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Differences in biotic interactions across range edges
have only minor effects on plant performance
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Summary

1. It is widely expected that plant species will expand their ranges poleward in response to climate
change. In the process, individuals establishing beyond existing range margins will be exposed to
new biotic communities, including different assemblages of natural enemies. The resulting differ-
ences in biotic interactions could lead to scenarios of enemy release or biotic resistance, and if the
interactions are strong, they could influence plant performance and therefore colonization success.

2. In order to test whether natural enemies will affect range expansion dynamics, we transplanted
seven species along a 450-km latitudinal gradient that spanned the range edges of five of these spe-
cies. The experiment was conducted over 5 years with ~ 13 000 seedlings and included pesticide
treatments to reduce invertebrate herbivory. We measured foliar damage caused by disease and
invertebrate herbivores, seedling survival, light availability, soil moisture, soil nutrient concentrations
and several other variables in nine forests located in four regions along the latitudinal gradient.

3. We found that several species (Carya glabra, Liriodendron tulipifera, Quercus velutina and Robi-
nia pseudoacacia) tended to have less foliar disease beyond their range, but there were few substan-
tial differences in herbivory across range edges (with the exception of Liriodendron tulipifera).
After accounting for other variables, including environmental conditions and vertebrate herbivory,
we found that foliar disease decreased survival for four species (Acer rubrum, Quercus alba, Quer-
cus rubra and Quercus velutina) and foliar herbivory reduced survival for three species (Acer
rubrum, Liriodendron tulipifera and Quercus rubra).

4. However, the effects of these biotic interactions on survival were very small (0-5% reductions in
survival at observed levels of damage after four years), which is verified by the minor effects of the
pesticide treatment on seedling survival.

S. Synthesis. Our results suggest that foliar herbivores and pathogens are unlikely to play a major
role in the range expansion dynamics of these temperate tree species.
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Davis 1993; Petit et al. 2002; Williams et al. 2004). Some
studies have found empirical evidence for contemporary lati-
tudinal shifts of tree species distributions in North America

Introduction

Climate change is expected to cause shifts in species distribu-

tions as plants and animals track changing temperatures and
precipitation (Parmesan & Yohe 2003; Hickling et al. 2006;
Crimmins et al. 2011). Predictions of poleward range
expansion of plant species over the coming decades and cen-
turies are drawn from correlations between current species
distributions and climate (Iverson & Prasad 1998; Guisan &
Zimmermann 2000; Pearson & Dawson 2003), and palaeore-
constructions of shifts in vegetation composition during previ-
ous periods of climate change (Davis 1983; Graumlich &
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(Woodall et al. 2009; Murphy, Vanderwal & Lovett-Doust
2010; Boisvert-Marsh, Péri¢ & de Blois 2014; Desprez et al.
2014), whereas others have not (Zhu, Woodall & Clark
2012). The variability in how species distributions respond to
climate change highlights the potential importance of non-cli-
matic drivers, such as biotic interactions.

Biotic interactions with natural enemies, competitors and
mutualists have the potential to influence range expansion
dynamics of terrestrial plants by systematically affecting the
performance of plants establishing beyond their current range,
where populations do not yet exist (hereafter referred to as
‘migrants’) (Cairns & Moen 2004; Moorcroft, Pacala & Lewis
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2006; Morrién et al. 2010; HilleRisLambers er al. 2013; Wisz
et al. 2013). The effects of natural enemies on plant popula-
tions are often substantial (Katz 2016), as are their subsequent
effects on ecosystem function (Hicke er al. 2012). It is
increasingly thought that predictions of changes in species
distributions in response to climate change should take herbi-
vores and pathogens into account (Van der Putten, Macel &
Visser 2010; Zarnetske, Skelly & Urban 2012; Svenning
et al. 2014). While several studies have investigated how soil
communities differentially affect native versus migrant plants
(van Grunsven ef al. 2010; Stanton-Geddes & Anderson
2011; McCarthy-Neumann & Ibanez 2012), little is known
about whether existing above-ground herbivore and pathogen
communities will affect latitudinal range expansion.

Populations on the expanding edge of a species distribution
often escape from specialist natural enemies, as is shown by
an increasing number of case studies from various organisms
(Alexander er al. 2007; Menéndez et al. 2008; Patot et al.
2010; Phillips et al. 2010b; Tsai & Manos 2010). This can
happen because of low host densities on range edges and
because migrant populations on expanding range fronts origi-
nate from repeated founding events, each of which offers a
chance to leave specialists behind (Phillips, Brown & Shine
2010a). Moreover, in a glasshouse experiment, successful
range-expanding plants were less affected by a naive herbi-
vore (Engelkes et al. 2008), showing that migrants can also
be released from generalist herbivores. Even though enemy
release is transient because of pest and pathogen accumulation
(Brandle et al. 2008; Diez et al. 2010; Mitchell et al. 2010),
it could still help migrant plants outperform native ones,
increasing colonization success and overall rates of range
expansion (Moorcroft, Pacala & Lewis 2006).

However, as range-expanding species enter new areas, they
will encounter indigenous natural enemies; biotic resistance
from the existing community could potentially prevent new
plant species from establishing there. There are many exam-
ples of native generalist herbivores reducing the performance
of plants of exotic (i.e. intercontinental) origin (Levine, Adler
& Yelenik 2004; Parker, Burkepile & Hay 2006). However,
there are substantial differences between intra-continental
range expansion and inter-continental range expansion (as
reviewed in Morrién ef al. 2010; Van der Putten, Macel &
Visser 2010). First, natural enemy community composition
may not change abruptly at the edge of a plant species range.
Secondly, existing plant communities may contain species
that are closely related to the migrant; in this case, specialist
natural enemies may transfer quickly (Connor et al. 1980;
Bertheau et al. 2010). Scenarios of both enemy release and
biotic resistance are possible and only in situ experimental
field studies can determine how the net effects of biotic inter-
actions will vary across range edges (Morrién ef al. 2010;
van der Putten 2011; Renwick & Rocca 2015).

Whether the net differences in biotic interactions are posi-
tive or negative, they are likely to have the largest effect on
early life stages, which tend to be more strongly affected by
density-dependent forces (Green, Harms & Connell 2014;
Zhu et al. 2015 but see Piao et al. 2013). Many of the

strongest examples of habitat filtering driven by biotic interac-
tions have been found at the seedling stage (HilleRisLambers,
Clark & Beckage 2002; Fine et al. 2006; Andersen, Turner &
Dalling 2014). This may be in part because small individuals
have low energy reserves, are especially vulnerable to biotic
and abiotic forces and tend to have weaker chemical defences
(Myers & Kitajima 2007; Barton & Koricheva 2010; Boege,
Barton & Dirzo 2011; Massad 2013). If biotic forces have the
potential to limit range expansion, the seedling stage would
be the first place to look for it.

Here, we test how biotic interactions vary across range edges
and assess their effects on plant performance. We use a seedling
transplant experiment with seven temperate tree species to
answer the following questions: (i) Are migrant species
exposed to different amounts of herbivory and disease than in
their native range?, and (ii) How important are any differences
in herbivory and disease to plant survival? Answers to these
questions will help determine whether foliar herbivores and
pathogens have the potential to substantially affect colonization
success and therefore range expansion dynamics.

Materials and methods

We initiated a seedling transplant experiment in 2010, and over the
following 4 years, we planted seedlings in four regions across a 450-
km latitudinal gradient (Fig. 1). Species origins varied (Table 1): five
were native or naturalized (self-sustaining populations were present)
at some regions and migrants at others (Carya glabra P. Mill., Lirio-
dendron tulipifera L., Q. alba L., Q. velutina Lam. and Robinia pseu-

doacacia L.) and two species were native across all regions (Acer
rubrum L. and Quercus rubra L.). We selected species based on their
current and predicted distributions (Iverson et al. 2008) and on their

Treatment

Fig. 1. Regions A-D (panel a) contained one to four sites (panel b),
which were located in distinct forest types (e.g. sites C1-C4). Each
site had between 2 and 21 plots (white boxes in panel c¢). Each plot
had between one and three subplots (grey boxes in panel d) to which
pesticide or control treatments were applied. [Colour figure can be
viewed at wileyonlinelibrary.com]
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Table 1. Plant species used in transplant experiments and their residency status at each study region. Species residency status (native, naturalized

or migrant) was determined using Little’s range maps, FIA data (via the Climate Change Tree Atlas; Prasad er al. 2007 — ongoing) and county
data from the USDA Plants Database and the Michigan Flora Online. In some cases, these data sources provide conflicting information, which is
indicated with an asterisk. The number of seedlings of each species planted in each region is also included

Species Common
Species code name Region A Region B Region C Region D
Acer rubrum acru Red maple Native 487 Native 75 Native 282 Native 0
Quercus rubra quru Red oak Native 1937 Native 345 Native 989 Native 315
Quercus alba qual White oak Native 829 Native 140 Migrant/rare* 344 Migrant 187
Quercus velutina quve Black oak Native 777 Migrant/rare* 417 Migrant 417 Migrant 230
Carya glabra cagl Pignut hickory Native 930 Migrant 344 Migrant 344 Migrant 110
Robinia rops Black locust Native/naturalized * 806 Migrant; planted Migrant; planted Migrant 270
pseudoacacia horticulturally 165 horticulturally 476
Liriodendron litu Tulip tree Native/naturalized * 836 Migrant 255 Migrant 656 Migrant 255
tulipifera
Total planted 6602 1741 3508 1367

light and soil moisture requirements. At each region, we established
between one and four sites in different forest types, and at each site,
we planted seedlings in 2-21 plots (Table 2; Fig. 1); this design was
dictated by logistical constraints (i.e. site establishment was restricted
to University of Michigan properties or areas we possessed permits to
work in) and the unbalanced experimental set-up does not pose a
challenge for the analyses used. Each plot was composed of between
one and three subplots, some of which were used for experimental
treatments (see below). Sites and plots were established in a variety
of different forest types (Table 2; Fig. 1) and in a range of environ-
mental conditions (Appendix S1, Supporting Information). A total of
13218 seedlings were planted between 2010 and 2013 (Table 1).

SEEDLINGS

Seeds were germinated at the University of Michigan Matthaei Botan-
ical Gardens (Ann Arbor, MI, USA) in potting soil (Metro-Mix 380;
SunGro Horticulture, Agawam, MA, USA), where they were watered
daily. Seeds were collected from wild sources within Michigan when
available, but were otherwise obtained from outside of Michigan
(Appendix S2). To account for maternal effects (i.e. seed size), we
measured the height of the seedlings (defined as the distance from the
soil to the tip of the apical meristem) 1 month after emergence. Bare
root seedlings were then transplanted into the study plots in May and
June of 2010-2014, with a minimum distance of 25 cm between
seedlings. Seedlings were watered upon planting (125 mL per seed-
ling) to decrease transplant shock and existing vegetation was left

intact. A total of 2196 seedlings were transplanted in the fall instead
of in the spring in 2011, 2012 and 2013; this was done in order to
increase both the range of seedling sizes and total sample size.

PESTICIDE TREATMENT

We experimentally reduced herbivory in 48 subplots in 2012 and
2013 using a pyrethroid pesticide (Talstar P, active ingredient bifen-
thrin; Fecko 1999). This pesticide has been successfully used by other
researchers (e.g. Suwa & Louda 2012, Spiers et al. 2006), and does
not contain nitrogen. To ensure that it caused no direct effects on the
plants, through either phytotoxicity or phytostimulation, we conducted
a glasshouse control experiment; survival and relative growth rates
were not impacted, although there is mixed evidence of mild phyto-
toxicity for Acer rubrum (Appendix S3). We sprayed a solution of
bifenthrin (0.008% active ingredient) on the tops and bottoms of the
leaves of seedlings in treatment subplots three times a year during
2012 and 2013. We sprayed the same amount of water on leaves in
paired control subplots (Fig. 1, panel D). We also distributed a mol-
luscicide, metaldehyde, along one outside edge of pesticide subplots
to reduce herbivory by slugs and snails. The molluscicide was dis-
tributed on the side of the treatment plot furthest from the paired con-
trol subplot; no metaldehyde was distributed within 5 m of a control
subplot seedling. Metaldehyde reduces slug abundance and herbivory
at the microsite level, without impacting plots as close as 5 m
(Ferguson 2004). In 2010 and 2011, we built insect exclosures around
a subset of first year seedlings, but neither year’s exclosure design

Table 2. Description of sites used in the transplant experiment. Environmental variables at the plot and subplot levels are given in Appendix S4

Longitude Latitude Average number Major Average growing Number
Site (decimal degrees) (decimal degrees) of frost free days Soil texture vegetation season length (days) of plots
Al —83.673 42.324 175 Loam Maple 205 9
A2 —84.023 42.457 167 Sandy loam Oak—maple 203 21
A3 —84.012 42.459 169 Sandy loam Oak—hickory 199 2
Bl —85.751 44218 157 Sand Oak—maple 187 8
Cl1 —84.714 45.553 164 Loamy sand Aspen—maple 205 5
C2 —84.682 45.568 180 Sand Maple-beech 212 7
C3 —84.673 45.559 180 Sand Maple 212 3
Cc4 —84.748 45.556 118 Sand Pine—aspen—oak 146 6
D1 —84.141 46.350 161 Loamy sand Oak—maple 179 6
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consistently reduced herbivory. Only mortality from years after the
exclosures were removed is included in the analysis.

SEEDLING MEASUREMENTS

Seedlings were censused three times a year, in early, mid- and late
summer. Seedling height (defined as the distance from the soil to the
highest bud) and diameter (1 cm above the soil) were measured dur-
ing the first and last census of each year. Leaf damage was quantified
by visually surveying up to 25 leaves per seedling using cover classes
(<1%, 1-5%, 6-15%, 16-25%, 26-50%, 51-75%, >75%). For seed-
lings that had more than 25 leaves, the 25 leaves surveyed were
selected at random. The same person (D. Katz) conducted all surveys
to ensure that visual estimates were consistent. During each census,
foliar damage was categorized as being caused by herbivory, disease,
physical damage or desiccation. Damage types counted as herbivory
included chewing (e.g. skeletonizing, window feeding, hole feeding),
piercing-sucking (e.g. stippling; regularly shaped small round discol-
orations in leaves), leaf mining and galling. Damage was counted as
disease if symptoms included abnormal coloration, blackening of the
leaf, dark spots with necrosis, spots with discolorations surrounding
them and the presence of fungal fruiting bodies. Both infectious and
non-infectious diseases (e.g. nutrient deficiencies) are therefore
included in the disease category (Sinclair & Lyon 2005). We also
recorded whether seedlings exhibited stem damage patterns typical of
those caused by browsing by mammals at each census; this was
recorded as a binary variable. The role of vertebrate herbivores was
further investigated using deer exclosures and trail cameras that were
deployed at study plots during 2013 and 2014 (Appendix S4).
Although leaf litter was disturbed during censuses, which could have
reduced potentially fatal burial in leaf litter (Patterson et al. 2012),
this disturbance was consistent for all seedlings at all sites.

ENVIRONMENTAL DATA

Environmental variables measured included light availability, tempera-
ture, soil nutrients and soil moisture. Hemispherical canopy pho-
tographs were taken 1 m above seedlings, using a Sigma SD14
camera (Sigma Corporation, Tokyo, Japan) with a sigma 4.5-mm cir-
cular fisheye lens (Sigma Corporation) to measure light availability. At
least two photographs were taken per subplot when canopy closure
was greatest (i.e. in mid-summer). Photographs were taken under uni-
form sky conditions (i.e. dusk, dawn or uniformly cloudy days). The
global site factor (GSF), the proportion of total possible sunlight
reaching the forest floor, was calculated using Hemiview (Delta-T
Devices, Cambridge, UK). GSF was averaged across subplots and
across years.

Temperature was measured hourly at each site with a HOBO Pro
V2 U23 Temperature Data Logger (Onset Computer Corporation,
Pocasset, MA, USA). Soil water (per cent moisture by volume) was
measured hourly at each site with a HOBO Micro Station Data Log-
ger (Onset Computer Corporation). Volumetric soil water content in
the top 7.5 cm of soil was measured with a FieldScout TDR 300 Soil
Moisture Meter (Spectrum Technologies, Plainfield, IL, USA) in at
least six points per subplot several times during the growing seasons
of 2011-2014. The relationship between soil moisture at the subplot
level and at the site level was quantified using linear regressions
(mean R® = 0.67); these regressions were then used to predict soil
moisture between censuses. For the first census in each spring, soil
moisture was estimated from the beginning of the growing season,
which we defined as starting after the last day where the minimum

temperature fell below —3 °C. For other censuses, the soil moisture
values used in the analysis were the mean and standard deviation of
soil moisture between that and the previous census.

Soil nutrients were measured in 2013 using resin packs (Unibest
International Corporation, Walla Walla, WA, USA). Resin packs in
the southernmost region (region A; see Fig. 1) were deployed
between 8 April 2013 and 30 October 2013 and resin packs were
deployed from 23 April 2013 to 23 October 2013 in the other regions
(regions B, C and D; see Fig. 1). Between two and four resin packs
were deployed per plot, depending on the number of subplots. Four
resin packs could not be retrieved because they were moved by bur-
rowing animals or were otherwise damaged, and no nutrient data are
available for the two plots that were not yet established at the time of
resin pack deployment. Resin packs were retrieved and refrigerated
until they were shipped to Unibest for analysis. Analysis was con-
ducted by Unibest; ions were extracted using 2 m HCI and the ion
exchange resin analysis was conducted using inductively coupled
plasma spectroscopy analysis (PerkinElmer 3300 DV; Ca, Mg, Mn,
P) and FIA Lab Flow Injection (FIA 2500; NO3, NH}).

STATISTICAL ANALYSIS

Differences in foliar herbivory and disease

To compare foliar disease and herbivory across species and sites, we
used aNova and conducted post hoc pairwise comparisons using max-
t tests through the muLTcomP package in R (Hothorn, Bretz & Westfall
2008). Max-t tests are robust for comparisons of non-normal distribu-
tions, unbalanced sample sizes and heterogeneity of variances (Her-
berich, Sikorski & Hothorn 2010). To compare whether herbivory
varied between seedlings in control and pesticide treatments, we used
Wilcoxon rank sum tests.

Seedling survival

To analyse how herbivory, foliar disease and region affected seedling
survival, we used a counting process in a Cox survival model (Ander-
sen & Gill 1982) in which we took into account both abiotic and bio-
tic variables: light, soil moisture, soil nutrients, seedling maternal
effects, mammal browse and treatment effects (control and pesticide
application). This type of model has been used for seedling survival
because it allows for the inclusions of both fixed and random effects
and for time-dependent covariates (McCarthy-Neumann & Ibanez
2012). We only included seedlings that had survived to their second
year in this analysis, to minimize any artefacts from transplanting the
seedlings and to reduce the effects of seed resources on survival. The
likelihood for the model is:

N ~ Poisson(A;;)

where N is whether seedling i was found dead at time 7 and A is esti-
mated as a function of the intrinsic rate of mortality, or hazard h, and
the extrinsic risk of mortality, or risk p:

7\'1')‘ — htel/lu

Parameter estimation was conducted using a Bayesian approach,
which allowed us to incorporate different sources of uncertainty and
missing data (Gelman & Hill 2007). The hazard was estimated at
each time step, A, from a gamma distribution, i, ~ Gamma (1, 0.05).
The hazard reflects differences in mortality rates through the course
of the experiment that are not accounted for by the risk (e.g. survival
rates that are age dependent).
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The risk, p;,, was estimated as a function of the covariates included
in the analysis, 1, = X;PB, where X, is the matrix of covariates associ-
ated with each seedling 7 at time 7. P is the vector of fixed effect coeffi-
cients associated with each covariate. We explored several different
models, including different covariates and random effects (e.g. plot and
year) and selected the model with the lowest DIC (deviance information
criterion; Spiegelhalter et al. 2002) that allowed us to answer our ques-
tions. In the final model, plot effects were drawn from a normal distri-
bution with a mean of ppagive OF Miigrant depending on whether the focal
species was native in that plot; plot effects ~ Normal(y, %), where
G ~ Uniform (0, 10). Thus, differences between Wyqive and Hmigrant TEP-
resent a difference in survival within a species range compared with
beyond a species range. Random effects were included for site, and the
following covariates were also included (data ranges are described in
parentheses): observed proportion of leaf area affected by herbivory
over the previous year (continuous: 0—1), observed proportion of leaf
area affected by disease over the previous year (continuous: 0-1),
whether or not the seedling was browsed by a mammal since the
previous census (binary: 0, 1), seedling height at planting (continuous,
3-390 mm), the number of leaves in the previous census (continuous:
0-60 leaves), the proportion of available light that reached the seedling
(continuous: 0-1), volumetric soil moisture since the last census
(continuous: 0—1), whether the seedling was planted in the spring or fall
(binary: 0, 1) and a fixed effect was included for the indirect effects of
the invertebrate herbivory pesticide treatment (binary: 0,1). To improve
comparisons between variables, we standardized seedling height at time
of transplant, the number of leaves, light and soil moisture. Light and
soil moisture were modelled as latent variables characterized by their
measured mean and standard deviation for each inter-census time per-
iod. Fixed effect coefficients were drawn from non-informative prior
distributions: B ~ Normal (0, 1000). The random effects for site were
drawn from a normal distribution: random effect ~ Normal (0, 02),
where ¢ ~ Uniform (0, 10). We predicted survival where seedlings were
native or migrants, Spative OF S'mig,.am at average herbivory and disease
levels for native and migrant seedlings. Survival of seedlings in the pes-
ticide treatment was estimated separately. The proportion of seedlings
surviving, S, was predicted over time (up to 5 years), under the follow-
ing conditions: average light, average soil moisture, average transplant
height, average number of leaves, no browsing and spring planting.

. N ane "
Smigralory status, treatment ™ Power | e 4 ,€

We then simulated survival for control seedlings throughout all
regions across the range of possible herbivory values but with no dis-
ease and then vice versa.

Survival of each species was modelled separately. Posterior densities
of the parameters were obtained by Gibbs sampling (Geman & Geman
1984) using jacs 3.4 (Plummer 2003) via the rRIAGS package in R (Plum-
mer 2014). Convergence occurred after 1000 to 10 000 iterations and
chains were inspected visually. Each species was run for 40 000 itera-
tions and posterior parameter values were based on post-convergence
results. Statistical model code is provided in Appendix S5. Visualiza-
tion was conducted using the GGpLOT2 package in R (Wickham 2009).
All analyses were conducted using R (R Core Team 2013).

Results

DIFFERENCES IN HERBIVORY

We found extensive variation in herbivory across species and
sites, but there were few systematic differences in herbivory
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across range edges; four out of five migrant species encoun-
tered some sites beyond their ranges where herbivory was
higher and others where herbivory was lower than in sites
located within their ranges (Fig. 2). An exception was Lirio-
dendron tulipifera; the three sites within its range were the
sites with the highest herbivory levels, although herbivory
was only consistently significantly higher at one site within
its range than at sites beyond its range (P < 0.05). In general,
species showed wide amounts of variation between sites,
regardless of migratory status; this is especially apparent for
the species that were native at all regions (Quercus rubra and
Acer rubrum). Likewise, migrant species did not tend to have
different amounts of herbivory than native species within
sites. The pesticide treatment successfully reduced observed
herbivory at all sites for three species (Appendix S6), Carya
glabra, Q. velutina and Q. alba, and significantly reduced
herbivory in some regions for the other species (Q. rubra,
A. rubrum, L. tulipifera  and  Robinia  pseudoacacia;
P < 0.05); in 22 out of 23 comparisons, herbivory was lower
in the pesticide plots.

DIFFERENCES IN FOLIAR DISEASE

Foliar disease varied according to species and region, but four
species, C. glabra, L. tulipifera, Q. velutina and Q. alba,
tended to have lower disease rates at sites beyond their
ranges, although these results were not always statistically
significant (Fig. 2). This resulted in migrant plants having
somewhat lower foliar disease rates than native plants at
many sites. However, it should be noted that Q. rubra, which
was native at all sites, also had higher disease levels at two
of the southern sites (P < 0.05). For A. rubrum, the other spe-
cies that was native in all areas, there were no consistent lati-
tudinal patterns.

SEEDLING SURVIVAL

Herbivory tended to reduce survival for most species, but
parameter estimates for the effects of herbivory on survival
were only statistically significant for three species, A. rubrum
(mean and 95% CI: 1.56, 0.53-2.55), Q. rubra (0.78, 0.23—
1.31) and Q. velutina (1.03, 0.10-1.92; Fig. 3). Foliar disease
had a significantly negative effect on survival for A. rubrum
(2.27, 1.22-3.25), Q. alba (1.59, 0.62-2.47), Q. rubra (1.10,
0.59-1.60) and Q. velutina (1.73, 0.70-2.70; Fig. 3). A full
list of parameter estimates for the survival model is given in
Table 3. Even for species for which leaf damage had signifi-
cant negative effects on survival, survival simulations showed
it caused only small reductions in survival at average amounts
of herbivory (Fig. 4) and disease (Fig. 5). Seedling survival
in pesticide treatments was never significantly higher than in
control treatments (Fig. 6), and overall differences were
minor. The modelled proportion of seedlings alive after five
years was significantly higher beyond range edges for
L. tulipifera (mean + SD for native: 0.003 £+ 0.010 com-
pared with migrant: 0.071 £ 0.055) and although not signifi-
cant, some species had similar trends, including Q. velutina
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(native: 0.177 £ 0.126 compared with migrant: 0.389 £
0.136 and C. glabra (native: 0.163 £ 0.162 compared with
migrant: 0.366 £ 0.146).

Discussion

The potential importance of biotic interactions to plant range
expansion has received increased attention in recent years, but
a lack of empirical evidence of how biotic interactions vary
across range edges has precluded understanding how this may
affect plant species range expansion in response to climate
change. Our results reveal that systematic differences in inver-
tebrate herbivory across range edges are relatively uncommon,
but do occur. In contrast, several plants tended to have more
foliar disease in regions where they are native than in regions
where they are migrant. Within many sites, migrant species
also tended to have less disease than native species. However,

A1 A2 A3 B1 C1 C2 C3 C4 D1

Data from seedlings in
treatments are not shown.

experimental

our analysis found only minor effects of foliar herbivory and
disease on seedling survival at common amounts of damage.
This is supported by results from the pesticide treatment,
which was generally effective in reducing herbivory, but
resulted in minor and idiosyncratic responses in survival.
Thus, our results suggest that foliar herbivores and disease
are unlikely to have strong effects on latitudinal range expan-
sion dynamics of these temperate trees.

FOLIAR HERBIVORY ACROSS RANGE EDGES

There were few systematic differences in foliar herbivory
across range edges, which demonstrates that commonly occur-
ring abundances of invertebrate herbivores are unlikely to
play a consistent role in intra-continental range expansion of
these species. Although it is possible that enemy release will
occur for particular species (e.g. L. tulipifera) or in particular
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= [ Damage type
3] -+ Disease
= # Herbivory
o 2-
53
+
c
@
[}
E
] s s S e e TR
5 0 l
=
3 l { \
=
7]
c [ ]
o
o -2-
o
@
£
[}
o
Pl
8
8 4
P
o
g
=
L
' v v v v r v
acru cagl litu qual quru quve rops

Species

Fig. 3. Effects of foliar herbivory and foliar disease on seedling sur-
vival (estimates from the mortality model are multiplied by —1).
Parameter estimates below O indicate a negative effect on survival;
95% credible intervals that cross zero are not statistically significant.

forest types, foliar herbivory depended more upon conditions
at the site and plot levels than upon whether a species was
native or migrant. The magnitude of spatial heterogeneity in
herbivory between sites is similar to that found by other stud-
ies (Adams et al. 2008; Adams & Zhang 2009); if there are
regional trends in herbivory, its signal is easily lost in the
high inter-site variability. One explanation for why there are
not systematic differences is that diet breadth is especially
wide for leaf-chewing invertebrates in temperate forests
(Forister et al. 2015).

FOLIAR DISEASE ACROSS RANGE EDGES

Several migrant plants tended to have lower levels of foliar dis-
ease symptoms outside of their ranges. These findings highlight
the relatively higher importance of enemy release from
pathogens than from herbivores. The patterns we found are also
conservative because our measure of foliar disease includes
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non-infectious diseases (e.g. nutrient deficiencies), which are
unlikely to be systematically lower beyond a species range.
Two of the species that tended to have reduced foliar disease
outside of their ranges were Q. alba and Q. velutina, even
though the congeneric Q. rubra was common in all regions.
This was unexpected, because more closely related plants share
more natural enemies, generally facilitating transfer of natural
enemies from indigenous relatives to newly arrived plants
(Pearse & Hipp 2009; Ness, Rollinson & Whitney 2011; Gil-
bert, Briggs & Magarey 2015; Parker et al. 2015), and patho-
gen host range is often somewhat constrained to host
phylogeny (Gilbert & Webb 2007). Thus, the species chosen in
this study may lead to especially conservative conclusions
about the potential for enemy release from foliar pathogens.

The potential for escape from foliar pathogens at range
edges is corroborated by other studies on above-ground
pathogens (e.g. Alexander et al. 2007), although substantially
more work has been conducted on differences in plant—soil
interactions across range edges (e.g. van Grunsven et al.
2010; Stanton-Geddes & Anderson 2011; McCarthy-Neumann
& Ibanez 2012). For one of the focal species, R. pseudoaca-
cia, negative soil feedbacks are more common within than
beyond its range (Callaway er al. 2011). Similar patterns are
also implied by studies that have found correlations between
pathogen load and time since plant introduction (Diez et al.
2010; Flory & Clay 2013). There is also evidence of reduced
negative soil feedback outside of plant ranges from glass-
house experiments (Engelkes et al. 2008). These patterns may
partially result from migrant seedlings not being near adult
conspecifics, which reduced negative plant—soil feedback in
the same system as this study (McCarthy-Neumann & Ibafiez
2012). Indeed, even when species encounter the same types
of pathogens outside of their range, those strains may be less
virulent (Reinhart e al. 2010). One potential explanation for
why there was a stronger signal of enemy release from patho-
gens than invertebrate herbivores is that invertebrate herbi-
vores in this system could be more on the generalist range of
the spectrum (Forister et al. 2015) than the comparable patho-
gens (Barrett er al. 2009).

Table 3. Survival model parameters (mean + standard deviation) indicate effects on mortality (i.e. higher values indicate higher probability of
death). Parameter estimates that were significantly different from zero (95% CI does not include zero) are in bold, except for the fixed effects for

migratory status, which are in bold if pp.ive is significantly different from Wmigrane

Liriodendron Robinia

Parameter Acer rubrum Quercus rubra  Quercus alba Quercus velutina  Carya glabra tulipifera pseudoacacia
Browse 1.02 + 0.60 0.81 + 0.27 1.62 £ 049 —1.19 + 1.30 2.09 + 0.46 0.17 + 0.65 0.36 + 0.54
Disease 2.27 + 0.52 1.11 £ 0.26 1.59 + 0.47 1.74 £+ 0.51 0.23 + 041 0.45 + 0.56 1.58 + 2.13
Herbivory 1.56 + 0.52 0.78 + 0.28 0.34 + 1.00 1.03 £ 0.46 0.65 + 0.48 0.78 + 0.43 0.42 + 0.71
Light 095 + 0.88 —0.67 £0.53 —0.67 £ 091 —1.57 £ 0.84 —0.36 + 0.84 0.30 + 0.75 0.19 + 0.76
Hnative —4.06 + 052 —2.85 £ 038 -3.18 £ 055 —291 £ 0.55 —-2.62 4+ 072 —-127 £ 044 —2.13 £ 047
Wmigrant NA NA —3.16 £ 0.54 —3.57 £ 0.49 —334 £ 051 227 £041 232+ 044
Number of leaves  —1.67 £ 0.25 —1.64 + 0.14 —1.07 £ 0.27 —1.62 £ 0.22 —0.42 + 0.12 —-0.73 £ 011 —1.52 £+ 0.19
Pesticide 0.44 + 0.16 021 +£0.09 —0.16 £ 020 —0.09 £ 0.25 0.08 £ 0.09 —0.06 £ 0.11 0.09 + 0.16
Planting height 0.03 £ 0.16 —0.04 £0.09 —-0.27 £+ 0.19 0.00 £+ 0.17 —0.05 £ 0.10 —0.18 £ 0.12 0.06 + 0.15
Soil moisture —0.63 = 1.61 —-3.57 £094 329 £221 —0.15 =+ 1.56 —2.63 £ 1.8 —2.85 + 0.98 098 £ 1.47
Time of planting 0.61 4+ 091 0.59 + 0.89 0.81 +0.80 —0.48 £+ 0.90 0.57 +0.83 —048 £0.87 —0.99 + 0.93
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EFFECTS OF LEAF DAMAGE ON SURVIVAL

The modelled effects of foliar herbivory and foliar disease on
seedling survival tended to be small. Although even small
responses can have important effects at high levels of dam-
age, herbivory and disease each tended to affect <10% of leaf
area on average. Thus, even though high levels of leaf dam-
age were likely to kill individual seedlings, the proportion of
seedlings that were killed by foliar damage was low. More-
over, the species that were most sensitive to foliar damage
did not have large differences in damage across range edges
(e.g. Q. velutina responded strongly to disease, but it had
similar amount of disease in areas where it was native and
migrant, whereas L. tulipifera had far less disease in areas
where it was a migrant, but that had only small and insignifi-
cant effects on survival). Our estimates for the effects of

Fig. 5. Simulated seedling survival at disease

Disease levels ranging from 0% (light) to 100%
(proportion (dark).  Simulations  assumed  average
cliolare) environmental conditions, planting height,
QL number of leaves, and spring planting and no
a0 herbivory. The dotted line shows simulated
L survival at the average level of observed
0.00 foliar damage due to disease across all
regions. Simulations begin 1 year after

planting.

foliar damage on survival are somewhat smaller than other
researchers have reported (e.g. Meiners, Handel & Pickett
2000; Yamazaki, Iwamoto & Seiwa 2009; Cleavitt, Fahey &
Battles 2011; Coyle et al. 2014), but are corroborated by sim-
ilar levels of survival between the control and pesticide treat-
ments, although some caution is warranted, given that two
species (A. rubrum and Q. rubra) experienced negative indi-
rect effects of the pesticide treatment on survival in the field.
Although seedlings that experienced vertebrate herbivory had
low survival rates, vertebrate herbivory was rare at our study
sites. Thus, even though browse damage has the potential to
shift competitive hierarchies for temperate and boreal tree
species in the transition zone (Fisichelli, Frelich & Reich
2012), it seems unlikely to have much of an effect on colo-
nization success by migrant seedlings in these forests.
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IMPLICATIONS FOR RANGE SHIFTS IN RESPONSE TO
Acknowledgements

CLIMATE CHANGE

We found that seedlings from non-native species can estab-
lish in areas beyond their current ranges, as have several
other studies (Kellman 2004; Ibanez, Clark & Dietze 2009;
Samis & Eckert 2009; McCarthy-Neumann & Ibanez 2012).
Although we found cases where biotic interactions systemati-
cally varied beyond range edges, commonly observed levels
of foliar damage did not translate into substantial effects on
seedling survival. Similarly, even in cases where there were
large differences in survival across range edges, differences
in foliar damage only accounted for very small amounts of
these differences. However, it is possible that other types of
biotic interactions may be more important; for example,
below-ground herbivory was not explicitly measured in this
study, but can be an important source of damage to plants
(Van der Putten ef al. 2001; Van der Putten 2003) and often
has stronger effects on mortality than damage to leaves
(Zvereva & Kozlov 2012; Dietze & Matthes 2014). It will
also be important to test for effects on other plant perfor-
mance metrics; lower growth and reproductive rates beyond
range edges can also play a role in determining species dis-
tributions (Angert & Schemske 2005). Although much
remains to be explored, our findings show that even in cases
where biotic interactions vary across range edges, they still
may not have important effects on colonization success or
range expansion dynamics.
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Data accessibility

Seedling data (foliar damage, planting heights, vertebrate herbivory, etc.) and
environmental data (soil moisture, light, temperature, soil nutrients, etc.) are
available from the Dryad Digital Repository http://dx.doi.org/10.5061/
dryad.1b433 (Katz & Ibanez 2016).
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