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Abstract

roles

strategies on the horizon.

Pancreatic ductal adenocarcinoma (PDAC) is a lethal cancer generally refractory to conventional treatments.
Cancer-associated fibroblasts (CAFs) are cellular components of the desmoplastic stroma characteristic to the
tumor that contributes to this treatment resistance. Various markers for CAFs have been explored including
palladin and CD146 that have prognostic and functional roles in the pathobiology of PDAC. Mechanisms of
CAF-tumor cell interaction have been described including exosomal transfer and paracrine signaling mediated
by cytokines such as GM-CSF and IL-6. The role of downstream signaling pathways including JAK/STAT, mTOR,
sonic hedge hog (SHH), and NFkB have also been shown to play an important function in PDAC-CAF cross talk. The
role of autophagy and other metabolic effects on each cell type within the tumor have also been proposed to play

in facilitating CAF secretory function and enhancing tumor growth in a low-glucose microenvironment. Targeting
the stroma has gained interest with multiple preclinical and clinical trials targeting SHH, JAK2, and methods of either
exploiting the secretory capability of CAFs to enhance drug delivery or inhibiting it to prevent its influence on cancer
cell chemoresistance. This review summarizes the most recent progress made in understanding stromal formation;
its contribution to tumor proliferation, invasion, and metastasis; its role in chemoresistance; and potential therapeutic

Keywords: Pancreas, Adenocarcinoma, Stroma, Tumor microenvironment, Cancer-associated fibroblast

Background

Progress in the treatment of pancreatic adenocarcinoma
(PDAC) remains elusive despite substantial time and re-
sources invested in the attempt to improve the dismal prog-
nosis. The American Cancer Society estimates that about
53,070 people will be diagnosed with and about 41,780 will
die of pancreas cancer in 2016 with the most recent SEER
database reporting a 7.7% five-year survival rate from 2006
to 2012. http://www.cancer.org/cancer/pancreaticcancer/
detailedguide/pancreatic-cancer-key-statistics https://seer.-
cancer.gov/statfacts/html/pancreas.html.

The characteristic desmoplastic stromal response con-
tributes to the challenge in treatment, as it has been
shown in multiple studies to promote tumor progres-
sion, invasion, metastasis, and chemoresistance [1-6].
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The stroma is comprised of cellular components, pre-
dominantly cancer-associated fibroblasts (CAFs), immune
cells, and a rich extracellular matrix (ECM), all of which
interact closely with the tumor cells and offer potential
therapeutic targets (Fig. 1) [7-9]. It is encountered as
“stickiness” during surgery presenting technical challenges
for achieving negative resection margins, which is cur-
rently the only chance of cure [10]. Only 20% of patients
present at an operative stage in their disease, making
effective chemotherapy crucial in the PDAC treatment
armamentarium https://www.cancer.gov/types/pancreatic/
hp/pancreatic-treatment-pdq. Gemcitabine, the historic
gold standard, has only a 23.8% clinical response rate and
6.6-month overall survival (OS) with some improvement
after the more recent addition of nanoparticle albumin-
bound (nab)-paclitaxel to 8.7 months [11-13]. The most
efficacious treatment, a three-drug regimen folinic acid
(leucovorin) 5-fluorouracil, irinotecan, oxalaplatin (FOL-
FIRINOX), often cannot be tolerated due to high toxicity
and patients’ poor performance status [14, 15].
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components including CAFs, immune cells, and extracellular matrix

Fig. 1 Pancreatic ductal adenocarcinoma with desmoplasia. The PDAC tumor microenvironment is comprised of cellular and acellular
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Treatment shortcomings are increasingly attributed to
the stroma inciting chemoresistance in the PDAC cells,
as well as decreasing microvascularity and, therefore,
drug delivery [3, 5, 6]. Contrary to these tumor-
protective principles, two groups, Ozdemir et al. and
Rhim et al.,, both found that outright depletion of stroma
actually led to more aggressive tumors with decreased
OS, emphasizing the complexity of the stromal-tumor
interaction [16, 17]. We aim to provide an update on the
progress made in understanding the CAF stromal com-
ponent with an overview of stromal formation;
characterization of its role in tumor progression, inva-
sion, and metastasis; and the mechanisms of stromal
influence on PDAC chemoresistance. Potential thera-
peutic strategies can be derived from much of this new
knowledge and a number of clinical trials are in develop-
ment or currently underway.

Formation and characterization of PDAC-
associated stroma

CAFs develop from bone marrow-derived mesenchy-
mal stem cells (MSCs), pancreatic stellate cells
(PSCs), and quiescent resident fibroblasts through
multiple pathways of activation including epithelial-
mesenchymal transition (EMT) (Fig. 2). Previously de-
scribed pathways of CAF activation include sonic
hedgehog (SHH), TGF-B, TNF-a, interleukins 1, 6,
and 10 [18-21]. CAFs are formed from MSCs re-
cruited from the bone marrow that are aided by
growth factors and cytokines such as CCL2, hepato-
cyte growth factor, and fibroblast growth factor (FGF)
[22-24]. Once activated, CAFs of all origins take on a
largely secretory and contractile function. Histologic
characterization of PDAC stroma continues to be on-
going. In 2008, Erkan et al. described four collagen
deposition patterns and determined that up to 80% of

the tumor volume is comprised of stroma [25]. Lakio-
taki et al. most recently described CAFs in human
pancreatic tumors as densely arranged around all car-
cinomatous structures in a complete or incomplete
perineoplastic ring. CAFs were scant, however, around
all benign tissue and ducts [26].

The group also newly described vascular elastotic
changes seen most prominently within the neoplastic
tissue and less prevalent at the tumor periphery.
Interestingly, no elastic fibers were seen around car-
cinomatous structures or within the stroma. Native
fibroblasts, smooth muscle cells, and endothelial cells
typically produce elastin, and native fibroblasts are
localized around the duct and adventitia before acti-
vation into CAFs. Their findings indicate that these
CAFs do not seem to be involved in the elastic fiber
deposition given the differing location of the cells and
fibers, although the possibility of degradation by
matrix metalloproteinases (MMPs) should be consid-
ered [26].

Investigations into other carcinomatous tumors al-
lude to novel mechanisms of stromal activation in-
cluding exosomal transformation of mRNA from
cancer cells [27], as well as paracrine and autocrine
activation of cancer-promoting pathways such as
CXCR4-SDF1A [27, 28]. Epigenetic mechanisms in-
cluding DNA methylation have also been found to
regulate genes involved in formation of ECM [29].
Kohi et al. most recently demonstrated that produc-
tion of hyaluronan (HA)—an abundant ECM compo-
nent in PDAC and a marker of poor prognosis—is
regulated by DNA methylation as demonstrated by
the upregulation of hyaluronan synthase with a DNA
methylating agent and confirmation by knockdown of
DNA methyltransferase 1 [29]. Another group’s find-
ings suggest that PDAC cells reprogram stromal cells
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Fig. 2 Stromal activation and tumor-stromal interaction. Multiple complex pathways of CAF activation have been found. Once activated, CAFs
closely interact with tumor cells through various mechanisms leading to tumor growth, invasion, and metastasis
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through DNA methylation of genes such as SOCSI1
through direct cell-to-cell contact rather than para-
crine signaling [30].

Cellular markers for CAFs

The heterogeneity demonstrated within CAF popula-
tions necessitates reliable markers. Some have been
established, but a true, unique marker is yet to be
discovered. Native fibroblasts stain for vimentin and,
once activated, stain positive for alpha-smooth muscle
actin (aSMA) [31]. Other CAF markers previously re-
ported include stromal cell-derived factor-la (SDF1A),
fibroblast activation protein (FAP), and fibroblast-
specific protein-1 (FSP-1) [28, 32]. More recent stud-
ies, such as that by Cannon et al., found that palladin,
an actin-binding protein highly expressed in cancers,
actually precedes aSMA expression in cells undergo-
ing activation to CAFs. The group further elucidated
the role of palladin isoform 4 in CAF activation in-
cluding its location in the cytoplasm and nucleus, and
its role in expression of genes associated with colla-
gen formation and MMP activation pathways demon-
strated by shRNA knockdown [31].

Molecular pathways regulating stromal
functionality

Various cellular pathways have been implicated in
regulating CAF functions. Recently, one of four key

mutations in PDAC tumorigenesis, loss of TP53, has
been shown to influence stromal formation as well. A
recent study demonstrated that the TP53 mutation is
correlated with STAT3 phosphorylation upon IL-6 ex-
posure and persists in a feed-forward autocrine loop.
They further showed that persistent STAT3 activation
upregulates SHH and suppresses GLI3, a transcription
factor known to suppress stromal formation. They
confirmed these findings in vivo, demonstrating that a
JAK2 inhibitor depleted the stroma and resulted in
densely packed ductal tumor cells with decreased PSC
activation, as well as diminished and altered collagen
structures [33].

Negative regulation of stromal formation was observed
to occur by CD146—also known as melanoma-specific
cell adhesion molecule (MCAM)—signaling. CD146
knockdown increased the viability of CAFs, as well as
the expression of fibroblast activation protein (FAP) and
fibronectin, additional known markers of CAF activation.
The reciprocal findings were demonstrated with CD146
overexpression further confirming their findings [34].

During activation, CAFs undergo metabolic stress,
which activates autophagy, by inducing protein kinase B
(AKT) and inhibiting mTOR signaling pathways to meet
the increased energy demands of a secretory cell. Using
the mitochondrial uncoupling agent, rottlerin, Su et al.
demonstrated that metabolic stress altered gene expres-
sion of ECM proteins and upregulated CHOP, a pro-
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apoptotic transcription factor modulating cell fate [35].
Additionally, the pro-tumorigenic cytokine IL-6 was sig-
nificantly downregulated by metabolic stress but IL-4, an
immune modulator, was significantly upregulated.

Role of stromal cells in cancer proliferation,
progression, and invasion

Once activated, the PDAC stroma plays a dynamic part
in tumor cell proliferation and invasion, the mechanisms
of which are gradually being elucidated (Fig. 2) [1, 2, 36].
In addition to autocrine and paracrine influences of
CAFs on PDAC tumor cells, translocation of metabolic
substrates have been shown to transfer from CAFs to
tumor cells via exosomes. Zhao et al. demonstrated by
isotope tracing that exosomes from CAFs containing
lactate, acetate, amino acids, lipids, and tricarboxylic
acid (TCA) cycle intermediates actually reprogrammed
cancer cells to inhibit mitochondrial oxidative phosphor-
ylation and upregulate glycolysis and glutamine-
dependent reductive carboxylation likely via miRNA and
substrate transfer [37]. Another metabolic study demon-
strated that CAF autophagy, stimulated by tumor cells,
causes alanine secretion which actually outcompetes
glutamine and, in turn, provides fuel for those tumor
cells in its low-glucose microenvironment [38].

It has been reported that the transcription factor
ETV1 plays an important role in orthotopic xenograft
models of PDAC in mice. Heeg et al. found that ETV1
overexpression doubled tumor volume by stromal
expansion, altered the stromal morphology, increased in-
vasive capacity, and upregulated EMT and MMP regula-
tors including SLUG, SNAIL, TWIST, vimentin, ZEB1,
ZEB2, and MMP9. They also identified secreted protein
acidic cysteine-rich (SPARC) and hyaluronan synthetase
2 (HAS2) as important separate downstream targets,
both known modulators of stromal expansion [39]. In
fact, SPARC knockdown completely abrogated the pro-
tumorigenic effects of ETV1 overexpression solidifying
this pathway link.

Another key player in CAF-tumor cell cross talk is
FAP, which has been shown to play a critical role in
ECM formation, angiogenesis, cell motility, immune
suppression, and ultimately clinical outcome [40].
Kawase et al. confirmed the role of FAP in cancer cell
invasion and EMT and additionally showed its role in
the activation of cell cycle progression by phosphoryl-
ation of Rb protein in PDAC cells. They also demon-
strated that TGF-P, which has been linked to induction
of EMT, induces FAP expression [41].

The aforementioned negative regulator of stromal for-
mation, CD146 or MCAM, was also found to have a role
in tumor progression and invasion. Zheng et al. identi-
fied a CD146-positive subpopulation of CAFs in patient
samples and found that CD146-negative patients were
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more likely to have higher tumor grade, clinical stage,
and likelihood of residual tumor post-operatively.
CD146-positive patients also had increased disease-free
time post-operatively with more than double median
survival. Knockdown of CD146 was found to enhance
tumor cell migration and invasion and most notably up-
regulated growth factors and pro-inflammatory genes in-
cluding SDF1A, CXCL1, CCL5, hepatocyte growth
factor (HGF), and COX2, likely via NFkB suppression.
Interestingly, cancer cells were identified as a potential
downregulator of CD146 after identifying FGF—pro-
duced by PDAC cells—as an inhibitor of CD146 and in-
ducer of NFkB [34].

This heterogeneity within stromal cells is becoming
more apparent. Waghray et al. identified a subpopula-
tion of CAFs designated as cancer-associated mesenchy-
mal stem cells (CA-MSCs) and demonstrated their role
in invasion as mediated by granulocyte-macrophage
colony-stimulating factor (GM-CSF) [42]. Their findings
mirrored those of Heeg et al. in demonstrating larger
tumors with the addition of CA-MSCs for in vivo
models, but they also demonstrated increased prolifera-
tion of cancer cells themselves with increased Ki67
expression as well as stromal expansion [39]. The group
further demonstrated a mechanism through which GM-
CSF production by CA-MSCs induces invasion by down-
regulation of E-cadherin and upregulation of TWIST1
and vimentin via the JAK2/STAT3 pathway, suggesting a
link to results obtained by Wormann et al. [33].

Role of CAFs in regulating metastasis
Many of the mechanisms involved in stromal influence
on tumor progression and invasion also exhibit influence
on metastasis. Unique and dynamic features of stromal
components of the metastatic lesions themselves are also
beginning to be described [33, 39, 43]. Aiello et al. char-
acterized stroma within metastatic lesions in an autoch-
thonous model of PDAC. They showed that
myofibroblasts appear when metastases are as small as
6-7 cells and that cell populations within these lesions
become more epithelial during growth. They found that
stromal volume, including cellular and extracellular
components, eventually reaches levels similar to primary
lesions [43]. Heeg et al. found that overexpression of
transcription factor ETV1 drastically increased the inci-
dence and volume of micro- and macrometastasis in
mouse models. Those metastatic lesions were also ob-
served to have a marked stromal expansion themselves.
SPARCI1 knockdown in mice had similar metastatic rates
to controls demonstrating this protein’s role in the
ETV1-induced pathway [39].

Nielson et al. elegantly demonstrated that the regula-
tion of stroma within PDAC liver metastases is unique
and dependent on immune interactions, which may
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actually precede cancer cell metastasis. The group
injected mice intrasplenically with KPC, a murine PDAC
cell line, and found that immune cells—initially inflam-
matory monocytes followed by metastasis-associated
macrophages (MAMs)—accumulated in the liver. They
did not detect aSMA-marked stromal expansion in these
injected mice; however, expansion was seen in the estab-
lished experimental and spontaneous mouse tumor me-
tastases. They further demonstrated that these MAMs
were bone marrow-derived rather than native Kupffer
cells. In contrast, the metastasis-associated fibroblasts
were found to be of local origin, presumably hepatic
stellate cells. Similar indications that the tumor micro-
environment facilitates homing and invasion have been
described in colon cancer and other tumors [44, 45].

This same group showed through abolition of macro-
phage trafficking that the incidence of metastasis and
fibroblast activation were decreased after intrasplenic
KPC injection. Chemical ablation of MAMs in these
mice at a time point after metastatic seeding had
occurred to also decreased accumulation of activated
myofibroblasts and reduced the size of the area covered
by metastatic cells, though it did not significantly reduce
the metastatic frequency. Macrophage-conditioned
media was demonstrated to strongly activate quiescent
fibroblasts, and by secrotome analysis, granulin was
established as the main effector. Interestingly, granulin
was expressed in the bone marrow-derived macrophages
of the liver metastases but not in those macrophages
found at the primary tumor site. They also showed that
periostin, a paracrine stimulator of tumor cells, was also
dependent on granulin in its pro-tumerigenic effects,
again as evidence of the cross talk within the PDAC
milieu [4].

Role of stromal cells in chemoresistance

The stroma has been shown to facilitate chemoresis-
tance through physical barrier methods as well as
paracrine cross talk and transformation of tumor cells
[3, 5, 6]. Wormann et al. demonstrated that gemcita-
bine, when administered with a JAK2 inhibitor, mark-
edly decreased tumor growth and increased overall
survival [33]. Another modulator of chemoresistance
appears to be the SDF1A/CXCR4 axis. The known in-
ducer of proliferation, migration, and invasion was
also found to facilitate chemoresistance through FAK/
AKT with autocrine activation of IL-6 [46]. SDF1A
was expressed in CAFs while CXCR4 was active in
PDAC cells, where IL-6 was also induced, again dem-
onstrating the close interplay between stromal and
tumor cells. Duluc et al. confirmed the role of IL-6 in
tumor-CAF cross talk and also demonstrated the im-
portance of the mTOR/4E-BP1 axis on imparting che-
moresistance. The group also found that secreted
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factors from CAFs including IL-6 induced cancer cell
production of survivin, an inhibitor of apoptosis [47].

Disparate results have called into question the physical
barrier theory of stroma imparting chemoresistance.
Most recently, Aiello et al. demonstrated in mouse
models a widespread reduction in metastases with
chemotherapy administration both in lesions with min-
imal and dense stroma. Little is known though about the
character and function of stroma within PDAC metasta-
ses [43]. Zechner et al. did find that, within primary
tumors treated with a combination of metformin and
gemcitabine, metformin better inhibited cancer cells
near the desmoplastic stroma, whereas gemcitabine
inhibited proliferation in cells distant to the stroma [48].
Hesler et al. showed that CAFs serve as sources of
CYR61 in co-culture models and induce chemoresis-
tance by downregulating nucleoside transporters that
mediate cellular uptake of gemcitabine [49]. Together,
these studies indicate that further research is needed to
understand the ability of PDAC to develop chemoresis-
tance in order to either exploit or overcome the stromal
component of the tumor.

Therapeutic strategies targeting stromal cells
Many of the studies in this review reveal potential drug-
gable targets, some of which have already been investi-
gated both preclinically and, some, clinically (Table 1).
The first stroma-targeting treatments on clinical trial
were SHH inhibitors. Though multiple trials continue to
be ongoing, a number have failed with striking discrep-
ancy in results from preclinical data.

In another therapeutic approach utilizing all-trans
retinoic acid (ATRA)—chosen for the known vitamin A
storage capability of quiescent PSCs—the study drug,
when combined with gemcitabine, reduced cell prolifera-
tion and tumor invasion and also enhanced apoptosis of
cancer cells. ECM deposition and CAF invasive ability
and density were diminished both in vitro and in vivo.
PSC deactivation was also indicated by an increase in
retinoic acid receptor beta (RARB), which marks quies-
cence. Their findings also suggested a decrease in signal-
ing related to EMT through downregulation of Wnt
signaling in PSCs and reduction of nuclear TWIST1 and
ZEB1 transcription factors in PDAC cells with ATRA
administration [50].

CAF storage capability can also be harnessed for drug
delivery as Bonomi et al. demonstrated. The group
primed mesenchymal stroma cells of pancreas and bone
marrow origin with 2000 ng/ml of gemcitabine. After
co-culturing each with PDAC cells in vitro, they found a
50% reduction in PDAC cell proliferation [51]. Previous
work also demonstrated similar efficacy of this drug
delivery method for paclitaxel [12]. The drug was
described to deplete the stroma as less collagen was seen
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Drug Target Mechanism Preclinical results Clinical results Author
All-trans retinoic acid + PDAC and  CAF deactivation to  Decrease in transcription ~ N/A Carapuca et al. [50]
gemcitabine stroma quiescence with factors in PDAC cells
vitamin A storage Increased markers of
capacity stromal quiescence
Decrease in EMT
SPARC overexpression + PDAC via  Sequestration of 2.8x gemcitabine 50% reduction in PDAC cell Von Hoff et al. [12]
nab-paclitaxel stroma drug by SPARC concentration within proliferation
tumor Increase in endothelial
proliferation
PEGPH20 + gemcitabine Stroma Stromal degradation  Significant depletion 7.2-month progression-free Hingorani et al. [52]
by hyaluronidase of hyaluronan 4x i survival (PFS) and 12-month
ncrease microvessel OS in tumors highly expressing
lumen diameter hyaluronan
Increase in drug delivery  Overall response rate of 25
to tumor within first 24 h and 67% in high HA tumors
vs. 13% in standard therapy
Minimal side effects
Momelotinib, ruxulitinib + JAK2 JAK2 inhibition Depletion of stroma 0S 0.79 and PFS 0.72 hazard Hurwitz et al. [53]
nab-paclitaxel or gemcitabine Decreased PSC activation  ratio (HR) ruxolitinib vs. placebo  Dawkins et al.
Diminished and altered High inflammation subgroup: Koh et al.
collagen structures OS HR 047 vs. placebo Wormann et al. [33]
Ruxolitinib failed phase llI,
momelotinib ongoing
SHH inhibitors SHH Decreased stroma Conflicting results Conflicting results Olive et al. [5]
expansion Kim et al. [54]
Laheru et al.
Dejesus-Acosta et al.
Pasireotide CAFs Somatostatin analog  Reduced tumor growth N/A Duluc et al. [47]

Reduced chemoresistance

and neoplastic glands became more densely packed, but
the group did not stain for aSSMA or vimentin directly.
There was increased endothelial staining and a 2.8-fold
increase in gemcitabine concentration within the tumor
[12]. SPARC, present in the tumor stroma, was postu-
lated to sequester nab-paclitaxel contributing to its effi-
cacy in preliminary clinical trials. An association has
been drawn between SPARC and treatment response
with an increased overall survival; however, the presence
of SPARC generally has been associated with a poorer
prognosis [12].

Encouraging results of a phase Ib clinical trial may
point to the future of stromal manipulation in PDAC
treatment. Pegylated recombinant hyaluronidase
(PEGPH20) in combination with gemcitabine was
well tolerated with manageable musculoskeletal side
effects. Efficacy was analyzed for tumors expressing
high levels of hyaluronan (HA) histologically vs. low
expression. Progression-free survival (PFS) and OS
was 7.2 and 13 months for high HA tumors and 3.5
and 5.7 months for low HA tumors compared to the
current standard of care chemotherapy regimens of
8.5 months for nab-paclitaxel plus gemcitabine and
11.1 months for FOLFIRINOX. Preclinical data dem-
onstrate significant depletion of hyaluronan and a
four-fold increase in microvessel luminal diameter,

thereby increasing drug delivery within 24 h of
tumor exposure. Together, the results of this small
preliminary clinical trial suggest that PEGPH20 may
be most efficacious in tumors expressing high levels
of HA [52].

The JAK2 inhibitor momelotinib is currently under
investigation as an adjunct to nab-paclitaxel and gemci-
tabine. Phase II trial data of another JAK2 inhibitor, rux-
olitinib, demonstrated significant improvement in OS
within a high-inflammation subgroup; however, the
phase III trial was recently terminated due to lack of
demonstrated efficacy [53].

Duluc et al. effectively used pasireotide, a secretory
inhibitor similar to somatostatin to inhibit CAFs’
secretory capabilities, and found that it reduced
tumor growth and chemoresistance [51]. Somatostatin
analogs have been safely used clinically for decades,
providing a promising avenue for clinical exploration
much of which has already been undertaken in
pancreatic neurendocrine tumors.

Conclusions

Research into PDAC stroma is rich with potential for
improving treatment of this lethal tumor. Many as-
pects of the desmoplastic response have been
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reviewed here including mechanisms of stromal for-
mation, influence on tumor progression, invasion,
mestastasis, and chemoresistance, but further original
research is needed to make a significant impact for
patients with pancreatic cancer.
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