Based on the observation, the predicted discharge curves of our simulation model often 

become fluctuating rather than a smooth decreasing curve when the discharge rate is as high as 

8C. Also, the charging curve for the rate of 8C is very steep and ended prematurely [27]. The 

tuning is thus limited to the discharge/charge rates up to 4C. 

For each discharge/charge rates, the sum of squared residuals between model predictions 

and experimental data can be calculated by 

 𝑆𝑆𝐸𝑟𝑎𝑡𝑒 = ∑(𝑃𝑉𝑡𝑖

𝑑 − 𝐸𝑉𝑡𝑖

𝑑)
2

+ ∑ (𝑃𝑉𝑡𝑗

𝑐 − 𝐸𝑉𝑡𝑗

𝑐 )
2

 (3-1) 

Where 𝑃𝑉𝑡𝑖

𝑑 and 𝐸𝑉𝑡𝑖

𝑑 are predicted and experimental voltages on the discharge curve at time 𝑡𝑖, 

𝑃𝑉𝑡𝑗

𝑐  and 𝐸𝑉𝑡𝑗

𝑐  are predicted and experimental voltages on the charge curve at time 𝑡𝑗. Since the 

predicted voltage values vary when the tuning variables are changed, 𝑆𝑆𝐸𝑟𝑎𝑡𝑒 can be expressed 

as a function of tuning variables we discussed in Section 3.2. 

 𝑆𝑆𝐸𝑟𝑎𝑡𝑒 = 𝑓𝑟𝑎𝑡𝑒(𝐷𝑠𝑛, 𝑘𝑝, 𝑘𝑛, Γ𝑐ℎ𝑎𝑟𝑔𝑒
0 , Γ𝑑𝑖𝑠𝑐ℎ𝑎𝑟𝑔𝑒

0 , 𝑅𝑐𝑜𝑛) (3-2) 

 Where the function of 𝑓𝑟𝑎𝑡𝑒 is based on the responses of our simulation model. Thus, the 

objective function used for model tuning is set as 
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 𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑆𝑆𝐸𝑡𝑜𝑡𝑎𝑙 = 𝑆𝑆𝐸0.25𝐶 + 𝑆𝑆𝐸0.5𝐶 + 𝑆𝑆𝐸1𝐶 + 𝑆𝑆𝐸2𝐶 + 𝑆𝑆𝐸4𝐶 (3-3) 

 

The function of ga in MATLAB is used to implement the genetic algorithm for model tuning. As 

boundary constraints (see Table 3-2) exist, the adaptive feasible mutation function implemented 

in MATLAB is used for mutation. To expand the range of searching, the population size is set as 

200. To make sure the algorithm is terminated within an acceptable time scale, the maximum 

generation is set at 50, the terminated tolerance for objective function is set as 1e-3, the stall 

generation limit is set as 20. We want to explore more feasible values, so the fraction of 

mutations in the sons is increased to 20%. To make sure the elite individuals can survive through 

generations, the elite count is chosen as 5. Intermediate function is chosen as the crossover 

function. To speed up the algorithm, parallel computing is used so that multiple individuals can 

be measured at the same time. Table 3-2 summarized the results from the genetic algorithm, 

these parameter values give relatively good fitting for simulation predictions to the experimental 

data, the optimized 𝑆𝑆𝐸𝑡𝑜𝑡𝑎𝑙  is 0.7190. 
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Table 3-1 Experimental Data for Model Tuning 

 

 

 

 

time voltage time voltage time voltage time voltage time voltage time voltage

111.381 2.819 528.079 3.334 19.810 2.777 450.142 3.304 0.960 2.736 202.680 3.279

182.918 2.905 758.781 3.325 169.062 3.050 556.662 3.299 9.881 2.796 282.603 3.276

242.561 2.971 1025.120 3.320 228.911 3.102 858.717 3.301 39.699 2.930 433.565 3.269

386.192 3.034 1611.253 3.315 366.693 3.171 1267.239 3.294 60.598 3.004 668.904 3.260

553.812 3.098 2765.911 3.309 726.345 3.263 1595.838 3.288 165.330 3.188 855.399 3.253

685.544 3.143 3494.280 3.308 942.256 3.272 2030.931 3.276 195.282 3.217 1077.400 3.242

1680.676 3.253 4186.750 3.294 1236.111 3.294 2474.934 3.265 246.223 3.252 1423.779 3.234

2040.511 3.263 4914.910 3.285 1685.903 3.322 2901.327 3.265 345.150 3.285 1668.014 3.226

2712.177 3.288 5518.810 3.279 2021.764 3.336 3318.758 3.260 408.120 3.293 1938.912 3.221

3251.930 3.305 6229.308 3.274 2645.544 3.348 3727.307 3.255 504.076 3.305 2116.524 3.214

4295.502 3.326 7117.574 3.272 3353.320 3.351 4073.699 3.251 683.990 3.329 2258.602 3.207

5015.247 3.333 7828.125 3.269 3929.132 3.356 4322.323 3.244 878.903 3.351 2445.097 3.200

5806.997 3.335 8432.077 3.265 4301.003 3.363 4571.000 3.241 1277.756 3.371 2631.566 3.189

6610.740 3.338 9071.562 3.262 4738.847 3.371 4881.781 3.232 1676.625 3.378 2968.878 3.156

7570.444 3.338 9764.137 3.251 5014.735 3.382 5290.225 3.219 1985.520 3.387 3155.282 3.136

8194.241 3.341 10403.413 3.241 5458.580 3.390 6630.515 3.147 2429.365 3.403 3513.901 2.981

8866.009 3.346 11042.584 3.226 6010.392 3.398 7054.765 3.002 2867.207 3.422 3627.514 2.729

9537.778 3.352 11699.522 3.212 6310.280 3.406 7305.786 2.600 3095.119 3.437 3658.363 2.600

9957.608 3.360 12267.680 3.200 6520.188 3.417 3212.061 3.454

10305.456 3.369 12782.382 3.182 6724.059 3.443 3293.009 3.476

10905.247 3.374 13386.021 3.168 6873.895 3.489 3346.954 3.505

11589.025 3.377 13758.122 3.135 6933.742 3.542 3391.887 3.547

12428.748 3.381 13951.984 3.082 6963.659 3.570 3421.835 3.580

12932.562 3.387 14180.753 3.008

13232.453 3.391 14391.180 2.914

13796.059 3.434 14548.412 2.824

14011.757 3.480 14634.840 2.743

14155.374 3.546 14721.216 2.660

14740.634 2.600

time voltage time voltage time voltage time voltage time voltage time voltage

47.925 3.138 45.729 3.255 1.285 2.899 17.241 3.216 0.903 3.078 6.297 3.105

69.480 3.204 63.449 3.242 4.357 2.942 35.993 3.149 1.667 3.123 21.187 2.997

83.345 3.234 110.034 3.228 7.425 2.994 61.503 3.133 3.202 3.169 36.143 2.960

106.456 3.279 147.761 3.221 12.022 3.093 118.097 3.114 5.315 3.222 47.233 2.944

128.030 3.315 198.827 3.218 18.173 3.153 143.637 3.114 7.621 3.273 62.772 2.937

152.703 3.329 280.990 3.216 28.174 3.235 176.945 3.112 10.119 3.325 82.752 2.930

172.752 3.337 436.406 3.205 38.180 3.300 216.907 3.105 13.388 3.384 98.296 2.928

226.736 3.351 598.485 3.195 47.421 3.347 282.407 3.098 20.318 3.461 117.725 2.925

322.365 3.377 764.993 3.181 59.749 3.389 342.355 3.091 24.744 3.514 142.707 2.923

444.218 3.402 884.883 3.172 75.938 3.415 397.856 3.080 32.643 3.559 174.344 2.912

601.562 3.414 1024.747 3.159 95.989 3.427 470.012 3.069 39.388 3.583 211.528 2.896

775.875 3.425 1106.891 3.152 131.463 3.447 517.740 3.059 252.593 2.875

927.049 3.434 1211.229 3.142 191.619 3.471 556.584 3.048 299.754 2.842

1115.246 3.445 1324.437 3.128 251.778 3.485 619.844 3.031 325.278 2.826

1304.982 3.461 1479.802 3.103 328.907 3.500 679.773 3.013 345.806 2.810

1490.086 3.485 1564.100 3.078 402.180 3.507 716.390 2.999 359.678 2.801

1584.168 3.516 1621.769 3.059 485.480 3.518 752.997 2.979 407.921 2.738

1656.632 3.579 1670.529 3.032 582.663 3.531 799.568 2.944 426.755 2.692

1694.873 3.009 661.334 3.547 830.588 2.905 435.595 2.644

1719.177 2.976 721.492 3.564 864.879 2.835

1736.820 2.942 766.223 3.583 891.310 2.716

1754.436 2.902

1772.000 2.847

1787.317 2.785

1804.789 2.706

1816.204 2.600

4C

Charge Discharge

8C

Charge Discharge

1C

Charge Discharge

2C

Charge Discharge

0.25C

Charge Discharge

0.5C

Charge Discharge
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Table 3-2 Tuned Parameters for Simulation Model 

Parameters Tuned Value Lower Bound Upper Bound 

𝑫𝒔𝒏 8.7559e-14 6e-14 9e-14 

𝒌𝒑
𝟎 2.6061e-12 1e-12 1e-10 

𝒌𝒏
𝟎  9.0912e-12 1e-13 1e-10 

𝚪𝒄𝒉𝒂𝒓𝒈𝒆
𝟎   0.1687 0 0.6 

𝚪𝒅𝒊𝒔𝒄𝒉𝒂𝒓𝒈𝒆
𝟎  0.5852 0.4 1 

𝑹𝒄𝒐𝒏 0.001 0 0.002 

 

Figure 3-6 to Figure 3-10 shows the comparison between model predictions and 

experimental data. As can be seen, the model with the tuned parameters gives satisfying fit to 

charge and discharge curves for the rates up to 4C. The predicted energy produced during 

discharge is 0.34% less than the experimental data for the discharge rate of 0.25C and 1.62% less 

for 4C.  

 

Figure 3-6 Model Fitting at 0.25C 
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Figure 3-7 Model Fitting at 0.5C 

 

Figure 3-8 Model Fitting at 1C 

 

Figure 3-9 Model Fitting at 2C 
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Figure 3-10 Model Fitting at 4C 

 

 Figure 3-11 shows the change of the distribution of the optimal 20% individuals from 

generation to generation. As shown in the plot, at the first several generations, the fitness values 

for the 20% optimal individuals are scattered. But after a couple of generations, this distribution 

became more convergent. After 24 generations, the algorithm was terminated because of the 

minimum tolerance set for the fitness function value was reached. The 20% optimal individuals 

have been pretty much converged to the optimal solution obtained from the algorithm because of 

the crossover function. 

 

Figure 3-11 Fitness Values for the 20% Optimal Individuals for Each Generation 

 Generation 

Fitness Value 
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3.4 Discussion 

The process of selecting tuning parameters in this thesis is stated in Section 3.2. When 

looking for these tuning parameters, our objective is to find the values that give the best fitting 

for a given design. Thus, parameters that can be considered as design variables, such as thickness 

of electrodes and particle size, shouldn’t be selected as tuning parameters as this can limit the 

capability of the simulation model when applied for design optimizations. Also, the value of 

tuning parameters needs to have a great influence on the response of the model so that by 

changing these parameters, a better fitting between model predictions and experiment data can be 

achieved. The tuning parameters in this thesis are mostly those that are reported with different 

values among literatures but have an obvious impact to the predictions of the adopted simulation 

model. Some of them are measurable according to the literatures, but because of the limits of our 

project, tuning them to proper values can be the most appropriate way to get a simulation model 

with a decent precision. 

Section 3.3 shows the formula of the optimization problem used for model tuning and the 

results of the tuning process. Again, a genetic algorithm was implemented with MATLAB to 

identify the optimal values for tuning parameters. To validate the results, we compared the 

discharging/charging curves predicted by the simulation with the experimental data from 

Parada’s team [27]. Since more focus will be given to the performance of discharging in this 

thesis, the errors for energy predictions for different discharge rates are also measured.  

Based on the results, the tuned simulation model gives both great fitting for 

discharge/charge curves and minor errors in energy predictions for the rates up to 4C. To make 

sure the solution of genetic algorithm was convergent, the fitness values of the 20% optimal 

individuals for each generation were recorded and plotted in Figure 3-11. As can be shown, 
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because the population size was chosen properly, the algorithm converged to the optimal solution 

within an acceptable number of generations. 

After the tuning process, it is convincing to state that the simulation model is well 

capable in predicting the performance for the modeled LiFePO4-graphite system for discharging 

rates up to 4C. The tuned simulation model is going to be adopted for quantitative discussion of 

multi-objective optimal design for lithium-ion battery cells in the thesis.  Chapter 4 will illustrate 

the application of this model and the optimal designs obtained. 
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Chapter 4. A Three-Objective Optimization Problem and Its 

Quantitative Analysis for LiFePO4-Graphite Cell Optimal Designs 

In Chapter 3, an DAE-based simulation model was introduced. After model tuning, it has 

shown a good capability in predicting the discharge curves for the cycling rates up to 4C. This 

tuned simulation model is employed for the quantitative analysis based on multi-objective 

optimization problems for the LiFePO4-graphite battery optimal designs.  

The two-objective optimization problem constructed in Chapter 2 is modified to fit the 

current simulation model structure and solved with the assistance of the high precision 

simulation model and genetic algorithm in Section 4.1. The shape of the Pareto front validates 

the qualitative analysis in Chapter 2. 

Then a three-objective optimization problem is constructed in Section 4.2 and solved in 

Section 4.3. This problem measures the cell performance for both high and low current discharge 

in terms of with energy per unit separator area. To control the weight of the cell design, 

minimizing the mass per unit separator area is still considered as another objective. The resulted 

Pareto front comes out to be a surface in the 3D space. Then, the application of the obtained 

Pareto front is discussed in Section 4.4. At last, more discussions regarding the procedures and 

solutions are given in Section 4.5. 
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4.1 Validating the Pareto Front for the Two-Objective Design problem 

In Chapter 2, we constructed a two-objective optimization problem for lithium-ion 

battery cell optimal design with the objectives of maximizing the specific energy per unit 

separator area for the discharge rate of 0.5C and minimizing the mass per unit separator area. 

With the assistance of a simple reaction zone model and genetic algorithm, we were able to 

qualitatively analyze the shape of the Pareto front for this optimization problem. Based on the 

solutions, the Pareto front was identified as a concave curve in a 2D plane.  

Now that a precise simulation model was constructed and tuned in Chapter 3, we are 

allowed to quantitatively solve the two-objective optimization problem constructed in Chapter 2 

and validate the results and analysis that were illustrated and discussed before. Also, since the 

model is now able to handle more design variables besides porosity and thickness of positive 

electrode, we can further validate the discussions in Section 2.5.  

The design variables considered include particle radius of positive and negative 

electrodes (𝑅𝑝, 𝑅𝑛), porosity of both electrodes (𝜖𝑝, 𝜖𝑛) and the thickness of positive electrode 

(𝐿𝑝) are considered. 

To simplify the problem, the volume fraction of fillers ( 𝜖𝑒𝑓𝑓𝑝 , 𝜖𝑒𝑓𝑓𝑛 ) are fixed as 

constants. The thickness of negative electrode (𝐿𝑛 ) is changed to maintain the balance of 

cyclable Li between the two electrodes (see Equation 57 and Equation 58 in [27]). 

Thus, the two-objective optimization problem constructed in Chapter 2 now can be 

represented with the following formulas: 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸0.25𝐶 = 𝑔0.25𝐶(𝑅𝑝, 𝑅𝑛, 𝜖𝑝, 𝜖𝑛, 𝐿𝑝) (4-1) 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑀 = ℎ(𝜖𝑝, 𝜖𝑛, 𝐿𝑝) (4-2) 
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Since the purpose of this section is to validate the former results, the definition of 

function 𝑔𝑟𝑎𝑡𝑒 and ℎ, or how to measure the specific energy and mass per unit separator area for 

a given design are illustrated in Section 4.2, where a new three-objective optimization problem is 

constructed and introduced. To be concise, these contents are omitted in this section.  

Figure 4-1 shows the resulted Pareto front of the “base problem” in Chapter 2 with the 

tuned DAE based simulation model and the genetic algorithm. As can be observed, the shape of 

Pareto front is similar with the qualitative results obtained before. This validated the results and 

discussions in Chapter 2. Based on the case study in Section 2.4, we should be able to apply this 

quantitative results to multiple design cases regarding different target applications. 

 

Figure 4-1 Validating the Results of the Two-Objective Optimization Problem in CH 2 
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4.2 Construction of a Three-Objective Design Problem for LiFePO4-Graphite Li-

Ion Batteries 

The two-objective optimization problem solved in Section 4.1 measured only the energy 

performance of low rate energy performance. However, lots of researchers have been interested 

in high power performance of lithium-ion batteries as well [7, 10, 13]. A good measurement for 

high power performance of a lithium-ion battery is the peak specific power. It was measured in 

[7] by discharging the cell until it reaches 80% DOD with a rate of 
1

3
C and then finding the 

current under which the cell reaches the cutoff potential in exactly 30 seconds (or a short time 

duration). The process of finding the proper current, however, is a trial-and-error procedure and 

is very computationally expensive and tedious. In [13], the authors proposed a simpler process of 

using a high-rate pulse (10C for example) to estimate the high power performance of the 

batteries.  

Under an optimization context, it will be too difficult to find the exact pulse current for 

each design. Thus, the energy per unit separator area for 0.25C discharge is considered as a 

measure of the slow discharge performance of the battery, and energy per unit separator area is 

considered as a measure of fast discharge performance of the battery. Obviously, both of these 

energy measures are expected to be maximized by optimizing the design variables. Although it 

was stated in [13] that the pulse current should be at least 5C to best estimate the resistance at 

high rates, 4C is used in this research because the model was tuned only for the rates up to 4C 

and moving to larger discharge rates may result in validation issues for the simulation model 

itself. Minimizing the mass per unit separator area is again considered as an objective so that the 

weight of obtained designs will not be prohibitively heavy. 



45 

 

The design variables referred in Section 4.1 are again considered in the three-objective 

optimization problem, which are particle radius of positive and negative electrodes (𝑅𝑝, 𝑅𝑛), 

porosity of both electrodes (𝜖𝑝, 𝜖𝑛) and the thickness of positive electrode (𝐿𝑝) are considered. 

To simplify the problem, the same assumptions for determining the thickness of electrode (𝐿𝑛) 

for a given design employed in Section 4.1 is employed in the three-objective problem 

construction. 

A three-objective optimization problem can be thus constructed based on the former 

illustration.  

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸0.25𝐶 = 𝑔0.25𝐶(𝑅𝑝, 𝑅𝑛, 𝜖𝑝, 𝜖𝑛, 𝐿𝑝) (4-3) 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝐸4𝐶 = 𝑔4𝐶(𝑅𝑝, 𝑅𝑛, 𝜖𝑝, 𝜖𝑛, 𝐿𝑝) (4-4) 

 𝑚𝑖𝑛𝑖𝑚𝑖𝑧𝑒 𝑀 = ℎ(𝜖𝑝, 𝜖𝑛, 𝐿𝑝) (4-5) 

Equation (4-3) and Equation (4-4) are the two energy performance measures and both of 

them are expected to be maximized. Specifically, the calculation of energy is given in Equation 

(4-6). 

 𝐸𝑟 =
∑[(𝐼1𝐶×𝑟)×

(𝑉𝑗+𝑉𝑗+1)

2
×𝑑𝑡]

𝐴
 (4-6) 

𝐼1𝐶×𝑟 is the discharge current. 𝐼1𝐶  is the discharge rate for 1C, it is assumed to be 

proportional to the volume of active materials. 𝑟 is the discharge rate, for simplification, we 

assumed the discharge current is proportional to discharge rate. 𝑑𝑡 is the time interval between 

two voltage predictions, we used 5 sec for 1C discharge, for the other discharge rates, 𝑑𝑡 =

5×𝑟𝑎𝑡𝑒 sec. 
𝑉𝑗+𝑉𝑗+1

2
 is the average voltage for the 𝑗th time interval. 𝐴 is the separator area, which 

is a constant in this paper. The basic concept of this calculation is to divide the whole discharge 

curve into tiny pieces. By using the average voltage for each tiny piece, the energy in every time 



46 

 

interval can be estimated, and the sum of these estimated energy values will be an estimated 

energy for the full discharging process. Since 𝑑𝑡 is small, the estimated energy will be very close 

to the real value. 

The mass calculation is considered to be the sum of the mass of four parts in a battery cell: 

positive electrode, negative electrode, separator and remaining materials (current collectors, coat 

etc.). 

 𝑀 = 𝑀𝑝 + 𝑀𝑛 + 𝑀𝑠 + 𝑀𝑟 (4-7) 

For positive and negative electrodes, three parts are considered in mass calculation: filler, 

electrolyte and active materials. 

 𝑀𝑝 = (𝜌𝑓𝜖𝑓𝑝 + 𝜌𝑒𝜖𝑒𝑝 + 𝜌𝑎𝑝𝜖𝑎𝑝)𝐿𝑝𝐴 (4-8) 

 𝑀𝑛 = (𝜌𝑓𝜖𝑓𝑛 + 𝜌𝑒𝜖𝑒𝑛 + 𝜌𝑎𝑛𝜖𝑎𝑛)𝐿𝑛𝐴 (4-9) 

Where 𝜌𝑓 , 𝜌𝑒  and 𝜌𝑎𝑥  (𝑥 = 𝑛, 𝑝) are the density for filler, electrolyte and active materials, the 

density values used in mass calculation are summarized in Table 4-1.  𝜖𝑓𝑥, 𝜖𝑒𝑥 and 𝜖𝑎𝑥 are the 

volume fractions for filler, electrolyte and active materials. For each electrolyte, these three 

should add up to 1. 𝐿𝑥  is the thickness for electrode 𝑥 and 𝐴 is the separator area and it is a 

constant (0.18 𝑚2) in this paper. 

Table 4-1 Density Values Used in Mass Calculation 

𝜌𝑓 Density of filler(SiO2) 2.65 𝑔/𝑐𝑚3 Wiki 

𝜌𝑒 Density of electrolyte 1.071 𝑔/𝑐𝑚3 Calculated by 1:1 (w:w) of EMC and DMC 

𝜌𝑎𝑝 Density of LiFePO4 3.60 𝑔/𝑐𝑚3 [7] 

𝜌𝑎𝑛 Density of graphite 2.27 𝑔/𝑐𝑚3 [7] 

𝜌𝑠 Density of separator 0.9 𝑔/𝑐𝑚3 [7] 
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It is assumed that no filler is contained in the separator, so the mass the separator is the 

sum of the porous separator materials and the electrolyte. Because no variables used is changed 

for different designs, the mass of the separator is thus a constant in this paper. 

 𝑀𝑠 = (𝜌𝑠𝜖𝑠 + 𝜌𝑒𝜖𝑒𝑠)𝐿𝑠𝐴 (4-10) 

The mass of the remaining materials is assumed to be unchanged for different designs 

and the value (𝑀𝑟 = 24.219𝑔) is calculated by the default design [27]. 

A three-objective optimization problem is thus constructed with all the aforementioned 

performance measures and assumptions. In the Result section, this optimization problem will be 

quantitatively solved with the assistance of tuned DAE based simulation model and GA and the 

property of the Pareto front will be discussed. 

 

4.3 Pareto Front of the Three-Objective Design Problem 

In Section 4.1, we quantitatively solved the two-objective optimization problem for 

optimal lithium-ion battery design constructed in Chapter 2 with the tuned simulation model for 

a LiFePO4-graphite cell. It was shown that the Pareto front is a concave curve in a 2D plane, 

which validate the qualitative results in the former chapter [29]. The purpose of this section is to 

solve the three-objective optimization problem in Section 4.2. Since one more objective is 

considered in this problem, to visualize the Pareto front, a 3D plot is needed. According to the 

discussion in Section 2.5, the Pareto front of this problem is expected to be a surface in a 3D 

space. 

The simulation model tuned in Chapter 3 is also used as the tool of quantitative analysis 

in this problem. With the function of gamultiobj in MATLAB, the genetic algorithm for the 

three-objective optimization problem is implemented.  
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It is relatively more difficult to get a smooth three-dimensional Pareto front because the 

same amount of points appears to be more scarce and divergent in the space compared with a 

plane, but the computation cost of the employed simulation model, although is massively 

reduced compared with a P2D model, is still too high for a genetic algorithm with a large scale 

of thousands of individuals and hundreds of generations.  

The population size is set at 350 and the Pareto fraction is set at 0.4 so that more points 

can be included in the resulted Pareto optimal set, which helps obtaining a relatively smooth 

Pareto front visually. To make sure the algorithm is terminated in a proper time frame, the 

maximum number of generations is set at 40.  The intermediate crossover function and adaptive 

feasible mutation are used for generating son generations and the fraction of crossover is 0.8. 

Boundary constraints are used to decrease the range of searching for the algorithm and 

summarized in Table 4-2.  

Table 4-2 Boundary Constraints for the Design Variables in Optimization 

 

Lower Bound Upper Bound Unit 

𝑅𝑝 1.00E-08 9.00E-08 m 

𝑅𝑛 1.00E-06 9.00E-06 m 

𝜖𝑝 0.2 0.65 - 

𝜖𝑛 0.2 0.6 - 

𝐿𝑝 6.00E-05 1.40E-04 m 

 

Another linear constraint is used because the simulation model works unstably when the 

volume of active materials is too few, the constraint is given in formula 4-11, where 𝐿𝑝 is the 

thickness of positive electrode, 𝜖𝑝 and 𝜖𝑒𝑓𝑓𝑝 are the volume fraction of electrolyte and fillers in 

the positive electrode. Thus (1 − 𝜖𝑝 − 𝜖𝑒𝑓𝑓𝑝)  stands for the volume fraction of the active 
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materials in the positive electrode and the left hand of the formula gives the volume of active 

materials included in the positive electrode for each unit separator area. The value on the right 

side is obtained from an experiment for our simulation model. Most of designs satisfying this 

constraint can be successfully simulated with the employed simulation model.  

 𝐿𝑝×(1 − 𝜖𝑝 − 𝜖𝑒𝑓𝑓𝑝) ≥ 2.6531×10−5 (4-11) 

 

Figure 4-2 shows the feasible region and the resulted Pareto front together. The feasible 

region is represented by the red dots, which are a large set of randomly generated designs that 

satisfied the constraints of the design optimization. The Pareto front is represented by the blue 

dots, which are the designs included in the Pareto optimal set from the genetic algorithm. As can 

be seen, the Pareto front is an outer surface of the feasible region where the combinations of the 

three performance measures are all non-dominated.  

 

Figure 4-2 The Feasible Region and the Pareto Front of the Design Optimization 
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In Figure 4-3, the three performance measures are linearly mapped into the interval of 

[0,1] respectively so that the magnitude difference between the mass and energy measures is 

compensated. To get rid of the magnitude between the three performance measures helps 

obtaining a more accurate fitted surface between them. This figure shows how does the Pareto 

front look like from multiple directions together with the fitted surface for the normalized 

performance measures. Equation 4-12 gives the polynomial expression of the fitted surface, 

where 𝑥 is the normalized 0.25C specific energy per unit separator area, 𝑦 is the normalized 

mass per unit separator area, 𝑧 is the normalized 4C specific energy per unit separator area. The 

R-square of the fitting is 0.937, the adjusted R-square is 0.9344, both show that the expression is 

a good fitting to the normalized Pareto optimal set. By observing Figure 4-3, one can also see 

that the fitted surface well reflects the trends and relationships between the three performance 

measures.  

 𝑧 = 0.001311 + 1.805𝑥 + 1.223𝑦 − 19.77𝑥2 + 31.12𝑥𝑦 − 14.15𝑦2 (4-12)\ 
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Figure 4-3 Pareto Front of the Three-Objective Problem from Multiple Directions 

 

Figure 4-4 gives the contour plots for the Pareto front obtained from the genetic 

algorithm and the fitted surface. These contour plots employed the normalized 0.25C and 4C 

specific energy per unit separator area as 𝑥 axis and y axis and the normalized mass per unit 
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separator area as the elevation. Plot (a) shows the contour plot of the Pareto front, because of the 

computation limits, the curves of the contour plot are not as smooth as the fitted surface in plot 

(b). However, the trends and relationships between the two contour plots are similar to each 

other, which again validate that the polynomial expression fitted before is a good estimation for 

the Pareto front obtained by the genetic algorithm. Closely observed, some dominated parts can 

be identified in both contour plots, this is because to generate these contour plots, MATLAB 

actually employed some linear interpolation for points located at unknown areas. 

  

Figure 4-4 Contour Plots of Pareto Fronts and Fitted Surface 

 

As a more complex simulation model is employed here in the optimization process, the 

computation time is massively increased because the DAE based simulation model is much more 

inefficient than a reaction zone model or an SP model. Using a desktop with the CPU of Intel 

Core i7-4790 and a memory of 16.0 GB, the time consumed to estimate the Pareto front was 

17.03 hours when a parallel pool of 4 workers was used in the genetic algorithm. 

The results of this section validated the former analysis and expectation. In the next 

section, we will discuss the application of the Pareto front obtained in this section. We will see 

(a) Pareto 

Fronts 

(b) Fitted Surface 
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that although the computation costs of solving a multi-objective optimization problem is 

expensive, this disadvantage can be compensated as the solutions to one problem can be applied 

in multiple design problems in the industry. 

4.4 Properties and Applications of the Pareto Front 

Based on the results of Section 4.3, the Pareto front of the three-objective optimization 

problem for the LiFePO4-graphite cell optimal design comes out to be a curved surface in a 3D 

space. Some discussion about the property and the application of this surface will be discussed in 

this section.  

First of all, the Pareto front given by Figure 4-3 consists of the trade-offs between the 

three performance measures. The “thin” designs are lighter, but they could not store lots of 

energy because the lack of active materials. The “thick” designs are heavier, but their energy 

performance measures for both 0.25C and 4C are massively improved because more active 

materials are now contained in the electrodes. Also, it is possible for these designs to obtain both 

good 0.25C and 4C energy performance according to the shape of the Pareto front. The “thicker” 

designs can store even more energy theoretically. However, it seems that the energy stored in the 

cell can only be fully utilized with small discharge rate, for high discharge rates such as 4C, their 

energy performance becomes even worse when the cells are relatively lighter.  

Figure 4-5 is the projection of the Pareto front to the plane of mass per unit separator area 

and 4C energy per unit separator area. This figure clearly shows that the increasing trend of 4C 

energy performance is stopped and a decreasing trend shows up. An intuitive explanation to this 

phenomenon is that when the battery cell gets too thick (to contain more active materials within a 

unit separator area), the influence of the internal resistance of the cell becomes significant for 

large discharge currents so that the cutoff voltage is reached early in a discharge cycle. This 



54 

 

resulted in the incomplete utilization of active materials in the electrodes. Appendix III discussed 

this phenomenon mathematically with the simple reaction zone model.  

Thus, even though the volume of active materials is further increased, the high rate 

discharge rate can utilize even less than it used to, which brings the decreasing trend of the 

projected Pareto front. The same effect, of course, should influence the low rate discharge as 

well. But to significantly influence the low rate energy performance, the electrodes need to be 

much thicker, and that part of region shall not be included in the Pareto front because all three 

objectives are becoming worse when this influence becomes significant for low discharge rates. 

 

Figure 4-5 The Projection of the Pareto Front to The Plane of Mass Per Unit Separator Area and 

4C Energy Per Unit Separator Area 

 

Another valuable discussion may be to explore the correlation between design variables 

for the solutions in the Pareto front because this kind of correlations may offer some perspectives 

to designers so that they can better understand the properties of battery cells and guide the proper 

design of experiments (DOE) for design purposes.  
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Figure 4-6 plotted the particle radius of negative electrode versus the thickness of 

negative electrode for the obtained Pareto optimal set. A negative correlation can be observed 

between these two design variables among the Pareto optimal set which is represented by the 

trend line in the figure. An explanation to this phenomenon is that the particle radius needs to be 

reduced when the electrode is thicker to compensate the influence of increased cell internal 

resistance, especially for high discharge rates such as 4C.  

Figure 4-7 shows that the similar correlation exists between the particle radius and the 

thickness of the positive electrode as well.  

 

Figure 4-6 Correlation Analysis between the Particle Radius and the Thickness of the Negative 

Electrode 
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Figure 4-7 Correlation Analysis between the Particle Radius and the Thickness of the Positive 

Electrode 

 

On the other hand, a positive correlation can be identified between the porosity and the 

thickness of the negative electrode. When the negative electrode tends to be thicker, it is more 

likely that a good design needs to have a larger volume fraction of electrolyte in the electrode. 

This correlation can be identified from Figure 4-8. An explanation to this phenomenon is that 

more electrolyte is needed to improve the conductivity in the liquid phase of the electrode to 

compensate the increased liquid phase ohimic resistance of thicker electrode. 

One problem is, however, the similar positive correlation was not observed for the 

porosity and the thickness of the positive electrode. In figure 4-9, we can see that the trend line is 

almost horizontal, meaning there is no obvious correlation between the two design variables. The 

possible reason for this is that more fillers are contained in the positive electrode in the 

simulation model, which may already massively reduce the resistance in the liquid phase of the 

positive electrode and the necessity to increasing the volume fraction of electrolyte is not as 

much as that in the negative electrode when the electrodes get thicker. 
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Figure 4-8 Correlation Analysis between the Porosity and the Thickness of the Negative Electrode 

 

 

Figure 4-9 Correlation Analysis between the Porosity and the Thickness of the Negative Electrode 

 

It is beneficial to understand that no matter what kind of target application is a certain 

design used for, it should always be selected from the Pareto optimal set as long as the 

performance measures that we care about for the target application is the same with the three-

objective optimization problem constructed before. Because if it’s not in the Pareto optimal set, 

an alternative design that dominates this one can always be identified by definition, and there is 
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no reason to select the design that is worse in every aspect that the designers care about. Of 

course, a different design may be considered when different performance measures are 

considered. That, however, should be based on a different multi-objective optimization problem.  

Even though all the designs should be selected from the Pareto optimal set obtained for 

different kinds of target applications, the designers may focus on different part of the Pareto front 

when the target application differs. For example, regarding wearable devices such as smart 

watches, it might be more important to achieve a light design even when a better energy density 

can be acquired by adding more active materials into each unit separator area. In this case, the 

part A in Figure 4-10 may be more promising.  

On the other hand, for EV applications, since bigger and heavier designs are allowed to 

maintain a better specific energy for both high and low discharge rates operations, designers may 

be more interested in part B because both high and low discharge rates performance are 

massively improved in this area compared with part A and it is achievable to maintain a good 

balance between high and low discharge rates performance for these designs when the mass of 

the battery is controlled as it has to be moved all the time in this application. 

 Also, in some applications, the weight of the battery cell and the high rate performance 

may be not important at all, but the size of it needs to be limited (smaller separator area [29]), 

part C might be better. A solar power traffic light can be a good example, the battery shouldn’t 

be too big, otherwise it will take too much space. But the weight of the cell is not important 

because there is no need to move it all the time. No high rate operation is needed in this case as 

well. All these considerations make part C a more promising area for this kind of applications. 

In this section, the properties and the applications of the Pareto front for the three-

objective optimization problem are discussed, these illustrations are expected to offer some 
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perspectives and reference for the product design in the industry. The next section will illustrate 

the advantages and limitations of this study. The possible improvement of future studies will also 

be discussed in the following section. 

 

Figure 4-10 The Use of the Pareto Front for Different Target Applications 

 

4.5 Discussion 

In this Chapter, we firstly validate the quantitative analysis for the two-objective 

optimization problem constructed in Chapter 2 with the tuned DAE based simulation model. The 

Pareto front for the two-objective optimization problem comes out to be a concave curve as 

expected. Then a three-objective optimization problem was constructed and quantitatively solved 

in Section 4.2 and 4.3. This problem employed the low discharge rate energy performance, high 

discharge rate energy performance and the mass performance (all in the unit separator area 

domain) as its objectives. Comparing to the two-objective optimization problem which 

considered only the energy performance for low rate discharge, this three-objective problem can 
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reflect the performance of the cell in more aspects and is expected to be applicable in more 

design cases whose target operations are different with each other. The resulted Pareto front is a 

curved surface in a 3D space. Its properties were illustrated in Section 4.4. Also, when the target 

application is different, it was recommended that the product designers should pay attention to 

different parts of the Pareto front. 

The most significant advantage of applying such a multi-objective optimization process 

in the lithium-ion battery design, or any other product optimal designs, is that the solutions 

obtained are not a single point, but a set of trade-offs that are equally good if no preferences are 

given to multiple contradictory objectives. With the discussion in Section 2.4 and Section 4.4, it 

is already clear that compared with the single-oriented studies, this kind of process offers more 

flexibility to the designers as the solutions to a single problem can be applied in many different 

design cases. Under a product design context, it is hardly that the designers will pay attentions to 

only one performance measures, there are almost always multiple objectives that have to be 

considered for a proper product design. These designs are often contradictory in one way or 

another. An important problem for the real world product optimal design is that it is often 

difficult for the designers to decide the weight of contradictory performance measures and 

sometimes even certain objectives are preferred, the other performance measures may have to be 

at least above some requirements. This problem makes integrating all the objectives into one and 

transforming a multi-objective optimization problem very difficult. The multi-objective 

optimization problem, is a good way to start the study of such optimal design problems. By 

summarizing the properties of Pareto front, the designers are allowed to pick up the most 

appropriate designs for their target applications or further construct a single-objective oriented 
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study under the guidance of the Pareto front (proper constraints or objective functions) or design 

of experiments (DOE) to continuously optimize the designs. 

This advantage, however, comes with a much more expensive computation cost. To solve 

a multi-objective optimization problem is often difficult. As we can see, it is already hard to 

obtain a smooth Pareto front for a three-objective optimization problem, while in the real 

industry, tens of performance measures may have to be considered in a single optimal design 

problem. Although the high computation cost can be partially compensated by the wide 

applicability of the Pareto front, it is still recommended to pick up the most few important 

performance measures to construct a multi-objective problem for the optimization and try to 

control the others with constraints during the algorithm. 

Another disadvantage of this process is that no algorithms can so far precisely obtain the 

Pareto front. The output of genetic algorithm or any other heuristic algorithms is just an 

estimation of the Pareto front. This problem is true for single-objective oriented studies as well. 

But when more objectives are considered, it is more difficult to obtain a good estimation to the 

Pareto front. However, as long as a set of satisfying designs can be identified with the algorithms, 

it will not be that important to accurately obtain the true Pareto front in the real design context. 

 This study employed a DAE based simulation model as the tool. As there are some 

limitations with the simulation model, such as its instability when high cycling rate (8C) is used 

for charging and discharging and when the active materials contained in the electrodes are too 

few, the feasible region of the problem may be limited because of the improper objective setup 

and extra constraints. However, the purpose of the study is to illustrate the process of applying 

multi-objective optimization to optimal product designs with the assistance of simulation models. 
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The advantages and disadvantages of the process can still be well discussed with the results of 

this study.  

The future study should be focused on better simulation capability and problem 

construction. A better simulation model helps reducing the computation costs and improving the 

ability of exploring the feasible region of performance measures. A more appropriate problem 

construction makes the solutions applicable for different design problems in the industry, which 

may compensate the high computation cost of multi-objective optimization better. Also, when 

the problem is properly constructed, the resulted optimal designs will be more competitive in the 

market 

.
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Chapter 5. Summary 

This is a summary chapter, where the results and conclusions of former chapters are 

illustrated in Section 5.1, the defects of the current project and the possible future efforts are 

discussed in Section 5.2. 

5.1 Summary of Results and Conclusions 

A two-objective optimization problem was firstly constructed in Chapter 2. The two 

performance measures considered were maximizing the energy produced per unit separator area 

in a cycle with the discharge rate of 0.5C and minimizing the mass per unit separator area. To 

illustrate the properties of the Pareto front and advantages of employing multi-objective 

optimization in the design process without consuming too much time, the simple reaction zone 

model was used to simulate the discharge process of the lithium ion batteries. The genetic 

algorithm in the global optimization toolbox of MATLAB was used to solve the two-objective 

optimization problem. Because of the simplicity of the reaction zone model, this chapter only 

delivered a preliminary qualitative analysis, but the results showed that the Pareto front for the 

two-objective optimization problem looks like a concave curve in the 2D plane of the two 

performance measures. With three case studies, the obtained Pareto front was applied to three 

design projects with different target applications. The solutions to a well-constructed multi-

objective optimization problem not only gives the researchers the extended flexibility of 

selecting trade-offs among contradictory performance measures, but also offers the potential of 

solving multiple different problems simultaneously in the industry. These advantages of 
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employing multi-objective optimization into product design process were well revealed by the 

qualitative analysis in the Chapter 2.  

However, to find quantitative accurate solutions, the reaction zone model was not 

adequate. In Chapter 3, a DAE-based PP model for LiFePO4-graphite cell was employed. A 

process of tuning parameters selection and model tuning was illustrated in this chapter. The 

criteria used for selecting tuning parameters include: ○1  the value varies among literatures; ○2  

Change of parameter values influence the discharge curve a lot with the simulation model; ○3  

parameters were estimated (not exactly measured) in the literature. The model tuning process is 

basically a optimization process that minimized the sum of squared residuals for the discharge 

curves and charge curves (time vs voltage) of multiple cycling rates. After the model tuning, the 

employed DAE based simulation model showed a satisfying precision for cycling rates up to 4C 

and should be a good tool for quantitative analysis. The tuning process itself, is expected to offer 

some references to any simulation model tuning problems. 

Based on the qualitative analysis in Chapter 2, the advantages of employing multi-

objective optimization in the lithium-ion battery optimal design were revealed. With the tuned 

DAE based simulation model in Chapter 3, a tool for quantitatively accurate analysis was 

prepared. Thus, the results in Chapter 2 were firstly quantitatively validated in the Chapter 4. 

Then, another three-objective optimization problem was constructed in Chapter 4. The three 

objectives considered were maximizing the energy produced per unit separator area in a 

discharging cycle with both low and high rates (0.25C and 4C) and minimizing the mass per unit 

separator area. Compared with the two-objective optimization problem, this problem considered 

not only the energy performance of low discharge rate, but also the energy performance when the 

cycling rate was high. The Pareto front came out to be a curved surface in the 3D space of the 
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three performance measures. The properties of the Pareto front were illustrated in the chapter, 

and a discussion about how to apply this Pareto front on different types of target applications was 

guided. The wide applicability of the constructed problem was considered to compensate the 

high computation costs of solving multi-objective optimization problems. The results were 

expected to offer perspective for LiFePO4-graphite cell designs, the process could offer 

reference to product designs and design of experiments in the industry. 

 

5.2 Limitations of the Project and Discussion of Future Studies 

Although the model tuning process resulted in a simulation model which held a satisfying 

precision in this study, it is still recommended that more physical or chemical parameters shall be 

measured if allowed to make sure the simulation model reflects the properties of the materials 

and chemical reactions more accurately.  

Also, there were some instability issues with the DAE based simulation employed, when 

the active materials in the electrodes were too few, the model may fail to predict a discharge 

curve, this problem held when the discharge rate exceeded 4C as well.  

The way of discussing the correlation between pairs of design variables may be risky as 

the changes of the other variables were not well controlled when discussing a pair of design 

variables. 

Thus, the future efforts of the study include:  

1. Construct better multi-objective optimization problems that can offer a wider 

applicability in the industry. 

2. Employ more stable and quantitatively precise simulation models for problem 

analysis. 
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3. Explore better visualization and results analysis methods for optimization 

problems with multiple dependent and independent variables. 
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Appendix I: Reaction Zone Model 

 

The distance that the reaction zone has penetrated into the positive electrode (𝑥𝑟𝑝) and 

negative electrode (𝑥𝑟𝑛) depends on the amount of charge passed. 

 𝑥𝑟𝑝 =
𝑖𝑡

(1−𝜖+)𝑞+
  (A-1) 

 𝑥𝑟𝑛 =
𝑖𝑡

(1−𝜖−)𝑞−
  (A-2) 

 Where 𝑖  is the discharging current density, 𝑡  is the discharge time, 𝜖+  and 𝜖−  are the 

porosity of two electrodes, 𝑞+ and 𝑞− are the capacity density of solids in the two electrodes 

(𝐶/𝑐𝑚3). 

Thus, the voltage of the cell will be the open circuit potential minus the ohmic drop 

required for the ionic current to flow across the separator and through the pores in both 

electrodes between the narrow reaction zones. 

 𝑉 = 𝑈 − 𝑖 (
𝐿𝑠

𝜅𝑠
+

𝑥𝑟𝑝

𝜅+
+

𝑥𝑟𝑛

𝜅−
) = 𝑈 −

𝐿𝑠

𝜅𝑠
𝑖 −

𝑖2𝑡

𝜅+(1−𝜖+)𝑞+
−

𝑖2𝑡

𝜅−(1−𝜖−)𝑞−
  (A-3) 

Where the conductivity of the electrolyte phase is assumed to be given by the Bruggeman 

equation (A-4). 𝜅0 is the conductivity of the pore electrolyte when 𝜖 = 1. 

 𝜅𝑖 = 𝜅0𝜖𝑖
1.5 (A-4) 

The energy (per unit area) for a constant discharge current density can be obtained with 

Equation A-5. 

 𝐸 = ∫ 𝑉𝑖
𝑡𝑑

0
𝑑𝑡 = (𝑈 −

𝐿𝑠

𝜅𝑠
𝑖) 𝑖𝑡𝑑 −

𝑖3𝑡𝑑
2

2𝜅+(1−𝜖+)𝑞+
−

𝑖3𝑡𝑑
2

2𝜅−(1−𝜖−)𝑞−
 (A-5) 
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For a same design and same discharging time, with different discharging current density, 

the energy (per unit area) is different. But for a given design, two constraints would exist for the 

discharge current density and thus limit the amount of energy delivered. 

The first constraint is that the cell voltage needs to be larger than the cutoff voltage. The 

second constraint is the capacity of the positive electrode must not be exhausted as the capacity 

ratio between negative and positive electrodes is assumed to be greater than one. 

 𝑈 −
𝐿𝑠

𝜅𝑠
𝑖 −

𝑖2𝑡𝑑

𝜅+(1−𝜖+)𝑞+
−

𝑖2𝑡𝑑

𝜅−(1−𝜖−)𝑞−
> 𝑉𝐶 (A-6) 

 𝑥𝑟𝑝 =
𝑖𝑡𝑑

(1−𝜖+)𝑞+
≤ 𝐿+ (A-7) 

𝑖𝑜𝑝𝑡 is defined as the current density which could discharge the cell from the open circuit 

potential to the cutoff voltage exactly in the predetermined discharge time. Let 𝑎 =
𝑡𝑑

𝜅+(1−𝜖+)𝑞+
+

𝑡𝑑

𝜅−(1−𝜖−)𝑞−
, 𝑏 =

𝐿𝑠

𝜅𝑠
 and 𝑐 = 𝑉𝐶 − 𝑈, the calculation of 𝑖𝑜𝑝𝑡 can be formulated by Equation (A-8) 

 𝑖𝑜𝑝𝑡 = min (
−𝑏+√𝑏2−4𝑎𝑐

2𝑎
,

(1−𝜖+)𝑞+𝐿+

𝑡𝑑
) (A-8) 

The 𝑖𝑜𝑝𝑡 will be used to calculate the energy (per unit area) the cell could deliver for a 

discharging cycle with Equation A-5 since only with this current density the battery would stop 

working either because all the active materials are used up or the cell voltage is reduced to cutoff 

voltage. 
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Appendix II: Anticipated Shape of Pareto Front for The Two-

Objective Optimization Problem 

 

For each electrode porosity value 𝜖+, 

 
𝑑𝑀

𝑑𝐿+
= [𝜌+(1 − 𝜖+) + 𝜌𝑒𝜖+] + [𝜌−(1 − 𝜖−) + 𝜌𝑒𝜖−] ∙

𝑟(1−𝜖+)𝑞+

(1−𝜖−)𝑞−
  (A-9) 

 
𝑑2𝑀

𝑑𝐿+
2 = 0 (A-10) 

So when 𝐿+ increases, the unit area mass (𝑀) of the cell will increase proportionally. 

Consider the part where voltage constraint, which is given by Equation A-6 is not binding, 

the active materials in the positive electrode can be dried up after the discharging, then 

 𝑖𝑜𝑝𝑡 =
(1−𝜖+)𝑞+𝐿+

𝑡𝑑
 (A-11) 

 
𝑑𝑖𝑜𝑝𝑡

𝑑𝐿+
=

(1−𝜖+)𝑞+

𝑡𝑑
 (A-12) 

 
𝑑2𝑖𝑜𝑝𝑡

𝑑𝐿+
2 = 0 (A-13) 

When 𝐿+  increases, the optimal current density of discharging ( 𝑖𝑜𝑝𝑡 ) will increase 

proportionally. 

On the other hand, the results of derivation calculations for unit area energy on 

discharging current density are given in Equation A-14 and Equation A-15 

 
𝑑𝐸

𝑑𝑖
= 𝑈𝑡𝑑 −

2𝐿𝑠

𝜅𝑠
𝑖𝑡𝑑 −

3𝑖2𝑡𝑑
2

2𝜅+(1−𝜖+)𝑞+
−

3𝑖2𝑡𝑑
2

2𝜅−(1−𝜖−)𝑞−
 (A-14) 

 
𝑑2𝐸

𝑑𝑖2 =
2𝐿𝑠

𝜅𝑠
𝑡𝑑 −

3𝑖𝑡𝑑
2

𝜅+(1−𝜖+)𝑞+
−

3𝑖𝑡𝑑
2

𝜅−(1−𝜖−)𝑞−
< 0 (A-15) 
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So, when 𝑖  increases, the unit area Energy may firstly increase and then decrease. 

However, as we are only interested in the Pareto Front, only the increasing part will be discussed. 

As the second-order derivative is negative, when 𝑖 increases, the unit area Energy will increase in 

a decelerating pace when discharging current density decreases. 

According to the above discussion, we can imagine for a particular porosity value, the 

Pareto front will be a concave curve like shown in Figure A-1. 

 

Figure A-1 Response Curve for a Particular 𝝐+ 

 

When the porosity of positive electrode is different, when the thickness of positive 

electrode is 0, the unit area mass will still be the unit area mass of separator and the remaining 

parts, which are assumed to be constant. So the starting point of the response curve will stay the 

same. And the shape of the curve will still be similarly concave, just with different curvature.  

The overall Pareto front, therefore, is also a concave curve which could envelop all the 

response curves for different positive electrode porosity values, as shown with the red curve in 

Figure A-2. 
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Figure A-2 Pareto Front and Response Curves for Different 𝝐+ 
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Appendix III: The Effect of Increasing the Thickness of Electrodes 

on Energy is Capacity Limit 

 

According to the reaction zone model, the distance that reaction zones penetrate into the 

two electrodes will be proportional, see Equation A-16. 

 𝑥𝑟𝑛 =
(1−𝜖+)𝑞+𝑥𝑟𝑝

(1−𝜖−)𝑞−
 (A-16) 

Thus, the constraint of cutoff voltage can be written in Equation A-17. 

 𝑈 −
𝑖𝐿𝑠

𝜅𝑠
− 𝑖(

1

𝜅+
+

(1−𝜖+)𝑞+

(1−𝜖−)𝑞−𝜅−
)𝑥𝑟𝑝 ≥ 𝑉𝑐 (A-171) 

When the thickness of positive electrode is small, for a predetermined discharging time, 

the discharging current density needs also to be small because of the lack of active materials for 

each unit area. Under such a circumstance, the voltage constraint is not binding. At the end of the 

discharging time, only the capacity constraint will be the real constraint limiting the performance 

of the battery. Thus, adding more active materials under this condition and make the cell a 

thicker one gives us a reasonable gain in the energy capacity because the new added active 

materials can be used up. 

However, when the thickness of positive electrode exceeds some threshold value, the 

voltage constraint becomes binding due to greater 𝑖𝑜𝑝𝑡 and 𝑥𝑟𝑝. After this point, adding more 

materials and making the cell thicker will not help a lot in delivering the energy. This is because 

the cell voltage will be reduced to the cutoff voltage before the active materials are used up in 

this case. For this case, adding more active materials for each unit area and have thicker 
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electrodes only increase the amount of unusable active materials for the discharging cycles and 

will not give significant improvement in the energy capacity to the cell. 

Thus, for a large target energy capacity, the contribution of making the electrodes thicker 

is limited by some boundary values, a larger separator area will be needed to obtain such a high 

energy requirement. 

 


