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Problem: Neutrophil extracellular traps (NETs) were recently described as a mech
anism for microbial killing in the amniotic cavity of women with intra-amniotic infec-
tion. Such a clinical condition can result in acute chorioamnionitis, a placental lesion 
characterized by the infiltration of maternal neutrophils in the chorioamniotic mem-
branes. Herein, we investigated whether these infiltrating neutrophils form NETs in 
the chorioamniotic membranes from women who underwent spontaneous term or 
preterm labor with acute chorioamnionitis.
Method of study: Chorioamniotic membrane samples were collected from women 
who underwent spontaneous term or preterm labor with acute chorioamnionitis (n=10 
each). Controls included chorioamniotic membrane samples from women who deliv-
ered at term or preterm with or without labor in the absence of acute chorioamnionitis 
(n=10 each). NETs were visualized and semiquantified in the chorioamniotic mem-
branes by using antibodies against neutrophil elastase and histone H3 in combination 
with DAPI staining.
Results: Neutrophil extracellular traps were abundant in the chorioamniotic mem-
branes from women who underwent spontaneous term or preterm labor with acute 
chorioamnionitis. NETs were rarely found, or not visualized at all, in the chorioamni-
otic membranes from women who delivered at term or preterm with or without labor 
in the absence of acute chorioamnionitis.
Conclusion: Neutrophil extracellular traps are abundant in the chorioamniotic mem-
branes from women who underwent spontaneous term or preterm labor with acute 
chorioamnionitis. These findings suggest that chorioamniotic neutrophils can form 
NETs as a mechanism of host defense against infection or danger signals.
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1  | INTRODUCTION

Acute chorioamnionitis is strongly associated with spontaneous 
preterm labor;1-4 yet, it is also frequently observed in the placentas 
of women who delivered after spontaneous labor at term.5,6 In both 
spontaneous preterm and term labor, this placental lesion is associated 
with elevated concentrations of pro-inflammatory cytokines such as 
IL-1α, IL-1β, TNF-α, IL-8, and IL-6 in the amniotic fluid7-26 and umbilical 
cord blood.27-33 Elevated concentrations of these cytokines are linked 
to adverse neonatal outcomes.20,21,27,34-45 Therefore, the study herein 
focused on the mechanisms implicated in acute chorioamnionitis.

The defining morphologic feature of acute chorioamnionitis is dif-
fuse infiltration of neutrophils into the chorioamniotic membranes.46,47 
Neutrophils are rarely seen in the chorioamniotic membranes of pa-
tients without acute chorioamnionitis;47 therefore, we refer to these 
innate immune cells as chorioamniotic neutrophils. Their maternal 
origin was observed when two X chromosomes were detected by 
fluorescence in situ hybridization in the chorioamniotic leukocytes of 
women who delivered male preterm neonates and whose placenta was 
diagnosed with acute chorioamnionitis.48,49 The current hypothesis47 
states that such maternal neutrophils migrate from the decidual ves-
sels toward the chorion and amnion following a chemotactic gradient 
established by amniotic fluid chemokines such as IL-8,12,13,19,21,22,50-58 
CXCL6,59 and GROα.52,60 Since acute chorioamnionitis generally rep-
resents the presence of intra-amniotic infection,47,61,62 we propose 
that chorioamniotic neutrophils play a role in the maternal host re-
sponse against microbes invading the amniotic cavity.

In line with our hypothesis, we recently demonstrated that amniotic 
fluid neutrophils form neutrophil extracellular traps (NETs) as a mech-
anism for microbial killing in cases with intra-amniotic infection.63 NETs 
were initially described as web-like structures that contain DNA, histones, 
and antimicrobial products such as neutrophil elastase.64 NET formation 
is a specialized cell death process, which represents the final containment 
effort of a neutrophil to lyse pathogens.65 Although NET formation (or 
NETosis66) was initially described as an in vitro phenomenon,64 in vivo 
NETosis can occur in tissues64 and intravascular67/extravascular fluids (eg, 
amniotic fluid63). In vitro-induced NETs release their components freely as 
those traps formed in intravascular/extravascular fluids.68,69 However, tis-
sue NETs display a unique appearance in each tissue because the release of 
their components is restricted by the surrounding cellular structures.68,69 
Tissue NETs are generated in response to a local infection, whereas intra-
vascular NETs are formed in response to a systemic infection (ie, sepsis).70 
Acute chorioamnionitis represents the presence of a local inflammatory 
response in the amniotic cavity; therefore, we investigated whether infil-
trating neutrophils form NETs in the chorioamniotic membranes.

2  | MATERIALS AND METHODS

2.1 | Human subjects, clinical specimens, and 
definitions

Chorioamniotic membrane samples were obtained from the Bank of 
Biological Specimens of the Detroit Medical Center, Wayne State 

University, and the Perinatology Research Branch (Detroit, MI, USA), 
an intramural program of the Eunice Kennedy Shriver National Institute 
of Child Health and Human Development, National Institutes of Health, 
U.S. Department of Health and Human Services (NICHD/NIH/DHHS). 
The collection and utilization of biological materials for research pur-
poses were approved by the Institutional Review Boards of Wayne 
State University and NICHD. All participating women provided writ-
ten informed consent. The following six study groups were included: 
(i) women who delivered at term without labor (n=10); (ii) women who 
underwent spontaneous labor at term without acute chorioamnionitis 
(n=10); (iii) women who underwent spontaneous labor at term with 
acute chorioamnionitis (n=10); (iv) women who delivered preterm 
without labor (n=10); (v) women who underwent spontaneous pre-
term labor without acute chorioamnionitis (n=10); and (vi) women who 
underwent spontaneous preterm labor with acute chorioamnionitis 
(n=10). Table 1 includes the demographic and clinical characteristics of 
the study population. Multiparous women and women with neonates 
having congenital or chromosomal abnormalities were excluded. Labor 
at term was defined by the presence of regular uterine contractions at 
a frequency of at least two contractions every 10 minutes with cervi-
cal changes resulting in delivery. Preterm labor was diagnosed by the 
presence of regular uterine contractions (at least three in 30 minutes) 
and documented cervical changes in patients with a gestational age 
between 20 and 36 6/7 weeks. Preterm delivery was defined as birth 
prior to the 37th week of gestation.

2.2 | Placental histopathological examinations

Five-μm-thick sections of formalin-fixed, paraffin-embedded tissue 
specimens were cut and mounted on SuperFrost™ Plus microscope 
slides (Erie Scientific LLC, Portsmouth, NH, USA). In each case, several 
tissue sections of the chorioamniotic membranes, umbilical cord, and 
placental disk were examined. After deparaffinization, slides were re-
hydrated, stained with hematoxylin-eosin, and evaluated by patholo-
gists who were blinded to the clinical outcome, according to published 
criteria.46, 47, 71 Acute chorioamnionitis was diagnosed when the infil-
tration of neutrophils was observed in the chorionic trophoblast layer 
or chorioamniotic connective tissue.46, 47, 71

2.3 | Identification of neutrophil extracellular traps 
in the chorioamniotic membranes

Chorioamniotic membrane samples were frozen in Tissue-Plus O.C.T. 
compound (Fisher HealthCare, Houston, TX, USA) immediately after 
collection. Cryogenic sections were cut to 8 μm and placed on glass mi-
croscope slides (Fisherbrand Superfrost Plus slides; Thermo Scientific, 
Waltham, MA, USA). The sections were fixed using 4% paraformalde-
hyde (Electron Microscopy Sciences, Hatfield, PA, USA) for 20 minutes 
at room temperature and rinsed with 1X phosphate-buffered saline 
(PBS; Life Technologies, Grand Island, NY, USA). Prior to staining, non-
specific antibody interactions were blocked using serum-free protein 
blocker (Cat# X09090; DAKO North America, Carpinteria, CA, USA) 
for 30 minutes at room temperature. The slides were then incubated 
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at 4°C overnight with a mouse anti-human neutrophil elastase (Cat# 
M0752, clone NP57; DAKO, Glostrup, Denmark) and a rabbit anti-
histone H3 antibody (Cat# ab5103; Abcam, Cambridge, MA, USA). 
Mouse IgG and rabbit IgG were used as negative controls, respectively. 
Following staining, slides were washed with 1× PBS with 0.1% Tween 
20. Next, a second blocking step was performed by adding 10% goat 

serum (KPL, Gaithersburg, MD, USA) for 10 minutes at room tempera-
ture. The slides were then incubated with a secondary goat anti-mouse 
IgG-Alexa Fluor 488 antibody (Cat# A11029; Life Technologies) and 
a goat anti-rabbit IgG-Alexa Fluor 594 antibody (Cat# A11072; Life 
Technologies) for 30 minutes at room temperature in the dark. Finally, 
slides were washed with 1× PBS and mounted with ProLong Diamond 

F IGURE  1 Neutrophil extracellular traps (NETs) in the chorioamniotic membranes from women who delivered at term. (A) A tile-scan image 
of the chorioamniotic membranes from women who delivered at term without labor or underwent spontaneous labor at term with or without 
acute chorioamnionitis. Merged images show DAPI (nuclei) in blue, neutrophil elastase in green, and histone H3 in red. Tile-scan images were 
acquired at 400×. The area outlined in (A) is enlarged in (B, C), demonstrating a higher resolution view of a NET in the choriodecidua from 
women who underwent spontaneous labor at term with acute chorioamnionitis. Merged images show neutrophil elastase in green and histone 
H3 in red (B; white arrow) or DAPI (nuclei) in blue, neutrophil elastase in green, and histone H3 in red (C; white arrow). NETs are structures in 
which DAPI, neutrophil elastase, and histone H3 fluorescence signals are colocalized. Semiquantification of the total number of NETs in the 
amnion (D) and choriodecidua (E)
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Antifade Mountant with DAPI (Thermo Fisher Scientific, Eugene, OR, 
USA). Slides were visualized on a Zeiss LSM 780 laser scanning confo-
cal microscope (Carl Zeiss Microscopy GmbH, Jena, Germany) at the 
Microscopy, Imaging, and Cytometry Resources Core at the Wayne 
State University School of Medicine (http://micr.med.wayne.edu/). Tile 
scans were performed from the chorioamniotic membranes, and the 
complete imaging field was divided into eight-by-eight quadrants. Z-
stack scans (8 μm deep) were performed to create 3D reconstructions.

2.4 | Semiquantification of neutrophil extracellular 
traps in the chorioamniotic membranes

Following immunostaining, tissue slides were scanned using a 
Pannoramic MIDI Digital Slide Scanner (PerkinElmer, Inc., Waltham, 
MA, USA). The chorioamniotic membrane section was divided into 
quadrants using the scanner software (3DHISTECH Ltd., Budapest, 
Hungary), and NET semiquantification was performed in two oppos-
ing quadrants. Within each quadrant, five 1-mm-wide sections of cho-
riodecidua and five 1-mm-wide sections of amnion were chosen in 
pairs. The width of each section remained constant, while the height 
spanned the full thickness of the amnion or choriodecidua. A NET was 
defined as a structure in which blue (DAPI), green (neutrophil elastase), 
and red (histone H3) fluorescence signals were colocalized. The total 
number of NETs was semiquantified in the amnion and choriodecidua.

2.5 | Statistical analyses

The SPSS v.19.0 software (SPSS Inc., Chicago, IL, USA) was used 
to analyze demographic, clinical, and NET semiquantification data. 
Normality of the data was tested using the Wilk-Shapiro test. 
Comparisons among groups were performed using the Kruskal-Wallis 
test followed by two-group comparisons using the Mann-Whitney U-
test. Comparison of proportions was made using the Fisher’s exact 
test. A P-value of <.05 was used to determine statistical significance.

3  | RESULTS

Neutrophil extracellular traps were abundant in the chorioamni-
otic membranes from women who underwent spontaneous labor 
at term with acute chorioamnionitis (Figure 1A). However, NETs 
were rarely seen, or not found at all, in the chorioamniotic mem-
branes from women who underwent spontaneous labor at term 
without acute chorioamnionitis or those who delivered at term 
without labor (Figure 1A). Magnifications of the NETs found in the 
chorioamniotic membranes from women who underwent sponta-
neous term labor with acute chorioamnionitis demonstrated that 
these traps contain neutrophil elastase and histone H3 (white 
arrows; Figure 1B) as well as DNA (white arrows; Figure 1C). 
Semiquantification revealed that NETs were more abundant in the 
amnion (Figure 1D) and choriodecidua (Figure 1E) from women 
who underwent spontaneous labor at term with acute chorioam-
nionitis than in those without this placental lesion who delivered 
at term with or without labor. A 3D reconstruction shows that 
NETs are located in the amnion and choriodecidua from women 
who underwent spontaneous labor at term with acute chorioam-
nionitis (Video S1). A snapshot of this 3D reconstruction shows 
that chorioamniotic membrane NETs contain neutrophil elastase 
and histone H3 (white arrows; Figure 2A) as well as DNA (white 
arrows; Figure 2B).

NETs were also abundant in the chorioamniotic membranes from 
women who underwent spontaneous preterm labor with acute cho-
rioamnionitis (Figure 3A). However, NETs were rarely seen, or not 
found at all, in the chorioamniotic membranes from women who 
underwent spontaneous preterm labor without acute chorioam-
nionitis or those who delivered preterm without labor (Figure 3A). 
Magnifications of the NETs found in the chorioamniotic membranes 
from women who underwent spontaneous preterm labor with acute 
chorioamnionitis demonstrated that these traps contain neutrophil 

F IGURE  2 A snapshot of the 3D reconstruction of neutrophil extracellular traps (NETs) in the chorioamniotic membranes from women 
who underwent spontaneous labor at term with acute chorioamnionitis. A merged image shows neutrophil elastase in green and histone H3 in 
red (A; white arrows). A merged image shows DAPI (nuclei) in blue, neutrophil elastase in green, and histone H3 in red (B; white arrows). 400× 
magnification. NETs are structures in which DAPI, neutrophil elastase, and histone H3 fluorescence signals are colocalized

http://micr.med.wayne.edu/
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elastase and histone H3 (white arrows; Figure 3B) as well as DNA 
(white arrows; Figure 3C). Semiquantification revealed that NETs 
were more abundant in the amnion (Figure 3D) and choriodecidua 
(Figure 3E) from women who underwent spontaneous preterm 
labor with acute chorioamnionitis than in those without this pla-
cental lesion who delivered preterm with or without labor. A 3D 

reconstruction shows that NETs are located in the amnion and cho-
riodecidua from women who underwent spontaneous preterm labor 
with acute chorioamnionitis (Video S2). A snapshot of this 3D recon-
struction shows that chorioamniotic membrane NETs contain neu-
trophil elastase and histone H3 (white arrows; Figure 4A) as well as 
DNA (white arrows; Figure 4B).

F IGURE  3 Neutrophil extracellular traps (NETs) in the chorioamniotic membranes from women who delivered preterm. (A) A tile-scan image 
of the chorioamniotic membranes from women who delivered preterm without labor or underwent spontaneous preterm labor with or without 
acute chorioamnionitis. Merged images show DAPI (nuclei) in blue, neutrophil elastase in green, and histone H3 in red. Tile-scan images were 
acquired at 400×. The area outlined in (A) is enlarged in (B, C), demonstrating a higher resolution view of a NET in the amnion from women who 
underwent spontaneous preterm labor with acute chorioamnionitis. Merged images show neutrophil elastase in green and histone H3 in red (B; 
white arrow) or DAPI (nuclei) in blue, neutrophil elastase in green, and histone H3 in red (C; white arrow). NETs are structures in which DAPI, 
neutrophil elastase, and histone H3 fluorescence signals are colocalized. Semiquantification of the total number of NETs in the amnion (D) and 
choriodecidua (E)
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4  | DISCUSSION

Acute chorioamnionitis generally represents the presence of intra-
amniotic infection,47,61,62 a clinical condition characterized by a local 
inflammatory response containing abundant leukocytes72-76 and 
elevated concentrations of pro-inflammatory mediators such as cy-
tokines.25,58 Recently, we characterized the cellular composition of 
this local inflammatory response using immunophenotyping.77 We 
found that neutrophils are the most abundant leukocyte subset in 
the amniotic cavity of women with intra-amniotic infection,77 which 
is consistent with previous observations.72 Such neutrophils mainly 
express pro-inflammatory cytokines such as TNF-α, MIP-1β, and 
IL-8.77 These cytokines are implicated in the processes of term and 
preterm parturition.10-13,25,78-82 In addition, amniotic fluid neutrophils 
form NETs in patients with intra-amniotic infection, which represents 
a new mechanism for trapping and/or killing microbes invading the 
amniotic cavity.63 Amniotic fluid neutrophils are considered to be of 
fetal origin;83,84 however, these innate immune cells have also been 
observed in patients with a severe maternal inflammatory response 
(ie, acute chorioamnionitis) but without a fetal inflammatory response 
(ie, funisitis and chorionic vasculitis), suggesting that, in some cases, 
amniotic fluid neutrophils are of maternal origin or a mixture of both 
fetal and maternal neutrophils. In such cases, maternal neutrophils 
could be migrating from the decidual vessels into the chorion and am-
nion, causing acute inflammation of the chorioamniotic membranes 
(ie, acute chorioamnionitis)47 and ultimately reaching the amniotic 
cavity. Therefore, the function of chorioamniotic neutrophils in acute 
chorioamnionitis may be comparable to their role in intra-amniotic in-
fection as, in both pathological processes, these innate immune cells 
form NETs and may participate in the maternal host response against 
microbes invading the amniotic cavity.

Yet, acute chorioamnionitis can also occur in the setting of sterile 
intra-amniotic inflammation,61,85-88 an inflammatory process in which 
microorganisms cannot be detected using a combination of cultivation 
and molecular microbiology techniques.61,85-87 Sterile inflammation is 
induced by danger signals termed damage-associated molecular pat-
terns (DAMPs)89 or alarmins,90 derived from necrotic cells or cellular 

stress.91 NETs can also be formed in sterile inflammation, as both 
alarmins and pathogen-associated molecular patterns (PAMPs) use the 
same sensor molecules or pattern recognition receptors.92 Particularly, 
the high-mobility group box-1 (HMGB1, a prototypical alarmin93,94) 
protein can induce NET formation via TLR4,95 the sensor molecule 
for lipopolysaccharide from Gram-negative bacteria.96 The fact that 
HMGB1 induces NETs is relevant because (i) amniotic fluid HMGB1 
concentrations are higher in women with intra-amniotic infection97 
or clinical chorioamnionitis98 than in those without these clinical con-
ditions; (ii) patients with sterile intra-amniotic inflammation and high 
amniotic fluid HMGB1 concentrations delivered earlier than those 
with low concentrations of this alarmin;85 (iii) the intra-amniotic ad-
ministration of HMGB1 induces preterm labor and birth in mice;99 
and (iv) the chorioamniotic membranes from women who underwent 
spontaneous preterm labor release high concentrations of HMGB1.100 
Alarmin-induced NETs can exacerbate immune responses by directly 
causing tissue damage.92 Together, these data suggest that, in the set-
ting of sterile intra-amniotic inflammation, chorioamniotic neutrophils 
form NETs in response to danger signals derived from the amniotic 
fluid or the chorioamniotic membranes which, in turn, could aggravate 
the local immune response observed in acute chorioamnionitis.

In summary, the study herein provides evidence that neutrophils 
infiltrating the chorioamniotic membranes in preterm and term cases 
of acute chorioamnionitis form NETs. These data suggest that cho-
rioamniotic neutrophils form NETs in response to microbes invading 
the amniotic cavity (ie, intra-amniotic infection) or danger signals de-
rived from the amniotic fluid or chorioamniotic membranes (ie, sterile 
intra-amniotic inflammation). Collectively, these findings provide in-
sight into the functions of infiltrating neutrophils in the chorioamni-
otic membranes from women who underwent spontaneous term or 
preterm labor with acute chorioamnionitis.
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