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Figure S1. HOT-DIW printing of molten polymer, carbohydrate glass, and metallic alloy 
inks. One-dimensional (1D) arrays of printed filaments (nozzle diameter = 50 µm, nozzle 
temperature ~ 200°C, substrate temperature ~ 25°C) composed of (a) polylactic acid (PLA). (b) 
sugar, and (c) eutectic bismuth-tin (Bi-Sn) alloy. Scale bars are 100 µm in length. 
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Figure S2. Lamellar features within printed eutectic AgCl-KCl filaments. SEM images of 
the (a) top surface and (b) bottom surface of representative filament (nozzle diameter = 1 mm, 
nozzle temperature ~ 400°C, substrate temperature ~ 25°C, and ! ! !!!" mm!s-1), including (i) 
macro-view and micro-views of (ii) side and (iii) middle of the filament. (c) Bar plot of average 
lamellar spacing, !, as a function of printing speed, !, measured at the middle of the filament. 
Error bars represent ± 2 standard deviations. 
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Figure S3. (a) Normalized speed of solidification front calculated in the central region of printed 
filaments as a function of print speed. White region denotes filaments printed below !!"#$, where 
lamellae of uniform orientation were observed. Gray region denotes filaments printed above 
!!"#$, exhibiting non-uniformly oriented lamellae. (b) Schematic illustration of lamellar growth 
along bottom surface of the printed filaments depicting geometric relationship between 
solidification front velocity (!) and printing speed (!). 
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Figure S4. Comparison of lamellar spacing measured directly from SEM images to that 
estimated from the measured first order diffraction response. 
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Figure S5. Representative images of a printed eutectic AgCl-KCl filament. (a) SEM of the 
filament cross-section. Higher magnification views of the (b) filament center revealing the 
presence of wavy lamellae and (c) filament-substrate interface that contains both wavy and 
straight lamellar regions. Dotted line denotes the boundary between these two regions. This 
filament was printed using a nozzle diameter = 1 mm, nozzle temperature ~ 400°C, substrate 
temperature ~ 25°C, and ! ! !!!" mm!s-1. 
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Figure S6. Absolute diffraction efficiencies. (a) Measured absolute diffraction efficiency for 
eutectic filaments printed at ! ! !!!" mm!s-1 (! ! !"#$ nm) (black), ! ! !!!" mm!s-1 (! ! !"# 
nm) (red), and ! ! !!! mm!s-1 (! ! !"! nm) (blue). (b) Simulated absolute efficiency for 
eutectic filaments. Colors are matched to corresponding print speeds and lamellar spacings in (a). 
(c) Simulated absolute diffraction efficiency for as-printed (! ! !!!" mm!s-1), KCl-etched, and 
KCl-etched and coated with silver (450 nm thick), where ! ! !"# nm. 
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Figure S7. Printed eutectic AgCl-KCl filaments exhibit structural color. (a) Optical 
micrographs of top surface of filament printed at ! ! !!!" mm!s-1 (i), ! ! !!!" mm!s-1 (ii), and 
(iii) ! ! !!!! mm!s-1. Schematic at bottom shows direction of white light source. Colored circles 
mark locations from where spectral measurements were obtained. Corresponding lamellar 
spacings and print speeds are noted above each micrograph. Scale bars are 400 µm in length. (b) 
Normalized reflectance measurements obtained from locations marked in (a). Observed peaks for 
samples displaying structural color are marked by vertical dotted lines at corresponding 
wavelengths, and are color-matched to their respective spectra. [Note: No reflectance peaks are 
observed in the non-uniform sample.] 
 

450 500 550 600 650
Wavelength [nm]

0.1

0.2

0.3

0.4

N
or

m
al

iz
ed

 
R

ef
le

ct
an

ce
(a) 

!!
" !"#$!%&

# ='()#!&&*+
(i) 

!!
" !"##!$%
# =#&'(!%%)*

(ii) 

White Light 

!!
"#$%&$'(#)*
" = +,--!**./

(iii) 
P

R
IN

T 
D

IR
E

C
TI

O
N

 

(b) 
!!
" !"#$!%&
# ='()#!&&*+

!!
" !"##!$%
# =#&'(!%%)*

!!
"#$%$&'#()
" = *+,,!))-.



   Submitted to  

 9 

 
Figure S8. (a) Representative image of HOT printhead, (b) High magnification image of nozzle 
tip, and (c,d ) Bottom view of HOT printhead and high magnification view of the 200 µm nozzle 
orifice (white color) operating at 700°C, respectively. 
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Figure S9. Schematic illustration of 3D heat transfer simulation (not drawn to scale) highlighting 
key boundaries. 
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Figure S10. Composition of printed eutectic AgCl-KCl filaments. (a) SEM image of top 
surface of representative printed filament. (b) Corresponding EDS spectra (main) and extracted 
composition ratio of Cl, Ag, and K (inset). (c) SEM image and (ii-iii) corresponding elemental 
mapping (EDS analysis) of the lamellar features, where green denotes silver and blue denotes 
potassium. Representative sample printed at!! ! !!!" mm!s-1. 
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Figure S11. Etching of printed eutectic AgCl-KCl filaments. (a) SEM image of bottom of 
filament. (b) Corresponding EDS spectra (main) and extracted composition ratios of Cl, Ag, and 
K (table inset). (c) SEM image of bottom of un-etched sample. (d) SEM image bottom of etched 
sample. Representative sample printed at 𝑣 = 0.05 mm∙s-1. 
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Figure S12. Cross-sectional view of modified printed eutectic filaments. (a) SEM image of 
bottom cross-section of the printed filament after KCl etching and silver coating. (b) Higher 
magnification SEM image. Representative sample printed at!! ! !!!" mm!s-1. 
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Table S1. Quantities used in parameterizing the phase field simulations. 

Quantity Symbol Value Reference 

Thermal diffusivity of 
solid eutectic 𝛼! 1.86×10!! m2∙s-1 [1, 2] 

Thermal diffusivity of  
liquid eutectic α! 2.36×10!! m2∙s-1 [3] 

Thermal conductivity of 
solid eutectic 𝑘! 3.25 W m-1∙K-1 [1, 2] 

Thermal conductivity of 
liquid eutectic 𝑘! 0.45 W m-1∙K-1 [3] 

Heat capacity of solid eutectic 𝑐! 417 J kg-1∙K-1 [1, 2] 

Heat capacity of liquid 
eutectic 𝑐! 519 J kg-1∙K-1 [3] 

Temperature of air 𝑇!"# 25°C Experiment 

Temperature of substrate 𝑇!"# 25°C Experiment 

Temperature of nozzle 𝑇!"##$% 400°C Experiment 

Heat transfer coefficient 
to air ℎ!"# 10 W m-2∙K-1 [4] 

Heat transfer coefficient 
to substrate ℎ!"# 2×10! W∙m-2∙K-1 Experiment 

Liquidus slope of AgCl 𝑚!"#$ -542 K∙mol-1 [5] 

Liquidus slope of KCl 𝑚!"# 837 K∙mol-1 [5] 

Eutectic temperature 𝑇! 319°C [5] 

Eutectic composition 𝐶! 30 mol% [5] 

Composition of AgCl at 𝑇! 𝐶!"#$ 0 mol% [5] 

Volume fraction of KCl at 𝑇! 𝑉! 38 vol.% Calculated 

Composition of KCl at 𝑇! 𝐶!"# 100 mol% [5] 
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AgCl-Liquid interfacial 
energy 𝜎!"#$!! 154 mJ∙m-2 Assume same 

as 𝜎!"#!! 

KCl-Liquid interfacial energy 𝜎!"#!! 154 mJ∙m-2 [6] 

AgCl-KCl interfacial energy 𝜎!"#$!!"# 154 mJ∙m-2 Assume same 
as 𝜎!"#!! 

Latent heat of fusion per unit  
mass for eutectic 𝐿! 1.4×10! J∙kg-1 [7] 

Latent heat of fusion per unit  
volume for AgCl 𝐿!"#$ 5.12×10! J∙m-3 [7] 

Latent heat of fusion per unit  
volume for KCl 𝐿!"# 6.93×10! J∙m-3 [7] 

Thermal gradient for edge of  
filament 𝐺!!"# 1.5×10! K∙m-1 

3D heat 
transfer 
simulations 

Thermal gradient for center of  
filament 𝐺!"#$ 9.5×10! K∙m-1 

3D heat 
transfer 
simulations 

Diffusion coefficient 𝐷 3.79×10!! m2∙s-1 Experiment* 

*To our knowledge, the diffusion coefficient of AgCl-KCl has not been measured at the eutectic 
composition and temperature. The diffusion coefficient was calculated by fitting the Jackson-
Hunt relationship[8] to the experimental results for lamellar spacing versus solidification velocity 
(Figure 3d). Using the other known physical parameters, the diffusion coefficient was estimated. 
The value of 3.79×10!! m2∙s-1 is within the range of K+ diffusivity in liquid AgCl or KCl 
reported in the literature.[9, 10] 
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Table S2. Properties of eutectic AgCl-KCl ink at HOT nozzle temperature (𝑇! = 400°C) and 
eutectic temperature (𝑇! = 319°C). 

Quantity Symbol Value at 𝑇! Value at 𝑇! Reference 

Density  𝜌 3.7 g m-3 3.8 g∙m-3 Extrapolated 
from [11] 

Surface 
tension 𝜎 145 mN∙m-1 151 mN∙m-1 Extrapolated 

from [11] 

Viscosity 𝜇 3.1 mPa∙s 4.7 mPa∙s Extrapolated 
from [11] 
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Movie 1. HOT-DIW of molten AgCl-KCl ink. Side view of printed eutectic AgCl-KCl filament 
at v = 0.1 mm!s-1.  
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Movie 2.  Structural color observed for printed eutectic filaments. Top view of printed 
eutectic filament (2 mm wide, v = 0.18 mm!s-1) reveals that their structural color (red) switches 
on and off depending on orientation of lamellar features with respect to the white light source. 
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Movie 3.  Structural color observed for printed eutectic filaments. Top view of printed 
eutectic filament (2 mm wide, v = 0.35 mm!s-1) reveals that their structural color (blue) switches 
on and off depending on orientation of lamellar features with respect to the white light source. 
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