

A Multi-Level Framework for the Detection, Prioritization and Testing of Software Design Defects

by

Dilan Sahin

A dissertation submitted in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

(Information Systems Engineering)

in the University of Michigan Dearborn

 2016

Doctoral Committee:

Assistant Professor Marouane Kessentini, Chair

Professor William Grosky

Assistant Professor Bochen Jia

Associate Professor Bruce Maxim

© Dilan Sahin 2016

ii

DEDICATION

This thesis work is dedicated to my dear family who has been always with me at every important

step of my life. I want to thank my dear mother, Dudu Sahin, who always encouraged me to be a

strong woman and be able to stay on my own foot. As a working mother, she did everything in

an extraordinary way to raise me and my brother and always showed us how valuable is to be a

hard-worker and fighter in this life. I owe everything I have to my strong mother. Her wish was

to see me on the stage while getting my PhD diploma. How lucky I am to give her what she

wished for. My father, Mahmut Sahin, is the person who gave me strength to follow my dreams.

He is my number one supporter in this life. All the sacrifices he did for me to gain this

experience are countless. I cannot forget the day when we get on the plane together to start my

childhood dream. He is my hero. My brother, Cem Deniz Sahin, is the dearest of our family. He

is my friend whom I can share everything in my life. I will always remember his cooking for me

whenever I needed to study. I want to thank my dear aunt, Dondu Serin, for being my second

mom whenever I needed her during my school years. She also has a lot of influence on me to

make my dream come true. I also want to thank all my family members back in Turkey.

iii

ACKNOWLEDGEMENTS

Deciding to pursue a PhD degree was not an easy choice especially when it involved me

leaving everyone behind and come to United States on my own. It has been a difficult journey

for me with ups and downs however it was totally worth it. This was not only an education, but a

life experience which made me who I am. I became a strong person who knows what she wants

from life and know how to get it if she puts enough hard work and sprinkle a bit enthusiasm in it.

This achievement would not be possible if Professor Kessentini was not in the picture. I want to

thank him for being the most important part of this journey. As an advisor, he gave me an

opportunity to learn how to do research and introduced me to this existing field which I will

continue building my career on top of it. I cannot thank him enough for his endless support, time

and energy to make this dream come true. I would also want to thank my dissertation committee,

Prof. Bruce Maxim, Prof. William Grosky and Prof. Bochon Jia who has been there each step I

took in this journey.

I want to give my special thanks to another strong woman in my life, Emily Wang, for all

her support whenever I came across an obstacle in this journey. She gave me strength, courage

and hope when I most needed it. Thank you Emily.

I want to thank the members of SBSE lab whom I shared most of this journey with. I

specifically want to thank Mohamed Wiem Mkaouer for his countless support during my PhD,

Nivin Tama for a great collaboration for our paper, Usman Mansoor for making us laugh all the

time during our lab meetings. I also want to thank my dearest friend John Baluch for his great

support in the last leap of this journey. I want to thank Kate Markotan for her support at every

obstacle I had during my studies.

I want to thank my friends Don Barbarci, Gaurav Sheth, Marinus Koelman, Josselin Dea,

Paty Ortiz, Nick Crooker and Scott Riopelle for all their great support.

iv

PREFACE

The research that led to this thesis was performed at Search-Based Software Engineering

Laboratory at the Department of Computer and Information Science, University of Michigan-

Dearborn, with Prof. Marouane Kessentini as the main advisor. This work was funded by

Search-Based Software Engineering Laboratory in collaboration with Ford Motor Company.

v

TABLE OF CONTENTS

DEDICATION ii

ACKNOWLEDGMENTS iii

PREFACE iv

LIST OF TABLES viii

LIST OF FIGURES ix

Chapter 1: Introduction ... 1

1.1 Research Context .. 1

1.2 Problem Statement .. 7

1.2.1 Code Smells Detection .. 10

1.2.2 Model Transformation Testing ... 12

1.3 Proposed Solutions.. 14

1.3.1 Contribution 1: Bi-Level Code Smells Detection ... 14

1.3.2 Contribution 2: Model Transformation Testing .. 15

Chapter 2: Related Work .. 17

2.1 Bi-Level Optimization Technique .. 17

2.2 Code-Smells Detection ... 20

2.2.1 Interactive-based approaches .. 21

2.2.2 Symptom-based detection ... 22

2.2.3 Search-based Approaches ... 24

2.3 Model Transformation Testing ... 25

2.3.1 Test Input Model Generation .. 25

2.3.2 Mutation-based Analysis of Transformations ... 27

Chapter 3: Code-Smells Detection as a Bi-Level Problem .. 28

vi

3.1 Introduction ... 28

3.2 Approach ... 30

3.2.1 Problem Formulation .. 34

3.2.2 Solution Approach .. 37

3.3 Validation .. 42

3.3.1 Research Questions ... 43

3.3.2 Software Projects Studied ... 44

3.3.3 Evaluation Metrics Used ... 46

3.3.4 Inferential statistical test methods used .. 47

3.3.5 Parameter tuning ... 49

3.3.6 Results ... 51

3.4 Industrial Case Study and Relevance of the Detected Code-Smells 68

3.4.1 Subjects ... 70

3.4.2 Questionnaire, Instructions and Pilot Study.. 70

3.4.3 Results of the Industrial Case Study and Relevance of Detected Code-Smells 76

3.5 Threats to validity ... 87

3.6 Conclusion .. 92

Chapter 4: Model Transformation Testing: A Bi-Level Search-Based Software Engineering

Approach 94

4.1 Introduction ... 94

4.2 Approach ... 96

4.2.1 Problem Formulation .. 97

4.2.2 Evaluation ... 104

4.3 Validation .. 105

vii

4.3.1 Research Questions ... 105

4.3.2 Experimental Settings ... 108

4.3.3 Results and discussions ... 110

4.3.4 Threats to Validity .. 115

Chapter 5: Conclusion and Future Work .. 117

Bibliography ... 119

viii

LIST OF TABLES

Table 1 List of quality metrics .. 9

Table 2 Software studied in our experiments. .. 45

Table 3 Best population size configurations ... 50

Table 4 The significantly best algorithm among random search, BLOP, GP and Co-Evol over 31

independent runs. “No. Sign.” Means no method is significantly better than another. 52

Table 5 . Median PR and Rc values on 31 runs for BLOP, random search (RS), GP [Kessentini et

al. 2011] and Co-Evol [Boussaa et al. 2013]. The results were statistically significant on 31

independent runs using the Wilcoxon rank sum test with a 99% confidence le 52

Table 6 Adjusted p-values of comparisons related to table 4 ... 58

Table 7 Software studied in our experiments. .. 69

Table 8 Survey organization to study the relevance of some detected code-smells. 74

Table 9 Manual validation of the detected code-smells on JDI-Ford. .. 77

Table 10 Adjusted p-values of comparisons related to table IX. .. 77

Table 11 QMOOD quality factors [Bansiya et al. 2002] .. 79

Table 12 QMOOD metrics for design properties [Bansiya et al. 2002] 79

Table 13 Scenarios .. 108

Table 14 The Wilcoxon test p-values and the effect size values (Cohen‟s d statistic) of the

comparisons between BLOP and Co-Evol on the 10 scenarios. ... 113

ix

LIST OF FIGURES

Figure 1 Building blocks of model transformation testing ... 5

Figure 2 Family to Person example: metamodels and example models. .. 6

Figure 3 Uni-directional relationship between test model generation and analysis 13

Figure 4 Illustration of the two levels of an exemplified bi-level single-objective optimization

problem. .. 19

Figure 5Approach Overview ... 31

Figure 6 (a) Pseudo-code of the bi-level adaptation for code-smell's detection 36

Figure 7 (b) Pseudo-code of the bi-level adaptation for code-smell's detection 37

Figure 8 Solution representation: vector (GA) to generate artificial code-smell 39

Figure 9 Box plots on three different systems (Gantt: small, Xerces: medium, Ant-Apache 1.7.0:

large) of precision values ... 54

Figure 10 Box plots on three different systems (Gantt: small, Xerces: medium, Ant-Apache

1.7.0: large) recall values. ... 54

Figure 11 Median PR scores for every code-smell's type over 31 runs on the different 9 open

source systems. ... 55

Figure 12 Median Rc (b) scores for every code-smell's type over 31 runs on the different 9 open

source systems. ... 56

Figure 13 The median precision score of detected artificial code-smells by BLOP and Co-Evol 60

Figure 14 The median precision and recall scores of detected code-smells by BLOP, GP and Co-

Evol on Xerces-J based on a target final fitness function values .. 61

Figure 15 The impact of the number of code-smell examples on the quality of the results (PR on

Xerces-J). .. 61

Figure 16 The median precision and recall scores of BLOP and DECOR obtained on

GanttProject, Nutch, Log4J, Lucene and Xerces-J based on three code-smell types (Blob, SC and

FD). ... 64

x

Figure 17 The impact of the number of selected solutions at upper level on the quality of the

results (PR, Rc and CT) using JFreeChart v1.0.9. .. 66

Figure 18 The number of evaluations required by the different algorithms (BLOP, Co-Evol and

GP) to reach acceptable results (f-measure=0.7) using Xerces-J v 2.7.0. 67

Figure 19 Scalability of our bi-level approach for code-smell's detection on three different

versions of Eclipse. ... 68

Figure 20 The impact of fixing a number of code-smells (refactorings) on QMOOD quality

attributes for JDI-Ford .. 81

Figure 21 The relevance of detected code-smells on the JDI-Ford system evaluated by the

original developers. ... 82

Figure 22 The usefulness of detected code-smells on the JDI-Ford system evaluated by the

original developers. ... 83

Figure 23 The relevance of detected code-smells on the different open source systems evaluated

by developers from groups A, B and C... 85

Figure 24 The relevance of the types of detected code-smells on the different open source

systems evaluated by developers from the groups A, B and C. .. 86

Figure 25 The usefulness of detected code-smells for software maintenance activities on the

different open source systems evaluated by developers from the A, B and C groups 87

Figure 26 Approach overview .. 97

Figure 27 Cut-and-splice crossover principle ... 102

Figure 28 Pseudo-code of the bi-level adaptation for model transformation testing. 103

Figure 29 Pseudo-code of the bi-level adaptation for model transformation testing. 104

Figure 30 Precision median values of BLOP, Co-Evol and Fleurey et al. [28] over 31

independent simulation runs. .. 111

Figure 31 Precision median values of BLOP and Co-Evol over 31 independent simulation runs.

... 113

Figure 32 Scalability of our bi-level approach for test cases generation 115

xi

ABSTRACT

Large-scale software systems exhibit high complexity and become difficult to maintain. In fact,

it has been reported that software cost dedicated to maintenance and evolution activities is more

than 80% of the total software costs. In particular, object-oriented software systems need to

follow some traditional design principles such as data abstraction, encapsulation, and modularity.

However, some of these non-functional requirements can be violated by developers for many

reasons such as inexperience with object-oriented design principles, deadline stress. This high

cost of maintenance activities could potentially be greatly reduced by providing automatic or

semi-automatic solutions to increase system‟s comprehensibility, adaptability and extensibility to

avoid bad-practices.

The detection of refactoring opportunities focuses on the detection of bad smells, also called

antipatterns, which have been recognized as the design situations that may cause software

failures indirectly. The correction of one bad smell may influence other bad smells. Thus, the

order of fixing bad smells is important to reduce the effort and maximize the refactoring benefits.

However, very few studies addressed the problem of finding the optimal sequence in which the

refactoring opportunities, such as bad smells, should be ordered. Few other studies tried to

prioritize refactoring opportunities based on the types of bad smells to determine their severity.

However, the correction of severe bad smells may require a high effort which should be

xii

optimized and the relationships between the different bad smells are not considered during the

prioritization process.

The main goal of this research is to help software engineers to refactor large-scale systems with a

minimum effort and few interactions including the detection, management and testing of

refactoring opportunities. We report the results of an empirical study with an implementation of

our bi-level approach. The obtained results provide evidence to support the claim that our

proposal is more efficient, on average, than existing techniques based on a benchmark of 9 open

source systems and 1 industrial project. We have also evaluated the relevance and usefulness of

the proposed bi-level framework for software engineers to improve the quality of their systems

and support the detection of transformation errors by generating efficient test cases.

KEYWORDS

Search-based Software Engineering, Model-Driven Engineering, Refactoring, Bi-level

Optimization

1

Chapter 1: Introduction

1.1 Research Context

The key to successful software is to integrate software maintenance step into software life cycle

smoothly. The recent studies have showed the importance of the software maintenance in

software life cycle, total cost of the software projects, and easiness in the flexibility and

extensibility of software design. Software maintenance has been the focal point of many research

topics and software companies how to find better, more automated ways to increase the impact

of software maintenance on software quality and also decrease the cost of software maintenance

since it consumes up to 90% of the total cost of a software system.

Restructuring the internal structure of the software systems while keeping the external behavior

unchanged, has been recognized as an important and powerful approach to improve the quality

of the software in terms of many aspects, e.g., software maintainability, reusability, and

extensibility [1, 2]. This approach has been known as Software Refactoring [2, 3] which is an

effective method to increase the internal quality of software systems and widely acknowledged

among software‟s best practices. The most important step in software refactoring is to find how

to identify refactoring opportunities in the systems which may be in need of software

restructuring. Code smells, also called antipatterns[4], defects, smells [5], anomalies[6] or bad

design practices[7] which have been recognized as the design situations that may cause software

 Introduction

2

failures indirectly, can be summarized as the identification methods to find out which software

systems or which part of software are in need refactoring[5, 8]. A code-smell is defined as bad

design choices that can have a negative impact on the code quality such as maintainability,

changeability and comprehensibility which could introduce bugs[12]. Code-smells classify

shortcomings in software that can decrease software maintainability. They are also defined as

structural characteristics of software that may indicate a code or design problem that makes

software hard to evolve and maintain, and trigger refactoring of code[6]. Code-smells are not

limited to design flaws since most of them occur in code and are not related to the original

design. In fact, most of code-smells can emerge during the evolution of a system and represent

patterns or aspects of software design that may cause problems in the further development and

maintenance of the system. As stated by [4], code-smells are unlikely to cause failures directly,

but may do it indirectly. In general, they make a system difficult to change, which may in turn

introduce bugs. It is easier to interpret and evaluate the quality of systems by identifying code-

smells than the use of traditional software quality metrics. In fact, most of the definitions of

code-smells are based on situations that are daily faced by developers. Most of the code-smells

identify locations in the code that violate object-oriented design heuristics, such as the situations

described by Riel[13] and Coad et al.[14]. The 22 Code Smells identified and defined informally

by Fowler et al. [4] aim to indicate software refactoring opportunities and „give you indications

that there is trouble that can be solved by a refactoring‟. Zhang et al.[15] identified in their

survey the code-smells that attracted more attention in current literature.

Van Emden and Moonen[16] developed one of the first automated code-smell detection tools for

Java programs. Mantyla studied the manner of how developers detect and analyse code-

 Introduction

3

smells[17]. Previous empirical studies have analysed the impact of code-smells on different

software maintainability factors including defects[18] and effort[19]. In fact, software metrics

(quality indicators) are sometimes difficult to interpret and suggest some actions (refactoring) as

noted by Anda et al.[20] and Marinescu et al.[20, 21]. Code-smells are associated with a generic

list of possible refactorings to improve the quality of software systems. In addition, Yamashita et

al. [22] show that the different types of code-smells can cover most of maintainability

factors[12]. Thus, the detection of code-smells can be considered as a good alternative of the

traditional use of quality metrics to evaluate the quality of software products. Brown et al. [23]

define another category of code-smells that are documented in the literature, and named anti-

patterns.

 In our experiments, we focus on the seven following code-smell types:

 Blob: It is found in designs where one large class monopolizes the behavior of a system (or

part of it), and the other classes primarily encapsulate data.

 Feature Envy (FE): It occurs when a method is more interested in the features of other

classes than its own. In general, it is a method that invokes several times accessor methods

of another class.

 Data Class (DC): It is a class with all data and no behavior. It is a class that passively store

data

 Spaghetti Code (SC): It is a code with a complex and tangled control structure.

 Functional Decomposition (FD): It occurs when a class is designed with the intent of

performing a single function. This is found in a code produced by non-experienced object-

oriented developers.

 Introduction

4

 Lazy Class (LC): A class that is not doing enough to pay for itself.

 Long Parameter List (LPL): Methods with numerous parameters are a challenge to

maintain, especially if most of them share the same data-type.

We choose these code-smell types in our experiments because they are the most frequent, hard to

detect and fix based on recent empirical study[24], cover different maintainability factors, and

also due to the availability of code-smell examples. However, the proposed approach in this

thesis is generic and can be applied to any type of code-smells. The code-smell detection process

consists in finding code fragments that violate structural or semantic properties such as the ones

related to coupling and complexity. In this setting, internal attributes used to define these

properties, are captured through software metrics, and properties are expressed in terms of valid

values for these metrics. This follows a long tradition of using software metrics to evaluate the

quality of the design including the detection of code-smells. The most widely-used metrics are

the ones defined by Chidamber and Kemerer[25] and other studies[12, 26]. In this thesis, we use

variations of these metrics and adaptations of procedural ones as well[27, 28]. The list of metrics

is described in Table I.

On the other hand, model transformation testing is considered as one of the main challenges in

MDE [32]. Figure 1 illustrates the model transformation pattern extended for the context of

model transformation testing. In order to test a given transformation implementation, a set of test

input models is needed for running the transformation to obtain test output models. As soon as

the output models of the transformation runs are available, the validity of the output models can

be determined by using an oracle function. In the context of model transformations, model

comparison may be used by defining the expected output models for given input models or

 Introduction

5

contracts may be applied that are evaluated over pairs of input and output models [33-35].

In this thesis, we focus on the generation of test input models. Thus, we reuse existing

approaches for specifying oracle functions and transformations implementations in the context of

this work.

Figure 1 Building blocks of model transformation testing

1.1.1.1 Model Transformation Example

Before we proceed with discussing the relationships between test case generation and the

analysis of the generated test cases, we introduce a small transformation example to explicate the

definition of metamodels, models, and model transformations. The example we use for this

purpose is the Families to Person example1 presented in the ATL documentation example

collection. The source and target metamodels and models are illustrated in UML class diagram

and UML object diagram notation, respectively, in Figure 2. In this example, the family

members are transformed into persons based on their family/member relationships. Furthermore,

the fullNames of persons are computed based on the concatenation of the firstName of persons

and the lastName of the families. An example source/target model pair is used to exemplify these

1 http://www.eclipse.org/atl/documentation/basicExamples_Patterns/

Source
Metamodels

Transformation
Implementation

Test Input
Models

Target
Metamodels

Test Output
Models

Transformation
Executions

«conformsTo» «conformsTo» «conformsTo»

«produce»«read»

«uses» «uses»

Oracle
Function

«uses»«uses»

 Introduction

6

transformation requirements.

Figure 2 Family to Person example: metamodels and example models.

In Listing 1, the corresponding ATL code for the given transformation example can be found.

The transformation module consists of two helpers and two rules. Helpers are used to define

reusable queries. Helpers are called from the rules which are the major elements of an ATL

transformation. A rule consists of a part which is querying elements from the source models and

of a to part which is generating elements in the target models and setting their features by

defining bindings (cf. <- operator in Listing 1). By running this transformation for the given

source model of Figure 2, the corresponding target model is produced. An example for an oracle

function, to detect a possible error, may be the following requirement for the transformation:

there have to be as many Person instances in the target model as we have Member instances in

the source model. This may be true for the given sample source model, but for other source

models, the opposite may be the case. Thus, proper means for generating test source models is

needed to judge if a transformation is actually realizing the stated requirements in terms of oracle

functions or not.

Family

lastName : String

Member

firstName : String

Person

fullName : String

MaleFemale
daugthers sons

fathermother

0..* 0..*

0..10..1

f1:Family

lastName=„March“

m1:Member

firstName=„Jim“

m2:Member

firstName=„Cindy“

p1:Male

fullName=„Jim March“

p2:Female

fullName=„Cindy March“

father mother

Source Metamodel Target Metamodel

Source Model Target Model

 Introduction

7

Listing 1: Family to Person example: ATL transformation.

module FamiliesToPersons;

create OUT: Pers from IN: Fam;

helper context Fam!Member def: isFemale : Boolean =...

helper context Fam!Member def: familyName : String =...

rule Member2Male {

 from s:Fam!Member (not s.isFemale)

 to t: Pers!Male(

 fullName <- s.firstName+‟ ‟+s.familyName

)
}

rule Member2Female {

 from s:Fam!Member (s.isFemale)

 to t:Pers!Female(

 fullName <- s.firstName+‟ ‟+s.familyName

)

}

1.2 Problem Statement

In tackling increasing software degradation, the first thing to look is where exactly the

problematic areas in the software are, in other words, to detect the design defects in the system.

There have been proposed many solutions to detect those anomalies in the software system,

however most of these solutions involve detecting the code smells manually. Those methods are

mostly based on declarative rule specification in which the identification of the code-smells are

made by the manually defined rules. Hence, code smells are identified by combinations of

mainly quantitative (metrics), structural, and/or lexical information. However, manual code-

smell identification process has some drawbacks. However, in an exhaustive scenario, the

number of possible code-smells used to manually characterize with rules can be large. For each

code-smell, rules that are expressed in terms of metric combinations need substantial calibration

efforts to find the right threshold value for each metric. Another important issue is that

translating symptoms into rules is not obvious because there is no consensual symptom-based

 Introduction

8

definition of code-smells[9]. When consensus exists, the same symptom could be associated to

many code-smells types, which may compromise the precise identification of code-smell types.

These difficulties explain a large portion of the high false-positive rates reported in existing

research. Recently, a Search-Based Software Engineering (SBSE) approach[10], based on

genetic programming[11], is used to generate code-smell's detection rules from a set of examples

of code-smells identified manually by developers[7]. However, such approaches require a high

number of code-smell examples (data) to provide efficient detection rules solutions. In fact,

code-smells are not usually documented by developers (unlike bugs report). Thus, it is time-

consuming and difficult to collect code-smells and inspect manually large systems. In addition, it

is challenging to ensure the diversity of the code-smell examples to cover most of the possible

bad-practices.

As the last step, we want to emphasize the importance of testing. In the current state of work,

there is a lack of generating the optimum test cases which suit the specific system the most. With

that inspiration, as our last step, we try to tackle this problem.

In this thesis, we are addressing how to overcome the current problems by bringing the bi

level optimization approach into the picture, and getting highly good results after applying

detection, maintenance, refactoring and testing steps and showing the importance how these

steps are highly dependent on each other. Next sections we give a detailed description about the

current problems in the existing work that our contribution is trying to solve.

 Introduction

9

Table 1 List of quality metrics

Metrics Description

Weighted Methods per Class (WMC)

WMC represents the sum of the complexities of its

methods.

Response for a Class (RFC) RFC is the number of different methods that can be

executed when an object of that class receives a

message.

Lack of Cohesion of Methods (LCOM) Chidamber and Kemerer define Lack of Cohesion in

Methods as the number of pairs of methods in a class

that does not have at least one field in common minus

the number of pairs of methods in the class that does

share at least one field. When this value is negative, the

metric value is set to 0.

Number of Attributes (NA)

Attribute Hiding Factor (AH)

AH measures the invisibilities of attributes in classes.

The invisibility of an attribute is the percentage of the

total classes from which the attribute is not visible.

Method Hiding Factor (MH)

MH measures the invisibilities of methods in classes.

The invisibility of a method is the percentage of the total

classes from which the method is not visible.

Number of Lines of Code (NLC)

NLC counts the lines but excludes empty lines and

comments.

Coupling Between Object classes (CBO)

CBO measures the number of classes coupled to a given

class. This coupling can occur through method calls,

field accesses, inheritance, arguments, return types, and

exceptions.

Number of Association (NAS)

Number of Classes (NC)

Depth of Inheritance Tree (DIT)

DIT is defined as the maximum length from the class

node to the root/parent of the class hierarchy tree and is

measured by the number of ancestor classes. In cases

involving multiple inheritances, the DIT is the maximum

length from the node to the root of the tree.

Polymorphism Factor (PF)

PF measures the degree of method overriding in the

class inheritance tree. It equals the number of actual

method overrides divided by the maximum number of

possible method overrides.

Attribute Inheritance Factor (AIF)

AIF is the fraction of class attributes that are inherited.

Number of Children (NOC) NOC measures the number of immediate descendants of

the class.

 Introduction

10

1.2.1 Code Smells Detection

In this section, we introduce some issues and challenges related to the detection of code-

smells. Overall, there is no general consensus on how to decide if a particular design violates a

quality heuristic. In fact, there is a difference between detecting symptoms and asserting that the

detected situation is an actual code-smell. For example, an object-oriented program with a

hundred classes from which one class implements all the behavior and all the other classes are

only classes with attributes and accessors. No doubt, we are in the presence of a Blob.

Unfortunately, in real-life systems, we can find many large classes, each one using some data

classes and some regular classes. Deciding which classes are Blob candidates heavily depends on

the interpretation of each analyst. In some contexts, an apparent violation of a design principle

may be consensually accepted as normal practice. For example, a “Log” class responsible for

maintaining a log of events in a program, used by a large number of classes, is a common and

acceptable practice. However, from a strict code-smell definition, it can be considered as a class

with an abnormally large coupling. Another issue is related to the definition of thresholds when

dealing with quantitative information. For example, the Blob detection involves information such

as class size. Although we can measure the size of a class, an appropriate threshold value is not

trivial to define. A class considered large in a given program/community of users could be

considered average in another. All the above issues make the process of manually defining code-

smell detection rules challenging. The generation of detection rules requires a huge code-smell

example set to cover most of the possible bad-practice behaviors. Code-smells are not usually

documented by developers (unlike bugs report). Thus, it is time-consuming and difficult to

collect code-smells and inspect manually large systems [13]. In addition, it is challenging to

 Introduction

11

ensure the diversity of the code-smell examples to cover most of the possible bad-practices then

using these examples to generate good quality of detection rules.

We address the open issues related to applying code smells detection approaches.

Problem 1.2.1.1 The vast majority of existing work in code-smells detection relies on

declarative rule specification [7, 29, 30]. In these settings, rules are manually defined to

identify the key symptoms that characterize a code-smell using combinations of mainly

quantitative (metrics), structural, and/or lexical information. However, in an exhaustive

scenario, the number of possible code-smells used to manually characterize with rules can

be large.

Problem 1.2.1.2 For each code-smell, rules that are expressed in terms of metric

combinations need substantial calibration efforts to find the right threshold value for each

metric.

Problem 1.2.1.3 Another important issue is that translating symptoms into rules is not

obvious because there is no consensual symptom-based definition of code-smells [7, 31].

When consensus exists, the same symptom could be associated to many code-smells types,

which may compromise the precise identification of code-smell types.

Problem 1.2.1.4 Recently, Search-Based Software Engineering (SBSE) approach, based on

genetic programming is used to generate code-smells detection rules from a set of examples

of code-smells identified manually by developers [7]. However, such approaches require a

high number of code-smell examples (data) to provide efficient detection rules solutions. In

 Introduction

12

fact, code-smells are not usually documented by developers (unlike bugs report). Thus, it is

time-consuming and difficult to collect code-smells and inspect manually large systems.

Problem 1.2.1.5 It is challenging to ensure the diversity of the code-smell examples to

cover most of possible bad-practices.

1.2.2 Model Transformation Testing

1.2.2.1 Open Issue: Marrying Generation & Analysis of Test Input Models

For the generation of test models, several different techniques (e.g.,[36-39] to mention just a

few) are available that are based on different notions of coverage criteria. While some

approaches focus mainly on black-box criteria such as metamodel coverage (e.g., which meta-

classes and which meta-features are actually instantiated by the test models), other approaches

focus on white-box criteria such as transformation coverage (e.g., rule, statement, or path

coverage). These approaches support model generator components (cf. upper part of Figure 3)

that are mostly based on constraint satisfaction techniques such as CSP or SAT. In particular,

they transform the metamodels and/or model transformations to constraints which are solved in

order to provide the requested test data.

Of course, the coverage criteria is only an approximation for the fitness of a set of test input

models. In order to determine the effectiveness of a test set, mutation-based analysis of test sets

for model transformations have been proposed[40, 41] and applied in several studies to compare

the appropriateness of different coverage criteria, e.g., see [42].

 Introduction

13

Figure 3 Uni-directional relationship between test model generation and analysis

In the context of model transformations, mutation testing is achieved by defining a set of

mutation operators based on fault models, i.e., typical errors that occur, for model

transformations which are applied to the model transformation implementation. The result of

applying the mutation operators to a model transformation is called a mutant (cf. lower part of

Figure 3). The mutant is killed if the test input models are able to detect the mutation, i.e., one

test should fail. The goal is to kill as many mutations as possible for a given set of input models.

For instance, a mutant of the transformation in Listing 1 may be produced by changing the type

of the output element (cf. to part) of the second rule from Female to Male or by deleting the

bindings for setting the fullName values in the output models. Mutation-based analysis is mostly

used as a post-generation activity for quality assurance as can be seen in Figure 3. The model

generation phase feeds the analysis phase, but not the other way round. However, we propose to

consider the relationship between generation and analysis as a bi-directional one. Instead of

“just” evaluating the quality, the evaluation results may be again propagated to the model

generation component in order to improve automatically the set of test input models.

Source
Metamodels

Target
Metamodels

Transformation
Implementation

Test Input Model
Generation

Test Input
Models

Test Set
AnalyzerTransformation

Mutator

Mutated
Transformations

Test Set
Quality Model

Transformation
Definition

Test Model Generation

Test Model Analysis

 Introduction

14

1.3 Proposed Solutions

To address the above mentioned problems, we propose the following solutions which are

organized into four principal contributions. First of all, we want to talk about Bi-Level

optimization since in all our contributions it is the main part.

1.3.1 Contribution 1: Bi-Level Code Smells Detection

In this thesis, we introduce a novel formulation of the code-smells detection as a bi-level

problem. We report the results of an empirical study with an implementation of our bi-level

approach. The obtained results provide evidence to support the claim that our proposal is more

efficient, on average, than existing techniques based on a benchmark of 9 open source systems

and 1 industrial project. We also evaluate the relevance and usefulness of the detected code-

smells for software engineers to improve the quality of their systems.

Contribution 1.1 We have proposed a bi-level evolutionary optimization approach. The upper-

level optimization produces a set of detection rules, which are combinations of quality metrics,

with the goal to maximize the coverage of not only a code-smell example base but also a lower-

level population of artificial code-smells.

Contribution 1.2 The lower-level optimization tries to generate artificial code-smells that cannot

be detected by the upper-level detection rules, thereby emphasizing the generation of broad-

based and fitter rules.

Contribution 1.3 The statistical analysis of the obtained results over nine studied software

systems have shown the competitiveness and the outperformance of our proposal in terms of

 Introduction

15

precision and recall over a single-level genetic programming, co-evolutionary, and non-search-

based methods.

1.3.2 Contribution 2: Model Transformation Testing

A novel formulation of model transformation testing as a bi-level optimization problem is

introduced. We report the results of an empirical study with an implementation of our bi-level

approach. The obtained results provide evidence to support the claim that our proposal is more

efficient, on average, than an existing technique based on metamodels coverage.

Contribution 2.1 In our adaptation, the upper level generates a set of test cases (models) which

maximizes the coverage of source and target metamodels; and mutants (errors introduced in the

rules/program) are generated by the lower level.

Contribution 2.2 The lower level maximizes the number of errors that cannot be detected by test

cases produced by the upper level. The errors are detected by comparing the target models

produced by both programs (rules) at the lower (mutants) and upper levels. If they are the same,

we can assume that the test cases were not sufficient to cover all the transformation possibilities.

Contribution 2.3 The overall problem appears as a BLOP task, where for each generated test

cases, the upper level observes how the lower-level acts by generating errors/mutants that cannot

be detected by the upper level (leader) test cases, and then chooses the best test cases which suits

it the most, taking the actions of the errors generation process (lower level or follower) into

account.

 Introduction

16

Contribution 2.4 The main advantage of our bi-level formulation is that the generation of test

cases is not limited to the metamodels coverage but it allows evaluating the ability of generated

test cases to detect errors and their coverage of transformation possibilities.

Contribution 2.5 In addition, we considered in our approach the dependency between mutation

analysis and test cases generation and we do not consider them as two separate steps. We

implemented our proposed bi-level approach and evaluated it on two different ATL

transformation programs.

17

Chapter 2: Related Work

2.1 Bi-Level Optimization Technique

Most studied real-world and academic optimization problems involve a single level of

optimization. However, in practice, several problems are naturally described in two levels. These

latter are called BLOPs[43]. In such problems, we find a nested optimization problem within the

constraints of the outer optimization one. The outer optimization task is usually referred as the

upper level problem or the leader problem. The nested inner optimization task is referred as the

lower level problem or the follower problem, thereby referring the bi-level problem as a leader-

follower problem or as a Stackelberg game[44]. The follower problem appears as a constraint to

the upper level, such that only an optimal solution to the follower optimization problem is a

possible feasible candidate to the leader one. A BLOP contains two classes of variables: (1) the

upper level variables n
Uu Xx  and (2) the lower level variables .m

Ll Xx  For the

follower problem, the optimization task is performed with respect to the variables , and the

variables act as fixed parameters. Thus, each corresponds to a different follower problem,

whose optimal solution is a function of and needs to be determined. All variables),(lu xx are

considered in the leader problem, but are not changed (cf. Figure 1). In what follows, we give

the formal definition of BLOP:

Definition 1: Assuming  mnL : to be the leader problem and  mnf : to be the

follower one, analytically, a BLOP could be stated as follows:

18 Related Work

18

),(
,

lu
XxXx

xxLMin
LlUu 

 subject to
 











KkxxG

JjxxgxxfArgMinx

luk

lujlul

,...,1,0),(

,...,1,0),(),,(

BLOPs are intrinsically more difficult to solve than single-level problems, it is not surprising that

most of existing studies to date has tackled the simplest cases of BLOPs, i.e., problems having

nice properties such as linear, quadratic or convex objective and/or constraint functions. In

particular, the most studied instance of BLOPs has been for a long time is the linear case in

which all objective functions and constraints are linear with respect to the decision variables.

Although the first works on bi-level optimization date back to the seventies, it was not until the

early eighties that the usefulness of these mathematical programs in modeling hierarchical

decision processes and engineering problems prompted researchers to pay close attention to

BLOPs. A first bibliographical survey on the subject was written by Kolstad [43] in mid-eighties.

BLOPs being intrinsically more difficult than single-level problems, it is not surprising that most

algorithmic research to date has tackled the simplest cases of BLOPs, i.e., problems having nice

properties such as linear, quadratic or convex objective and/or constraint functions[45, 46]. In

particular, the most studied instance of BLOPs has been for a long time the linear case in which

all objective functions and constraints are linear with respect to the decision variables[47, 48].

19 Related Work

19

Figure 4 Illustration of the two levels of an exemplified bi-level single-objective optimization problem.

Existing methods to solve BLOPs could be classified into two main families: (1) classical

methods and (2) evolutionary methods. The first family includes extreme point-based

approaches[49], branch-and-bound[46], complementary pivoting[50], descent methods[51],

penalty function methods [51], trust region methods[52], etc. The main shortcoming of these

methods is that they heavily depend on the mathematical characteristics of the BLOP at hand.

The second family includes meta-heuristic algorithms that are mainly Evolutionary Algorithms

(EAs). Recently, several EAs have demonstrated their effectiveness in tackling such type of

problems thanks to their insensibility to the mathematical features of the problem in addition to

their ability to tackle large-size problem instances by delivering satisfactory solutions in a

reasonable time. Some representative works are by [44, 53, 54].

To the best of our knowledge and based on recent surveys [55, 56], there is no work in the

software engineering literature that considers a software engineering problem as a bi-level one.

20 Related Work

20

2.2 Code-Smells Detection

The vast majority of existing work in code-smells detection relies on declarative rule

specification[17]. In these settings, rules are manually defined to identify the key symptoms that

characterize a code-smell using combinations of mainly quantitative (metrics), structural, and/or

lexical information. However, in an exhaustive scenario, the number of possible code-smells

used to manually characterize with rules can be large. For each code-smell, rules that are

expressed in terms of metric combinations need substantial calibration efforts to find the right

threshold value for each metric. Another important issue is that translating symptoms into rules

is not obvious because there is no consensual symptom-based definition of code-smells[9]. When

consensus exists, the same symptom could be associated to many code-smells types, which may

compromise the precise identification of code-smell types. These difficulties explain a large

portion of the high false-positive rates reported in existing research. Recently, a Search-Based

Software Engineering (SBSE) approach[64], based on genetic programming[97], is used to

generate code-smell's detection rules from a set of examples of code-smells identified manually

by developers[7]. However, such approaches require a high number of code-smell examples

(data) to provide efficient detection rules solutions. In fact, code-smells are not usually

documented by developers (unlike bugs report). Thus, it is time-consuming and difficult to

collect code-smells and inspect manually large systems. In addition, it is challenging to ensure

the diversity of the code-smell examples to cover most of the possible bad-practices. There are

several studies that have recently focused on detecting code-smells in software using different

techniques. These techniques range from fully automatic detection to guided manual inspection.

21 Related Work

21

2.2.1 Interactive-based approaches

In [4], Fowler and Beck have described a list of design smells that may exist in the program.

They suggested that the software maintainers should manually inspect the program to detect

existing design smells. In addition, they specify particular refactorings for each code-smell type.

Travassos et al. [16] have also proposed a manual approach for detecting code-smells in object-

oriented designs. The idea is to create a set of “reading techniques” that help a reviewer to “read”

a design artifact for finding relevant information. These reading techniques give specific and

practical guidance for identifying code-smells in object-oriented design. In this way, each

reading technique helps the maintainer focusing on some aspects of the design, in such a way

that the inspection team applying the entire family should achieve a high degree of coverage of

the design code-smells. In addition, in [57], another proposed approach is based on violations of

design rules and guidelines. This approach consists of analyzing legacy code, specifying frequent

design problems as queries and locating the occurrences of these problems in a model derived

from the source code. The high rate of false-positives generated by the above-mentioned

approaches encouraged other teams to explore semi-automated solutions. These solutions took

the form of visualization-based environments. The primary goal is to take advantage of the

human capability to integrate complex contextual information in the detection process. Kothari et

al. [58] present a pattern-based framework for developing tool to detect software anomalies by

representing potential code-smells with different colors. Dhambri et al. [59] have proposed a

visualization-based approach to detect design anomalies by automatically detecting some

symptoms and letting others to a human analyst. The visualization metaphor was chosen

specifically to reduce the complexity of dealing with a large amount of data. Although

22 Related Work

22

visualization-based approaches are efficient to examine potential code-smells on their program

and in their context, they do not scale to large systems easily. In addition, they require great

human expertise, and thus they are still time-consuming and error-prone strategies. Moreover,

the information visualized is mainly metric-based, meaning that complex relationships can be

difficult to detect. Indeed, since visualization approaches and tools such as VERSO [59] are

based on manual and human inspection, they are still, not only, slow and time-consuming, but

also subjective.

The main disadvantage of existing manual and interactive-based approaches is that they are

ultimately a human-centric process which requires a great human effort and strong analysis and

interpretation effort from software maintainers to find design fragments that correspond to code-

smells. In addition, these techniques are time-consuming, error-prone and depend on programs in

their contexts.

2.2.2 Symptom-based detection

Moha et al. [60] started by describing code-smell symptoms using a domain-specific-language

(DSL) for their approach called DECOR. They proposed a consistent vocabulary and DSL to

specify anti-patterns based on the review of existing work on design code-smells found in the

literature. Symptom descriptions are later mapped to detection algorithms. However, converting

symptoms into rules needs a significant analysis and interpretation effort to find the suitable

threshold values. In addition, this approach uses heuristics to approximate some notions, which

results in an important rate of false positives. Indeed, this approach has been evaluated on only

four well-known design code-smells: the Blob, functional decomposition, spaghetti code, and

23 Related Work

23

Swiss-army knife because the literature provides obvious symptom descriptions on these code-

smells. Recently, another probabilistic approach has been proposed by Khomh et al. [30]

extending the DECOR approach [60], a symptom-based approach, to support uncertainty and to

sort the code-smell candidates accordingly using a Bayesian Belief Network (BBN). The

detection outputs are probabilities that a class is an occurrence of a code-smell type, i.e., the

degree of uncertainty for a class to be a code-smell. They also showed that BBNs can be

calibrated using historical data from both similar and different context. Similarly, Munro et al.[8]

have proposed a template-based approach using a precise definition of bad smells from the

informal descriptions given by the originators Fowler and Beck [4]. The template consists of

three main parts: a code-smell's name, a text-based description of its characteristics, and

heuristics for its detection.

In another category of work based on the use quality metrics, Marinescu et al. [17] have

proposed a mechanism called "detection strategy" for formulating metrics-based rules that

capture deviations from good design principles and heuristics. Detection strategies allow to a

maintainer to directly locate classes or methods affected by a particular design code-smell. As

such, Marinescu has defined detection strategies for capturing around ten important flaws of

object-oriented design found in the literature. After his suitable symptom-based characterization

of design code-smells, Salehie et al.[61] proposed a metric-based heuristic framework to detect

and locate object-oriented design flaws similar to those illustrated by Marinescu [17]. It is

accomplished by evaluating design quality of an object-oriented system through quantifying

deviations from good design heuristics and principles by mapping these design flaws to class

level metrics such as complexity, coupling and cohesion by defining rules. Erni et al. [53]

24 Related Work

24

introduce the concept of multi-metrics, as an n-tuple of metrics expressing a quality criterion

(e.g., modularity). Unfortunately, multi-metrics neither encapsulate metrics in a more abstract

construct, nor do they allow a flexible combination of metrics.

Van Emden and Moonen[16] developed one of the first automated code-smells detection tools

for Java programs. They developed a prototype code-smells browser that detects and visualizes

code-smells in Java programs. Mantyla studied the manner of how developers detect and analyse

code-smells[9]. Previous empirical studies have analyzed the impact of code-smells on different

software maintainability factors [18]. In fact, software metrics (quality indicators) are sometimes

difficult to interpret and suggest some actions (refactoring) as noted by Anda et al.[18] and

Marinescu et al.[21]. In addition, Yamashita et al.[22] show that the different types of code-

smells can cover different maintainability factors[12]. In other studies, Yamashita et al.[62]

analyzed the benefits of detecting code-smells on several industrial projects and evaluated their

impact on different maintainability aspects. Recently, Palomba et al. [24] used the history of

changes to detect code-smells instead of the use of quality metrics. For example, classes that

change frequently are considered as a blob. A comparison with DECOR confirms the

outperformance of their approach and the benefits of the use of the history of changes for the

detection of code-smells.

2.2.3 Search-based Approaches

SBSE [10] uses search-based approaches to solve optimization problems in software

engineering. After the formulation of software engineering task as a search problem, many

search algorithms can be applied to solve that problem. In [63], we have proposed another

25 Related Work

25

approach, based on search-based techniques, for the automatic detection of potential code-smells

in code. We used the notion that the more code deviates from good practices, the more likely it is

bad. In another work [7], we generated detection rules defined as combinations of

metrics/thresholds that better conform to known instances of bad-smells (examples). Then, the

correction solutions, a combination of refactoring operations, should minimize the number of

bad-smells detected using the detection rules. Thus, our previous work treats the detection and

correction as two different steps.

Based on recent SBSE surveys[63, 64], the use of bi-level optimization is still very limited in

software engineering. Indeed, this work represents the first attempt to use bi-level optimization

to address software engineering problem.

2.3 Model Transformation Testing

Several techniques have been proposed to generate test cases for model transformations [32, 33,

37, 38, 40, 104]. The majority of them generate models conforming to source metamodels in

order to maximize the coverage of metamodels. With respect to the contribution of this thesis,

we organize related work into two categories. First, we survey approaches used for test input

model generation, and second, we elaborate on approaches used for mutation-based analysis of

test input models. We base our related work categorization on recent surveys on model

transformation testing approaches.

2.3.1 Test Input Model Generation

The generation of test input models for model transformations may be distinguished into two

26 Related Work

26

general approaches: black-box based approaches and white-box based approaches. Regarding

white-box-based methods in the area of model transformations, Küster et al. [36] assume the

existence of a high-level design of model transformations to produce test cases. Consequently, to

apply this approach to existing model transformations such as ATL transformations, the manual

extraction of these conceptual transformation rules is required, being in contrast to our vision of

testing these transformations directly and automatically. In Gonzáles & Cabot [38] a very

interesting white-box based testing approach for ATL transformations is provided by extracting

OCL constraints from ATL code to automate the generation of test input models. The generation

of test cases from Triple Graph Grammars is discussed in [30].

Besides white-box testing, many approaches have been proposed for black-box testing, i.e.,

test source models may be generated either on basis of the source metamodels as done in

[9,10,20], the specified requirements, for instance, as visual contracts [14], as done in [13,21], or

both [19]. For the actual test source model generation, most of these approaches rely–similar to

software engineering–on constraint satisfaction, e.g., by means of SAT solvers. Finally, the

Tracts approach [22,23,44] provides a semi-automatic approach, since the transformation

designer must specify a generation script on basis of the declarative ASSL language [11]. Other

approaches are using fully manually engineered test input and output models, especially ones

that are using model comparison as oracle function [17].

Finally, in [15] we presented an approach to test model transformations based on existing

input/output model pairs that are equipped with trace links. By analyzing trace links produced by

new transformation runs, one may detect errors in transformation implementations when having

untypical trace links for newly transformed models. Regression testing for model transformations

27 Related Work

27

when metamodels evolve based on search-based techniques has been discussed in [27]. Another

work [28] discusses the application of a bacteriologic algorithm [29] (an extension of genetic

algorithm) to the generation of test cases in order to find an optimal solution with respect to

metamodel coverage.

To sum up, none of the aforementioned approach has considered the application of mutation-

based analysis for actively guiding the generation of test input models.

2.3.2 Mutation-based Analysis of Transformations

The application of mutation analysis for a set of test input models to predict the quality of the test

set is elaborated in several publications [18,24,31]. The first two papers discuss different

mutation operators for model transformations. Regarding the application of mutation-based

analysis of model transformations test data, different coverage criteria (mostly black-box ones)

have been evaluated by means of mutation testing (cf., e.g., [13,20]). In [31] coverage criteria are

defined based on mutation testing for programmed graph transformations. The only work we are

aware of combining mutation analysis with the adaption of test cases is presented in [25],

however there are two main differences compared to our work. First, in our approach we

introduce mutants more guided by having the competition between the two levels of our bi-level

approach instead of generating mutations fully randomly, and second, we do not only use as

stopping criterion that 100% of mutations are detected, because this may be also due to the fact

that the introduced mutants are easy to detect independent of how good the test cases are.

28

Chapter 3: Code-Smells Detection as a Bi-Level Problem

3.1 Introduction

In this work, we start from the observation that the generation of efficient code-smells

detection rules heavily depends on the coverage and the diversity of the used code-smell

examples. In fact, both mechanisms for the generation of detection rules and the generation

of code-smell examples are dependent. Thus, the intuition behind this work is to generate

examples of code-smell that cannot be detected by some possible detection rules solutions

then adapting these rules-based solutions to be able to detect the generated code-smell

examples. These two steps are repeated until reaching a termination criterion (e.g. number of

iterations). To this end, we propose, for the first time, to consider the code-smell's detection

problem as a bi-level one [52]. Bi-Level Optimization Problems (BLOPs) are a class of

challenging optimization problems, which contain two levels of optimization tasks[43]. In

these problems, the optimal solutions to the lower level problem become possible feasible

candidates to the upper level problem. In our adaptation, the upper level generates a set of

detection rules, combination of quality metrics, which maximizes the coverage of the base of

code-smell examples; and artificial code-smells are generated by the lower level. The lower

level maximizes the number of generated “artificial” code-smells that cannot be detected by

the rules produced by the upper level. The overall problem appears as a BLOP task, where

for each generated detection rule, the upper level observes how the lower-level acts by

generating artificial code-smells that cannot be detected by the upper level (leader) rule, and

then chooses the best detection rule which suits it the most, taking the actions of the code-

29 Code-Smells Detection as a Bi-Level

Problem

29

smells generation process (lower level or follower) into account. The main advantage of our

bi-level formulation is that the generation of detection rules is not limited to some code-smell

examples identified manually by developers that are difficult to collect but it allows the

prediction of new code-smell behaviours that are different from those in the base of

examples.

We implemented our proposed bi-level approach and evaluated it on several open source

systems: JFreeChart, GanttProject, ApacheAnt, Nutch, Log4J, Lucene, Xerces-J, and Rhino.

In addition, we evaluated our proposal on one industrial system provided by our industrial

partner, i.e., the Ford Motor Company. We found that, on average, the majority of seven

types of code-smells were detected with more than 86% of precision and 90% of recall. The

statistical analysis of our experiments over 31 runs shows that BLOP performed significantly

better than two existing search-based approaches[7, 98] and a practical code-smell detection

technique [60]. The software developers considered in our experiments confirm the relevance

of the detected code-smells for several maintenance activities.

The primary contributions of this chapter can be summarized as follows:

(1) The chapter introduces a novel formulation of the code-smell's detection as a bi-level

problem.

(2) The chapter reports the results of an empirical study with an implementation of our bi-

level approach. The obtained results provide evidence to support the claim that our

proposal is more efficient, on average, than existing techniques based on a benchmark

of 9 open source systems and 1 industrial project. The chapter also evaluates the

30 Code-Smells Detection as a Bi-Level

Problem

30

relevance and usefulness of the detected code-smells for software engineers to

improve the quality of their systems.

3.2 Approach

This section shows how the above-mentioned issues can be addressed using bi-level

optimization and describes the principles that underlie the proposed method for detecting

code-smells. We first present an overview of our bi-level code-smells detection approach,

and then we describe the details of our bi-level formulation including the adaptation of both

lower and upper levels. The concept of bi-level is based on the idea that the main

optimization task is usually termed as the upper level problem, and the nested optimization

task is referred to as the lower level problem. The detection rules generation process has a

main objective which is the generation of detection rules that can cover as much as possible

the code-smells in the base of examples. The code-smell's generation process has one

objective that is maximizing the number of generated artificial code-smells that cannot be

detected by the detection rules and that are dissimilar from the base of well-designed code

examples. There is a hierarchy in the problem, which arises from the manner in which the

two entities operate. The detection rules generation process has higher control of the situation

and decides which detection rules for the code-smells generation process to operate in.

Therefore, in this framework, we observe that the detection rules generation process acts as a

leader (the important output of the problem), and the code-smells generation process acts as a

follower.

31 Code-Smells Detection as a Bi-Level

Problem

31

The overall problem appears as a bi-level optimization task, where for each generated

detection rules, the upper level observes how the lower-level acts by generating artificial

code-smells that cannot be detected by the upper level (leader) rules and then chooses the

best detection rules which suit it the most, taking the actions of the code-smells generation

process (lower level or follower) into account. It should be noted that in spite of different

objectives appearing in the problem, it is not possible to handle such a problem as a simple

multi-objective optimization task. The reason for this is that the leader cannot evaluate any of

its own strategies without knowing the strategy of the follower, which it obtains only by

solving a nested optimization problem.

Figure 5 Approach Overview

As described in Figure 2, the leader (upper level) uses knowledge from code-smells

examples (input) to generate detection rules based on quality metrics (input). It takes as

inputs a base (i.e. a set) of code-smells‟ examples, and takes, as controlling parameters, a set

32 Code-Smells Detection as a Bi-Level

Problem

32

of quality metrics and generates as output a set of rules. The rule generation process chooses

randomly, from the metrics provided list, a combination of quality metrics (and their

threshold values) to detect a specific code-smell. Consequently, the solution is a set of rules

that best detect the code-smells of the base of examples. For example, the following rule

states that a class c having more than NAD=10 attributes and more than NMD=20 methods is

considered as a blob smell:

R1: IF NAD(c)≥10 AND NMD(c)≥20, THEN Blob(c).

In this exemplified sample rule, the number of attributes (NAD) and the number of

methods (NMD) of a class correspond to two quality metrics that are used to detect a blob.

The detected code-smells can be method(s) or class(es) depending on the type of the code-

smells to detect. Given the above detection rule, it is not obvious what set of diverse code-

smells exist in the software. In the bi-level formulation of the code-smell detection problem,

the lower level problem allows us to find just that. An upper-level detection rules solution is

evaluated based on the coverage of the base of code-smell examples (input) and also the

coverage of generated “artificial” code-smells by the lower-level problem. These two

measures are used to be maximized by the population of detection rules solutions. The

follower (lower level) uses well-designed code examples to generate “artificial” code-smells

based on the notion of deviation from a reference (well-designed) set of code fragments. The

generation process of artificial code-smell examples is performed using a heuristic search

that maximizes on one hand, the distance between generated code-smell examples and

33 Code-Smells Detection as a Bi-Level

Problem

33

reference code examples and, on the other hand, maximizes the number of generated

examples that are not detected by the leader (detection rules).

There is no parallelism in our bi-level formulation. The upper level is executed for number

iterations then the lower level for another number of iterations. After that the best solution

found in the lower level will be used by the upper level to evaluate the associated solution

(detection rules), and then this process in repeated several times until reaching a termination

criterion (e.g. number of iterations). Thus, there is no parallelism since both levels are

dependent. In [98], we proposed to use Co-Evolutionary (Co-Evol) algorithms for code-

smells detection where the first population generates detection rules and the second one

generates artificial code-smell. Both populations are executed in parallel without hierarchy.

The problem with the Co-Evol approach is that one population may converge before the

other. Contrariwise, in our bi-level approach there is a hierarchy that allows avoiding the

problem of premature convergence of one population over the other. Indeed, the evaluation

of every detection rule solution (upper level) requires the running a search algorithm to find

the best undetectable artificial code-smells by the upper level solution. This concept avoids

driving the search towards uninteresting directions. In addition, co-evolution treats the two

populations independently; however in BLOP, the evaluation of solutions in the upper level

depends on the lower level (both populations cannot be executed in parallel). Furthermore,

the two populations in co-evolution are considered with the same importance; however the

upper level is more important than the lower level in any bi-level formulation. We will

compare later in the experimentation section, with more details, the difference between our

34 Code-Smells Detection as a Bi-Level

Problem

34

bi-level formulation for code-smells detection and our previous work based on co-

evolution[98].

Next, we describe our adaptation of bi-level optimization to the code-smells detection

problem in more details.

3.2.1 Problem Formulation

The code-smell's detection problem involves searching for the best metric combinations

among the set of candidate ones, which constitute a huge search space. A solution of our

code-smells detection problem is a set of rules (metric combinations with their threshold

values) where the goal of applying these rules is to detect code-smells in a system.

Our proposed bi-level formulation of the code-smell detection problem is described in

Figure 3. Consequently, we have two levels as described in the previous section. At the upper

level, the objective function is formulated to maximize the coverage of code-smell examples

(input) and also maximize the coverage of the generated artificial code-smells at the lower

level (best solution found in the lower level). Thus, the objective function at the upper level

is defined as follows:

Maximize fupperLevel =

Precision(S,baseOfExamples)+ Recall(S,BaseOfExamples)

2
+

detectedArtificialCodeSmells

#artificialCodeSmells

2

It is clear that the evaluation of solutions (detection rules) at the upper level depends on

the best solutions generated by the lower level (artificial code-smells). Thus, the fitness

35 Code-Smells Detection as a Bi-Level

Problem

35

function of solutions at the upper level is calculated after the execution of the optimization

algorithm in the lower level at each iteration.

At the lower level, for each solution (detection rule) of the upper level an optimization

algorithm is executed to generate the best set of artificial code-smells that cannot be detected

by the detection rules at the upper level. An objective function is formulated at the lower

level to maximize the number of un-detected artificial code-smells that are generated and

also maximize the distance with well-designed code-examples. Formally,














 

 

w

j

l

k

kklower eferenceCodcMlCScArtificiaMMintfMaximize
1 1

)Re()(

where w is the number of code elements (e.g. classes) in the reference code, l is the number

of structural metrics used to compare between artificial code-smells and the well-designed

code examples, M is a structural metric (such as number of methods, number of attributes,

etc.) and t is the number of artificial code-smells uncovered by the detection rule solution

defined at the upper level.

Upper level algorithm: GPSmellDetection

01. Inputs: Quality metrics M, Defect example base B, Well-designed code example base D, Number of

best upper solutions that are considered for lower level optimization nbs, Upper population size N1,

Lower population size N2, Upper number of generations G1, Lower number of generations G2

02. Output: Best detection rule BDR

03. Begin

04. P0 ← Initialization (N1, M);

05. For each DR0 in P0 do /*DR means Detection Rule*/

36 Code-Smells Detection as a Bi-Level

Problem

36

06. BCS0 ← GASmellGeneration (DR0, D, N2, G2); /*Call lower level

07. DR0 ← Evaluation (DR0, B, BCS0);

08. End For

09. t ← 1;

10. While (t < G1) do

11. Qt ← Variation (Pt-1);

12. For each DRt in Qt do /*Evaluate each rule based on upper fitness function*/

13. DRt ← UpperEvaluation (DRt, B);

14. End For

15. For each of the best nbs rules DRt in Qt do /*Only nbs rules are used to*/

16. BCSt ← GASmellGeneration (DRt, D, N2, G2);

17. DRt ← EvaluationUpdate (DRt, BCSt); /*Update based on lower level*/

18. End For

19. Ut ← Pt Qt;

20. Pt+1 ← EvironmentalSelection (N1, Ut);

21. t ← t+1;

22. End While

23. BDR ← FittestSelection (Pt);

24. End

Figure 6 (a) Pseudo-code of the bi-level adaptation for code-smell's detection

Lower level algorithm: GASmellGeneration

01. Inputs: Upper level detection rule UDR, Well-designed code example base D, Population size N,

number of generations G

02. Output: Best artificial code-smells BCS

03. Begin

04. P0 ← Initialization (N, D);

05. P0 ← Evaluation (P0, D, UDR); /*Evaluation depends of UDR*/

06. t ← 1;



37 Code-Smells Detection as a Bi-Level

Problem

37

07. While (t < G) do

08. Qt ← Variation (Pt-1);

09. Qt ← Evaluation (Qt, D, UDR); /*Evaluation depends of UDR*/

10. Ut ← Pt Qt;

11. Pt+1 ← EvironmentalSelection (N, Ut);

12. t ← t+1;

13. End While

14. BCS ← FittestSelection (Pt);

15. End

Figure 7 (b) Pseudo-code of the bi-level adaptation for code-smell's detection

3.2.2 Solution Approach

The solution approach proposed in this chapter lies within the SBSE field. As noted by

Harman et al.[10], a generic algorithm like bi-level optimization cannot be used „out of the

box‟ – it is necessary to define problem-specific genetic operators to obtain the best

performance. To adapt bi-level optimization to our code-smell's detection problem, the

required steps are to create for both levels (algorithms): (1) solution representation, (2)

solution variation and (3) solution evaluation. We examine each of these in the coming

paragraphs.

3.2.2.1 Solution Representation

One key issue when applying a search-based technique is to find a suitable mapping

between the problem to solve and the techniques to use, i.e., detecting code-smells.

For the upper-level optimization problem, a genetic programming (GP) algorithm is

used[11]. In GP, a solution is composed of terminals and functions. Therefore, when



38 Code-Smells Detection as a Bi-Level

Problem

38

applying GP to solve a specific problem, they should be carefully selected and designed to

satisfy the requirements of the current problem. After evaluating many parameters related to

the code-smells detection problem, the terminal set and the function set are decided as

follows. The terminals correspond to different quality metrics with their threshold values

(constant values). The functions that can be used between these metrics are Union (OR) and

Intersection (AND). More formally, each candidate solution S in this problem is a sequence

of detection rules where each rule is represented by a binary tree such that:

(1) each leaf-node (Terminal) belongs to the set of metrics (such as number of

methods, number of attributes, etc.) and their corresponding thresholds generated

randomly.

(2) each internal-node (Functions) N belongs to the Connective (logic operators) set C =

AND, OR.

The set of candidate's solutions (rules) corresponds to a logic program that is represented

as a forest of AND-OR trees.

For the lower-level optimization problem, a genetic algorithm (GA) is used to generate

artificial code-smells. The generated artificial code fragments are composed of code

elements. Thus, they are represented as a vector where each dimension is a code element. We

represent these elements as sets of predicates. Each predicate type corresponds to a construct

type of an object-oriented system: Class (C), attribute (A), method (M), parameter (P),

generalization (G), and method invocation relationship between classes (R). For example,

the sequence of predicates CGAMPPM corresponds to a class with a generalization link,

L

39 Code-Smells Detection as a Bi-Level

Problem

39

containing two attributes and two methods (Figure 4). The first method has two parameters.

Predicates include details about the associated constructs (visibility, types, etc.). These

details (thereafter called parameters) determine ways a code fragment can deviate from a

notion of normality. The sequence of predicates must follow the specified order of predicate

types (Class, Attribute, Method, Generalization, association, etc.) to ease the comparison

between predicate sequences and then reducing the computational complexity. When several

predicates of the same type exist, we order them according to their parameters.

Figure 8 Solution representation: vector (GA) to generate artificial code-smell

To generate an initial population for both GP and GA, we start by defining the maximum

tree/vector length (max number of metrics/code-elements per solution). The tree/vector

length is proportional to the number of metrics/code-elements to use for code-smell's

detection. Sometimes, a high tree/vector length does not mean that the results are more

precise. These parameters can be specified either by the user or chosen randomly. Figure 4

shows an example of a generated code-smell composed of one class, one generalization link,

40 Code-Smells Detection as a Bi-Level

Problem

40

two attributes, two methods, and two parameters. The parameters of each predicate contain

information generated randomly describing each code element (type, visibility, etc.).

3.2.2.2 Solution Evaluation

The encoding of an individual should be formalized as a mathematical function called the

“fitness function”. The fitness function quantifies the quality of the proposed detection rules

and generated artificial code-smells. The goal is to define efficient and simple fitness

functions in order to reduce the computational cost. For our GP adaptation (upper level), we

used the fitness function fupper defined in the previous section to evaluate detection-rules

solutions. For the GA adaptation (lower level), we used the fitness function flower defined in

the previous section to evaluate generated artificial code-smells.

3.2.2.2.1 Evolutionary Operators: Selection

One of the most important steps in any evolutionary algorithm (EA) is the selection phase.

There are two selection phases in EAs: (1) parent selection (also named mating pool

selection) and (2) environmental selection (also named replacement). In this work, we use an

elitist scheme for both selection phases with the aim to: (1) exploit good genes of fittest

solutions, and (2) preserve the best solutions along the evolutionary process. The two

selections schemes are described as follows. Regarding the parent selection, once the

population individuals are evaluated, we select the | | best individuals of the population P

to fulfill the mating pool, which size is equal to | | . This allows exploiting the past

experience of the EA in discovering the best chromosomes‟ genes. Once this step is

performed, we apply genetic operators (crossover and mutation) to produce the offspring

41 Code-Smells Detection as a Bi-Level

Problem

41

population Q, which has the same size as P (| | | |). Since crossover and mutation are

stochastic operators, some offspring individuals can be worse than some of P individuals. In

order to ensure elitism, we merge both populations P and Q into U (with | | | | | |

 | |), and then the population P for the next generation is composed of the | | fittest

individuals from U. By doing this, we ensure that we encourage the survival of better

solutions. We can say that this environmental selection is elitist, which is a desired property

in modern EAs[44]. We use this elitist operation in both upper and level-level EAs.

3.2.2.2.2 Evolutionary Operators: Mutation

For GP (upper-level), the mutation operator can be applied to a function node, or to a

terminal node. It starts by randomly selecting a node in the tree. Then, if the selected node is

a terminal (quality metric), it is replaced by another terminal (metric or another threshold

value); if it is a function (AND-OR), it is replaced by a new function; and if tree mutation is

to be carried out, the node and its sub-tree are replaced by a new randomly generated sub-

tree.

For GA (lower-level), the mutation operator consists of randomly changing a predicate

(code element) in the generated predicates.

42 Code-Smells Detection as a Bi-Level

Problem

42

3.2.2.2.3 Evolutionary Operators: Crossover

For GP (upper-level), two parent individuals are selected, and a sub-tree is picked on each

one. Then crossover swaps the nodes and their relative sub-trees from one parent to the other.

This operator must ensure the respect of the depth limits. The crossover operator can be

applied with only parents having the same rule category (code-smell type to detect). Each

child thus combines information from both parents. In any given generation, a variant will be

the parent in at most one crossover operation.

For GA (lower-level), the crossover operator allows to create two offspring o1 and o2

from the two selected parents p1 and p2, as follows:

(1) A random position k is selected in the predicate sequences.

(2) The first k elements of p1 become the first k elements of o1. Similarly, the first k

elements of p2 become the first k elements of o2.

(3) The remaining elements of, respectively, p1 and p2 are added as second parts of,

respectively, o2 and o1 (hence having a crossing-over operation between parents).

For instance, if k = 3 and p1 = CAMMPPP and p2 = CMPRMPP, then o1 = CAMRMPP and

o2 = CMPMPPP.

3.3 Validation

In order to evaluate our approach for detecting code-smells using the proposed bi-level

optimization (BLOP) approach, we conducted a set of experiments based on different

versions of open source systems: JFreeChart, GanttProject, ApacheAnt, Nutch, Log J,

43 Code-Smells Detection as a Bi-Level

Problem

43

Lucene, Xerces-J and hino . Each experiment is repeated 31 times, and the obtained results

are subsequently statistically analyzed with the aim to compare our bi-level proposal with a

variety of existing code-smells detection approaches. In this section, we first present our

research questions and then describe and discuss the obtained results.

3.3.1 Research Questions

We defined five research questions that address the applicability, performance comparison

with existing code-smells detection approaches, and the scalability of our bi-level code-

smells detection approach. The five research questions are as follows:

RQ1: Search validation: To validate the problem formulation of our approach, we

compared our BLOP formulation with Random Search (applied to both levels). If Random

Search outperforms a guided search method thus, we can conclude that our problem

formulation is not adequate. Since outperforming a random search is not sufficient, the next

four questions are related to performance and scalability of BLOP, and a comparison with the

state-of-the-art code-smells detection approaches.

RQ2: How does BLOP perform to detect different types of code-smells? It is important to

quantitatively assess the completeness and correctness of our code-smell detection approach.

RQ3.1: How do BLOP perform compared to existing search-based code-smells detection

algorithms? Our proposal is the first work that treats a software engineering problem as a bi-

level problem. A comparison with existing search-based code-smells detection approaches is

44 Code-Smells Detection as a Bi-Level

Problem

44

helpful to evaluate the benefits of the use of bi-level approach in the context of code-smell

detection.

RQ3.2: How does BLOP perform compared to the existing code-smells detection

approaches not based on the use of metaheuristic search? While it is very interesting to

show that our proposal outperforms existing search-based code-smells detection approaches,

developers will consider our approach useful, if it can outperform other existing tools that are

not based on optimization techniques.

RQ4: How does our bi-level formulation scale? There is a cost in solving every lower-

level optimization problem in each iteration. An evaluation of the execution time is required

to discuss the ability of our approach to detect code-smells within a reasonable time-frame.

3.3.2 Software Projects Studied

In our experiments, we used a set of well-known and well-commented open-source Java

projects. We applied our approach to nine open source Java projects. Table II presents the list

and some relevant statistics of the software systems for our code-smell detection purpose.

45 Code-Smells Detection as a Bi-Level

Problem

45

Table 2 Software studied in our experiments.

Systems Release #Classes #Smells KLOC

JFreeChart v1.0.9 521 82 170

GanttProject v1.10.2 245 67 41

ApacheAnt v1.5.2 1024 163 255

ApacheAnt v1.7.0 1839 159 327

Nutch v1.1 207 72 39

Log4J v1.2.1 189 64 31

Lucene v1.4.3 154 37 33

Xerces-J V2.7.0 991 106 238

Rhino v1.7R1 305 78 57

JFreeChart is a powerful and flexible Java library for generating charts. GanttProject is a

cross-platform tool for project scheduling. ApacheAnt is a build tool and library specifically

conceived for Java applications. Nutch is an open source Java implementation of a search

engine. Log4j is a Java-based logging utility. Lucene is a free/open source information

retrieval software library. Xerces-J is a family of software packages for parsing XML.

Finally, Rhino is a JavaScript interpreter and compiler written in Java and developed for the

Mozilla/Firefox browser. Table II provides some descriptive statistics about these nine

programs. We selected these systems for our validation because they range from different

sizes that have been actively developed over the past 10 years, and include a large number of

code-smells. In addition, these systems are well studied in the literature, and their code-

smells have been detected and analyzed manually.

46 Code-Smells Detection as a Bi-Level

Problem

46

In the nine studied open source systems, the seven code-smell types, described in Section

2.1, were identified manually. In[60], Moha et al. asked three groups of students to analyze

the libraries to tag instances of specific code-smells to validate their detection technique,

DECOR. For replication purposes, they provided a corpus of describing instances of different

code-smells. In our previous work[55, 93], we asked eighteen graduate students and four

software engineers to extend the existing corpus proposed by Moha et al. To calculate the

recall, the different participants analyzed different quality metrics based on the definition of

code-smells. Recently, Palomba et al.[24] proposed another corpus including several new

code-smells types. The selected types of code-smells in our validation are not similar

(unilateral), diversified and cover different high level design quality (maintainability)

attributes such as reusability, flexibility, understandability, functionality, extendibility, and

effectiveness[99].

3.3.3 Evaluation Metrics Used

To assess the accuracy of our approach, we compute two measures, precision (PR) and

recall (Rc), originally stemming from the area of information retrieval. When applying

precision and recall in the context of our study, the precision denotes the fraction of correctly

detected code-smells among the set of all detected code-smells. The recall indicates the

fraction of correctly detected code-smells among the set of all manually identified code-

smells (that is, how many code-smells are undetected). In general, the “precision” denotes the

probability that a detected code-smell is correct, and the “recall” is the probability that an

expected code-smell is detected. Thus, both values range between 0 and 1, whereas a higher

47 Code-Smells Detection as a Bi-Level

Problem

47

value is better than a lower one. We performed a 9-fold cross validation thus we removed the

expected code-smells to detect in the system to evaluate from the base of code-smell

examples when executing our BLOP algorithm, and then precision and recall scores are

calculated automatically based on a comparison between the detected code-smells and

expected ones. Thus, one project is evaluated by using the remaining systems as a base of

code-smell examples to generate detection rules. We also use another measure computational

time (CT) to evaluate the execution time required by our proposal to generate optimal

detection rules.

3.3.4 Inferential statistical test methods used

Since metaheuristic algorithms are stochastic optimizers, they can provide different results

for the same problem instance from one run to another. For this reason, our experimental

study is performed based on 31 independent simulation runs for each problem instance, and

the obtained results are statistically analyzed by using the Wilcoxon rank sum test[100] with

a 99% confidence level (α = 1%). The Wilcoxon signed-rank test is a non-parametric

statistical hypothesis test used when comparing two related samples to verify whether their

population mean-ranks differ or not. The latter verifies the null hypothesis H0 that the

obtained results of two algorithms are samples from continuous distributions with equal

medians, as against the alternative that they are not, H1. The p-value of the Wilcoxon test

corresponds to the probability of rejecting the null hypothesis H0 while it is true (type I

error). A p-value that is less than or equal to α (≤ 0.01) means that we accept H1, and we

reject H0. However, a p-value that is strictly greater than α (> 0.01) means the opposite. In

48 Code-Smells Detection as a Bi-Level

Problem

48

this way, we could decide whether the outperformance of BLOP over one of each of the

other detection algorithms (or the opposite) is statistically significant or just a random result.

To answer the first research question RQ1, an algorithm was implemented where at each

iteration, rules were randomly generated in the upper level, and artificial code-smells were

randomly created. The obtained best detection rules solution was compared for statistically

significant differences with BLOP using PR, Rc and CT.

To answer RQ2, we used the open source systems described in Section 4.2 and calculated

precision and recall scores for the different types of code-smells. To answer RQ3.1, we

compared BLOP with two existing search-based code-smells detection approaches – GP[7]

and a co-evolutionary approach[98]. In[7], Kessentini et al. used genetic programming (GP)

to generate detection rules from manually collected code-smell examples which correspond

to the upper level of our approach (without lower level). Thus, the generation of artificial

code-smells is not considered but only the coverage of manually identified examples. In [98],

we proposed the use of co-evolutionary (Co-Evol) algorithms for code-smell detection,

where two populations were evolved in parallel. The first population generates detection

rules and the second population generates artificial code-smell examples. Both populations

are executed in parallel without hierarchy. Thus, the second population solutions are

independent of the solutions in the first population which is one of the main differences with

our bi-level extension. We considered the three metrics PR, Rc and CT to compare bi-level

with these search-based techniques based on 31 independent executions. To answer RQ3.2,

we compared our results with DECOR. Moha et al.[60] started by describing code-smell

49 Code-Smells Detection as a Bi-Level

Problem

49

symptoms using a domain-specific-language (DSL) for their approach called DECOR. They

proposed a consistent vocabulary and DSL to specify anti-patterns based on the review of

existing work on design code-smells found in the literature. To describe code-smell

symptoms, different notions are involved, such as class roles and structures. Symptom

descriptions are later mapped to detection algorithms based on a set of rules. We compared

the results of this tool with BLOP using PR and Rc metrics.

To answer the last question RQ4 we evaluated the execution time CT required by our

BLOP proposal based on different scenarios (parameters setting) on a large scale system.

3.3.5 Parameter tuning

An often-omitted aspect in metaheuristic search is the tuning of algorithm parameters[50].

In fact, parameter setting influences significantly the performance of a search algorithm on a

particular problem. For this reason, for each search algorithm and each system (cf. Table III),

we performed a set of experiments using several population sizes: 10, 20, 30, 40 and 50. The

stopping criterion was set to 750,000 fitness evaluations for all algorithms in order to ensure

fairness of comparison. We used a high number of evaluations as a stopping criterion since

our bi-level approach requires involves two levels of optimization. Each algorithm was

executed 31 times with each configuration and then comparison between the configurations

was performed based on precision and recall using the Wilcoxon test. Table III reports the

best configuration obtained for each couple (algorithm, system). Since the replication of the

bi-level experiment for 31 times is computationally expensive, the parameter setting

50 Code-Smells Detection as a Bi-Level

Problem

50

experiments are performed on a cluster of 30 machines. In this way, each 30 experiments are

performed in parallel with a termination criterion of 750000 evaluations.

Table 3 Best population size configurations

System Release BLOP CO-EVOL GP

JFreeChart v1.0.9 30 30 40

GanttProject v1.10.2 30 50 30

ApacheAnt v1.5.2 30 30 50

ApacheAnt v1.7.0 30 30 30

Nutch v1.1 30 40 30

Log4J v1.2.1 30 30 50

Lucene v1.4.3 30 40 50

Xerces-J V2.7.0 30 40 40

Rhino v1.7R1 30 30 30

The other parameters‟ values were fixed by trial and error and are as follows: (1)

crossover probability = 0.8; mutation probability = 0.5 where the probability of gene

modification is 0.3; stopping criterion = 750000 fitness evaluations. For our bi-level

approach, both lower-level and upper-level EAs are run each with a population of 30

individuals and 50 generations. The following reasons can explain the use of reduced

population size at both levels. According to our formulation, detection rules are evaluated at

the upper level based not only on its performance with respect to the upper fitness function

but also on its performance on detecting associated generated code-smells by the lower level.

In this way, the lower level helps the upper one in (1) discovering uninteresting upper search

51 Code-Smells Detection as a Bi-Level

Problem

51

directions that should be ignored, and (2) favoring interesting ones; thereby we reduce the

number of required evaluations at the upper level. This fact explains the reduced population

size (30 individuals) at the upper level. For the lower level, we also used a reduced

population size (30 individuals) since our goal is to have an idea about the performance of

the detection rule at the lower level. We note that recent studies are based on the use of local

search in order to predict the behavior of upper solutions at a lower level with an accepted

computational cost (cf.[44]).

It should be noted that the lower-level routine is not called for all upper-level population

members. To control, the high computational cost of our bi-level approach, only nbs% of the

best upper-level population members are allowed to call the lower-level optimization

algorithm. Based on a parametric study, the value of 10% for nbs is found to be adequate

empirically in our experiments. The nbs parametric study will be discussed later. For our

experiment, we generated up to 125 artificial code-smells from deviation with JHotDraw

(about a quarter of the number of examples). JHotdraw was chosen as an example of

reference code because it contains very few known code-smells. In fact, previous work[98]

could not find any Blob in JHotdraw. In our experiments, we used all the classes of JHotdraw

as our example set of well-designed code.

3.3.6 Results

This section describes and discusses the results obtained for the different research

questions of Section 4.1.

52 Code-Smells Detection as a Bi-Level

Problem

52

3.3.6.1 Results for RQ1

Concerning RQ1, Table IV confirms that BLOP is better than random search based on the

two metrics PR and Rc on all the 9 systems. The Wilcoxon rank sum test showed that in 31

runs BLOP results were significantly better than random search.

Table 4 The significantly best algorithm among random search, BLOP, GP and Co-Evol over 31 independent runs.

“No. Sign.” Means no method is significantly better than another.

System Release Precision Recall

JFreeChart v1.0.9 BLOP BLOP

GanttProject v1.10.2 BLOP BLOP

ApacheAnt v1.5.2 BLOP BLOP

ApacheAnt v1.7.0 BLOP BLOP

Nutch v1.1 BLOP BLOP

Log4J v1.2.1 No. Sign. No. Sign.

Lucene v1.4.3 No. Sign. No. Sign.

Xerces-J V2.7.0 BLOP BLOP

Rhino v1.7R1 BLOP BLOP

Table 5 . Median PR and Rc values on 31 runs for BLOP, random search (RS), GP [Kessentini et al. 2011] and Co-

Evol [Boussaa et al. 2013]. The results were statistically significant on 31 independent runs using the Wilcoxon rank

sum test with a 99% confidence le

System PR-BLOP PR-GP PR-Co-Evol PR-RS Rc-BLOP Rc-GP Rc-Co-

Evol

Rc-RS

JFreeChart
89%

(77/86)

78%

(71/92)

84%

(74/89)

26%

(34/129)

93%

(77/82)

86%

(71/82)

90%

(74/82)

41%

(34/82)

GanttProject
88%

(62/71)

80%

 (57/73)

82%

(58/71)

28%

(29/106)

89%

(62/67)

83%

(57/67)

85%

(58/67)

43%

(29/67)

ApacheAnt

v1.5.2

90%

(152/169)

84%

(146/174)

86%

(148/171)

26%

(51/189)

93%

(152/163)

89%

(146/163)

90%

(148/163)

31%

(51/163)

ApacheAnt v

1.7.0

91%

(149/164)

82%

(142/173)

85%

(144/169)

28%

(54/184)

94%

(149/159)

90%

(142/159)

91%

(144/159)

33%

(54/159)

Nutch
89%

(67/76)

73%

(64/88)

76%

(65/86)

34%

(37/131)

92%

(67/72)

89%

(64/72)

90%

(65/72)

51%

(37/72)

Log4J
89%

(59/67)

71%

(52/74)

77%

(54/71)

32%

(34/127)

91%

(59/64)

81%

(52/64)

85%

(54/64)

53%

(34/64)

Lucene
91%

(35/39)

70%

(31/42)

79%

(33/42)

12%

(11/88)

95%

(35/37)

84%

(31/37)

89%

(33/37)

29%

(11/37)

Xerces-J
91%

(101/111)

75%

(94/126)

80%

(96/119)

17%

(31/179)

95%

(101/106)

88%

(94/106)

91%

(96/106)

29%

(31/106)

Rhino
90%

(75/84)

74%

(69/93)

79%

(71/89)

14%

(23/167)

95%

(75/78)

87%

(69/78)

91%

(71/78)

29%

(23/78)

53 Code-Smells Detection as a Bi-Level

Problem

53

Table V also describes the outperformance of BLOP against random search. The average

precision and recall values of random search on the nine systems are lower than 25%. This

can be explained by the huge search space to explore at both levels to generate detection

rules and artificial code-smells. We conclude that there is empirical evidence that our bi-level

formulation surpasses the performance of random search thus our formulation is adequate

(this answers RQ1). Table V. Median PR and Rc values on 31 runs for BLOP, random search

(RS), GP[7] and Co-Evol[98]. The results were statistically significant on 31 independent

runs using the Wilcoxon rank sum test with a 99% confidence level (α < 1%).

3.3.6.2 Results for RQ2

In this section, we evaluate the performance of our BLOP adaptation on the detection of

seven different types of code-smells. Table V summarizes our findings. The expected code-

smells were detected with an average of more than 90% of precision and recall on the nine

open source systems. The highest precision was found in JDI-Ford, Xerces-J and Lucene

where 91% of code-smells were detected. The lowest precision was found in GanttProject

with 88% of detected code-smells. This can confirm that the list of returned code-smells did

not contain high number of false positive thus developer will not waste a lot of their time for

manual inspections. We found similar facts when analyzing the recall scores of BLOP on the

different system where an average of more than 90% of expected code-smells was detected.

The highest and lowest recall scores were respectively 95% (Rhino) and 89% (GanttProject).

An interesting observation that the performance of bi-level in terms of PR and Rc is

54 Code-Smells Detection as a Bi-Level

Problem

54

independent of the size and number of code-smells in the system to analyze. The PR and Rc

scores of ApacheAnt are among the highest ones with more than 90% that are better than the

detection results of a smaller system such as GanttProject. A more qualitative evaluation is

presented in Figure 5 illustrating the box plots obtained for the PR and Rc metrics on three

different projects GanttProject (small), Xerces-J (medium) and Ant-Apache (large). We see

that for almost all problems the distributions of the PR and Rc values for BLOP are the best

ones.

Figure 9 Box plots on three different systems (Gantt: small, Xerces: medium, Ant-Apache 1.7.0: large) of precision

values

Figure 10 Box plots on three different systems (Gantt: small, Xerces: medium, Ant-Apache 1.7.0: large) recall values.

We noticed that our technique does not have a bias towards the detection of specific code-

smell types. As described in Figure 6, in all systems, we had an almost equal distribution of

each code-smell types. Having a relatively good distribution of code-smells is useful for a

55 Code-Smells Detection as a Bi-Level

Problem

55

quality engineer. Overall, all the seven code-smells types are detected with good precision

and recall scores in the different systems (more than 80%).

This ability to identify different types of code-smell underlines a key strength to our

approach. Most other existing tools and techniques rely heavily on the notion of size to detect

code-smells. This is reasonable considering that some code-smells like the Blob are

associated with the notion of size. For code-smells like FDs, however, the notion of size is

less important, and this makes this type of anomaly hard to detect using structural

information.

To conclude, our BLOP approach detects well all the seven types of considered code-

smells (RQ2).

Figure 11 Median PR scores for every code-smell's type over 31 runs on the different 9 open source systems.

0

10

20

30

40

50

60

70

80

90

100

BloB-PR DC-PR SC-PR FE-PR LC-PR LPL-PR FD-PR

P
re

ci
si

o
n

Code smell types

BLOP GP Co-Evol

56 Code-Smells Detection as a Bi-Level

Problem

56

Figure 12 Median Rc (b) scores for every code-smell's type over 31 runs on the different 9 open source systems.

3.3.6.3 Results for RQ3

In this section, we compare our BLOP adaptation to the current; state-of-the-art code

smells detection approaches. To answer RQ3.1, we compared BLOP to two other existing

search-based techniques: GP[7] and Co-Evol[98]. Table V shows the overview of the results

of the significance tests comparison between all these algorithms. It is clear that BLOP

outperforms GP and Co-Evol in 100% of the cases in terms of precision (PR) and recall

(RE). However, as it will be discussed in RQ4, the execution time (CT) of our BLOP

algorithm is much higher than GP and Co-Evol. In addition, the improvements of PR and Rc

scores are significant using BLOP comparing to GP and Co-Evol. A more qualitative

evaluation is presented in Figure 5 illustrating the box plots obtained for the PR and Rc

metrics on three different projects GanttProject (small), Xerces-J (medium) and Ant-Apache

(large). It is clear from the box plots presented in Figure 5 that the outperformance of BLOP

comparing to GP and Co-Evol in all the three different systems based on the statistical

0

10

20

30

40

50

60

70

80

90

100

BloB-Rc DC-Rc SC-Rc FE-Rc LC-Rc LPL-Rc FD-Rc

R
ec

al
l

Code smell types

BLOP GP Co-Evol

57 Code-Smells Detection as a Bi-Level

Problem

57

analysis of 31 independent runs. For GP, this can be explained by the fact that the use of

manually identified code-smell examples is not enough to cover all the possible bad-practice

behaviors since it is fastidious task to collect them (most of the code-smells are not well-

documented, unlike bugs report). However, our BLOP algorithm can generate artificial code-

smells based on a deviation with good-practices in addition to the coverage of code-smell

examples. For Co-Evol, the two populations are executed in parallel and the problem is that

there is no dependency between both populations (unlike BLOP that creates a hierarchy

between two levels) thus one population can converge before the second one.

The statistical tests are based on multiple pairwise comparisons using the Wilcoxon test.

Thus, we have to adjust the p-values. To achieve this task, we used Holm method that is

reported to be more accurate than the Bonferroni one[101]. Table VI presents these adjusted

p-values confirming that the results are statistically significant with a 99% confidence level

(α = 1%).

58 Code-Smells Detection as a Bi-Level

Problem

58

Table 6 Adjusted p-values of comparisons related to table 4

 BLOP GP Co-Evol

JFreeChart

0.00353 (GP)

0.00463 (Co-Evol)

0.00157 (RS)

0.00379 (Co-Evol)

0.00272 (RS)

0.00377 (RS)

GanttProject

0.00116 (GP)

0.00249 (Co-Evol)

0.00039 (RS)

0.00296 (Co-Evol)

0.00128 (RS)

0.00138 (RS)

ApacheAnt v1.5.2

0.00273 (GP)

0.00479 (Co-Evol)

0.00282 (RS)

0.00386 (Co-Evol)

0.00053 (RS)

0.00240 (RS)

ApacheAnt v

1.7.0

0.00179 (GP)

0.00485 (Co-Evol)

0.00079 (RS)

0.00216 (Co-Evol)

0.00138 (RS)

0.00228 (RS)

Nutch

0.00226 (GP)

0.00391 (Co-Evol)

0.00111 (RS)

0.00431 (Co-Evol)

0.00294 (RS)

0.00321 (RS)

Log4J

0.00243 (GP)

0.00405 (Co-Evol)

0.00071 (RS)

0.00412 (Co-Evol)

0.00147 (RS)

0.00195 (RS)

Lucene

0.00211 (GP)

0.00458 (Co-Evol)

0.00196 (RS)

0.00259 (Co-Evol)

0.00175 (RS)

0.00267 (RS)

Xerces-J

0.00480 (GP)

0.00328 (Co-Evol)

0.00017 (RS)

0.00217 (Co-Evol)

0.00119 (RS)

0.00226 (RS)

Rhino

0.00325 (GP)

0.00467 (Co-Evol)

0.00239 (RS)

0.00391 (Co-Evol)

0.00183 (RS)

0.00249 (RS)

 We found that the main reason explaining the outperformance of BLOP against Co-Evol

is the diversity/quality of the generated artificial code-smells. In fact, the lower level of our

BLOP formulation generates artificial code-smell examples for every good solution

(detection rules) in the upper level then these examples are used to evaluate the solutions in

the upper level. Thus, the generated artificial code-smells examples depend on the associated

solution (rules) in the upper level. However, both populations, in Co-Evol, are executed in

59 Code-Smells Detection as a Bi-Level

Problem

59

parallel and independently (without the hierarchy of BLOP). Thus, the generated artificial

code-smells by the second population can be evaluated, at every iteration, by the best

solution (detection rule) of the first population that is not “mature” enough. In fact, one

population in Co-Evol can converge before the other however this is addressed by BLOP

because the two levels are executed in sequence after number of iterations. We executed the

best solution (code-smell's detection rules) of BLOP to detect code-smells on the best set of

artificial code-smells generated Co-Evol and vice-versa. As described in Figure 7, it is clear

that the rules generated by BLOP can detect most of the artificial code-smells examples

generated by Co-Evol with a precision of more than 90% however Co-Evol detects only

around 70% of code-smells generated by the lower level of BLOP. The quality of generated

rules depends heavily on the diversity of the artificial code-smells. Thus, the main reason

explaining the outperformance of BLOP is the hierarchy that exists between the two levels

allowing the lower level to generate intelligently the artificial code-smells that can improve

the quality of detection rules.

60 Code-Smells Detection as a Bi-Level

Problem

60

Figure 13 The median precision score of detected artificial code-smells by BLOP and Co-Evol

We analyzed the results of our comparison between the different search techniques based

on a final target fitness function value and not a maximum number of iterations. Due to the

space limitation, we present in Figure 8 the results of the comparison based on precision and

recall only on Xerces-J but similar facts were found on the remaining systems. The four

different targeted fitness functions value (0.7, 0.75, 0.8, 0.85) confirms the outperformance

of BLOP comparing to the other search techniques in terms of precision and recall. An

interesting observation is the fact that the fitness function values are correlated with the

precision and recall scores. An improvement of the fitness function value leads to better

precision and recall scores. This is can be a good indication about our fitness functions is

well formulated and adapted to the code-smell's detection problem. We also noticed that all

the targeted fitness functions values are reached by all the algorithms with a lower number of

evaluations than 750000 which the termination criterion selected in our experiments.

0

10

20

30

40

50

60

70

80

90

100

BLOP Co-Evol

P
re

ci
si

o
n

Detection Techniques

LowerLevelCodeSmells CoEvolCodeSmells

61 Code-Smells Detection as a Bi-Level

Problem

61

Figure 14 The median precision and recall scores of detected code-smells by BLOP, GP and Co-Evol on Xerces-J

based on a target final fitness function values

Figure 15 The impact of the number of code-smell examples on the quality of the results (PR on Xerces-J).

One of the advantages of using our BLOP adaptation is that the developers do not need to

provide a huge set of code-smell examples to generate the detection rules. In fact, the lower-

0

10

20

30

40

50

60

70

80

90

100

0.7 0.75 0.8 0.85

P
re

ci
si

o
n

/R
ec

al
l

Fitness value

PR-BLOP PR-GP PR-Co-Evol Rc-BLOP Rc-GP Rc-Co-Evol

0

10

20

30

40

50

60

70

80

90

100

0 50 100 150 200

P
re

ci
si

o
n

Number of code smell examples

BLOP GP Co-Evol

62 Code-Smells Detection as a Bi-Level

Problem

62

level optimization can generate examples of code-smells that are used to evaluate the

detection rules at the upper level. Figure 9 shows that BLOP requires a low number of

manually identified code-smells to provide good detection rules with reasonable precision

and recall scores. GP and Co-Evol require a higher number of code-smell examples than

BLOP to generate good code-smells detection rules. In addition, the reliability of the

proposed BLOP approach requires an example set of good code and code-smell examples. In

our study, we showed that by using JHotdraw directly, without any adaptation, the BLOP

method can be used out of the box, and this will produce good detection results for the

detection of code-smells for all the studied systems. In an industrial setting, we could expect

a company to start with JHotDraw, and gradually transform its set of good code examples to

include context-specific data. This might be essential if we consider that different languages

and software infrastructures have different best/worst practices.

In conclusion, we answer RQ3.1 by concluding that the results in our experiments confirm

that our proposed BLOP is adequate, and it outperforms two existing search-based code-

smells detection work – a GP[7] and a co-evolutionary GA[98].

Since it is not sufficient to compare our proposal with only search-based work, we

compared the performance of BLOP with DECOR[60]. DECOR was mainly evaluated based

on three types of code-smells using metrics-based rules that are identified manually: Blob,

functional decomposition and spaghetti code. The results of the execution of DECOR are

only available for the following systems: GanttProject, Nutch, Log4J, Lucene and Xerces-J.

Figure 10 summarizes the results of the precision and recall obtained on the above-mentioned

63 Code-Smells Detection as a Bi-Level

Problem

63

5 systems. The recall for DECOR in all the systems is 100% signifying that it is better than

BLOP; however the precision scores are lower than our proposal on all systems. In fact, the

higher recall achieved by DECOR can be easily explained by the use of relatively permissive

constraints. For example, the average precision to detect functional decompositions using

DECOR is lower than 25% however we can detect this type of code-smells with more than

80% of precision. The same observation for the spaghetti-code (SC), BLOP can detect SC

with more than 85% in terms of precision however DECOR detected the same type of code-

smell with a precision lower than 65%. This can be explained by the high calibration effort

required to define manually the detection rules in DECOR for some specific code-smell types

and the ambiguities related to the selection of the best metrics set. The recall of BLOP is

lower than DECOR, on average, but it is an acceptable recall average which is higher than

80%. To conclude, our BLOP adaption also outperforms, on average, an existing approach

not based on meta-heuristic search (RQ3.2).

64 Code-Smells Detection as a Bi-Level

Problem

64

Figure 16 The median precision and recall scores of BLOP and DECOR obtained on GanttProject, Nutch, Log4J,

Lucene and Xerces-J based on three code-smell types (Blob, SC and FD).

3.3.6.4 Results for RQ4

Since our proposal is based on bi-level optimization, it is important to evaluate the

execution time (CT). It is evident that BLOP requires higher execution time than GP, Co-

Evol and DECOR since BLOP has an optimization algorithm to be executed at the lower

level. To reduce the computational complexity of our BLOP adaptation, we selected only

best solutions (nbs%) at the upper level to update their fitness evaluations based on the

coverage of artificial code-smells that are generated by the optimization algorithms executed

at the lower level for every selected solution. All the search-based algorithms under

comparison were executed on machines with Intel Xeon 3 GHz processors and 4 GB RAM.

We recall that all algorithms were run for 750000 evaluations. This allows us to make a fair

comparison between CPU times. Overall, GP and Co-Evol algorithms were faster than

BLOP. In fact, the average execution time for BLOP, GP and Co-Evol were respectively 6.2,

0

10

20

30

40

50

60

70

80

90

100

BloB-PR BloB-Rc SC-PR SC-Rc FD-PR FD-Rc

P
re

ci
si

o
n

/R
ec

al
l

Detection techniques

BLOP DECOR

65 Code-Smells Detection as a Bi-Level

Problem

65

1.4 and 2.1 hours. However, the execution for BLOP is reasonable because the algorithm is

executed only once then the generated rules will be used to detect code-smells. There is no

need to execute BLOP again except in the case that the base of examples will be updated

with a high number of new code-smell examples.

An important parameter that reduced the execution time of our BLOP adaptation is the

number of selected good solutions at the upper level. Figure 11 shows that the performance

of our approach improves as we increase the percentage of best solutions selected from the

upper level at each iteration. However, the results become stable after 10% (percentage of

selected solutions from the upper level population). For this reason, we considered this

threshold in our experiments that represent a good trade-off between the quality of detection

solutions and the execution time. As described in Figure 11, the PR and Rc scores become

almost stable after the 10% threshold value and the execution time increases dramatically

since a high number of optimization algorithms are executed at the lower level. The

evaluation was performed on JFreeChart v1.0.9 but similar facts were found on the

remaining systems.

66 Code-Smells Detection as a Bi-Level

Problem

66

Figure 17 The impact of the number of selected solutions at upper level on the quality of the results (PR, Rc and CT)

using JFreeChart v1.0.9.

Figure 12 shows the number of evaluations required to generate good code-smells

detection rules. We used the f-measure metric defined as the harmonic mean of precision and

recall to evaluate the quality of the best solution at each iteration for each algorithm (BLOP,

Co-Evol and GP). We considered an f-measure value higher than 0.7 as an indication of an

acceptable detection rules solution based on our corpus. We evaluated which algorithm can

reach faster that threshold value of f-measure (0.7). We selected a threshold value of 0.7

since it represents a good balance between precision and recall that can lead to acceptable

detection solutions. We found that our bi-level adaptation required a fewer number of

evaluations than Co-Evol and GP to generate good code-smells detection solutions. In fact,

after around 325000 evaluations BLOP generated detection rules that have 0.7 as f-measure

value on Xerces-J. Co-Evol requires at least more than 480000 evaluations to reach similar

67 Code-Smells Detection as a Bi-Level

Problem

67

solution quality, and GP needs more than 560000 evaluations to generate similar detection

solution. Thus, we can conclude that the lower level helped the upper level to generate

quickly good quality of detection solutions by producing in an intelligent manner efficient

artificial code-smells. Although the fact that BLOP needs higher execution time than Co-

Evol and GP as described in Figure 11, it is clear from Figure 12 that the good solutions

provided by a single-level approach can be reached quickly by our bi-level adaptation.

Figure 18 The number of evaluations required by the different algorithms (BLOP, Co-Evol and GP) to reach

acceptable results (f-measure=0.7) using Xerces-J v 2.7.0.

To further evaluate the scalability of the performance of bi-level evolutionary algorithms

for systems of increasing size, we executed our bi-level tool on Eclipse without assessing the

precision and recall scores. Eclipse is an open source integrated development environment

(IDE) written in Java and widely used to develop applications. We considered three versions

of Eclipse that contains more than 3.5 MLOCs. Figure 13 describes the execution time of our

bi-level approach on 7 different versions of Eclipse. We believe that an execution time of 7

hours is acceptable and reasonable since the developers will not use our tool in their daily

68 Code-Smells Detection as a Bi-Level

Problem

68

activities, but they just need to execute it once to extract the rules. A new execution of the bi-

level algorithm is required when major updates are performed on the base of examples used

by the upper level.

Figure 19 Scalability of our bi-level approach for code-smell's detection on three different versions of Eclipse.

3.4 Industrial Case Study and Relevance of the Detected Code-Smells

The goal of this study is to evaluate the usefulness and the effectiveness of our code-

smells detection tool in practice. We conducted a non-subjective evaluation with potential

developers who can use our tool related to the relevance of our approach for software

engineers.

We performed a small industrial case study, described in Table VII, based on one

industrial project JDI-Ford. It is a Java-based software system that helps, our industrial

partner, the Ford Motor Company, analyzes useful information from the past sales of

dealerships data and suggests which vehicles to order for their dealer inventories in the

future. This system is the main key software application used by the Ford Motor Company to

improve their vehicle sales by selecting the right vehicle configuration to the expectations of

7.15

7.2

7.25

7.3

7.35

7.4

7.45

7.5

7.55

15,000 17,000 19,000 21,000 23,000 25,000

Ti
m

e
(h

o
u

rs
)

#classes

Eclipse v3.6

Eclipse v3.7

Eclipse v4.2

Eclipse v4.2.2

Eclipse v4.31

Eclipse v4.3.2

69 Code-Smells Detection as a Bi-Level

Problem

69

customers. Several versions of JDI were proposed by software engineers at Ford during the

past 10 years. Due to the importance of the application and the high number of updates

performed during a period of 10 years, it is critical to make sure that all the JDI releases are

within a good quality to reduce the time required by developers to introduce new features in

the future. The software engineers from Ford evaluated the JDI system to manually find

code-smells based on their knowledge of the system since they are some of the original

developers. We considered those that are detected by the majority of the software engineers

to calculate the precision and recall. Our study focused on the usefulness of the detected

code-smells and the performance of our detection technique in an industrial setting. We also

evaluated the relevance of some of the detected code-smells on the different open source

systems described in the previous section.

In this section, we will answer to the following question:

How our bi-level code-smells detection BLOP approach and the detected code-smells can

be useful for software engineers?

Table 7 Software studied in our experiments.

Systems Release #Classes #Smells KLOC

JDI-Ford v5.8 638 88 247

We describe, first, in this section the subjects participated in our study. Second, we give

details about the questionnaire, instructions and the conducted pilot study. Finally, we

describe and discuss the obtained results.

70 Code-Smells Detection as a Bi-Level

Problem

70

3.4.1 Subjects

Our study involved 7 subjects from the University of Michigan and 8 software engineers

from Ford Motor Company. Subjects include 3 master students in Software Engineering, 3

Ph.D. students in Software Engineering, 1 faculty member in Software Engineering, 6 junior

software developers and 2 senior projects manager. 6 subjects are female, and 9 are male. All

the 15 subjects are familiar with Java development, software maintenance activities including

refactoring. The experience of these subjects on Java programming ranged from 2 to 16

years. All the graduate students have an industrial experience of at least 2 years with large-

scale object-oriented systems. The 8 software engineers from Ford evaluated the code-smell's

detection results only on the JDI-Ford system. They were selected, as part of a project funded

by Ford, based on having similar development skills, their motivations to participate in the

project and their availability. They are part of the original developers‟ team of the JDI

system.

3.4.2 Questionnaire, Instructions and Pilot Study

Subjects were first asked to fill out a pre-study questionnaire containing five questions.

The questionnaire helped to collect background information such as their role within the

company, their programming experience, their familiarity with code smells and software

refactoring.

We divided the subjects into 4 groups to evaluate the relevance of some detected code-

smells according to the number of studied systems, the number of detected code-smells to

evaluate and the results of the pre-study questionnaire. Due to the high number of code-

71 Code-Smells Detection as a Bi-Level

Problem

71

smells to be evaluated, we pick at random a sub-set of the detected code-smells to evaluate

their relevance for software engineers as described in Table VIII. In Table 8, we summarize

how we divided subjects into 4 groups. All the participants from Ford (Group D) evaluated

the relevance of the detected code-smells only on the JDI-Ford system. They were also asked

to find the other code-smells in JDI not detected by our BLOP technique and evaluate the

correctness of detected ones.

Each group of subjects, who accepted an invitation to participate to the study, received a

questionnaire, a manuscript guide that helps to fill the questionnaire, and the source code of

the studied systems, in order to evaluate the relevance of the suggested code-smells to fix.

The questionnaire is organized in an excel file with hyperlinks to visualize the source code of

the affected code elements easily. The study questionnaire is composed by three main

sections and a specific fourth section only for Group D (Ford‟s developers).

The first part of the questionnaire includes questions to evaluate the relevance of some

detected code-smells using the following scale: 1. Not at all relevant; 2. Slightly relevant; 3.

Moderately relevant; and 4.Extremely relevant. If a detected code-smell is considered

relevant then this is mean that the developer considers that it is important to fix it.

The second part of the questionnaire includes questions for those code-smells that are

considered at least “moderately relevant”, we asked the subjects to specify their usefulness to

perform some maintenance activities: 1. Refactoring guidance; 2. Quality assurance; 3. Bug

prediction; 4. Effort prediction; and 5. Code inspection.

72 Code-Smells Detection as a Bi-Level

Problem

72

In the third part of the questionnaire, we asked our subjects to fix some of the detected

code-smells by suggesting and applying some refactorings[101].

In the last part dedicated to only Group D (developers from Ford), we asked them to

explore the JDI source code, analyze the metrics value of the system and use their knowledge

of the existing implementation (since they are the original developers) in order to identify the

remaining code-smells not detected by our BLOP technique. In addition, they evaluated the

correctness of detected ones by BLOP. We considered the majority of votes (more than 4

votes) to evaluate the correctness of detected code-smells.

The questionnaire is completed anonymously thus ensuring confidentiality and this study

were approved by the I B at the University of Michigan: “ esearch involving the collection

or study of existing data, documents, records, pathological specimens, or diagnostic

specimens, if these sources are publicly available or if the information is recorded by the

investigator in such a manner that participants cannot be identified, directly or through

identifiers linked to the participants”.

During the entire process, subjects were encouraged to think aloud and to share their

opinions, issues, detailed explanations and ideas with the organizers of the study (one

graduate student and one faculty from the University of Michigan) and not only answering

the questions.

A brief tutorial session was organized for every participant around code-smells and

refactoring to make sure that all of them have a minimum background to participate in the

study. The instructions indicate also that the developers need to inspect the source code to

73 Code-Smells Detection as a Bi-Level

Problem

73

evaluate the detected code-smells and their relevance and not by evaluating the quality metric

values. In addition, all the developers performed the experiments in a similar environment:

similar configuration of the computers, tools (Eclipse, Excel, etc.) and facilitators of the

study. Because some support was needed for the installation of our Eclipse plug-in and the

other detection techniques considered in our experiments, we added a short description of

this instruction for the participants. These sessions were also recorded as audio and the

average time required to finish all the questions was 5 hours. The average time to answer the

first three parts of the questionnaire is 3 hours, but the participants from Ford spent a

considerable time to find the code-smells not detected by our BLOP technique.

Prior to the actual experiment we did a pilot run of the entire experiment with two

subjects, on average performing student and one software engineer from Ford. We performed

this pilot study to verify whether the assignments were clear and if our estimation of the

required time to finalize the experiments evaluation were realistic thus all the assignments

could be completed in an afternoon session by the subjects. The pilot study pointed out that

the assignments and the questions in the questionnaire form were clear and relevant, and that

they could be executed as offered by the subjects of the pilot study within 4 hours. The pilot

study also pointed out that the description of code-smells and the examples were clear and

sufficient to understand the different types of code-smells considered in our experiments.

However, the pilot study showed that subjects have problems to efficiently evaluate the

usefulness of the identified code-smells especially for the open source systems since they are

not the original developers and could not understand all the design decisions. For this reason,

74 Code-Smells Detection as a Bi-Level

Problem

74

we extended our experiments to include the industrial project from Ford and some of their

original developers.

Table 8 Survey organization to study the relevance of some detected code-smells.

Subject groups Systems Selected Code-smells

Group A

JFreeChart v1.0.9

Blob: 4

Data Class: 8

Spaghetti Code: 4

Feature Envy: 6

Lazy Class: 4

Long Parameter List: 6

Functional Decomposition: 3

GanttProject v1.10.2

Blob: 4

Data Class: 3

Spaghetti Code: 4

Feature Envy: 2

Lazy Class: 2

Long Parameter List: 3

Functional Decomposition: 4

ApacheAnt v1.5.2

Blob: 5

Data Class: 2

Spaghetti Code: 3

Feature Envy: 3

Lazy Class: 2

Long Parameter List: 2

Functional Decomposition: 2

Group B ApacheAnt v1.7.0

Blob: 5

Data Class: 2

Spaghetti Code: 3

Feature Envy: 3

Lazy Class: 2

Long Parameter List: 2

Functional Decomposition: 3

75 Code-Smells Detection as a Bi-Level

Problem

75

Nutch v1.1

Blob: 4

Data Class: 3

Spaghetti Code: 3

Feature Envy: 2

Lazy Class: 4

Long Parameter List: 3

Functional Decomposition: 6

Log4J v1.2.1

Blob: 2

Data Class: 3

Spaghetti Code: 2

Feature Envy: 4

Lazy Class: 1

Long Parameter List: 3

Functional Decomposition: 3

Group C

Lucene v1.4.3

Blob: 2

Data Class: 2

Spaghetti Code: 3

Feature Envy: 2

Lazy Class: 2

Long Parameter List: 3

Functional Decomposition: 2

Xerces-J V2.7.0

Blob: 3

Data Class: 2

Spaghetti Code: 4

Feature Envy: 4

Lazy Class: 2

Long Parameter List: 4

Functional Decomposition: 4

Rhino v1.7R1

Blob: 2

Data Class: 2

Spaghetti Code: 2

Feature Envy: 4

Lazy Class: 4

Long Parameter List: 2

76 Code-Smells Detection as a Bi-Level

Problem

76

Functional Decomposition: 4

Group D
JDI-Ford v5.8

Blob: 6

Data Class: 8

Spaghetti Code: 8

Feature Envy: 8

Lazy Class: 12

Long Parameter List: 12

Functional Decomposition: 12

3.4.3 Results of the Industrial Case Study and Relevance of Detected Code-Smells

For the Ford system, the original developers conducted the study (group D). Hence, they

are almost sure whether a code fragment is affected by code-smell or not, whether it should

be refactored, or whether, although a tool says this is a smell, there are good reasons for the

design and implementation choices made. Unfortunately, this is not possible for the other

subjects and open source systems, who have evaluated code not familiar to them. For this

reason, we describe the results of the evaluation in two separate sections.

3.4.3.1 Industrial Case Study : Detection Results and Relevance of Detected Code Smells

In this section, we evaluate the performance of our BLOP detection technique on the

detection of seven different types of code-smells in an industrial setting and compare it with

some existing code smells detection techniques. As described in Table IX, the expected code-

smells were detected with more than 90% of precision on the JDI-Ford system that

77 Code-Smells Detection as a Bi-Level

Problem

77

corresponds to the highest precision comparing to random search, GP and Co-Evol. The

lowest precision was found by the random search of only 18%. The precision of Co-Evol is

higher than Co-Evol and random search but lower than BLOP on the JDI industrial system.

This confirms the importance and efficiency of the lower level considered in our BLOP

adaptation to improve the quality of detection solutions generated by the upper level. Similar

facts were found when analyzing the recall scores of BLOP on the JDI-Ford where 86% of

expected code-smells was detected. The recall score of BLOP confirms its outperformance

compared to random search, GP and Co-Evol.

Table X confirms that the comparison results of the different detection techniques on JDI-

Ford are statistically significant with a 99% confidence level (α = 1%)

Table 9 Manual validation of the detected code-smells on JDI-Ford.

System PR-

BLOP

PR-GP PR-Co-

Evol

PR-RS Rc-

BLOP

Rc-GP Rc-Co-

Evol

Rc-RS

JDI-Ford

v5.8

92%

(76/82)

67%

(63/94)

78%

(69/88)

18%

(27/148)

86%

(76/88)

72%

(63/88)

78%

(69/88)

31%

(27/88)

Table 10 Adjusted p-values of comparisons related to table IX.

 BLOP GP Co-Evol

JDI-Ford v5.8

0.00327 (GP)

0.00167 (Co-Evol)

0.00112 (RS)

0.00398 (Co-Evol)

0.00213 (RS)

0.00187 (RS)

78 Code-Smells Detection as a Bi-Level

Problem

78

To better investigate the relevance of the detected code-smells for software engineers, we

asked group D to fix some of the detected code-smells (described in Table XIII) in JDI-Ford

by manually suggesting and applying some refactorings [Holm et al. 1979] on JDI-Ford.

Then, we used the QMOOD (Quality Model for Object-Oriented Design) model [99] to

estimate the effect of the fixed code-smells on quality attributes. QMOOD has the advantage

that define six high level design quality attributes (reusability, flexibility, understandability,

functionality, extendibility, and effectiveness) that can be calculated using 11 lower level

design metrics. In our study we consider the following quality attributes:

 Reusability: The degree to which a software module or other work product can be

used in more than one computer program or software system.

 Flexibility: The ease with which a system or component can be modified for use in

applications or environments other than those for which it was specifically

designed.

 Understandability: The properties of designs that enable it to be easily learned and

comprehended. This directly relates to the complexity of design structure.

 Effectiveness: The degree to which the design can achieve the desired functionality

and behavior using OO design concepts and techniques.

79 Code-Smells Detection as a Bi-Level

Problem

79

Table 11 QMOOD quality factors [Bansiya et al. 2002]

Quality attribute Quality Index Calculation

Reusability = -0.25 * DCC + 0.25 * CAM + 0.5 * CIS + 0.5 * DSC

Flexibility = 0.25 * DAM - 0.25 * DCC + 0.5 * MOA +0.5 * NOP

Understandability
= -0.33 * ANA + 0.33 * DAM - 0.33 * DCC + 0.33 * = CAM -0.33 * NOP + 0.33 *
NOM - 0.33 * DSC

Effectiveness = 0.2 *ANA + 0.2 *DAM + 0.2*MOA + 0.2 * MFA + 0.2 *NOP

Table XI and Table XII summarize the QMOOD formulation of these quality attributes

[99].

Table 12 QMOOD metrics for design properties [Bansiya et al. 2002]

Design Property Metric Description

Design size DSC Design size in classes

Complexity NOM Number of methods

Coupling DCC Direct class coupling

Polymorphism NOP Number of polymorphic methods

Hierarchies NOH Number of hierarchies

Cohesion CAM Cohesion among methods in class

Abstraction ANA Average number of ancestors

Encapsulation DAM Data access metric

Composition MOA Measure of aggregation

Inheritance MFA Measure of functional abstraction

Messaging CIS Class interface size

The improvement in quality can be assessed by comparing the quality before and after

refactoring applied to fix a number of code-smells. Hence, the total gain in quality G for each

of the considered QMOOD quality attributes qi before and after refactoring can be easily

estimated as:

80 Code-Smells Detection as a Bi-Level

Problem

80

Where q’i and qi represent the value of the quality attribute i after and before refactoring

respectively.

We see in Figure 14 that all the quality attributes of both systems are improved after

fixing several code-smells from the JDI-Ford system. Understandability is the quality factor

that has the highest gain value; whereas the Effectiveness quality factor has the lowest one.

This can be explained by the types of fixed code-smells that are known to increase the

coupling within classes that heavily affect the quality index calculation of the effectiveness

factor. Another reason relates to the types of manually suggested refactoring such as move

method, move field, and extract class that are known to have a high impact on coupling,

cohesion and the design size in classes that serve to calculate the understandability quality

factor. To conclude, fixing the detected code-smells by our tool can lead to better code

quality and improve the developers‟ understandability, the reusability, the flexibility and the

effectiveness of the refactored system.

81 Code-Smells Detection as a Bi-Level

Problem

81

Figure 20 The impact of fixing a number of code-smells (refactorings) on QMOOD quality attributes for JDI-Ford

As described in Table XIII, we asked group D to evaluate the relevance of a random

selected set of selected code-smells on the JDI-Ford system. Figure 15 illustrates that only

less than 18% of detected code-smells are considered not at all relevant by the software

engineers. Around 65% of the code-smells are considered as moderately or extremely

relevant by the software developers. This confirms the importance of the detected code-

smells for developers that they need to fix them for a better quality of their systems.

It is also important to evaluate the usefulness of the detected code-smells for software

maintainers in their daily maintenance activities. To this end, we asked the Ford software

developers to justify the usefulness of the code-smells ranked as moderately or extremely

relevant. Figure 16 describes the obtained results. The main usefulness is related to

refactoring guidance. In fact, most of the software engineers we interviewed found that the

detected code-smells give relevant advices about where refactorings should be applied and

0

0.05

0.1

0.15

0.2

0.25

Reusability Flexibility Understandability Effectiveness

Q
u

al
it

y
ga

in

Quality attributes

Quality gain on JDI-Ford

82 Code-Smells Detection as a Bi-Level

Problem

82

what are the common used refactorings to fix these defects. In addition, they found that the

code-smells detection process is much more helpful than the traditional analysis of software

metrics to find refactoring opportunities. They consider the use of traditional software

metrics for Quality Assurance as a time consuming process, and it is easier to interpret the

results of detected code-smells and apply the appropriate refactorings to improve the overall

quality of the system.

Figure 21 The relevance of detected code-smells on the JDI-Ford system evaluated by the original developers.

Code smells relevance: JDI-Ford

Not at all relevant Slightly relevant Moderately relevant Extremely relevant

83 Code-Smells Detection as a Bi-Level

Problem

83

Figure 22 The usefulness of detected code-smells on the JDI-Ford system evaluated by the original developers.

We summarize briefly in the following the feed-back of the Ford developers during the

think aloud sessions. Most of the participants mention that the detection rules generated by

BLOP represents a faster solution than manual refactoring opportunities detection. The

manual techniques represent a time consuming process to find the locations where the

refactoring should be applied or to calibrate the metrics threshold or the combination of

metrics to identify a maintainability issue manually. The participants found the detection

rules useful to maintain a good quality of the design and to make sure that some quality

issues are fixed after refactoring. In addition, the developers liked the flexibility to modify

the rules (metrics or thresholds) if required. Some possible improvements for our detection

techniques were also suggested by the participants. Some participants believe that it will be

very helpful to extend the tool by adding a new feature to rank the detected code-smells

Usefulness of detected code smells on JDI-Ford

Refactoring guidance Quality Assurance Code inspection

 Effort prediction Bug prediction

84 Code-Smells Detection as a Bi-Level

Problem

84

based on several criteria such as risk, cost and benefits. They believe that current refactoring

tools do not provide any support to estimate the risk, cost and benefits of fixing some

maintainability issues. In fact, most of Ford‟s developers mentioned that they do not fix some

code-smells if they feel that it will require a high cost or the benefit is not clear or if the code

is stable.

3.4.3.2 Relevance of the Detected Code Smells on the Open Source Systems

We evaluated the relevance of the detected code-smells on the different open source

systems by participants of groups A, B and C as described in Table XIII. Figure 17 illustrates

that only less than 15% of detected code-smells are considered not at all relevant by the

software engineers. Around 70% of the code-smells are considered as moderately or

extremely relevant by the different groups, and this confirms the importance of the detected

code-smells for developers, and also the results are similar to the industrial case study.

85 Code-Smells Detection as a Bi-Level

Problem

85

Figure 23 The relevance of detected code-smells on the different open source systems evaluated by developers from

groups A, B and C.

To better evaluate the relevance of the detected code-smells, we investigated the types of

code-smells that developers perhaps consider them more or less important than others (e.g.

Blob, lazy class, etc.). Figure 18 summarizes our findings. It is clear that the detected blobs

are considered very relevant for developers. One of the reasons can be the importance of

distributing the behavior/functionalities of a program between different classes. In addition, it

is very difficult for developers to understand existing functionalities to add new ones if most

of them are implemented in one or few classes. Another interesting observation is that lazy

classes are not considered very relevant by developers. In fact, lazy classes do not implement

in general any important feature thus software engineers did not consider it as an important

concern.

0% 20% 40% 60% 80% 100%

Group A

Group B

Group C

Relevance of detected code-smells

G
ro

u
p

s Not at all relevant

Slightly relevant

Moderately relevant

Extremely relevant

86 Code-Smells Detection as a Bi-Level

Problem

86

Figure 24 The relevance of the types of detected code-smells on the different open source systems evaluated by

developers from the groups A, B and C.

We asked the different groups of software engineers (A-C) to justify the usefulness of the

code-smells ranked as moderately or extremely relevant. Figure 19 describes the different

reasons of the importance of detected code-smells. Similar to the industrial case study‟s

results, the main usefulness is related to refactoring guidance and quality assurance.

0% 50% 100%

Blob

Feature Envy

Data Class

Spaghetti Code

Functional Decomposition

Lazy Class

Long Parameter List

Relevance

C
o

d
e

-s
m

e
ll

ty
p

e
s

Not at all relevant

Slightly relevant

Moderately relevant

Extremely relevant

87 Code-Smells Detection as a Bi-Level

Problem

87

Figure 25 The usefulness of detected code-smells for software maintenance activities on the different open source

systems evaluated by developers from the A, B and C groups

3.5 Threats to validity

We explore, in this section, the factors that can bias our empirical study. These factors can

be classified in three categories: construct internal and external validity. Construct validity

concerns the relation between the theory and the observation. Internal validity concerns

possible bias with the results obtained by our proposal. Finally, external validity is related to

the generalization of observed results outside the sample instances used in the experiment.

In our experiments, construct validity threats are related to the absence of similar work

that uses bi-level techniques for code-smells detection. For that reason, we compare our

proposal with two other search-based techniques[7, 98] and DECOR[60]. However, we are

aware that there are other tools able to detect several types of code smell that also can be

considered in our experiments[24].

0% 20% 40% 60% 80% 100%

Group A

Group B

Group C

Usefulness of detected code-smells

G
ro

u
p

s Refactoring guidance

Quality Assurance

Code inspection

 Effort prediction

Bug prediction

88 Code-Smells Detection as a Bi-Level

Problem

88

Another threat to construct validity arises because, although we considered 7 well-known

code-smell types, we did not evaluate the performance of our proposal with other code-smell

types. We must further evaluate the performance and ability of our bi-level technique to

detect other smells.

A construct threat can also be related to the corpus of manually detected code-smells since

developers do not all agree if a candidate is a code-smell or not. We will ask some new

experts to extend the existing corpus and provide additional feedback regarding the detected

code-smells. In addition, the recall score is challenging to calculate by the software engineers

of our experiments and requires additional participants to check its accuracy.

A limitation related to our experiments is the difficulty to set the thresholds for DECOR.

In fact, we used the default thresholds used by the DECOR's authors that can have an impact

on the quality of the results generated by DECOR.

The evaluation of detected code-smells for some participants is mainly based on the

definitions of the code-smells and the examples that we provided during the pilot study.

However, the definition of code-smells is subjective and depends on the programming

behavior of the participants thus this can affect the accuracy of the detection results.

A construct threat is related to the fact that our detection results depend on the examples

of code-smells and well-designed code. In addition, the generation of artificial code

fragments can lead to several non-useful examples (generated by the lower-level). Additional

constraints should be defined to better guide the search at a lower level to refine the

generation of artificial code-smell examples.

89 Code-Smells Detection as a Bi-Level

Problem

89

The same observation is valid for the used change operators at both the upper and lower

levels that can generate invalid rules and code-smell examples (e.g. redundancy) may be

avoided by the definition of additional constraints.

We take into consideration the internal threats to validity in the use of stochastic

algorithms since our experimental study is performed based on 31 independent simulation

runs for each problem instance, and the obtained results are statistically analyzed by using

the Wilcoxon rank sum test[100] with a 99% confidence level (α = 1%).

The parameter tuning of the different optimization algorithms used in our experiments

creates another internal threat that we need to evaluate in our future work by additional

experiments to evaluate the impact of upper and lower levels‟ parameters on the quality of

the results.

Another internal threat is related to the fact that our tool is not able to rank the detected

code-smells. The software engineers considered in our experiments found the type of

detected code-smells is helpful to determine its importance. In addition, our contribution in

this chapter is mainly related to the detection of code-smells. We will propose several

measures that can be used to rank the detected code-smells by our rules. Thus, we consider in

our work the detection and ranking of code-smells as two separate steps.

The participants considered in our experiments are not the original developers of the open

source systems. Thus, some of their evaluations of the detected code-smells could be not very

accurate. In fact, there are, sometimes, good reasons for the design and implementation

choices made, and this can be mainly determined by the original developers. However, this is

90 Code-Smells Detection as a Bi-Level

Problem

90

not the case for the Ford project since some of the original developers of the system

participated in our experiments. We are planning to integrate few original developers from

these open source projects to evaluate the detected code smells as part of our future work.

Our experiments also lack the evaluation of the impact of removing the detected code-

smells on the productivity of the developers and long term maintenance objectives. Another

internal threat is the possibility that some developers did not report all the maintainability

issues in the evaluated systems thus some detected code-smells are not considered very

useful. The use of triangulation as suggested by Yamashita et al.[22] based on the usage of

three independent collection methods such as interviews, direct observation and think-aloud

sessions may reduce this threat.

The correction of code-smells can be performed by different refactoring strategies thus the

quality improvements of the code after fixing some code-smells depends on the applied

refactoring. Consequently, further investigation is needed to evaluate the stability of the

refactoring results.

For the selection threat, the subject diversity in terms of profile and experience could

affect our study. We mitigated the selection threat by giving written guidelines and examples

of code-smells already evaluated with arguments and justification. Additionally, each group

of subjects evaluated different code-smells from different systems using different

techniques/algorithms. Randomization also helps to prevent the learning and fatigue threats.

Only few code-smells per system were randomly picked for the evaluation.

91 Code-Smells Detection as a Bi-Level

Problem

91

Diffusion threat is related to the fact that most of the subjects are from the same

university, and the majority know each other. However, they were instructed not to share

information about the experience before a certain date.

External validity refers to the generalization of our findings. In this study, we performed

our experiments on nine different widely-used open-source systems and one industrial

project belonging to different domains and with different sizes. However, we cannot assert

that our results can be generalized to other applications, other programming languages, and

to other practitioners.

We selected subjects who had similar programming skill levels to reduce the impact of

skills on the results, but it is challenging to evaluate the background and skills of the

participants objectively. However, a larger number of subjects is required to improve the

evaluation of our detection technique. In addition, the manual validation of the detected

code-smells is limited to some samples of detected code-smells due to the limited number of

participants.

An evaluation of the usefulness of detected code-smells are based only on four

maintainability objectives from QMOOD thus the consideration of additional objectives such

as performance and the number of bugs after fixing the smells can lead to a better evaluation

of the usefulness of detected code-smells. In addition, The quality of detection rules depends

on the quality metrics used as input by our bi-level technique that are limited to fourteen

metrics in our experiments. Additional metrics may lead to a better quality of the results with

other programming languages.

92 Code-Smells Detection as a Bi-Level

Problem

92

An evaluation of the relevance of detected code-smells in our experiments heavily

depends on the opinion of the developers, and it is difficult to generalize due to the limited

number of participants in our experiments.

3.6 Conclusion

In this chapter, we have addressed the problem of the absence of consensus in code-smells

detection. In fact, choosing quality metrics to detect symptoms of code-smells is not

straightforward in software engineering and is usually a challenging task. In order to tackle

this problem, we have proposed a bi-level evolutionary optimization approach. The upper-

level optimization produces a set of detection rules, which are combinations of quality

metrics, with the goal to maximize the coverage of not only a code-smell example base but

also a lower-level population of artificial code-smells. The lower-level optimization tries to

generate artificial code-smells that cannot be detected by the upper-level detection rules,

thereby emphasizing the generation of broad-based and fitter rules. The statistical analysis of

the obtained results over nine studied software systems have shown the competitiveness and

the outperformance of our proposal in terms of precision and recall over a single-level

genetic programming, co-evolutionary, and non-search-based methods.

Following this work, we have identified several avenues for future research. Firstly, the

main problem when using bi-level optimization in software engineering is the computational

cost required for the lower-level search. Hence, it would be interesting to use regression

methods for approximating the lower level optimum for a given upper-level solution. In this

93 Code-Smells Detection as a Bi-Level

Problem

93

way, we could minimize the required number of function evaluations significantly. Secondly,

the idea of bi-level optimization seems interesting for several other SE problems. It would be

challenging to model and then solve other interesting SE problems in a bi-level manner. We

are currently working on extending our work by proposing a bi-level approach for the

correction of code-smells. Finally, our contribution in this chapter is mainly related to the

detection of code-smells. We will propose several measures that can be used to rank the

detected code-smells by our rules.

94

Chapter 4: Model Transformation Testing: A Bi-Level

Search-Based Software Engineering Approach

4.1 Introduction

Model-Driven Engineering (MDE) [102] considers models as first-class artifacts during

the software lifecycle. Available techniques, approaches, and tools for MDE are growing and

they support a huge variety of activities, such as model creation, model transformation, and

code generation. Especially, model transformations are seen as the heart and soul of

MDE[103]. In general, model transformations generate target models from source models

which also allow transforming between different modeling languages. Modeling languages

are defined with so-called metamodels and on this level the model transformations are

described. Thus, model transformations are generalized descriptions able to transform any

valid source models conforming to source metamodels into target models conforming to

target metamodels. Given the predominant role of model transformations in MDE, efficient

techniques and tools for validating model transformations are needed. One of them is model

transformation testing [32, 37, 40].

Two important issues must be addressed in model transformation testing: the efficient

generation/selection of test cases and the definition of an oracle function to assess the validity

of transformed models, and consequently, of the defined rules. This work is concerned with

the efficient generation of test cases.

95 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

95

In this thesis, we start from the observation that the generation of a good set of test cases

heavily depends not only on the coverage of the metamodels but also on their ability to detect

potential errors in the rules. The exploration of the large number of possible transformation

possibilities is challenging. Mutation testing is one efficient technique to evaluate the ability

of the generated test cases to detect possible errors that sometimes cannot be detected by test

cases that ensure a high metamodel coverage due to the high number of possible rules

execution. The mutation analysis consists of creating a set of faulty versions, called mutants,

of a program with the ultimate goal of designing a test set that distinguishes the program

from all its mutants. Both mechanisms for the generation of test cases and the generation of

mutants are dependent. Thus, the intuition behind this work is to introduce errors (mutants) in

the transformation rules (program) that cannot be detected by some possible test cases

solutions, and subsequently, to adapt these test cases to be able to detect the generated

mutants. These two steps are repeated until reaching a termination criterion (e.g., number of

iterations). To this end, we propose, for the first time, to consider model transformation

testing as a bi-level optimization problem[44, 105].

 We implemented our proposed bi-level approach and evaluated it on two different ATL

transformations [107]. The primary goals of this contribution can be summarized as follows:

(3) We introduce a novel formulation of model transformation testing as a bi-level

optimization problem.

(4) We report the results of an empirical study with an implementation of our bi-level

approach. The obtained results provide evidence to support the claim that our proposal

96 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

96

is more efficient, on average, than an existing technique based on metamodels

coverage[37].

4.2 Approach

This section shows how the above-mentioned issues can be addressed using bi-level

optimization and describes the principles that underlie the proposed method for the efficient

generation of test cases for ATL transformations.

As described in Figure 5, the upper level process has a main objective which is the

generation of test cases that can cover as much as possible the source and target metamodels

and detect the errors/mutants introduced by the lower level in the ATL rules. The lower level

has one objective which is maximizing the number of generated mutants/errors that cannot be

detected by the test cases generated by the upper level. There is a hierarchy in the problem,

which arises from the manner in which the two entities operate. In this framework, we

observe that the test cases generation process acts as a leader (the important output of the

problem), and the mutants generation process acts as a follower.

The overall problem appears as a bi-level optimization task, where for each set of

generated test cases (upper level solution), the upper level observes how the lower-level acts

by generating errors that cannot be detected by the upper level (leader) test cases and then

chooses the best set of test cases which suit it the most, taking the actions of the mutants

generation process (lower level or follower) into account. It should be noted that in spite of

different objectives appearing in the problem, it is not possible to handle such a problem as a

97 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

97

simple multi-objective optimization task. The reason for this is that the leader cannot

evaluate any of its own strategies without knowing the strategy of the follower, which it

obtains only by solving a nested optimization problem. The two populations in co-evolution

are considered with same importance; however the upper level is more important than the

lower level in any bi-level formulation. We will compare later in the experimentation section,

with more details, the difference between our bi-level formulation and co-evolution. Next,

we describe our adaptation of bi-level optimization to the generation of test cases for model

transformations in more details.

Figure 26 Approach overview

4.2.1 Problem Formulation

The upper level problem involves searching for the best set of test cases among the possible

candidate ones, which constitute a huge search space. Thus, a solution is a set of models (test

cases) where the goal is cover the source and target metamodels and the errors generated by

98 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

98

the lower level. We used a genetic algorithm (GA)[11] for each level. We describe, in the

following, the adaptation of GA for each level.

Our proposed bi-level formulation of the model transformation testing problem is described

in Figure 5. For the upper-level, we represent a solution (set of test cases) as a vector where

each dimension is a source model element. A model element can be a class, attribute,

association, or a generalization. The definition depends on the used metamodels. The values

of these elements are considered as part of the fitness function that will be described later.

For the lower-level optimization problem, we implemented a parser to generate an abstract

syntax tree from an ATL program (a set of model transformation rules). We also

implemented a set of generic change operations that can be applied to any ATL program

(Tree). These operations are the following: updateMetamodelElement(rule,

metaModelElement) consists of modifying a rule by replacing a metamodel element by

another one, deleteMetaModelElement(rule,metaModelElement) deletes a metamodel

element with the associated logic operators (AND/OR), if any, deleteRule(rule), and

addNewRule(rule). A solution at the lower-level is represented as a vector where each

dimension is a change operator to modify the original ATL program.

At the upper-level, an objective function is formulated to maximize the coverage of source

and target metamodels and also maximize the coverage of generated errors by the best

solution found in lower level. Thus, the objective function at the upper level is defined as

follows:

99 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

99

2

),(
)mod,(cov

f Maximize levelupper

owerLevelucedByTheLrorsIntrodnumberOfEr

rulestestcasesrstectedErronumberOfDe
elsmetatestcaseserage 



The method used to derive metamodel coverage was first introduced in[37]. This method

begins by a priori performing partition analysis in which the types of coverage criteria taken

into consideration for a given problem are chosen. In particular, the approach reasons about

the coverage of association instantiation concerning their concrete multiplicities and on the

coverage of attribute instantiation by considering their representative values. Each coverage

criterion must be partitioned into logical partitions that, when grouped together, represent all

the value types each criterion could take on. These partitions are then assigned representative

values to represent each coverage criterion partition. After representative values are defined,

a set of coverage items for the target metamodel is created. In our adaptation of the coverage

item set creation method introduced in[37], we calculate all possible tuple combinations of

representative values from all partitions of all coverage criteria types that are included in the

target metamodel. The metamodel coverage value for given test case models and target

metamodel is determined by calculating the percentage of metamodel coverage items the test

case models satisfy. The second part of the upper level fitness function counts the number of

error detected by the generated test cases. An error is detected when dissimilarity is found

between the target model generated by the original ATL program and the target model

generated by the mutants ATL program. If both target models are the same then the test case

cannot detect the error in the rules. Both components of the fitness function are normalized in

the range [0..1].

100 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

100

At the lower level, the fitness function maximizes the number of introduced errors in the

ATL program that cannot be detected by the upper level as defined by the following equation

orsneratedErrnumberOfGe

rulestestcasessectedErrornumberOfUn),(det
f Maximize levellower 

It is clear that the evaluation of solutions (test cases) at the upper level depends on the best

solutions generated by the lower level (errors). Thus, the fitness function of solutions at the

upper level is calculated after the execution of the optimization algorithm in the lower level

for each iteration. At the lower level, for each solution (test cases) of the upper level an

optimization algorithm is executed to generate the best set of errors that cannot be detected

by the test cases at the upper level.

The fitness function of the upper level may get better or worst depending on the new errors

introduced to the ATL rules. These errors can be covered or not by the test cases (TC) on the

upper level. In fact, the upper-level will continue to execute the genetic algorithm after the

new errors introduced by the lower-level. Of course, the upper-level may update some of the

good TC since the crossover operator take into-consideration both good and bad quality of

parents. In addition, the GA generates part of the population randomly for every iteration to

improve the diversity of the solutions.

To generate new solutions for the next iteration (i+1) after evaluating them in iteration i, GA

uses two operators: crossover and mutation.

101 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

101

For the upper level, the crossover operator allows creating two offspring o1 and o2 from the

two selected parents p1 and p2, as follows:

(4) A random position k is selected in the vector solution.

(5) The first k elements of p1 become the first k elements of o1. Similarly, the first k

elements of p2 become the first k elements of o2.

(6) The remaining elements of, respectively, p1 and p2 are added as second parts of,

respectively, o2 and o1 (hence having a crossing-over operation between parents).

For the lower-level, since the solutions can have variable size we proposed another type of

crossover. In fact, several crossover operators were proposed to deal with variable-length

chromosomes such as the SAGA (Speciation Adaptation Genetic Algorithm) crossover, the

VIV crossover (VIrtual virus), and the SLVC (Synapsing Variable-Length Crossover)[108,

109]. Most of these operators are based on computing the similarity between the two parents,

which requires using or defining a meaningful similarity metric. In order to avoid such issue,

we use the cut-and-splice crossover [39] which does not require the similarity information.

The basic principle of this operator is illustrated by the Figure 6 and is as follows:

(1) A random position k1 is selected in the first parent vector solution;

(2) A random position k2 is selected in the second parent vector solution;

(3) The first k1 elements of the first parent p1 become the first elements of the first child

o1. Similarly, the first k2 elements of the second parent p2 become the first elements

of the second child o2.

102 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

102

(4) The remaining elements of, respectively, p1 and p2 are added as second parts of,

respectively, o2 and o1 (hence having a crossing-over operation between parents).

Figure 27 Cut-and-splice crossover principle

The mutation operator consists of randomly changing a dimension in the generated vector.

Regarding the validity of the models after applying change operators, we checked, of course,

the validity of the generated models with the metamodels using the well-formed rules and

metamodel constraints. We apply a repair operator in the case that invalid models are

generated (violated the constraints) by selecting another dimension of the vector to modify.

Upper level algorithm: TestCasesGeneration

01. Inputs: Source and target metamodels MM, ATL program to test

(rules) R, Number of best upper solutions that are considered for lower

level optimization nbest, Upper population size N1, Lower population

size N2, Upper number of generations G1, Lower number of

generations G2

02. Output: Best set of test cases T

03. Begin

04. P0 ← Initialization (N1, MM);

05. For each TC0 in P0 do /*TC means test cases solution*/

103 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

103

06. ER0 ← GAErrorsGeneration (TC0, R, N2, G2); /*Call lower level

routine*/

07. TC0 ← Evaluation (ER0, MM, R, TC0);

08. End For

09. t ← 1;

10. While (t < G1) do

11. Qt ← Variation (Pt-1);

12. For each TCt in Qt do /*Evaluate test cases solution based on upper fitness

function*/

13. TCt ← UpperEvaluation (TCt, MM, R);

14. End For

15. For each of the best nbests TCt in Qt do /*Only nbest (best)

solutions are used to*/

16. ERt ← GAErrorsGeneration (TCt, R, N2, G2); /*Call lower

level routine*/

17. TCt ← EvaluationUpdate (MM, , TCt, ERt); /*Update based

on lower level*/

18. End For

19. Ut ← Pt Qt;

20. Pt+1 ← EvironmentalSelection (N1, N2, Ut);

21. t ← t+1;

22. End While

23. T ← FittestSelection (Pt);

24. End

Figure 28 Pseudo-code of the bi-level adaptation for model transformation testing.

Lower level algorithm: MutantsGeneration



104 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

104

01. Inputs: Upper level test cases TC, program to test (rules) R,

Population size N, number of generations G

02. Output: Best set of mutants MUT

03. Begin

04. P0 ← Initialization (N, R);

05. P0 ← Evaluation (P0, R, TC); /*Evaluation depends of TC*/

06. t ← 1;

07. While (t < G) do

08. Qt ← Variation (Pt-1);

09. Qt ← Evaluation (Qt, R, TC); /*Evaluation depends of TC*/

10. Ut ← Pt Qt;

11. Pt+1 ← EvironmentalSelection (N, N1, N2, Ut);

12. t ← t+1;

13. End While

14. MUT ← FittestSelection (Pt);

15. End

Figure 29 Pseudo-code of the bi-level adaptation for model transformation testing.

4.2.2 Evaluation

In order to evaluate our approach for model transformations testing using the proposed bi-

level optimization (BLOP) approach, we conducted a set of experiments based on two model

transformation programs written in ATL[110] . The first ATL program is a set of rules that

transforms a class diagram (CLD) to Relational databases (RDBMS) and the second one

transforms Sequence Diagrams (SD) to Statechart Diagram (STD). Each experiment is

repeated 31 times, and the obtained results are subsequently statistically analyzed with the



105 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

105

aim to compare our bi-level proposal with other transformation testing approaches. In this

section, we first present our research questions and then describe and discuss the obtained

results. Finally, we present various threats to the validity of our experiments.

4.3 Validation

4.3.1 Research Questions

We defined four research questions that address the applicability, performance comparison

with other model transformation testing approaches, and the scalability of our bi-level

proposal. The four research questions are as follows:

 RQ1: How does BLOP perform to generate to generate efficient test cases for model

transformations?

 RQ2: How does BLOP perform compared to co-evolution (Co-Evol) to generate

efficient test cases?

 RQ3: How does BLOP perform compared to an existing test cases generation

technique not based on the use of metaheuristic search?

 RQ5: How does our bi-level formulation scale?

To answer RQ1, we used two different ATL programs for the transformation of class

diagram (CLD) to Relational databases (RDBMS) and the transformation of Sequence

Diagrams (SD) to Statechart Diagram (STD). We defined a total of 10 scenarios as described

in Table 1. In each scenario, we introduced manually several errors in the ATL program such

106 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

106

modifying, adding and deleting the transformation rules. Then, we evaluate the efficiency of

the generated test cases to detect these errors. The four developers (graduate students in

Software Engineering at the University of Michigan) considered in our experiments are not

aware about the types of errors introduced to the rules by our bi-level approach thus they

modified the ATL programs manually to introduce different errors: redundant rules, missing

rules (deleting rules), adding faulty rules and modifying existing rules. The developers do not

have any idea about the generated errors by the bi-level approach. The developers modified

directly the rules without the need to use specific change operators but the bi-level approach

used the operators to inject the errors. The change operators modify the original ATL

program. Thus, the four developers were responsible for manually changing the ATL code to

introduce the errors

The introduced errors by the mutation operators or manually by the developers are

formalized as a sequence of operations applied to the ATL program using a Higher-Order

Transformation (HOT)[111], i.e., which is a transformation reading a transformation as input

and producing a transformation as output. In particular, we reused the fault model and

corresponding mutation operators presented in reference[112] and concretized them for ATL.

To this end, we define the Precision measure that corresponds to the number of detected

errors over the total number of manually introduced ones. An error is detected when

dissimilarity is found between the target model generated by the original ATL program and

the target model generated by the modified ATL program. If both target models are the same

107 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

107

then the test case cannot detect the error in the rules. The errors reported in Table 1 are those

introduced manually by the developers (expected errors to be detected by the test cases).

The reason to use human generated errors is related to the fact that developers modify

directly the ATL program without the use of change operators and without knowing any

details about the generated errors by the bi-level approach. Thus, we can have an accurate

evaluation of the performance of our bi-level approach to generate good test cases. If we

generated the errors automatically then maybe they will be easily detected by our test cases.

In addition, the developers have an idea about common errors that can happen when writing

ATL rules.

To answer RQ2, we compared our BLOP approach to another search-based algorithm called

co-evolutionary (Co-Evol) algorithms (due to the absence of other works that use search-

based techniques for model transformation mutation analysis). In Co-Evol algorithms the two

populations were evolved in parallel without hierarchy. Thus, the second population

solutions are independent from the solutions in the first population which is one of the main

differences with our bi-level extension.

To answer RQ3, we compared our results with an existing technique for test cases generation

not based on heuristic search[37]. In fact, Fleurey et al. proposed a framework for the

generation of model transformation test cases based on meta-models coverage. Fleurey et al.

algorithm can be just applied to test class diagram to relational schema. They did not adapt

for the case of sequence diagram to Statechart Diagram. To answer the last question RQ4, we

108 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

108

evaluated the execution time required by our BLOP proposal based on different scenarios

(parameters setting).

Table 13 Scenarios

Scenarios Modified ATL

program

Number of

rules of the

program

Number of

errors

Scenario 1 CLD-to-

RDBMS

14 13

Scenario 2 CLD-to-

RDBMS

14 11

Scenario 3 CLD-to-

RDBMS

14 8

Scenario 4 CLD-to-

RDBMS

14 13

Scenario 5 CLD-to-

RDBMS

14 9

Scenario 6 SD-to-STD 17 6

Scenario 7 SD-to-STD 17 11

Scenario 8 SD-to-STD 17 14

Scenario 9 SD-to-STD 17 8

Scenario 10 SD-to-STD 17 9

4.3.2 Experimental Settings

For each search algorithm and for each system, we performed a set of experiments using

several population sizes: 10, 20, 30, 40 and 50. The stopping criterion was set to 750,000

fitness evaluations for all algorithms in order to ensure fairness of comparison. We used a

109 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

109

high number of evaluations as stopping criterion since our bi-level approach involves two

levels of optimization. Each algorithm was executed 31 times with each configuration and

then comparison between the configurations was performed based on the precision measure

using the Wilcoxon test. Since the replication of the bi-level experiment for 31 times is

computationally expensive, the parameter setting experiments are performed on a cluster of

30 machines. For our bi-level approach, both lower-level and upper-level GAs are run each

with a population of 30 individuals and 50 generations. The models are generated randomly

in the first generation and this explains the high number of iterations used as stopping

criterion.

The other parameters‟ values were fixed by trial and error and are as follows: (1) crossover

probability = 0.6; mutation probability = 0.4 where the probability of gene modification is

0.4.

It should be noted that the lower-level routine is not called for all upper-level population

members. To control, the high computational cost of our bi-level approach, only nbest% of

the best upper-level population members are allowed to call the lower-level optimization

algorithm. Based on a parametric study, a value of 12% for nbest is found to be adequate

empirically in our experiments. The nbest parametric study will be discussed later. For our

experiment, we generated up to 150 test cases and up to 30 errors per solution.

Since metaheuristic algorithms are stochastic optimizers, they can provide different results

for the same problem instance from one run to another. For this reason, our experimental

110 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

110

study is performed based on 31 independent simulation runs for each problem instance and

the obtained results are statistically analyzed by using the Wilcoxon signed-rank test[100]

with a 95% confidence level (α = 5%). The Wilcoxon signed-rank test is a non-parametric

statistical hypothesis test used when comparing two related samples to verify whether their

population mean-ranks differ or not. The p-value of the Wilcoxon test corresponds to the

probability of rejecting the null hypothesis H0 while it is true (type I error). A p-value that is

less than or equal to α (≤ 0.05) means that we accept H1 and we reject H0. However, a p-

value that is strictly greater than α (> 0.05) means the opposite. In this way, we could decide

whether the outperformance of BLOP over one of each of the others detection algorithms (or

the opposite) is statistically significant or just a random result.

The Wilcoxon signed-rank test allows verifying whether the results are statistically different

or not. However, it does not give any idea about the difference magnitude. The effect size

could be computed by using the Cohen‟s d statistic [40]. The effect size is considered: (1)

small if 0.2 ≤ d < 0.5; (2) medium if 0.5 ≤ d < 0:8, or (3) large if d > 0.8.

4.3.3 Results and discussions

Results for RQ1. In this section, we evaluate the performance of our BLOP adaptation on

the generation of efficient test cases for ATL programs. Figures 8 and 9 summarize our

findings. The expected errors were detected with an average of more than 90% of precision

on the 10 different scenarios. For over half the total number of scenarios, 100% precision

was obtained, indicating the detection of all expected errors. We noticed that our technique

111 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

111

does not have a bias towards the types of errors that are introduced. As described in Figures 8

and 9, in all systems, we had detected most of the introduced errors. To conclude, our BLOP

approach is able to generate efficient test cases able to detect errors in ATL programs (RQ1).

Figure 30 Precision median values of BLOP, Co-Evol and Fleurey et al. [28] over 31 independent simulation runs.

Results for RQ2. In this section, we compare our BLOP adaptation to another search- based

techniques based on co-evolution algorithms (Co-Evol). Figures 8 and 9 show the overview

of the results of the significance tests comparison between these algorithms. It is clear that

BLOP outperforms Co-Evol in 100% of the scenarios in terms of precision. For Co-Evol, the

two populations are executed in parallel and the problem is that there is no dependency

between both populations (unlike BLOP that creates a hierarchy between two levels) thus

one population can converge before the second one. We found that the main reason

explaining the outperformance of BLOP against Co-Evol is the diversity of the generated

errors. In fact, the lower level of our BLOP formulation generates mutants/errors for every

0

20

40

60

80

100

Precision-BLOP

Precision-Co-Evol

Precision-Fleurey et
al.

CLD-to-RDBMS

112 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

112

good solution (test cases) in the upper level then these errors are used to evaluate the

solutions in the upper level. Thus, the generated errors depend on the associated solution (test

cases) in the upper level.

There is no parallelism in our bi-level formulation in contradiction to co-evolutionary

algorithms. The upper level is executed for number iterations then the lower level for another

number of iterations. In co-evolutionary algorithms, populations are executed in parallel

without hierarchy (but can be dependent such as by exchanging information[113]). The

problem with the Co-Evolutionary approach is that one population may converge before the

other. Contrariwise, in our bi-level approach there is a hierarchy that allows avoiding the

problem of premature convergence of one population over the other. Indeed, the evaluation

of every good test cases solution (upper level) requires the running a search algorithm to find

the best undetectable ATL errors by the upper level solution. This concept avoids driving the

search towards uninteresting directions. Furthermore, the two populations in co-evolution are

considered with same importance; however the upper level is more important than the lower

level in any bi-level formulation.

In conclusion, we answer RQ2 by concluding that the results in our experiments confirm that

our proposed BLOP is adequate and it outperforms Co-Evol.

113 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

113

Figure 31 Precision median values of BLOP and Co-Evol over 31 independent simulation runs.

Finally, the following table gives the effect sizes in addition to the p-values of the Wilcoxon test.

Table 14 The Wilcoxon test p-values and the effect size values (Cohen’s d statistic) of the comparisons between BLOP

and Co-Evol on the 10 scenarios.

Scenario S1 S2 S3 S4 S5 S6 S7 S8 S9 S10

p-value <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

Effect

size

0.83 0.79 0.82 0.86 0.72 0.68 0.66 0.73 0.36 0.38

Results for RQ3. Since it is not sufficient to compare our proposal with only search-based

work, we compared the performance of BLOP with the test cases generation techniques

proposed by Fleurey et al. [37] based only on metamodel coverage. Figure 8 summarizes the

results of the precision obtained on the CLD-to-RDBMS ATL program. It is clear from the

results of Figure 8 that the metamodel coverage criterion is not sufficient and our BLOP

technique generates more efficient test cases than Fleurey et al. [37]. To conclude, our BLOP

0

20

40

60

80

100

120

Precision-BLOP

Precision-Co-Evol

SD-to-STD

114 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

114

adaption also outperforms, on average, an existing approach not based on meta-heuristic

search (RQ3).

Results for RQ4. Since our proposal is based on bi-level optimization, it is important to

evaluate the execution time. It is evident that BLOP requires higher execution time than Co-

Evol and[37] since BLOP has an optimization algorithm to be executed at the lower level. To

reduce the computational complexity of our BLOP adaptation, we selected only best

solutions (nbest%) at the upper level to update their fitness evaluations based on the coverage

of errors that are generated by the optimization algorithms executed at the lower level for

every selected solution. All the algorithms under comparison were executed on machines

with Intel Xeon 3 GHz processors and 4 GB RAM. This allows us to make a fair comparison

between CPU times. The average execution time for BLOP, was around 3.5 hours for a

single execution of the algorithm with a total of 750K iterations. An important parameter that

reduced the execution time of our BLOP adaptation is the number of selected good solutions

at the upper level. Figure 8 shows that the performance of our approach improves as we

increase the percentage of best solutions selected from the upper level for each iteration.

However, the results become stable after 12% (percentage of selected solutions from the

upper level population). For this reason, we considered this threshold in our experiments that

represents a good trade-off between the quality of test cases solutions and the execution time.

As described in Figure 10, the average precision scores on the 10 scenarios become almost

stable after the 12% threshold value and the execution time increases dramatically since a

high number of optimization algorithms are executed at the lower level.

115 Model Transformation Testing: A Bi-Level

Search-Based Software Engineering

Approach

115

Figure 32 Scalability of our bi-level approach for test cases generation

4.3.4 Threats to Validity

We considered different types of threat that can affect the validity of our experiments. We

consider each of these in the following paragraphs.

Conclusion validity is concerned with the statistical relationship between the treatment and

the outcome. We used the Wilcoxon signed-rank test with a 95% confidence level to test if

significant differences existed between the measurements for different treatments. This test

makes no assumption that the data is normally distributed and is suitable for ordinal data, so

we can be confident that the statistical relationships we observed are significant. In addition,

since the tools are not available we re-implemented the existing transformation techniques

for a comparison with our proposal thus the outperformance of our bi-level can be also

related to some missing implementation details of existing approaches.

116 Conclusion and Future Work

116

Internal validity is concerned with the causal relationship between the treatment and the

outcome. When we observe an increase in precision, was it caused by our bi-level approach,

or could it have occurred for another reason? We dealt with internal threats to validity by

performing 31 independent simulation runs for each problem instance. This makes it highly

unlikely that the observed increased in precision was caused by anything other than the

applied bi-level approach.

External validity refers to the generalizability of our findings. In this study, we performed our

experiments on two ATL programs belonging to different domains and with different sizes.

However, we cannot assert that our results can be generalized to other transformation

mechanisms. Future replications of this study are necessary to confirm our findings. In

addition, our experiments are limited to only 10 scenarios. We plan to extend the experiments

by considering additional possible errors in the ATL programs.

117 Conclusion and Future Work

117

Chapter 5: Conclusion and Future Work

Choosing quality metrics to detect symptoms of code-smells is not straightforward in

software engineering and is usually a challenging task. In order to tackle this problem, we

have proposed a bi-level evolutionary optimization approach as our first contribution. The

upper-level optimization produces a set of detection rules, which are combinations of quality

metrics, with the goal to maximize the coverage of not only a code-smell example base but

also a lower-level population of artificial code-smells. The lower-level optimization tries to

generate artificial code-smells that cannot be detected by the upper-level detection rules,

thereby emphasizing the generation of broad-based and fitter rules. The statistical analysis of

the obtained results over nine studied software systems have shown the competitiveness and

the outperformance of our proposal in terms of precision and recall over a single-level

genetic programming, co-evolutionary, and non-search-based methods. . A bi-level approach

for the correction of code-smells is going to be our future work for our first contribution.

Finally, our first contribution in this thesis is mainly related to the detection of code-smells.

As our second contribution, we proposed a bi-level evolutionary optimization approach for

model transformation testing. The upper-level optimization produces a set of test cases,

which are models, conformed to a meta-model, with the goal to maximize the coverage of

metamodels and the lower-level population of errors. The lower-level optimization tries to

generate errors that cannot be detected by the upper-level test cases, thereby emphasizing the

generation of broad-based and fitter test cases. The statistical analysis of the obtained results

118 Conclusion and Future Work

118

has shown the competitiveness and the outperformance of our proposal in terms of precision

over co-evolutionary and non-search-based methods.

Following these two contribution, we have identified several avenues for future research.

Firstly, the main problem when using bi-level optimization in software engineering is the

computational cost required for the lower-level search. Hence, it would be interesting to use

regression methods for approximating the lower level optimum for a given upper-level

solution. In this way, we could minimize the required number of function evaluations

significantly. Secondly, the idea of bi-level optimization seems interesting for several other

SE problems. It would be challenging to model and then solve other interesting SE problems

in a bi-level manner.

119

Bibliography

1. Liu, H.; Guo, X.; Shao, W., Monitor-based instant software refactoring. IEEE

Transactions on Software Engineering 2013, 39 (8), 1112-1126.

2. Mens, T.; Tourwé, T., A survey of software refactoring. IEEE Transactions on

software engineering 2004, 30 (2), 126-139.

3. Opdyke, W. F. Refactoring object-oriented frameworks. University of Illinois at

Urbana-Champaign, 1992.

4. Fowler, M.; Beck, K.; Brant, J.; Opdyke, W.; Roberts, D., Refactoring: Improving the

design of existing programs. Addison-Wesley Reading: 1999.

5. Fenton, N.; Bieman, J., Software metrics: a rigorous and practical approach. CRC

Press: 2014.

6. Brown, W. H.; Malveau, R. C.; McCormick, H. W.; Mowbray, T. J., AntiPatterns:

refactoring software, architectures, and projects in crisis. John Wiley & Sons, Inc.: 1998.

7. Kessentini, M.; Kessentini, W.; Sahraoui, H.; Boukadoum, M.; Ouni, A. In Design

Defects Detection and Correction by Example, Program Comprehension (ICPC), 2011 IEEE

19th International Conference on, 22-24 June 2011; 2011; pp 81-90.

8. Munro, M. J. In Product metrics for automatic identification of" bad smell" design

problems in java source-code, 11th IEEE International Software Metrics Symposium

(METRICS'05), IEEE: 2005; pp 15-15.

9. Mantyla, M. V. In Empirical software evolvability-code smells and human

evaluations, Software Maintenance (ICSM), 2010 IEEE International Conference on, IEEE:

2010; pp 1-6.

10. Harman, M.; Mansouri, S. A.; Zhang, Y., Search-based software engineering: Trends,

techniques and applications. ACM Comput. Surv. 2012, 45 (1), 1-61.

11. Goldberg, D. E.; Deb, K., A comparative analysis of selection schemes used in

genetic algorithms. Foundations of genetic algorithms 1991, 1, 69-93.

12. e Abreu, F. B.; Melo, W. In Evaluating the impact of object-oriented design on

software quality, Software Metrics Symposium, 1996., Proceedings of the 3rd International,

IEEE: 1996; pp 90-99.

13. Riel, A. J., Object-oriented design heuristics. Addison-Wesley Longman Publishing

Co., Inc.: 1996.

120 Bibliography

120

14. Coad, P.; Yourdon, E., Object-oriented design. Yourdon press Englewood Cliffs, NJ:

1991; Vol. 92.

15. Zhang, M.; Hall, T.; Baddoo, N., Code bad smells: a review of current knowledge.

Journal of Software Maintenance and Evolution: research and practice 2011, 23 (3), 179-

202.

16. Van Emden, E.; Moonen, L. In Java quality assurance by detecting code smells,

Reverse Engineering, 2002. Proceedings. Ninth Working Conference on, IEEE: 2002; pp 97-

106.

17. Mäntylä, M. V.; Lassenius, C., Subjective evaluation of software evolvability using

code smells: An empirical study. Empirical Software Engineering 2006, 11 (3), 395-431.

18. Monden, A.; Nakae, D.; Kamiya, T.; Sato, S.-i.; Matsumoto, K.-i. In Software quality

analysis by code clones in industrial legacy software, Software Metrics, 2002. Proceedings.

Eighth IEEE Symposium on, IEEE: 2002; pp 87-94.

19. Deligiannis, I.; Shepperd, M.; Roumeliotis, M.; Stamelos, I., An empirical

investigation of an object-oriented design heuristic for maintainability. Journal of Systems

and Software 2003, 65 (2), 127-139.

20. Anda, B. In Assessing software system maintainability using structural measures and

expert assessments, 2007 IEEE International Conference on Software Maintenance, IEEE:

2007; pp 204-213.

21. Rapu, D.; Ducasse, S.; Gîrba, T.; Marinescu, R. In Using history information to

improve design flaws detection, Software Maintenance and Reengineering, 2004. CSMR

2004. Proceedings. Eighth European Conference on, IEEE: 2004; pp 223-232.

22. Yamashita, A., Assessing the capability of code smells to support software

maintainability assessments: Empirical inquiry and methodological approach. 2012.

23. Brown, W. H.; Malveau, R. C.; Mowbray, T. J., AntiPatterns: refactoring software,

architectures, and projects in crisis. 1998.

24. Palomba, F.; Bavota, G.; Di Penta, M.; Oliveto, R.; De Lucia, A.; Poshyvanyk, D. In

Detecting bad smells in source code using change history information, Automated Software

Engineering (ASE), 2013 IEEE/ACM 28th International Conference on, IEEE: 2013; pp 268-

278.

25. Chidamber, S. R.; Kemerer, C. F., A metrics suite for object oriented design.

Software Engineering, IEEE Transactions on 1994, 20 (6), 476-493.

26. e Abreu, F. B. In The MOOD metrics set, Proceedings of the European Conference on

Object-Oriented Programming (ECOOP). Workshop on Metrics, Vol. 95, p. 267, 1995; p

267.

121 Bibliography

121

27. Abran, A.; Nguyenkim, H., Measurement of the maintenance process from a demand‐
based perspective. Journal of Software Maintenance: Research and Practice 1993, 5 (2), 63-

90.

28. Briand, L. C.; Daly, J. W.; Wust, J. K., A unified framework for coupling

measurement in object-oriented systems. IEEE Transactions on software Engineering 1999,

25 (1), 91-121.

29. Mäntylä, M.; Vanhanen, J.; Lassenius, C. In A taxonomy and an initial empirical

study of bad smells in code, Software Maintenance, 2003. ICSM 2003. Proceedings.

International Conference on, IEEE: 2003; pp 381-384.

30. Khomh, F.; Vaucher, S.; Guéhéneuc, Y.-G.; Sahraoui, H. In A bayesian approach for

the detection of code and design smells, 2009 Ninth International Conference on Quality

Software, IEEE: 2009; pp 305-314.

31. Mantyla, M.; Vanhanen, J.; Lassenius, C. In A taxonomy and an initial empirical

study of bad smells in code, Software Maintenance, 2003. ICSM 2003. Proceedings.

International Conference on, IEEE: 2003; pp 381-384.

32. Baudry, B.; Ghosh, S.; Fleurey, F.; France, R.; Le Traon, Y.; Mottu, J.-M., Barriers to

systematic model transformation testing. Communications of the ACM 2010, 53 (6), 139-143.

33. Selim, G. M.; Cordy, J. R.; Dingel, J. In Model transformation testing: The state of

the art, Proceedings of the First Workshop on the Analysis of Model Transformations, ACM:

2012; pp 21-26.

34. Vallecillo, A.; Gogolla, M.; Burgueno, L.; Wimmer, M.; Hamann, L., Formal

specification and testing of model transformations. In Formal Methods for Model-Driven

Engineering, Springer: 2012; pp 399-437.

35. Burgueno, L.; Troya, J.; Wimmer, M.; Vallecillo, A., Static fault localization in

model transformations. IEEE Transactions on Software Engineering 2015, 41 (5), 490-506.

36. Ehrig, K.; Küster, J. M.; Taentzer, G., Generating instance models from meta models.

Software & Systems Modeling 2009, 8 (4), 479-500.

37. Fleurey, F.; Baudry, B.; Muller, P.-A.; Le Traon, Y., Qualifying input test data for

model transformations. Software & Systems Modeling 2009, 8 (2), 185-203.

38. González, C. A.; Cabot, J. In ATLTest: a white-box test generation approach for ATL

transformations, International Conference on Model Driven Engineering Languages and

Systems, Springer: 2012; pp 449-464.

39. Guerra, E. In Specification-driven test generation for model transformations,

International Conference on Theory and Practice of Model Transformations, Springer: 2012;

pp 40-55.

122 Bibliography

122

40. Mottu, J.-M.; Baudry, B.; Le Traon, Y. In Mutation analysis testing for model

transformations, European Conference on Model Driven Architecture-Foundations and

Applications, Springer: 2006; pp 376-390.

41. Fraternali, P.; Tisi, M. In Mutation analysis for model transformations in atl, Model

Transformation with ATL Workshop (MtATL2009), 2009; pp 145-149.

42. Giner, P.; Pelechano, V. In Test-driven development of model transformations,

International Conference on Model Driven Engineering Languages and Systems, Springer:

2009; pp 748-752.

43. Kolstad, C. D. A review of the literature on bi-level mathematical programming;

1985.

44. Sinha, A.; Malo, P.; Deb, K., Efficient evolutionary algorithm for single-objective

bilevel optimization. arXiv preprint arXiv:1303.3901 2013.

45. Bracken, J.; McGill, J. T., Mathematical programs with optimization problems in the

constraints. Operations Research 1973, 21 (1), 37-44.

46. Bard, J. F.; Falk, J. E., An explicit solution to the multi-level programming problem.

Computers & Operations Research 1982, 9 (1), 77-100.

47. Mathieu, R.; Pittard, L.; Anandalingam, G., Genetic algorithm based approach to bi-

level linear programming. Revue française d'automatique, d'informatique et de recherche

opérationnelle. Recherche opérationnelle 1994, 28 (1), 1-21.

48. Vicente, L. N.; Calamai, P. H., Bilevel and multilevel programming: A bibliography

review. Journal of Global optimization 1994, 5 (3), 291-306.

49. Candler, W.; Townsley, R., A linear two-level programming problem. Computers &

Operations Research 1982, 9 (1), 59-76.

50. Bialas, W.; Karwan, M.; Shaw, J., A parametric complementary pivot approach for

two-level linear programming. State University of New York at Buffalo 1980, 57.

51. Aiyoshi, E.; Shimizu, K., Hierarchical decentralized systems and its new solution by

a barrier method. IEEE Transactions on Systems, Man and Cybernetics 1981, (6), 444-449.

52. Colson, B.; Marcotte, P.; Savard, G., A trust-region method for nonlinear bilevel

programming: algorithm and computational experience. Computational Optimization and

Applications 2005, 30 (3), 211-227.

53. Legillon, F.; Liefooghe, A.; Talbi, E.-G. In Cobra: A cooperative coevolutionary

algorithm for bi-level optimization, 2012 IEEE Congress on Evolutionary Computation,

IEEE: 2012; pp 1-8.

54. Koh, A., A metaheuristic framework for bi-level programming problems with multi-

disciplinary applications. In Metaheuristics for Bi-level Optimization, Springer: 2013; pp

153-187.

123 Bibliography

123

55. Harman, M. In The current state and future of search based software engineering,

2007 Future of Software Engineering, IEEE Computer Society: 2007; pp 342-357.

56. Ó Cinnéide, M.; Tratt, L.; Harman, M.; Counsell, S.; Hemati Moghadam, I. In

Experimental assessment of software metrics using automated refactoring, Proceedings of

the ACM-IEEE international symposium on Empirical software engineering and

measurement, ACM: 2012; pp 49-58.

57. Ciupke, O. In Automatic detection of design problems in object-oriented

reengineering, Technology of Object-Oriented Languages and Systems, 1999. TOOLS 30

Proceedings, IEEE: 1999; pp 18-32.

58. Kothari, S. C.; Bishop, L.; Sauceda, J.; Daugherty, G., A pattern-based framework for

software anomaly detection. Software Quality Journal 2004, 12 (2), 99-120.

59. Dhambri, K.; Sahraoui, H.; Poulin, P. In Visual detection of design anomalies,

Software Maintenance and Reengineering, 2008. CSMR 2008. 12th European Conference

on, IEEE: 2008; pp 279-283.

60. Moha, N.; Gueheneuc, Y.-G.; Duchien, L.; Le Meur, A.-F., DECOR: A method for

the specification and detection of code and design smells. Software Engineering, IEEE

Transactions on 2010, 36 (1), 20-36.

61. Salehie, M.; Li, S.; Tahvildari, L. In A metric-based heuristic framework to detect

object-oriented design flaws, 14th IEEE International Conference on Program

Comprehension (ICPC'06), IEEE: 2006; pp 159-168.

62. Sjøberg, D. I.; Yamashita, A.; Anda, B. C.; Mockus, A.; Dybå, T., Quantifying the

effect of code smells on maintenance effort. IEEE Transactions on Software Engineering

2013, 39 (8), 1144-1156.

63. Harman, M.; Tratt, L., Pareto optimal search based refactoring at the design level. In

Proceedings of the 9th annual conference on Genetic and evolutionary computation, ACM:

London, England, 2007; pp 1106-1113.

64. Harman, M.; Mansouri, S. A.; Zhang, Y., Search-based software engineering: Trends,

techniques and applications. ACM Computing Surveys (CSUR) 2012, 45 (1), 11.

65. Genero, M.; Piattini, M.; Calero, C. In Empirical validation of class diagram metrics,

Empirical Software Engineering, 2002. Proceedings. 2002 International Symposium n, IEEE:

2002; pp 195-203.

66. Kafura, D.; Reddy, G. R., The use of software complexity metrics in software

maintenance. IEEE Transactions on Software Engineering 1987, 13 (3), 335.

67. Kataoka, Y.; Notkin, D.; Ernst, M. D.; Griswold, W. G. In Automated support for

program refactoring using invariants, Proceedings of the IEEE International Conference on

Software Maintenance (ICSM'01), IEEE Computer Society: 2001; p 736.

124 Bibliography

124

68. Liu, H.; Yang, L.; Niu, Z.; Ma, Z.; Shao, W. In Facilitating software refactoring with

appropriate resolution order of bad smells, Proceedings of the the 7th joint meeting of the

European software engineering conference and the ACM SIGSOFT symposium on The

foundations of software engineering, ACM: 2009; pp 265-268.

69. Siy, H.; Votta, L. In Does the modern code inspection have value?, Proceedings of

the IEEE international Conference on Software Maintenance (ICSM'01), IEEE Computer

Society: 2001; p 281.

70. Schulze, S.; Lochau, M.; Brunswig, S. In Implementing refactorings for FOP: lessons

learned and challenges ahead, Proceedings of the 5th International Workshop on Feature-

Oriented Software Development, ACM: 2013; pp 33-40.

71. Bavota, G.; Gethers, M.; Oliveto, R.; Poshyvanyk, D.; Lucia, A. d., Improving

software modularization via automated analysis of latent topics and dependencies. ACM

Transactions on Software Engineering and Methodology (TOSEM) 2014, 23 (1), 4.

72. Bavota, G.; De Lucia, A.; Marcus, A.; Oliveto, R. In Software re-modularization

based on structural and semantic metrics, Reverse Engineering (WCRE), 2010 17th

Working Conference on, IEEE: 2010; pp 195-204.

73. Maletic, J. I.; Marcus, A. In Supporting program comprehension using semantic and

structural information, Proceedings of the 23rd International Conference on Software

Engineering, IEEE Computer Society: 2001; pp 103-112.

74. Kuhn, A.; Ducasse, S.; Gírba, T., Semantic clustering: Identifying topics in source

code. Information and Software Technology 2007, 49 (3), 230-243.

75. Scanniello, G.; D'Amico, A.; D'Amico, C.; D'Amico, T., Architectural layer recovery

for software system understanding and evolution. Software: Practice and Experience 2010,

40 (10), 897-916.

76. Banerjee, J.; Kim, W.; Kim, H.-J.; Korth, H. F., Semantics and implementation of

schema evolution in object-oriented databases. ACM: 1987; Vol. 16.

77. Ganter, B.; Wille, R., Formal concept analysis: mathematical foundations. Springer

Science & Business Media: 2012.

78. Snelting, G.; Tip, F., Reengineering class hierarchies using concept analysis. ACM:

1998; Vol. 23.

79. Weiser, M. In Program slicing, Proceedings of the 5th international conference on

Software engineering, IEEE Press: 1981; pp 439-449.

80. Griswold, W. G.; Chen, M. I.; Bowdidge, R. W.; Morgenthaler, J. D., Tool support

for planning the restructuring of data abstractions in large systems. ACM: 1996; Vol. 21.

81. Roberts, D. B.; Johnson, R., Practical analysis for refactoring. University of Illinois

at Urbana-Champaign: 1999.

125 Bibliography

125

82. Steimann, F.; Thies, A. In From public to private to absent: Refactoring Java

programs under constrained accessibility, European Conference on Object-Oriented

Programming, Springer: 2009; pp 419-443.

83. Schäfer, M.; Ekman, T.; De Moor, O., Sound and extensible renaming for Java. ACM

Sigplan Notices 2008, 43 (10), 277-294.

84. Schäfer, M.; Verbaere, M.; Ekman, T.; de Moor, O. In Stepping stones over the

refactoring rubicon, European Conference on Object-Oriented Programming, Springer:

2009; pp 369-393.

85. Sahraoui, H. A.; Godin, R.; Miceli, T. In Can metrics help to bridge the gap between

the improvement of oo design quality and its automation?, Software Maintenance, 2000.

Proceedings. International Conference on, IEEE: 2000; pp 154-162.

86. Zhang, S.; Saff, D.; Bu, Y.; Ernst, M. D. In Combined static and dynamic automated

test generation, Proceedings of the 2011 International Symposium on Software Testing and

Analysis, ACM: 2011; pp 353-363.

87. Qayum, F.; Heckel, R. In Local search-based refactoring as graph transformation,

Search Based Software Engineering, 2009 1st International Symposium on, IEEE: 2009; pp

43-46.

88. Mancoridis, S.; Mitchell, B. S.; Rorres, C.; Chen, Y.-F.; Gansner, E. R. In Using

Automatic Clustering to Produce High-Level System Organizations of Source Code, IWPC,

Citeseer: 1998; pp 45-52.

89. Mitchell, B. S.; Mancoridis, S., On the automatic modularization of software systems

using the bunch tool. IEEE Transactions on Software Engineering 2006, 32 (3), 193-208.

90. Seng, O.; Stammel, J.; Burkhart, D. In Search-based determination of refactorings for

improving the class structure of object-oriented systems, Proceedings of the 8th annual

conference on Genetic and evolutionary computation, ACM: 2006; pp 1909-1916.

91. O‟Keeffe, M.; Ó Cinnéide, M., Search-based refactoring for software maintenance.

Journal of Systems and Software 2008, 81 (4), 502-516.

92. Abdeen, H.; Ducasse, S.; Sahraoui, H.; Alloui, I. In Automatic package coupling and

cycle minimization, Reverse Engineering, 2009. WCRE'09. 16th Working Conference on,

IEEE: 2009; pp 103-112.

93. Ouni, A.; Kessentini, M.; Sahraoui, H.; Boukadoum, M., Maintainability defects

detection and correction: a multi-objective approach. Automated Software Engineering 2012,

20 (1), 47-79.

94. Sayyad, A. S.; Menzies, T.; Ammar, H. In On the value of user preferences in search-

based software engineering: a case study in software product lines, Software engineering

(ICSE), 2013 35th international conference on, IEEE: 2013; pp 492-501.

126 Bibliography

126

95. Mkaouer, M. W.; Kessentini, M.; Bechikh, S.; Deb, K.; Ó Cinnéide, M. In High

dimensional search-based software engineering: finding tradeoffs among 15 objectives for

automating software refactoring using NSGA-III, Proceedings of the 2014 conference on

Genetic and evolutionary computation, ACM: 2014; pp 1263-1270.

96. Bennett, K. H.; Rajlich, V. T. In Software maintenance and evolution: a roadmap,

Proceedings of the Conference on the Future of Software Engineering, ACM: 2000; pp 73-

87.

97. Golberg, D. E., Genetic algorithms in search, optimization, and machine learning.

Addion wesley 1989, 1989, 102.

98. Boussaa, M.; Kessentini, W.; Kessentini, M.; Bechikh, S.; Chikha, S. B. In

Competitive coevolutionary code-smells detection, International Symposium on Search

Based Software Engineering, Springer: 2013; pp 50-65.

99. Bansiya, J.; Davis, C. G., A hierarchical model for object-oriented design quality

assessment. Software Engineering, IEEE Transactions on 2002, 28 (1), 4-17.

100. Arcuri, A.; Fraser, G., Parameter tuning or default values? An empirical investigation

in search-based software engineering. Empirical Software Engineering 2013, 18 (3), 594-

623.

101. Holm, S., A simple sequentially rejective multiple test procedure. Scandinavian

journal of statistics 1979, 65-70.

102. Brambilla, M.; Cabot, J.; Wimmer, M., Model-driven software engineering in

practice. Synthesis Lectures on Software Engineering 2012, 1 (1), 1-182.

103. Sendall, S.; Kozaczynski, W. Model transformation the heart and soul of model-

driven software development; 2003.

104. Lin, Y.; Zhang, J.; Gray, J., A testing framework for model transformations. In

Model-driven software development, Springer: 2005; pp 219-236.

105. Sahin, D.; Kessentini, M.; Bechikh, S.; Deb, K., Code-smell detection as a bilevel

problem. ACM Transactions on Software Engineering and Methodology (TOSEM) 2014, 24

(1), 6.

106. Sumalee, A., Optimal road user charging cordon design: a heuristic optimization

approach. Computer‐Aided Civil and Infrastructure Engineering 2004, 19 (5), 377-392.

107. Jouault, F.; Kurtev, I. In Transforming models with ATL, satellite events at the

MoDELS 2005 Conference, Springer: 2005; pp 128-138.

108. Ryerkerk, M.; Averill, R.; Deb, K.; Goodman, E. In Meaningful representation and

recombination of variable length genomes, Proceedings of the 14th annual conference

companion on Genetic and evolutionary computation, ACM: 2012; pp 1471-1472.

127 Bibliography

127

109. Hutt, B.; Warwick, K., Synapsing variable-length crossover: Meaningful crossover

for variable-length genomes. IEEE transactions on evolutionary computation 2007, 11 (1),

118-131.

110. Website:, A. P., https://www.eclipse.org/atl.

111. Tisi, M.; Jouault, F.; Fraternali, P.; Ceri, S.; Bézivin, J. In On the use of higher-order

model transformations, European Conference on Model Driven Architecture-Foundations

and Applications, Springer: 2009; pp 18-33.

112. Sen, S.; Baudry, B.; Mottu, J.-M. In On combining multi-formalism knowledge to

select models for model transformation testing, 2008 1st International Conference on

Software Testing, Verification, and Validation, IEEE: 2008; pp 328-337.

113. Ren, J.; Harman, M.; Di Penta, M. In Cooperative co-evolutionary optimization of

software project staff assignments and job scheduling, International Symposium on Search

Based Software Engineering, Springer: 2011; pp 127-141.

https://www.eclipse.org/atl

