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ABSTRACT 

Rapid growth of cloud-based systems is accelerating growth of data centers. Private 

and public cloud service providers are increasingly deploying data centers all around the world. 

The need for edge locations by cloud computing providers has created large demand for leasing 

space and power from midsize data centers in smaller cities. Midsize data centers are typically 

modular and heterogeneous demanding 100% availability along with high service level 

agreements. 

Data centers are recognized as an increasingly troublesome percentage of electricity 

consumption. Growing energy costs and environmental responsibility have placed the data 

center industry, particularly midsize data centers under increasing pressure to improve its 

operational efficiency.  

The power consumption is mainly due to servers and networking devices on computing 

side and cooling systems on the facility side. The facility side systems have complex 

interactions with each other. The static control logic and high number of configuration and 

nonlinear interdependency create challenges in understanding and optimizing energy 

efficiency. Doing analytical or experimental approach to determine optimum configuration is 

very challenging however, a learning based approach has proven to be effective for optimizing 

complex operations. Machine learning methodologies have proven to be effective for 

optimizing complex systems. 

In this thesis, we utilize a learning engine that learns from operationally collected data 

to accurately predict Power Usage Effectiveness (PUE) and creation of intelligent method to 

validate and test results. We explore new techniques on how to design and implement Internet 

of Things (IoT) platform to collect, store and analyze data. 

First, we study using machine learning framework to predictively detect issues in 

facility side systems in a modular midsize data center. We propose ways to recognize gaps 

between optimal values and operational values to identify potential issues. 



xii 
 

Second, we study using machine learning techniques to optimize power usage in facility 

side systems in a modular midsize data center. We have experimented with neural network 

controllers to further optimize the data suite cooling system energy consumption in real time. 

We designed, implemented, and deployed an Internet of Things framework to collect 

relevant information from facility side infrastructure. We designed flexible configuration 

controllers to connect all facility side infrastructure within data center ecosystem. We 

addressed resiliency by creating reductant controls network and mission critical alerting via 

edge device.  The data collected was also used to enhance service processes that improved 

operational service level metrics.  

We observed high impact on service metrics with faster response time (increased 77%) 

and first time resolution went up by 32%. Further, our experimental results show that we can 

predictively identify issues in the cooling systems. And, the anomalies in the systems can be 

identified 30 days to 60 days ahead.  We also see the potential to optimize power usage 

efficiency in the range of 3% to 6%.  In the future, more samples of issues and corrective 

actions can be analyzed to create practical implementation of neural network based controller 

for real-time optimization. 
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Chapter One – Introduction 

1.1. Introduction 

Extant literature reports that the increasing use of technology has caused a drastic 

increase in power capacity and density requirements. Annual consumption of electricity by US 

datacenters is projected to be roughly 138 billion kilowatt-hours by 2020[1]. The gap between 

buildings and need of IT industry has been increasing. The current needs of the IT industry 

include better processing performance [2], increase in available storage space [3], and 

improvement in access [4] and reduced latency [5]. Additionally, there is also a need to 

optimize solutions provided by IT vendors who are under constant pressure of meeting 

deadlines while dealing with a constantly shrinking budget.  

 

Figure 1: Shows the estimated power usage (in billions of kilowatt-hours), and the cost of 

power used, by U.S. data centers in 2013 and 2020, and the number of power plants needed to support 

the demand. Top bar shows carbon dioxide (CO2) emissions in millions of metric tons. (Source: 

NRDC) 

 Improving energy efficiency within a data center has been a key element of research 

in the last decade [1].  A prominent approach, which has been adopted, is the optimization of 

facilities through aisle containment [5]. Miller [6] contends that energy utilization and 

efficiency can further be improved through the management of virtual server loads. The use of 
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this approach has been effective in the management of energy through the combination 

of building automation and virtualization [7]. 

The historical as well as future trends of electricity use have been illustrated in Figure 

1. In order to increase the efficiency of the data center, a high sense of urgency is required. 

There is a large volume of servers deployed at global scale in data centers. The size of the 

existing data centers is now being increased on a regular basis and there is more frequent 

building of new data centers. To some extent a parallel can be drawn between the scale of data 

centers and an electricity grid [8]. This study focuses on energy management in a modular data 

center, which is a key aspect of the scalability of data center. Of the total, 35% of the energy 

costs are entailed by the total cost of ownership (TCO) [9]. Since higher watts per square foot 

are required by high density data centers, they are driven by powerful servers. 

 

Figure 2: Heat Load – 2000, 2003 the Uptime Institute. 

Higher heat per square foot will generate higher watts per square foot. Thus more 

energy will be required for removing heat. Heat load trend has been illustrated in Figure 2 [10]. 

In the industry, average energy efficiency is only 50% and electricity costs are high compared 

to server costs [10]. 

The point of modularity in data centers, which is more efficient and can be deployed in 

various environment settings, has arrived after more than 30 years. The issue of energy 

efficiency of data centers is getting immense attention. Green data centers are getting high 

attention and a compound annual growth of 26.35% during 2014 -2019 is forecasted for US 

markets [4]. The current study aims at defining the scope of the problem, identifying the 

research questions and discussing approaches for addressing these questions. 
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Generally, hundreds of thousands of servers are used across the data centers throughout 

the world for operating large scale information technology [5]. Over 300,000 servers run in the 

Chicago data center of Microsoft [6], while there are over a million servers running in Google 

[11]. With the growth of cloud computing, larger scalability will be required by data centers 

[11] and with the growth of competencies and infrastructure, most of the data storage and 

computation power of the world will be hosted by few infrastructure providers. As the 

competition for leadership positions is increasing, high energy efficiency will be a prerequisite 

for these larger data centers. Since minor energy savings can lead to cost savings for users, it 

will be a strategic competitive advantage to be energy efficient. 

With gradual increase in the number and size of data centers, the environmentalists are 

increasingly becoming greatly concerned. Throughout the world, electricity use by data centers 

and telecommunications network is pegged at number 5 position and a 12% growth rate is 

expected. The global greenhouse emissions of data centers are over 2% and electricity 

produced from coal is used by a majority of the data centers [12]. Technologies like cloud 

storage and smart grid can be used for reducing the energy consumption worldwide [12]. High-

energy capacity constraints will arise if data centers maintain the current energy trends. Thus, 

in order to enhance the unlimited potential of cloud, it is critical that operational efficiency and 

design of green data center be emphasized. 

With data centers spread across the world, it is quite surprising that average energy 

efficiency of the industry is still less than 50% [11], which is questionable and mandates a 

review. A brief history of the data center has been discussed in the next section. After which 

the ideal data center energy profile is described and a path is identified for achieving it. 

Datacenter can be perceived as a warehouse-sized computer because of the convergence of 

networking, storage computing and power [13]. Data centers are primarily of two types. The 

first is the brick-and-mortar facility, which is mostly a co-location taking longer time to build 

but houses larger number of servers. The second is a flexible data center that can be categorized 

as: 1) Containerized - which involves the pre-population of a shipping container with a few 

thousand servers that can be combined with support infrastructure and takes less than a month 

for transportation and deploying [14]. 2) Modular stick built - a prefabricated (standard bill of 

materials) design which can be built in an environment like a building shell or a warehouse. 

Data centers can be either shared or private. In private data centers, an entire building 

is used for the purpose of hosting applications under the proprietorship of the building owner. 
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In shared data centers, the owner to several entities [14] leases portions of the building out. 

Following services can be provided by shared data centers:  

 Area-as-a-service, wherein square footage is leased out by the data center including 

power and cooling as well as rack layout; 

 Infrastructure-as-a-Service (IaaS) wherein physical servers are used for leasing out;  

 Platform-as-a-Service (PaaS) wherein virtual disks and CPUs are leased out;  

 Software–as-a-Service (SaaS) wherein hosted software is leased out [14].  

Majority of the large data centers right now are private. The trend of large shared data centers 

is increasing. It is natural for servers to reside in a multi-tenant heterogeneous data centers. A 

strong need was presented by Facebook for shortening the time required for bringing new data 

centers online. Facebook worked with Emerson Network Power that pioneered “rapid 

deployment data center” (RDDC) an innovative approach to the construction of data centers. 

In RDDC a modular prefabrication of the entire custom-designed, freestanding facility is 

carried out which can then be assembled onsite lowering the time required in bringing the new 

data centers online, without any premium paid for faster deployment [15]. Large data centers 

like Google, Microsoft and Amazon have homogenous standard systems as compared to 

smaller privately held multi-tenant data centers that have heterogeneous (non-standard) 

systems. 

Can the entire industry benefit from this trend or is it only a niche practice that 

only hyper scale operators can use? 

Although all containerized data centers are prefabricated, the reverse may not always 

be true. It is rather quick to deploy or relocate containerized systems package infrastructure 

and IT systems in standard form factor containers to be deployed in a freestanding, all-in-one 

data center container or a large data center. Containerized data centers are an effective solution 

for modular expansion in freestanding data centers situated in remote areas or in large facilities 

[16]. 

The traditional data center construction practices are being replaced by prefabricated 

data centers, wherein the prefabrication of an entire facility is done offsite and the shipping is 

done in modules and the assembly is done onsite [15]. The prefabrication of a data center is 

custom made according to the business objectives, IT applications, technology profile, climate 

and geography which comes with the advantage of economy and speed of prefabrication and 
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modular design. These results in a tightly integrated state-of-the-art facility that can be 

deployed at a lower cost and faster compared to a traditional facility [16]. 

The mainframes of 1960s mark the beginning of data. These large machines would occupy an 

entire room. They were very powerful and were mainly used for critical processing by military 

initiatives, space and large size companies [17]. The implementation of these machines was 

very lengthy as they were highly customized. Additionally, custom programs were required for 

running them and frequent errors were reported. In the 1970s, came the personal computers 

and their availability to home and small businesses increased. These machines were equipped 

with standardized operating systems and hardware which made it easy to develop software 

[17]. Next came Ethernet, through which distributed computing was enabled [18]. This marked 

the evolution of modern data center. Two trends were observed: 1) High-performance 

computing, wherein mainframes were replaced with low cost large clusters of servers [19]. 

Large companies made a shift to the servers in data centers from the mainframe systems.2) 

With the use of personal computing, online application usage went high as data and computing 

could now be executed on third party servers [20]. In order to gain economies of scale, service 

providers began collocating their servers in large facilities, of which some were third-party 

shared data centers while the others were privately owned. 

This marks the journey from mainframes to the warehouse-sized server farms used 

currently. Over the last four years, these large data centers have developed. The existing data 

centers cannot handle the pace of computing and innovation growth. It is often found that for 

incremental expansion, old designs with minor enhancements are used by data centers [21]. 

Cloud computing is shaping into a universal technology with datacenters as its foundation. The 

scalability of data centers is facing the challenge of electricity costs. The major challenges that 

data center environments are facing today include power delivery, heat management and 

electricity consumption. Most data centers do not manage energy optimally and on average, 

the data center efficiency is less than 50%. The enormity of this challenge is widely 

acknowledged in addition to the high sense of urgency for resolving it [21]. 

According to evidences in literature, data center availability and 100% uptime SLA 

(Service Level Agreements) are basic requirements which need preventative maintenance and 

also look for predictive maintenance. The focus of the following section of the introduction is 

to revisit the need for predictive maintenance in heterogeneous data center facilities.  
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In 1999, a British entrepreneur Kevin Ashton put forth the Internet of Things (also 

referred as IoT) so that internet-based information architecture can be characterized. IoT is 

defined as a network of things or physical objects that are inserted with network connectivity, 

sensors, software and electronics that facilitate these things in the collecting and exchanging 

data [22]. It mainly represents the concept of network connectivity in everyday objects. So, in 

addition to computers and smart phones being connected to the internet, just about anything 

like street-lights, televisions, thermostats, washing machines and cars will also have internet 

connectivity. According to Ning and Wang [22], the IoT will be a massive network that will 

connect billions of things as well as encompass heterogeneous networks. 

A significant rise in internet traffic is expected with the increasing number of devices 

connected to the Internet. According to Cisco in 2014 the Internet traffic generated by non-PC 

devices amounted up to 40%and this is expected to increase to 67% in 2019. Cisco further 

identified that 24% of all connected devices in 2014 was contributed by “Machine to Machine” 

(“M2M”) connections like IoT such as automotive, healthcare, home and industrial verticals 

and this contribution is expected to grow to 43% in 2019 [23]. 

Monitoring of datacenter critical equipment’s have given rise to adaption of IoT 

platform. With rise of Internet of things (IoT), strength of machine to machine interaction is 

making an impact on asset management and field services. We can use machine sensors to 

monitor their behavior continuously. The integration of IoT has made it possible to 

significantly augment asset instrumentation allowing IP based management and the ability to 

gather and analyze fine-grained data from uninterruptible power supply (UPS), computer room 

air conditioning (CRAC), circuits, power distribution unit (PDU) etc. Furthermore, the use of 

IoT based technology has made it possible to gather information from smaller sections of the 

data centers which previously were not focused on. These sections can include data pods, suites 

etc. Thus, it is possible to increase the interconnectivity of the complex systems such as 

software systems, mobile devices and people. 

Data centers include major building systems (end devices) like Automatic Transfer 

Switch, Transformer, Generator, Cooling Tower, CRAC, Chillers, UPS and Pumps. Data 

centers also comprises of the devices that are mechanical and electrical systems of a customer 

data suite. Figure 3 shows major components of the data center. All systems need to be 

connected and monitored in data centers.  
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Figure 3: Major components of a datacenter 

 

IoT architecture can be broken into 4 layers [24] [25] [26]. As shown in figure 4, they 

are perception layer, network layer, middle-ware layer and application layer.  

 

Figure 4: Layers of IoT architecture 

In the data center ecosystem, the end devices are connected to controllers via variety of 

machine communication protocols including but not limited to Modbus, Lon Works etc. 

Multiple controllers are connected to aggregate controllers. The aggregate controllers can also 

function as edge devices that perform basic alerting and analytics and data processing. The 

aggregate controllers are connected to more powerful data processing servers on-site or in the 

cloud. This IoT framework can be utilized to monitor, control, manage and store data from the 

data center ecosystem. In the next section, we discuss specific challenges and problems in a 

heterogeneous data center. 
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1.2. Challenges in a heterogeneous data center 

In a data center there are challenges with limitations of the ability of controllers 

connecting to all end devices, predictive maintenance of systems and power optimization. We 

will discuss problems for each of these areas. 

 

1.2.1. Problems in IoT systems 

There are four major problems in a midsize heterogeneous data center.  

a. Inability of controllers to connect all end devices in the midsize heterogeneous 

datacenter ecosystem: Data centers have mixed legacy and new electrical and 

mechanical systems. Midsize Data centers often find it formidable to bear the cost of 

replacing legacy systems. This can be attributed to the high cost of bringing them online 

in addition to the lacking control logic and sensors in controllers connecting them. 

Mission critical facilities such as data centers are highly affected by this blindness to 

end devices. It is imperative that all equipment be monitored at the same level of service 

levels to customers are to be maintained. Thus, there is no need for all the systems in 

Data centers such as legacy systems to be connected. The main problem is the way of 

connecting the various end devices in a heterogeneous datacenter for the collection of 

the relevant information to be monitored, maintained and optimized. The development 

of an IoT platform for collecting pertinent information from all end devices, analyzing 

it and storing it, will result in outcomes that can be further utilized by the right person 

for conducting predictive maintenance or for tackling any problems that may emerge. 

This may result in enhanced customer service level agreements. 

b. Lack of security in sensors: Hackers can target all end devices and sensors sitting in 

Data centers for stealing information, falsifying data or disabling or corrupting the 

device. The vulnerability of Software based security is high in certain types of attacks. 

If a device or sensor is accessible, it can possibly be cloned or altered in behavior by 

loading malware. Through this, unauthorized users can take control of the device and 

carry out different activities like disabling the device or providing information to hostile 

parties. The problem here is finding ways of protecting the end devices and sensors 

from physical security breaches. 
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c. IoT network resiliency: Heterogeneous data centers are mission critical systems in the 

need of high redundancy and reliability. End devices and sensors are monitored and 

controlled by controllers. In the case of midsize data centers, IoT systems are generally 

single paced with a sole controller and a sole aggregate controller. In the case of a 

mission critical data center, the result of controller failure may be many hours of down 

time or complete blindness of network operations center (NOC) to real time monitoring 

information from the end devices. 

d. Alerting at the edge: In cloud IoT systems, sensors and end devices connect to servers 

that are in the cloud or data centers for performing alerting and analytics. As a result of 

this, two major issues are raised for the IoT system. The first issue is with bandwidth 

constraints in pushing forward the data. The second issue is the high reliance on cloud 

for receiving mission critical alerts by the local NOC. Mission critical alerts will not be 

received by NOC if latency or service down time of network connectivity to cloud 

servers causes a network issue. The issue here is the way reliance of mission alerting 

from servers is mitigated in the remote datacenter or the cloud. 

 

1.2.2. Predictive maintenance problem in heterogeneous data centers 

Data center facility side infrastructure is critical. This mission critical nature of data 

center has demanded the data center operating with 100% uptime. This requires the facility site 

infrastructure maintenance to deliver 100% service level agreements (SLA). There have been 

several steps taken to perform preventative maintenance (PM). These are standard checklists 

performed at certain frequency generally quarterly or yearly basis. The purpose of this is to 

stay on top of upkeep and avoid costly emergency maintenance repairs. There are also data 

available on devices on failure rates based on run times. These methods help with predictively 

catching issues and resolve it. The data center facility side devices have complex interactions 

with each other. Traditional methods have limitation and to analyze these interactions among 

facility infrastructures to predictively identify issues. The IoT platform allows us to evaluate 

significant volumes of operational data and develop predictive insights which can then be 

applied immediately in real time to identify and resolve issues.  

A typical data center requires a number of sub components such as powerful generators, 

HVAC systems, power delivery and transfer circuits, uninterruptible power supplies and liquid 

chiller loops. In addition, operators of data centers would also need tools and the ability to 
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measure parameters on a customer-by-customer basis. In the present scenario, a majority of the 

systems issues and failures are taken care of after the issues have occurred.  

Data center customers demand quick responses, especially those customers who have 

agreed upon an aggressive service level agreement (SLAs) [27]. The complexity of modern 

data center architecture makes it very difficult to provide rapid responses and to minimize false 

alarms. Modern data centers have a highly heterogeneous mix of infrastructures, which in turn 

has led to the demand for home grown IoT solutions that can provide significantly enhanced 

levels of integration with the various systems. Having or developing such a platform opens 

innovative new avenues that were not technically or economically feasible in the past. 

Machine-learning algorithms can be used to predict failures which can be preemptively 

checked and resolved before asset efficiency erodes. This ability raises a few questions such 

as:     

Can one detect fault patterns and monitor equipment against them to predict 

future performance degradation in a heterogeneous data center? 

In this thesis, we discuss the use of IoT framework to collect data from a heterogeneous 

modular data center and propose several novel methods to optimize energy consumption and 

audit systems operations using machine-learning techniques to predictively identify issues. 

 

1.2.3. Power optimization problem of data center facilities 

Data centers require large amounts of power. Therefore, it is very important that the 

available power is used efficiently. There are certain steps that can help with conserving and 

utilizing available power in an efficient manner such as Aisle containment, which improves 

efficiency of cooling systems, and load balancing of virtual servers which improves power 

consumed by servers (IT Load) [28]. Modern data centers are continuously looking for methods 

to help increase efficiency and lower their power needs. Since data centers require huge 

amounts of power, even very small increases in efficiency translates to significant savings in 

the amount of power being utilized. These in turn results in notable cost savings and reduce 

carbon emissions. PUE (power usage effectiveness) is still a leading metric in a data center. 

According to [29], a number of metrics have been developed, like CADE (Corporate Average 

Data Center Efficiency), which are being used to accurately determine the amount of power 
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being used by each and every subsystem within the data centers. This will benefit data centers 

by highlighting areas that are being underutilized within the data centers.    

Data centers take a lot of time and effort to be set up and hence, it is not possible to 

provide customers with space within the data centers immediately. This has become a business 

issue since most customers want immediate access to data center space [27]. Thus, the idea of 

modular data centers and containerized data centers were developed. A number of 

organizations started developing a shell for standalone portable containers that can be used 

anywhere or they have started developing modular frameworks which can be placed within any 

existing building [27,30].  

According to [27], the Internet of Things (IoT) is rapidly growing with projected $7.1 

trillion by 2020. This has made it possible to significantly augment asset instrumentation 

allowing IP based management and the ability to gather and analyze fine-grained data from 

UPS, CRAC, circuits, PDUs etc. The demand to further optimize facility side infrastructure 

energy usage of data centers and nature of complex interactions between them have driven to 

explore machine-learning techniques. This discussion raises the question: 

Can we further optimize facility side infrastructure energy usage in a 

heterogeneous modular data center using machine learning techniques? 

In this thesis, we discuss the use of IoT framework to collect data from a heterogeneous 

modular data center and propose several novel methods to optimize energy usage using 

machine learning techniques and neural network (NN) controllers 

 

1.3. Research Problems and Objectives 

This thesis tackles the research challenges in the aforementioned three problems:  

• How to design a robust IoT platform that securely connects all end devices in a data 

center? 

• How to detect fault patterns and monitor equipment against them to predict future 

performance degradation? 

• How to optimize facility side infrastructure energy usage in a heterogeneous modular 

data center using machine learning techniques? 
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In the first problem, this thesis studies limitations of controller firmware logic and 

protocols to connect all the end devices in midsize heterogeneous data center. 

• How to incorporate all the protocols in a single controller? 

• How to incorporate all control logic in a controller for all end devices in data center 

ecosystem? 

• How to SLA can Improve by connecting and alerting on all devices in the data center? 

In the second problem, this thesis studies using machine learning techniques to 

predictively identify issues in facility side systems in a heterogeneous modular data center. In 

particular, the following research problems are investigated: 

• How to predictively identify gaps of operational and optimal values? 

In the third problem, this thesis studies using machine learning techniques to optimize 

power usage effectiveness in facility side systems in a data center. Also, we have experimented 

with neural network controllers to optimize the data suite cooling system leading to interesting 

future work. In particular, the following research problems are investigated: 

• How to select factors for neural network training? 

• How to validate and test a neural network model? 

• What are the challenges of implementing a neural network controller? 

 

1.4. Contributions 

The contributions of this thesis can be broadly divided into following categories: survey 

and analysis of the power saving strategies, evolution of fractal modular data center, review 

IoT platform, machine learning techniques, review of predictive maintenance and neural 

network controllers. Our Unique contributions include. 

 Creation of all-inclusive firmware and protocol in a controller and protocol to 

connect all end devices in a data center. 

 Design and implementation of trusted sensor, controller resiliency and alerting at 

the edge device. 



13 
 

 Utilizing machine learning to predictively identify gaps of operational and optimal 

values to detect anomalies in a resolve them 

 Utilizing IOT platform improve midsize datacenter SLA’s. 

 Application of machine learning framework power optimization. 

 

1.5.  Thesis Organization 

In Chapter 2, we present the survey of traditional approaches to power utilization 

management and overall understanding of IoT platform. We review predictive maintenance, 

machine learning based techniques to power utilization management. We also review controller 

simulation and data center simulation methods. 

In Chapter 3, we study the following areas utilizing a data suite facility of a midsize 

data center. We present the implementation of an IoT platform and methodology of collecting 

data using IoT framework. We present detailed characterization of data sets collected. 

Explaining of the neural network model selected. We discuss methods of data pre-processing, 

variable selection, data sampling, neural network model approach, predictive maintenance of 

cooling subsystem and experimental approach to neural network based controller. 

In Chapter 4, we discuss results. We review the results on sensitivity analysis 

understanding behavior of each factor to PUE. We test the predictive accuracy of the neural 

network model. We measure neural network energy optimized value to operational value to 

predictively identify issues in cooling systems. We also discuss improvements in operational 

metrics to improve service level agreements. 

In Chapter 5, we discuss conclusions for both the research problem along with service 

metrics improvements 
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Chapter Two: State of the Art IoT Platform in Data Center 

2.1. Modular Data Center 

The delivery of data center space to customers takes longer if traditional methods are 

used in constructing data center space. Datacenter operators find data center space as a critical 

business factor. As a result of this, modular data centers as well as containerized data centers 

were developed. Modular data center is built by many companies for inside building shell while 

for outside standalone pods are built [31]. Few examples have been illustrated in Figure 3. 

 

 

Figure 5: Examples of containerized/modular datacenter 

Stick built 

These data centers are built of bill materials as well as full assembly each material on 

site. This follows the typical fabricated approach 
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Prefabricated module 

The building of the data suite or the data center is done as modules. These modules are 

large sub-assemblies and it is on site where they are fully assembled 

Containerized  

These are manufactures pod or prebuilt like suites. They can come fully assembled to 

be dropped at a location. 

Following are the benefits of modular data center: 

 Speed of Deployment: Since time to deploy is reduced by prefabricated data centers, 

organizations looking to accelerate data center deployment should find them appealing. 

 Scalability: The modular approach to design opted by prefabricated data centers makes 

them innately scalable that allow on-demand and streamlined capacity expansion [32]. 

 Cost Control: Economies of scale are leveraged by prefabricated data centers and their 

offsite assembly that facilitates lower total cost of ownership makes it possible to have 

streamlined processes.  

 Design Flexibility: There are no innate restrictions to prefabricated data centers in terms 

of aesthetics or functionality as they are custom designed. 

 Performance: When assembly is done in a factory-controlled environment fit, finish, 

and quality of workmanship can be controlled better and exhaustive testing and 

optimization can be carried out before delivery. 

 Intelligence: When the management of integrated components is done together, more 

dynamic capacity adjustments and higher IT productivity is possible. 

 Project Management and Service: Project specification and execution is simplified with 

preassembled, integrated systems that feature components from a sole vendor selected 

on the basis of compatibility, in addition to ensuring service efficiency and maintenance 

throughout the deployment life cycle [33]. 

 

2.2. IoT Frame work 

In this section, we discuss IoT layers and broad challenges in the IoT and specifically 

elaborating challenges of connecting all midsize data center facility side systems with an IoT 

platform. According to extant literature there are multiple challenges that are faced by CIOs 
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and other analysts with existing IoT networks. We will specifically discuss four areas of 

problem review and current state of the art, its limitation and my proposed solution. 

At present point solutions are sold by the device manufacturers with specific controllers 

like fan coil controls, roof to unit controls and heat pump unit controls. The most popular units 

are addressed by them and the rest are left. Majority of the major equipment manufacturers 

have closed systems supporting just their branded equipment. The solution presented is not for 

turnkey solution for the data centers [34]. The current limitation is the lack of vendor neutral 

gateways and controllers addressing the different configuration for connecting to the various 

end devices in heterogeneous data centers. The current study proposes an aggregated approach 

for the creation of all-inclusive configurations for addressing the link to the various end devices 

in datacenter ecosystems. This facilitates the connection of all the systems and is accompanied 

by pre-packaged sensors. For easy installation, all the protocols and drivers are prewritten and 

loaded into the system. All the control logic and protocols required for the datacenter ecosystem 

are supported by the controller. 

Ever since digitization and automation of the different devices installed across the 

modern urban environments has increased, there has been an evident creation of fresh security 

challenges for various industries that may or may not be regulated [35].Ever since digitization 

and automation of the different devices installed across the modern urban environments has 

increased, there has been an evident creation of fresh security challenges for various industries 

that may or may not be regulated [35]. As already discussed, hackers can target even the 

smallest of devices sitting on the Internet for stealing information, falsifying data or disabling 

or corrupting the device. The vulnerability of Software based security is high in certain types 

of attacks. If a device or sensor is accessible, it can possibly be cloned or altered in behavior 

by loading malware. Through this, unauthorized users can take control of the device and carry 

out different activities like disabling the device or providing information to hostile parties. 

Another type of threat is posed by replay attacks by the poor interception of secured password 

exchanges between host and client and reuse of the password for gaining access to the network. 

The hardware Trusted platform module has been proposed in the heterogeneous data center 

IoT platform. Another type of threat is posed by replay attacks by the poor interception of 

secured password exchanges between host and client and reuse of the password for gaining 

access to the network. IoT does not have strong hardware authentication. It has been recently 

observed that reverse engineer is possible for the various types of Physically Unclonable 

Functions (PUFs). The current study proposes a hardware Trusted platform module in 
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heterogeneous data center IoT platform. All the pertinent components of a strong hardware 

trust are included in this trusted module. 

        Data Center Networking: Moderate bandwidth in Data centers is required by 

human interactions with applications [36]. IoT promises a dramatic alteration in these patterns 

through the transferring of huge amount of small message sensor data to the data center for it 

to be processed; this in turn brings dramatic rise in the requirements of the inbound data center 

bandwidth [37]. In heterogeneous Data centers, redundant controller and aggregate controller 

topology is not implemented [34]. The current study proposes redundant topology of 

controllers and aggregate controllers. 

Ever since digitization and automation of the different devices installed across the 

modern urban environments has increased, there has been an evident creation of fresh security 

challenges for various industries that may or may not be regulated [35]. As already discussed, 

hackers can target even the smallest of devices sitting on the Internet for stealing information, 

falsifying data or disabling or corrupting the device. The vulnerability of Software based 

security is high in certain types of attacks. If a device or sensor is accessible, it can possibly be 

cloned or altered in behavior by loading malware. 

           Through this, unauthorized users can take control of the device and carry out 

different activities like disabling the device or providing information to hostile parties. Another 

type of threat is posed by replay attacks by the poor interception of secured password exchanges 

between host and client and reuse of the password for gaining access to the network. The 

hardware Trusted platform module has been proposed in the heterogeneous data center IoT 

platform. 

Another type of threat is posed by replay attacks by the poor interception of secured 

password exchanges between host and client and reuse of the password for gaining access to 

the network. 

           IoT does not have strong hardware authentication. It has been recently observed 

that reverse engineer is possible for the various types of Physically Unclonable Functions 

(PUFs). The current study proposes a hardware Trusted platform module in heterogeneous data 

center IoT platform. All the pertinent components of a strong hardware trust are included in 

this trusted module. 
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Moderate bandwidth in data centers is required by human interactions with applications 

[36]. IoT promises a dramatic alteration in these patterns through the transferring of huge 

amount of small message sensor data to the data center for it to be processed; this in turn brings 

dramatic rise in the requirements of the inbound data center bandwidth [37]. In heterogeneous 

Data centers, redundant controller and aggregate controller topology is not implemented [34]. 

The current study proposes redundant topology of controllers and aggregate controllers. 

The needs of the Internet of Things (IOT) can be met by making use of cloud-based 

architecture.  In this approach, application intelligence and storage are centralized within server 

wire centers. However, there can be a breakdown when there are other requirements like real-

time requirements associated with the control loop, the presence of large volume of data, the 

lack of available network bandwidth within the deployment model. This has supported the need 

for decentralized processing and resulted in the emergence of the ‘edge computing’ construct. 

In such an approach, the aim is not just to create an aggregation of available sensed physical 

data which looks similar to a gateway, but also promote distributed intelligence. To create such 

a platform, there is a need for deterministic and real-time processing to implement specific 

functionalities.  

Storage, networking and computing capabilities are included in handheld devices and 

the endpoint devices like intelligent actuators and sensors. These are significant in intricate IoT 

systems. Nevertheless, there are certain security, bandwidth, power and space constraints in 

the endpoints. The IoT gateways as well as the intermediate layers within networking 

equipment function as ideal platforms for hosting IoT processing systems. These require 

collection of data from various sources including sensors, distributed databases and other 

elements. Servers in cloud or Data centers are connected by IoT systems. The risk of being 

blind to critical alerts is posed by the failure of connectivity to cloud. As a result of this 

limitation, crisis can occur in Data centers [38]. The current study proposes that application 

layer on the edge devices (aggregator controllers) be created with residing intricate logic of 

alerting. Additionally, it delivers alerts even if the close loop IoT platform network.  

Following are additional IoT challenges, although they are not main concerns addressed 

in this thesis.  

With the installation of numerous devices, significant security challenges will persist 

and the security complexity will drastically increase [36]. Consequently, the availability 
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requirements will be impacted as a result of which will be risk associated with personal safety 

and real-time business processes [39].  

Similar to the case of increasingly digitized automobiles and smart-metering 

equipment, huge amount of data will be available on information pertaining to the personal use 

of the device by users, which if not secured properly may result in breach of privacy [25]. This 

is quite difficult as the information that IoT generates is crucial in bringing better services and 

managing devices like these [36]. 

IoT has a double impact on the types of data to be stored. The first is the consumer 

driven personal data and the second is the enterprise driven big data. As apps are used by 

consumers, devices gather significant knowledge about the user which generates significant 

data [40]. 

Another significant factor that adds to the increasing demand for more storage capacity 

is the impact of IoT on storage infrastructure. There is a need to address this factor as this data 

will become increasingly prevalent. Storage capacity should be the main focus now in addition 

to the IoT data being harvested and used by businesses in a cost-effective manner [36]. 

The focus of the impact that IoT has on the server market will mainly be on increased 

investment in major vertical industries as well as the organization’s associated to the industries 

where IoT adds profit and a considerable value [41]. 

Even though there is no agreement regarding a specific and standardized architecture 

of IoT, a well-known architecture with three layers is commonly accepted; the first layer is the 

Perception Layer; the second layer is the Network Layer; and the third layer is the Application 

layer. 
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Figure 6; Key layers of IoT 

 

2.2.1. Details for Each Layer 

1. Perception Layer: This layer mainly looks at perceiving physical properties like 

speed, location and temperature through various sensing devices and taking this 

information and further converting it into digital signals that are easy to store and 

transmit through digital communication networks.  This layer comprises of end-

devices, actuators and sensors [24]. 

2. Network Layer: The role of this layer mainly includes the transmission of the data 

obtained from the perception layer to a processing center, server or a database. The 

technologies mainly used for realizing this layer include ZigBee, Bluetooth, Wi-Fi 

and cellular technologies 2G/3G/LTE (Long Term Evolution). According to [25], 

even though there are a wide variety of technologies available for radio access, the 

interconnection of all of these is possible through IPv6 at the transport layer in 

addition to addressing the numerous anticipated things that will connect in the 

future. This layer comprises of Application layer protocols, Message queues, 

Operating systems, Gateways, M2M (Machine-to-Machine communication 

network) servers and Communication protocols [25]. 

3. Middle-ware Layer: Included in this layer is the information processing systems 

that undertake automated actions on the basis of results of the processed data while 

linking the database and the system through storage capacity for collected data can 
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be obtained. Since this layer is service oriented, it makes sure that a similar service 

type exists between the connected devices [26].  

4. The Application Layer: This is the layer where the information provided by the 

Network Layer is stored processed and analyzed. Through these the various end-

user applications are facilitated such as safety, identity, location based services and 

building automation [25]. In this layer applications are provided for different types 

of technological challenges like controlling end device values, processing and 

monitoring. The Internet of Things is promoted by these applications. This layer 

comprises of software applications and IoT cloud platforms. 

The data center can meet its goals of consistent improvement in the reliability and 

efficiency of mission critical systems by the acceptance of an IoT philosophy and the 

integration of physical building infrastructures with the various technology system 

infrastructures as well as internal and external people and mobile devices [42]. 

This implies the meshing of different systems for which meshing was not possible like 

the power delivery and circuits that the data center requires, liquid chiller loops, HVAC 

systems, uninterruptible power supplies and generators in addition to the ability of measuring 

consumption for each customer. In order to mesh the systems with personnel, this system was 

created by the data center within new IoT platform, wherein all the data was fed through a 

single funnel for filtering, analyzing and pushing back out like target alerts for the suitable 

parties [43]. 

(i) End Devices: These include major building systems like Automatic Transfer 

Switch, Transformer, Generator, Cooling Tower, CRAC, Chillers, UPS and 

Pumps. The other set comprises of the devices that are mechanical and electrical 

systems of a customer data suite. Figure 5 illustrates examples of the points. 

 

Figure 7: Variables monitored at the data suite 
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(ii) Process Controllers: This is the node where the physical wires connect to the 

end devices. The physical wiring outputs and inputs are managed at this node. 

(iii) Aggregate Controllers: This node is a critical aspect in protocol translation. This 

is the stage where alerting logic and basic alert configuration can be 

programmed. 

(iv) Network Switches: Firewall settings, VLAN and the TCP/IP traffic are 

managed by this node. 

Data Processing Servers: The historical and real-time data for all measured points is 

stored in this server. Full analytics capability is present with this server. At this node, complex 

escalation rules can be implemented. 

Mobile Alerts: In this node is the application receiving all the alerts in addition to the 

guide link on responding and resolving the issue. 

Carefully crafted logic is used by the IoT platform technological components that are 

dependent on the minimization of false positives and feedback loops for constantly gathering 

and interpreting the data at Analytics Server and Aggregating Processor. This facilitates the 

system in learning from itself, consistently improving and reducing false alarms, which in turn 

increases redundancy and efficiency [44].  

Another significant innovation is escalation and notification as the maintenance of 

speed of content and information delivery to the pertinent parties like vendors and external on-

demand experts is desired by data centers. A communications platform was created in order to 

achieve this and it sits on top of the IoT alerting system and offers a push networking capability 

that is based on mobile apps, voice communications and e-mail. In this environment the people 

who have to provide a solution are automatically notified of the problem alert simultaneous to 

the service organization that initiates a conference call and a proactive response in obtained in 

minutes [44]. 
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2.3. Traditional approaches to power utilization management 

Over the past few years, there has been a great focus on making data centers energy 

efficient.  Aisle containment has been used in an effort to optimize facilities [45]. Work has 

also been done on managing virtual server loads so that energy can be utilized efficiently [46]. 

Additionally, work has been done in energy management through the combination of 

virtualization and automation being built together [47]. New demands are emerging in relation 

to infrastructure and data power efficiency, as well as cloud computing. Moreover, more users 

are driving this change in data centers along with more data and even more dependence on the 

data center. 

It has become more than important now to work with the apt data center optimization 

technologies as rapidly growing data and cloud technologies are leading the way in various 

technological categories. Improvement can be observed in any amount of gain in energy gains 

[8]. Lately machine learning techniques have been utilized by Google and Microsoft for energy 

optimization. Machine learning techniques are being explored by Google for energy 

optimization with data centers being used at a building level [48]. Microsoft is automating data 

center operations and measuring server workload spikes [49]. 

The current study is associated with data pods and suites in a multi-tenant facility that 

have heterogeneous server configurations [Figure 3]. This study aims at further optimizing 

micro facility environment associated with a data suite for a specific server load. 

 

2.3.1. Optimizing Airflow and Temperature in DC using ANN 

Reduced order models are significant in controlling energy usage in data center rooms 

so that the optimum operating conditions can be assessed in real-time and energy usage can be 

reduced. Here computational fluid dynamics (CFD) simulation-based Artificial Neural 

Network (ANN) models were developed and their application was done in cold aisle/ hot aisle 

data center configuration so that thermal operating conditions regarding a particular set of 

control variable can be predicted [50]. 

After training, the agreeable ANN-based model predictions were obtained in terms of 

the CFD results when the input variable had arbitrary values in specified limits. Additionally, 

a cost function based multi-objective Genetic Algorithm (GA) was combined with the ANN 
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model through which the inverse predictions for operating conditions could be made for a 

particular value of the output variable, for instance, server rack inlet temperatures. 

In comparison to a fully CFD-based response surface optimization methodology, the 

total computation time is considerably reduced with ANN-GA optimization approach. As a 

result, operating conditions can possibly be predicted reliably in seconds, even in the case of 

configurations that are beyond the original ANN training set. It can be observed from these 

results that effective real-time thermal management design tool for data centers can be obtained 

from ANN based model. 

 

2.3.2. Machine Learning Based Pre fetch Optimization for Data Center 

Applications 

Even though performance tuning is complicated, it is essential for data centers. It is 

significant as there are a thousand of machines in a data center and power and cost reduction 

can be significantly reduced with a single-digit performance improvement. However, it is quite 

difficult due to the dynamic environments of the data centers, where application release is quite 

frequent and there is consistent up gradation of the servers [51]. The current study focuses on 

the various processor prefect configurations, in terms of their effectiveness, which can have a 

great influence on the performance of the overall data center including the memory system. A 

wide comparison gap is observed when the best configurations are compared ranging from 

1.4% to 75.1%, for about 11 significant data center applications [52]. Following this, a tuning 

framework was developed that aims at predicting the optimal configuration on the basis of 

hardware performance counters. Performance can be achieved by the 1% of the best 

performance of any single configuration with identical application set [52]. 

 

2.3.3. Neural Switch using Open Flow as Load Balancing Method in 

Data Center 

The bottlenecks caused by the increasing traffic in data centers are having an adverse 

effect in the performance, which leads to packet loss. Thus, in comparison to a single route 

option, multipath routes are rather better. Increase in the performance of data centers as well 

as low management cost can be achieved by using multipath to route traffic. Since the data 
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centers have similar information traffic, it is possible to implement Neural network inside 

switch/router through which routing can be composed between the destination and origin. 

Optimized routing as well as dynamic load balancing, devoid of SDN controller intervention, 

can be achieved from multipath routing with neural network [53]. 

 

2.3.4. Machine learning based Approaches for Power Utilization 

Management 

The main aim is to use a utility function to the maximum. For instance, the given 

classifications may not be best suited for all classifications. One remarkable example is that 

misplaced use of the traditional knowledge of the game of backgammon when through 

unsupervised learning a series of computer programs (neuro-gammon and TD-gammon) learnt 

the game and became stronger than the best of human chess players by repeatedly playing with 

them. Certain principles were discovered by these programs that surprised the backgammon 

experts and gave a better performance that the backgammon programs who were given prior 

training on pre-classified examples [54]. 

Clustering is another type of unsupervised learning, which finds parallels in the training 

data. The basic assumption is that the clusters discovered will be a reasonable match with the 

intuitive classification. For example, clustering individuals on the basis of demographics may 

lead to the clustering of the poor ones on one group and the wealthy ones in the other. 

Inopportunely, the problem of over fitting the training data persists even in unsupervised 

learning. This problem cannot be avoided as it is necessary for any algorithm to be powerful to 

learn from its inputs [55]. 

Machine Learning and Data Mining is associated with gathering knowledge from data. 

Generally, this includes the creation of models or the discovery of patterns in examples from 

the prior aspects of system behavior with the minimum possible expert intervention [56]. In 

the current study, machine learning techniques have been used so that the resulting level of 

client satisfaction regarding the job and power consumption can be predicted, using the given 

set of jobs and machines, before the tasks are placed in machines and are moved across 

machines. 

A move selection algorithm further uses these predictions for choosing destination 

machines that will produce good opportunities for consolidation and client satisfaction. 
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Suitable predictor algorithms need to be selected for this prediction process; these should be 

computationally light but with the ability of obtaining good results after training with data from 

different workloads. Additionally, a good validation set or training set is required; a training 

set includes data containing marked instances from archetypical executions [54].  

If after training, the guesses of the predictors are near to the correct values obtained in 

the test set, the same is expected to be true for future real workloads.  A Dynamic Backfilling 

scheduler is implemented by the machine learning aided policy, which then replaces the static 

decision maker. This is done with the use of the information that the user directly provides and 

the results of the power consumption and performance estimators as decision makers [57]. This 

implies that rather than directly fitting jobs in the host machines, the impact of the job in the 

potential host machine has been estimated in terms of power consumption and performance 

parameters. 

In terms of Dynamic Backfilling, in each reschedule an attempt is made to empty low-

used host machines so that nearly fully-booked ones can be fulfilled. Then, estimates are made 

if each movement will interrupt the resource requirements of all the different jobs in the 

machine. Additionally, estimates are also made regarding the new power consumption that the 

machine will have to compensate for any possible performance degradation. This allows for 

the obtaining of a rather strong and adaptive system where application specifications can be 

dynamic or imprecise [57]. 

Currently a negligible operation cost has been assumed but for any future work different 

factors including moving machine cost have been taken into consideration. Additionally, 

Dynamic Backfilling algorithm is rather costly, particularly when data collection processes are 

used. Thus, the use of reinforcement learning techniques and AI planning are being used so 

that decisions can be made in a cost effective yet accurate way. 

 

2.4. Traditional approaches to Predictive maintenance 

Several works on condition-based maintenance of repairable systems is applicable to 

statistically independent failure modes or a single failure mode. Apart from these works, the 

current study considers the challenge of predictive maintenance of repairable systems with 

resource constraints and dependent failure modes [58]. 
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Assume that (i)two statistically dependent failure modes are caused by a repairable 

system, which affect each other bi-directionally, (ii) insufficient resources spent for 

maintenance are allocated to the two dependent failure modes so that the imperfect 

maintenance actions can be cooperatively executed, and (iii)future maintenance planned at the 

current time is dependent on the minimization of the projected maintenance cost rate 

determined in the long term and the projected number of future failures [59]. 

A new cooperative predictive maintenance model is suggested for resolving the above 

problem, which is based on the incorporation of effective age and hazard-rate function [60]. 

This model shows the statistic dependence of two failure modes in a manner that the hazard 

rate of one failure mode is dependent on the failures of the other failure mode collectively. The 

effect that imperfect maintenance has can be construed by how maintenance actions change the 

effective age and the hazard rate function. For each failure mode, the maintenance induced age 

reduction factor is deterministically associated to the degrees of resources allocated 

cooperatively for performing maintenance [59]. 

With the arrival of new monitored information, the decision variables in the 

maintenance policy can be recursively updated; these variables include the compliantly 

distributed degree of resources, the interlude between consecutive maintenance actions, and 

the number of maintenance actions that have to be performed. This approach is dependent on 

the minimization of the projected maintenance cost rate determined in the long term and the 

projected number of future failures [58]. 

As a result of the demanding cost, small scale and medium scale industries are unable 

to access majority of the predictive maintenance technologies. In the current study, a predictive 

maintenance policy has been proposed with the use of non-homogeneous Poisson process 

(NHPP) and failure mode effect and criticality analysis (FMECA) models which have a 

minimal requirement of sophisticated data acquisition systems and advanced monitoring 

technologies. 

Long term reliability degradation in addition to recurrent overhauls is shown by 

majority of the repairable systems. The overall maintenance time of a system is predicted 

through the critical component of a system or machinery that exhibits a sad (deteriorating) 

trend. Firstly, the FMECA method is used in selecting the element to be used as an indicator 

for predictive maintenance; here the most critical component is selected [58]. 



28 
 

Secondly, NHPP models are used for analyzing the failure data of the selected 

component; the relevant NHPP model is selected on the basis of the data analysis. In the end, 

the overall maintenance time for the system is decided by comparing the Mean Time Between 

Failure (MTBF) of the component and the threshold mean time between failure [MTBF(THz)] 

of the component. An overhead crane in a steel manufacturing company is used for validating 

the developed methodology [58]. 

The current study overviews the two maintenance techniques extensively discoursed in 

the literature; the first is the time-based maintenance (TBM) and the second is condition-based 

maintenance (CBM). The current study elucidates the working of TBM and CBM techniques 

for making decisions pertaining to maintenance. The study reviews recent research articles 

pertaining to application of these techniques. Then, the challenges of implementing each 

technique are compared from a practical point of view with a focus on the issues of decision 

making, data analysis/modeling, and data determination and collection. Additionally, the study 

presents considerable aspects for future research. In terms of industrial practice, each technique 

presented unique challenges, procedures and concepts/principles. It can thus be concluded that 

it is more realistic and valuable to apply the CBM technique. Nevertheless, it is imperative that 

further research on CBM be carried out so that it can be made more realistic for making 

decisions regarding maintenance. The current study provides useful information pertaining to 

the TBM and CBM application for the maintenance of decision making and exploring the 

practical challenges associated with the implementation of each technique. 

 

2.4.1. Disadvantages of predictive maintenance 

Compared to preventative maintenance, it is often that high cost is linked to the 

condition monitoring equipment that is necessary for predictive maintenance. Also, it is 

imperative to have wide experience and skill level for accurately interpreting the condition 

monitoring data [60]. Jointly these entail raised upfront cost of condition monitoring. Certain 

companies engage condition monitoring contractors in order to minimize the upfront costs of 

a condition monitoring program [61]. 

The criticality of the facility side infrastructure of data center is higher than ever. 

Downtime may lead to high penalty cost for midsize data center operators. With this mission 

critical nature of data center, a 100% uptime has been demanded from the data center operators. 
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Included in the facility infrastructures are mechanical and electrical systems interacting with 

each other intricately. With this, a 100% delivery of the service level agreements (SLA) is 

required from the facility side infrastructure maintenance. Several measures have been taken 

for performing preventative maintenance (PM). 

These refer to standard checklist implemented at specific frequency annually or 

quarterly. The aim here is to keep a close check on upkeep so that high cost emergency 

maintenance repairs can be avoided. With the advent of IoT, instrumenting machine to gather 

operational data became easier. Remote machine sensors can be leveraged to consistently 

monitor machine behavior. These large amount of data can be used with machine learning 

technique. 

 

2.4.2. Black Box Model of a Data center as a Temperature Predicting 

Tool 

In order to achieve this, several approaches are being developed. For instance, control 

systems can be developed to run data centers in an energy efficient manner. The development 

of different theories has been undertaken across the world so that an optimal energy efficient 

state can be achieved [62]. 

However, while such control schemes are being synthesized, excessive time is being 

taken by the CFD simulations for plotting the map of such highly linear, dynamic and complex 

data center systems. The current study aims at developing and training artificial neural 

networks for a classic scaled setup of contemporary data center such as a Black Box Model 

through which the temperature at various points in the state space can be predicted across the 

room. This is a function of the CRAC fan speeds and the dissipating heat at those points at a 

given time [62]. Since the analysis time is significantly low in computational fluid dynamics, 

it is possible for the Black Box to predict temperatures at different points in the setup and in 

real time which makes optimization analysis faster. A massive set of data generated by CFD 

simulations through theoretical arrangements in a data center is used for training the neural 

model [63]. The current study also discusses the neural network training functions along with 

its training parameters. The study also makes comparisons of accuracy and computational time, 

and its justification. 
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The study also summarizes different suggestions for training dynamic and highly linear 

systems. Comparison is carried out between the CFD model output and the data generated so 

that the accuracy of the neural network can be predicted. The verification of the strength of the 

Black Bock in the training data limits has been illustrated through changing server heat and 

CRAC fan speed. In addition to being accurate, the Black Box tool is also very fast and enables 

its use in a dynamic learning setup or in a feed forward adaptive control setup or both. It is 

rather useful for the development of control systems for data centers to have a Black Box tool 

mimicking the CFD [63], used to learn complex interactions and predictively identify issues. 

 

2.5. Iterative Optimization for the Data Center 

Even though it is simple, iterative optimization is a power approach that seeks out the 

most suitable potential combination of compiler optimization for a particular workload. 

Consequently, several practical issues emerge in iterative optimization that restrict its wide use 

such as the significant overhead generated by the exploration process that the performance 

benefits have to compensate, the data set dependent nature of the process; and the large number 

of runs required for the identification of the best combination [51]. 

Thus, even though significant performance potential has been shown by iterative 

optimization, production compilers seldom use it [51]. The current study proposes Iterative 

Optimization for the Data Center (IODC), wherein context offered by servers and data centers 

is illustrated through which the challenges listed can be handled. The general idea is the 

generation of different combinations through workers in addition to the recollection of 

performance statistics at the master, through which the optimum combination of compiler 

optimizations is evolved. 

IODC is evaluated using throughput compute-intensive server as well as Map Reduce 

applications. A large collection of datasets, ranging between 1000 to several million unique 

data sets per program, is gathered so that the large number of users interacting with the system 

can be reflected [64]. This was done for 568 days of CPU time for a total storage of 10.7TB. 

The throughput compute-intensive server applications reported an average performance 

improvement of 1.14× to 1.39×, while MapReduce applications reported an average 

performance improvement of 1.48×, and up to 2.08× [64]. 
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2.5.1. Random Neural Network for Load Balancing in Data centers 

When thousands of connected computer servers form a data center, it can be considered 

as a resource of processing capacity (CPU), disk space or memory. Different paths are used for 

distributing the jobs that arrive at the cloud data center to the different servers. Additionally, 

the internal traffic that can be found between servers inside the data center also has to be load 

balanced to various paths between them [65]. 

It is quite challenging to select the idle or underutilized paths for the traffic so that 

throughput optimality and load balancing can be achieved. The Random Neural Network 

(RNN) is a recurrent neural network, wherein neurons interact amongst themselves through the 

exchange of inhibitory and excitatory spiking skills. The RNN has proven to be an exceptional 

modeling tool for the different interacting entities due to the stochastic inhibitory and excitatory 

interactions in the network [51]. 

The same has been applied to several applications like classification, simulation pattern 

recognition, communication systems and optimization. It is proposed in the current study that 

Random Neural Network (RNN) be used for solving the issue of load balancing in data centers. 

Adaptive load balancing is achieved by RNN through online measurement of the path 

congestion that the network gathers [51]. 

 

 

2.5.2. SLA-based virtual machine management for heterogeneous 

workloads in a cloud data center 

In cloud computing the efficient provisioning of resources is challenging because of its 

dynamic nature as well as the requirement for supporting heterogeneous applications. Although 

the concurrent running of workloads and the shared use of infrastructure is permitted by VM 

(Virtual Machine) technology, application performance is still not guaranteed by it [66]. Thus, 

at present, either performance guarantee is not offered by cloud data center providers or they 

make static VM allocation rather than dynamic; the result of which is inefficient resource 

utilization. 

Furthermore, there may be different QoS (Quality of Service) requirements for the 

workload because of the execution of various types of applications like web and HPC, as a 
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result of which resource provisioning becomes even harder. Earlier studies have focused on 

resource usage patterns of applications like web applications, or on single type of SLAs 

(Service Level Agreements) due to which the data center resources have been utilized 

inefficiently [66]. The current study focuses on the resource allocation problem inside a data 

center wherein various application workloads are being executed, especially the transactional 

and non-interactive applications. 

The current study suggests an admission control and scheduling mechanism, wherein 

the profit and resource utilization is maximized in addition to ensuring that QoS requirements 

of users are taken care of in accordance with the SLAs. In the current experimental study, the 

awareness of different SLAs was found to be important in addition to the mix of workloads 

and applicable penalties for better provisioning and utilization of the data center resources. 

Through the proposed mechanism, substantial improvement can be obtained over the static 

server consolidation in addition to reduction in SLA violations. 

 

2.5.3. Towards energy-aware scheduling in data centers using machine 

learning 

Since data centers and IT infrastructures identify energy-related costs as a major 

economical factor, it has become challenging for the research community and companies to 

find more efficient and better power-aware resource management strategies. “Green” IT is 

gaining growing interest, however, there still is a big gap that needs to be covered [57]. The 

current study proposes framework to obtaining an energy-efficient data center, wherein an 

intelligent consolidation methodology is provided that uses different techniques like machine 

learning techniques, power-aware consolidation algorithms, and turning on/off machines so 

that uncertain information can be handled while performance is maximized. 

 Models provided by previous system behaviors have been used for the machine 

learning approach so that scheduling decisions can be improved and predictions can be made 

pertaining to SLA timings, CPU loads and power consumption levels. This framework 

vertically encompasses cross-disciplinary, workload features and watt consumption [57]. 

These techniques have been evaluated with a framework wherein the entire control cycle of a 

real scenario is covered through the use of simulation with representative heterogeneous 

workloads. Additionally, the quality of the results has been measured according to a set of 
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metrics that are focused on traditional policies as well as goals. It is indicated by the results 

obtained that this approach is close to the optimal placement and works rather better when 

uncertainty levels increase [57]. 

 

2.6. Predictive Modeling and Simulation 

Predictive modeling can be described as the process of the creation, evaluation and 

validation of a model so that the probability of an outcome can be best predicted. For this task 

the predictive analytics software solutions use many modeling methods such as statistics, 

artificial intelligence and machine learning. The detection theory is used for the testing, 

validation and evaluation of the model so that the probability of an outcome in a specific 

amount of input data can be guessed and the best model can be selected [67]. 

More than one classifiers can be used by managers for determining the probability of a 

set of data that belongs to another set. New information regarding the data as well as the 

development of the predictive model is facilitated through the modeling portfolio of predictive 

analytics software [68]. Every model is best suited to a specific types of problems depending 

on its strengths and weaknesses. 

A model can be reused and is developed by training an algorithm through the use of 

historical data and saving the model so that it can be reused for sharing the common business 

rules that can are applicable to similar data so that the results can be analyzed through the use 

of the trained algorithm, without the historical data [68]. 

Simulation can be defined as the imitation of a real-world system or process operations 

over time. The development of a model is the initial requirement for the act of simulation. This 

model illustrates the main behaviors/functions or characteristics of the selected abstract or 

physical system or process. The model is the representation of the system itself, while the 

simulation is a representation of the system operation over time [69]. 

There are several contexts in which simulation can be used, like video games, 

education, training, testing, and safety engineering and performance optimization. Simulation 

models are often studied using computer experiments. Additionally, simulations are used with 

human systems or scientific or natural systems for getting details about their functions. The use 

of simulations can be done for illustrating the eventual effects of alternative courses of action 

and conditions. Additionally, the use of simulation has been found in the situation where a real 
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system cannot be engaged, or is not accessible, or maybe unacceptable or dangerous or may 

simply not exist [69]. 

The major challenges of simulations include validity and fidelity of the simulation 

results, the use of simplifying assumptions and approximations in the simulation and 

information regarding the selection of the main behaviors and characteristics. The protocols 

and procedures for model verification and validation is a continuing field of research and 

development, refinement and academic study in the simulations practice or technology, 

especially in the area of computer simulation [70]. 

 

2.6.1. Controller Simulation 

The design of controller is such that it augments the quality of the control system so 

that the required control purpose can be served by the system. After the selection of the 

controlled object, the property and quality of the entire control system is dependent on the 

design of the controller. Thus, the entire control field is focused on the design of the controller 

and its analysis.  

The control method that is used most commonly is the digital PID control, which is 

widely used in chemical, machinery, and metallurgy industry among others. In the simulated 

control system, PID controller refers to proportion of deviation (P), integral (I) and differential 

(D), which is the most widely used automatic controller. 

The characteristics of PID controller include: simplicity of principle, ease of 

achievement, basic controller catering to most of the actual needs; the application of the 

controller is possible for various objects. The structural strength of the algorithm is string; and 

in many cases, the sensitivity of control quality is not high to the parameter and structure 

distresses of controlled object [71]. 

Nevertheless, the major disadvantage of PID control is its reliance on the controlled 

object in addition to the general prerequisite of knowing the mathematical model of the 

controlled object design. The characteristics of the controlled object like time variability and 

non-linear in practical industrial control make the establishment of accurate mathematical 

model difficult. Else, its application is limited due to the difficult online availability of the 

characteristic parameters [72].  
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Neural networks achieved the shortcomings of the PID controller for solving challenges 

in almost all the areas of technology and science. There are mainly two steps involved in neural 

network control: system identification and control. 

In the neural network(NN) Feedback control output signals from a dynamical system 

or plant are measured and the difference between certain prescribed desired values and 

measured values are used for computing system inputs causing the measured values to track or 

follow the anticipated values. In feedback control design it is imperative that the boundedness 

or stability of all variables and the tracking performance of all variables be guaranteed. If this 

is not guaranteed, serious problems may be caused in the closed-loop system, such as 

unboundedness and instability of signals resulting in the destruction or failure of the system. 

Werbos [73] and Narendra [74] first proposed the use of NN in control systems. The 

two major thrusts of NN control include NN in closed-loop feedback control and Approximate 

Dynamic Programming, wherein NN is used for approximately solving the optimal control 

problem. 

Narendra and Parthasarathy [75] presented the various NN feedback control topologies. 

Some of these are derivative of standard topologies in adaptive control. Control signal flow 

loops are denoted by solid lines while tuning loops are denoted by dashed lines. 

Feedback control topologies are mainly of two types; the first is direct techniques and 

the second is indirect techniques. In direct control the parameters of an adjustable NN controller 

are directly tuned and it is more effective. Indirect NN control has two functions: an identifier 

block wherein the NN is tuned so that the dynamics of the unknown plant can be learnt; and 

the controller block wherein information is used for controlling the plant. 

The limitation of the use of NN for feedback control purposes is the selection of a 

suitable control system structure in addition to the demonstrating the way NN weights can be 

tuned with the use of mathematically acceptable techniques so that the performance and 

stability of closed-loop can be guaranteed. This article illustrates the different methods of NN 

controller design through which performance for systems with varying complexity and 

structure can be guaranteed. Several researchers have contributed to the development of the 

theoretical foundation for NN in control applications [76]. 

The following methods can be used for the implementation scenario of the neural 

network based controller  
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1. Normal Loop for PUE optimization: 

Real time inputs that the data center sensor ports send to neural network trained 

controller are used. This produces and optimizes values that represent the need of a manual 

intervention in the system. 

2. Feedback Fan Power loop for PUE optimization 

Real time inputs from data center, which is an input from the feedback result from the 

model output is used for optimizing only the Fan Power. As a result of this, an automated 

regulated fan power is formed to the neural network so that an optimized PUE can be obtained. 

3. Feedback Chiller Power & Fan Power loop for PUE optimization 

Real time inputs from data center, which is an input from the feedback result from the 

model output is used for optimizing only the Chiller Power. As a result of this, an automated 

regulated Chiller Power is formed to the neural network so that an optimized PUE can be 

obtained. 

 

2.6.2. Data Center Simulation 

Up until now, the current study seems to be the first work that provides an exhaustive 

methodology for data center-level simulation. While numerous works have been leveraged in 

statistics, stochastic modeling and queuing theory, this is referred to as in-line. Attempts have 

been made in previous studies for parallelizing discrete-event simulations through the 

simultaneous execution of the various sections of the modeled system [77].  In general, 

parallelization like this is difficult as a consistent state is required by the system in addition to 

explicit locking and/or communication of data structures. 

The parallelization strategy on the other hand distributes generation of autonomous 

observations for the sampled output metrics, without any synchronization, which in turn 

reduces communication overhead and design complexity. Alternatively, hierarchical models 

have been used by studies for representing data center systems [78]. The use of such models 

can be done in place of simulators or for complimenting them. 

Lastly, the current work is quite similar to the architectural simulators sampling 

techniques [79] and/or statistical simulation [80] is used. Additionally, these methods provide 

considerable reduction in simulation time by only simulating the events that are essential for 

the desired statistical confidence level or simulating with a statistical abstraction. 



37 
 

Chapter 3: Methodology 

3.1. Introduction 

The modern DC has a wide variety of mechanical and electrical equipment, along with 

their associated set points and control schemes. Machine learning is well-suited for the DC 

environment given the complexity of plant operations and the abundance of existing 

monitoring data.  With the rise of IoT, adaptation of controls to collect machine data has been 

gaining popularity. Intelligence derived from this helps in predictive maintenance and auditing 

of existing systems operations to identify and resolve issues proactively. 

In this chapter, we will discuss the following: 

 Modular Data Center Design 

 Detailed design and implementation of an IoT platform in a midsize data center to 

collect and store data 

 Characteristics of all the data points collected 

 Data Pre-processing methods and variables selection criteria 

 Selection of machine learning, training and testing its prediction accuracy 

 Selection of variables to optimizing cooling power and using it to predictively maintain 

issues. 

 

3.2. Modular data center 

In this section we explain the modular data center setup in a midsize data center that is 

used to collect the data. The following schematic shows the modular data center setup in a 

midsize data center with aisle containment. 
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Figure 8: Two-dimensional heterogeneous DC experimental setup design 

This is a fractal design with a common cold aisle and dedicated hot aisles. Each row 

contains 10 server racks.  

 Thermally and electrically with min 300 watts incrementally upgradeable to 

600 watts per sq. foot without disrupting live load. 

 Redundant cooling coil and fans. The cooling coil are in series and can operated 

in two modes. Mode one is heat reclamation and mode two is fully redundant.  

 Closed loop contained environment 

 Redundant overhead bus bar distribution  

 Redundant controls and instrumentation 

 

3.3. Characterizing the Data Center Senor Ports Dataset 

In this section we detail the description of data attributes that are collected. The 

frequency of the data collected is at the 10 sec interval using the designed IoT infrastructure. 

 Average Cold Aisle Temperature: Average of two temperature thermostats. The 

average is inlet to the servers measured at 5 feet above the finished floor 



39 
 

 Cooling Coil Leaving Temperature: Average sensor temperature at the discharge of 

each coil 

 Cooling Coil Valve Position: Opening percentage from 0 to 100%. The opening is 

proportional to the amount chiller water that flows through the coil. 

 Fan Speed: Percent of max fan rpm from 0 to 100.  

 Hot Aisle Temperature: Average of two temperature thermostats. The average is outlet 

of the servers measured at 5 feet above the finished floor. 

 Heat Reclaim Coil Leaving Temperature: Average sensor temperature at the discharge 

of each coil. 

 Cooling Coil Chilled liquid flow: The amount chilled water moving through the coil 

expresses in gallons/min. 

 Coil Energy Absorption: The amount of thermal energy extracted from data suite in 

kW. 

 Fan Power: The power consumed by the fan in kW. 

 Power utilized by chilled liquid:  The amount of power in kW to generate the chilled 

liquid by the central plant. 

 Cold Coil IN Water Temp: Temperature in degree Fahrenheit of the chiller water 

entering the coil. 

 Cold Coil Out Water Temp: Temperature in degree Fahrenheit of the chiller water 

leaving the coil. 

 Server Load A: Power consumed by servers in kW for side A of dual corded servers. 

 Server Load B: Power consumed by servers in kW for side B of dual corded servers. 

 Suite Server Load: Total power consumed by the suite side A plus side B. 

 

3.4. Specific Design Methods of the IoT Platform 

In this section, we will discuss design methods used for the IOT platform in the 

heterogeneous data center. First, we explain the flexible controller configuration and 

multiple protocol design and implementation to address the challenges of connecting 

all systems in a data center ecosystem. Second, we discuss the hardware design method 

and logic for trusted sensor module. Third, we discuss the controller network resiliency 

architecture. Finally, we describe the alerting architecture on edge device of the IoT 

platform. 
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3.4.1. Design Goals and Key Features 

In this section, we will discuss design methods used for the IOT platform in the 

heterogeneous data center. First, we explain the flexible controller configuration and multiple 

protocol design and implementation to address the challenges of connecting all systems in a 

data center ecosystem. Second, we discuss the hardware design method and logic for trusted 

sensor module. Third, we discuss the controller network resiliency architecture. Finally, we 

describe the alerting architecture on edge device of the IoT platform. 

1. Flexible controller configuration: 

a. Design goals: 

i. Flexibility: The controller should have flexible configuration (logic 

and protocol) to setup/connect a particular end device in the 

heterogeneous data center ecosystem. The controller needs to be 

vendor neutral to support heterogeneous end devices manufactured 

by different manufactures. 

ii. Reliability: The configuration code should be reliable and stable 

when running with end devices in the heterogeneous data center 

ecosystem. 

iii. Modifiability: Packaged configuration should be modifiable as new 

end devices are introduced to the market that cater to the datacenter 

ecosystem. 

b. Key features: 

i. Ability for developers to create packaged configuration to be 

deployed on the controller hardware. 

ii. Ability for the user at the data center to pick from configuration 

(logic & protocol) to setup communication with each end device. 

c. Challenges: 

i. Working with various manufactures to build drivers/logic to all end 

devices in the heterogonous datacenter ecosystem. 

ii.   Testing with live systems for reliability of code to be production 

ready. 
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iii. Inclusion of all connectivity logic and protocol into a single 

configurable controller that could be configured easily by the end 

user to deploy for each end device in a heterogeneous data center. 

 

2. Trusted Sensors: 

a. Design goals: 

i. Security: The sensor should be secure, it avoids any non-authorized 

physical swap of sensors and remote terminal unit (RTU). 

ii. Fault Tolerance: Any swap of the sensors will be alerted and the new 

sensor/RTU will not work if the hardware trust is not compatible. 

b. Key features: 

i. Incorporation of Trusted Platform Module (TPM) circuitry for 

hardware authentication on the sensor /RTU at the end device and 

the controller it is connected to.  

ii. Selecting the trusted module logic used in the microcontroller. 

c. Challenges: 

i. Testing with live systems while in operation. 

ii. Selection and testing of trusted module logic. 

 

3. Controller Network Resiliency 

a. Design goals: 

i. Fault Tolerance: ability to accurately switching to another controller 

when the active controller fails. 

ii. High availability: Ability to provide 100% controller uptime via the 

redundant configuration. 

b. Key features: 

i. Redundant controller that is directly connected to the end device 

ii. Redundant aggregate controller that is connected to other 

controllers. 

c. Challenges: 

i. Several iterations of creating a fault tolerant handshake. 

ii. Limited networking capability of controllers. 
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4. Controller Alerting at the Edge 

a. Design goals: 

i. High availability: Ability to provide 100% uptime in providing 

alerting and real time monitoring using an edge device like an 

aggregate controller. 

ii. Fault Tolerance: Ability for the edge device to be fully functional 

even when connection is lost to the datacenter/cloud servers that 

provide alerting and analytics. 

b. Key features: 

i. Alerting logic built into the aggregate controllers that supports all 

end devices in the heterogeneous data center ecosystem. 

ii. Creation of alerting and escalation logic for alerting to the right 

resources using a mobile application 

c. Challenges: 

i. Creation of process to incorporate external resources as the first 

response to a critical operational issue.  

ii. High resource consumption by the edge device (aggregate 

controller) due to more work load. 

 

3.4.2. Flexible Controller Configuration 

As discussed in previous chapters, there is no single IoT platform deployed in 

controllers with all configurations that will support full ecosystem of a heterogeneous 

data center ecosystem. We discuss the design methodology to create an IoT platform to 

select from flexible configuration to support end devices for the heterogeneous data 

center ecosystem. Currently, there are no standards in implementing an IoT platform 

that includes a single “standard” network protocol, control programs, distributed 

architecture or field bus. The IoT software framework is designed from ground up to 

adopt that there will never be one standard in the immediate future for deploying an IoT 

Platform in a heterogeneous data center. As shown in Figure 9, the software framework 

core components consist of the core operating system, middle ware applications, device 

interface protocols, external API and user interface. 
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Figure 9: Software framework for the IoT platform 

(i) User interface: This consists of graphical interface for reporting and programming 

for users and developers. This can be a client application or a web browser. This 

includes all the toolkits required for programming. 

(ii) External API: This includes all the interfaces to communicate to databases including 

oracle, DB2, SQL, mail servers, security attenuation software etc. 

(iii)Device interface protocols: This supports interfaces to communicate with multiple 

protocols like BACnet, Modbus, LonWorks etc. In the next section, we will discuss 

the detailed list protocol implementation. 

(iv) Middle ware application: In this layer all the logic and configuration reside for 

controlling, monitoring, alarming, scheduling. This is the layer all the programming 

configuration resides that allows communication legacy systems. All the logic that 

supports the end devices in a heterogeneous datacenter resides in this layer. We will 

describe the detailed workflow of creating and deploying flexible configuration 

application to connect end devices for the heterogeneous datacenter ecosystem.  

 

1. Flexible controller logic creation method: 

In this section we will explain the workflow deploying configurations on controllers. 

All the configurations required to connect end devices in a data center are preinstalled in the 

controller to pick from. In this step we write logic for monitoring and controlling all devices in 

the heterogeneous data center ecosystem. This is the part of the standard controller that can be 
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configured to connect to any remote terminal unit (RTU), current transformers (CT’s) and other 

sensors in the data center ecosystem. 

. 

 

Figure 10: Work flow for creating and implementing the IoT framework to controllers and 

aggregate controllers 

As shown in Figure 10 source code block is a programming language used for writing 

the IoT Framework applications. Java and C# are the basis for the programming language in 

this implementation. The implementation uses an object oriented programming model 

inclusive of inheritance that permits a class or object to be the basis of another class or object. 

Additionally, it uses polymorphism that is able to process objects differently based on their 

classes or data types. 

Similar to C#, Java or C++ the software is arranged into classes. Further these classes 

are arranged into a packaged unit. Also, a Packaged Unit is the basic unit of distribution, 

versioning, and naming in the IoT framework. Normally, a Packaged Unit is like a .NET DLL 

or like a JAVA JAR file. 

The storage of Packaged Units is done as a single file. The file in itself is a standard 

archive file that can be opened with the use of any ‘zip’ tool. There is an XML manifest that 

specifies meta-data regarding the Packaged Unit like description, vendor, version and name. 

All the component types of the Packaged Unit available for constructing applications are also 

enumerated in the manifest. 

The compilation of Packaged Units is done from IoT language source code with the use 

of IoTc compiler. In the process of compilation, validity is checked for the various classes in 
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the Packaged Unit and then for transitional representation they are represented into a special 

format. The format of transitional representation is a text based "assembly language". The 

nature of this code is portable, which implies that it can be applied for all formats.  

The format of transitional representation is not ideal for machine execution. Thus, the 

Packaged Unites are further compiled in a single file known as Binary Code image. Binary 

code is a rather compact binary depiction of the code designed such that it can be directly 

executed by the IoT virtual machine. 

A set of Packaged Units compiled into a Binary Code with the use of IoTc compiler. 

The compilation process involves layout of method code, fields and reflection meta-data in 

memory. Then it entails optimization for big-endian or little-endian and native platform pointer 

size. Finally, link method calls to their memory locations. 

In order to maximize performance, the Binary Code is optimized by the IoTc for the 

requirement of a specific platform. This implies that it is not possible that the Binary Code 

image be ported to other platforms. 

After the compilation of a set of Packaged Units is done into a Binary Code file, it runs 

on the IoT Virtual Machine (IoTVM). The Binary Code is interpreted by the IoTVM and IoT 

programs are brought to the full functional state. The language used for IoTVM is ANSI C and 

it is compiled for a target controller platform. 

Graphical programming tools are used for the creation of application binary so that 

applications can be designed using assembling and linking component instances and packaged 

units. The model of an IoT framework is like a tree of components. The use of links is done for 

establishing relationships between components for specifying data and event flow in the 

application. 

The ultimate goal of the IoT Framework is the creation of programmable smart devices 

for providing support to end devices in a heterogeneous data center ecosystem. Everything 

comes together at this stage. Typically, a process of IoT Framework-enabling a device includes 

Transferring the IoTVM SVM to the designated controller, connecting to the end device. Then 

run the IoT VM. Finally, commission the controller with binary code image and load the 

application binary file. 

As illustrated in Figure 10, the IoT framework uses the Authenticated Datagram Protocol 

(ADP) for communication. Host secure channel establishment protocol is hosted by ADP and 
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in the network hierarchy it is handled at the sub transport level. Discussed below is the 

operation of ADP between two hosts H1 and H2. An ADP channel is established by the two 

hosts with the use of a Public key encryption PKE-to- Single Key encryption SKE 

bootstrapped protocol. Agent-to-agent channels are built by H1 and H2 on their ADP channel 

by sending PKE-based certificates of their respective agents to each other. The PKE-based 

certificates sent and received are cached by the two hosts, which in turn reduce the overhead 

of building agent-to-agent channels over their ADP [81]. 

 

2. Flexible protocol configuration 

Several protocols are bundled with the IoT framework to provision, program, 

and communicate with IoT framework enabled devices over various network 

topologies. As the IoT is maturing, there is no one standard protocol. The IoT platform 

is designed to handle all protocols required by the data center ecosystem. Additional 

protocols can be added to the IoT framework as needed. Following are the list of 

protocols included in the IoT platform to support current needs of the heterogeneous 

data center ecosystem. 

Advantech, BACnet, Belimo-Energy-Valve, Bitpool, DGAPI, DNP3, DQL, 

DSA Over COAP, Digital Ocean, Elios4you, Enocean, Google plus, HTML 5, 

haystack, IRC, JDBC, kafka, MQTT, Mango, Modbus, Mongo DB, Motion Jpeg, 

MySQL, OPC, REST server, RSS feeds, Rasberry Pi, Relayr, RethinkDB, SNMP,IOT, 

Slack, Solaredge, Splunk, Traccar, Twilio, UPnP, WeMo, Weather, Webctri, Zwave, 

Zabbix, ZoneMinder and adding others as needed. 

In summary, the workflow typically is used to deploy applications to controllers 

and aggregate controllers. The configurations and protocols required to map all the data 

coming from the end devices in a heterogeneous data center is deployed. The 

appropriate configuration including the protocol is selected for a specific end device 

during the final implementation. 

 

3.4.3. Trusted Sensors 

As already discussed, hackers can target even the smallest of devices sitting on the 

Internet for stealing information, falsifying data or disabling or corrupting the device. The 
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vulnerability of Software based security is high in certain types of attacks. If a device or sensor 

is accessible, it can possibly be cloned or altered in behavior by loading malware. Through this, 

unauthorized users can take control of the device and carry out different activities like disabling 

the device or providing information to hostile parties. Another type of threat is posed by replay 

attacks by the poor interception of secured password exchanges between host and client and 

reuse of the password for gaining access to the network. The hardware Trusted platform module 

has been proposed in the heterogeneous data center IoT platform. 

In this section, we discuss the design methods of hardware trusted computing network. 

We detail the design of Trusted Platform Module (TPM), which is implemented in a standalone 

secure microcontroller. TPM performs measurements on system firmware, software and 

configuration data before execution begins, and compares the measurements with expected 

values stored securely on the chip. The software or firmware is allowed to run only if the 

respective sets of values match. If a mismatch is detected, the system may roll back the module 

in question to a last-known good state. 

1. Hardware trusted module topology:  

In an IoT platform the controller is connected to the sensor and device. As shown in 

Figure 11, the TPM Module is a security controller integrated circuit. The TPM Module is 

incorporated in the circuitry of the controller and also on the end device/ sensor.  

 

 

Figure 11: Hardware trusted platform module for IoT 

2. Design components of TPM 

The TPM circuitry along with software and firmware provides the root of trust platform. 

Components of the platform extends to other components by building a chain of trust, where 

each linkage of the components extend to next one. This section discusses the TPM architecture 

components that are used in the heterogeneous data center IoT platform. The components as 

well as its flow is illustrated in Figure 12. 
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Input and Output: The flow of information over the communications bus is managed 

by I/O component. TPM used Low Pin Count (LPC) bus interface to connect to the chipset. It 

carries out protocol encoding/decoding ideal for communication over internal and external 

buses. It directs messages to suitable components. Access policies associated to Opt-In 

component and the other TPM functions that require access control to be enforced by the I/O 

component. A specific I/O bus is not required by the main specification. Issues around a 

particular I/O bus are the purview of a platform specific specification. 

 

Figure 12: Components of IoT TPM 

 

Cryptographic Co-Processor: Cryptographic operations within the TPM are 

implemented by the cryptographic co-processor. Conventional cryptographic operations are 

employed by the TPM in conventional ways. 



49 
 

These operations include Random number generation (RNG), Hashing (SHA-1), 

Asymmetric encryption/decryption (RSA), Hashing (SHA-1) and Asymmetric key generation 

(RSA). These capabilities are used by the TPM for generating random data, generating 

asymmetric keys and the signing and confidentiality of the data stored. Symmetric encryption 

maybe used by TPM for internal use but no algorithm is exposed to any symmetric algorithm 

functions for general TPM users. Additional asymmetric algorithms may be implemented by 

the TPM. Different algorithms may be used for signing and wrapping in the TPM devices 

implanting different algorithms. 

Key Generation: RSA key pairs along with symmetric keys are created by the Key 

Generation component. No minimum requirements are placed by TCG on key generation times 

for asymmetric or symmetric keys. 

Hash Message authentication code (HMAC): Two pieces of information are provided 

by the HMAC engine to the TPM. The first is the proof of knowledge of the Authenticated 

Data (AuthData) and the second is the proof of the authorization of the request arriving and 

that the command in transit has not been modified. The definition of HMAC is only for HMAC 

calculation. The mechanism or order of the data transported from the caller to the actual TPM 

is not specified by it. The HMAC creation is order dependent. 

There are specific items for each command that are parts of the HMAC calculation. 

RFC 2104 is the initial point of the actual calculation. In order to properly define the HMAC 

in use, two parameters need to be selected by the RFIC 2104. The first value is the key length 

and the second value is the block size. This specification requires a key length of 20 bytes as 

well as a block size of 64 bytes. The basic construct is H (K XOR opad, H (K XOR ipad, text)) 

where 

H = the SHA1 hash operation 

K = the key or the AuthData 

XOR = the xor operation 

opad = the byte 0x5C repeated B times 

B = the block length 

ipad = the byte 0x36 repeated B times 

text = the message information and any parameters from the command 
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Random Number Generator: In the TPM, randomness is provided by the Random 

Number generator. These random values are used by the TPM for randomness in signatures, 

key generation, and nonces. The RNG includes a state-machine that mixes and accepts 

unpredictable data in addition to a postprocessor that has a one-way function (e.g. SHA-1). 

The rationale for the design is that a TPM can be a good source of randomness 

regardless of a genuine source of hardware entropy. The state of a state-machine can be non-

volatile, which is initialized with unpredictable random data when TPM is manufactured before 

the TPM is delivered to the customers. In order to salt the random number, entropy or 

(unpredictable) data can be accepted by the state-machine at any time. The source of such data 

can be both hardware or software, for instance, monitoring of random mouse movements or 

keyboard strokes or from thermal noise. 

After every TPM reset, a reseeding is required by the RNG. Compared to a software 

source, entropy is supplied at a higher baud rate by a true hardware source. When entropy is 

added to the state-machine it must be ensured by the process that the new state of the state-

machine is not visible to the outside source. After the TPM has been shipped, the state of the 

state machine should not be deducible by the manufacturer or the owner of the TPM.  

The output of the state-machine is condensed by the RNG post-processor into data that 

is uniform and sufficient entropy. Compared to the output produced, more bits of input data 

should be used by the one-way function. The current definition of the RNG allows a Pseudo 

Random Number Generator (PRNG) algorithm to be implemented. Nevertheless, for the 

devices that have a hardware source of entropy available, it is not necessary to implement 

PRNG. 

Similar to RNG mechanism this specification refers to RNG as well as PRNG 

implementations. Distinguishing between the two is not required at the TCG specification 

level. On each cell, 32 bytes of randomness should be provided by the TPM. If enough 

randomness is not available, it is possible that larger requests may fail. 

Secure Hash Algorithm Engine (SHA-1) Engine: The TPM primarily uses the SHA-1 

hash capability because it is a trusted implementation of a hash algorithm. In order to support 

measurement taking in the platform boot phases and for allowing access of hash functions to 
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environments. The TPM is not a cryptographic accelerator. Minimum throughput requirements 

for TPM hash services is not specified by TCG. 

Power Detection: The TPM power states are managed by the power detection 

component together with platform power states. It is mandated by the TCG that all the power 

state changes be notified by the TPM. Command-execution may be restricted by TPM in the 

periods when there are physical constraints for the platform operation. In a PC, generally the 

operational constraints occur in the power-on self-test (POST) and the Operator input is then 

required through the keyboard. Access to certain commands maybe allowed by the TPM when 

it is in a boot state or a constrained execution mode. The state changes affecting the TPM 

command processing modes may be notified by the TPM at some crucial point in the POST 

process. 

Execution Engine: Program code is run by the execution engine for executing the TPM 

commands sent by the I/O port. The execution engine is crucial in making sure that shield 

locations are protected and operations are properly segregated. 

Non-Volatile Memory: The use of non-volatile memory component is required for 

storing persistent identity and state related to the TPM. Items like Attestation Identity Key or 

the Endorsement Key are included in the NV area and it is available for use and allocation by 

the entities which the TPM Owner has authorized. 

 

3.4.4. Controller Network Resiliency 

As discussed in chapter 1 and chapter 2, heterogeneous data centers are mission critical 

systems that require high reliability and redundancy. In this section, we discuss the redundancy 

topology of controllers and aggregate controllers.  

1. Redundant Controller Architecture:  

A control system in a mission-critical environment such as heterogeneous data center 

is required to have the high-level of reliability because a single failure in such control systems 

may result in a huge catastrophe. Hence, the controllers are specially designed using a fault-

tolerant architecture with multiple redundancy to maintain the high reliability. In fig. 13, we 

show a basic architecture used in the design. Controller C1 and C2 are connected to the end 

device/sensor/RTU via a relay switch. The relay switch is listening both C1 and C2. Single 
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controller runs at one time. In case of one controller failure, the relay switches to the other one. 

For example, if the steady state was running with controller C1, in case of C1 failure fault 

signal is sent to relay to switch C2. 

 

Figure 13: Redundant controller architecture 

 

2. Hardware trusted module topology:  

As discussed in Chapter 2, controllers are connected to aggregate controllers in the 

heterogeneous data center IoT topology. The topology shown in Fig.14, each controller is 

redundantly connected in a daisy chain. In this architecture AC1 and AC2 software is always 

running, but the network port of only one aggregate controller is active. For example, If AC1 

is running is in steady state only AC 1 is sending IP traffic via IP back bone. AC2 listening 

AC1 failure.  If AC1 fails, AC2 opens its network port to send data over the IP back bone. 

 

 

Figure 14: Redundant aggregate controller architecture 
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3.4.5. Controller Alerting at the Edge (Edge Fog Layer) 

As already discussed, in cloud-based architecture, the storage and intelligence of application 

are centralized in server data centers. This architecture caters to the need of most of the Internet 

of Things (IoT) applications, however, tends to break down with limited network bandwidth, 

high volume of data and real-time requirements. Additionally, a crucial role is played by 

latency. There is an emerging need of decentralized processing, which are also known as the 

"edge computing” [38]. The perfect places for hosting IoT processing for systems are the 

intermediate layers of aggregate controllers and IoT gateways; these require the collection of 

data from various sources like bases, distributed data and sensors. They are located on the data 

path and their processing capabilities now allow running complex IoT applications and critical 

alerting. 

1. Alerting Logic: 

With thousands of data points collected using the IoT platform, it is not efficient to alert 

on every point. It is important to understand dependencies and correlation of each point in a 

sub ecosystem of the heterogeneous data center and creating actionable intelligence at the 

aggregate level. Our design addresses creation of each ecosystem. For example, let’s consider 

HI-FOG fire suppression system in a heterogeneous data center. The high pressure allows the 

water mist to infiltrate into fire in a liquid form. This results in targeted evaporation at targeted 

locations were the liquid is needed most. High pressure water mist also successfully penetrates 

hard to reach space and provides higher level of cooling, hence protecting data center 

equipment and other structures. 

In the above there is a single container filled with liquid that services three zones, zone 

1 (z1), zone 2 (z2), and zone 3 (z3) in the data center. Liquid is pumped using a pump at certain 

pressure (P). The logic is created and alerted as follows. 

a. If any of the Zone, z1, z2, z3, start the pump. 

b. Calculate the desired pressure of the system 

c. Maintain the desired pressure of the of full ecosystem 

d. Alert when the pump fails  

e. Alerts when cumulate desired pressure fails 
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f. Alert when cumulative liquid level is the tank is below desired level. 

Each of the following alerts are mapped on escalation path to direct to an internal or 

external resource to be respond to resolve the issue. All the above is done using a user interface 

shown in figure 15. Alarm classes are created with high, medium, low status. The escalation 

logic is how the alert should be communicated and routed. Finally, the alert is delivered via 

email of push notification to mobile app. 

 

Figure 15: Programmed logic and escalation for alerting 

 

2. Design motivation for the IoT edge computing:  

Scalability. If several sensors and end devices are present in a heterogeneous data center, 

the centralized approach may not be sufficient for handling this increasing volume of end 

devices as well as its geographical specificities. The relevancy or safety of data is highest 

if the processing is done close to the edge of the network. 

Network resource conservation. The network bandwidth required for carrying this newly 

created information is directly impacted by the volume of data generated by the various 

sensors. Distributed processing enables the relieving of the restrictions on the network by 

only sending the necessary information to the cloud or the operation center. This can also 

be done by carrying out majority of the data processing like mission critical alerting and 

analytic at the remote site, which is closer to the source of the data. 

Latency. In order to create stable behavior in real-time systems, low latency is required. 

The large delays observed in overloaded cloud server farms and the various multi-hop 

networks prove to be unacceptable. Additionally, latency and timing jitter can be 

minimized by local, high performance nature of distributed intelligence. In terms of jitter 
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and latency the requirements of data center applications are very high. The most stringent 

requirements are satisfied only by local processing. 

Resilience. In the case of a heterogeneous data center that is in a network blackout and is 

completely disconnected from the cloud, mission critical tasks like critical controls, 

analytics, alerting are to be performed at the local station. Rather than being a 

recommendation, an architecture based on distributing processing is generally the sole valid 

solution. 

Thus the design is based on control at the edge location and performing mission critical 

alerting. In the current design, this has been implemented in the aggregate controllers. As 

illustrated in Figure 16, the fog layer is found in the aggregate controllers in the IoT framework. 

It is illustrated in Figure 17 that the middle layer of the IoT software framework is comprised 

of the fog layer alerting and analytics logic. 

 
Figure 16: Fog Layer/ edge computing with IoT framework 

 

 

 

 

Figure 17: Fog computing resides in the middle application layer of the IoT software 

framework 
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The following section discusses the full end to deployment of the data center including 

all layers of the IoT Platform. It entails how end devices are connected to controllers which 

intern is connected to aggregate controllers. Further aggregate controllers are connected to 

database and application servers. This explains the dashboards and alerting implementation 

along with network topology and mobile application.  

 

3.5. IoT Framework Implementation 

In this section we explain the implementation of IoT platform used to collect and store 

data. The design consists of five layers. In this section we explain implementation of each IoT 

layer. 

1. Perception layer: The main function of this layer is to obtain the various types of static 

/ dynamic information of the real world through various types of sensors and to share 

with Internet access. The end devices several devices including electrical circuits, 

uninterrupted power supplies, cooling coils, chilling systems, fans, temperature sensors, 

pressure sensors etc.  Some devices come with controls equipped to communicate via 

Modbus, BACnet, LonWorks, TCP/IP. Some of them have controls with no 

communication and need to be wired in custom methods to connect to process 

controllers. The connection can have established via dry contacts on machines to 

process controllers. Custom programs are written to bring the points into aggregate 

controllers. Following real examples from the IoT platform setup. 

 

Figure 18: Cooling Coil Valve Instrumentation 
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Figure 18 shows cooling coil valve that manages amount of chilled water in the system. 

This an actuator. That is connected via two 22 gauge wires to programmable process controllers 

where the logic is programmed to measure position in percentage and communicated out on 

Lon works FT-10 network to aggregate controllers. The aggregate controllers convert the 

communication protocol to IP. 

 

Figure 19: Process controllers connecting power meters 

Figure 19 shows the process controllers connection to all the power meters. The end 

device is connected via to RS485 serial communication to process controller. The protocol is 

Modbus between process controller and aggregate controller. The aggregate controllers convert 

the communication protocol to IP. 

 

Figure 20:  On board chiller control board 

Figure 20 shows process controller on the chiller with connectivity on the control broad. 

It communicates over BACNET MSTP (Multiple Spanning Tree Protocol) serial 
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communication that goes to the aggregate controllers. The aggregate controllers convert the 

communication protocol to IP. 

 

Figure 21: Temperature sensors for hot and cold coils 

Figure 21 shows the temperature sensors on hot and cold coils. These measure the water 

temperature. These are resistive thermistors. This is connected via two 22 gauge wires to 

programmable process controllers where the logic is programmed to measure temperature in 

degrees Fahrenheit and communicated out on LonWorks protocol to aggregate controllers. The 

aggregate controllers convert the communication protocol to IP. 

 

Figure 22: Thermostat that measures hot and cold aisle temperature 

Figure 22 shows the Thermostat that measures air temperature in hot and cold aisles. 

These are resistive thermistors. This is connected via two 22 gauge wires to programmable 

process controllers where the logic is programmed to measure temperature is degrees 

Fahrenheit and communicated out on LonWorks protocol to aggregate controllers. The 

aggregate controllers convert the communication protocol to IP. 
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Figure 23: Fan in the cold aisle 

Figure 23 shows a variable speed fan that is used in the cold aisle to maintain 

temperature and the air pressure in the cold aisle. This is connected via two 22 gauge wires to 

programmable process controllers where the logic is programmed to measure fan speed and 

communicated out on LonWorks protocol to aggregate controllers. This allows for continuous 

monitoring how much power is consumed by the fan in real-time. If the end device is expensive 

and highly mission critical the trusted module platform is deployed for higher security. 

 

Figure 24: UPS Ethernet connectivity: Modbus IP 

Figure 24 shows the UPS Ethernet port connection. The UPS have on board Ethernet 

communication port that communicates using Modbus IP.  

2. Access layer: The main function of this layer is to send the perception layer information 

to the Internet through the various communication networks. Due to security reasons of 

wireless communication, this design entails wired connection. Therefore, the end 

devices are connected via wired connection. The devices that only have hot points 

connect using RS232 or RS485 to programmable process controllers. Following is the 

figure of a programmable process controller. 
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Figure 25: Programmable process controllers 

Figure 25 shows programmable process controllers. The points are pulled in to process 

controllers and logics are programmed to measure the points. Some data points are readily 

available and for some data points a set of sensors are deployed to collect information legacy 

end devices in a heterogeneous data center. Process controllers have limited I/O. Based on 

points that need to be collected from the end device, it may require to deploy multiple process 

controllers. If the end device is mission critical and requires 100% uptime, then the process 

redundant controllers are deployed as discussed in section 3.4.4. 

 Figure 26 shows the schematic of configurable logic programmed in the programmable 

process controller. The configurable logic is based on understanding of all the data points that 

can be gathered from an end device. The logic is created based on the design methods detailed 

in 3.4.2. The configurable logic and protocol resides in the middle layer of IoT platform 

software framework shown in Figure 9. Software workflow used in the creation of 

configuration logic as shown figure 10. This process created logic and protocol are developed 

and deployed in a single controller for all the end devices in heterogeneous data center. The 

controller then used by the user to pick the configurations to end device for final deployment. 
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Figure 26: Programmed logic schema for process controllers 

3. Network layer: The main function of this layer is to establish an efficient and reliable 

infrastructure platform for upper management and large-scale industrial applications 

with global Internet platform. Given the security concerns, the devices were directly 

connected by wires. Controls on the devices come via communication mechanisms. 

Majority of the machines of the machines talk over MODBUS, BACNET and LON 

protocols. The controllers are preprogrammed with all the protocols described in 

section 3.4.4. 
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Figure 27: IoT network topology 

Figure 27 shows the network topology of the IoT implementation. The network includes 

two aggregate controllers for network resiliency.  Each controller is labeled showing which 

end device it is connected to. On the top right of figure 27 shows the legend for how the 

controllers are communicating. As shown, there are LonWorks, Modbus TCP/IP, Modbus 

RS485/RS232 and BACnet TCP/IP. The controllers are daisy chained and connected in 

redundant fashion to aggregate controllers as described in section 3.4.4. Figure 28 shows an 

aggregate controller. The aggregate controller is a gateway unit that the controllers are 

connected to. They have core operating system, user interface, external API, device interface 

protocols and middle ware applications. The Software framework is as shown in Figure 9. The 

aggregate controller acts as protocol translator to convert all the various protocols coming from 

controllers to Internet protocol (IP). Once the it is converted to IP, the communication up 

stream to analytical servers in the data center or the cloud over IP. The edge fog layer resides 

at the aggregate controller. The detailed design of the alerting and the edge is explained in 

section 3.4.5. 

 

 

 

Figure 28: Aggregate controllers 

The IP traffic is connected via cat 5 cables to switch stack and all the intermediary 

firewalls. For security for purpose it is best separating IoT traffic from other traffic. All IoT 

traffic is separated via dedicated VLAN. Figure 29 is the image of switch stack configured in 

master slave configuration to maintain network redundancy. 
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Figure 29: Switch stack 

4. Service management layer: This layer exists at the edge device and in servers in the 

data centers and cloud. The servers in the data center and cloud are mainly responsible 

for getting real-time control and management of the huge amounts of data. Big data 

analytics and analytics reside at this layer. This layer also provides the interface to upper 

layer application with a good user interface. These interface is deployed as when 

dashboards or a mobile application. Also, alarming and management resides in a skinny 

fashion in aggregate controllers.  The detail design of alerting at the edge device in 

explained section 3.4.5. The edge alerting provides resiliency at local data center in 

case of loss connection the servers in the data center. Figure 15 shows a programming 

logic schema for alerting and escalation. Point coming from the end devices and these 

can be programmed to change the priority of alerts and escalations to responsible 

individuals. 

 

5. Application layer: The key purpose of this layer is the integration of the underlay 

system function in addition to building a practical application for midsize 

heterogeneous data center. This layer has the advanced alarm management, reporting 

analytics and dashboards. The left side of figure 30shows the cooling subsystem 

dashboard. It provides real time monitoring to network operations center. It has three 

major components cooling tower, chillers and heat exchanger. All relevant points are 

shown on the dashboard and anomalies are shown by flashing numbers. The right of 

figure 30 is a graphical representation of a data suite in heterogeneous data center. This 

displays values of all the point monitored for the data suite. Also, All the data collected 

is stored in database for historical trending, predictive analytics and ad-hoc analysis. 
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Figure 30: Control Dashboards 

 

Figure 31: Mobile App: Schematic of the alerts/notifications received 

Figure 31 shows the schematic of alerts received on the mobile phones. These alerts are 

received based on the rules in the programmed logic for alerting and escalation. This app list 

app with all internal and external resources. The app delivers the details of the issue right to 

your mobile app. There is a feature in this app that override all your phone configurations to 

deliver the mission critical alert. 

 

3.6. IoT Platform Use Cases, Benefits and Results 

It took about two years to deploy the IoT Platform. Since the first version of the solution 

was not stable, many iterations of testing were conducted on it. A major challenge in testing 

was that it had to be carried with end device running in production environment.  There is a 

need of resources for overriding the issues detected. After the completion of the testing, the 

standard process is the new provisioning in production systems. The results and benefits 

attained after the deployment and running of the IoT platform for 10 months are listed below. 
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IoT Design and Implementation benefits. 

Through flexible configuration, the data center is able to connect easily to the various 

old and new devices. With this, the data center is able to gather data from the various devices 

in the midsize heterogeneous data center. Once full data collection is possible on the same time 

stamp interval, it becomes feasible to use the learn machine learning approach for non-linear 

optimization problems with various service management, predictive maintenance and 

optimization. 

Previously, it was possible for a contractor to replace sensors/RTU and NOC operations 

and go unnoticed. With the implementation of trusted sensors on critical systems, the 

replacement sensors could be controlled tightly. The system identifies any changed sensor and 

takes the change through apt change management processes for implementation. As a result, 

any issues regarding physical security breaches and unauthorized replacement of sensors can 

be resolved. 

Since a data center has a mission critical nature, down time may occur due to a 

controller failure monitoring mission critical end device, which in turn affects the uptime 

service levels agreements of the data center.  The data center has 2N configuration, due to the 

execution of controller network resiliency, resulting in 100% uptime for controllers as well as 

high availability. 

If any previous loss of network connectivity to the data center suit or cloud results in 

the non-availability alerting server, the NOC will not have any of the critical alerting functions 

available to it. With the execution of the edge device alerting, the data center will be able to 

receive critical alerts from the aggregate controller (edge device), which refers to the IoT 

internal network working separately from the outside network connectivity servers. 

Use cases with the IoT platform deployment: 

When a problem alert is raised after the IoT platform has been implemented, the people 

responsible for deriving a solution are notified automatically even before the service 

organization organizes a conference call, giving them the opportunity of reacting proactively 

in minutes. With this more accountability, redundancy and speed is created and pressure is 

taken off the network operating center that was earlier susceptible as a single point failure. 
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 The biggest success of the datacenter was the ability of mobilizing the resources required 

for the management of such a highly automated and complex system. costs were effectively 

managed by the company with the collaboration of the numerous internal business units 

and the utilization of the strength of its expert partners and vendors on demand, in contrast 

to the hiring of full-time personnel. 

 When an internal transformer failure occurs in the datacenter, an on call vendor technician 

directly receives the alert along with the exhaustive error codes. The ownership of the issue 

is taken by the vendor technician who follows the communication as well as the resolution 

protocols. With the elimination of intermediary communication delays, the response time 

of the vendor technician is lower and issues are resolved promptly. While in the past about 

45 min to 60 min would have been required for responding to this issue, now it only requires 

less than 15 minutes. 

 The vendor directly maintains the liquid levels in the data center. The vendor directly sends 

the levels. The precise levels for 100% SLA are proactively maintained by the. With this 

the internal resource for managing this is eliminated. 

 With the real time alert, which is accompanied by detailed error codes provided to an expert 

vendor for an UPS failure, there is an increase in the first time resolution, compared to the 

numerous attempts made for resolving this issue before the implementation of the IoT 

platform. 

Business results of the IoT platform deployment: 

1) Lower response time, which decreased from 45 minutes to less than 10 minutes.  

2) Higher SLA compliance, which increased from 84% to 100%. 

3) Greater customer retention and acquisition, with 22% increase in new business and 100% 

renewal of contracts. 

4)  Decreased full-time, on-site personnel costs, with the reduction of 4 full time equivalent 

employees. 

Better collaborative, efficient business/vendor relationship, with an increase from 63% to 

95The implementation of IoT platform throughout the systems has led to positive outcomes for 

the datacenter. With the integration of the IoT platform, the processes were streamlined, which 

in turn reduced the alert response time from approximately 45 minutes to 10 minutes. In 
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addition to improvement in efficiency, faster response and compliance to SLA has also led to 

the improvement of customer relationships. Also, ever since the implementation 100 percent 

customer retention has been maintained and there has been a 22 percent increase in the 

improvement of acquisition. 

The data center enabled the better integration of the external vendors in addition to streamlining 

and increasing the accuracy of the monitoring and response to alerts. As a result, the need for 

almost four Network Operations Centre (NOC) technicians was eliminated by the data center 

while taking pressure off the initial single failure point. The internal team/vendor relationships 

are better in the data center, increasing the efficiency of the NOC technicians with no need for 

troubleshooting disorganized alarms. The first time resolution was increased by the data center 

from 63% to 95%. 

The goal of the datacenter to consistently improve the reliability and efficiency of mission 

critical systems was met by embracing an IoT platform as well as integrating diverse 

technology system infrastructures with internal and external people, mobile devices and 

physical building infrastructures. 

This implied the meshing of various that did not mesh well, for instance, the circuits and power 

delivery required by the data center, liquid chiller loops, HVAC systems, uninterruptible power 

supplies and generators. Additionally, it implied to the ability of measuring power consumption 

on the basis of individual customer. 

The data center was able to mesh the systems with personnel by the creation of this system 

inside the new IoT platform. Figure 32 illustrates the various components of a midsize 

heterogeneous datacenter that used one single funnel for feeding the data that needed to be 

filtered, analyzed and pushed back out as target alerts to the suitable parties. 
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Figure 32: Shows all the components of a traditional mid-size data centers 

3.7. Neural Network Model Methodology 

The data collected using IoT deployment is the prerequisite to applying neural network 

methods. The IoT platform design and implementation discussed in the previous section has 

enabled to collect data to apply neural network methods. In the following sections we will 

discuss the methods machine learning techniques.  

An Artificial Neural Network (ANN) can be defined as an information processing 

paradigm based on the way information is processed by biological nervous systems like the 

brain. The new framework of the information processing structure is the main element of this 

paradigm. It includes numerous highly interconnected processing elements (neurons) that work 

together to solve a particular problem. Similar to people, ANNs learn by example. The 

configuration of an ANN is done using a learning process for a particular application such as 

data classification or pattern recognition. In biological systems learning occurs through the 

adjustments between the synaptic connections existing between the neurons. Neural networks 

have a remarkable ability of deriving meaning from imprecise or complicated data, which 

facilitate the extraction of patterns and detection of trends that other computer techniques or 

humans may not be able to notice because of their complexity [82]. A trained neural network 

can be perceived as an expert in the given information category for analysis. Other advantages 

have been listed below. 

1. Adaptive learning: This refers to the ability of learning the way to execute tasks on the 

basis of the data provided for initial experience or training. 
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2. Self-Organization: It is possible for an ANN to create its own representation or 

organization of the information received at the time of learning. 

3. Real Time Operation: ANN computations can be carried out simultaneously and in 

order to maximize on this capability, the designing and manufacturing of special 

hardware devices is being carried out. 

4. Fault Tolerance via Redundant Information Coding: The associated performance 

degrades when the network leads are partially destructed. Nevertheless, despite the 

major network damage, some network capabilities can be retained. 

A significant role is played by the neural network model in the data center optimization, 

which Google DC has successfully implemented. The neural network has a global defense 

through which any real time problem can solved yielding better results. 

 

Figure 33:  Neural Network Model Block Diagram 

The block diagram as shown in Figure 33 represents the logic flow of neural network 

prediction model which invokes the transformation of initial dataset retrieved from the sensor 

ports to the final Prediction obtained from the neural network model. Initially it is started by 

pre-processing, Variable Selection, Data Sampling and Neural Network Prediction Model. The 

collected data is pre-processed through by some techniques such as filling missing variables, 

removing outliers, normalization and creating new variables. The variables are selected from 

the pre-processed data through positive skewness arrived with the target SUITE PUE with other 

dependent variables. The selection of variables is achieved through the Generalized Linear 
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Model (GLM), Random Forest (RF) and Experts Perception because of dependency. The 

sampling process is done for the selected variables choose for modeling, splitting into training, 

testing and validation dataset. The training data set are trained through neural network model 

and the testing data is used for the prediction of the data sets through which neural network is 

trained for the evaluation of SUITE PUE.   

 

3.7.1. Data Pre-processing 

Data pre-processing refers to a data mining technique wherein raw data is transformed 

into a comprehensible format. In general, real world data is likely to have more errors, likely 

to lack certain trends or behaviors, may be inconsistent and incomplete. Data pre-processing is 

a verified way of solving such issues. In data pre-processing raw data is prepared for further 

processing [83]. The use of data pre-processing can be done in rule-based applications such as 

neural networks and database-driven applications like customer relationship management. 

 Data Cleaning: Different processes are used for data cleaning such as solving the 

discrepancies in the data, smoothing of the noisy data and filling in missing values. 

 Data Integration: Refers to the bringing together of different data representations and 

the resolving of conflicts within the data. 

 Data Transformation: Refers to the normalization, aggregation and generalization of 

data. 

 Data Reduction: The aim of this step is to provide a reduced illustration of the data in 

a data warehouse. 

 Data Discretization: In this step several values of a continuous attribute are reduced by 

dividing the attribute intervals range.  

The data set used for pre-processing is total of 243 columns and 119421 rows. 

Described below are the techniques used for pre-processing, where R-Statistical software for 

the data pre-processing was used. 

 

1. Filling Missing Values: In real time, certain variables may be missing values in 

observations because of technical problems or issues with the sensor system. The best 

approach is to completely discard those values, however due to the general lack if large 
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enough samples it is not affordable to lose data as there is certain information present 

o the non-missing entries as well. 

 

In mean computation, the mean (average) of the available data for that specific numeric 

variable in the sample is used as a substitute. In the case of discrete variable. The value that is 

most often seen or is the most likely value is used as a substitute. In imputation by regression, 

an attempt at predicting the value of a missing variable is made using other variables whose 

values are known. A separate classification or regression is defined based on the type of data 

variable missing, which is then trained by data points for which values like this are known. If 

several variables are missing, the means are taken as the initial estimate and the process is 

repeated till the stabilization of the predicted values. The regression approach is considered to 

be equal to mean imputation if there is no high correlation between the variables [84].   

2. Removing Outliers: Majority of the outliers are dealt in the same way as the methods 

for missing values such as statistical methods, imputing values, treating them as a separate 

group, binning them, transforming them and observations [85]. Common ways of dealing with 

outliers have been listed below:  

(i) Deleting observations: Outlier values are deleted if the number of outlier 

observations is small, or if there is a processing error or a data entry error. Additionally, 

trimming at both ends can also be used for removing outliers. 

(ii) Transforming and binning values: Outliers can also be eliminated by 

transforming variables. The variation that extreme values cause is reduced by the natural log 

of a value. Another form of variable transformation is binning. Through decision three 

algorithm outliers can be dealt with properly because of the binning of variables. 

Additionally, the process of assigning weights to different observation scan also be used. 

(iii) Imputing: Similar to missing values, outliers can also be imputed. The mode, 

median and mean imputation methods can be used. Prior to imputing values, the analysis of 

an outlier as natural or artificial should be carried out. Values can be imputed if it is artificial. 

Additionally, statistical model can be used to predict outlier observation values, which can 

then be imputed with predicted values. 

(iv)Treat separately: If the numbers of outliers are high, they should be treated 

separately in the statistical model. One approach that can be taken is treating both groups 

separately and building individual model for both groups after which the output is combined.  
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3. Creating New Variables: In real time the data may be large, some of the variable 

can be combined or split based on the data scenario. They can be of two types Splitting of 

variables and Joining of variables. 

(i) Splitting of Variables: The data in a single column may contains values that can 

occupy five other columns. For Example, time format "04/11/2015 12:01:00 PM" can be split 

into "04/11/2015", "12", "01", "00" and "PM", using string splitting operation. 

(ii) Joining of Variables: The data in multiple columns can be aggregated into a single 

column based on the dependency/ necessity. This approach uses AND or operation to achieve 

it, here we used summation Suite Flow (gal/min), Suite Absorption (kW), Suite Fan Power 

(kW), Suite Fan Airflow (CFM), Suite Absorption proportional to chiller power (kW).  

4. Data Normalization: Normalization involves in rescaling the attributes which are 

numeric in the range [0,1]. In later section normalization is used for examine sensitivity 

analysis [79]. 

 One possible formula is given below: 

 

 

3.7.2. Variable Selection 

The quantification of the variable importance is an important issue in many applied 

problems complementing variable selection by interpretation issues. 

 In the linear regression framework, making a distinction between various variance 

decomposition based indicators: “dispersion importance”, “level importance” or “theoretical 

importance” quantifying explained variance or changes in the response for a given change of 

each regressor. 

In the random forests framework, increase in the mean of error of a tree in the forest is 

the most commonly used importance score of a given variable, particularly when the OOB 

samples have the random permutation of the observed values of the variable. Such random 

http://3.bp.blogspot.com/_xqXlcaQiGRk/RpO4CR0oKqI/AAAAAAAAAA0/TnshqtR_ndw/s1600-h/fig1.png
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forests are often referred to as permutation importance indices as opposed to total loss of node 

impurity measures. 

Two crucial questions regarding the variable importance behavior are addressed here. 

The first is the importance of a group of variables and the second is the way it behaves when 

around highly correlated variables. The basis for variable selection process is the cooperation 

of variable importance for the classification and model estimation for generating, evaluating 

and comparing a family of models. 

We use Generalized Linear Model, Random Forest and Experts perception in the below 

section to signify the importance of variables with all the methods. 

 

3.7.3. Generalized Linear Model 

Generalized linear model (GLM) refers to a flexibly generalizing ordinary linear 

regression that rather than normal distribution permits response variables with error 

distribution models. Linear regression is generalized by GLM by permitting the association 

between the linear model and response variable through link. Additionally, it can also be done 

by permitting the magnitude of each measurement’s variance to be function of the values 

predicted. A stepwise procedure is a natural technique for selecting variables in terms of 

generalized linear models. [80]. 

 

3.7.4. Stepwise Procedure 

The general working scenario of stepwise procedure is followed up with 3 rules such 

as Backward Elimination, Forward Selection and Stepwise Regression. The rules are 

incorporated in GLM variable selection model in R- Statistical Software as a package to follow 

up. The generalization of each rules are explained below. 

1. Backward Elimination  

This is the easiest process of variable selection and is easy to implement without any 

particular software. In situations where the hierarchy is complex, the execution of backward 

elimination can be done manually while taking into consideration the variables that are eligible 

for removal. 
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(i) Begin with all the predictors given in the model. 

(ii) Eliminate the predictor whose p-value is higher than αcrit 

(iii) After the model is refit, again go to step 2 

4. Stop the process when p-values are lower than αcrit. The αcrit is also referred to as “p-

to-remove” and does not have to be higher than 5%. If the goal is prediction performance, then 

it would be ideal to have 15-20% cut-off, even though preference should be given to methods 

designed rather directly for optimal prediction.  

2.Forward Selection  

This method is just the reverse of backward method. 

(i) Begin with no variables in the model. 

(ii) Check if the p-value of all the predictors in the model have been added. Select the 

one whose p-value is lowest compared to αcrit. 

(iii) Keep the process going till the addition of new predictors is possible. 

3. Stepwise Regression  

This method combines forward selection and backward elimination. This takes care of 

the situation where the addition or elimination of the variables is done early in the process and 

their change can be contemplated in the future. A variable can be added or eliminated at each 

stage and there are several variations in terms of how this can exactly be done. While 

computationally, the stepwise procedures are comparatively cheap, there are certain limitations 

associated with it. 

(i) It is possible that at times the optimal model maybe missed due to the “one-at-a-

time” nature of adding or eliminating variables. 

(ii) It is imperative that the p-values used not be taken too literally. The validity is 

uncertain as so much multiple testing is taking place. The significance of the remaining 

predictors tends to increase when the less significant ones are increased. As a result, the 

significance of the remaining predictors is exaggerated.  

(iii) Since the procedures are not directly associated to the final prediction objectives, 

it may not be helpful in solving the given problem. It is imperative to consider that when it 

comes to any variable selection method, the basic purpose of selection cannot be separated 
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from the model selection. The statistical importance of the remaining variables in the model is 

amplified due to variable selection trends. Correlation can still be drawn between the variables 

and the response. It would be wrong to say that there is no relation between the variables and 

the response, it is rather that no additional explanatory effect is provided by them beyond the 

variables that already are a part of the model. 

(iv) In general, the models picked in stepwise selection smaller than required for the 

purpose of prediction. For instance, simple regression that only has one predictor available. If 

the slope for this predictor does not apparently have any statistical significance, there may not 

be enough evidence to relate it to y but it could still be used for predictive purposes. 

The results obtained from the GLM model is explained in detail in the results and 

discussion section. 

 

3.7.5. Random Forest Algorithm 

Random forests refer to a concept of the general technique of random decision forests 

that comprise an ensemble learning method for tasks like classification and regression. Many 

classification trees grow in the random forests. The classification of a new object from an input 

vector can be done by putting each vector down every tree in the forest. A classification is 

provided by each tree and the tree is perceived to “vote” for that class. The classification that 

has most of the votes is selected by the forest.  

Described below is how each tree is grown: 

1. If N is the number of cases in the training set, the casing of sample N is done at random 

from the original data, but with replacement. This sample will be used as the training 

set for tree growth. 

2. If the number of variables is M, each node is specified with a number m<<M, such that 

there is random selection of variables from M and the node is split using the best split 

on this during the forest growing, m is held constant. 

3. The trees are not pruned and each tree is allowed to grow as much as possible. 

There are two factors on which forest error rate is dependent. (i) The correlation among 

any couple of trees in the forest. The forest error rate increases with increase in correlation. (ii) 

The strength that each tree in the forest has. It is likely that a tree will be a strong classifier if 
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it has low error rate. The forest error rate can be decreased in the strength of individual trees is 

increased. 

The strength and correlation reduces when m is reduced and vice versa. The optimal 

range of m is somewhere in between and is usually quite wide. Random Forest is also used to 

find the variables significance owing to its unexcelled precision. Discussed below is the general 

methodology of finding the variable importance and the results are elaborated in the results and 

discussion section. 

The two data objects that random forests generate determine most of the options. (i) 

oob (out-of-bag) data: The derivation of the training set for the current tree is done through 

sampling and replacement after which almost one-third of the cases are removed from the 

sample. The use of this oob (out-of-bag) data is done to obtain a running impartial estimate of 

the classification error as the forest is added with trees. Additionally, it is used in getting 

estimates of variable significance. (ii) Proximities: After the building of each tree, the entire 

data is run down the tree and the computation of proximities is done for each pair of cases. If 

the same terminal node is occupied by two cases, the proximity goes one up. When the run 

ends, the normalization of the proximities is done by dividing it by the number of trees. The 

use of proximities is done in the production of illuminating low-dimensional views of the data, 

locating outliers, and replacing missing data [86]. 

 

3.7.6. Variable importance 

In every tree grown in the forest, put down the oob cases and count the number of votes 

cast for the correct class. Now randomly permute the values of variable m in the oob cases and 

put these cases down the tree. Subtract the number of votes for the correct class in the variable-

m-permuted oob data from the number of votes for the correct class in the untouched oob data. 

The average of this number over all trees in the forest is the raw importance score for variable 

m. 

If the values of this score from tree to tree are independent, then the standard error can 

be computed by a standard computation. The correlations of these scores between trees have 

been computed for a number of data sets and proved to be quite low, therefore we compute 
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standard errors in the classical way, divide the raw score by its standard error to get a z-score, 

ands assign a significance level to the z-score assuming normality. 

If the number of variables is very large, forests can be run once with all the variables, 

then run again using only the most important variables from the first run. 

For each case, consider all the trees for which it is oob. Subtract the percentage of votes 

for the correct class in the variable-m-permuted oob data from the percentage of votes for the 

correct class in the untouched oob data. 

 

3.7.7. Data Sampling 

The total input size is 119421, which is separated into 70% (training), 15% (testing) 

and 15% (validating). This is dataset which is imputed for the analysis purpose. 

Through sampling, data analysts, predictive modelers and data scientists are able to use 

small, wieldy amount of data for building and running analytical models rather quickly, while 

still generating precise results. the use of sampling is especially significant that are too large 

for a complete efficient analysis for instance, big data applications. However, size of the 

required data sample is a significant consideration. In some cases, most of the information 

regarding a data set can be obtained from a very small sample. In other cases, the use of a larger 

sample can increase the probability of accurate representation of the data as a whole, even 

though the large size of data sample may obstruct the ease of interpretation and manipulation. 

In any case, large and almost complete data sets are mainly used for drawing samples. 

Samples can be drawn from data in many ways, determined by the situation and the 

data set. Probability is the basis for sampling, wherein random numbers corresponding to points 

in the data set are used. It is ensured by this approach that the points selected for the sample 

are not correlated. Additional variations in probability sampling include multi-stage cluster 

sampling in addition to systematic, stratified and simple sampling. Once a sample is generated 

its use can be done in predictive analytics [87]. The classification of the sample dataset used in 

the neural network model is done into validation, testing and training. 



78 
 

1. Training 

The training dataset refers to the data used for constructing or discovering a predictive 

relationship. Majority of the approaches searching through training data for establishing 

empirical relationships have a tendency of over fitting the data, which means that apparent 

links in the training data that are not often found can be identified. 

 Training set:  A set of examples used for learning: to fit the parameters of the classifier 

in the MLP case, we would use the training set to find the “optimal” weights with the back-

prop rule 

2. Validation 

Validation is carried out for estimating the training (depending on the input, the value 

that needs to be predicted and the size of data) of the model as well as its model properties (IR-

models precision and recall, classification errors for classifiers and mean error for numeric 

properties). 

Validation set: This refers to a set of examples used for tuning the classifier 

parameters. In reference to the MLP case, validation set is used for determining a stopping 

point for the back-propagation algorithm or identifying the optimal number of hidden units. 

3. Testing 

A test set refers to a data set that is not dependent on the training data, but permits the 

probability distribution equal to the training data. Over fitting is minimal is a model fit to the 

training set is also a fit for the test set. Over fitting is possible if compared to the test set the 

training set has a better fit. 

Test set: This refers to a set of examples that are used only for assessing a fully-trained 

classifier in terms of its performance. In relation to the MLP case, the test would be used for 

estimating the error rate after the final model (MLP size and actual weights) has been selected. 

After the final model has been assessed on the test set, the model should not be tuned any 

further for obtaining a better accuracy. 

The reason of having validation and test dataset separately because error rate estimate 

of the final model on validation data will be biased (smaller than the true error rate) since the 

validation set is used to select the final model. After assessing the final model on the test set, 

model can be tuned to get better accuracy by varying parameters. The dataset used for neural 

network model is summarized in the result and discussion section. 
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3.8. Solution Approach: Neural Network Model 

Data Mining terms like computational learning theory and machine learning are often 

used for denoting the application of classification algorithms or classification algorithms for 

predictive data mining. Conventional statistical data analysis is generally associated with the 

estimation of population parameters through statistical inference, however, data mining 

generally emphasizes on precision of the prediction, irrespective of the explicability or 

comprehensibility of the of the techniques or models used for generating the prediction. The 

application of this type of technique to predictive data mining can be illustrated through meta-

learning techniques or neural networks like boosting. Generally, these methods include the 

fitting of very complex “generic” models that are not associated to any theoretical or reasoning 

understanding of basic causal processes; rather accurate classifications or predictions can be 

generated from these techniques in cross validation.    

Neural networks are referred to as analytic techniques inspired from (hypothesized) 

learning processes in the cognitive system and the neurological brain functions with the 

capability of predicting new observations from other observations after the execution of the so-

called learning process from the existing data. Neural Networks is another data mining 

technique.  

The primary step is the designing of a specific network architecture, wherein a 

particular number of layers are included, each of which consists of a particular number of 

neurons. It is imperative that the network size and structure matches the nature of the 

phenomenon under investigation. Since at an early stage the latter is not well known, this task 

is rather difficult and involves numerous trials and errors. However, there is neural software 

makes artificial intelligence techniques applicable in this difficult task to ascertain the best 

suited network architecture. 

The training process is then carried out for the new network. In this phase, an iterative 

process is applied by the neurons to the several inputs so that the weights of the network can 

be adjusted for optimal prediction of the sample data for performing the data. After the use of 

existing data in the learning phase, the new network is ready and can be utilized for generating 

predictions.  

The network thus developed in the learning process is a representation of a pattern 

observed in the data. Thus, the network in this approach is the functionally equal to a model of 
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relations among the variables in the conventional model building approach. Nevertheless, 

opposite to the traditional models, the relations in the network cannot be articulated in the usual 

terms used in methodology or statistics for describing relations among variables; for instance, 

A and B are positively correlated only when the value of D is high and C is low. Certain neural 

networks are capable of producing highly precise predictions, however, they represent a classic 

a-theoretical research approach (also referred to as "a black box"). This approach is associated 

only with practical considerations, which implies to the solution’s predictive validity and its 

applied relevance and is not associated with the nature of the basic mechanisms or its pertinence 

for any theory of the fundamental phenomena. 

Nevertheless, it should be noted here that the use of Neural Network techniques can 

also be done as an aspect of analyses designed for building explanatory models because Neural 

Networks can facilitate the exploration of data sets for the identification of pertinent variables 

or variable groups. The results thus obtained further help in the process of model building. 

Furthermore, there is a neural network available now that makes the use of sophisticated 

algorithms for searching the most relevant input variables, thereby making a potential 

contribution directly to the process of model building. 

A major advantage of neural networks noted is that, hypothetically, they have the 

capability of approximating any constant function; as a result of which no theories regarding 

the fundament model are required by the researcher and probably to some extent, certain 

variables may also not be required. However, a significant disadvantage here is that the final 

solution is dependent on the initial network conditions and as already discussed, the 

interpretation of the solution in the conventional analytic terms is not possible, particularly the 

ones used in building theories explaining the phenomena.  

It is emphasized by some authors that massively parallel computational models are used 

or are expected to be used by neural networks. For instance, according to Haykin [88] neural 

network can be defined as a hugely parallel distributed processor with a natural inclination 

towards the storage of experiential knowledge that can be made available for use. There are 

two ways in which it resembles brain: 1) the acquisition of knowledge is done through a 

learning process; and 2) knowledge is stored using interneuron connection strengths referred 

to as synaptic weights. 
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3.8.1. Multi-Layer Perceptron 

The neural network Algorithm used multi-layer perceptron, which are well applicable 

when modeling functional relationships. A Multi-Layer Perceptron (MLP) has the fundamental 

structure of a directed graph, which means that in comprises of directed edges and vertices, 

referred to as synapses and neurons in this particular case. The connection of synapses is only 

possible with subsequent layers. Covariates in separate neurons comprise the input layer while 

the response variables comprise the output layer. The layers in between are known as hidden 

layers as they cannot be directly observed. The input layers as well as the hidden layers have a 

constant neuron connecting for synapses interception, implying the synapses that the covariate 

does not influence directly. A neural network is illustrated in Figure 34, showing one hidden 

layer consisting of three hidden neurons. The base for this neural network is the way the two 

covariates A, B are related to the response variable Y. In theory, any number of covariates and 

response variables can be used. Nevertheless, convergence difficulties can occur when a vast 

number of covariates and response variables are used. 

 

 

Figure 34: Example of a neural network 

 

A weight is attached to each of the synapses, which indicates the effect that 

corresponding neuron has and the data passes through the neural network in the form of signals. 

The so-called integration function first processes all the signals through the combination of all 

the incoming signals after which the so-called activation function transforms the output of the 

neuron. 

The simplest multi-layer perceptron (also known as perceptron) consists of an input 

layer with n covariates and an output layer with one output neuron. 

It calculates the function 
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𝑜(𝑥) = 𝑓 (𝑤𝑜 + ∑ 𝑤𝑖𝑥𝑖

𝑛

𝑖=1

) = 𝑓𝑤𝑜 + 𝑤𝑇𝑥 

 

where 𝑤𝑜 denotes the intercept, w = (𝑤1,..., 𝑤𝑛) the vector consisting of all synaptic weights 

without the intercept, and x = (𝑥1,..., 𝑥𝑛) the vector of all covariates. 

 

3.8.2. Supervised Learning 

Learning algorithms at the time of learning that are focused on supervised learning 

algorithms fit the neural networks to the data. The characterization of these learning can be 

done on the basis of the use of a specific output, which is compared to the projected output and 

through the adaptation of all parameters in accordance with this comparison. Usually the 

initialization of all weights is done with random values taken form a standard normal 

distribution. The steps listed below are repeated during an iterative process. 

1. For current weights and given inputs x output o(x) is calculated by the neural networks. 

If the training process is yet to be completed, there will be a variation in the predicted 

output o and the observed output y. 

2. An error function E, like the sum of squared errors (SSE). 

𝐸 =
1

2
∑ ∑(𝑜𝑙ℎ − 𝑦𝑙ℎ)2

𝐻

ℎ=1

𝐿

𝑙=1

 

Or cross entropy 

𝐸 = − ∑ ∑(𝑦𝑙ℎ log(𝑜𝑙ℎ) + (1 − 𝑦𝑙ℎ)log (1 − 𝑜𝑙ℎ))

𝐻

ℎ=1

𝐿

𝑙=1

 

 

Measures the difference between predicted and observed output, where l = 1,L indexes 

the observations, i.e. given input-output pairs, and h = 1,H the output nodes. 

3. The rule of a learning algorithm is used for adapting all weights. The process stops 

after the fulfillment of pre-specified criterion; for instance, if the given threshold is higher than 

all absolute partial derivatives of the error function with respect to the weights ∂E⁄∂w. The 

resilient back propagation algorithm is a widely used learning algorithm. 
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3.8.3. Back propagation and Resilient Back propagation 

The basis for the resilient back propagation algorithm is the conventional back 

propagation algorithm, wherein the weights of a neural network are modified so that a local 

minimum of the error function can be identified [26]. Thus, the calculation of the gradient of 

the error function ∂E⁄∂w is done with respect to the weights so that the root can be found. The 

weights are particularly modified going in the direction opposite to the partial derivatives till 

the time a local minimum is obtained. Figure 35 roughly illustrates this basic idea for a 

univariate error-function. 

 

 

Figure 35: Univariate Error Function 

 

The weight is increased if the partial derivative is negative and the weight is decreased 

if the partial derivative is positive. This makes sure that a local minimum is obtained. The chain 

rule is used for calculating all partial derivatives as the calculated function of a neural network 

mainly comprises of activation and integration functions.  

In resilient back propagation, the traditional back propagation algorithm is used for 

each weight along with a separate learning rate 𝜂𝑘 that can alter during the process of training. 

This takes care of the issue of defining an over-all learning rate that is suitable for the entire 

network and the entire training process. Additionally, the weights are updated using their sign 

and not the magnitude of the partial derivatives. This makes sure that the learning rate has an 

equal influence over the entire network. The following rule is used for adjusting weights, where 

k indexes the weights and t the iteration. 
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𝑤𝑘
𝑡+1 = 𝑤𝑘

(𝑡)
− 𝜂𝑘

(𝑡)
. 𝑠𝑖𝑔𝑛(

𝜕𝐸(𝑡)

𝜕𝑤𝑘
(𝑡)

) 

 

where t indexes the iteration steps and k the weights. 

In order for convergence to speed up in shallow areas, there will be an increase in the 

learning rate if the sign of the corresponding partial derivative is kept. Alternatively, if the sign 

of the partial derivative of the error function is changed, the learning rate will be decreased. 

This is because a missed minimum because of a large learning rate is indicated by a changing 

sign. If weight backtracking is not used, it may occur several times that algorithm will jump 

over the minimum. 

A resilient back propagation is performed by the globally convergent version 

introduced with extra modification of learning rate associated to all other learning rates. 

Usually, it is the smallest learning rate (indexed with i) or the learning rate related to the 

smallest absolute partial derivative that is changed in accordance with the dataset. 

 

𝜂𝑖
(𝑡)

= −

∑ 𝜂𝑘
(𝑡)

.
𝜕𝐸(𝑡)

𝜕𝑤𝑘
(𝑡) + 𝛿𝑘;𝑘≠𝑖

𝜕𝐸(𝑡)

𝜕𝑤
𝑖
(𝑡)

 

 

If  
𝜕𝐸(𝑡)

𝜕𝑤
𝑖
(𝑡) ≠  0 𝑎𝑛𝑑𝑂 < 𝛿 ≪ ∞ 0. 
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3.8.4. Power Optimizing Framework 

The machine learning algorithm used is Neural Network. The neural network model 

utilizes 2 hidden layers and 0.01 as the regularization parameter as shown in the Figure 36. The 

training dataset contains 19 input variables and one output variable (the Suite PUE). The total 

size of the data samples used is 119421 rows, which was collected from a heterogeneous 

datacenter sensor ports. Of the total, training uses 70% of the dataset while cross-validation 

and testing use the remaining 30%. Before splitting, random shuffling of the chronological 

order of the dataset is done so that biasing the testing and training sets on older or newer data 

can be avoided. The result and discussion section simulates the neural network model predicted 

PUE vs actual PUE graph. 

Figure 36: Block diagram of Neural Network Modeling 

 

3.9. Sensitivity Analysis: 

Sensitivity analysis denotes to the study of the apportioning of the uncertainty in the 

output of a mathematical model or system (numerical or otherwise) to different uncertainty 

sources in its inputs [89] [90]. Uncertainty analysis is an associated practice which focuses 

more in propagation of uncertainty and uncertainty quantification. Ideally, sensitivity and 

uncertainty analysis should be run together. There are several advantages of the process of 

recalculation of outcomes under different assumptions so the influence of variable under 

sensitivity analysis can be determined. 
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 To test the strength of the system or model results while uncertainty is present. 

 Better comprehension of the link between input and output variables in a model or 

system. 

 Uncertainty reduction: Identification of model inputs causing considerable uncertainty 

in the output. It should thus be increasingly focused on so that the strength can be 

increased/ 

 Searching the model for errors by facing unanticipated links between inputs and 

outputs. 

 Model simplification – Identification and removal of repetitive parts of the model 

structure or fixing model inputs that do not affect model structure. 

 Enhancement of communication from modelers to decision makers by making more 

persuasive, compelling, understandable and credible recommendations.  

 Identifying regions in the space of input factors for which the model output meets the 

optimum criterion, or is minimum or maximum/ 

 When models are calibrated with large number of parameters, the calibration stage can 

be eased by a primary sensitivity test by maintaining the focus on the sensitive 

parameters. If sensitivity of parameters is not known, it is possible that time will be 

wasted on non-sensitive ones [91]. 

The analysis is done in the dataset for analyzing the behavior of dependent variables 

(cold aisle, fan power, etc..) over the target Suite PUE. For sensitivity analysis, the data is 

initially normalized, and results are simulated with explanation in the result and discussion 

section [92]. Data normalization is performed given its broad range of raw feature values. 

 The values of a feature vector z are mapped to the range [¬1, 1] by: 

 

𝑧𝑛𝑜𝑟𝑚 =
𝑧 − 𝑚𝑒𝑎𝑛(𝑧)

max(𝑧) − min (𝑧)
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The 19 dependent variable used for modeling is as follows 

Dependent Variables Dependent Variables 

 Cooling Coil Leaving Temperature (°F)  Power utilized by chilled liquid (kW) 

 Average Cold Aisle Temperature (°F)  Cold Coil IN Water Temp (°F) 

 Cooling Coil Valve Position (%)  Cold Coil Out Water Temp (°F) 

 Fan Speed (%)  Server Load A (kVA) 

Hot Aisle Temperature (°F)  Server Load A (kVAR) 

Heat Reclaim Coil Leaving Temperature (°F)  Server Load A (kW) 

 Cooling Coil Chilled liquid flow 

(Gallons/Min.) 
 Server Load B (kVA) 

 Absorption (kW)  Server Load B (kVAR) 

 Fan Power (kW)  Sever Load B (kW) 

  Suite Server Load (kW) 

Table 1: Selected Variables for modeling 

 

Note that meta variables derived from individual sensor data are many of the inputs 

representing totals and averages. 

 

3.10. Solution Method: Cooling Power Simulation 

In this section, we describe selection of variables for simulation of cooling power 

optimization in predictive fashion. This uses a small block in the whole architecture of 

heterogeneous modular data center. This uses Cold Aisle Temperature, Chiller power, Server 

Power, Fan Power and Suite PUE for doing a compact analysis, which proves that it can be 

applicable for multiple number variable/block for whole data center optimization.  

The below neural network model Figure 37 uses a sample use case, which uses five 

variables for training among that three are input variable and two are target variables. The 

simulation results by varying Cold Aisle Temperature and Fan Power to Chiller Power is 

discussed in detail on the result and discussion section 
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Figure 37: Neural Network model for predicting Chiller Power and PUE 
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Chapter 4: Results and Discussions 

4.1. Introduction 

In this chapter we discuss the results and outputs of methods used. First, we discuss 

results of how important variables are selected. We discuss training results and validation of 

machine learning. Further, we compare optimized machine learning output to actual operation 

value to discuss variances in the systems to predictively identify anomalies in the operating 

systems. Second, we discuss the results of improvements in operation metrics. Lastly, we 

propose further work with neural network controller to learn and perform corrective action to 

maintain optimal operations. 

 

4.2. Variable Importance Approaches 

4.2.1. Generalized Linear Model 

The results below report the coefficient obtained from the GLM Algorithm, which 

explains the importance of the variable (Fan power, Chiller power etc..) associated with the 

target variable (Suite PUE). The tool used for the analysis in R- Statistical Software, below are 

the explanation based on the results obtained from the algorithm  

 Input used 27 variables, explain in detail 

 Output 19 as important 

Probability Measure(p) 

The Significates codes represent the probability measure (p), indicates whether the 

variable is significant or not. The p-value greater than 0.05 is represented as non-significant/not 

important variable. The results tabulated in Table 2 signifies that 15 as important and 12 

variables as not valid, based on the probability measure.  
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Deviance 

Measure of goodness of fit of a generalized linear model is called deviance. Or rather, 

it’s a measure of badness of fit. If the numbers are higher that indicates worse fit. 

Deviance reporting by R-reports are done two forms–  The first one is the null deviance 

and the second one is the residual deviance. As shown in table 2, we have a null deviance value 

of 8.40 on 23858 degrees of freedom. Residual deviance of 0.0 points on 23859 degrees of 

freedom, which is a substantial reduction in deviance. The above numbers indicated that the 

Residual Deviance has reduced by 0.0 with a loss of 8 degrees of freedom. 

Fisher Scoring 

Fisher’s scoring algorithm is a derivative of Newton’s method for solving maximum 

likelihood problems numerically. As indicated in Table 2, two iterations were needed to 

perform the fit.  

Information Criteria 

The Akaike Information Criterion (AIC) provides a method that assesses the quality of 

the model through comparison of related models.  AIC based on the Deviance, but if the model 

is complicated it penalizes you.  Much like adjusted R-squared, it’s intent is to prevent you 

from including irrelevant predictors [93]. 

However, unlike adjusted R-squared, the number is not meaningful by itself. If you find 

yourself dealing with more than one similar candidate models (where all of the variables of the 

simpler model occur in the more complex models), then the one with smallest AIC is selected. 

It is very useful for comparing models, but cannot be interpreted just as by itself. 
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Table 2: GLM Variable importance report 

 

 

 

Deviance Residuals: 

Min 1Q Median  3Q Max  

-1.08E-03 -7.90E-05 -9.73E-06 7.11E-05 1.27E-03

Coefficients: (3 not defined because of singularities)

                                                     Estimate Std. Error  t value Pr(>|t|)     Estimate Std. Error  t value Pr(>|t|)   

(Intercept)   1.27E+00 1.07E-03 1190.166 < 2e-16 ***

Aisle Differential Pressure 8.86E-04 9.92E-04 0.893 0.371606

Aisle Differential Pressure set Point

Cooling coil leaving air temprature 2.91E-05 4.71E-06 6.186 6.28e-10 ***

Cold aisle average temparature 1.71E-03 3.70E-03 0.461 0.644729

Aisle Differential average Pressure -6.19E-04 4.47E-04 -1.386 0.165785

Cold aisle temparature 2.81E-04 1.62E-04 1.735 0.082669 . 

Cold aisle temparature set point

Cooling coil valve position 9.83E-05 2.94E-06 33.429 < 2e-16 ***

Control temprature -2.05E-03 3.71E-03 -0.553 0.580245

Fan Speed 6.61E-05 4.23E-05 1.564 0.117854

Hot aisle temp 5.30E-05 1.39E-05 3.811 0.000139 ***

Heat Reclaim coil leaving temprature -5.18E-05 1.29E-05 -4.001  6.33e-05 ***

Heat Reclaim coil valve position

Cooling Coil Chilled liquid flow -6.66E-05 1.33E-06 -49.941 < 2e-16 ***

Absorption -5.04E+00 8.05E+01 -0.063 0.950103

Fan Power 5.71E-03 1.34E-05 424.667 < 2e-16 ***

Fan Airflow -1.30E-07 6.87E-08 -1.893 0.058320 .  

Absorption Chiller power 2.36E+01 3.76E+02 0.063 0.95009

Cold coil entering water temprature 1.88E-04 7.31E-06 25.724 < 2e-16 ***

Cold coil leaving water temprature -1.11E-04 4.47E-06 -24.765 < 2e-16 ***

Server Load A (kVA) 1.16E+02 4.11E+01 2.808 0.004996 ** 

Server Load A (kVAR) -8.85E-05 1.12E-05 -7.88 3.40e-15 ***

Server Load A (kW) -4.72E-05 1.37E-05 -3.449  0.000564 ***

Server Load B (kVA) 1.14E+02 4.05E+01 2.808 0.004996 ** 

Server Load B (kVAR) 5.71E-05 1.11E-05 5.14 2.76e-07 ***

Sever Load B  (kW) 1.53E-04 2.12E-05 7.227 5.08e-13 ***

Suite Server Load (kW) -1.11E+02 3.97E+01 -2.808 0.004995 **

Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1

(Dispersion parameter for gaussian family taken to be 2.828426e-08)

    Null deviance: 8.40667722  on 23883  degrees of freedom

Residual deviance: 0.00067483  on 23859  degrees of freedom

AIC: -347320

Number of Fisher Scoring iterations: 2
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4.2.2. Random Forest Algorithm 

The random forest algorithm, signifies the importance of the variable based on the Node 

purity. Random forest consists of a number of decision trees. Each node in the decision trees 

is a condition on a single feature, designed to split the dataset into two so that similar response 

values end up in the same set.  For the analysis purpose, set ntree=100 & maxnodes = 100. The 

graph Figure 38 and the report in Table 3 signifies the importance of variable. 

Note: IncNodePurity means increase in node purity, Total decrease in node impurities 

from splitting on the variable, averaged over all trees. Impurity is measured by residual sum of 

squares. Impurity is calculated only at node at which that variable is used for that split. Impurity 

before that node, and impurity after the split has occurred. Also higher the IncNodepurity lower 

its MSE. 

 Input used 27 variables, explain in detail 

 Output 22 as important, because the target variable PUE had impact with the dependent 

variable and listed in ascending order.  

 

Figure 38: Random Forest Variable Importance Graph 
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Table 3: Random Forest Variable Importance report 

4.2.3. Perception Approach 

This approach evolved from the subject expertise of data center 

 

Table 4: Perception Table 

 

Variables IncNodePurity

Absorption Chiller power 15.44297253

Absorption 14.59729198

Cooling Coil Chilled liquid flow 5.544058326

Cooling coil valve position 3.536483804

Cooling coil leaving air temprature 0.454430588

Cold coil leaving water temprature 0.329052662

Server Load B (kVA) 0.234556198

Sever Load B  (kW) 0.223578545

Cold aisle average temparature 0.150899916

Control temprature 0.115939492

Suite Server Load (kW) 0.104115687

Server Load B (kVAR) 0.072819523

Heat Reclaim coil leaving temprature 0.059305632

Hot aisle temp 0.044140633

Fan Power 0.033339934

Server Load A (kVAR) 0.022739893

Fan Speed 0.021319433

Cold coil entering water temprature 0.02071094

Fan Airflow 0.020497607

Server Load A (kVA) 0.019540539

Server Load A (kW) 0.014609945

Cold aisle temparature 0.005741113

Aisle Differential Pressure 0

Aisle Differential Pressure set Point 0

Aisle Differential average Pressure 0

Cold aisle temparature set point 0

Heat Reclaim coil valve position 0

Expertise Choose variables

Cooling coil leaving air temprature

Cold aisle average temparature

Aisle Differential average Pressure

Cooling coil valve position

Cooling Coil Chilled liquid flow 

Absorption 

Absorption Chiller power

Fan Speed

Fan Power

Heat Reclaim coil leaving temprature

Server Load A (kVA)

Server Load B (kVA)

Server Load A (kVAR)

Cold coil entering water temprature

Cold coil leaving water temprature
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4.2.4. Final Variables chosen for modeling 

The selected variables for modeling is derived from GLM, RF and Perception approach, 

the logic used is  

(𝐺𝐿𝑀 ∩ 𝑅𝐹)  ∪ 𝑃𝐴 

GLM->Generalized Linear Model 

RF-> Random Forest 

PA-> Perception Approach 

The intersection of GLM and RF, union with PA gives the important variables which 

are used for the modeling and tabulated in Table 5. 

 

Table 5: Selected Variables for modeling 

Data Sampling: 

The data sampling is the process of separating the dataset finally chosen for modeling 

into taking training, testing and validating dataset. The total input size is 119421, which is 

separated into 70% (training), 15% (testing) and 15% (validating). This is dataset which is 

imported for the analysis purpose. 

Variable finally selected for modelling

Absorption Chiller power

Absorption 

Cooling Coil Chilled liquid flow 

Cooling coil valve position

Cooling coil leaving air temprature

Cold coil leaving water temprature

Server Load B (kVA)

Sever Load B  (kW)

Cold aisle average temparature

Suite Server Load (kW)

Server Load B (kVAR)

Heat Reclaim coil leaving temprature

Hot aisle temp

Fan Power

Server Load A (kVAR)

Fan Speed

Cold coil entering water temprature

Server Load A (kVA)

Server Load A (kW)
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4.3. Machine learning training results 

Neural Network Diagram:  

The below Plot of a trained neural network including trained synaptic weights and basic 

information about the training process. It produces the structure of the trained neural network, 

i.e. the network topology. As shown in Figure 39, The plot includes by default the trained 

synaptic weights, all intercepts as well as basic information about the training process like the 

overall error and the number of steps needed to converge. The neural network model uses one 

input layer, two hidden layer with 9 neurons and one output layer. 

Input size(row) is 119421 

There are 20 variables, among which 19 are input variables and 1 output/target variable. 

 

 

Figure 39: Neural Network node graph 

 

The below figure 40 represents the error histogram obtained from the neural network 

model where blue bars represent training data, the green bars represent validation data, and the 

red bars represent testing data. The histogram can give you an indication of outliers, which are 

data points where the fit is significantly worse than the majority of data. In this case, you can 

see that while most errors fall between -0.00128 and 0.00974. This indicates that the error rate 

is very low and model building on this dataset will yield good result. 
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Figure 

Figure40: Neural Network model error histogram 

The performance of the neural network model is represented in the below figure 41. 

This represents the property epoch indicates the iteration at which the validation performance 

reached a minimum. The training continued for 6 more iterations before the training stopped. 

This figure does not indicate any major problems with the training. The validation and test 

curves are very similar. If the test curve had increased significantly before the validation curve 

increased, then it is possible that some over fitting might have occurred. 

The next step in validating the network is to create a regression plot, which shows the 

relationship between the outputs of the network and the targets. If the training were perfect, the 

network outputs and the targets would be exactly equal, but the relationship is rarely perfect in 

practice 

 

Figure 41: Performance Graph of neural network model 
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The four plots represent the training, validation, testing and all data. The dashed line in 

each plot represents the perfect result – outputs = targets. The solid line represents the best fit 

linear regression line between outputs and targets. The R value is an indication of the 

relationship between the outputs and targets. If R = 1, this indicates that there is an exact linear 

relationship between outputs and targets. If R is close to zero, then there is no linear relationship 

between outputs and targets. 

For this example, the training data indicates a good fit. The validation and test results also show 

R values that greater than 0.9. The scatter plot is helpful in showing that certain data points 

have poor fits. 

 

Figure 42: Regression analysis for Training, Validation and Test dataset 
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Figure 43: Neural Network model training state 

The above figure 43 represents the training state of the neural network model. As an 

illustration of how the training works, consider the simplest optimization algorithm — gradient 

descent. It updates the network weights and biases in the direction in which the performance 

function decreases most rapidly, the negative of the gradient. Gradient is a value of back 

propagation gradient on each iteration in logarithmic scale. 9.2844e-06 means, reached the 

bottom of the local minimum of the goal function. 

Themu is the control parameter for the algorithm used to train the neural network. 

Choice of mu directly affect the error convergence. In case of least mean squared LMS 

algorithm, mu is dependent on the maximum Eigen value of input correlation matrix, plot 

signifies that the mu value is less 0.01. 

The number of validation checks represents the number of successive iterations that the 

validation performance fails to decrease. If this number reaches 6 (the default value), the 

training will stop. In this run, you can see that the training did stop because of the number of 

validation checks arrived is zero. 

For understanding epoch: In MATLAB an epoch can be thought of as a completed 

iteration of the training procedure of your artificial neural network. That is, once all the vectors 

http://www.mathworks.com/matlabcentral/answers/1910-what-is-epoch
http://www.mathworks.com/matlabcentral/answers/1910-what-is-epoch
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in your training set have been used by your training algorithm one epoch has passed. Thus, the 

"real-time duration" of an epoch is dependent on the training method used (batch vs. sequential, 

for example). 

epoch - Presentation of the set of training (input and/or target) vectors to a network and 

the calculation of new weights and biases. Note that training vectors can be presented one at a 

time or all together in a batch. 

Mat lab allows you to set a maximum number of epochs after which to terminate the 

training procedure. This is used to stop the training in case the solution of the training algorithm 

does not converge, to prevent infinitely running the training [93]. 

 

4.3.1. Actual VS Predicted PUE results validation 

The plot figure 44 below shows the variation between the Actual PUE calculated from 

the sensor data and Predicted PUE arrived from neural network. Also each PUE signal is 

predicted with the frequency of 10 seconds. 

 

Figure 44: Predicted vs. Actual PUE 

The neural network detailed in this paper achieved a mean Square error of +0.004 and 

standard deviation of 0.001 on the test dataset. The model accuracy for those PUE ranges is 

expected to increase over time as additional data are collected on heterogeneous DC operations. 

 

http://www.mathworks.com/matlabcentral/answers/1910-what-is-epoch
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4.4. Sensitivity Analysis 

The following graphs reveal the impact of individual operating parameters on the DC 

PUE. We isolate for the effects of specific variables by linearly varying one input at a time 

while holding all others constant. Such sensitivity analyses are used to evaluate the impact of 

set point changes and identify optimal set points. All test results have been verified empirically. 

Figure 45 & 46 represents that Fan power and Fan Speed are directly proportional to 

SUITE PUE, where Figure 45 signifies a linear variation between the PUE and Fan Power but 

Figure 36 depicts that there is an optimization in fan speed through an upper sloppy curve 

which creates a positive impact in the fan power for controlling the PUE without exceeding 

drastic change in the power consumption. 

 

 

Figure 45: SUITE PUE vs. Fan Power 

 

 

Figure 46: SUITE PUE vs. Fan Speed 
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Figure 47 signifies that the Absorption (KW) which is the chiller power varies inversely 

to PUE, as chiller power increases PUE drops. It concludes that it creates a great impact in 

PUE, which relatively stabilized through the fan power and server load for better 

synchronization. 

 

Figure 47: SUITE PUE vs. Absorption 

Figure 48 specifies the variation of PUE with Suite Server Load (KW) is linear, which 

states that the PUE decreases exponentially as the server load decreases. Eventually as per the 

data samples trained most of the power in the heterogeneous DC station is consumed by server 

load 78%.    

 

Figure 48: SUITE PUE vs. Suite Server Load 
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Figure 49: SUITE PUE vs. Cooling Coil Chilled Liquid Flow 

Figure 49 represents that as the cooling coil chilled liquid flow increases significantly 

the SUITE PUE decreases so there is an inversely proportional to each other.  

Figure 50 represents a slightly sloppy curve for the SUITE PUE versus Heat reclaim 

coil leaving temperature (°F), says that PUE is in stabilized state when the temperature is in 

the optimal stage and also shows that they are inversely proportional as the temperature 

increases the PUE drops out. 

 

Figure 50: SUITE PUE vs. Heat Reclaim Coil Leaving Temperature 

Figure 51 represents that as the Cooling coil leaving temperature (°F) increase the PUE 

decreases, so the DC should be maintained with increasing the cooling coil leaving temperature 

with stabilizing other variables and making PUE more effective to reduce the cost. Similarly 

Figure 52 suggests that the providing a system with cold aisle temperature (°F) over a period 

of time under different circumstance, the variation in the PUE is linearly increased as the cold 

aisle temperature decreases. 
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Figure 51: SUITE PUE vs. Cooling Coil Leaving Temperature 

 

 

Figure 52: SUITE PUE vs. Average Cold Aisle Temperature 

 

Figure 53: SUITE PUE vs. Cooling Coil Valve Position 
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Figure 54: SUITE PUE vs. Cold Coil Out Water Temp 

Figure 53 represents a linear variation as the Cooling coil valve position increases the 

PUE also increases, as it is directly proportional so usage of power is more as it becomes big. 

Figure 54 indicates that when Cold coil out water temperature decreases eventually the PUE 

increases, so the temperature for this scenario is optimized and they are inversely proportional 

to each other.   

 

4.5. Predictive Model for the cooling system 

In this section we explain using simulation model to predict optimized output of the 

cooling system from the neural network trained model as discussed in the section 3.7 Solution 

Method: Cooling Power Simulation. The figure 55 is plotted chiller Power versus Time 

samples (10 sec), by keeping constant the Cold Aisle Temperature at 68 oF. And also a plot 

with PUE versus time samples (10 sec), by keeping constant the Cold Aisle Temperature at 68 

oF. This optimized value is compared with operational value. In this particular analysis we find 

that system is operating 6% less efficient. 

Similarly, for determining the PUE at same constant cold aisle temperature 68oF, the 

plot on figure 56 represents the variation in of actual PUE versus the predicted PUE. The 

difference is 11% gap between the actual versus predicted PUE. 

The variation in the Figure 55 and Figure 56 shows large difference between optimized 

value verses actual operations. In the specific example, it is an unusual behavior; some 

malfunction has occurred in the heterogeneous DC. The large difference signifies anomalies in 

the data center systems. Manual intervention identified issues with faulty valve operation. 

Similarly, other issues can be solved by investigating the datacenter. 
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Figure 55: Actual vs. Predicted CP at constant cold aisle 68 degrees F 

 

 

Figure 56: Actual vs. Predicted PUE at constant cold aisle 68 degrees F 

The precise and robust PUE model offers many benefits for heterogeneous DC 

operators and owners. For example, in real time comparison of actual vs. predicted 

heterogeneous DC performance for any given set of conditions can be used for automatic 

performance alerting, real-time plant efficiency assessing and troubleshooting. 

Comprehensive DC efficiency model enables operators to simulate the DC operating 

configurations without making physical changes. Currently, it’s very difficult for an operator 

to predict the effect of a plant configuration change on cooling power prior to enacting the 

changes. This is due to the complexity of modern DCs, and the interactions between multiple 

control systems. A machine learning approach leverages the plethora of existing sensor data to 

develop a mathematical model that understands the relationships between operational 

parameters and the holistic energy efficiency. This type of simulation allows operators to 
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virtualize the DC for the purpose of identifying optimal plant configurations and predictively 

identify issues while reducing the uncertainty surrounding plant changes. 

 

4.6. Limitations 

 Back propagation neural networks (and many other types of networks) are in a sense 

the ultimate 'black boxes'. Apart from defining the general architecture of a network 

and perhaps initially seeding it with a random number, the user has no other role than 

to feed it input and watch it train and await the output. In fact, it has been said that with 

back propagation, "you almost don't know what you're doing". Some software freely 

available software packages (NevProp, bp, Mactivation) do allow the user to sample 

the networks’ progress' at regular time intervals, but the learning itself progresses on its 

own. The final product of this activity is a trained network that provides no equations 

or coefficients defining a relationship (as in regression) beyond its own internal 

mathematics. The network 'IS' the final equation of the relationship. 

 Back propagation networks also tend to be slower to train than other types of networks 

and sometimes require thousands of epochs. If run on a truly parallel computer system 

this issue is not really a problem, but if the BPNN is being simulated on a standard 

serial machine (i.e. a single SPARC, Mac or PC) training can take some time. This is 

because the machines CPU must compute the function of each node and connection 

separately, which can be problematic in very large networks with a large amount of 

data [94]. However, the speed of most current machines is such that this is typically not 

much of an issue. 

 

4.7. Future work: Experimental NN Chiller Power Controller 

With repeated experiments and we will be able identify varieties of issues and its 

resolution. This confidence, the future work will allow to build neural network controllers that 

can take corrective actions automatically to optimize power. The neural network predictive 

controller that is implemented in neural network model of a nonlinear plant to predict future 

plant performance. The controller then calculates the control input that will optimize plant 

performance over a specified future time horizon. The first step in model predictive control is 
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to determine the neural network plant model (system identification). Next, the plant model is 

used by the controller to predict future performance. 

This is a functional block diagram shown in figure 57 of Neural Network Controller for 

getting optimized chiller power, contains 5 blocks such as CP input controller, NN CAT 

controller, CAT Controller, NN CP controller and CP Output. 

 

Figure 57: Example chiller power controller 

The functions of each block is explained below: 

1. The CP Input controller which controls the chiller power 

2. NN CAT Controller, a neural network trained model which give optimized Cold 

Aisle Temperature 

3. CAT Controller controls the Cold aisle temperature. 

4. NN CP Controller, a neural network trained model which give optimized chiller 

power 

5. CP Output is optimized output obtained. 
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This controller seems to be not close enough for the deployment, needs additional 

neural network prediction modules to jointly make it as an excellent framework. This will be a 

real time controller in the future. 
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Chapter 5: Conclusions 

Accelerating growth in data center complexity and scale is making energy efficiency 

optimization increasingly important yet difficult to achieve. Additionally, maintaining 100% 

service levels is a requirement for midsize data centers. Unplanned failure of facility side 

equipment is detrimental to data center operations. Predictively identifying and preventing 

issues is becoming more critical for data centers. Fast response to alerted issues and resolving 

issues in the first attempt is more important than ever. 

This thesis presented practical implementation IoT framework deployment in a modular 

heterogeneous midsize data center, and analyzed data collected from the IoT platform for 

predictive maintenance, power management and improving operational metrics. 

First, thesis reviewed the modular datacenter design and introduces practical design and 

implementation of the IoT platform. We proved that it is practical to design and implement 

perception layer, network layer, middle-ware layer and application layer of the IoT framework. 

Second, the thesis investigated the use of machine learning techniques. We selected 

statistically valid variables, train, test and validate the learning engine. We are able to predict 

DC PUE within 0.0004 +/- 0.0005. We used learning model to optimize power usage. The 

implementation showed that comparing optimized output with actual operational data 

predictively alerts on anomalies in the data center facility side systems. 

Third, the thesis showed the use of data collected, intelligent alerting and partnering 

with experience vendors can reduce full time employee overhead. Intelligent alerting to the 

expert vendors improved response times on addressing issues. Delivering detail machine error 

codes via alerts can help technician resolve issues in their first attempt. 

In conclusion, actual testing on heterogeneous DCs indicates that machine learning is 

an effective method of using existing sensor data to model DC energy efficiency, predictive 

alerting, and can yield significant cost savings. Model applications include DC simulation to 

evaluating new plant configurations, assessing energy efficiency, and identifying optimization 

opportunities. 
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The IoT system brings balance between people and technology, approving that compared to 

independent working the collective working of these two critical components of operation is 

better. The strengths of people include their agility, their flexibility and their ability to approach 

a problem from different angles. Similarly, the strengths of technology include its efficiency 

and its ability to accurately and quickly handle a large number of tasks. The data center aims 

at these strengths playing off each other through the use of technology for maximizing the 

accuracy, efficiency and speed of the response time of their personnel and simultaneously 

adapting logic for increasing the flexibility, agility, and ability to teach of the technology, just 

the same as their personnel. In an IoT framework, the collective working of people and 

technology is better.  

The use of IoT framework for the collection of data paves way for further interesting work. It 

enables the creation of intelligent error detection and also a better understanding of the 

interesting interaction of multiple systems. Additionally, the collection of such large amount 

of data can be used for training machine learning engines and for the assured creation of 

machine learning based controllers for achieving real-time efficiencies in the ecosystem of the 

datacenter. 
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