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With e-commerce growing at a rapid pace compared to traditional retail, many brick-and-mortar firms are

supporting their online growth through an integrated omnichannel approach. Such integration can lead to

reduction in cost that can be achieved through efficient inventory management. A retailer with a network

of physical stores and fulfillment centers facing two demands (online and in-store) has to make important,

interlinked decisions – how much inventory to keep at each location and where to fulfill each online order

from, as online demand can be fulfilled from any location. We consider order-up-to policies for a general

multi-period model with multiple locations and zero lead time, and online orders fulfilled multiple times

in each period. We first focus on the case where fulfillment decisions are made at the end of each period,

which allows separate focus on the inventory decision. We develop a simple, scalable heuristic for the multi-

location problem based on analysis from the two-store case, and prove its asymptotic near-optimality for

large number of omnichannel stores under certain conditions. We extend this to the case where fulfillment is

done multiple times within a period and combine it with a simple, threshold-based fulfillment policy which

reserves inventory at stores for future in-store demand. With the help of a realistic numerical study based

on a fictitious retail network embedded in mainland USA, we show that the combined heuristic outperforms

a myopic, decentralized planning strategy under a variety of problem parameters, especially when there is

an adequate mix of online and in-store demands. Extensions to positive lead times are discussed.

Key words : omnichannel; e-commerce; inventory management; fulfillment; heuristic; asymptotic analysis

1. Introduction

By the end of 2016, e-commerce sales accounted for around 9% of the total retail sales

in the United States (U.S. Census Bureau 2016). Although this is a small portion of the

total sales, online sales have been increasing at a rapid growth rate of around 15% each

year (Zaroban 2016), and projected to account for 17% of all retail sales within the next

five years (Lindner 2017). In comparison, the growth in traditional retail has dwindled

to around 2% in recent years. With customers increasingly favoring the online channel,

traditional brick-and-mortar (B&M) firms are compelled to develop their e-commerce capa-

bilities to remain competitive against pure play e-commerce firms like Amazon (Leiser

1
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2016), which alone accounted for 53% of the e-commerce sales growth in 2016 (Kim 2017).

In order to improve efficiency and flexibility, retailers resort to an omnichannel approach

to integrate the online channel with their physical stores.

Omnichannel refers to the seamless integration of a retailer’s sales channels, such as

in-store and online. Customers can purchase an item in different ways, including placing

an order through the online store (websites), through mobile devices (mobile apps), as well

as through the traditional practice of walking into physical stores. In addition, customers

placing orders online can also choose how they receive the item, which has led to various

omnichannel initiatives: they can pick up their items from a nearby physical store (in-store

pickup) or from designated self-service kiosks like Amazon Lockers, or simply have the

item shipped directly to their homes (ship-to-customer).

Providing an omnichannel customer experience is regarded as a brand differentiator

by many retailers, and integrating the online channel with the physical stores increases

revenue, reduces shipping costs and improves customer satisfaction (Forrester 2014). Hence,

there is an industry-wide shift to omnichannel retailing, with onetime B&M firms like

Macy’s and Walmart leveraging their existing network of retail stores in their integration of

the online channel (Nash 2015). Amazon has also joined these firms through the acquisition

of a network of physical stores across the US by means of its purchase of Whole Foods

Market. This allows Amazon to not only operate an omnichannel grocery chain, but also

absorb the stores into its distribution network to reduce logistic costs.

One of the key aspects of this channel integration is store fulfillment, which is the use of

physical stores to fulfill online orders. Store fulfillment has now become indispensable for

firms like Walmart and Macy’s, that rely on a network of physical stores close to population

centers to offer same day and next-day delivery options to customers (Giannopoulos 2014).

Dedicated floor space and store staff are required to fulfill online orders from stores.

In spite of potential benefits, many firms have struggled in their implementation of

channel integration: from 2010 to 2014, even as retail and online sales increased, inven-

tory turnover decreased (Kurt Salmon 2016). One possible cause for this inefficiency could

be insufficient planning in inventory management. While firms have traditionally man-

aged inventory levels at stores based on demands in the corresponding locations, such a

decentralized approach ceases be optimal in an integrated system.
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The optimal inventory decisions depends on the fulfillment policy followed, and there

does not seem to be a standard approach to online fulfillment across the industry. Some

firms primarily fulfill from online FCs, and resort to store fulfillment in case the online FC

runs out of stock. Some firms fulfill online orders from stores, but are agnostic to store

inventory levels, while others do not fulfill from stores running low on inventory.

In this paper, we study the problem of an omnichannel firm with a network of physical

stores and online FCs facing online (ship-to-customer) and in-store demands, by means

of a general multi-period, multi-location model. We consider a dynamic setting, where we

allow the online fulfillment decisions are made multiple times within each period. Online

orders can be routed to any store or online FC in the network, and items are picked off the

shelves, packed, labeled and shipped to the customers’ homes. This has several advantages

over the dedicated use of online FCs including reduced shipping costs, quicker deliveries

and efficient use of store inventory (UPS Compass 2014).

Our goal is to optimize inventory levels and fulfillment decisions for a single product. The

decisions have to be made based on the network as a whole as opposed to a decentralized

approach, in order to take into account demand pooling of online demands across the

network, in addition to demand pooling of in-store and online demands in each region.

The firms’s problem is described as follows. A retail firm owns a network of stores and

online FCs, and has integrated the online channel into the physical stores through store

fulfillment. Following a periodic review inventory model, each store orders up to a certain

level at the beginning of each review period, to fulfill in-store demand (customers walking

into physical stores) and online demand (customers ordering online, expecting items to be

shipped directly to them) during the course of the period. The in-store demand at a store

is fulfilled as it arrives, until that store runs out of inventory.

Unlike in-store demand, online demand can be fulfilled from any location in the network,

and there is typically a delay between the time an order is placed and when items are

picked off the shelf. Firms may delay fulfillment decisions due to various reasons:

• for strategic reasons, orders from the same customer or region can be consolidated to

lower shipping costs (Xu, Allgor, and Graves 2009, Wei, Jasin, and Kapuscinski 2017),

• or for practical reasons, as the timing of orders fulfilled from stores is affected by store

staffing schedules and pick-up times of third-party carriers like UPS.
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To model this dynamic, a review period is further divided into T fulfillment epochs, where

in-store demands are fulfilled as they arrive, and online fulfillment decisions (assigning

online orders to fulfillment locations) are made at the end of each epoch after observing the

demands during the epoch, with unmet demands being lost. The inventory and fulfillment

decisions are made centrally by the firm to minimize holding, penalty and shipping costs.

For the sake of clarity, the two units of time are described below:

• a review period is the amount of time between two consecutive inventory replenish-

ments. For stores that are replenished daily, the review period is a single day.

• a fulfillment epoch is the time between two fulfillment decisions. Over the course of an

epoch, online orders are aggregated, and fulfillment decisions are made at the end of

each epoch. For stores replenished daily, the length of an epoch can range from a whole

day (e.g. Macy’s stores fulfill online orders once a day through UPS (Lewis 2013)) to

a few minutes (e.g. firms like Amazon make more frequent fulfillment decisions).

As described, the definition of a fulfillment epoch carries flexibility, and by choosing large

enough values for T , we can closely approximate the continuous time setting, where firms

make fulfillment decisions as online orders arrive.

The online fulfillment decisions are similar to transshipment decisions for online demand,

except that instead of items being shipped between stores, they are shipped directly to the

customer. The setting can thus be cast as planning of order-up-to levels in a transship-

ment problem with a replenishment leadtime of T − 1 periods, with a planning horizon

of T periods. This makes the problem hard, as it has been shown that optimal transship-

ment decisions are intractable, let alone joint optimization of initial inventory levels and

transshipment decisions, even for two locations (Tagaras and Cohen 1992).

The general structure of the problem is also subject to complications from other sources

- multiple locations, multiple fulfillment epochs, and two non-identical classes of demands.

Our main contribution is a combined inventory and fulfillment heuristic for omnichannel

retailing, which we derive from a general multi-location, multi-period model shown to be

mathematically intractable due to the various generalizations involved. Specifically, the

inventory heuristic calculates the stocking levels at each location based on the demands

in the network, rather than individually at that location, and the fulfillment heuristic

provides location-specific, time-varying inventory thresholds which dictate the rationing

between in-store and online demands. The strength of our combined heuristic lies in the
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ease of computation and comprehension, and we show by means of a realistic numerical

study that our heuristic creates value by planning for virtual pooling of online demands

across locations, and diligently reserving inventory at stores for future demands.

The approach we take to address this problem is as follows. We model the general

problem in Section 3, and describe the complexities involved. To obtain a heuristic solution

to this problem, we first decouple the inventory and fulfillment decisions by considering

the case with a single fulfillment epoch (T = 1) in Section 4. When there is no leadtime, a

myopic fulfillment policy would be optimal in this case - fulfill online demand as much as

possible with the available inventory in each review period. Given this fulfillment policy,

we discuss the optimal inventory solution for the two-store case, and develop a simple,

asymptotically near-optimal inventory heuristic for the multi-location case.

In Section 5, we extend this inventory heuristic to the general problem where online

orders are fulfilled multiple times within each review period (T > 1), and develop a simple

threshold fulfillment policy in each fulfillment epoch, where stores fulfill online orders only

when the inventory levels are above a certain threshold.

In Section 6, by means of a realistic numerical study on a network of stores and online

FCs embedded in mainland USA, we show that our combined inventory and fulfillment

heuristic improves greatly upon a benchmark solution which naively sets inventory levels

in a decentralized fashion and fulfills online orders myopically. We test the relative perfor-

mance of our heuristic over a variety of problem parameters such as shipping costs, online

market share, network size, etc. Finally, we conclude with Section 7 by discussing further

generalizations including non-identical leadtimes and costs, and areas for future research.

2. Literature Review

Omnichannel retailing is a relatively new area in operations management literature, and has

been gaining traction in recent years. Readers are referred to Rigby (2011) and Brynjolfsson

et al. (2013) for comprehensive reviews of the topic. Existing papers in this area focus on the

impact of online channel integration: Gao and Su (2017) study the impact of implementing

store pickup on store operations, Bell et al. (2013), Ansari et al. (2008), and Gallino and

Moreno (2014) study customer migration due to product information, and Gallino et al.

(2017) focus on sales dispersion from implementing store pickup. Gao and Su (2016) analyze

the effect of information provided to strategic omnichannel customers on store operations,

and Harsha et al. (2016) study the dynamic pricing of omnichannel inventories.
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When there is no in-store demand, the problem is analogous to the pure play e-commerce

setting, which has enjoyed recent attention in literature: Acimovic and Graves (2017) study

the optimal allocation of replenishment to fulfillment centers to reduce shipping costs and

mitigate costly spillovers, Lei et al. (2017) consider the joint pricing and fulfillment strategy

to maximize the expected profits (revenue minus shipping costs), and Acimovic and Graves

(2014) focus on fulfillment strategies to minimize outbound shipping costs.

There have been some studies which discuss integration of online demand to physical

stores by means of a separate online fulfillment center, as this was the primary mode of

fulfillment in the e-commerce channel in its nascent stages. Seifert et al. (2006) consider

the inventory management of a system where an online warehouse handles online orders,

and in case of stockouts, stores can fill these orders. Chen et al. (2011) consider a three

location system consisting of two stores and an etailer, with a hierarchy to fulfillment - the

etailer can fulfill online orders with the least cost, followed by store 1 and then store 2.

We consider a generalized setting representing the current retailing situation wherein

physical stores are the primary ports of online fulfillment. To the best of our knowledge, the

study closest to ours in emulating the problem setting, where online demand is integrated

with the physical stores through store fulfillment is by Jalilipour Alishah et al. (2015). They

consider a single store with online and in-store demands, and analyze decisions at three

levels — fulfillment structure, inventory optimization and inventory rationing. They show

that the optimal rationing policy between in-store and online demands is threshold-based,

but their results do not extend to the multi-store case due to the complexity involved in

an additional rationing decision - online orders from other regions. This setting is rather

important in the context of e-commerce, and falls under the purview of transshipment

literature, where it has been shown to be an intractable problem to solve.

The fact that online demands can be fulfilled from any store in the system is analogous

to a reactive transshipment setting with zero transshipment lead time, as pointed out

by Yang and Qin (2007), who called this ’virtual lateral transshipment’. In addition, our

problem has multiple demand classes (online and in-store), where some classes of demand

(in-store) cannot be subject to transshipment. For an extensive review of transshipment

literature, the readers are referred to Paterson et al. (2011).

The fact the the problem in question can be related to transshipment literature offers lit-

tle solace. Transshipment problems are infamously hard to solve, and analytical approaches
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can be done only for simplified cases with zero replenishment and transshipment leadtimes

and two locations (Tagaras 1989) or identical shipping costs across locations (Dong and

Rudi 2004). Tagaras and Cohen (1992) show that when there is positive replenishment

leadtime, the problem becomes intractable even for two locations, as obtaining the optimal

transshipment policy is mathematically complex due to its interdependence on demands

during the leadtime, on-hand inventory and in-transit inventory.

Obtaining optimal order-up-to policies are by extension intractable as well, as they need

to be calculated based on the optimal transshipment policy. Yao et al. (2016) have recently

considered the optimal joint initial stocking and transshipment decisions for the two-store

case, where stocking is done once at the beginning of a selling season, and transshipment

is done multiple times during the season. Their analysis is limited to two stores, as key

mathematical properties like submodularity do not extend to multiple locations.

Due to the complexities involved, one cannot hope to obtain a tight and tractable bound

for a problem of this stature, let alone finding the analytical optimal solutions. We will

instead develop simple, tractable and scalable heuristics, which perform well compared to

naive strategies in most cases, with help from techniques used in literature.

Finally in the zero leadtime case, when online demand is fulfilled only once at the end

of each review period, we show that the problem is analogous to a newsvendor network,

with virtual lateral transshipment as a ‘discretionary policy’ (van Mieghem and Rudi

2002). Newsvendor networks have been analyzed in great detail by van Mieghem and

Rudi (2002) and van Mieghem (2003), building up from the multi-dimensional newsvendor

models proposed by Harrison and van Mieghem (1999). However, as we shall show later,

the canonical approach to optimizing inventory levels is difficult even for two stores due

to the number of random demands involved, and is intractable for the multi-store case.

3. The General Problem - Model and Assumptions

Consider a system composed of a firm which owns N facilities R1,R2, . . . ,RN in different

customer regions, selling a single product. Considering multiple products introduces com-

plex combinatorial features to the fulfillment problem as a multi-item order can be fulfilled

in different ways (Jasin and Sinha 2015), which we disregard in our analysis to better study

the interplay between inventory and fulfillment decisions. There are two classes of demand

originating in each region i, modeled by non-negative and continuous random variables

with well-behaved density functions.
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Ss - Traditional B&M Stores Sso - Omnichannel Stores So - Online FCs

In-store Customers - Dis

Online Customers - Dio

Figure 1 Three types of stores in the network a) Traditional brick-and-mortar stores (Ss), b) Omnichannel stores

(Sso), and c) Online Fulfillment Centers (So).

1. the in-store demand (Dis) consists of customers picking items off the shelves (all the

inventory is available on the shelf), with unmet demand lost immediately

2. the online (ship-to-customer) demand (Dio), consisting of customers ordering through

the website or mobile app, with items delivered directly to their homes. For orders

fulfilled from stores, the store staff pick up the item from the shelf, followed by packing

and labeling in the store backroom, and shipping to the customer. A sale is lost when

there is no available inventory for fulfillment at any location.

The demands are exogenous and are temporally independent, but can have any general

channel or location correlation structure, while we require that the total demands in each

region and across the system have continuous and well-defined density functions.

The retail network is shown in Figure 1, where dashed lines represent customers visiting

physical stores and solid lines represent items shipped to customers’ homes. We consider

three different types of facilities described by the following sets:

• Ss - physical stores which handle only in-store demand.

• So - online fulfillment centers (OFCs) which handle only online orders.

• Sso - omnichannel physical stores which handle both online and in-store demands.

Since traditional B&M stores plan for inventory independent of other facilities in the

network, we exclude them from our analysis. We are hence interested in locations involved

in online fulfillment, namely the omnichannel stores and online fulfillment centers, denoted

by the set of facilities S = So ∪Sso, and the number of such stores is N = ‖S‖.
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An important feature to be noted in the omnichannel problem is that unfulfilled in-

store demand at one region cannot be fulfilled by stores in other regions. Any facility with

available inventory can fulfill an online order, and hence there is pooling of online demands

across regions in addition to pooling of in-store and online demands within each region.

3.1. Periodic Review Setup

We consider a periodic review model, where an order is placed by each facility at the start

of each review period, and received with zero replenishment leadtime. The demands are

realized during the course of the period based on the facility considered. We are interested

in an optimal order-up-to policy, where the order-up-to levels in each period are y1, . . . , yN .

Based on conversations with industry executives, there are certain situations in the

context of omnichannel stores where the leadtime is effectively negligible: in major cities

like New York, store replenishment can only be done at night-time due to traffic restrictions.

Such stores handle high volumes of sales, and are usually replenished daily from warehouses

in nearby cities. An order placed in the afternoon can often be replenished before the

following day. Positive leadtimes can significantly complicate analyses, and we discuss

extending our heuristics to the case of non-identical leadtimes across locations in Section 7.

We assume that online orders are fulfilled in multiple batches in each review period, which

we model by dividing a review period into T fulfillment epochs: in each epoch, in-store

demand is fulfilled as it arrives, whereas online fulfillment decisions are made at the end

of the epoch after observing demand, and orders are fulfilled with the available inventory.

The assumption reflects practical constraints in store operations: fulfillment activities in

stores are usually done by store personnel, who in most cases also share additional store

responsibilities. In such situations, it is better to fulfill online orders in batches, as opposed

to having store staff picking items every time an online order is received.

3.2. Cost Parameters

We consider a per-unit service cost sij for online demand from region j fulfilled by Ri,

which encapsulates the cost of picking the item off the shelf, packing and labelling, as well

as the shipping cost for delivery. We have sij > sii,∀j 6= i, as it is costlier to ship an item

over longer distances. We will refer to the service costs sii (within the same region) as

shipping costs, and sij (across regions) as cross-shipping costs.

In practice, the handling (pick-pack-and-label) component of the service cost is higher

for stores fulfilling online demand, as it involves human labor, than for OFCs where the
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process can be automated and streamlined. The shipping component of the service cost can

be higher for the OFCs which are usually located farther away from population centers.

We have identical costs at each location, including shipping costs sii = s, ∀i. At the end

of a fulfillment epoch, each unit of unused inventory incurs an overage cost h, and each

unit of unfulfilled in-store and online demands incur penalty costs ps and po respectively.

We assume that ps > po − s > 0, as in-store demand is fulfilled first and costlier to lose,

and cross-shipping always leads to a myopic reduction in cost: sij (= sji)<h+po, ∀i, j. We

ignore the purchasing cost of inventory, but this can be incorporated through linear terms.

3.3. Stochastic Programming Formulation

We are now ready to write the total expected per period cost function for the case where

online demand is fulfilled over T fulfillment epochs in each review period. We focus on the

single period to obtain order-up-to levels, which we show in Section 5 to be optimal in a

multi-period setting in the case of negligible replenishment leadtimes.

In each fulfillment epoch t, let the starting inventory levels be denoted by xt = (xti)i, and

D̃t = (Dt
is,D

t
io)i denotes the demands. From location Ri, let zti be the amount of inventory

used to fulfill the in-store demand, and Zt
ij be the amount of inventory shipped to fulfill

online demand from region j, denoted in vector form as zt,Zt respectively. We have a

T -stage stochastic program, with the cost-to-go function in epoch t, Ct(x
t, D̃t) is given by:

Ct(x
t, D̃t) = min

zt,Zt∈∆

[
P (xt, D̃t,zt,Zt) +ECt+1(x

t
i− zti −

N∑
j=1

Zt
ij, D̃

t+1)
]

(1)

where P (xt, D̃t,zt,Zt) is the total cost in fulfillment epoch t, given by:

P (xt, D̃t,zt,Zt) =
N∑
i=1

h

(
xti− zti −

N∑
j=1

Zt
ij

)
+

N∑
i=1

ps(D
t
is− zti)

+

N∑
j=1

po

(
Dt

jo−
N∑
i=1

Zt
ij

)
+

N∑
i=1

sZt
ii +

N∑
i=1

N∑
j=1,j 6=i

sijZ
t
ij

(2)

and ∆ is the set of feasible fulfillment decisions, described by the following set of constraints:

zti +
n∑

j=1

Zt
ij ≤ xti, ∀i∈ [N ],∀t∈ [T ]

zti ≤Dt
is, ∀i∈ [N ],∀t∈ [T ]

n∑
i=1

Zt
ij ≤Dt

jo, ∀j ∈ [N ],∀t∈ [T ]

zt,Zt ≥ 0, ∀t∈ [T ]

(3)
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The first ienquality in ∆ represents the supply constraint, and the second and third

inequalities model the fulfillment constraints. Note that the online demand in one region

can be fulfilled from any facility in the network, as seen in the third inequality in (3).

The goal is to obtain the initial stocking level y = (yi)i. The single period, T -epoch prob-

lem can thus be stated as follows: min
y≥0

E[C1(y, D̃)]. This is a convex minimization problem,

as we will later show in Section 5, but it is intractable to solve. The fulfillment decisions

are similar to optimal transshipment decisions with non-negligible lead time, as decisions

in any fulfillment epoch depend on future demands in that review period. As pointed out

by Tagaras and Cohen (1992) for the two-store case in traditional transshipment, while the

optimal fulfillment policy may be threshold-based, the optimization becomes intractable

due to the complexity of the decision space in the dynamic programming formulation.

We cannot hope to solve this problem to optimality, and we resort to heuristic solutions

that perform well compared to simple, naive strategies and hindsight optimal lower bounds.

Note that a heuristic solution specifies both the initial stocking level and fulfillment policy.

We first develop the inventory heuristic in the following way: treat the T -epoch problem

as a single fulfillment epoch. A similar method was also used by Tagaras and Cohen (1992)

to set heuristic inventory levels for the two-location transshipment problem with leadtime,

based on numerical evidence that most transshipments took place at or near the end of

the planning horizon, when stockouts are more likely to happen.

Our problem is different in two aspects: 1) we have in-store demands which are more

costly to lose than online demands and do not have pooling flexibility, and 2) demands fol-

low lost sales. However, we adopt this single fulfillment epoch approximation as it provides

a tractable alternative by decoupling inventory and fulfillment decisions, because:

1. a myopic fulfillment policy is optimal, where online demands are fulfilled to the max-

imum possible extent with the available inventory, and as a result,

2. the inventory problem reduces to a single stage stochastic linear program.

With the help of results obtained through this approximation, we formulate inventory

and fulfillment heuristic solutions for the multi-period, multi-location problem in Section 5,

and numerically test their performance in Section 6.

4. The Single Fulfillment Epoch Case (T=1) - Model and Analysis

In this setting, items are ordered and received at the beginning of the period with zero

lead time, and in-store demand is fulfilled as it arrives. Due to the single fulfillment epoch
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D1s D2s

D2oD1o

R2R1

D1s D2s

D2oD1o

R2R1

Decentralized Inventory Planning (DIP) Integrated Inventory Planning (IIP)

Figure 2 Two methods of inventory planning - 1) Decentralized inventory planning (DIP) and 2) Integrated

inventory planning (IIP)

assumption, the fulfillment of online demand is done once at the end of the review period,

after in-store demands are fulfilled. There is no benefit to reserving inventory for future

demands as replenishments arrive immediately. In such a case, a myopic fulfillment policy

is optimal, where online orders are fulfilled to the maximum possible extent in each period.

The case of single fulfillment epoch is quite common in present day omnichannel retailing

where stores are replenished daily. Most stores still rely on third party carriers such as

UPS and FedEx to ship items to customers. Online orders to be shipped are loaded onto

these trucks once a day from the store backroom, usually towards the end of the day. This

is especially popular in the context of same-day and next-day deliveries, where stores allow

online ordering until a cutoff time, and these orders are ready to be shipped by the end

of the day. However with developments in drone technology in the future, one can easily

envision stores that fulfill multiple times in a day, which we address through the general

case of multiple fulfillment epochs (T > 1) in Section 5.

We first consider the two-store setting to exhibit the complicated nature of the decou-

pled inventory problem alone, given the optimal fulfillment policy is myopic. The insights

derived in this case inform our analysis of a generalized multi-location case, which includes

a network of omnichannel stores and online FCs.

4.1. The Two-store System

A firm owns two retail stores R1 and R2 serving different regions, with two demand streams

originating form each region – in-store demand (D1s, D2s), and online demand (D1o, D2o).

The objective is to set the initial inventory levels y1 and y2 to minimize the total expected
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cost. We consider two solutions – decentralized inventory planning (DIP) and integrated

inventory planning (IIP), which are represented in Figure 2. The assumptions on cost

parameters are recapitulated in the set Ψ in Equation 4.

Ψ =
{
ps > po− si > 0, ∀i; h+ po > sij > s, ∀i, j 6= i

}
(4)

4.1.1. The Decentralized Inventory Planning (DIP) Strategy (Pooling within

Regions) We first consider the case where the firm plans for inventory at its stores in

a decentralized fashion, without planning in advance for cross-shipping. This serves as a

benchmark for any inventory heuristic we may develop for the centralized planning case.

The inventory level at store i is set with an objective to minimize the total expected cost

incurred in meeting the demands from that region, given by:

CDIP (yi) =E
[
h
(
(yi−Dis)

+−Dio

)+
+ ps(Dis− yi)+

+ po
(
Dio− (yi−Dis)

+)+
+ smin

(
(yi−Dis)

+ ,Dio

)] (5)

where x+ = max(x,0). The cost function is convex, which can be seen by expressing Equa-

tion 5 in terms of the total demands Di =Dis +Dio as follows:

CDIP (yi) =sµio +E
[
h (yi−Di)

+ + (po− s) (Di− yi)+ + (ps− (po− s)) (Dis− yi)+
]

(6)

where µio =E[Dio]. The simplification is done using the identities min(x, y) = y− (y−x)+,

and (Dis−yi)+ +
(
Dio− (yi−Dis)

+)+
= (Di−yi)+, the latter holds when demands are non-

negative. The optimal inventory levels (yDIP
1 , yDIP

2 ) can obtained from implicit equations:

(h+ po− s)Fi

(
yDIP
i

)
+ (ps− po + s)Fis

(
yDIP
i

)
= ps, ∀i= 1,2 (7)

where Fi is the cumulative distribution function of demand Di. A line search yields unique

optimum, as the left hand side is increasing in yDIP
i , and the right hand side is constant.

4.1.2. The Integrated Inventory Planning (IIP) Strategy (Pooling within and

across Regions). This is similar to the DIP scenario, except that after Ri has fulfilled

its own in-store and online demands, unfulfilled online orders from region j (6= i) can be

fulfilled using any available inventory at Ri. In the two-store problem, the cross-shipped

quantity from store Ri to region j can be explicitly calculated as the minimum of the
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inventory available at Ri and the unfulfilled online demand at Rj, after each store has

attempted to fulfill its own demands. The total expected one-period cost function is:

CIIP (y1, y2) =
∑
i

E
[
h
(
(yi−Dis)

+−Dio

)+
+ ps(Dis− yi)+

+ po
(
Dio− (yi−Dis)

+)+
+ smin

(
(yi−Dis)

+ ,Dio

)
+ (s12−h− po) min

((
(y1−D1s)

+−D1o

)+
,
(
D2o− (y2−D2s)

+)+
)

+ (s12−h− po) min
((

(y2−D2s)
+−D2o

)+
,
(
D1o− (y1−D1s)

+)+
)]

(8)

The additional terms in Equation 8 that are absent in Equation 5 represent the value of

cross-shipping: the total savings by cross-shipping a unit from Ri to region j, h+ po− sij,

times the total quantity cross-shipped from Ri to region j. The total cross-shipped quantity

can be expressed as
∑
i

(
Dio− (yi−Dis)

+)+ −
(∑

i

Dio −
∑
i

(yi−Dis)
+

)+

. The first term

represents the total unfulfilled online demand if there was no cross-shipping allowed, and

the second term represents the unfulfilled online demand with cross-shipping. Naturally,

the difference yields the cross-shipped quantity. By using this expression, as well as the

simplification techniques used in Equation 6, we can simplify Equation 8 as follows:

CIIP (y1, y2) = s
∑
i

µio +
∑
i

E
[
h (yi−Di)

+ + (ps− po + s)(Dis− yi)+ + (po− s) (Di− yi)+
]

+ (s12−h− po)

[∑
i

(Di− yi)+−
∑
i

(Dis− yi)+−

(∑
i

Dio−
∑
i

(yi−Dis)
+

)+ ]
(9)

We can rearrange the terms to a convex expression, except

(∑
i

Dio−
∑
i

(yi−Dis)
+

)+

,

which is non-convex in yi’s. This is seen by keeping y1 constant and changing y2.(∑
i

Dio−
∑
i

(yi−Dis)
+

)+

=


(
D1o +D2o− (y1−D1s)

+)+
, if y2 ≤D2s

D2 +D1o− (y1−D1s)
+− y2, if D2s < y2 <D2 +D1o− (y1−D1s)

+

0, if y2 ≥D2 +D1o− (y1−D1s)
+

(10)

In the event that Dis = 0,∀i (similar to traditional transshipment considered by Dong and

Rudi 2004), the formulation in Equation 9 would directly yield a convex cost function.

Convexity is not obvious in our case, as the nested piecewise linear function in Equation

10 is neither convex nor concave, and this is purely due to the fact that in-store demand
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is fulfilled first and cannot be subject to cross-shipment. However, the total cost can be

shown to be jointly convex in the inventory levels (Proposition 1):

Proposition 1. Under the conditions on cost parameters in Ψ,

(a) CIIP (y1, y2) is jointly convex in the order-up-to levels.

(b) There exist regions Ωk(y1, y2) in the demand space, such that in each region the dual-

price vector λk corresponding to the variables y1, y2 remains constant, and the gradient

of the IIP cost function can be written as

∇CIIP (y1, y2) = (h,h)ᵀ−
∑
k

λkP (Ωk (y1, y2))) (11)

All proofs are relegated to the Appendix. We first observe that under the assumptions in Ψ,

CIIP can be expressed as the expectation of a linear program, through which joint convex-

ity in inventory levels is established. By noting structural similarities with a newsvendor

network (van Mieghem and Rudi 2002), we derive an expression for the gradient based

on the dual prices λ = (λ1, λ2)
ᵀ, which are simply the shadow prices of the constraints

involving y1 and y2 in the linear program representation (Equation 20, Appendix A).

The demands are shown to be separable into independent regions Ωk based on the values

of y1 and y2, within which the dual prices λk = (λk
1, λ

k
2) are constant (refer to Appendix B

for a detailed discussion), which enables formulating the gradient as shown in Equation 11.

The optimal solution (yIIP1 , yIIP2 ) can thus be obtained by a gradient descent algorithm.

Given values of (y1, y2) in each iterative step, the probability of realization of every demand

region has to be calculated. As we extend to N stores, we face the following hurdles:

• repeated probability calculations for a 2N -dimensional multivariate distribution, and

• exponential number of demand regions Ωk (in which the dual prices remain constant),

whose identification is non-trivial.

The non-triviality arises from the fact that cross-shipment quantities are now set by a

transportation linear program, as compared to explicit expressions in the two-store case.

Hence we develop a tractable lower bound which yields a heuristic solution for the two-store

case, which we later extend to multiple locations.

4.1.3. Lower Bound and Heuristic for the Two-Location Problem An important

feature which complicates the IIP cost function is that the in-store demands are not pooled

across regions, which in turn leads to complex and non-convex coupled terms in the cost
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function. We relax this by treating unfulfilled in-store demand as online demand which

can be fulfilled by cross-shipping. Specifically, we replace the total unfulfilled demand∑
i

(Dis− yi)+ +

(∑
i

Dio−
∑
i

(yi−Dis)
+

)+

by its lower bound, which is the total unfulfilled

demand when all demands are pooled

(∑
i

Di−
∑
i

yi

)+

. Substituting this in Equation 9

and simplifying, we get the following cost function:

CLB(y1, y2) = s(µ1o +µ2o) +E
[
h (y1 + y2−D)+ + (po− s12) (D− y1− y2)

+

(po− s− (po− s12)) (D1− y1)
+ + (po− s− (po− s12)) (D2− y2)

+

(ps− (po− s)) (D1s− y1)
+ + (ps− (po− s)) (D2s− y2)

+
] (12)

where D=D1 +D2, the total demand. Proposition 2 establishes CLB as a lower bound:

Proposition 2. CLB(y1, y2)≤CIIP (y1, y2), ∀y1, y2 ≥ 0

By removing the nested piecewise linear terms in CIIP from Equation 9, we no longer need

the gradient descent approach, as the first order conditions for CLB are greatly simplified:

(h+ po− s12)FD

(∑
j=1,2

yj

)
+ (s12− s)FDi(yi) + (ps− po + s)FDis(yi) = ps, ∀i= 1,2 (13)

We have a system of two equations with two variables, which can be solved using numer-

ical methods to yield a heuristic solution yLBH with expected cost CLBH = CIIP (yLBH).

Equation 13 is of a similar structure to the first order conditions obtained by Dong and

Rudi (2004) for the case of constant transshipment cost. The difference is that we have an

additional term stemming from the presence of in-store demands with a higher underage

cost than the online demands.

Note that the relaxation made to formulate the lower bound by replacing
∑
i

(Dis− yi)+ +(∑
i

Dio−
∑
i

(yi−Dis)
+

)+

with

(∑
i

Di−
∑
i

yi

)+

, will be tight when the in-store demand

is very small compared to the online demand, as the optimal inventory levels are set based

on the total demands. We test this numerically by changing the mix of in-store and online

demands in Figure 3. The mean in-store and online demands are calculated as a proportion

of a fixed total mean demand (= 100) in each region. The demands are normal and identical

across regions, with the coefficient of variation fixed at 0.3 for each demand. The cost

parameters are: h= 2, ps = 100, po = 100, s= 8, s12 = 15.
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Figure 3 Shows the effect of online market share on CIIP , CLBH , and CDIP (left) and the corresponding optimal

order quantities per store (right).

From Figure 3a, we see that the heuristic provides savings over the DIP strategy for most

cases, except for small values of online market share (< 10%). However, we note that for

such small values of online market share, the potential savings from centralized planning

is also small, as seen from comparing the IIP and DIP costs. In such cases, one can simply

resort to planning for each region separately using the DIP strategy.

Centralized inventory planning is most valuable when there is a moderate mix of online

and in-store demands. As online demand grows in comparison to in-store demands, the

effect of pooling across regions increases, due to two reasons: 1) more demand is pooled

across regions which leads to a bigger reduction in variability of the total online demand,

and 2) pooled online demands can better absorb the variability in the in-store demands.

Thus, the maximum savings is achieved when there is a good mix of online and in-store

demands so that the pooling across channels and locations work in synergy.

As the in-store demand becomes smaller, the probability that there will be unfulfilled

in-store demand decreases, and the heuristic solution converges to the optimal IIP solution

(Figure 3b). Thus for high values of online market share, in-store demand can effectively be

treated as online demand which explains the stable savings achieved by the IIP solution.

The cost savings directly arise from a change in inventory levels in anticipation of pooling

across locations. Proposition 3 addresses this observation from Figure 3b that the IIPH

solution consistently stocks less than the DIP solution at each store.
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Proposition 3. For identical stores and normally distributed demands, yLB ≤ (≥)yDIP

whenever yDIP ≥ (≤)µ, where µ is the mean total demand at a store. Under perfect positive

correlation across locations, yLB = yDIP = yIIP .

Similar to the intuition in newsvendor settings, yDIP ≥ µ would hold when underage costs

are greater than overage costs, but this does not translate into an analytical proof due to

the structure of the optimality equations in Equation 7, which has a mixture distribution as

compared to a simple normal distribution in newsvendor theory. Lastly, positive correlation

across locations reduces the pooling benefits achieved by cross-shipping, and under perfect

correlation, all locations either have too much or too little inventory without any imbalance.

4.2. The Multi-Location Problem

We extend the two-store problem discussed so far to a generalized setting with multiple

regions, as described earlier in Section 3 (Figure 1). The cross-shipping costs are taken to be

sij = s+f(dij), where dij is the distance between location Ri and region j, and f is a non-

negative, increasing function such that f(d)→ 0 as d→ 0. Also, supd∈D f(d)≤ h+ po− s,

where D= {dij,∀i, j}, so that the conditions in Equation 4 hold true.

The decentralized solution yDIP derived from Equation 7 readily extends to the multiple

locations as the problem is decoupled by region, whereas the optimal IIP solution cannot be

obtained due to the computational infeasibility even of the two-store approach. However,

we can extend the heuristic and lower bound developed in the two-store case, by lowering

all cross-shipping costs to smin = min
i 6=j

sij, yielding the first order conditions:

(h+ po− smin)FD

(∑
j∈S

yj
)

+ (smin− s)FDi(yi) + (ps− po + s)FDis(yi) = ps, ∀i∈ S (14)

The corresponding cost function yields a lower bound to the multi-location problem, satis-

fying Propositions 2 and 3 (the proofs are similar to the two-store case, and hence omitted).

The optimal solution can be found by iterative root-finding algorithms such as the Newton-

Raphson method, but the computational burden of this solution, although reduced from

the newsvendor network approach by van Mieghem and Rudi (2002), is still significant for

omnichannel networks in practice with thousands of stores due to the number of variables

involved. A small change to the parameters: reducing smin to s yields a weaker lower bound:
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CLBN(y1, . . . , yN) = s
∑
i∈S

µio +

[
Eh

(∑
i∈S

yi−DS

)+

+E (po− s)

(
DS −

∑
i∈S

yi

)+

+E (ps− po + s)
∑
i∈Sso

(Dis− yi)+

] (15)

CLBN is convex in the inventory levels, and can be solved to yield a heuristic solution yLBN

characterized by the first order conditions:

(h+ po− s)FDS

(∑
j∈S

yLBN
j

)
+ (ps− po + s)FDis(y

LBN
i ) = ps, ∀i∈ S (16)

This is similar to the zero transshipment cost case considered by Dong and Rudi (2004),

except that the presence of in-store demands allows us to fix inventory levels at each loca-

tion separately, in contrast to Dong and Rudi (2004) where the setting leads to an optimal

system-wide inventory level. As a consequence, the calculation of yLBN is computationally

light, established by the following Proposition.

Proposition 4. The heuristic solution is unique, and when demands follow a multi-

variate normal distribution, the heuristic inventory levels at stores are at the same critical

fractile of their corresponding in-store demands.

In contrast with Equation 14, we only need to solve for one variable, namely the common

critical fractile of the in-store demands. This reduces the computational effort drastically,

even for very large networks. There is however, a downside to this computational gain -

the optimal solution has zero inventory in the OFCs. This is because all cross-shipping

costs are lowered to s, a unit of inventory at the OFC can lead to a decrease in total cost

if it was instead at a store, as it can also serve to fulfill in-store demands.

We modify yLBN to obtain the heuristic solution yIIPH for multiple locations by calcu-

lating order quantities for the OFCs separately, and using them in Equation 16 to compute

order quantities for the omnichannel stores. The order-up-to quantities for OFCs are cal-

culated from the pooled total order quantity for OFCs, which is determined using the

newsvendor quantity for the combined online demand DSo =
∑
i∈So

Dio.

∑
j∈So

yIIPH
j = F−1

DSo

(
po− s

h+ po− s

)
(17)
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The actual underage cost for online demands at the OFCs would be less than po − s

and would depend on inventory information of stores, as stores can fulfill these online

orders with available inventory. The calculation of inventory levels at stores and OFCs

are dependent on each other, but since we are forced to estimate the inventory at OFCs

separately, we inflate the underage cost to po − s which yields a higher overall inventory

level at the OFCs. This is a limitation that arises out of our heuristic approximation, but it

allows us to extend the heuristic to the case where OFCs have a different service cost (so)

compared to the stores (s), as the inventory calculation for the OFCs is done separately.

To calculate the individual order quantities yIIPH
i , i∈ So, we use the method of obtain-

ing order-up-to quantities for multiple products with capacity constraints, as described in

Chopra and Meindl (2007, p. 367). The total capacity is the total order-up-to quantity

calculated from Equation 17, and the order-up-to quantity for each product corresponds to

the order-up-to quantity for each OFC. Each unit from
∑
j∈So

yIIPH
j is allocated incrementally

to the OFCs based on the individual expected marginal costs. Once the order-up-to quan-

tities for the OFCs are obtained, they are used in Equation 18 to determine order-up-to

levels for other omnichannel stores.

(h+ po− s)FDS

(∑
j∈S

yIIPH
j

)
+ (ps− po + s)FDis

(
yIIPH
i

)
= ps, ∀i∈ Sso (18)

Calculating the heuristic solution yIIPH is also computationally fast, as Proposition 4 still

applies to Equation 18. The cost of the heuristic solution is given by CIIPH =CIIP (yIIPH).

We capture the effect of virtual pooling among the facilities in this heuristic, and the

systematic approach is shown in Algorithm 1.

The performance of the heuristic clearly depends on the structure of the network which

directly influences the cross-shipping costs, in addition to the mix of in-store and online

demands. However in practice, the range of shipping costs is not too large: for a 5lb package,

the ratio maxi,j sij/s is less than 2 for the UPS Ground option, and less than 3 for the

UPS Next Day Air option (UPS 2017) for locations within the mainland US. We test the

sensitivity for factors that adversely affect heuristic performance in Section 6 (Figure 5).

As the problem scale increases, and the number of stores grows large within a given area

to accommodate the increase in demand, it is highly likely that a store with unfulfilled

online demand can find a close-by store with available inventory, and hence, almost all
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Algorithm 1 Procedure to calculate the heuristic solution yIIPH

1: For physical stores in set Ss, set yIIPH
i = Fis

(
ps

h+ps

)
,∀i∈ Ss.

2: for i∈ So (OFCs) do

3: Calculate total order quantity: yTOT = FDSo

(
po−s

h+po−s

)
, where DSo =

∑
i∈So

Dio.

4: Set yIIPH
i = 0,∀i∈ So, and rem =

⌊
yTOT

⌋
.

5: Calculate marginal cost MCi

(
yIIPH
i

)
=− (po− s) (1−FDio(y

IIPH
i ))+hFDio

(
yIIPH
i

)
6: Choose i∗ = min

i∈So
MCi(y

IIPH
i ). Set yIIPH

i∗ ← yIIPH
i∗ + 1

7: Set rem← rem− 1. If rem> 0, go to Step 3.

8: for i∈ Sso do

9: Calculate order quantities implicitly from the optimality equations:

(h+ po− s)FDS

(∑
j∈S

yIIPH
j

)
+ (ps− po + s)FDis

(
yIIPH
i

)
= ps, ∀i∈ Sso.

cross-shipping takes place over short distances, at a cost close to s. Thus, we can expect

the heuristic solution to be close to the optimal solution, and as a consequence of this

notion, Proposition 5 shows that the heuristic is near optimal in an asymptotic sense.

Proposition 5. As the number of omnichannel stores in a given area increases, with

demands bounded and i.i.d. across regions, for sufficiently small h> 0, the heuristic is near

optimal in an asymptotic sense with a constant approximation factor, i.e.

CIIPH

CLBN(yIIPH)
≤ h+ ps
ps− po + s

, as N →∞

The proposition holds when all locations have omnichannel stores, and yLBN = yIIPH .

We first show that reducing cross-shipping costs to s preserves optimality in the asymptotic

setting, by considering a simplified setting where the stores are uniformly distributed in

the given region, which is in-turn divided into identical sub-regions. As the number of

stores grows large, each sub-region has sufficient supply to fulfill its demands, and hence

cross-shipping takes place only within the sub-regions with costs converging to s.

When in-store demands dominate, the heuristic suffers from its assumption that in-

store demands are pooled. However, we bound the heuristic performance by a constant

approximation factor dependent on cost parameters. While this bound is not tight, it shows

that the heuristic is not critically affected by its assumptions as the problem scale grows.
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5. Multi-Period, Multi-Location, and Multiple Fulfillment Epochs

So far, we have discussed the single review period setting where online fulfillment is done

once, at the end of the period. We now switch back to the general version of the problem

described in Section 3, with multiple review periods and online demand fulfilled over T

fulfillment epochs in each review period. This is a more realistic representation of practice,

as we closely approximate the continuous time case, because the value of T can be flexibly

large. We start by proving convexity for the single period problem described in Equation 1.

Proposition 6. The single-period, T -fulfillment epoch expected cost C(y) = EC1(y, D̃)

is jointly convex in the inventory levels yi.

The proof follows by induction. Let the optimal solution to the single period problem be

denoted by yIIP. We extend our analysis to the finite horizon case with multiple periods.

Proposition 7. For the finite horizon problem with lost sales and zero replenishment

leadtime, a stationary base-stock policy is optimal, with order-up-to levels yIIP.

For the zero replenishment leadtime case with lost sales, the multi-period problem reduces

to solving a single-period problem, and the proof is similar to traditional multi-period

inventory problems involving lost-sales. As noted earlier, solving for yIIP is difficult, as

optimal fulfillment decisions are intractable. Hence, we resort to heuristic solutions devel-

oped from our analysis of the single period problem.

5.1. Inventory Levels

To obtain a heuristic solution to set order-up-to levels, we use the procedure described in

Algorithm 1, by approximating the problem as a single fulfillment epoch problem. Nat-

urally, the demands used to calculate the heuristic solutions are the total review-period

demands at each location. For example, the review-period in-store demand at store i is

given by Dis =
T∑
t=1

Dt
is. Also, the holding cost parameter used in the algorithm is the review-

period holding cost, which is given by h̄= h∗T .

We compare this heuristic solution with the naive strategy which plans for inventory

in a decentralized fashion. We extend the DIP solution derived in Equation 7, by using

the total review-period demands for each location and holding cost h̄. We will continue to

denote the heuristic solution derived in this fashion by IIPH and the decentralized solution

as DIP for the numerical studies in the following sections.
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5.2. Fulfillment Policies

We consider two fulfillment policies, which dictate how online orders are fulfilled:

1. the myopic fulfillment (MF) policy, where online demands in the current fulfillment

epoch are fulfilled to the maximum possible extent with the available inventory, with-

out consideration for demands in the future, and

2. the threshold fulfillment (TF) policy, which reserves inventory at each location for

future in-store demands, by halting online fulfillment from a location when the inven-

tory level falls below a certain threshold in each fulfillment epoch.

As future in-store demands are costlier to lose and do not have the additional flexibility

of cross-shipping, it is intuitive that the TF policy can lead to reduction in costs compared

to the MF policy when implemented well. Rationing inventory between high-priority and

low-priority demands has been studied in literature (for a review, refer to Kleijn and Dekker

1999), and along similar lines, Jalilipour Alishah et al. (2015) prove the existence of an

optimal threshold rationing policy between in-store and online demands at a single store.

In our case it is not straightforward to estimate the underage cost for the low-priority

(online) demand, as it is endogenized by the fulfillment policy followed and depends on

where an order is fulfilled from. The optimal thresholds depend on in-store and online

demands in a complicated, network-based fashion, as online demands are pooled across

locations, and their calculation is akin to obtaining optimal transshipment decisions based

on such a threshold structure. We propose simple newsvendor-based thresholds which only

take into account future in-store demands. In any fulfillment epoch t, an amount wt
i is

reserved at store i for future in-store demands in that review period, where

wt
i = FDtis

(
ps

h(T − t+ 1) + ps

)
, where Dt

is =
T∑

t̂=t+1

Dt̂
is (19)

We have developed a static fulfillment policy, as these thresholds can be evaluated at the

start of the review period based on the demand forecasts. We formalize the TF policy in

Algorithm 2. The MF policy places no such restriction on fulfillment, and can simply be

recovered from Algorithm 2 by setting the thresholds wt
i to be zero in step 1.

Note that the fulfillment heuristic is agnostic to current inventory levels and online

demands. While including such information would be valuable, we show that such a simple

policy, when combined with a good inventory heuristic which positions inventory in a

calculated fashion, can provide considerable savings compared to naive strategies.



Govindarajan, Sinha and Uichanco: Inventory and Fulfillment Decisions for Omnichannel Retailing
24 Stephen M. Ross School of Business, University of Michigan 2018

Algorithm 2 Implementation of the Threshold Fulfillment (TF) Policy

1: At the start of the review period, evaluate thresholds wt
i, ∀i, t using Equation 19.

2: In each fulfillment epoch t, each location first fulfills its own in-store demand to the

maximum possible extent, and the leftover inventory at location i is x̂i
t.

3: Calculate fulfillment capacities for each location i as Kt
i = (x̂i

t−wt
i)

+.

4: Online fulfillment decisions Zt
ij are obtained from the transportation linear program:{

min
∑
i,j

(sij −h− po)Zt
ij, subject to:

∑
k

Zt
kj ≤Djo,

∑
k

Zt
ik ≤Kt

i , Z
t
ij ≥ 0, ∀i, j

}

To evaluate the performance of the fulfillment policies, we compare them with the so-

called hindsight-optimal policy. The cost of this policy can be evaluated through a linear

program which minimizes the total cost in the review period, given that all uncertainty is

realized at the beginning of the period. Given inventory levels, the cost of such a policy is

a natural lower bound for the cost of any fulfillment policy, and we numerically show that

the simple TF policy performs very well compared to this lower bound in Section 6.

6. Numerical Analysis

We employ a realistic setting to test the performance of the inventory and fulfillment

heuristic solutions, based on a fictitious network embedded in mainland US. We shall

mainly focus on the case with zero lead time and multiple fulfillment epochs.

We evaluate the total expected costs through a Monte-Carlo simulation with a sample

size of 104, for two inventory heuristics - IIPH (integrated planning heuristic) and DIP

(decentralized planning), and two fulfillment heuristics - MF (myopic) and TF (threshold-

based). We mostly focus on comparing our combined heuristic, the 〈IIPH,TF〉 strategy, to

the benchmark 〈DIP,MF〉 strategy, which represents a naive solution.

6.1. Network Setup

We take the locations of the stores to be at the most populous cities in mainland US

(Wikipedia 2016) and the OFCs are located according to the list of most efficient ware-

houses in the US, in terms of possible transit lead-times (Chicago Consulting 2013). The

shipping costs are calculated using the cost equation estimated by Jasin and Sinha (2015)

based on UPS Ground shipping rates for an item weighing one pound: sij = 9.182 +

0.000541dij, where dij is the distance in miles from region i to region j. We also perform

sensitivity analysis for the slope of the shipping cost with respect to distance, to study the
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effect of shipping costs on the relative performance of our combined heuristic. Other cost

parameters used are: h̄= 2, ps = po = 100, s= 9.182.

The review-period demands are taken to be independent and normally distributed with

mean and standard deviations calculated based on the population of the cities. To study

the effect of online market share (α) on the performance of the heuristic solutions, we

take that the sum of the mean in-store and online demands in each region to be a fixed

proportion of the cities’ populations. This represents the average market size of the region,

and the review-period mean in-store and online demands are calculated as 1− α and α

proportions respectively of this mean market size in each region. The coefficient of variation

of the review-period demands are fixed at 0.2. Demands are identical and independently

distributed across fulfillment epochs, with parameters calculated from the review-period

demands. In the base case, α = 0.5 and T = 5, and we perform sensitivity analyses with

respect to these parameters.

Let ns be the number of physical stores and no be the number of OFCs. 90% of the

physical stores are assumed to be omnichannel stores, and the rest are traditional B&M

stores. Further details on the numerical setup and a brief overview of the simulation process

can be found in Appendix C.

6.2. Results

We tabulate the results obtained. We mainly focus on comparing the cost of the combined

heuristic 〈IIPH,TF〉 to that of the naive strategy 〈DIP,MF〉. We ignore the costs associated

with traditional B&M stores to focus on the effect of the heuristic on online fulfillment.

6.2.1. Network Size. As the network size increases, centralized inventory planning and

strategic fulfillment can be valuable, as there is more flexibility in terms of options available

in fulfillment. Figure 4a shows that increasing network size have a positive and marginally

decreasing effect on the relative performance of the combined heuristic.

We also compare the strategies based on two important metrics, inventory imbalance and

inventory efficiency, and the results are shown in Figure 4b for no = 2. Higher imbalance

can lead to costly spillovers and local stockouts (Acimovic and Graves 2017), which in turn

can cause markdowns in stores. We measure imbalance by recording the variance of ending

inventory positions across locations at the end of each epoch, and taking the average value

over the review period. Although this is different from the metric used by Acimovic and
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Figure 4 Shows the effect of network size on the performance of 〈IIPH,TF〉 compared to 〈DIP,MF〉, in terms of

cost (left), inventory imbalance and inventory efficiency (right)

Graves (2017), it captures the essence of imbalance among locations in an omnichannel

network. We see that our combined heuristic achieves a lower imbalance across locations as

compared to the 〈DIP,MF〉 strategy, and this effect is more pronounced for larger networks.

We define another metric, inventory efficiency, as an equivalent measure for inventory

turnover, calculated as the ratio of the total fulfilled demand to the average inventory level

of the system in a review period (calculated as the mean of the starting inventory level and

expected ending inventory at the end of the review period). Higher efficiency achieved by

the heuristic stems from a reduction in inventory levels without a considerable decrease in

service levels, due to planning in advance for cross-shipping. This offers a potential solution

to decreasing trend in turnovers in the retail industry in recent years(Kurt Salmon 2016).

6.2.2. Cross-shipping Costs and Online Market Share. As discussed in Section 4.2,

two major factors affect the inventory heuristic performance – shipping cost structure

and online market share. For fixed fulfillment policy TF, we compare the 〈IIPH,TF〉 and

〈DIP,TF〉 strategies to understand the effect of these parameters on the inventory heuristic.

We found similar results when comparing to the 〈DIP,TF〉 strategy.

We first vary the slope of shipping costs with respect to distance, thereby increasing the

ratio smax/s (value of 1.2 corresponds to the base case setting). As expected, the relative

performance of the heuristic decreases as shipping costs become more sensitive to distance

(Figure 5a). For a perspective, the costliest shipping option, the UPS Next Day Air, has
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Figure 5 Shows the effect of the slope of cross-shipping costs with distance by varying the ratio smax/s (left)

and online market share (right) on the performance of 〈IIPH,TF〉 compared to 〈DIP,MF〉.

a ratio of smax/s less than 3 for shipping a 5lb package within mainland US. Hence the

heuristic provides significant savings for most existing shipping cost structures.

Figure 5b shows the effect of online market share. We see that the heuristic performs

worse than the decentralized solution when the online market share is low. This reflects

the deficiency noted in the two-store case, as the heuristic assumes that in-store demands

are pooled across locations. However, the heuristic provides a valuable alternative to the

decentralized solution for products that have adequate online market shares – e.g. books,

computers and consumer electronics have an online market share of about 50% (FTI Con-

sulting 2015). Additionally, with rapidly increasing online sales, firms can obtain consid-

erable savings through centralized inventory strategies, and for most cases, our heuristic

serves as a viable proxy for inaccessible optimal decisions.

6.2.3. Number of Fulfillment Epochs (T ) By increasing the number of times online

fulfillment decisions are made, we can closely model the continuous time case. We keep

the total review-period demand parameters constant, and keep demands across fulfillment

epochs independent and identically distributed. To reduce the computational burden asso-

ciated with higher values of T , we use a smaller network with ns = 10, no = 2.

The results are shown in Figure 6. In Figure 6a, we compare the MF and TF fulfillment

strategies with IIPH inventory levels, against the hindsight optimal strategy HF, which

makes fulfillment decisions with all uncertainty realized at the start of the review period.
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Figure 6 Shows the effect of increasing the number of fulfillment epochs in a single review period on the cost of

fulfillment policies with respect to the hindsight optimal policy (left) and the performance of 〈IIPH,TF〉

compared to 〈DIP,TF〉 (right).

As T increases, the MF policy is punished for failing to reserve inventory for future

in-store demands (Figure 6a). The TF policy on the other hand proves to be a simple but

effective fulfillment strategy, achieving costs within 0.5% of the HF lower bound.

For a fixed fulfillment policy TF, we compare the 〈IIPH,TF〉 and 〈DIP,TF〉 strategies

in Figure 6b, and see that the effect of increasing T has a decreasing effect on the relative

performance of the inventory heuristic.

Finally, we note that our heuristics are extremely scalable with respect to network size -

for a network with ns = 150, no = 10 and T = 5, calculating the inventory levels using the

heuristic takes only around 10 seconds, and the calculation of fulfillment thresholds takes

around 2 minutes. Real-life retail networks are often much bigger in size – for instance,

Target ships online orders from more than 1000 stores (Lindner 2016), and our heuristic

can provide considerable improvements compared to traditional strategies in most cases.

7. Conclusion

Despite numerous retailers struggling with the operational problems posed by omnichan-

nel retailing, the area has received comparatively less attention in literature. Our research

addresses an important facet of omnichannel retailing — inventory management, by demon-

strating the value in utilizing the pooling benefits offered by omnichannel retailing, through

a combined inventory and fulfillment policy.
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Our heuristic policies, though derived from a complicated multi-location and multi-

period model, are quite generalizable. We can extend our analysis to demands originating

from abstract regions, by treating them as OFCs that carry zero inventory. Disparity in

service costs at OFCs and stores can also be taken into account by using so, the service cost

from OFCs, instead of s in Equation 17, as inventory planning is done separately for OFCs.

We still need to make the assumption that demands from a region with an omnichannel

store can be fulfilled from that store with the least cost. Otherwise, the demand at this

store will be assigned to be fulfilled from the online FC with the least fulfillment cost,

which can lead to different first order conditions in inventory planning for the online FC.

We can also extend the heuristic solutions to the case of positive leadtimes as follows:

assuming each location i has a replenishment leadtime of Li review periods, the total

planning horizon for order-up-to policies is (Li+1) review periods, or equivalently, (Li+1)T

fulfillment epochs for each location. Using the total demands during the planning period

for each location instead of review period demands, we can directly extend our inventory

heuristic to set order-up-to levels for each location.

For the fulfillment heuristic, an additional threshold for inventory position needs to be

calculated based on future in-store demands in the remainder of the current planning hori-

zon, which can also be computed based on a simple newsvendor formula. Online fulfillment

from a location is temporarily stopped in an epoch when either threshold is violated.

An important direction for future research is to include multiple classes of online demand,

especially in-store pickups, which is a popular mode of omnichannel fulfillment. A heuristic

control for managing multiple products is also an interesting and important extension to

be considered. Future research may also focus on further extensions such as capacities and

stochastic leadtimes. We believe that our framework provides a platform to build further

complexities on, which can yield important decision support tools for the industry.
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Appendices

Appendix A: Proofs of Propositions

A.1. Proof of Proposition 1

Proof: We first observe that given a realization of the demands, the optimal cost can be obtained using

a linear program. The proof follows in similar fashion to Seifert et al. (2006, Proposition 1). Consider the

linear program P (y1, y2, D̃), where zi represents the amount of inventory at Ri used to fulfill its in-store

demand, and zij represents the amount of inventory of Ri used to fulfill online demand from region j.

P (y1, y2, D̃) = min
zi,zii,zij

∑
i

h(yi− zi−
∑
j

zij) +
∑
i

ps(Dis− zi)

+
∑
i

po(Dio−
∑
j

zji) +
∑
i

szii +
∑
i

∑
j 6=i

sijzij

subject to zi +
∑
j

zij ≤ yi, ∀i

zi ≤ Dis, ∀i∑
j

zji ≤ Dio, ∀i

zi, zij ≥ 0, ∀i, j

(20)

To show that the function P represents CIIP for a given demand D̃, notice that the coefficients of

the decision variables zi, zii, zij,(j 6=i) in the objective function follow (−h − ps) < (s − h − po) < (sij −
h − po), under the conditions in Ψ in Equation 4. The linear program can be solved greedily, and it is

easy to see that the optimal solution is given by zi = min (yi,Dis), zii = min
(

(yi−Dis)
+
,Dio

)
, zij =

min

((
(yi−Dis)

+−Dio

)+

,
(
Djo− (yj −Djs)

+
)+
)

.

The sequence of fulfillment is clear: in-store demand is fulfilled first, followed by online demand from the

same region, and finally cross-shipment to other regions. Hence, we have CIIP (y1, y2) = ED̃
(
P
(
y1, y2, D̃

))
.

The objective function is linear and the constraint set in (20) is a polyhedral convex set with linear constraints,

and hence by Heyman and Sobel (2003, Proposition B-4), P is jointly convex in y1, y2, D̃. As the expectation

of a convex function is convex, it follows that CIIP (y1, y2) is jointly convex in y1 and y2.

The structure of CIIP as an expectation of a linear program draws direct comparison with the value

function in newsvendor networks (van Mieghem and Rudi 2002). Similar to Proposition 2 in Harrison and

van Mieghem (1999), the gradient of the function P (y1, y2, D̃) with respect to (y1, y2) can be written as:

∇y1,y2P
(
y1, y2, D̃

)
= (h,h)T −λ

(
y1, y2, D̃

)
(21)

where λ(y1, y2, D̃) is the dual-price vector corresponding to the constraints with y1 and y2 in (20). The

4-dimensional demand space can be divided into domains Ωi (y1, y2) such that in each domain, the optimal

values of the decision variables zi, zii and zij are linear in y1 and y2, and hence the dual-price vector

λ(y1, y2, D̃) is constant (refer to Appendix B for a discussion). The first-order conditions are:

∇y1,y2CIIP (y1, y2) = 0 =∇y1,y2ED̃
(
P
(
y1, y2, D̃

))
(22)
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We can interchange the gradient and expectation on the right hand side of Equation 22 (see Harrison and

van Mieghem (1999) for a proof), and thus Equation 22 becomes

∇y1,y2CIIP (y1, y2) = 0 = ED̄∇y1,y2P
(
y1, y2, D̃

)
= (h,h)T −ED̃λ

(
y1, y2, D̃

)
= (h,h)T −

∑
i

λiP (Ωi (y1, y2))
(23)

where λi is the constant λ
(
y1, y2, D̃

)
for D̃ ∈Ωi (y1, y2). �

A.2. Proof of Proposition 2

Based on the approximation used to formulate CLB, the difference in costs between CIIP and CLB is:

CIIP (y)−CLB(y) = (h+ po− s12)E
[(∑

i

Dio−
∑
i

(yi−Dis)
+
)+

+
∑
i

(Dis− yi)+−
(
D−

∑
i

yi

)+]
≥ (h+ po− s12)E

[(∑
i

Dio−
∑
i

(yi−Dis)
+ +

∑
i

(Dis− yi)+
)+

−
(
D−

∑
i

yi

)+]
= 0

The first inequality follows from : a+ + b+ ≥ (a+ b)+, and further simplification uses x+− (−x)+ = x. �

The proof follows for any number of stores, as long as the cross-shipping cost is a constant and s12 <h+po.

The proof also follows when s12 is reduced to s, as done in Equation 15.

A.3. Proof of Proposition 3

A similar result is proved in Dong and Rudi (2004, Lemma 1), who consider the case of traditional trans-

shipment. Substituting yDIP into the first order condition for CLB in Equation 13, we have:

(h+ po− s12)FD

(∑
j

yDIPj

)
+ (s12− s)FDi

(yDIPi ) + (ps− po + s)FDis
((yDIPi )− ps

= (h+ po− s12)

(
Φ

(
zDIP

∑
i

σi/σ

)
−Φ

(
zDIP

))
The equality follows from the fact that yDIP satisfies Equation 7, and the normality of demands, as we can

write yDIPi = µi+zDIPσi, where Di ∼N (µi, σi), and D∼N (µ,σ). As
∑
i

σi/σ≥ 1, it follow that the gradient

of CLB at yDIP is ≥ 0(≤ 0) whenever zDIP ≤ (≥)µi. Also, writing σ =
√∑

i

σ2
i +

∑
j

2ρlσiσj , where ρl is the

correlation coefficient between locations, yDIP is optimal to CLB and CIIP when ρl = 1. �

A.4. Proof of Proposition 4

Due to similarities to Dong and Rudi (2004), we have a similar solution where the optimal inventory at each

location is at the same critical fractile of the location’s demands. Equation 16 can be written as:

yLBNi = F−1
Dis

(
m

ps− po + s

)
, ∀i∈ Sso (24)

where m= ps− (h+ po− s)FDS (
∑
j∈S

yLBNj ). Substituting Equation 24 into the definition of m, we have:

∑
j∈S

F−1
Dis

(
m

ps− po + s

)
= F−1

DS

(
ps−m
h+ po− s

)
(25)

Solving this yields a unique solution for m, which in turn yields a unique solution yLBN, where each stores

stocks at the same critical fractile of their in-store demand, as seen from Equation 24. �

For OFCs (i ∈ So), yLBNi = 0, as otherwise, the value of m is forced to be ps − po + s, which renders

Equation 24 to infinity.
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A.5. Proof of Proposition 5

Consider a square of unit area in which N stores are uniformly distributed. Let the square be divided into
√
N identical cells, such that each cell contains

√
N stores. The dimensions of each cell are thus 1

N
1
4
× 1

N
1
4

.

The superscript l for a demand variable (e.g. Dl
is) denotes that the demand belongs to a store in cell l.

Let CLB′
be the cost function obtained from CIIP by lowering all cross-shipping costs to the within-region

shipping cost s. Let CIIPc and CLB′
c be the functions obtained by restricting CIIP and CLB′

respectively,

so that cross-shipments can only be made between two stores belonging to the same cell. Clearly, CIIP (y)≤
CIIPc(y) and CLB′

(y) ≤ CLB′
c(y) for any y ≥ 0. Let g(y,N) denote the cost incurred by N stores starting

with inventory y each, without the option of cross-shipping:

g(y,N) =

N∑
i=1

[
h (y−Di)

+
+ ps (Dis− y)

+
+ po

(
Dio− (y−Dis)

+
)+

+ smin
(
Dio, (y−Dis)

+
)]

Note that g(y,N) represents the sum of costs incurred by individual stores, and hence, Eg(y,N) =

E
√
N∑

l=1

g(y,
√
N) =

√
Ng(y,

√
N). Let CSij(y,N) denote the cross-shipped quantity between stores i and j,

when there are N stores with order-up-to quantity y each (CSlij when defined within a cell). Note that both

the functions g and CSij also depend on the demand vector, but the dependency is ignored for notational

convenience. As the cells are identical in terms of demands and costs, we have:

CIIPc(yIIPH) = E

√N∑
l=1

g(yIIPH ,
√
N) +

√
N∑

i=1

√
N∑

j=1,j 6=i

(slij −h− po)CSlij(yIIPH ,
√
N)


= Eg(yIIPH ,N) +E

√N∑
l=1

√N∑
i=1

√
N∑

j=1,j 6=i

(slij −h− po)CSlij(yIIPH ,
√
N)


CLB′

(yIIPH) = CLB′
c(yIIPH)

+ (s−h− po)E

√N∑
l=1

√N∑
i=1

Dl
io−

(
yIIPH −Dl

is

)++

−

(
N∑
i=1

Dio−
(
yIIPH −Dis

)+)+


= Eg(yIIPH ,N) +E

√N∑
l=1

√N∑
i=1

√
N∑

j=1,j 6=i

(s−h− po)CSlij(yIIPH ,
√
N)


+ (s−h− po)

√NE

√N∑
i=1

Dl
io−

(
yIIPH −Dl

is

)++

−E

(
N∑
i=1

Dio−
(
yIIPH −Dis

)+)+


The expression for CLB′
is written as the sum of CLB′

c which restricts cross-shipping to within each cell, and

the cost of the additional cross-shipped units with this restriction removed. We know that CLB(yIIPH) ≤
CLB′

(yIIPH)≤CIIP (yIIPH)≤CIIPc(y), where the first inequality follows from Proposition 5. We first show

that CIIPc (yIIPH)

CLB′ (yIIPH)
→ 1 as N →∞. We have:

CIIPc(yIIPH)

CLB′(yIIPH)
− 1 =

E

(√
N∑

l=1

(√
N∑

i=1

√
N∑

j=1,j 6=i
(slij − s)CSlij(yIIPH ,

√
N)

))
CLB′(yIIPH)

+

(h+ po− s)

√NE

(√
N∑

i=1

Dl
io− (yIIPH −Dl

is)
+

)+

−E
(

N∑
i=1

Dio− (yIIPH −Dis)
+

)+


CLB′(yIIPH)
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We have slij−s= f(dlij)≤ f
( √

2

N
1
4

)
, as the maximum distance within a cell is

√
2

N
1
4

. Thus, using CLB′
(yIIPH)≥

E

(√
N∑

l=1

(√
N∑

i=1

√
N∑

j=1,j 6=i
(s)CSlij(y

IIPH ,
√
N)

))
for the first term, and CLB′

(yIIPH)≥ sµoN for the second term,

we have

CIIPc(yIIPH)

CLB′(yIIPH)
− 1≤

f
( √

2

N
1
4

)
s

+

(
h+ po− s
sµo
√
N

)
E

√N∑
i=1

Dio−
(
yIIPH −Dis

)++

(26)

The first term on the right hand side vanishes to zero as N →∞, as f(d)→ 0 as d→ 0. To simplify the

second term, we need the following lemmas.

Lemma 1. If h< po− s, then yIIPH >µ where µ= µs +µo, and if additionally h< (ps− po + s)Fs(µ),

yIIPH→ F−1
s

(
ps− po + s−h
ps− po + s

)
∈ (0,∞), as N →∞ (27)

Proof: Lemma 1 is proved from the optimality equations of CLBN (Equation 16) for identical stores:

(h+ po− s)P

(
N∑
i=1

Di ≤NyIIPH
)

+ (ps− po + s)FD1s
(yIIPH) = ps

From the above equation, when h < po − s, we have ps < 2 (po− s)P
(

N∑
i=1

Di ≤NyIIPH
)

+ (ps− po + s).

This simplifies to yield yIIPH > µ. Now, by applying the central limit theorem as N →∞ and yIIPH > µ,

P
( N∑
i=1

Di/N ≤ yIIPH
)
→ 1, and the result follows. Note that the asymptotic solution should also satisfy

yIIPH >µ, which translates to the condition h< (ps− po + s)Fs(µ). �

Lemma 2. When h < po − s and h < ps − (po − s), and the demands are bounded above as Dis ≤Ms and

Dio ≤Mo for all i,

P

√N∑
i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+≤ exp

{
−2
√
N(yIIPH −µ)2

Mo +Ms

}
(28)

Proof:

P

√N∑
i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+= P

√N∑
i=1

(
Di−

(
Dis− yIIPH

)+)
>
√
NyIIPH

≤ P

√N∑
i=1

Di >
√
NyIIPH


≤ exp

{
−2
√
N(yIIPH −µ)2

Mo +Ms

}
→ 0, as N →∞

The final inequality follows from the Hoeffding bound for tail probabilities Hoeffding (1963), as yIIPH > µ

and demands are bounded, and the limit exists as yIIPH approaches a finite positive quantity as N →∞ by

Lemma 1. The expectation in the second term of Equation 26 can be bounded as follows:

E

√N∑
i=1

(
Dio−

(
yIIPH −Dis

)+)+

=E

√N∑
i=1

(
Dio−

(
yIIPH −Dis

)+)+ ∣∣∣∣∣
√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+P
√N∑
i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+
≤E

√N∑
i=1

Dio

∣∣∣∣∣
√
N∑

i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+P
√N∑
i=1

Dio >

√
N∑

i=1

(
yIIPH −Dis

)+
≤Mo

√
N exp

{
−2
√
N(yIIPH −µ)2

Mo +Ms

}
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The last inequality follows from Lemma 2 and the boundedness of the demands as Dis ≤Ms, and Dio ≤Mo

for all i with 0<Ms,Mo <∞. �

Thus, we have:

CIIPc(yIIPH)

CLB′(yIIPH)
≤ 1 +

f
( √

2

N
1
4

)
s

+

(
h+ po− s

sµo

)(
Mo

√
N exp

{
−2
√
N(yIIPH −µ)2

Mo +Ms

})
→ 1, as N →∞

(29)

The next step is to show the CLBN is off by a constant factor from the CLB′
. From the proof of Proposition

2, the difference simplifies to:

CLB
′

(yIIPH)−CLBN(yIIPH)

= (h+ po− s)E

( N∑
i=1

Dio−
(
yIIPH −Dis

)+)+

+

N∑
i=1

(
Dis− yIIPH

)+−(D− N∑
i=1

yIIPH

)+


where D=
∑N

i=1Dis +Dio.

Similar to what was done to bound the second term in Equation 26, we can show that whenever the

conditions in Lemma 2 are satisfied, E
(

N∑
i=1

Dio− (yIIPH −Dis)
+

)+

≤MoN exp
{
−2N(yIIPH−µ)2

Mo+Ms

}
. Thus, we

have:

CLB
′

(yIIPH)−CLBN(yIIPH)≤ (h+ po− s)

[
MoN exp

{
−2N(yIIPH −µ)2

Mo +Ms

}
+

N∑
i=1

(
Dis− yIIPH

)+]

Using CLBN(yIIPH)≥ sµoN and CLBN(yIIPH)≥ (ps− po + s)
N∑
i=1

(Dis− yIIPH)
+

, we have:

CLB′
(yIIPH)

CLBN(yIIPH)
− 1≤

(
h+ po− s

sµo

)(
Mo exp

{
−2N(yIIPH −µ)2

Mo +Ms

})
+

(
h+ po− s
ps− po + s

)
(30)

Thus, from Equations 29 and 30, as N →∞, we have

CIIPc(yIIPH)

CLBN(yIIPH)
≤ 1 +

h+ po− s
ps− po + s

⇒ CIIPH

CLBN(yIIPH)
≤ h+ ps
ps− po + s

The final step follows from CIIPc(yIIPH)≥CIIP (yIIPH) =CIIPH . �

The result may hold subject to some generalizations, such as the unit square can be replaced with any

finite area, and non-identical cells as long as the number of stores in each cell grows to infinity as N →∞.

The resulting cases may call for a more complicated proof, and is outside the scope of this study.

A.6. Proof of Proposition 6

Consider the single period case, where items are ordered at the start of the period, and online demands

are fulfilled over T fulfillment epochs. Assume that CT+1(xT+1, D̃T+1) = 0 without loss of generality. Thus,

CT (xT, D̃T ) is given by a simple linear program which is jointly convex in (xT, D̃T ). This leads to the base

case result that CT (xT, D̃T ) is convex in xT given any D̃T . By backward induction, we need to show that

Ct(x
t, D̃t) is convex in xt for any given D̃t, with the assumption that Ct+1(xt+1, D̃t+1) is convex in xt+1

given any D̃t+1. The cost-to-go function can be represented by Ct(x
t, D̃t) = min

zt,Zt∈∆
G(xt, D̃t,zt,Zt), where

G(xt, D̃t,zt,Zt) =
[
P (xt, D̃t,zt,Zt) +ECt+1(xti − zti −

N∑
j=1

Ztij , D̃
t+1)

]
(31)
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Consider any µ≥ 0, and xt
1,x

t
2 ≥ 0. Let (zt

i ,Z
t
i ) = arg min

zt,Zt∈∆

G(xt
i , D̃

t,zt,Zt). Note that P is a linear function

in its variables (Equation 2), and ECt+1(xt+1, D̃t+1) is convex in xt+1, as expectation preserves convexity.

Let x̄t = µxt
1 + (1−µ)xt

2, z̄t = µzt
1 + (1−µ)zt

2 and Z̄t = µZt
1 + (1−µ)Zt

2. We have:

Ct(x̄
t, D̃t) = min

zt,Zt∈∆

[
P (x̄t, D̃t,zt,Zt) +ECt+1(x̄ti − zti −

N∑
j=1

Ztij , D̃
t+1)

]
≤ P (x̄t, D̃t, z̄t, Z̄t) +ECt+1(x̄ti − z̄ti −

N∑
j=1

Z̄tij , D̃
t+1)

≤ µP (xt
1, D̃

t,zt
1,Z

t
1) + (1−µ)P (xt

2, D̃
t,zt

2,Z
t
2) +ECt+1(x̄ti − z̄ti −

N∑
j=1

Z̄tij , D̃
t+1)

(32)

The first inequality follows from the feasibility of z̄t, Z̄t in ∆, as (zt
1,Z

t
1) and zt

2,Z
t
2) are feasible in ∆. The

second inequality follows from the convexity of P . As ECt+1(xt+1, D̃t+1) is convex in xt+1, we have:

ECt+1

(
x̄ti − z̄ti−

N∑
j=1

Z̄tij , D̃
t+1
)

=ECt+1

[
µ

(
xt1,i− zt1,i−

N∑
j=1

Zt1,ij

)
+ (1−µ)

(
xt2,i− zt2,i−

N∑
j=1

Zt2,i

)
, D̃t+1

]

≤ µECt+1

[
xt1,i− zt1,i−

N∑
j=1

Zt1,ij , D̃
t+1

]
+ (1−µ)ECt+1

[
xt2,i− zt2,i−

N∑
j=1

Zt2,i, D̃
t+1

]
(33)

Thus, from Equation 31, we have:

Ct(x̄
t, D̃t)≤ µG(xt

1, D̃
t,zt

1,Z
t
1) + (1−µ)G(xt

2, D̃
t,zt

2,Z
t
2)

= µCt(x
t
1, D̃

t) + (1−µ)Ct(x
t
2, D̃

t)
(34)

The equality follows from the definitions of (zt
1,Z

t
1) and (zt

2,Z
t
2). �

A.7. Proof of Proposition 7

Let the single period cost function be given by CIIP (y) = EC1(y, D̃), and let yIIP be the optimal solution.

When the initial level of inventory xi at region i before ordering, the cost function is as follows:

V IIP (x) = min
y≥x

CIIP (y) =CIIP (yIIP ) (35)

As yIIP minimizes the function CIIP , for any {x : x≤ yIIP}, it is optimal to order up to yIIP . We ignore

cases where xi > y
IIP
i for some i, as eventually the system is brought to the state x≤ yIIP .

For the multiple period case, we have M time periods: m= 1,2, ..,M . The in-store demands {Dm
is ,m> 0}

and online demands {Dm
io ,m > 0} are assumed to be i.i.d. The available inventory at the end of a review

period serves as the initial inventory for the next review period, and we assume zero purchasing costs. The

discount factor is δ ∈ (0,1].

The proof is by induction, and similar to the proof of Proposition 4 in van Mieghem and Rudi (2002).

If we show that V IIP
m (xm), the expected cost-to-go function evaluated in review period m with the initial

inventory xm, is convex and affine, a stationary base stock policy would be optimal. For the M + 1th review

period, the cost function is V IIP
M+1(xM+1) = 0 (assuming zero purchasing costs) which is trivially convex and

affine in xM+1. Let V IIP
m+1 be convex and affine in xm+1. The cost function for review period m is:

V IIP
m (x) = min

y≥x

[
CIIP (y) + δEV IIP

m+1

(
f
(
y, D̃

))]
= min

y≥x
U IIP
m (y) (36)
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where f (y,D) is the vector of ending inventories. D̃ is the demand vector constituting the in-store and online

demands for both the regions. As taking expectation preserves convexity, and the sum of convex functions is

convex, U IIP
m (y) is convex in y. It only remains to be shown that V IIP

m is affine in x. To show this, consider

any y≤ yIIP , so that f
(
y, D̃

)
≤ y≤ yIIP . We have

U IIP
m (y) =CIIP (y) + δEV IIP

m+1

(
f
(
y, D̃

))
=CIIP (y) + δEV IIP

m+1

(
yIIP

)
(37)

as V IIP
m+1 is affine in xm+1 and the purchasing cost is zero. Clearly, y = yIIP minimizes U IIP

m for y ≤ yIIP .

Thus, V IIP
m (x) = max

y≥x
U IIP
m (y) is affine (constant) in x for all x≤ yIIP , and hence a stationary base-stock

policy yIIP is optimal if x ≤ yIIP . If there is some i for which xi > yIIPi , the optimal policy will be more

complicated, but eventually, the system comes back to x≤ yIIP . �

Appendix B: Demand Regions for the IIP Solution

We illustrate the identification of demand regions in which the dual vector λ is constant (as discussed in

Section 3.1.3) and the calculation of the corresponding probabilities. For any given (y1, y2), the demand

space (D1s,D1o,D2s,D2o) can be divided into a number of independent regions. Based on the values taken

by the variables in the optimal solution in (20), Table 1 shows the different cases that are possible given

y1 and y2. From these cases, the independent demand regions are listed in Table 2 along with the constant

dual prices in those regions. The underlined cases are redundant, and can be discarded while calculating the

probability for each region. The dual prices λ1, λ2 are the shadow prices of the constraints which contain y1

Table 1 Table showing the various demand cases based on the values of y1, y2

A B C D

1 y1 <D1s D1s ≤ y1 <D1 D1 ≤ y1 <D1 +D2o y1 ≥D1 +D2o

2 y2 <D2s D2s ≤ y2 <D2 D2 ≤ y2 <D2 +D1o y2 ≥D2 +D1o

3 y1 + y2 <D1 +D2 y1 + y2 ≥D1 +D2

Table 2 Table showing the various demand regions and the corresponding constant dual-prices.

Region Case λ1 λ2 Region Case λ1 λ2

Ω1 A1,A2,A3 h+ ps h+ ps Ω11 C1,A2,A3 h+ po− s12 h+ ps

Ω2 A1,B2,A3 h+ ps h+ po− s Ω12 C1,B2,A3 h+ po− s12 h+ po− s
Ω3 A1,C2,A3 h+ ps h+ po− s12 Ω13 C1,B2,B3 0 s12− s
Ω4 A1,D2,A3 h+ ps 0 Ω14 C1,C2,B3 0 0

Ω5 A1,D2,B3 h+ ps 0 Ω15 C1,D2,B3 0 0

Ω6 B1,A2,A3 h+ po− s h+ ps Ω16 D1,A2,A3 0 h+ ps

Ω7 B1,B2,A3 h+ po− s h+ po− s Ω17 D1,A2,B3 0 h+ ps

Ω8 B1,C2,A3 h+ po− s h+ po− s12 Ω18 D1,B2,B3 0 s12− s
Ω9 B1,C2,B3 s12− s 0 Ω19 D1,C2,B3 0 0

Ω10 B1,D2,B3 s12− s 0 Ω20 D1,D2,B3 0 0
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and y2 respectively, namely the first set of constraints zi +
2∑
j=1

zij ≤ yi,∀i in the linear program in (20), and

can be obtain in a standard fashion from linear programming theory. For example, for the demand regions

with the case D1, that is, y1 ≥D1 +D2o, irrespective of the value of y2, there will be inventory left over at

retail store 1 at the end of the period. Thus the constraint z1 +
2∑
j=1

z1j ≤ y1 will not bind, and hence λ1 = 0.

The probability for each region is calculated as follows, when demands follow normal distributions. The

region is expressed as an inequality of the form RkD̃ <= SkY , where D̃ = [D1s,D1o,D2s,D2o]
ᵀ and Y =

[y1, y2]ᵀ. For example, Ω3 = (A1,C2) = {y1 <D1s,D2 ≤ y2 <D2 +D1o}. This can be expressed as:−1 0 0 0
0 0 1 1
0 −1 −1 −1


D1s

D1o

D2s

D2o

≤
−1 0

0 1
0 −1

[y1

y2

]

RkD̃ is multivariate normal with mean Rkµ and covariance matrix RkΣΣᵀRᵀk, where µ and Σ are the mean

and covariance matrices of D̃. The probability of region k reduces to evaluating the cumulative distribution

function of AkD̃ at BkY . For general demand distributions, numerical methods have to be employed.

Appendix C: Additional Details for Numerical Analyses

All numerical analyses were done on a desktop computer (i7-3770 CPU @3.7GHz, 16GB RAM). The total

market is assumed to be the top 300 most populous cities in mainland US. The demands for the OFCs are

calculated based on the population not covered by omnichannel stores. This online demand is allocated to

each OFC based on the optimal throughput rates estimated by Chicago Consulting (2013).

C.1. Simulation Procedure

A brief overview of the simulation is listed below:

1. The parameters for demands in each fulfillment epoch are calculated based on review-period demands

estimated from population data. The starting inventory level vectors yDIP and yIIPH are calculated

using the demand information based on Equation 7 and Algorithm 1 respectively.

2. We generate a sample of size 104, where each sample is a realization of demands in a review period,

although fulfillment decisions in each fulfillment epoch are made without knowing future demands. For

each sample, we iterate over steps 3-8, and take the sample averages as approximations for expectations.

3. The fulfillment thresholds for the TF policy are calculated based on Equation 19. For the MF policy,

these thresholds are set to zero.

4. For t = 1, . . . , T , iterate over steps 6-7. The starting inventory levels are set based on the inventory

policy followed (IIPH or DIP).

5. Implement Algorithm 2 based on the fulfillment policy followed (MF or TF) and the corresponding

thresholds calculated in Step 3.

6. At the end of each fulfillment epoch, the holding, penalty and fulfillment costs are calculated. The

ending inventory at a location becomes the starting inventory for the next epoch.

7. The total cost in a review period is the sum of the costs in each fulfillment epoch in that period.


