
  

 

 

A Multi-Level Framework for the Detection, Prioritization and Testing of Software Design Defects 

by  

Dilan Sahin 

 

 

 
A dissertation submitted in partial fulfillment 

of the requirements for the degree of 

Doctor of Philosophy 

(Information Systems Engineering) 

in the University of Michigan Dearborn 

 2016 

 

 

 

Doctoral Committee: 

Assistant Professor Marouane Kessentini, Chair 

Professor William Grosky 

Assistant Professor Bochen Jia 

Associate Professor Bruce Maxim 

 

 

 

 

 

 



  

 

 

 

 

 

 

 

 

© Dilan Sahin 2016 



 

 

 

 

ii 

 

DEDICATION 

This thesis work is dedicated to my dear family who has been always with me at every important 

step of my life. I want to thank my dear mother, Dudu Sahin, who always encouraged me to be a 

strong woman and be able to stay on my own foot. As a working mother, she did everything in 

an extraordinary way to raise me and my brother and always showed us how valuable is to be a 

hard-worker and fighter in this life. I owe everything I have to my strong mother. Her wish was 

to see me on the stage while getting my PhD diploma. How lucky I am to give her what she 

wished for. My father, Mahmut Sahin, is the person who gave me strength to follow my dreams. 

He is my number one supporter in this life. All the sacrifices he did for me to gain this 

experience are countless. I cannot forget the day when we get on the plane together to start my 

childhood dream. He is my hero. My brother, Cem Deniz Sahin, is the dearest of our family. He 

is my friend whom I can share everything in my life. I will always remember his cooking for me 

whenever I needed to study. I want to thank my dear aunt, Dondu Serin, for being my second 

mom whenever I needed her during my school years. She also has a lot of influence on me to 

make my dream come true. I also want to thank all my family members back in Turkey. 

 

  

 

 

 

 

 

 

 

 

 



 

 

 

 

iii 

 

 

ACKNOWLEDGEMENTS 

Deciding to pursue a PhD degree was not an easy choice especially when it involved me 

leaving everyone behind and come to United States on my own. It has been a difficult journey 

for me with ups and downs however it was totally worth it. This was not only an education, but a 

life experience which made me who I am. I became a strong person who knows what she wants 

from life and know how to get it if she puts enough hard work and sprinkle a bit enthusiasm in it. 

This achievement would not be possible if Professor Kessentini was not in the picture. I want to 

thank him for being the most important part of this journey. As an advisor, he gave me an 

opportunity to learn how to do research and introduced me to this existing field which I will 

continue building my career on top of it. I cannot thank him enough for his endless support, time 

and energy to make this dream come true. I would also want to thank my dissertation committee, 

Prof. Bruce Maxim, Prof. William Grosky and Prof. Bochon Jia who has been there each step I 

took in this journey.  

I want to give my special thanks to another strong woman in my life, Emily Wang, for all 

her support whenever I came across an obstacle in this journey. She gave me strength, courage 

and hope when I most needed it. Thank you Emily. 

I want to thank the members of SBSE lab whom I shared most of this journey with. I 

specifically want to thank Mohamed Wiem Mkaouer for his countless support during my PhD, 

Nivin Tama for a great collaboration for our paper, Usman Mansoor for making us laugh all the 

time during our lab meetings. I also want to thank my dearest friend John Baluch for his great 

support in the last leap of this journey. I want to thank Kate Markotan for her support at every 

obstacle I had during my studies. 

I want to thank my friends Don Barbarci, Gaurav Sheth, Marinus Koelman, Josselin Dea, 

Paty Ortiz, Nick Crooker and Scott Riopelle for all their great support. 



 

 

 

 

iv 

 

PREFACE 

The research that led to this thesis was performed at Search-Based Software Engineering 

Laboratory at the Department of Computer and Information Science, University of Michigan-

Dearborn, with Prof. Marouane Kessentini as the main advisor. This work was funded by 

Search-Based Software Engineering Laboratory in collaboration with Ford Motor Company. 



  

v 

 

TABLE OF CONTENTS 

DEDICATION                                                                                                                               ii 

ACKNOWLEDGMENTS                             iii 

PREFACE                                        iv 

LIST OF TABLES                                     viii 

LIST OF FIGURES                  ix 

Chapter 1: Introduction ............................................................................................................. 1 

1.1 Research Context ............................................................................................................ 1 

1.2 Problem Statement .......................................................................................................... 7 

1.2.1 Code Smells Detection .............................................................................................. 10 

1.2.2 Model Transformation Testing ................................................................................. 12 

1.3 Proposed Solutions........................................................................................................ 14 

1.3.1 Contribution 1: Bi-Level Code Smells Detection ..................................................... 14 

1.3.2 Contribution 2: Model Transformation Testing ........................................................ 15 

Chapter 2: Related Work ........................................................................................................ 17 

2.1 Bi-Level Optimization Technique ................................................................................ 17 

2.2 Code-Smells Detection ................................................................................................. 20 

2.2.1 Interactive-based approaches .................................................................................... 21 

2.2.2 Symptom-based detection ......................................................................................... 22 

2.2.3 Search-based Approaches ......................................................................................... 24 

2.3 Model Transformation Testing ..................................................................................... 25 

2.3.1 Test Input Model Generation .................................................................................... 25 

2.3.2 Mutation-based Analysis of Transformations ........................................................... 27 

Chapter 3: Code-Smells Detection as a Bi-Level Problem .................................................... 28 



  

vi 

 

3.1 Introduction ................................................................................................................... 28 

3.2 Approach ....................................................................................................................... 30 

3.2.1 Problem Formulation ................................................................................................ 34 

3.2.2 Solution Approach .................................................................................................... 37 

3.3 Validation ...................................................................................................................... 42 

3.3.1 Research Questions ................................................................................................... 43 

3.3.2 Software Projects Studied ......................................................................................... 44 

3.3.3 Evaluation Metrics Used ........................................................................................... 46 

3.3.4 Inferential statistical test methods used .................................................................... 47 

3.3.5 Parameter tuning ....................................................................................................... 49 

3.3.6 Results ....................................................................................................................... 51 

3.4 Industrial Case Study and Relevance of the Detected Code-Smells ............................. 68 

3.4.1 Subjects ..................................................................................................................... 70 

3.4.2 Questionnaire, Instructions and Pilot Study.............................................................. 70 

3.4.3 Results of the Industrial Case Study and Relevance of Detected Code-Smells ....... 76 

3.5 Threats to validity ......................................................................................................... 87 

3.6 Conclusion .................................................................................................................... 92 

Chapter 4: Model Transformation Testing: A Bi-Level Search-Based Software Engineering 

Approach 94 

4.1 Introduction ................................................................................................................... 94 

4.2 Approach ....................................................................................................................... 96 

4.2.1 Problem Formulation ................................................................................................ 97 

4.2.2 Evaluation ............................................................................................................... 104 

4.3 Validation .................................................................................................................... 105 



  

vii 

 

4.3.1 Research Questions ................................................................................................. 105 

4.3.2 Experimental Settings ............................................................................................. 108 

4.3.3 Results and discussions ........................................................................................... 110 

4.3.4 Threats to Validity .................................................................................................. 115 

Chapter 5: Conclusion and Future Work .............................................................................. 117 

Bibliography ............................................................................................................................... 119 

 



  

viii 

 

LIST OF TABLES 

Table 1 List of quality metrics ........................................................................................................ 9 

Table 2 Software studied in our experiments. .............................................................................. 45 

Table 3 Best population size configurations ................................................................................. 50 

Table 4 The significantly best algorithm among random search, BLOP, GP and Co-Evol over 31 

independent runs. “No. Sign.” Means no method is significantly better than another. ................ 52 

Table 5 . Median PR and Rc values on 31 runs for BLOP, random search (RS), GP [Kessentini et 

al. 2011] and Co-Evol [Boussaa et al. 2013]. The results were statistically significant on 31 

independent runs using the Wilcoxon rank sum test with a 99% confidence le ........................... 52 

Table 6 Adjusted p-values of comparisons related to table 4 ....................................................... 58 

Table 7 Software studied in our experiments. .............................................................................. 69 

Table 8 Survey organization to study the relevance of some detected code-smells. .................... 74 

Table 9 Manual validation of the detected code-smells on JDI-Ford. .......................................... 77 

Table 10 Adjusted p-values of comparisons related to table IX. .................................................. 77 

Table 11 QMOOD quality factors [Bansiya et al. 2002] .............................................................. 79 

Table 12 QMOOD metrics for design properties [Bansiya et al. 2002] ....................................... 79 

Table 13 Scenarios ...................................................................................................................... 108 

Table 14 The Wilcoxon test p-values and the effect size values (Cohen‟s d statistic) of the 

comparisons between BLOP and Co-Evol on the 10 scenarios. ................................................. 113 

 

 

 

 

 

 

 

 

 

 



  

ix 

 

LIST OF FIGURES 

Figure 1 Building blocks of model transformation testing ............................................................. 5 

Figure 2 Family to Person example: metamodels and example models. ........................................ 6 

Figure 3 Uni-directional relationship between test model generation and analysis ..................... 13 

Figure 4 Illustration of the two levels of an exemplified bi-level single-objective optimization 

problem. ........................................................................................................................................ 19 

Figure 5Approach Overview ......................................................................................................... 31 

Figure 6 (a) Pseudo-code of the bi-level adaptation for code-smell's detection ........................... 36 

Figure 7 (b) Pseudo-code of the bi-level adaptation for code-smell's detection ........................... 37 

Figure 8 Solution representation: vector (GA) to generate artificial code-smell .......................... 39 

Figure 9 Box plots on three different systems (Gantt: small, Xerces: medium, Ant-Apache 1.7.0: 

large) of  precision values ............................................................................................................. 54 

Figure 10 Box plots on three different systems (Gantt: small, Xerces: medium, Ant-Apache 

1.7.0: large) recall values. ............................................................................................................. 54 

Figure 11 Median PR scores for every code-smell's type over 31 runs on the different 9 open 

source systems. ............................................................................................................................. 55 

Figure 12 Median Rc (b) scores for every code-smell's type over 31 runs on the different 9 open 

source systems. ............................................................................................................................. 56 

Figure 13 The median precision score of detected artificial code-smells by BLOP and Co-Evol 60 

Figure 14 The median precision and recall scores of detected code-smells by BLOP, GP and Co-

Evol on Xerces-J based on a target final fitness function values .................................................. 61 

Figure 15 The impact of the number of code-smell examples on the quality of the results (PR on 

Xerces-J). ...................................................................................................................................... 61 

Figure 16 The median precision and recall scores of BLOP and DECOR obtained on 

GanttProject, Nutch, Log4J, Lucene and Xerces-J based on three code-smell types (Blob, SC and 

FD). ............................................................................................................................................... 64 



  

x 

 

Figure 17 The impact of the number of selected solutions at upper level on the quality of the 

results (PR, Rc and CT) using JFreeChart v1.0.9. ........................................................................ 66 

Figure 18 The number of evaluations required by the different algorithms (BLOP, Co-Evol and 

GP) to reach acceptable results (f-measure=0.7) using Xerces-J v 2.7.0. .................................... 67 

Figure 19 Scalability of our bi-level approach for code-smell's detection on three different 

versions of Eclipse. ....................................................................................................................... 68 

Figure 20 The impact of fixing a number of code-smells (refactorings) on QMOOD quality 

attributes for JDI-Ford .................................................................................................................. 81 

Figure 21 The relevance of detected code-smells on the JDI-Ford system evaluated by the 

original developers. ....................................................................................................................... 82 

Figure 22 The usefulness of detected code-smells on the JDI-Ford system evaluated by the 

original developers. ....................................................................................................................... 83 

Figure 23 The relevance of detected code-smells on the different open source systems evaluated 

by developers from groups A, B and C......................................................................................... 85 

Figure 24 The relevance of the types of detected code-smells on the different open source 

systems evaluated by developers from the groups A, B and C. .................................................... 86 

Figure 25 The usefulness of detected code-smells for software maintenance activities on the 

different open source systems evaluated by developers from the A, B and C groups .................. 87 

Figure 26 Approach overview ...................................................................................................... 97 

Figure 27 Cut-and-splice crossover principle ............................................................................. 102 

Figure 28 Pseudo-code of the bi-level adaptation for model transformation testing. ................. 103 

Figure 29 Pseudo-code of the bi-level adaptation for model transformation testing. ................. 104 

Figure 30 Precision median values of BLOP, Co-Evol and Fleurey et al. [28] over 31 

independent simulation runs. ...................................................................................................... 111 

Figure 31 Precision median values of BLOP and Co-Evol over 31 independent simulation runs.

..................................................................................................................................................... 113 

Figure 32 Scalability of our bi-level approach for test cases generation .................................... 115 



  

xi 

 

ABSTRACT 

Large-scale software systems exhibit high complexity and become difficult to maintain. In fact, 

it has been reported that software cost dedicated to maintenance and evolution activities is more 

than 80% of the total software costs. In particular, object-oriented software systems need to 

follow some traditional design principles such as data abstraction, encapsulation, and modularity. 

However, some of these non-functional requirements can be violated by developers for many 

reasons such as inexperience with object-oriented design principles, deadline stress. This high 

cost of maintenance activities could potentially be greatly reduced by providing automatic or 

semi-automatic solutions to increase system‟s comprehensibility, adaptability and extensibility to 

avoid bad-practices. 

The detection of refactoring opportunities focuses on the detection of bad smells, also called 

antipatterns, which have been recognized as the design situations that may cause software 

failures indirectly. The correction of one bad smell may influence other bad smells. Thus, the 

order of fixing bad smells is important to reduce the effort and maximize the refactoring benefits.  

However, very few studies addressed the problem of finding the optimal sequence in which the 

refactoring opportunities, such as bad smells, should be ordered. Few other studies tried to 

prioritize refactoring opportunities based on the types of bad smells to determine their severity. 

However, the correction of severe bad smells may require a high effort which should be 
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optimized and the relationships between the different bad smells are not considered during the 

prioritization process. 

The main goal of this research is to help software engineers to refactor large-scale systems with a 

minimum effort and few interactions including the detection, management and testing of 

refactoring opportunities. We report the results of an empirical study with an implementation of 

our bi-level approach. The obtained results provide evidence to support the claim that our 

proposal is more efficient, on average, than existing techniques based on a benchmark of 9 open 

source systems and 1 industrial project. We have also evaluated the relevance and usefulness of 

the proposed bi-level framework for software engineers to improve the quality of their systems 

and support the detection of transformation errors by generating efficient test cases. 

KEYWORDS 

Search-based Software Engineering, Model-Driven Engineering, Refactoring, Bi-level 

Optimization
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Chapter 1:  Introduction 

 

1.1 Research Context 

The key to successful software is to integrate software maintenance step into software life cycle 

smoothly. The recent studies have showed the importance of the software maintenance in 

software life cycle, total cost of the software projects, and easiness in the flexibility and 

extensibility of software design. Software maintenance has been the focal point of many research 

topics and software companies how to find better, more automated ways to increase the impact 

of software maintenance on software quality and also decrease the cost of software maintenance 

since it consumes up to 90% of the total cost of a software system. 

Restructuring the internal structure of the software systems while keeping the external behavior 

unchanged, has been recognized as an important and powerful approach to improve the quality 

of the software in terms of many aspects, e.g., software maintainability, reusability, and 

extensibility [1, 2]. This approach has been known as Software Refactoring [2, 3] which is an 

effective method to increase the internal quality of software systems and widely acknowledged 

among software‟s best practices. The most important step in software refactoring is to find how 

to identify refactoring opportunities in the systems which may be in need of software 

restructuring. Code smells, also called antipatterns[4], defects, smells [5], anomalies[6] or bad

design practices[7] which have been recognized as the design situations that may cause software 
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failures indirectly, can be summarized as the identification methods to find out which software 

systems or which part of software are in need refactoring[5, 8]. A code-smell is defined as bad 

design choices that can have a negative impact on the code quality such as maintainability, 

changeability and comprehensibility which could introduce bugs[12]. Code-smells classify 

shortcomings in software that can decrease software maintainability. They are also defined as 

structural characteristics of software that may indicate a code or design problem that makes 

software hard to evolve and maintain, and trigger refactoring of code[6]. Code-smells are not 

limited to design flaws since most of them occur in code and are not related to the original 

design. In fact, most of code-smells can emerge during the evolution of a system and represent 

patterns or aspects of software design that may cause problems in the further development and 

maintenance of the system. As stated by [4], code-smells are unlikely to cause failures directly, 

but may do it indirectly. In general, they make a system difficult to change, which may in turn 

introduce bugs. It is easier to interpret and evaluate the quality of systems by identifying code-

smells than the use of traditional software quality metrics. In fact, most of the definitions of 

code-smells are based on situations that are daily faced by developers. Most of the code-smells 

identify locations in the code that violate object-oriented design heuristics, such as the situations 

described by Riel[13] and Coad et al.[14]. The 22 Code Smells identified and defined informally 

by Fowler et al. [4] aim to indicate software refactoring opportunities and „give you indications 

that there is trouble that can be solved by a refactoring‟. Zhang et al.[15] identified in their 

survey the code-smells that attracted more attention in current literature.  

Van Emden and Moonen[16] developed one of the first automated code-smell detection tools for 

Java programs. Mantyla studied the manner of how developers detect and analyse code-
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smells[17]. Previous empirical studies have analysed the impact of code-smells on different 

software maintainability factors including defects[18] and effort[19]. In fact, software metrics 

(quality indicators) are sometimes difficult to interpret and suggest some actions (refactoring) as 

noted by Anda et al.[20] and Marinescu et al.[20, 21]. Code-smells are associated with a generic 

list of possible refactorings to improve the quality of software systems. In addition, Yamashita et 

al. [22] show that the different types of code-smells can cover most of maintainability 

factors[12]. Thus, the detection of code-smells can be considered as a good alternative of the 

traditional use of quality metrics to evaluate the quality of software products. Brown et al. [23] 

define another category of code-smells that are documented in the literature, and named anti-

patterns. 

 In our experiments, we focus on the seven following code-smell types:  

 Blob: It is found in designs where one large class monopolizes the behavior of a system (or 

part of it), and the other classes primarily encapsulate data. 

 Feature Envy (FE): It occurs when a method is more interested in the features of other 

classes than its own. In general, it is a method that invokes several times accessor methods 

of another class. 

 Data Class (DC): It is a class with all data and no behavior. It is a class that passively store 

data 

 Spaghetti Code (SC): It is a code with a complex and tangled control structure.  

 Functional Decomposition (FD): It occurs when a class is designed with the intent of 

performing a single function. This is found in a code produced by non-experienced object-

oriented developers.  
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 Lazy Class (LC): A class that is not doing enough to pay for itself. 

 Long Parameter List (LPL): Methods with numerous parameters are a challenge to 

maintain, especially if most of them share the same data-type. 

We choose these code-smell types in our experiments because they are the most frequent, hard to 

detect and fix based on recent empirical study[24], cover different maintainability factors, and 

also due to the availability of code-smell examples. However, the proposed approach in this 

thesis is generic and can be applied to any type of code-smells. The code-smell detection process 

consists in finding code fragments that violate structural or semantic properties such as the ones 

related to coupling and complexity. In this setting, internal attributes used to define these 

properties, are captured through software metrics, and properties are expressed in terms of valid 

values for these metrics. This follows a long tradition of using software metrics to evaluate the 

quality of the design including the detection of code-smells. The most widely-used metrics are 

the ones defined by Chidamber and Kemerer[25] and other studies[12, 26]. In this thesis, we use 

variations of these metrics and adaptations of procedural ones as well[27, 28]. The list of metrics 

is described in Table I. 

On the other hand, model transformation testing is considered as one of the main challenges in 

MDE [32]. Figure 1 illustrates the model transformation pattern extended for the context of 

model transformation testing. In order to test a given transformation implementation, a set of test 

input models is needed for running the transformation to obtain test output models. As soon as 

the output models of the transformation runs are available, the validity of the output models can 

be determined by using an oracle function. In the context of model transformations, model 

comparison may be used by defining the expected output models for given input models or 
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contracts may be applied that are evaluated over pairs of input and output models [33-35].  

In this thesis, we focus on the generation of test input models. Thus, we reuse existing 

approaches for specifying oracle functions and transformations implementations in the context of 

this work.  

 

Figure 1 Building blocks of model transformation testing 

1.1.1.1 Model Transformation Example 

Before we proceed with discussing the relationships between test case generation and the 

analysis of the generated test cases, we introduce a small transformation example to explicate the 

definition of metamodels, models, and model transformations. The example we use for this 

purpose is the Families to Person example1 presented in the ATL documentation example 

collection. The source and target metamodels and models are illustrated in UML class diagram 

and UML object diagram notation, respectively, in Figure 2. In this example, the family 

members are transformed into persons based on their family/member relationships. Furthermore, 

the fullNames of persons are computed based on the concatenation of the firstName of persons 

and the lastName of the families. An example source/target model pair is used to exemplify these 

                                                 

1 http://www.eclipse.org/atl/documentation/basicExamples_Patterns/ 
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Metamodels

Transformation
Implementation

Test Input
Models

Target
Metamodels

Test Output
Models

Transformation
Executions

«conformsTo» «conformsTo» «conformsTo»

«produce»«read»

«uses» «uses»

Oracle
Function

«uses»«uses»



  

 Introduction 

 

6 

 

transformation requirements.  

 

Figure 2 Family to Person example: metamodels and example models. 

In Listing 1, the corresponding ATL code for the given transformation example can be found. 

The transformation module consists of two helpers and two rules. Helpers are used to define 

reusable queries. Helpers are called from the rules which are the major elements of an ATL 

transformation. A rule consists of a part which is querying elements from the source models and 

of a to part which is generating elements in the target models and setting their features by 

defining bindings (cf. <- operator in Listing 1).  By running this transformation for the given 

source model of Figure 2, the corresponding target model is produced. An example for an oracle 

function, to detect a possible error, may be the following requirement for the transformation: 

there have to be as many Person instances in the target model as we have Member instances in 

the source model. This may be true for the given sample source model, but for other source 

models, the opposite may be the case. Thus, proper means for generating test source models is 

needed to judge if a transformation is actually realizing the stated requirements in terms of oracle 

functions or not.  

Family

lastName : String

Member

firstName : String

Person

fullName : String

MaleFemale
daugthers sons

fathermother

0..* 0..*

0..10..1

f1:Family
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fullName=„Cindy March“

father mother

Source Metamodel Target Metamodel

Source Model Target Model
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Listing 1: Family to Person example: ATL transformation. 

module FamiliesToPersons; 

create OUT: Pers from IN: Fam; 
 

helper context Fam!Member def: isFemale : Boolean =... 
 

helper context Fam!Member def: familyName : String =... 
 

rule Member2Male { 

  from s:Fam!Member (not s.isFemale) 

  to t: Pers!Male( 

    fullName <- s.firstName+‟ ‟+s.familyName 

  ) 
} 

 

rule Member2Female { 

  from s:Fam!Member (s.isFemale) 

  to t:Pers!Female( 

    fullName <- s.firstName+‟ ‟+s.familyName 

  ) 

} 

 

1.2 Problem Statement 

In tackling increasing software degradation, the first thing to look is where exactly the 

problematic areas in the software are, in other words, to detect the design defects in the system. 

There have been proposed many solutions to detect those anomalies in the software system, 

however most of these solutions involve detecting the code smells manually. Those methods are 

mostly based on declarative rule specification in which the identification of the code-smells are 

made by the manually defined rules. Hence, code smells are identified by combinations of 

mainly quantitative (metrics), structural, and/or lexical information. However, manual code-

smell identification process has some drawbacks. However, in an exhaustive scenario, the 

number of possible code-smells used to manually characterize with rules can be large. For each 

code-smell, rules that are expressed in terms of metric combinations need substantial calibration 

efforts to find the right threshold value for each metric. Another important issue is that 

translating symptoms into rules is not obvious because there is no consensual symptom-based 
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definition of code-smells[9]. When consensus exists, the same symptom could be associated to 

many code-smells types, which may compromise the precise identification of code-smell types. 

These difficulties explain a large portion of the high false-positive rates reported in existing 

research. Recently, a Search-Based Software Engineering (SBSE) approach[10], based on 

genetic programming[11], is used to generate code-smell's detection rules from a set of examples 

of code-smells identified manually by developers[7]. However, such approaches require a high 

number of code-smell examples (data) to provide efficient detection rules solutions. In fact, 

code-smells are not usually documented by developers (unlike bugs report). Thus, it is time-

consuming and difficult to collect code-smells and inspect manually large systems. In addition, it 

is challenging to ensure the diversity of the code-smell examples to cover most of the possible 

bad-practices.  

As the last step, we want to emphasize the importance of testing. In the current state of work, 

there is a lack of generating the optimum test cases which suit the specific system the most. With 

that inspiration, as our last step, we try to tackle this problem. 

In this thesis, we are addressing how to overcome the current problems by bringing the bi 

level optimization approach into the picture, and getting highly good results after applying 

detection, maintenance, refactoring and testing steps and showing the importance how these 

steps are highly dependent on each other. Next sections we give a detailed description about the 

current problems in the existing work that our contribution is trying to solve. 
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Table 1 List of quality metrics 

Metrics Description 

Weighted Methods per Class (WMC)  

 

WMC represents the sum of the complexities of its 

methods. 

Response for a Class (RFC)  RFC is the number of different methods that can be 

executed when an object of that class receives a 

message. 

Lack of Cohesion of Methods (LCOM)  Chidamber and Kemerer define Lack of Cohesion in 

Methods as the number of pairs of methods in a class 

that does not have at least one field in common minus 

the number of pairs of methods in the class that does 

share at least one field. When this value is negative, the 

metric value is set to 0. 

Number of Attributes (NA)   

Attribute Hiding Factor (AH)  

 

AH measures the invisibilities of attributes in classes. 

The invisibility of an attribute is the percentage of the 

total classes from which the attribute is not visible. 

Method Hiding Factor (MH)  

 

MH measures the invisibilities of methods in classes. 

The invisibility of a method is the percentage of the total 

classes from which the method is not visible. 

Number of Lines of Code (NLC)  

 

NLC counts the lines but excludes empty lines and 

comments. 

Coupling Between Object classes (CBO)  

 

CBO measures the number of classes coupled to a given 

class. This coupling can occur through method calls, 

field accesses, inheritance, arguments, return types, and 

exceptions. 

Number of Association (NAS)  

Number of Classes (NC)  

Depth of Inheritance Tree (DIT)  

 

DIT is defined as the maximum length from the class 

node to the root/parent of the class hierarchy tree and is 

measured by the number of ancestor classes. In cases 

involving multiple inheritances, the DIT is the maximum 

length from the node to the root of the tree. 

Polymorphism Factor (PF)  

 

PF measures the degree of method overriding in the 

class inheritance tree. It equals the number of actual 

method overrides divided by the maximum number of 

possible method overrides. 

Attribute Inheritance Factor (AIF)  

 

AIF is the fraction of class attributes that are inherited. 

Number of Children (NOC)  NOC measures the number of immediate descendants of 

the class. 
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1.2.1 Code Smells Detection 

In this section, we introduce some issues and challenges related to the detection of code-

smells. Overall, there is no general consensus on how to decide if a particular design violates a 

quality heuristic. In fact, there is a difference between detecting symptoms and asserting that the 

detected situation is an actual code-smell. For example, an object-oriented program with a 

hundred classes from which one class implements all the behavior and all the other classes are 

only classes with attributes and accessors. No doubt, we are in the presence of a Blob. 

Unfortunately, in real-life systems, we can find many large classes, each one using some data 

classes and some regular classes. Deciding which classes are Blob candidates heavily depends on 

the interpretation of each analyst. In some contexts, an apparent violation of a design principle 

may be consensually accepted as normal practice. For example, a “Log” class responsible for 

maintaining a log of events in a program, used by a large number of classes, is a common and 

acceptable practice. However, from a strict code-smell definition, it can be considered as a class 

with an abnormally large coupling. Another issue is related to the definition of thresholds when 

dealing with quantitative information. For example, the Blob detection involves information such 

as class size. Although we can measure the size of a class, an appropriate threshold value is not 

trivial to define. A class considered large in a given program/community of users could be 

considered average in another. All the above issues make the process of manually defining code-

smell detection rules challenging. The generation of detection rules requires a huge code-smell 

example set to cover most of the possible bad-practice behaviors. Code-smells are not usually 

documented by developers (unlike bugs report). Thus, it is time-consuming and difficult to 

collect code-smells and inspect manually large systems [13]. In addition, it is challenging to 
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ensure the diversity of the code-smell examples to cover most of the possible bad-practices then 

using these examples to generate good quality of detection rules. 

We address the open issues related to applying code smells detection approaches. 

Problem 1.2.1.1 The vast majority of existing work in code-smells detection relies on 

declarative rule specification [7, 29, 30]. In these settings, rules are manually defined to 

identify the key symptoms that characterize a code-smell using combinations of mainly 

quantitative (metrics), structural, and/or lexical information. However, in an exhaustive 

scenario, the number of possible code-smells used to manually characterize with rules can 

be large.  

Problem 1.2.1.2 For each code-smell, rules that are expressed in terms of metric 

combinations need substantial calibration efforts to find the right threshold value for each 

metric.  

Problem 1.2.1.3 Another important issue is that translating symptoms into rules is not 

obvious because there is no consensual symptom-based definition of code-smells [7, 31]. 

When consensus exists, the same symptom could be associated to many code-smells types, 

which may compromise the precise identification of code-smell types.  

Problem 1.2.1.4 Recently, Search-Based Software Engineering (SBSE) approach, based on 

genetic programming is used to generate code-smells detection rules from a set of examples 

of code-smells identified manually by developers [7]. However, such approaches require a 

high number of code-smell examples (data) to provide efficient detection rules solutions. In 
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fact, code-smells are not usually documented by developers (unlike bugs report). Thus, it is 

time-consuming and difficult to collect code-smells and inspect manually large systems.  

Problem 1.2.1.5 It is challenging to ensure the diversity of the code-smell examples to 

cover most of possible bad-practices.  

1.2.2 Model Transformation Testing 

1.2.2.1 Open Issue: Marrying Generation & Analysis of Test Input Models  

For the generation of test models, several different techniques (e.g.,[36-39] to mention just a 

few) are available that are based on different notions of coverage criteria. While some 

approaches focus mainly on black-box criteria such as metamodel coverage (e.g., which meta-

classes and which meta-features are actually instantiated by the test models), other approaches 

focus on white-box criteria such as transformation coverage (e.g., rule, statement, or path 

coverage). These approaches support model generator components (cf. upper part of Figure 3) 

that are mostly based on constraint satisfaction techniques such as CSP or SAT. In particular, 

they transform the metamodels and/or model transformations to constraints which are solved in 

order to provide the requested test data.  

Of course, the coverage criteria is only an approximation for the fitness of a set of test input 

models. In order to determine the effectiveness of a test set, mutation-based analysis of test sets 

for model transformations have been proposed[40, 41] and applied in several studies to compare 

the appropriateness of different coverage criteria, e.g., see [42].  
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Figure 3 Uni-directional relationship between test model generation and analysis 

In the context of model transformations, mutation testing is achieved by defining a set of 

mutation operators based on fault models, i.e., typical errors that occur, for model 

transformations which are applied to the model transformation implementation. The result of 

applying the mutation operators to a model transformation is called a mutant (cf. lower part of 

Figure 3). The mutant is killed if the test input models are able to detect the mutation, i.e., one 

test should fail. The goal is to kill as many mutations as possible for a given set of input models. 

For instance, a mutant of the transformation in Listing 1 may be produced by changing the type 

of the output element (cf. to part) of the second rule from Female to Male or by deleting the 

bindings for setting the fullName values in the output models. Mutation-based analysis is mostly 

used as a post-generation activity for quality assurance as can be seen in Figure 3. The model 

generation phase feeds the analysis phase, but not the other way round. However, we propose to 

consider the relationship between generation and analysis as a bi-directional one. Instead of 

“just” evaluating the quality, the evaluation results may be again propagated to the model 

generation component in order to improve automatically the set of test input models. 
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1.3 Proposed Solutions 

To address the above mentioned problems, we propose the following solutions which are 

organized into four principal contributions. First of all, we want to talk about Bi-Level 

optimization since in all our contributions it is the main part. 

1.3.1 Contribution 1: Bi-Level Code Smells Detection 

In this thesis, we introduce a novel formulation of the code-smells detection as a bi-level 

problem. We report the results of an empirical study with an implementation of our bi-level 

approach. The obtained results provide evidence to support the claim that our proposal is more 

efficient, on average, than existing techniques based on a benchmark of 9 open source systems 

and 1 industrial project. We also evaluate the relevance and usefulness of the detected code-

smells for software engineers to improve the quality of their systems.  

Contribution 1.1 We have proposed a bi-level evolutionary optimization approach. The upper-

level optimization produces a set of detection rules, which are combinations of quality metrics, 

with the goal to maximize the coverage of not only a code-smell example base but also a lower-

level population of artificial code-smells.  

Contribution 1.2 The lower-level optimization tries to generate artificial code-smells that cannot 

be detected by the upper-level detection rules, thereby emphasizing the generation of broad-

based and fitter rules.  

Contribution 1.3 The statistical analysis of the obtained results over nine studied software 

systems have shown the competitiveness and the outperformance of our proposal in terms of 
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precision and recall over a single-level genetic programming, co-evolutionary, and non-search-

based methods.  

1.3.2 Contribution 2: Model Transformation Testing 

A novel formulation of model transformation testing as a bi-level optimization problem is 

introduced. We report the results of an empirical study with an implementation of our bi-level 

approach. The obtained results provide evidence to support the claim that our proposal is more 

efficient, on average, than an existing technique based on metamodels coverage. 

Contribution 2.1 In our adaptation, the upper level generates a set of test cases (models) which 

maximizes the coverage of source and target metamodels; and mutants (errors introduced in the 

rules/program) are generated by the lower level.  

Contribution 2.2 The lower level maximizes the number of errors that cannot be detected by test 

cases produced by the upper level. The errors are detected by comparing the target models 

produced by both programs (rules) at the lower (mutants) and upper levels. If they are the same, 

we can assume that the test cases were not sufficient to cover all the transformation possibilities.  

Contribution 2.3 The overall problem appears as a BLOP task, where for each generated test 

cases, the upper level observes how the lower-level acts by generating errors/mutants that cannot 

be detected by the upper level (leader) test cases, and then chooses the best test cases which suits 

it the most, taking the actions of the errors generation process (lower level or follower) into 

account. 
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Contribution 2.4 The main advantage of our bi-level formulation is that the generation of test 

cases is not limited to the metamodels coverage but it allows evaluating the ability of generated 

test cases to detect errors and their coverage of transformation possibilities.  

Contribution 2.5 In addition, we considered in our approach the dependency between mutation 

analysis and test cases generation and we do not consider them as two separate steps. We 

implemented our proposed bi-level approach and evaluated it on two different ATL 

transformation programs. 
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Chapter 2:  Related Work 

2.1 Bi-Level Optimization Technique 

Most studied real-world and academic optimization problems involve a single level of 

optimization. However, in practice, several problems are naturally described in two levels. These 

latter are called BLOPs[43]. In such problems, we find a nested optimization problem within the 

constraints of the outer optimization one. The outer optimization task is usually referred as the 

upper level problem or the leader problem. The nested inner optimization task is referred as the 

lower level problem or the follower problem, thereby referring the bi-level problem as a leader-

follower problem or as a Stackelberg game[44]. The follower problem appears as a constraint to 

the upper level, such that only an optimal solution to the follower optimization problem is a 

possible feasible candidate to the leader one. A BLOP contains two classes of variables: (1) the 

upper level variables n
Uu Xx   and (2) the lower level variables .m

Ll Xx   For the 

follower problem, the optimization task is performed with respect to the variables    , and the 

variables    act as fixed parameters. Thus, each    corresponds to a different follower problem, 

whose optimal solution is a function of     and needs to be determined. All variables ),( lu xx are 

considered in the leader problem, but    are not changed (cf. Figure 1). In what follows, we give 

the formal definition of BLOP:  

Definition 1: Assuming  mnL :  to be the leader problem and  mnf :  to be the 

follower one, analytically, a BLOP could be stated as follows: 
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BLOPs are intrinsically more difficult to solve than single-level problems, it is not surprising that 

most of existing studies to date has tackled the simplest cases of BLOPs, i.e., problems having 

nice properties such as linear, quadratic or convex objective and/or constraint functions. In 

particular, the most studied instance of BLOPs has been for a long time is the linear case in 

which all objective functions and constraints are linear with respect to the decision variables. 

Although the first works on bi-level optimization date back to the seventies, it was not until the 

early eighties that the usefulness of these mathematical programs in modeling hierarchical 

decision processes and engineering problems prompted researchers to pay close attention to 

BLOPs. A first bibliographical survey on the subject was written by Kolstad [43] in mid-eighties. 

BLOPs being intrinsically more difficult than single-level problems, it is not surprising that most 

algorithmic research to date has tackled the simplest cases of BLOPs, i.e., problems having nice 

properties such as linear, quadratic or convex objective and/or constraint functions[45, 46]. In 

particular, the most studied instance of BLOPs has been for a long time the linear case in which 

all objective functions and constraints are linear with respect to the decision variables[47, 48]. 
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Figure 4 Illustration of the two levels of an exemplified bi-level single-objective optimization problem. 

Existing methods to solve BLOPs could be classified into two main families: (1) classical 

methods and (2) evolutionary methods. The first family includes extreme point-based 

approaches[49], branch-and-bound[46], complementary pivoting[50], descent methods[51], 

penalty function methods [51], trust region methods[52], etc. The main shortcoming of these 

methods is that they heavily depend on the mathematical characteristics of the BLOP at hand. 

The second family includes meta-heuristic algorithms that are mainly Evolutionary Algorithms 

(EAs). Recently, several EAs have demonstrated their effectiveness in tackling such type of 

problems thanks to their insensibility to the mathematical features of the problem in addition to 

their ability to tackle large-size problem instances by delivering satisfactory solutions in a 

reasonable time. Some representative works are by [44, 53, 54].  

To the best of our knowledge and based on recent surveys [55, 56], there is no work in the 

software engineering literature that considers a software engineering problem as a bi-level one. 
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2.2 Code-Smells Detection 

The vast majority of existing work in code-smells detection relies on declarative rule 

specification[17]. In these settings, rules are manually defined to identify the key symptoms that 

characterize a code-smell using combinations of mainly quantitative (metrics), structural, and/or 

lexical information. However, in an exhaustive scenario, the number of possible code-smells 

used to manually characterize with rules can be large. For each code-smell, rules that are 

expressed in terms of metric combinations need substantial calibration efforts to find the right 

threshold value for each metric. Another important issue is that translating symptoms into rules 

is not obvious because there is no consensual symptom-based definition of code-smells[9]. When 

consensus exists, the same symptom could be associated to many code-smells types, which may 

compromise the precise identification of code-smell types. These difficulties explain a large 

portion of the high false-positive rates reported in existing research. Recently, a Search-Based 

Software Engineering (SBSE) approach[64], based on genetic programming[97], is used to 

generate code-smell's detection rules from a set of examples of code-smells identified manually 

by developers[7]. However, such approaches require a high number of code-smell examples 

(data) to provide efficient detection rules solutions. In fact, code-smells are not usually 

documented by developers (unlike bugs report). Thus, it is time-consuming and difficult to 

collect code-smells and inspect manually large systems. In addition, it is challenging to ensure 

the diversity of the code-smell examples to cover most of the possible bad-practices. There are 

several studies that have recently focused on detecting code-smells in software using different 

techniques. These techniques range from fully automatic detection to guided manual inspection.  
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2.2.1 Interactive-based approaches 

In [4], Fowler and Beck have described a list of design smells that may exist in the program. 

They suggested that the software maintainers should manually inspect the program to detect 

existing design smells. In addition, they specify particular refactorings for each code-smell type. 

Travassos et al. [16] have also proposed a manual approach for detecting code-smells in object-

oriented designs. The idea is to create a set of “reading techniques” that help a reviewer to “read” 

a design artifact for finding relevant information. These reading techniques give specific and 

practical guidance for identifying code-smells in object-oriented design. In this way, each 

reading technique helps the maintainer focusing on some aspects of the design, in such a way 

that the inspection team applying the entire family should achieve a high degree of coverage of 

the design code-smells. In addition, in [57], another proposed approach is based on violations of 

design rules and guidelines. This approach consists of analyzing legacy code, specifying frequent 

design problems as queries and locating the occurrences of these problems in a model derived 

from the source code. The high rate of false-positives generated by the above-mentioned 

approaches encouraged other teams to explore semi-automated solutions. These solutions took 

the form of visualization-based environments. The primary goal is to take advantage of the 

human capability to integrate complex contextual information in the detection process. Kothari et 

al. [58] present a pattern-based framework for developing tool to detect software anomalies by 

representing potential code-smells with different colors. Dhambri et al. [59] have proposed a 

visualization-based approach to detect design anomalies by automatically detecting some 

symptoms and letting others to a human analyst. The visualization metaphor was chosen 

specifically to reduce the complexity of dealing with a large amount of data. Although 
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visualization-based approaches are efficient to examine potential code-smells on their program 

and in their context, they do not scale to large systems easily. In addition, they require great 

human expertise, and thus they are still time-consuming and error-prone strategies. Moreover, 

the information visualized is mainly metric-based, meaning that complex relationships can be 

difficult to detect. Indeed, since visualization approaches and tools such as VERSO [59] are 

based on manual and human inspection, they are still, not only, slow and time-consuming, but 

also subjective. 

The main disadvantage of existing manual and interactive-based approaches is that they are 

ultimately a human-centric process which requires a great human effort and strong analysis and 

interpretation effort from software maintainers to find design fragments that correspond to code-

smells. In addition, these techniques are time-consuming, error-prone and depend on programs in 

their contexts.  

2.2.2 Symptom-based detection 

Moha et al. [60] started by describing code-smell symptoms using a domain-specific-language 

(DSL) for their approach called DECOR. They proposed a consistent vocabulary and DSL to 

specify anti-patterns based on the review of existing work on design code-smells found in the 

literature. Symptom descriptions are later mapped to detection algorithms. However, converting 

symptoms into rules needs a significant analysis and interpretation effort to find the suitable 

threshold values. In addition, this approach uses heuristics to approximate some notions, which 

results in an important rate of false positives. Indeed, this approach has been evaluated on only 

four well-known design code-smells: the Blob, functional decomposition, spaghetti code, and 
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Swiss-army knife because the literature provides obvious symptom descriptions on these code-

smells. Recently, another probabilistic approach has been proposed by Khomh et al. [30] 

extending the DECOR approach [60], a symptom-based approach, to support uncertainty and to 

sort the code-smell candidates accordingly using a Bayesian Belief Network (BBN). The 

detection outputs are probabilities that a class is an occurrence of a code-smell type, i.e., the 

degree of uncertainty for a class to be a code-smell. They also showed that BBNs can be 

calibrated using historical data from both similar and different context. Similarly, Munro et al.[8] 

have proposed a template-based approach using a precise definition of bad smells from the 

informal descriptions given by the originators Fowler and Beck [4]. The template consists of 

three main parts: a code-smell's name, a text-based description of its characteristics, and 

heuristics for its detection. 

In another category of work based on the use quality metrics, Marinescu et al. [17] have 

proposed a mechanism called "detection strategy" for formulating metrics-based rules that 

capture deviations from good design principles and heuristics. Detection strategies allow to a 

maintainer to directly locate classes or methods affected by a particular design code-smell. As 

such, Marinescu has defined detection strategies for capturing around ten important flaws of 

object-oriented design found in the literature. After his suitable symptom-based characterization 

of design code-smells, Salehie et al.[61] proposed a metric-based heuristic framework to detect 

and locate object-oriented design flaws similar to those illustrated by Marinescu [17]. It is 

accomplished by evaluating design quality of an object-oriented system through quantifying 

deviations from good design heuristics and principles by mapping these design flaws to class 

level metrics such as complexity, coupling and cohesion by defining rules. Erni et al. [53] 
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introduce the concept of multi-metrics, as an n-tuple of metrics expressing a quality criterion 

(e.g., modularity). Unfortunately, multi-metrics neither encapsulate metrics in a more abstract 

construct, nor do they allow a flexible combination of metrics.  

Van Emden and Moonen[16] developed one of the first automated code-smells detection tools 

for Java programs. They developed a prototype code-smells browser that detects and visualizes 

code-smells in Java programs. Mantyla studied the manner of how developers detect and analyse 

code-smells[9]. Previous empirical studies have analyzed the impact of code-smells on different 

software maintainability factors [18]. In fact, software metrics (quality indicators) are sometimes 

difficult to interpret and suggest some actions (refactoring) as noted by Anda et al.[18] and 

Marinescu et al.[21]. In addition, Yamashita et al.[22] show that the different types of code-

smells can cover different maintainability factors[12]. In other studies, Yamashita et al.[62] 

analyzed the benefits of detecting code-smells on several industrial projects and evaluated their 

impact on different maintainability aspects. Recently, Palomba et al. [24] used the history of 

changes to detect code-smells instead of the use of quality metrics. For example, classes that 

change frequently are considered as a blob. A comparison with DECOR confirms the 

outperformance of their approach and the benefits of the use of the history of changes for the 

detection of code-smells. 

2.2.3 Search-based Approaches 

SBSE [10] uses search-based approaches to solve optimization problems in software 

engineering. After the formulation of software engineering task as a search problem, many 

search algorithms can be applied to solve that problem. In [63], we have proposed another 
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approach, based on search-based techniques, for the automatic detection of potential code-smells 

in code. We used the notion that the more code deviates from good practices, the more likely it is 

bad. In another work [7], we generated detection rules defined as combinations of 

metrics/thresholds that better conform to known instances of bad-smells (examples). Then, the 

correction solutions, a combination of refactoring operations, should minimize the number of 

bad-smells detected using the detection rules. Thus, our previous work treats the detection and 

correction as two different steps.  

Based on recent SBSE surveys[63, 64], the use of bi-level optimization is still very limited in 

software engineering. Indeed, this work represents the first attempt to use bi-level optimization 

to address software engineering problem.  

2.3 Model Transformation Testing 

Several techniques have been proposed to generate test cases for model transformations [32, 33, 

37, 38, 40, 104]. The majority of them generate models conforming to source metamodels in 

order to maximize the coverage of metamodels. With respect to the contribution of this thesis, 

we organize related work into two categories. First, we survey approaches used for test input 

model generation, and second, we elaborate on approaches used for mutation-based analysis of 

test input models. We base our related work categorization on recent surveys on model 

transformation testing approaches.  

2.3.1 Test Input Model Generation  

The generation of test input models for model transformations may be distinguished into two 
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general approaches: black-box based approaches and white-box based approaches. Regarding 

white-box-based methods in the area of model transformations, Küster et al. [36] assume the 

existence of a high-level design of model transformations to produce test cases. Consequently, to 

apply this approach to existing model transformations such as ATL transformations, the manual 

extraction of these conceptual transformation rules is required, being in contrast to our vision of 

testing these transformations directly and automatically. In Gonzáles & Cabot [38] a very 

interesting white-box based testing approach for ATL transformations is provided by extracting 

OCL constraints from ATL code to automate the generation of test input models. The generation 

of test cases from Triple Graph Grammars is discussed in [30]. 

Besides white-box testing, many approaches have been proposed for black-box testing, i.e., 

test source models may be generated either on basis of the source metamodels as done in 

[9,10,20], the specified requirements, for instance, as visual contracts [14], as done in [13,21], or 

both [19]. For the actual test source model generation, most of these approaches rely–similar to 

software engineering–on constraint satisfaction, e.g., by means of SAT solvers. Finally, the 

Tracts approach [22,23,44] provides a semi-automatic approach, since the transformation 

designer must specify a generation script on basis of the declarative ASSL language [11]. Other 

approaches are using fully manually engineered test input and output models, especially ones 

that are using model comparison as oracle function [17].  

Finally, in [15] we presented an approach to test model transformations based on existing 

input/output model pairs that are equipped with trace links. By analyzing trace links produced by 

new transformation runs, one may detect errors in transformation implementations when having 

untypical trace links for newly transformed models. Regression testing for model transformations 
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when metamodels evolve based on search-based techniques has been discussed in [27]. Another 

work [28] discusses the application of a bacteriologic algorithm [29] (an extension of genetic 

algorithm) to the generation of test cases in order to find an optimal solution with respect to 

metamodel coverage. 

To sum up, none of the aforementioned approach has considered the application of mutation-

based analysis for actively guiding the generation of test input models.  

2.3.2 Mutation-based Analysis of Transformations 

The application of mutation analysis for a set of test input models to predict the quality of the test 

set is elaborated in several publications [18,24,31]. The first two papers discuss different 

mutation operators for model transformations. Regarding the application of mutation-based 

analysis of model transformations test data, different coverage criteria (mostly black-box ones) 

have been evaluated by means of mutation testing (cf., e.g., [13,20]). In [31] coverage criteria are 

defined based on mutation testing for programmed graph transformations. The only work we are 

aware of combining mutation analysis with the adaption of test cases is presented in [25], 

however there are two main differences compared to our work. First, in our approach we 

introduce mutants more guided by having the competition between the two levels of our bi-level 

approach instead of generating mutations fully randomly, and second, we do not only use as 

stopping criterion that 100% of mutations are detected, because this may be also due to the fact 

that the introduced mutants are easy to detect independent of how good the test cases are.
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Chapter 3:  Code-Smells Detection as a Bi-Level Problem 

3.1 Introduction 

In this work, we start from the observation that the generation of efficient code-smells 

detection rules heavily depends on the coverage and the diversity of the used code-smell 

examples. In fact, both mechanisms for the generation of detection rules and the generation 

of code-smell examples are dependent. Thus, the intuition behind this work is to generate 

examples of code-smell that cannot be detected by some possible detection rules solutions 

then adapting these rules-based solutions to be able to detect the generated code-smell 

examples. These two steps are repeated until reaching a termination criterion (e.g. number of 

iterations). To this end, we propose, for the first time, to consider the code-smell's detection 

problem as a bi-level one [52]. Bi-Level Optimization Problems (BLOPs) are a class of 

challenging optimization problems, which contain two levels of optimization tasks[43]. In 

these problems, the optimal solutions to the lower level problem become possible feasible 

candidates to the upper level problem. In our adaptation, the upper level generates a set of 

detection rules, combination of quality metrics, which maximizes the coverage of the base of 

code-smell examples; and artificial code-smells are generated by the lower level. The lower 

level maximizes the number of generated “artificial” code-smells that cannot be detected by 

the rules produced by the upper level. The overall problem appears as a BLOP task, where 

for each generated detection rule, the upper level observes how the lower-level acts by 

generating artificial code-smells that cannot be detected by the upper level (leader) rule, and 

then chooses the best detection rule which suits it the most, taking the actions of the code-
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smells generation process (lower level or follower) into account. The main advantage of our 

bi-level formulation is that the generation of detection rules is not limited to some code-smell 

examples identified manually by developers that are difficult to collect but it allows the 

prediction of new code-smell behaviours that are different from those in the base of 

examples.  

We implemented our proposed bi-level approach and evaluated it on several open source 

systems: JFreeChart, GanttProject, ApacheAnt, Nutch, Log4J, Lucene, Xerces-J, and Rhino. 

In addition, we evaluated our proposal on one industrial system provided by our industrial 

partner, i.e., the Ford Motor Company. We found that, on average, the majority of seven 

types of code-smells were detected with more than 86% of precision and 90% of recall. The 

statistical analysis of our experiments over 31 runs shows that BLOP performed significantly 

better than two existing search-based approaches[7, 98] and a practical code-smell detection 

technique [60]. The software developers considered in our experiments confirm the relevance 

of the detected code-smells for several maintenance activities. 

The primary contributions of this chapter can be summarized as follows:  

(1) The chapter introduces a novel formulation of the code-smell's detection as a bi-level 

problem.  

(2) The chapter reports the results of an empirical study with an implementation of our bi-

level approach. The obtained results provide evidence to support the claim that our 

proposal is more efficient, on average, than existing techniques based on a benchmark 

of 9 open source systems and 1 industrial project. The chapter also evaluates the 
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relevance and usefulness of the detected code-smells for software engineers to 

improve the quality of their systems.  

3.2 Approach 

This section shows how the above-mentioned issues can be addressed using bi-level 

optimization and describes the principles that underlie the proposed method for detecting 

code-smells. We first present an overview of our bi-level code-smells detection approach, 

and then we describe the details of our bi-level formulation including the adaptation of both 

lower and upper levels. The concept of bi-level is based on the idea that the main 

optimization task is usually termed as the upper level problem, and the nested optimization 

task is referred to as the lower level problem. The detection rules generation process has a 

main objective which is the generation of detection rules that can cover as much as possible 

the code-smells in the base of examples. The code-smell's generation process has one 

objective that is maximizing the number of generated artificial code-smells that cannot be 

detected by the detection rules and that are dissimilar from the base of well-designed code 

examples. There is a hierarchy in the problem, which arises from the manner in which the 

two entities operate. The detection rules generation process has higher control of the situation 

and decides which detection rules for the code-smells generation process to operate in. 

Therefore, in this framework, we observe that the detection rules generation process acts as a 

leader (the important output of the problem), and the code-smells generation process acts as a 

follower. 
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The overall problem appears as a bi-level optimization task, where for each generated 

detection rules, the upper level observes how the lower-level acts by generating artificial 

code-smells that cannot be detected by the upper level (leader) rules and then chooses the 

best detection rules which suit it the most, taking the actions of the code-smells generation 

process (lower level or follower) into account. It should be noted that in spite of different 

objectives appearing in the problem, it is not possible to handle such a problem as a simple 

multi-objective optimization task. The reason for this is that the leader cannot evaluate any of 

its own strategies without knowing the strategy of the follower, which it obtains only by 

solving a nested optimization problem. 

 

Figure 5 Approach Overview 

As described in Figure 2, the leader (upper level) uses knowledge from code-smells 

examples (input) to generate detection rules based on quality metrics (input). It takes as 

inputs a base (i.e. a set) of code-smells‟ examples, and takes, as controlling parameters, a set 
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of quality metrics and generates as output a set of rules. The rule generation process chooses 

randomly, from the metrics provided list, a combination of quality metrics (and their 

threshold values) to detect a specific code-smell. Consequently, the solution is a set of rules 

that best detect the code-smells of the base of examples. For example, the following rule 

states that a class c having more than NAD=10 attributes and more than NMD=20 methods is 

considered as a blob smell:  

R1: IF NAD(c)≥10 AND NMD(c)≥20, THEN Blob(c).  

In this exemplified sample rule, the number of attributes (NAD) and the number of 

methods (NMD) of a class correspond to two quality metrics that are used to detect a blob. 

The detected code-smells can be method(s) or class(es) depending on the type of the code-

smells to detect. Given the above detection rule, it is not obvious what set of diverse code-

smells exist in the software. In the bi-level formulation of the code-smell detection problem, 

the lower level problem allows us to find just that. An upper-level detection rules solution is 

evaluated based on the coverage of the base of code-smell examples (input) and also the 

coverage of generated “artificial” code-smells by the lower-level problem. These two 

measures are used to be maximized by the population of detection rules solutions. The 

follower (lower level) uses well-designed code examples to generate “artificial” code-smells 

based on the notion of deviation from a reference (well-designed) set of code fragments. The 

generation process of artificial code-smell examples is performed using a heuristic search 

that maximizes on one hand, the distance between generated code-smell examples and 
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reference code examples and, on the other hand, maximizes the number of generated 

examples that are not detected by the leader (detection rules).  

There is no parallelism in our bi-level formulation. The upper level is executed for number 

iterations then the lower level for another number of iterations. After that the best solution 

found in the lower level will be used by the upper level to evaluate the associated solution 

(detection rules), and then this process in repeated several times until reaching a termination 

criterion (e.g. number of iterations). Thus, there is no parallelism since both levels are 

dependent. In [98], we proposed to use Co-Evolutionary (Co-Evol) algorithms for code-

smells detection where the first population generates detection rules and the second one 

generates artificial code-smell. Both populations are executed in parallel without hierarchy. 

The problem with the Co-Evol approach is that one population may converge before the 

other. Contrariwise, in our bi-level approach there is a hierarchy that allows avoiding the 

problem of premature convergence of one population over the other. Indeed, the evaluation 

of every detection rule solution (upper level) requires the running a search algorithm to find 

the best undetectable artificial code-smells by the upper level solution. This concept avoids 

driving the search towards uninteresting directions. In addition, co-evolution treats the two 

populations independently; however in BLOP, the evaluation of solutions in the upper level 

depends on the lower level (both populations cannot be executed in parallel). Furthermore, 

the two populations in co-evolution are considered with the same importance; however the 

upper level is more important than the lower level in any bi-level formulation. We will 

compare later in the experimentation section, with more details, the difference between our 
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bi-level formulation for code-smells detection and our previous work based on co-

evolution[98]. 

Next, we describe our adaptation of bi-level optimization to the code-smells detection 

problem in more details. 

3.2.1 Problem Formulation 

The code-smell's detection problem involves searching for the best metric combinations 

among the set of candidate ones, which constitute a huge search space. A solution of our 

code-smells detection problem is a set of rules (metric combinations with their threshold 

values) where the goal of applying these rules is to detect code-smells in a system. 

Our proposed bi-level formulation of the code-smell detection problem is described in 

Figure 3. Consequently, we have two levels as described in the previous section. At the upper 

level, the objective function is formulated to maximize the coverage of code-smell examples 

(input) and also maximize the coverage of the generated artificial code-smells at the lower 

level (best solution found in the lower level). Thus, the objective function at the upper level 

is defined as follows: 

Maximize fupperLevel =

Precision(S,baseOfExamples)+ Recall(S,BaseOfExamples)

2
+

# detectedArtificialCodeSmells

#artificialCodeSmells

2  

It is clear that the evaluation of solutions (detection rules) at the upper level depends on 

the best solutions generated by the lower level (artificial code-smells). Thus, the fitness 
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function of solutions at the upper level is calculated after the execution of the optimization 

algorithm in the lower level at each iteration. 

At the lower level, for each solution (detection rule) of the upper level an optimization 

algorithm is executed to generate the best set of artificial code-smells that cannot be detected 

by the detection rules at the upper level. An objective function is formulated at the lower 

level to maximize the number of un-detected artificial code-smells that are generated and 

also maximize the distance with well-designed code-examples. Formally, 
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where w is the number of code elements (e.g. classes) in the reference code, l is the number 

of structural metrics used to compare between artificial code-smells and the well-designed 

code examples, M is a structural metric (such as number of methods, number of attributes, 

etc.) and t is the number of artificial code-smells uncovered by the detection rule solution 

defined at the upper level.  

 

Upper level algorithm: GPSmellDetection 

01. Inputs: Quality metrics M, Defect example base B, Well-designed code example base D, Number of 

best upper solutions that are considered for lower level optimization nbs, Upper population size N1, 

Lower population size N2, Upper number of generations G1, Lower number of generations G2 

02. Output: Best detection rule BDR 

03. Begin 

04.    P0 ← Initialization (N1, M); 

05.    For each DR0 in P0 do   /*DR means Detection Rule*/  
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06.        BCS0 ← GASmellGeneration (DR0, D, N2, G2);   /*Call lower level  

07.        DR0 ← Evaluation (DR0, B, BCS0); 

08.    End For 

09.    t ← 1; 

10.    While (t < G1) do  

11.        Qt ← Variation (Pt-1); 

12.        For each DRt in Qt do  /*Evaluate each rule based on upper fitness function*/ 

13.            DRt ← UpperEvaluation (DRt, B); 

14.        End For 

15.        For each of the best nbs rules DRt in Qt do  /*Only nbs rules are used to*/ 

16.            BCSt ← GASmellGeneration (DRt, D, N2, G2);    

17.            DRt ← EvaluationUpdate (DRt, BCSt);  /*Update based on lower level*/ 

18.        End For 

19.        Ut ← Pt Qt; 

20.        Pt+1 ← EvironmentalSelection (N1, Ut); 

21.        t ← t+1; 

22.    End While 

23.    BDR ← FittestSelection (Pt); 

24. End 

Figure 6 (a) Pseudo-code of the bi-level adaptation for code-smell's detection 

Lower level algorithm: GASmellGeneration 

01. Inputs: Upper level detection rule UDR, Well-designed code example base D, Population size N, 

number of generations G 

02. Output: Best artificial code-smells BCS 

03. Begin 

04.    P0 ← Initialization (N, D); 

05.    P0 ← Evaluation (P0, D, UDR);   /*Evaluation depends of UDR*/ 

06.    t ← 1; 


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07.    While (t < G) do  

08.        Qt ← Variation (Pt-1); 

09.       Qt ← Evaluation (Qt, D, UDR);   /*Evaluation depends of UDR*/ 

10.        Ut ← Pt Qt; 

11.        Pt+1 ← EvironmentalSelection (N, Ut); 

12.        t ← t+1; 

13.    End While 

14.    BCS ← FittestSelection (Pt); 

15. End 

Figure 7 (b) Pseudo-code of the bi-level adaptation for code-smell's detection 

3.2.2 Solution Approach 

The solution approach proposed in this chapter lies within the SBSE field. As noted by 

Harman et al.[10], a generic algorithm like bi-level optimization cannot be used „out of the 

box‟ – it is necessary to define problem-specific genetic operators to obtain the best 

performance. To adapt bi-level optimization to our code-smell's detection problem, the 

required steps are to create for both levels (algorithms): (1) solution representation, (2) 

solution variation and (3) solution evaluation. We examine each of these in the coming 

paragraphs. 

3.2.2.1 Solution Representation 

One key issue when applying a search-based technique is to find a suitable mapping 

between the problem to solve and the techniques to use, i.e., detecting code-smells. 

For the upper-level optimization problem, a genetic programming (GP) algorithm is 

used[11]. In GP, a solution is composed of terminals and functions. Therefore, when 


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applying GP to solve a specific problem, they should be carefully selected and designed to 

satisfy the requirements of the current problem. After evaluating many parameters related to 

the code-smells detection problem, the terminal set and the function set are decided as 

follows. The terminals correspond to different quality metrics with their threshold values 

(constant values). The functions that can be used between these metrics are Union (OR) and 

Intersection (AND). More formally, each candidate solution S in this problem is a sequence 

of detection rules where each rule is represented by a binary tree such that:  

(1) each leaf-node (Terminal)  belongs to the set of metrics (such as number of 

methods, number of attributes, etc.) and their corresponding thresholds generated 

randomly.  

(2) each internal-node (Functions) N belongs to the Connective (logic operators) set C = 

AND, OR. 

The set of candidate's solutions (rules) corresponds to a logic program that is represented 

as a forest of AND-OR trees.  

For the lower-level optimization problem, a genetic algorithm (GA) is used to generate 

artificial code-smells. The generated artificial code fragments are composed of code 

elements. Thus, they are represented as a vector where each dimension is a code element. We 

represent these elements as sets of predicates. Each predicate type corresponds to a construct 

type of an object-oriented system: Class (C), attribute (A), method (M), parameter (P), 

generalization (G), and method invocation relationship between classes (R). For example, 

the sequence of predicates CGAMPPM corresponds to a class with a generalization link, 

L
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containing two attributes and two methods (Figure 4). The first method has two parameters. 

Predicates include details about the associated constructs (visibility, types, etc.). These 

details (thereafter called parameters) determine ways a code fragment can deviate from a 

notion of normality. The sequence of predicates must follow the specified order of predicate 

types (Class, Attribute, Method, Generalization, association, etc.) to ease the comparison 

between predicate sequences and then reducing the computational complexity. When several 

predicates of the same type exist, we order them according to their parameters.  

 

Figure 8 Solution representation: vector (GA) to generate artificial code-smell 

To generate an initial population for both GP and GA, we start by defining the maximum 

tree/vector length (max number of metrics/code-elements per solution). The tree/vector 

length is proportional to the number of metrics/code-elements to use for code-smell's 

detection. Sometimes, a high tree/vector length does not mean that the results are more 

precise. These parameters can be specified either by the user or chosen randomly. Figure 4 

shows an example of a generated code-smell composed of one class, one generalization link, 
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two attributes, two methods, and two parameters. The parameters of each predicate contain 

information generated randomly describing each code element (type, visibility, etc.). 

3.2.2.2 Solution Evaluation 

The encoding of an individual should be formalized as a mathematical function called the 

“fitness function”. The fitness function quantifies the quality of the proposed detection rules 

and generated artificial code-smells. The goal is to define efficient and simple fitness 

functions in order to reduce the computational cost. For our GP adaptation (upper level), we 

used the fitness function fupper defined in the previous section to evaluate detection-rules 

solutions. For the GA adaptation (lower level), we used the fitness function flower defined in 

the previous section to evaluate generated artificial code-smells. 

3.2.2.2.1 Evolutionary Operators: Selection 

One of the most important steps in any evolutionary algorithm (EA) is the selection phase. 

There are two selection phases in EAs: (1) parent selection (also named mating pool 

selection) and (2) environmental selection (also named replacement). In this work, we use an 

elitist scheme for both selection phases with the aim to: (1) exploit good genes of fittest 

solutions, and (2) preserve the best solutions along the evolutionary process. The two 

selections schemes are described as follows. Regarding the parent selection, once the 

population individuals are evaluated, we select the | |   best individuals of the population P 

to fulfill the mating pool, which size is equal to | |  . This allows exploiting the past 

experience of the EA in discovering the best chromosomes‟ genes. Once this step is 

performed, we apply genetic operators (crossover and mutation) to produce the offspring 
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population Q, which has the same size as P (| |  | |). Since crossover and mutation are 

stochastic operators, some offspring individuals can be worse than some of P individuals. In 

order to ensure elitism, we merge both populations P and Q into U (with | |  | |  | |  

 | |), and then the population P for the next generation is composed of the | | fittest 

individuals from U. By doing this, we ensure that we encourage the survival of better 

solutions. We can say that this environmental selection is elitist, which is a desired property 

in modern EAs[44]. We use this elitist operation in both upper and level-level EAs. 

          

3.2.2.2.2 Evolutionary Operators: Mutation 

For GP (upper-level), the mutation operator can be applied to a function node, or to a 

terminal node. It starts by randomly selecting a node in the tree. Then, if the selected node is 

a terminal (quality metric), it is replaced by another terminal (metric or another threshold 

value); if it is a function (AND-OR), it is replaced by a new function; and if tree mutation is 

to be carried out, the node and its sub-tree are replaced by a new randomly generated sub-

tree.  

For GA (lower-level), the mutation operator consists of randomly changing a predicate 

(code element) in the generated predicates. 
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3.2.2.2.3 Evolutionary Operators: Crossover 

For GP (upper-level), two parent individuals are selected, and a sub-tree is picked on each 

one. Then crossover swaps the nodes and their relative sub-trees from one parent to the other. 

This operator must ensure the respect of the depth limits. The crossover operator can be 

applied with only parents having the same rule category (code-smell type to detect). Each 

child thus combines information from both parents. In any given generation, a variant will be 

the parent in at most one crossover operation. 

For GA (lower-level), the crossover operator allows to create two offspring o1 and o2 

from the two selected parents p1 and p2, as follows: 

(1) A random position k is selected in the predicate sequences. 

(2) The first k elements of p1 become the first k elements of o1. Similarly, the first k 

elements of p2 become the first k elements of o2. 

(3) The remaining elements of, respectively, p1 and p2 are added as second parts of, 

respectively, o2 and o1 (hence having a crossing-over operation between parents). 

For instance, if k = 3 and p1 = CAMMPPP and p2 = CMPRMPP, then o1 = CAMRMPP and 

o2 = CMPMPPP. 

3.3 Validation 

In order to evaluate our approach for detecting code-smells using the proposed bi-level 

optimization (BLOP) approach, we conducted a set of experiments based on different 

versions of open source systems: JFreeChart, GanttProject, ApacheAnt, Nutch, Log J, 
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Lucene, Xerces-J and  hino . Each experiment is repeated 31 times, and the obtained results 

are subsequently statistically analyzed with the aim to compare our bi-level proposal with a 

variety of existing code-smells detection approaches. In this section, we first present our 

research questions and then describe and discuss the obtained results.  

3.3.1 Research Questions 

We defined five research questions that address the applicability, performance comparison 

with existing code-smells detection approaches, and the scalability of our bi-level code-

smells detection approach. The five research questions are as follows: 

RQ1: Search validation: To validate the problem formulation of our approach, we 

compared our BLOP formulation with Random Search (applied to both levels). If Random 

Search outperforms a guided search method thus, we can conclude that our problem 

formulation is not adequate. Since outperforming a random search is not sufficient, the next 

four questions are related to performance and scalability of BLOP, and a comparison with the 

state-of-the-art code-smells detection approaches.   

RQ2: How does BLOP perform to detect different types of code-smells?  It is important to 

quantitatively assess the completeness and correctness of our code-smell detection approach. 

RQ3.1: How do BLOP perform compared to existing search-based code-smells detection 

algorithms? Our proposal is the first work that treats a software engineering problem as a bi-

level problem. A comparison with existing search-based code-smells detection approaches is 
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helpful to evaluate the benefits of the use of bi-level approach in the context of code-smell 

detection. 

RQ3.2: How does BLOP perform compared to the existing code-smells detection 

approaches not based on the use of metaheuristic search? While it is very interesting to 

show that our proposal outperforms existing search-based code-smells detection approaches, 

developers will consider our approach useful, if it can outperform other existing tools that are 

not based on optimization techniques.  

RQ4: How does our bi-level formulation scale? There is a cost in solving every lower-

level optimization problem in each iteration. An evaluation of the execution time is required 

to discuss the ability of our approach to detect code-smells within a reasonable time-frame. 

3.3.2 Software Projects Studied 

In our experiments, we used a set of well-known and well-commented open-source Java 

projects. We applied our approach to nine open source Java projects. Table II presents the list 

and some relevant statistics of the software systems for our code-smell detection purpose.  
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Table 2 Software studied in our experiments. 

 

Systems Release #Classes #Smells KLOC 

JFreeChart  v1.0.9 521 82 170 

GanttProject v1.10.2 245 67 41 

ApacheAnt  v1.5.2 1024 163 255 

ApacheAnt  v1.7.0 1839 159 327 

Nutch v1.1 207 72 39 

Log4J v1.2.1 189 64 31 

Lucene v1.4.3 154 37 33 

Xerces-J V2.7.0 991 106 238 

Rhino v1.7R1 305 78 57 

 

JFreeChart is a powerful and flexible Java library for generating charts. GanttProject is a 

cross-platform tool for project scheduling. ApacheAnt is a build tool and library specifically 

conceived for Java applications. Nutch is an open source Java implementation of a search 

engine. Log4j is a Java-based logging utility. Lucene is a free/open source information 

retrieval software library. Xerces-J is a family of software packages for parsing XML. 

Finally, Rhino is a JavaScript interpreter and compiler written in Java and developed for the 

Mozilla/Firefox browser. Table II provides some descriptive statistics about these nine 

programs. We selected these systems for our validation because they range from different 

sizes that have been actively developed over the past 10 years, and include a large number of 

code-smells. In addition, these systems are well studied in the literature, and their code-

smells have been detected and analyzed manually. 
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In the nine studied open source systems, the seven code-smell types, described in Section 

2.1, were identified manually. In[60], Moha et al. asked three groups of students to analyze 

the libraries to tag instances of specific code-smells to validate their detection technique, 

DECOR. For replication purposes, they provided a corpus of describing instances of different 

code-smells. In our previous work[55, 93], we asked eighteen graduate students and four 

software engineers to extend the existing corpus proposed by Moha et al. To calculate the 

recall, the different participants analyzed different quality metrics based on the definition of 

code-smells. Recently, Palomba et al.[24] proposed another corpus including several new 

code-smells types.  The selected types of code-smells in our validation are not similar 

(unilateral), diversified and cover different high level design quality (maintainability) 

attributes such as reusability, flexibility, understandability, functionality, extendibility, and 

effectiveness[99].    

3.3.3 Evaluation Metrics Used 

To assess the accuracy of our approach, we compute two measures, precision (PR) and 

recall (Rc), originally stemming from the area of information retrieval. When applying 

precision and recall in the context of our study, the precision denotes the fraction of correctly 

detected code-smells among the set of all detected code-smells. The recall indicates the 

fraction of correctly detected code-smells among the set of all manually identified code-

smells (that is, how many code-smells are undetected). In general, the “precision” denotes the 

probability that a detected code-smell is correct, and the “recall” is the probability that an 

expected code-smell is detected. Thus, both values range between 0 and 1, whereas a higher 
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value is better than a lower one. We performed a 9-fold cross validation thus we removed the 

expected code-smells to detect in the system to evaluate from the base of code-smell 

examples when executing our BLOP algorithm, and then precision and recall scores are 

calculated automatically based on a comparison between the detected code-smells and 

expected ones. Thus, one project is evaluated by using the remaining systems as a base of 

code-smell examples to generate detection rules. We also use another measure computational 

time (CT) to evaluate the execution time required by our proposal to generate optimal 

detection rules.  

3.3.4 Inferential statistical test methods used 

Since metaheuristic algorithms are stochastic optimizers, they can provide different results 

for the same problem instance from one run to another. For this reason, our experimental 

study is performed based on 31 independent simulation runs for each problem instance, and 

the obtained results are statistically analyzed by using the Wilcoxon rank sum test[100] with 

a 99% confidence level (α = 1%). The Wilcoxon signed-rank test is a non-parametric 

statistical hypothesis test used when comparing two related samples to verify whether their 

population mean-ranks differ or not. The latter verifies the null hypothesis H0 that the 

obtained results of two algorithms are samples from continuous distributions with equal 

medians, as against the alternative that they are not, H1. The p-value of the Wilcoxon test 

corresponds to the probability of rejecting the null hypothesis H0 while it is true (type I 

error). A p-value that is less than or equal to α (≤ 0.01) means that we accept H1, and we 

reject H0. However, a p-value that is strictly greater than α (> 0.01) means the opposite. In 
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this way, we could decide whether the outperformance of BLOP over one of each of the 

other detection algorithms (or the opposite) is statistically significant or just a random result.  

To answer the first research question RQ1, an algorithm was implemented where at each 

iteration, rules were randomly generated in the upper level, and artificial code-smells were 

randomly created. The obtained best detection rules solution was compared for statistically 

significant differences with BLOP using PR, Rc and CT. 

To answer RQ2, we used the open source systems described in Section 4.2 and calculated 

precision and recall scores for the different types of code-smells. To answer RQ3.1, we 

compared BLOP with two existing search-based code-smells detection approaches – GP[7] 

and a co-evolutionary approach[98]. In[7], Kessentini et al. used genetic programming (GP) 

to generate detection rules from manually collected code-smell examples which correspond 

to the upper level of our approach (without lower level). Thus, the generation of artificial 

code-smells is not considered but only the coverage of manually identified examples. In [98], 

we proposed the use of co-evolutionary (Co-Evol) algorithms for code-smell detection, 

where two populations were evolved in parallel. The first population generates detection 

rules and the second population generates artificial code-smell examples. Both populations 

are executed in parallel without hierarchy. Thus, the second population solutions are 

independent of the solutions in the first population which is one of the main differences with 

our bi-level extension. We considered the three metrics PR, Rc and CT to compare bi-level 

with these search-based techniques based on 31 independent executions. To answer RQ3.2, 

we compared our results with DECOR. Moha et al.[60] started by describing code-smell 
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symptoms using a domain-specific-language (DSL) for their approach called DECOR. They 

proposed a consistent vocabulary and DSL to specify anti-patterns based on the review of 

existing work on design code-smells found in the literature. To describe code-smell 

symptoms, different notions are involved, such as class roles and structures. Symptom 

descriptions are later mapped to detection algorithms based on a set of rules. We compared 

the results of this tool with BLOP using PR and Rc metrics.  

To answer the last question RQ4 we evaluated the execution time CT required by our 

BLOP proposal based on different scenarios (parameters setting) on a large scale system.  

3.3.5 Parameter tuning  

An often-omitted aspect in metaheuristic search is the tuning of algorithm parameters[50]. 

In fact, parameter setting influences significantly the performance of a search algorithm on a 

particular problem. For this reason, for each search algorithm and each system (cf. Table III), 

we performed a set of experiments using several population sizes: 10, 20, 30, 40 and 50. The 

stopping criterion was set to 750,000 fitness evaluations for all algorithms in order to ensure 

fairness of comparison. We used a high number of evaluations as a stopping criterion since 

our bi-level approach requires involves two levels of optimization. Each algorithm was 

executed 31 times with each configuration and then comparison between the configurations 

was performed based on precision and recall using the Wilcoxon test. Table III reports the 

best configuration obtained for each couple (algorithm, system).  Since the replication of the 

bi-level experiment for 31 times is computationally expensive, the parameter setting 
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experiments are performed on a cluster of 30 machines. In this way, each 30 experiments are 

performed in parallel with a termination criterion of 750000 evaluations. 

Table 3 Best population size configurations 

 

System Release BLOP CO-EVOL GP 

JFreeChart v1.0.9 30 30 40 

GanttProject v1.10.2 30 50 30 

ApacheAnt v1.5.2 30 30 50 

ApacheAnt v1.7.0 30 30 30 

Nutch v1.1 30 40 30 

Log4J v1.2.1 30 30 50 

Lucene v1.4.3 30 40 50 

Xerces-J V2.7.0 30 40 40 

Rhino v1.7R1 30 30 30 

 

The other parameters‟ values were fixed by trial and error and are as follows: (1) 

crossover probability = 0.8; mutation probability = 0.5 where the probability of gene 

modification is 0.3; stopping criterion = 750000 fitness evaluations. For our bi-level 

approach, both lower-level and upper-level EAs are run each with a population of 30 

individuals and 50 generations. The following reasons can explain the use of reduced 

population size at both levels. According to our formulation, detection rules are evaluated at 

the upper level based not only on its performance with respect to the upper fitness function 

but also on its performance on detecting associated generated code-smells by the lower level. 

In this way, the lower level helps the upper one in (1) discovering uninteresting upper search 
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directions that should be ignored, and (2) favoring interesting ones; thereby we reduce the 

number of required evaluations at the upper level. This fact explains the reduced population 

size (30 individuals) at the upper level. For the lower level, we also used a reduced 

population size (30 individuals) since our goal is to have an idea about the performance of 

the detection rule at the lower level. We note that recent studies are based on the use of local 

search in order to predict the behavior of upper solutions at a lower level with an accepted 

computational cost (cf.[44]). 

It should be noted that the lower-level routine is not called for all upper-level population 

members. To control, the high computational cost of our bi-level approach, only nbs% of the 

best upper-level population members are allowed to call the lower-level optimization 

algorithm. Based on a parametric study, the value of 10% for nbs is found to be adequate 

empirically in our experiments. The nbs parametric study will be discussed later. For our 

experiment, we generated up to 125 artificial code-smells from deviation with JHotDraw 

(about a quarter of the number of examples). JHotdraw was chosen as an example of 

reference code because it contains very few known code-smells. In fact, previous work[98] 

could not find any Blob in JHotdraw. In our experiments, we used all the classes of JHotdraw 

as our example set of well-designed code. 

3.3.6 Results 

This section describes and discusses the results obtained for the different research 

questions of Section 4.1. 
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3.3.6.1 Results for RQ1 

Concerning RQ1, Table IV confirms that BLOP is better than random search based on the 

two metrics PR and Rc on all the 9 systems. The Wilcoxon rank sum test showed that in 31 

runs BLOP results were significantly better than random search. 

Table 4 The significantly best algorithm among random search, BLOP, GP and Co-Evol over 31 independent runs. 

“No. Sign.” Means no method is significantly better than another. 

System Release Precision Recall 

JFreeChart v1.0.9 BLOP BLOP 

GanttProject v1.10.2 BLOP BLOP 

ApacheAnt v1.5.2 BLOP BLOP 

ApacheAnt v1.7.0 BLOP BLOP 

Nutch v1.1 BLOP BLOP 

Log4J v1.2.1 No. Sign. No. Sign. 

Lucene v1.4.3 No. Sign. No. Sign. 

Xerces-J V2.7.0 BLOP BLOP 

Rhino v1.7R1 BLOP BLOP 

Table 5 . Median PR and Rc values on 31 runs for BLOP, random search (RS), GP [Kessentini et al. 2011] and Co-

Evol [Boussaa et al. 2013]. The results were statistically significant on 31 independent runs using the Wilcoxon rank 

sum test with a 99% confidence le 

 

System PR-BLOP PR-GP PR-Co-Evol PR-RS Rc-BLOP Rc-GP Rc-Co-

Evol 

Rc-RS 

JFreeChart  
89% 

(77/86) 

78% 

(71/92) 

84% 

(74/89) 

26% 

(34/129) 

93% 

(77/82) 

86% 

(71/82) 

90% 

(74/82) 

41% 

(34/82) 

GanttProject 
88% 

(62/71) 

80% 

 (57/73) 

82% 

(58/71) 

28% 

(29/106) 

89% 

(62/67) 

83% 

(57/67) 

85% 

(58/67) 

43% 

(29/67) 

ApacheAnt 

v1.5.2 

90% 

(152/169) 

84% 

(146/174) 

86% 

(148/171) 

26% 

(51/189) 

93% 

(152/163) 

89% 

(146/163) 

90% 

(148/163) 

31% 

(51/163) 

ApacheAnt v 

1.7.0 

91% 

(149/164) 

82% 

(142/173) 

85% 

(144/169) 

28% 

(54/184) 

94% 

(149/159) 

90% 

(142/159) 

91% 

(144/159) 

33% 

(54/159) 

Nutch 
89% 

(67/76) 

73% 

(64/88) 

76% 

(65/86) 

34% 

(37/131) 

92% 

(67/72) 

89% 

(64/72) 

90% 

(65/72) 

51% 

(37/72) 

Log4J 
89% 

(59/67) 

71% 

(52/74) 

77% 

(54/71) 

32% 

(34/127) 

91% 

(59/64) 

81% 

(52/64) 

85% 

(54/64) 

53% 

(34/64) 

Lucene 
91% 

(35/39) 

70% 

(31/42) 

79% 

(33/42) 

12% 

(11/88) 

95% 

(35/37) 

84% 

(31/37) 

89% 

(33/37) 

29% 

(11/37) 

Xerces-J 
91% 

(101/111) 

75% 

(94/126) 

80% 

(96/119) 

17% 

(31/179) 

95% 

(101/106) 

88% 

(94/106) 

91% 

(96/106) 

29% 

(31/106) 

Rhino 
90% 

(75/84) 

74% 

(69/93) 

79% 

(71/89) 

14% 

(23/167) 

95% 

(75/78) 

87% 

(69/78) 

91% 

(71/78) 

29% 

(23/78) 
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Table V also describes the outperformance of BLOP against random search. The average 

precision and recall values of random search on the nine systems are lower than 25%. This 

can be explained by the huge search space to explore at both levels to generate detection 

rules and artificial code-smells. We conclude that there is empirical evidence that our bi-level 

formulation surpasses the performance of random search thus our formulation is adequate 

(this answers RQ1). Table V. Median PR and Rc values on 31 runs for BLOP, random search 

(RS), GP[7] and Co-Evol[98]. The results were statistically significant on 31 independent 

runs using the Wilcoxon rank sum test with a 99% confidence level (α < 1%).    

3.3.6.2 Results for RQ2 

In this section, we evaluate the performance of our BLOP adaptation on the detection of 

seven different types of code-smells. Table V summarizes our findings. The expected code-

smells were detected with an average of more than 90% of precision and recall on the nine 

open source systems. The highest precision was found in JDI-Ford, Xerces-J and Lucene 

where 91% of code-smells were detected. The lowest precision was found in GanttProject 

with 88% of detected code-smells. This can confirm that the list of returned code-smells did 

not contain high number of false positive thus developer will not waste a lot of their time for 

manual inspections. We found similar facts when analyzing the recall scores of BLOP on the 

different system where an average of more than 90% of expected code-smells was detected. 

The highest and lowest recall scores were respectively 95% (Rhino) and 89% (GanttProject). 

An interesting observation that the performance of bi-level in terms of PR and Rc is 
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independent of the size and number of code-smells in the system to analyze. The PR and Rc 

scores of ApacheAnt are among the highest ones with more than 90% that are better than the 

detection results of a smaller system such as GanttProject. A more qualitative evaluation is 

presented in Figure 5 illustrating the box plots obtained for the PR and Rc metrics on three 

different projects GanttProject (small), Xerces-J (medium) and Ant-Apache (large). We see 

that for almost all problems the distributions of the PR and Rc values for BLOP are the best 

ones. 

  

Figure 9 Box plots on three different systems (Gantt: small, Xerces: medium, Ant-Apache 1.7.0: large) of  precision 

values 

 

Figure 10 Box plots on three different systems (Gantt: small, Xerces: medium, Ant-Apache 1.7.0: large) recall values. 

 

We noticed that our technique does not have a bias towards the detection of specific code-

smell types. As described in Figure 6, in all systems, we had an almost equal distribution of 

each code-smell types. Having a relatively good distribution of code-smells is useful for a 
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quality engineer. Overall, all the seven code-smells types are detected with good precision 

and recall scores in the different systems (more than 80%).  

This ability to identify different types of code-smell underlines a key strength to our 

approach. Most other existing tools and techniques rely heavily on the notion of size to detect 

code-smells. This is reasonable considering that some code-smells like the Blob are 

associated with the notion of size. For code-smells like FDs, however, the notion of size is 

less important, and this makes this type of anomaly hard to detect using structural 

information.  

To conclude, our BLOP approach detects well all the seven types of considered code-

smells (RQ2). 

 

 

Figure 11 Median PR scores for every code-smell's type over 31 runs on the different 9 open source systems. 
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Figure 12 Median Rc (b) scores for every code-smell's type over 31 runs on the different 9 open source systems. 

3.3.6.3 Results for RQ3 

In this section, we compare our BLOP adaptation to the current; state-of-the-art code 

smells detection approaches. To answer RQ3.1, we compared BLOP to two other existing 

search-based techniques: GP[7] and Co-Evol[98]. Table V shows the overview of the results 

of the significance tests comparison between all these algorithms. It is clear that BLOP 

outperforms GP and Co-Evol in 100% of the cases in terms of precision (PR) and recall 

(RE). However, as it will be discussed in RQ4, the execution time (CT) of our BLOP 

algorithm is much higher than GP and Co-Evol. In addition, the improvements of PR and Rc 

scores are significant using BLOP comparing to GP and Co-Evol. A more qualitative 

evaluation is presented in Figure 5 illustrating the box plots obtained for the PR and Rc 

metrics on three different projects GanttProject (small), Xerces-J (medium) and Ant-Apache 

(large). It is clear from the box plots presented in Figure 5 that the outperformance of BLOP 

comparing to GP and Co-Evol in all the three different systems based on the statistical 
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analysis of 31 independent runs. For GP, this can be explained by the fact that the use of 

manually identified code-smell examples is not enough to cover all the possible bad-practice 

behaviors since it is fastidious task to collect them (most of the code-smells are not well-

documented, unlike bugs report). However, our BLOP algorithm can generate artificial code-

smells based on a deviation with good-practices in addition to the coverage of code-smell 

examples. For Co-Evol, the two populations are executed in parallel and the problem is that 

there is no dependency between both populations (unlike BLOP that creates a hierarchy 

between two levels) thus one population can converge before the second one.  

The statistical tests are based on multiple pairwise comparisons using the Wilcoxon test. 

Thus, we have to adjust the p-values. To achieve this task, we used Holm method that is 

reported to be more accurate than the Bonferroni one[101]. Table VI presents these adjusted 

p-values confirming that the results are statistically significant with a 99% confidence level 

(α = 1%). 
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Table 6 Adjusted p-values of comparisons related to table 4 

 BLOP GP Co-Evol 

JFreeChart  

0.00353 (GP) 

0.00463 (Co-Evol) 

0.00157 (RS) 

0.00379 (Co-Evol)   

0.00272 (RS) 

0.00377 (RS) 

GanttProject 

0.00116 (GP) 

0.00249 (Co-Evol) 

0.00039 (RS) 

0.00296 (Co-Evol)       

0.00128 (RS) 

0.00138 (RS)   

ApacheAnt v1.5.2 

0.00273 (GP) 

0.00479 (Co-Evol) 

0.00282 (RS) 

0.00386 (Co-Evol)       

0.00053 (RS) 

0.00240 (RS) 

ApacheAnt v 

1.7.0 

0.00179 (GP) 

0.00485 (Co-Evol) 

0.00079 (RS) 

0.00216 (Co-Evol)     

0.00138 (RS) 

0.00228 (RS) 

Nutch 

0.00226 (GP) 

0.00391 (Co-Evol) 

0.00111 (RS) 

0.00431 (Co-Evol)       

0.00294 (RS) 

0.00321 (RS) 

Log4J 

0.00243 (GP) 

0.00405 (Co-Evol) 

0.00071 (RS) 

0.00412 (Co-Evol)    

0.00147 (RS) 

0.00195 (RS) 

Lucene 

0.00211 (GP) 

0.00458 (Co-Evol) 

0.00196 (RS) 

0.00259 (Co-Evol)      

0.00175 (RS) 

0.00267 (RS) 

Xerces-J 

0.00480 (GP) 

0.00328 (Co-Evol) 

0.00017 (RS) 

0.00217 (Co-Evol)     

0.00119 (RS) 

0.00226 (RS) 

Rhino 

0.00325 (GP) 

0.00467 (Co-Evol) 

0.00239 (RS) 

0.00391 (Co-Evol)     

0.00183 (RS) 

0.00249 (RS) 

 

 We found that the main reason explaining the outperformance of BLOP against Co-Evol 

is the diversity/quality of the generated artificial code-smells. In fact, the lower level of our 

BLOP formulation generates artificial code-smell examples for every good solution 

(detection rules) in the upper level then these examples are used to evaluate the solutions in 

the upper level. Thus, the generated artificial code-smells examples depend on the associated 

solution (rules) in the upper level. However, both populations, in Co-Evol, are executed in 
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parallel and independently (without the hierarchy of BLOP). Thus, the generated artificial 

code-smells by the second population can be evaluated, at every iteration, by the best 

solution (detection rule) of the first population that is not “mature” enough. In fact, one 

population in Co-Evol can converge before the other however this is addressed by BLOP 

because the two levels are executed in sequence after number of iterations. We executed the 

best solution (code-smell's detection rules) of BLOP to detect code-smells on the best set of 

artificial code-smells generated Co-Evol and vice-versa. As described in Figure 7, it is clear 

that the rules generated by BLOP can detect most of the artificial code-smells examples 

generated by Co-Evol with a precision of more than 90% however Co-Evol detects only 

around 70% of code-smells generated by the lower level of BLOP. The quality of generated 

rules depends heavily on the diversity of the artificial code-smells. Thus, the main reason 

explaining the outperformance of BLOP is the hierarchy that exists between the two levels 

allowing the lower level to generate intelligently the artificial code-smells that can improve 

the quality of detection rules. 
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Figure 13 The median precision score of detected artificial code-smells by BLOP and Co-Evol 

 

We analyzed the results of our comparison between the different search techniques based 

on a final target fitness function value and not a maximum number of iterations. Due to the 

space limitation, we present in Figure 8 the results of the comparison based on precision and 

recall only on Xerces-J but similar facts were found on the remaining systems. The four 

different targeted fitness functions value (0.7, 0.75, 0.8, 0.85) confirms the outperformance 

of BLOP comparing to the other search techniques in terms of precision and recall. An 

interesting observation is the fact that the fitness function values are correlated with the 

precision and recall scores. An improvement of the fitness function value leads to better 

precision and recall scores. This is can be a good indication about our fitness functions is 

well formulated and adapted to the code-smell's detection problem. We also noticed that all 

the targeted fitness functions values are reached by all the algorithms with a lower number of 

evaluations than 750000 which the termination criterion selected in our experiments.        
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Figure 14 The median precision and recall scores of detected code-smells by BLOP, GP and Co-Evol on Xerces-J 

based on a target final fitness function values 

 

 

Figure 15 The impact of the number of code-smell examples on the quality of the results (PR on Xerces-J). 

 

One of the advantages of using our BLOP adaptation is that the developers do not need to 

provide a huge set of code-smell examples to generate the detection rules. In fact, the lower-
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level optimization can generate examples of code-smells that are used to evaluate the 

detection rules at the upper level. Figure 9 shows that BLOP requires a low number of 

manually identified code-smells to provide good detection rules with reasonable precision 

and recall scores. GP and Co-Evol require a higher number of code-smell examples than 

BLOP to generate good code-smells detection rules. In addition, the reliability of the 

proposed BLOP approach requires an example set of good code and code-smell examples. In 

our study, we showed that by using JHotdraw directly, without any adaptation, the BLOP 

method can be used out of the box, and this will produce good detection results for the 

detection of code-smells for all the studied systems. In an industrial setting, we could expect 

a company to start with JHotDraw, and gradually transform its set of good code examples to 

include context-specific data. This might be essential if we consider that different languages 

and software infrastructures have different best/worst practices.  

In conclusion, we answer RQ3.1 by concluding that the results in our experiments confirm 

that our proposed BLOP is adequate, and it outperforms two existing search-based code-

smells detection work – a GP[7] and a co-evolutionary GA[98]. 

Since it is not sufficient to compare our proposal with only search-based work, we 

compared the performance of BLOP with DECOR[60]. DECOR was mainly evaluated based 

on three types of code-smells using metrics-based rules that are identified manually: Blob, 

functional decomposition and spaghetti code. The results of the execution of DECOR are 

only available for the following systems:  GanttProject, Nutch, Log4J, Lucene and Xerces-J. 

Figure 10 summarizes the results of the precision and recall obtained on the above-mentioned 
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5 systems. The recall for DECOR in all the systems is 100% signifying that it is better than 

BLOP; however the precision scores are lower than our proposal on all systems. In fact, the 

higher recall achieved by DECOR can be easily explained by the use of relatively permissive 

constraints. For example, the average precision to detect functional decompositions using 

DECOR is lower than 25% however we can detect this type of code-smells with more than 

80% of precision. The same observation for the spaghetti-code (SC), BLOP can detect SC 

with more than 85% in terms of precision however DECOR detected the same type of code-

smell with a precision lower than 65%. This can be explained by the high calibration effort 

required to define manually the detection rules in DECOR for some specific code-smell types 

and the ambiguities related to the selection of the best metrics set. The recall of BLOP is 

lower than DECOR, on average, but it is an acceptable recall average which is higher than 

80%. To conclude, our BLOP adaption also outperforms, on average, an existing approach 

not based on meta-heuristic search (RQ3.2).         
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Figure 16 The median precision and recall scores of BLOP and DECOR obtained on GanttProject, Nutch, Log4J, 

Lucene and Xerces-J based on three code-smell types (Blob, SC and FD). 

 

3.3.6.4 Results for RQ4 

Since our proposal is based on bi-level optimization, it is important to evaluate the 

execution time (CT). It is evident that BLOP requires higher execution time than GP, Co-

Evol and DECOR since BLOP has an optimization algorithm to be executed at the lower 

level. To reduce the computational complexity of our BLOP adaptation, we selected only 

best solutions (nbs%) at the upper level to update their fitness evaluations based on the 

coverage of artificial code-smells that are generated by the optimization algorithms executed 

at the lower level for every selected solution.  All the search-based algorithms under 

comparison were executed on machines with Intel Xeon 3 GHz processors and 4 GB RAM. 

We recall that all algorithms were run for 750000 evaluations. This allows us to make a fair 

comparison between CPU times. Overall, GP and Co-Evol algorithms were faster than 

BLOP. In fact, the average execution time for BLOP, GP and Co-Evol were respectively 6.2, 
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1.4 and 2.1 hours. However, the execution for BLOP is reasonable because the algorithm is 

executed only once then the generated rules will be used to detect code-smells. There is no 

need to execute BLOP again except in the case that the base of examples will be updated 

with a high number of new code-smell examples.  

An important parameter that reduced the execution time of our BLOP adaptation is the 

number of selected good solutions at the upper level. Figure 11 shows that the performance 

of our approach improves as we increase the percentage of best solutions selected from the 

upper level at each iteration. However, the results become stable after 10% (percentage of 

selected solutions from the upper level population). For this reason, we considered this 

threshold in our experiments that represent a good trade-off between the quality of detection 

solutions and the execution time. As described in Figure 11, the PR and Rc scores become 

almost stable after the 10% threshold value and the execution time increases dramatically 

since a high number of optimization algorithms are executed at the lower level. The 

evaluation was performed on JFreeChart v1.0.9 but similar facts were found on the 

remaining systems. 
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Figure 17 The impact of the number of selected solutions at upper level on the quality of the results (PR, Rc and CT) 

using JFreeChart v1.0.9. 

 

Figure 12 shows the number of evaluations required to generate good code-smells 

detection rules. We used the f-measure metric defined as the harmonic mean of precision and 

recall to evaluate the quality of the best solution at each iteration for each algorithm (BLOP, 

Co-Evol and GP). We considered an f-measure value higher than 0.7 as an indication of an 

acceptable detection rules solution based on our corpus. We evaluated which algorithm can 

reach faster that threshold value of f-measure (0.7). We selected a threshold value of 0.7 

since it represents a good balance between precision and recall that can lead to acceptable 

detection solutions. We found that our bi-level adaptation required a fewer number of 

evaluations than Co-Evol and GP to generate good code-smells detection solutions. In fact, 

after around 325000 evaluations BLOP generated detection rules that have 0.7 as f-measure 

value on Xerces-J. Co-Evol requires at least more than 480000 evaluations to reach similar 



  

67 Code-Smells Detection as a Bi-Level 

Problem 

 

67 

 

solution quality, and GP needs more than 560000 evaluations to generate similar detection 

solution. Thus, we can conclude that the lower level helped the upper level to generate 

quickly good quality of detection solutions by producing in an intelligent manner efficient 

artificial code-smells. Although the fact that BLOP needs higher execution time than Co-

Evol and GP as described in Figure 11, it is clear from Figure 12 that the good solutions 

provided by a single-level approach can be reached quickly by our bi-level adaptation. 

 

Figure 18 The number of evaluations required by the different algorithms (BLOP, Co-Evol and GP) to reach 

acceptable results (f-measure=0.7) using Xerces-J v 2.7.0. 

To further evaluate the scalability of the performance of bi-level evolutionary algorithms 

for systems of increasing size, we executed our bi-level tool on Eclipse without assessing the 

precision and recall scores. Eclipse is an open source integrated development environment 

(IDE) written in Java and widely used to develop applications. We considered three versions 

of Eclipse that contains more than 3.5 MLOCs. Figure 13 describes the execution time of our 

bi-level approach on 7 different versions of Eclipse. We believe that an execution time of 7 

hours is acceptable and reasonable since the developers will not use our tool in their daily 
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activities, but they just need to execute it once to extract the rules. A new execution of the bi-

level algorithm is required when major updates are performed on the base of examples used 

by the upper level. 

 

Figure 19 Scalability of our bi-level approach for code-smell's detection on three different versions of Eclipse. 

 

3.4 Industrial Case Study and Relevance of the Detected Code-Smells  

The goal of this study is to evaluate the usefulness and the effectiveness of our code-

smells detection tool in practice. We conducted a non-subjective evaluation with potential 

developers who can use our tool related to the relevance of our approach for software 

engineers.  

We performed a small industrial case study, described in Table VII, based on one 

industrial project JDI-Ford. It is a Java-based software system that helps, our industrial 

partner, the Ford Motor Company, analyzes useful information from the past sales of 

dealerships data and suggests which vehicles to order for their dealer inventories in the 

future. This system is the main key software application used by the Ford Motor Company to 

improve their vehicle sales by selecting the right vehicle configuration to the expectations of 
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customers. Several versions of JDI were proposed by software engineers at Ford during the 

past 10 years. Due to the importance of the application and the high number of updates 

performed during a period of 10 years, it is critical to make sure that all the JDI releases are 

within a good quality to reduce the time required by developers to introduce new features in 

the future. The software engineers from Ford evaluated the JDI system to manually find 

code-smells based on their knowledge of the system since they are some of the original 

developers. We considered those that are detected by the majority of the software engineers 

to calculate the precision and recall. Our study focused on the usefulness of the detected 

code-smells and the performance of our detection technique in an industrial setting. We also 

evaluated the relevance of some of the detected code-smells on the different open source 

systems described in the previous section.  

In this section, we will answer to the following question: 

How our bi-level code-smells detection BLOP approach and the detected code-smells can 

be useful for software engineers?  

Table 7 Software studied in our experiments. 

 
Systems Release #Classes #Smells KLOC 

JDI-Ford v5.8 638 88 247 

 

We describe, first, in this section the subjects participated in our study. Second, we give 

details about the questionnaire, instructions and the conducted pilot study. Finally, we 

describe and discuss the obtained results.  
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3.4.1 Subjects 

Our study involved 7 subjects from the University of Michigan and 8 software engineers 

from Ford Motor Company. Subjects include 3 master students in Software Engineering, 3 

Ph.D. students in Software Engineering, 1 faculty member in Software Engineering, 6 junior 

software developers and 2 senior projects manager. 6 subjects are female, and 9 are male. All 

the 15 subjects are familiar with Java development, software maintenance activities including 

refactoring. The experience of these subjects on Java programming ranged from 2 to 16 

years. All the graduate students have an industrial experience of at least 2 years with large-

scale object-oriented systems. The 8 software engineers from Ford evaluated the code-smell's 

detection results only on the JDI-Ford system. They were selected, as part of a project funded 

by Ford, based on having similar development skills, their motivations to participate in the 

project and their availability. They are part of the original developers‟ team of the JDI 

system.  

3.4.2 Questionnaire, Instructions and Pilot Study  

Subjects were first asked to fill out a pre-study questionnaire containing five questions. 

The questionnaire helped to collect background information such as their role within the 

company, their programming experience, their familiarity with code smells and software 

refactoring. 

We divided the subjects into 4 groups to evaluate the relevance of some detected code-

smells according to the number of studied systems, the number of detected code-smells to 

evaluate and the results of the pre-study questionnaire. Due to the high number of code-
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smells to be evaluated, we pick at random a sub-set of the detected code-smells to evaluate 

their relevance for software engineers as described in Table VIII. In Table 8, we summarize 

how we divided subjects into 4 groups. All the participants from Ford (Group D) evaluated 

the relevance of the detected code-smells only on the JDI-Ford system. They were also asked 

to find the other code-smells in JDI not detected by our BLOP technique and evaluate the 

correctness of detected ones. 

Each group of subjects, who accepted an invitation to participate to the study, received a 

questionnaire, a manuscript guide that helps to fill the questionnaire, and the source code of 

the studied systems, in order to evaluate the relevance of the suggested code-smells to fix. 

The questionnaire is organized in an excel file with hyperlinks to visualize the source code of 

the affected code elements easily. The study questionnaire is composed by three main 

sections and a specific fourth section only for Group D (Ford‟s developers).  

The first part of the questionnaire includes questions to evaluate the relevance of some 

detected code-smells using the following scale: 1. Not at all relevant; 2. Slightly relevant; 3. 

Moderately relevant; and 4.Extremely relevant. If a detected code-smell is considered 

relevant then this is mean that the developer considers that it is important to fix it.  

The second part of the questionnaire includes questions for those code-smells that are 

considered at least “moderately relevant”, we asked the subjects to specify their usefulness to 

perform some maintenance activities: 1. Refactoring guidance; 2. Quality assurance; 3. Bug 

prediction; 4. Effort prediction; and 5. Code inspection. 
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In the third part of the questionnaire, we asked our subjects to fix some of the detected 

code-smells by suggesting and applying some refactorings[101].  

In the last part dedicated to only Group D (developers from Ford), we asked them to 

explore the JDI source code, analyze the metrics value of the system and use their knowledge 

of the existing implementation (since they are the original developers) in order to identify the 

remaining code-smells not detected by our BLOP technique. In addition, they evaluated the 

correctness of detected ones by BLOP. We considered the majority of votes (more than 4 

votes) to evaluate the correctness of detected code-smells.  

The questionnaire is completed anonymously thus ensuring confidentiality and this study 

were approved by the I B at the University of Michigan: “ esearch involving the collection 

or study of existing data, documents, records, pathological specimens, or diagnostic 

specimens, if these sources are publicly available or if the information is recorded by the 

investigator in such a manner that participants cannot be identified, directly or through 

identifiers linked to the participants”. 

During the entire process, subjects were encouraged to think aloud and to share their 

opinions, issues, detailed explanations and ideas with the organizers of the study (one 

graduate student and one faculty from the University of Michigan) and not only answering 

the questions.  

A brief tutorial session was organized for every participant around code-smells and 

refactoring to make sure that all of them have a minimum background to participate in the 

study. The instructions indicate also that the developers need to inspect the source code to 
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evaluate the detected code-smells and their relevance and not by evaluating the quality metric 

values. In addition, all the developers performed the experiments in a similar environment: 

similar configuration of the computers, tools (Eclipse, Excel, etc.) and facilitators of the 

study. Because some support was needed for the installation of our Eclipse plug-in and the 

other detection techniques considered in our experiments, we added a short description of 

this instruction for the participants. These sessions were also recorded as audio and the 

average time required to finish all the questions was 5 hours. The average time to answer the 

first three parts of the questionnaire is 3 hours, but the participants from Ford spent a 

considerable time to find the code-smells not detected by our BLOP technique. 

Prior to the actual experiment we did a pilot run of the entire experiment with two 

subjects, on average performing student and one software engineer from Ford. We performed 

this pilot study to verify whether the assignments were clear and if our estimation of the 

required time to finalize the experiments evaluation were realistic thus all the assignments 

could be completed in an afternoon session by the subjects. The pilot study pointed out that 

the assignments and the questions in the questionnaire form were clear and relevant, and that 

they could be executed as offered by the subjects of the pilot study within 4 hours. The pilot 

study also pointed out that the description of code-smells and the examples were clear and 

sufficient to understand the different types of code-smells considered in our experiments. 

However, the pilot study showed that subjects have problems to efficiently evaluate the 

usefulness of the identified code-smells especially for the open source systems since they are 

not the original developers and could not understand all the design decisions. For this reason, 
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we extended our experiments to include the industrial project from Ford and some of their 

original developers.    

Table 8 Survey organization to study the relevance of some detected code-smells. 

Subject groups Systems Selected Code-smells 

Group A 

JFreeChart  v1.0.9 

Blob: 4  

Data Class: 8 

Spaghetti Code: 4  

Feature Envy: 6  

Lazy Class: 4  

Long Parameter List: 6  

Functional Decomposition: 3  

 

GanttProject v1.10.2 

Blob: 4 

Data Class: 3 

Spaghetti Code: 4  

Feature Envy: 2  

Lazy Class: 2  

Long Parameter List: 3  

Functional Decomposition: 4  

ApacheAnt  v1.5.2 

Blob: 5 

Data Class: 2 

Spaghetti Code: 3  

Feature Envy: 3  

Lazy Class: 2  

Long Parameter List: 2  

Functional Decomposition: 2 

Group B ApacheAnt  v1.7.0 

Blob: 5 

Data Class: 2 

Spaghetti Code: 3  

Feature Envy: 3  

Lazy Class: 2  

Long Parameter List: 2  

Functional Decomposition: 3 
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Nutch v1.1 

Blob: 4 

Data Class: 3 

Spaghetti Code: 3  

Feature Envy: 2  

Lazy Class: 4  

Long Parameter List: 3  

Functional Decomposition: 6 

Log4J v1.2.1 

 

 

 

Blob: 2 

Data Class: 3 

Spaghetti Code: 2  

Feature Envy: 4  

Lazy Class: 1  

Long Parameter List: 3  

Functional Decomposition: 3 

Group C 

Lucene v1.4.3 

Blob: 2 

Data Class: 2 

Spaghetti Code: 3 

Feature Envy: 2  

Lazy Class: 2  

Long Parameter List: 3  

Functional Decomposition: 2 

Xerces-J V2.7.0 

Blob: 3 

Data Class: 2 

Spaghetti Code: 4  

Feature Envy: 4  

Lazy Class: 2  

Long Parameter List: 4  

Functional Decomposition: 4 

Rhino v1.7R1 

Blob: 2 

Data Class: 2 

Spaghetti Code: 2  

Feature Envy: 4  

Lazy Class: 4  

Long Parameter List: 2  
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Functional Decomposition: 4 

Group D 
JDI-Ford v5.8 

 

Blob: 6 

Data Class: 8 

Spaghetti Code: 8  

Feature Envy: 8  

Lazy Class: 12  

Long Parameter List: 12  

Functional Decomposition: 12 

 

3.4.3 Results of the Industrial Case Study and Relevance of Detected Code-Smells 

For the Ford system, the original developers conducted the study (group D). Hence, they 

are almost sure whether a code fragment is affected by code-smell or not, whether it should 

be refactored, or whether, although a tool says this is a smell, there are good reasons for the 

design and implementation choices made. Unfortunately, this is not possible for the other 

subjects and open source systems, who have evaluated code not familiar to them. For this 

reason, we describe the results of the evaluation in two separate sections. 

3.4.3.1 Industrial Case Study : Detection Results and Relevance of Detected Code Smells 

In this section, we evaluate the performance of our BLOP detection technique on the 

detection of seven different types of code-smells in an industrial setting and compare it with 

some existing code smells detection techniques. As described in Table IX, the expected code-

smells were detected with more than 90% of precision on the JDI-Ford system that 
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corresponds to the highest precision comparing to random search, GP and Co-Evol. The 

lowest precision was found by the random search of only 18%. The precision of Co-Evol is 

higher than Co-Evol and random search but lower than BLOP on the JDI industrial system. 

This confirms the importance and efficiency of the lower level considered in our BLOP 

adaptation to improve the quality of detection solutions generated by the upper level. Similar 

facts were found when analyzing the recall scores of BLOP on the JDI-Ford where 86% of 

expected code-smells was detected. The recall score of BLOP confirms its outperformance 

compared to random search, GP and Co-Evol.  

Table X confirms that the comparison results of the different detection techniques on JDI-

Ford are statistically significant with a 99% confidence level (α = 1%) 

Table 9 Manual validation of the detected code-smells on JDI-Ford. 

System PR-

BLOP 

PR-GP PR-Co-

Evol 

PR-RS Rc-

BLOP 

Rc-GP Rc-Co-

Evol 

Rc-RS 

JDI-Ford 

v5.8 

92% 

(76/82) 

67% 

(63/94) 

78% 

(69/88) 

18% 

(27/148) 

86% 

(76/88) 

72% 

(63/88) 

78% 

(69/88) 

31% 

(27/88) 

 

 

Table 10 Adjusted p-values of comparisons related to table IX. 

 BLOP GP Co-Evol 

JDI-Ford v5.8 

0.00327 (GP) 

0.00167 (Co-Evol) 

0.00112 (RS) 

0.00398 (Co-Evol)     

0.00213 (RS) 

0.00187 (RS) 
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To better investigate the relevance of the detected code-smells for software engineers, we 

asked group D to fix some of the detected code-smells (described in Table XIII) in JDI-Ford 

by manually suggesting and applying some refactorings [Holm et al. 1979] on JDI-Ford. 

Then, we used the QMOOD (Quality Model for Object-Oriented Design) model [99] to 

estimate the effect of the fixed code-smells on quality attributes. QMOOD has the advantage 

that define six high level design quality attributes (reusability, flexibility, understandability, 

functionality, extendibility, and effectiveness) that can be calculated using 11 lower level 

design metrics. In our study we consider the following quality attributes: 

 Reusability: The degree to which a software module or other work product can be 

used in more than one computer program or software system. 

 Flexibility: The ease with which a system or component can be modified for use in 

applications or environments other than those for which it was specifically 

designed. 

 Understandability: The properties of designs that enable it to be easily learned and 

comprehended. This directly relates to the complexity of design structure. 

 Effectiveness: The degree to which the design can achieve the desired functionality 

and behavior using OO design concepts and techniques. 
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Table 11 QMOOD quality factors [Bansiya et al. 2002] 

Quality attribute Quality Index Calculation 

Reusability = -0.25 * DCC + 0.25 * CAM + 0.5 * CIS + 0.5 * DSC 

Flexibility = 0.25 * DAM - 0.25 * DCC + 0.5 * MOA +0.5 * NOP 

Understandability 
= -0.33 * ANA + 0.33 * DAM - 0.33 * DCC + 0.33 * = CAM -0.33 * NOP + 0.33 * 
NOM - 0.33 * DSC 

Effectiveness = 0.2 *ANA + 0.2 *DAM + 0.2*MOA + 0.2 * MFA + 0.2 *NOP 

 

Table XI and Table XII summarize the QMOOD formulation of these quality attributes 

[99].  

Table 12 QMOOD metrics for design properties [Bansiya et al. 2002] 

Design Property  Metric Description 

Design size  DSC Design size in classes 

Complexity  NOM Number of methods 

Coupling  DCC Direct class coupling 

Polymorphism  NOP Number of polymorphic methods 

Hierarchies  NOH Number of hierarchies 

Cohesion  CAM Cohesion among methods in class 

Abstraction  ANA Average number of ancestors 

Encapsulation  DAM Data access metric 

Composition  MOA Measure of aggregation 

Inheritance  MFA Measure of functional abstraction 

Messaging  CIS Class interface size 

 

The improvement in quality can be assessed by comparing the quality before and after 

refactoring applied to fix a number of code-smells. Hence, the total gain in quality G for each 

of the considered QMOOD quality attributes qi before and after refactoring can be easily 

estimated as: 
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Where q’i and qi represent the value of the quality attribute i after and before refactoring 

respectively.  

We see in Figure 14 that all the quality attributes of both systems are improved after 

fixing several code-smells from the JDI-Ford system. Understandability is the quality factor 

that has the highest gain value; whereas the Effectiveness quality factor has the lowest one. 

This can be explained by the types of fixed code-smells that are known to increase the 

coupling within classes that heavily affect the quality index calculation of the effectiveness 

factor. Another reason relates to the types of manually suggested refactoring such as move 

method, move field, and extract class that are known to have a high impact on coupling, 

cohesion and the design size in classes that serve to calculate the understandability quality 

factor. To conclude, fixing the detected code-smells by our tool can lead to better code 

quality and improve the developers‟ understandability, the reusability, the flexibility and the 

effectiveness of the refactored system. 
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Figure 20 The impact of fixing a number of code-smells (refactorings) on QMOOD quality attributes for JDI-Ford 

As described in Table XIII, we asked group D to evaluate the relevance of a random 

selected set of selected code-smells on the JDI-Ford system. Figure 15 illustrates that only 

less than 18% of detected code-smells are considered not at all relevant by the software 

engineers. Around 65% of the code-smells are considered as moderately or extremely 

relevant by the software developers. This confirms the importance of the detected code-

smells for developers that they need to fix them for a better quality of their systems.        

It is also important to evaluate the usefulness of the detected code-smells for software 

maintainers in their daily maintenance activities. To this end, we asked the Ford software 

developers to justify the usefulness of the code-smells ranked as moderately or extremely 

relevant. Figure 16 describes the obtained results. The main usefulness is related to 

refactoring guidance. In fact, most of the software engineers we interviewed found that the 

detected code-smells give relevant advices about where refactorings should be applied and 
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what are the common used refactorings to fix these defects. In addition, they found that the 

code-smells detection process is much more helpful than the traditional analysis of software 

metrics to find refactoring opportunities. They consider the use of traditional software 

metrics for Quality Assurance as a time consuming process, and it is easier to interpret the 

results of detected code-smells and apply the appropriate refactorings to improve the overall 

quality of the system.  

 

Figure 21 The relevance of detected code-smells on the JDI-Ford system evaluated by the original developers. 

Code smells relevance: JDI-Ford 

Not at all relevant Slightly relevant Moderately relevant Extremely relevant



  

83 Code-Smells Detection as a Bi-Level 

Problem 

 

83 

 

 

Figure 22 The usefulness of detected code-smells on the JDI-Ford system evaluated by the original developers. 

We summarize briefly in the following the feed-back of the Ford developers during the 

think aloud sessions. Most of the participants mention that the detection rules generated by 

BLOP represents a faster solution than manual refactoring opportunities detection. The 

manual techniques represent a time consuming process to find the locations where the 

refactoring should be applied or to calibrate the metrics threshold or the combination of 

metrics to identify a maintainability issue manually. The participants found the detection 

rules useful to maintain a good quality of the design and to make sure that some quality 

issues are fixed after refactoring.  In addition, the developers liked the flexibility to modify 

the rules (metrics or thresholds) if required. Some possible improvements for our detection 

techniques were also suggested by the participants. Some participants believe that it will be 

very helpful to extend the tool by adding a new feature to rank the detected code-smells 

Usefulness  of detected code smells on JDI-Ford 

Refactoring guidance Quality Assurance Code inspection

 Effort prediction Bug prediction
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based on several criteria such as risk, cost and benefits. They believe that current refactoring 

tools do not provide any support to estimate the risk, cost and benefits of fixing some 

maintainability issues. In fact, most of Ford‟s developers mentioned that they do not fix some 

code-smells if they feel that it will require a high cost or the benefit is not clear or if the code 

is stable.  

3.4.3.2 Relevance of the Detected Code Smells on the Open Source Systems 

We evaluated the relevance of the detected code-smells on the different open source 

systems by participants of groups A, B and C as described in Table XIII. Figure 17 illustrates 

that only less than 15% of detected code-smells are considered not at all relevant by the 

software engineers. Around 70% of the code-smells are considered as moderately or 

extremely relevant by the different groups, and this confirms the importance of the detected 

code-smells for developers, and also the results are similar to the industrial case study.         
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Figure 23 The relevance of detected code-smells on the different open source systems evaluated by developers from 

groups A, B and C. 

To better evaluate the relevance of the detected code-smells, we investigated the types of 

code-smells that developers perhaps consider them more or less important than others (e.g. 

Blob, lazy class, etc.). Figure 18 summarizes our findings. It is clear that the detected blobs 

are considered very relevant for developers. One of the reasons can be the importance of 

distributing the behavior/functionalities of a program between different classes. In addition, it 

is very difficult for developers to understand existing functionalities to add new ones if most 

of them are implemented in one or few classes. Another interesting observation is that lazy 

classes are not considered very relevant by developers. In fact, lazy classes do not implement 

in general any important feature thus software engineers did not consider it as an important 

concern. 
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Figure 24 The relevance of the types of detected code-smells on the different open source systems evaluated by 

developers from the groups A, B and C. 

We asked the different groups of software engineers (A-C) to justify the usefulness of the 

code-smells ranked as moderately or extremely relevant. Figure 19 describes the different 

reasons of the importance of detected code-smells. Similar to the industrial case study‟s 

results, the main usefulness is related to refactoring guidance and quality assurance. 
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Figure 25 The usefulness of detected code-smells for software maintenance activities on the different open source 

systems evaluated by developers from the A, B and C groups 

 

3.5 Threats to validity 

We explore, in this section, the factors that can bias our empirical study. These factors can 

be classified in three categories: construct internal and external validity. Construct validity 

concerns the relation between the theory and the observation. Internal validity concerns 

possible bias with the results obtained by our proposal. Finally, external validity is related to 

the generalization of observed results outside the sample instances used in the experiment. 

In our experiments, construct validity threats are related to the absence of similar work 

that uses bi-level techniques for code-smells detection. For that reason, we compare our 

proposal with two other search-based techniques[7, 98] and DECOR[60]. However, we are 

aware that there are other tools able to detect several types of code smell that also can be 

considered in our experiments[24].  
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Another threat to construct validity arises because, although we considered 7 well-known 

code-smell types, we did not evaluate the performance of our proposal with other code-smell 

types. We must further evaluate the performance and ability of our bi-level technique to 

detect other smells.  

A construct threat can also be related to the corpus of manually detected code-smells since 

developers do not all agree if a candidate is a code-smell or not. We will ask some new 

experts to extend the existing corpus and provide additional feedback regarding the detected 

code-smells. In addition, the recall score is challenging to calculate by the software engineers 

of our experiments and requires additional participants to check its accuracy.   

A limitation related to our experiments is the difficulty to set the thresholds for DECOR. 

In fact, we used the default thresholds used by the DECOR's authors that can have an impact 

on the quality of the results generated by DECOR. 

The evaluation of detected code-smells for some participants is mainly based on the 

definitions of the code-smells and the examples that we provided during the pilot study. 

However, the definition of code-smells is subjective and depends on the programming 

behavior of the participants thus this can affect the accuracy of the detection results.  

A construct threat is related to the fact that our detection results depend on the examples 

of code-smells and well-designed code. In addition, the generation of artificial code 

fragments can lead to several non-useful examples (generated by the lower-level). Additional 

constraints should be defined to better guide the search at a lower level to refine the 

generation of artificial code-smell examples.  
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The same observation is valid for the used change operators at both the upper and lower 

levels that can generate invalid rules and code-smell examples (e.g. redundancy) may be 

avoided by the definition of additional constraints. 

We take into consideration the internal threats to validity in the use of stochastic 

algorithms since our experimental study is performed based on 31 independent simulation 

runs for each problem instance, and the obtained results are statistically analyzed by using 

the Wilcoxon rank sum test[100] with a 99% confidence level (α = 1%). 

The parameter tuning of the different optimization algorithms used in our experiments 

creates another internal threat that we need to evaluate in our future work by additional 

experiments to evaluate the impact of upper and lower levels‟ parameters on the quality of 

the results.  

Another internal threat is related to the fact that our tool is not able to rank the detected 

code-smells. The software engineers considered in our experiments found the type of 

detected code-smells is helpful to determine its importance. In addition, our contribution in 

this chapter is mainly related to the detection of code-smells. We will propose several 

measures that can be used to rank the detected code-smells by our rules. Thus, we consider in 

our work the detection and ranking of code-smells as two separate steps. 

The participants considered in our experiments are not the original developers of the open 

source systems. Thus, some of their evaluations of the detected code-smells could be not very 

accurate. In fact, there are, sometimes, good reasons for the design and implementation 

choices made, and this can be mainly determined by the original developers. However, this is 
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not the case for the Ford project since some of the original developers of the system 

participated in our experiments. We are planning to integrate few original developers from 

these open source projects to evaluate the detected code smells as part of our future work.  

Our experiments also lack the evaluation of the impact of removing the detected code-

smells on the productivity of the developers and long term maintenance objectives. Another 

internal threat is the possibility that some developers did not report all the maintainability 

issues in the evaluated systems thus some detected code-smells are not considered very 

useful. The use of triangulation as suggested by Yamashita et al.[22] based on the usage of 

three independent collection methods such as interviews, direct observation and think-aloud 

sessions may reduce this threat.  

The correction of code-smells can be performed by different refactoring strategies thus the 

quality improvements of the code after fixing some code-smells depends on the applied 

refactoring. Consequently, further investigation is needed to evaluate the stability of the 

refactoring results.  

For the selection threat, the subject diversity in terms of profile and experience could 

affect our study. We mitigated the selection threat by giving written guidelines and examples 

of code-smells already evaluated with arguments and justification. Additionally, each group 

of subjects evaluated different code-smells from different systems using different 

techniques/algorithms. Randomization also helps to prevent the learning and fatigue threats. 

Only few code-smells per system were randomly picked for the evaluation.  
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Diffusion threat is related to the fact that most of the subjects are from the same 

university, and the majority know each other. However, they were instructed not to share 

information about the experience before a certain date. 

External validity refers to the generalization of our findings. In this study, we performed 

our experiments on nine different widely-used open-source systems and one industrial 

project belonging to different domains and with different sizes. However, we cannot assert 

that our results can be generalized to other applications, other programming languages, and 

to other practitioners.  

We selected subjects who had similar programming skill levels to reduce the impact of 

skills on the results, but it is challenging to evaluate the background and skills of the 

participants objectively. However, a larger number of subjects is required to improve the 

evaluation of our detection technique. In addition, the manual validation of the detected 

code-smells is limited to some samples of detected code-smells due to the limited number of 

participants. 

An evaluation of the usefulness of detected code-smells are based only on four 

maintainability objectives from QMOOD thus the consideration of additional objectives such 

as performance and the number of bugs after fixing the smells can lead to a better evaluation 

of the usefulness of detected code-smells. In addition, The quality of detection rules depends 

on the quality metrics used as input by our bi-level technique that are limited to fourteen 

metrics in our experiments. Additional metrics may lead to a better quality of the results with 

other programming languages.     
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An evaluation of the relevance of detected code-smells in our experiments heavily 

depends on the opinion of the developers, and it is difficult to generalize due to the limited 

number of participants in our experiments. 

3.6 Conclusion  

In this chapter, we have addressed the problem of the absence of consensus in code-smells 

detection. In fact, choosing quality metrics to detect symptoms of code-smells is not 

straightforward in software engineering and is usually a challenging task. In order to tackle 

this problem, we have proposed a bi-level evolutionary optimization approach. The upper-

level optimization produces a set of detection rules, which are combinations of quality 

metrics, with the goal to maximize the coverage of not only a code-smell example base but 

also a lower-level population of artificial code-smells. The lower-level optimization tries to 

generate artificial code-smells that cannot be detected by the upper-level detection rules, 

thereby emphasizing the generation of broad-based and fitter rules. The statistical analysis of 

the obtained results over nine studied software systems have shown the competitiveness and 

the outperformance of our proposal in terms of precision and recall over a single-level 

genetic programming, co-evolutionary, and non-search-based methods.  

Following this work, we have identified several avenues for future research. Firstly, the 

main problem when using bi-level optimization in software engineering is the computational 

cost required for the lower-level search. Hence, it would be interesting to use regression 

methods for approximating the lower level optimum for a given upper-level solution. In this 
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way, we could minimize the required number of function evaluations significantly. Secondly, 

the idea of bi-level optimization seems interesting for several other SE problems. It would be 

challenging to model and then solve other interesting SE problems in a bi-level manner. We 

are currently working on extending our work by proposing a bi-level approach for the 

correction of code-smells. Finally, our contribution in this chapter is mainly related to the 

detection of code-smells. We will propose several measures that can be used to rank the 

detected code-smells by our rules.  
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Chapter 4:  Model Transformation Testing: A Bi-Level 

Search-Based Software Engineering Approach 

4.1 Introduction 

Model-Driven Engineering (MDE) [102] considers models as first-class artifacts during 

the software lifecycle. Available techniques, approaches, and tools for MDE are growing and 

they support a huge variety of activities, such as model creation, model transformation, and 

code generation. Especially, model transformations are seen as the heart and soul of 

MDE[103]. In general, model transformations generate target models from source models 

which also allow transforming between different modeling languages. Modeling languages 

are defined with so-called metamodels and on this level the model transformations are 

described. Thus, model transformations are generalized descriptions able to transform any 

valid source models conforming to source metamodels into target models conforming to 

target metamodels. Given the predominant role of model transformations in MDE, efficient 

techniques and tools for validating model transformations are needed. One of them is model 

transformation testing [32, 37, 40]. 

Two important issues must be addressed in model transformation testing: the efficient 

generation/selection of test cases and the definition of an oracle function to assess the validity 

of transformed models, and consequently, of the defined rules. This work is concerned with 

the efficient generation of test cases. 
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In this thesis, we start from the observation that the generation of a good set of test cases 

heavily depends not only on the coverage of the metamodels but also on their ability to detect 

potential errors in the rules. The exploration of the large number of possible transformation 

possibilities is challenging. Mutation testing is one efficient technique to evaluate the ability 

of the generated test cases to detect possible errors that sometimes cannot be detected by test 

cases that ensure a high metamodel coverage due to the high number of possible rules 

execution. The mutation analysis consists of creating a set of faulty versions, called mutants, 

of a program with the ultimate goal of designing a test set that distinguishes the program 

from all its mutants. Both mechanisms for the generation of test cases and the generation of 

mutants are dependent. Thus, the intuition behind this work is to introduce errors (mutants) in 

the transformation rules (program) that cannot be detected by some possible test cases 

solutions, and subsequently, to adapt these test cases to be able to detect the generated 

mutants. These two steps are repeated until reaching a termination criterion (e.g., number of 

iterations). To this end, we propose, for the first time, to consider model transformation 

testing as a bi-level optimization problem[44, 105].  

 We implemented our proposed bi-level approach and evaluated it on two different ATL 

transformations [107]. The primary goals of this contribution can be summarized as follows:  

(3) We introduce a novel formulation of model transformation testing as a bi-level 

optimization problem.  

(4) We report the results of an empirical study with an implementation of our bi-level 

approach. The obtained results provide evidence to support the claim that our proposal 
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is more efficient, on average, than an existing technique based on metamodels 

coverage[37].  

4.2 Approach  

This section shows how the above-mentioned issues can be addressed using bi-level 

optimization and describes the principles that underlie the proposed method for the efficient 

generation of test cases for ATL transformations.  

As described in Figure 5, the upper level process has a main objective which is the 

generation of test cases that can cover as much as possible the source and target metamodels 

and detect the errors/mutants introduced by the lower level in the ATL rules. The lower level 

has one objective which is maximizing the number of generated mutants/errors that cannot be 

detected by the test cases generated by the upper level. There is a hierarchy in the problem, 

which arises from the manner in which the two entities operate. In this framework, we 

observe that the test cases generation process acts as a leader (the important output of the 

problem), and the mutants generation process acts as a follower. 

The overall problem appears as a bi-level optimization task, where for each set of 

generated test cases (upper level solution), the upper level observes how the lower-level acts 

by generating errors that cannot be detected by the upper level (leader) test cases and then 

chooses the best set of test cases which suit it the most, taking the actions of the mutants 

generation process (lower level or follower) into account. It should be noted that in spite of 

different objectives appearing in the problem, it is not possible to handle such a problem as a 
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simple multi-objective optimization task. The reason for this is that the leader cannot 

evaluate any of its own strategies without knowing the strategy of the follower, which it 

obtains only by solving a nested optimization problem. The two populations in co-evolution 

are considered with same importance; however the upper level is more important than the 

lower level in any bi-level formulation. We will compare later in the experimentation section, 

with more details, the difference between our bi-level formulation and co-evolution. Next, 

we describe our adaptation of bi-level optimization to the generation of test cases for model 

transformations in more details. 

 

 

Figure 26 Approach overview 

 

4.2.1 Problem Formulation 

The upper level problem involves searching for the best set of test cases among the possible 

candidate ones, which constitute a huge search space. Thus, a solution is a set of models (test 

cases) where the goal is cover the source and target metamodels and the errors generated by 
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the lower level. We used a genetic algorithm (GA)[11] for each level. We describe, in the 

following, the adaptation of GA for each level. 

Our proposed bi-level formulation of the model transformation testing problem is described 

in Figure 5. For the upper-level, we represent a solution (set of test cases) as a vector where 

each dimension is a source model element. A model element can be a class, attribute, 

association, or a generalization. The definition depends on the used metamodels. The values 

of these elements are considered as part of the fitness function that will be described later. 

For the lower-level optimization problem, we implemented a parser to generate an abstract 

syntax tree from an ATL program (a set of model transformation rules). We also 

implemented a set of generic change operations that can be applied to any ATL program 

(Tree). These operations are the following: updateMetamodelElement(rule, 

metaModelElement) consists of modifying a rule by replacing a metamodel element by 

another one, deleteMetaModelElement(rule,metaModelElement) deletes a metamodel 

element with the associated logic operators (AND/OR), if any, deleteRule(rule), and 

addNewRule(rule). A solution at the lower-level is represented as a vector where each 

dimension is a change operator to modify the original ATL program. 

At the upper-level, an objective function is formulated to maximize the coverage of source 

and target metamodels and also maximize the coverage of generated errors by the best 

solution found in lower level. Thus, the objective function at the upper level is defined as 

follows: 
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The method used to derive metamodel coverage was first introduced in[37]. This method 

begins by a priori performing partition analysis in which the types of coverage criteria taken 

into consideration for a given problem are chosen. In particular, the approach reasons about 

the coverage of association instantiation concerning their concrete multiplicities and on the 

coverage of attribute instantiation by considering their representative values. Each coverage 

criterion must be partitioned into logical partitions that, when grouped together, represent all 

the value types each criterion could take on. These partitions are then assigned representative 

values to represent each coverage criterion partition. After representative values are defined, 

a set of coverage items for the target metamodel is created. In our adaptation of the coverage 

item set creation method introduced in[37], we calculate all possible tuple combinations of 

representative values from all partitions of all coverage criteria types that are included in the 

target metamodel. The metamodel coverage value for given test case models and target 

metamodel is determined by calculating the percentage of metamodel coverage items the test 

case models satisfy. The second part of the upper level fitness function counts the number of 

error detected by the generated test cases. An error is detected when dissimilarity is found 

between the target model generated by the original ATL program and the target model 

generated by the mutants ATL program. If both target models are the same then the test case 

cannot detect the error in the rules. Both components of the fitness function are normalized in 

the range [0..1]. 
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At the lower level, the fitness function maximizes the number of introduced errors in the 

ATL program that cannot be detected by the upper level as defined by the following equation 

orsneratedErrnumberOfGe

rulestestcasessectedErrornumberOfUn ),(det
f Maximize levellower   

It is clear that the evaluation of solutions (test cases) at the upper level depends on the best 

solutions generated by the lower level (errors). Thus, the fitness function of solutions at the 

upper level is calculated after the execution of the optimization algorithm in the lower level 

for each iteration. At the lower level, for each solution (test cases) of the upper level an 

optimization algorithm is executed to generate the best set of errors that cannot be detected 

by the test cases at the upper level.  

The fitness function of the upper level may get better or worst depending on the new errors 

introduced to the ATL rules. These errors can be covered or not by the test cases (TC) on the 

upper level. In fact, the upper-level will continue to execute the genetic algorithm after the 

new errors introduced by the lower-level. Of course, the upper-level may update some of the 

good TC since the crossover operator take into-consideration both good and bad quality of 

parents. In addition, the GA generates part of the population randomly for every iteration to 

improve the diversity of the solutions. 

To generate new solutions for the next iteration (i+1) after evaluating them in iteration i, GA 

uses two operators: crossover and mutation.  
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For the upper level, the crossover operator allows creating two offspring o1 and o2 from the 

two selected parents p1 and p2, as follows: 

(4) A random position k is selected in the vector solution. 

(5) The first k elements of p1 become the first k elements of o1. Similarly, the first k 

elements of p2 become the first k elements of o2. 

(6) The remaining elements of, respectively, p1 and p2 are added as second parts of, 

respectively, o2 and o1 (hence having a crossing-over operation between parents). 

For the lower-level, since the solutions can have variable size we proposed another type of 

crossover. In fact, several crossover operators were proposed to deal with variable-length 

chromosomes such as the SAGA (Speciation Adaptation Genetic Algorithm) crossover, the 

VIV crossover (VIrtual virus), and the SLVC (Synapsing Variable-Length Crossover)[108, 

109]. Most of these operators are based on computing the similarity between the two parents, 

which requires using or defining a meaningful similarity metric. In order to avoid such issue, 

we use the cut-and-splice crossover [39] which does not require the similarity information. 

The basic principle of this operator is illustrated by the Figure 6 and is as follows:    

(1) A random position k1 is selected in the first parent vector solution; 

(2) A random position k2 is selected in the second parent vector solution; 

(3) The first k1 elements of the first parent p1 become the first elements of the first child 

o1. Similarly, the first k2 elements of the second parent p2 become the first elements 

of the second child o2. 
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(4) The remaining elements of, respectively, p1 and p2 are added as second parts of, 

respectively, o2 and o1 (hence having a crossing-over operation between parents). 

 

Figure 27 Cut-and-splice crossover principle 

The mutation operator consists of randomly changing a dimension in the generated vector. 

Regarding the validity of the models after applying change operators, we checked, of course, 

the validity of the generated models with the metamodels using the well-formed rules and 

metamodel constraints. We apply a repair operator in the case that invalid models are 

generated (violated the constraints) by selecting another dimension of the vector to modify. 

 

Upper level algorithm: TestCasesGeneration 

01. Inputs: Source and target metamodels MM, ATL program to test 

(rules) R, Number of best upper solutions that are considered for lower 

level optimization nbest, Upper population size N1, Lower population 

size N2, Upper number of generations G1, Lower number of 

generations G2 

02. Output: Best set of test cases T 

03. Begin 

04.    P0 ← Initialization (N1, MM); 

05.    For each TC0 in P0 do   /*TC means test cases solution*/  
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06.        ER0 ← GAErrorsGeneration (TC0, R, N2, G2);   /*Call lower level 

routine*/ 

07.        TC0 ← Evaluation (ER0, MM, R, TC0); 

08.    End For 

09.    t ← 1; 

10.    While (t < G1) do  

11.        Qt ← Variation (Pt-1); 

12.        For each TCt in Qt do /*Evaluate test cases solution based on upper fitness 

function*/ 

13.            TCt ← UpperEvaluation (TCt, MM, R); 

14.        End For 

15.        For each of the best nbests TCt in Qt do  /*Only nbest (best) 

solutions are used to*/ 

16.            ERt ← GAErrorsGeneration (TCt, R, N2, G2);   /*Call lower 

level routine*/ 

17.            TCt ← EvaluationUpdate (MM,  , TCt, ERt);  /*Update based 

on lower level*/ 

18.        End For 

19.        Ut ← Pt Qt; 

20.        Pt+1 ← EvironmentalSelection (N1, N2, Ut); 

21.        t ← t+1; 

22.    End While 

23.    T ← FittestSelection (Pt); 

24. End 

Figure 28 Pseudo-code of the bi-level adaptation for model transformation testing. 

Lower level algorithm: MutantsGeneration 


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01. Inputs: Upper level test cases TC, program to test (rules) R, 

Population size N, number of generations G 

02. Output: Best set of mutants MUT 

03. Begin 

04.    P0 ← Initialization (N, R); 

05.    P0 ← Evaluation (P0, R, TC);   /*Evaluation depends of TC*/ 

06.    t ← 1; 

07.    While (t < G) do  

08.        Qt ← Variation (Pt-1); 

09.       Qt ← Evaluation (Qt, R, TC);   /*Evaluation depends of TC*/ 

10.        Ut ← Pt Qt; 

11.        Pt+1 ← EvironmentalSelection (N, N1, N2, Ut); 

12.        t ← t+1; 

13.    End While 

14.    MUT ← FittestSelection (Pt); 

15. End 

Figure 29 Pseudo-code of the bi-level adaptation for model transformation testing. 

4.2.2 Evaluation 

In order to evaluate our approach for model transformations testing using the proposed bi-

level optimization (BLOP) approach, we conducted a set of experiments based on two model 

transformation programs written in ATL[110] . The first ATL program is a set of rules that 

transforms a class diagram (CLD) to Relational databases (RDBMS) and the second one 

transforms Sequence Diagrams (SD) to Statechart Diagram (STD). Each experiment is 

repeated 31 times, and the obtained results are subsequently statistically analyzed with the 


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aim to compare our bi-level proposal with other transformation testing approaches. In this 

section, we first present our research questions and then describe and discuss the obtained 

results. Finally, we present various threats to the validity of our experiments. 

4.3 Validation 

4.3.1 Research Questions  

We defined four research questions that address the applicability, performance comparison 

with other model transformation testing approaches, and the scalability of our bi-level 

proposal. The four research questions are as follows: 

 RQ1: How does BLOP perform to generate to generate efficient test cases for model 

transformations?   

 RQ2: How does BLOP perform compared to co-evolution (Co-Evol) to generate 

efficient test cases?  

 RQ3: How does BLOP perform compared to an existing test cases generation 

technique not based on the use of metaheuristic search?  

 RQ5: How does our bi-level formulation scale?  

To answer RQ1, we used two different ATL programs for the transformation of class 

diagram (CLD) to Relational databases (RDBMS) and the transformation of Sequence 

Diagrams (SD) to Statechart Diagram (STD). We defined a total of 10 scenarios as described 

in Table 1. In each scenario, we introduced manually several errors in the ATL program such 
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modifying, adding and deleting the transformation rules. Then, we evaluate the efficiency of 

the generated test cases to detect these errors. The four developers (graduate students in 

Software Engineering at the University of Michigan) considered in our experiments are not 

aware about the types of errors introduced to the rules by our bi-level approach thus they 

modified the ATL programs manually to introduce different errors: redundant rules, missing 

rules (deleting rules), adding faulty rules and modifying existing rules. The developers do not 

have any idea about the generated errors by the bi-level approach. The developers modified 

directly the rules without the need to use specific change operators but the bi-level approach 

used the operators to inject the errors. The change operators modify the original ATL 

program. Thus, the four developers were responsible for manually changing the ATL code to 

introduce the errors 

The introduced errors by the mutation operators or manually by the developers are 

formalized as a sequence of operations applied to the ATL program using a Higher-Order 

Transformation (HOT)[111], i.e., which is a transformation reading a transformation as input 

and producing a transformation as output. In particular, we reused the fault model and 

corresponding mutation operators presented in reference[112] and concretized them for ATL. 

To this end, we define the Precision measure that corresponds to the number of detected 

errors over the total number of manually introduced ones. An error is detected when 

dissimilarity is found between the target model generated by the original ATL program and 

the target model generated by the modified ATL program. If both target models are the same 
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then the test case cannot detect the error in the rules. The errors reported in Table 1 are those 

introduced manually by the developers (expected errors to be detected by the test cases).  

The reason to use human generated errors is related to the fact that developers modify 

directly the ATL program without the use of change operators and without knowing any 

details about the generated errors by the bi-level approach. Thus, we can have an accurate 

evaluation of the performance of our bi-level approach to generate good test cases. If we 

generated the errors automatically then maybe they will be easily detected by our test cases. 

In addition, the developers have an idea about common errors that can happen when writing 

ATL rules. 

To answer RQ2, we compared our BLOP approach to another search-based algorithm called 

co-evolutionary (Co-Evol) algorithms (due to the absence of other works that use search-

based techniques for model transformation mutation analysis). In Co-Evol algorithms the two 

populations were evolved in parallel without hierarchy. Thus, the second population 

solutions are independent from the solutions in the first population which is one of the main 

differences with our bi-level extension. 

To answer RQ3, we compared our results with an existing technique for test cases generation 

not based on heuristic search[37]. In fact, Fleurey et al. proposed a framework for the 

generation of model transformation test cases based on meta-models coverage. Fleurey et al. 

algorithm can be just applied to test class diagram to relational schema. They did not adapt 

for the case of sequence diagram to Statechart Diagram. To answer the last question RQ4, we 
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evaluated the execution time required by our BLOP proposal based on different scenarios 

(parameters setting).  

Table 13 Scenarios 

Scenarios  Modified ATL 

program  

Number of 

rules of the 

program 

Number of 

errors  

Scenario 1 CLD-to- 

RDBMS 

14 13 

Scenario 2 CLD-to- 

RDBMS 

14 11 

Scenario 3 CLD-to- 

RDBMS 

14 8 

Scenario 4 CLD-to- 

RDBMS 

14 13 

Scenario 5 CLD-to- 

RDBMS 

14 9 

Scenario 6 SD-to-STD 17 6 

Scenario 7 SD-to-STD 17 11 

Scenario 8 SD-to-STD 17 14 

Scenario 9 SD-to-STD 17 8 

Scenario 10 SD-to-STD 17 9 

4.3.2 Experimental Settings 

For each search algorithm and for each system, we performed a set of experiments using 

several population sizes: 10, 20, 30, 40 and 50. The stopping criterion was set to 750,000 

fitness evaluations for all algorithms in order to ensure fairness of comparison. We used a 
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high number of evaluations as stopping criterion since our bi-level approach involves two 

levels of optimization. Each algorithm was executed 31 times with each configuration and 

then comparison between the configurations was performed based on the precision measure 

using the Wilcoxon test. Since the replication of the bi-level experiment for 31 times is 

computationally expensive, the parameter setting experiments are performed on a cluster of 

30 machines. For our bi-level approach, both lower-level and upper-level GAs are run each 

with a population of 30 individuals and 50 generations. The models are generated randomly 

in the first generation and this explains the high number of iterations used as stopping 

criterion.   

The other parameters‟ values were fixed by trial and error and are as follows: (1) crossover 

probability = 0.6; mutation probability = 0.4 where the probability of gene modification is 

0.4.  

It should be noted that the lower-level routine is not called for all upper-level population 

members. To control, the high computational cost of our bi-level approach, only nbest% of 

the best upper-level population members are allowed to call the lower-level optimization 

algorithm. Based on a parametric study, a value of 12% for nbest is found to be adequate 

empirically in our experiments. The nbest parametric study will be discussed later. For our 

experiment, we generated up to 150 test cases and up to 30 errors per solution. 

Since metaheuristic algorithms are stochastic optimizers, they can provide different results 

for the same problem instance from one run to another. For this reason, our experimental 
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study is performed based on 31 independent simulation runs for each problem instance and 

the obtained results are statistically analyzed by using the Wilcoxon signed-rank test[100] 

with a 95% confidence level (α = 5%). The Wilcoxon signed-rank test is a non-parametric 

statistical hypothesis test used when comparing two related samples to verify whether their 

population mean-ranks differ or not. The p-value of the Wilcoxon test corresponds to the 

probability of rejecting the null hypothesis H0 while it is true (type I error). A p-value that is 

less than or equal to α (≤ 0.05) means that we accept H1 and we reject H0. However, a p-

value that is strictly greater than α (> 0.05) means the opposite. In this way, we could decide 

whether the outperformance of BLOP over one of each of the others detection algorithms (or 

the opposite) is statistically significant or just a random result.  

The Wilcoxon signed-rank test allows verifying whether the results are statistically different 

or not. However, it does not give any idea about the difference magnitude. The effect size 

could be computed by using the Cohen‟s d statistic [40]. The effect size is considered: (1) 

small if 0.2 ≤ d < 0.5; (2) medium if 0.5 ≤ d < 0:8, or (3) large if d > 0.8. 

4.3.3 Results and discussions 

Results for RQ1. In this section, we evaluate the performance of our BLOP adaptation on 

the generation of efficient test cases for ATL programs. Figures 8 and 9 summarize our 

findings. The expected errors were detected with an average of more than 90% of precision 

on the 10 different scenarios. For over half the total number of scenarios, 100% precision 

was obtained, indicating the detection of all expected errors. We noticed that our technique 
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does not have a bias towards the types of errors that are introduced. As described in Figures 8 

and 9, in all systems, we had detected most of the introduced errors. To conclude, our BLOP 

approach is able to generate efficient test cases able to detect errors in ATL programs (RQ1). 

 

 

Figure 30 Precision median values of BLOP, Co-Evol and Fleurey et al. [28] over 31 independent simulation runs. 

 

Results for RQ2. In this section, we compare our BLOP adaptation to another search- based 

techniques based on co-evolution algorithms (Co-Evol). Figures 8 and 9 show the overview 

of the results of the significance tests comparison between these algorithms. It is clear that 

BLOP outperforms Co-Evol in 100% of the scenarios in terms of precision. For Co-Evol, the 

two populations are executed in parallel and the problem is that there is no dependency 

between both populations (unlike BLOP that creates a hierarchy between two levels) thus 

one population can converge before the second one. We found that the main reason 

explaining the outperformance of BLOP against Co-Evol is the diversity of the generated 

errors. In fact, the lower level of our BLOP formulation generates mutants/errors for every 
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good solution (test cases) in the upper level then these errors are used to evaluate the 

solutions in the upper level. Thus, the generated errors depend on the associated solution (test 

cases) in the upper level.  

There is no parallelism in our bi-level formulation in contradiction to co-evolutionary 

algorithms. The upper level is executed for number iterations then the lower level for another 

number of iterations. In co-evolutionary algorithms, populations are executed in parallel 

without hierarchy (but can be dependent such as by exchanging information[113]). The 

problem with the Co-Evolutionary approach is that one population may converge before the 

other. Contrariwise, in our bi-level approach there is a hierarchy that allows avoiding the 

problem of premature convergence of one population over the other. Indeed, the evaluation 

of every good test cases solution (upper level) requires the running a search algorithm to find 

the best undetectable ATL errors by the upper level solution. This concept avoids driving the 

search towards uninteresting directions. Furthermore, the two populations in co-evolution are 

considered with same importance; however the upper level is more important than the lower 

level in any bi-level formulation.  

In conclusion, we answer RQ2 by concluding that the results in our experiments confirm that 

our proposed BLOP is adequate and it outperforms Co-Evol. 
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Figure 31 Precision median values of BLOP and Co-Evol over 31 independent simulation runs. 

 

Finally, the following table gives the effect sizes in addition to the p-values of the Wilcoxon test.  

 

Table 14 The Wilcoxon test p-values and the effect size values (Cohen’s d statistic) of the comparisons between BLOP 

and Co-Evol on the 10 scenarios. 

 

Scenario S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 

p-value  <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Effect 

size 

0.83 0.79 0.82 0.86 0.72 0.68 0.66 0.73 0.36 0.38 

 

 

Results for RQ3. Since it is not sufficient to compare our proposal with only search-based 

work, we compared the performance of BLOP with the test cases generation techniques 

proposed by Fleurey et al. [37] based only on metamodel coverage. Figure 8 summarizes the 

results of the precision obtained on the CLD-to-RDBMS ATL program. It is clear from the 

results of Figure 8 that the metamodel coverage criterion is not sufficient and our BLOP 

technique generates more efficient test cases than Fleurey et al. [37]. To conclude, our BLOP 
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adaption also outperforms, on average, an existing approach not based on meta-heuristic 

search (RQ3).    

Results for RQ4. Since our proposal is based on bi-level optimization, it is important to 

evaluate the execution time. It is evident that BLOP requires higher execution time than Co-

Evol and[37] since BLOP has an optimization algorithm to be executed at the lower level. To 

reduce the computational complexity of our BLOP adaptation, we selected only best 

solutions (nbest%) at the upper level to update their fitness evaluations based on the coverage 

of errors that are generated by the optimization algorithms executed at the lower level for 

every selected solution.  All the algorithms under comparison were executed on machines 

with Intel Xeon 3 GHz processors and 4 GB RAM. This allows us to make a fair comparison 

between CPU times. The average execution time for BLOP, was around 3.5 hours for a 

single execution of the algorithm with a total of 750K iterations. An important parameter that 

reduced the execution time of our BLOP adaptation is the number of selected good solutions 

at the upper level. Figure 8 shows that the performance of our approach improves as we 

increase the percentage of best solutions selected from the upper level for each iteration. 

However, the results become stable after 12% (percentage of selected solutions from the 

upper level population). For this reason, we considered this threshold in our experiments that 

represents a good trade-off between the quality of test cases solutions and the execution time. 

As described in Figure 10, the average precision scores on the 10 scenarios become almost 

stable after the 12% threshold value and the execution time increases dramatically since a 

high number of optimization algorithms are executed at the lower level.    
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Figure 32 Scalability of our bi-level approach for test cases generation 

 

4.3.4 Threats to Validity 

We considered different types of threat that can affect the validity of our experiments. We 

consider each of these in the following paragraphs.  

Conclusion validity is concerned with the statistical relationship between the treatment and 

the outcome. We used the Wilcoxon signed-rank test with a 95% confidence level to test if 

significant differences existed between the measurements for different treatments. This test 

makes no assumption that the data is normally distributed and is suitable for ordinal data, so 

we can be confident that the statistical relationships we observed are significant. In addition, 

since the tools are not available we re-implemented the existing transformation techniques 

for a comparison with our proposal thus the outperformance of our bi-level can be also 

related to some missing implementation details of existing approaches.   
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Internal validity is concerned with the causal relationship between the treatment and the 

outcome. When we observe an increase in precision, was it caused by our bi-level approach, 

or could it have occurred for another reason? We dealt with internal threats to validity by 

performing 31 independent simulation runs for each problem instance. This makes it highly 

unlikely that the observed increased in precision was caused by anything other than the 

applied bi-level approach. 

External validity refers to the generalizability of our findings. In this study, we performed our 

experiments on two ATL programs belonging to different domains and with different sizes. 

However, we cannot assert that our results can be generalized to other transformation 

mechanisms. Future replications of this study are necessary to confirm our findings. In 

addition, our experiments are limited to only 10 scenarios. We plan to extend the experiments 

by considering additional possible errors in the ATL programs. 
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Chapter 5:  Conclusion and Future Work 

Choosing quality metrics to detect symptoms of code-smells is not straightforward in 

software engineering and is usually a challenging task. In order to tackle this problem, we 

have proposed a bi-level evolutionary optimization approach as our first contribution. The 

upper-level optimization produces a set of detection rules, which are combinations of quality 

metrics, with the goal to maximize the coverage of not only a code-smell example base but 

also a lower-level population of artificial code-smells. The lower-level optimization tries to 

generate artificial code-smells that cannot be detected by the upper-level detection rules, 

thereby emphasizing the generation of broad-based and fitter rules. The statistical analysis of 

the obtained results over nine studied software systems have shown the competitiveness and 

the outperformance of our proposal in terms of precision and recall over a single-level 

genetic programming, co-evolutionary, and non-search-based methods. . A bi-level approach 

for the correction of code-smells is going to be our future work for our first contribution. 

Finally, our first contribution in this thesis is mainly related to the detection of code-smells.  

As our second contribution, we proposed a bi-level evolutionary optimization approach for 

model transformation testing. The upper-level optimization produces a set of test cases, 

which are models, conformed to a meta-model, with the goal to maximize the coverage of 

metamodels and the lower-level population of errors. The lower-level optimization tries to 

generate errors that cannot be detected by the upper-level test cases, thereby emphasizing the 

generation of broad-based and fitter test cases. The statistical analysis of the obtained results 
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has shown the competitiveness and the outperformance of our proposal in terms of precision 

over co-evolutionary and non-search-based methods.  

Following these two contribution, we have identified several avenues for future research. 

Firstly, the main problem when using bi-level optimization in software engineering is the 

computational cost required for the lower-level search. Hence, it would be interesting to use 

regression methods for approximating the lower level optimum for a given upper-level 

solution. In this way, we could minimize the required number of function evaluations 

significantly. Secondly, the idea of bi-level optimization seems interesting for several other 

SE problems. It would be challenging to model and then solve other interesting SE problems 

in a bi-level manner. 
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