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le Abstract

Purpose: Implementing new magnetic resonance experiments, or sequences,

often involves extensive programming on vendor-specific platforms, which can

be time consuming and costly. This situation is exacerbated when research

sequences need to be implemented on several platforms simultaneously, e.g.,

at different field strengths. This work presents an alternative programming

environment that is hardware-independent, open-source and promotes rapid se-

quence prototyping.

Methods: A novel file format is described to efficiently store the hardware

events and timing information required for an MR pulse sequence. Platform-

dependent interpreter modules convert the file to appropriate instructions to

run the sequence on MR hardware. Sequences can be designed in high-level lan-

guages, such as MATLAB, or with a graphical interface. Spin physics simulation

tools are incorporated into the framework, allowing for comparison between real

and virtual experiments.

Results: Minimal effort is required to implement relatively advanced sequences

using the tools provided. Sequences are executed on three different MR plat-

forms, demonstrating the flexibility of the approach.

Conclusion: A high-level, flexible and hardware-independent approach to se-

quence programming is ideal for the rapid development of new sequences. The

framework is currently not suitable for large patient studies or routine scanning

although this would be possible with deeper integration into existing workflows.

Keywords: Pulseq, pulse sequence programming, rapid development, platform

independent, open-source
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le Introduction

The rich diversity of magnetic resonance imaging (MRI) applications critically

depends on the ability to coordinate various hardware components through a

software program known as a pulse sequence. This flexibility coupled with the

continued need for improved MRI sequences (increased tissue contrast, shorter

scan times, etc.) has lead to a plethora of acquisition techniques using a standard

hardware setup. Despite this flexibility, implementation of pulse sequences re-

mains an arduous task for researchers and students. Extensive development en-

vironments are provided by MRmanufacturers; however, sequence programming

typically involves low-level programming with C, C++ or custom programming

languages. This often inhibits researchers, whose focus is to quickly test new

ideas, demonstrate novel physics or compare different approaches. Furthermore,

the environment is extremely vendor-specific, which impedes the translation of

research across different institutions.

Some alternative programming environments have attempted to overcome

these difficulties. The Object-Oriented Development Interface for NMR (ODIN)

provides a platform-independent library for pulse programming (1). Likewise, a

modular Java platform for sequence programming is described in (2). However,

both frameworks appear overly complicated requiring hundreds of lines of source

code or extensive configurations to define a basic sequence, rendering them

unsuitable for rapid sequence development.

The open-source SequenceTree package (3) provides a comprehensive graph-

ical interface for platform-independent sequence programming and simulation.

Sequences are executed by exporting vendor-dependent C++ code, which must

be compiled and installed on the scanner. Although SequenceTree provides an

interactive preview of the sequence during development (3), the compilation

step increases the time between sequence modification and execution, poten-

tially limiting the approach for rapid development. Furthermore, sequences are

currently restricted to trapezoidal gradients and to the best of the author’s

knowledge can only be executed on one hardware platform.

In contrast to the open-source programming environments intended to run on

standard MR systems, some researchers have opted to replace the entire console

with custom hardware. For example, Medusa (4), provides a scalable console in-

cluding RF waveform generation, gradient control and ADC sampling. Another

console was developed in the TMX platform (5), which tightly integrates real

measurements and simulation. Whilst these approaches provide the maximum

flexibility and control, they prevent normal CE/FDA-approved operation of the

scanner, for example, in a clinical setting.

Other sequence programming enviroments have emerged to perform accurate
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le MRI simulations, such as SpinBench (6) and JEMRIS (7). SpinBench can be

paired with the RTHawk platform to execute sequences; however, it is not open-

source and thus difficult to extend to other platforms. Alternatively, JEMRIS is

primarily a simulation tool although the graphical interface is open-source, ex-

tensible and platform-independent. Other open-source projects provide a means R2.1

to customize the image reconstruction pipeline (8–10) although these do not help

with data acquisition.

In this current work, we implement a highly-flexible pulse sequence program-

ming environment named Pulseq, which overcomes some of the limitations of

previous approaches. Central to our method is a novel file format to compactly

describe the low-level details of a sequence. This approach decouples the se-

quence design from the hardware implementation, providing a high-degree of

flexibility. We provide examples where sequences are defined with MATLAB

code or the JEMRIS graphical interface and executed on different platforms.

Currently, three vendor platforms are supported: Siemens, GE, and Bruker. No

compilation of source code is required so arbitrary sequences can be executed

immediately, as desired for rapid sequence prototyping.

Methods

The main components of the Pulseq environment are illustrated in Fig. 1. The

high-level sequence can be described directly in MATLAB (The Mathworks,

Natick, MA) using functions from a custom toolbox. Alternatively, sequences

can be programmed using the graphical interface of the JEMRIS simulation

package (7). Regardless of the choice of high-level interface, a sequence file is

created containing low-level sequence instructions such as RF pulses, gradients,

ADC events and delays. This sequence file can then be executed on various

platforms through hardware-dependent interpreter modules. This architecture

allows for maximum flexibility of the high-level interface and the target scan-

ner hardware, since the two components are decoupled through the low-level

sequence file.

High-level sequence definition

The high-level sequence can be defined in multiple ways without compromising

the ability to execute the sequence on various platforms. Fig. 2 presents the

MATLAB source code required to define a basic gradient echo sequence. The

code uses functions from the mr toolbox provided with the Pulseq project to

simplify common calculations in sequence programming. The entire sequence

is defined with standard MATLAB variables and structures, already familiar to
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le a vast number of researchers. The Sequence object compresses the sequence

events and outputs a sequence file in the Pulseq format (described below) suit-

able for execution. This new toolbox is provided for two reasons. First, it allows

researchers already designing trajectories or pulses in MATLAB to execute them

immediately from the same environment. Secondly, the toolbox demonstrates

that multiple high-level design tools are possible in the proposed architecture.

An alternative method to define a sequence is to use the graphical user in-

terface provided by the simulation package JEMRIS (7), shown in Fig. 3. The

GUI provides a drag-and-drop interface to define the sequence as a tree struc-

ture. Advantages of this approach include instant visualization of the gradient

and RF waveforms as the sequence is updated. Further, sequence events can

be added and removed with a few mouse clicks. In this work, we modified the

JEMRIS C++ code (available in version 2.8) to recurse over the sequence tree

and write the hardware events into a Pulseq sequence file. In this way, any

sequence defined in JEMRIS can be executed on real MR hardware. An ad-

vantage of this approach is that exactly the same sequence can be simulated

with the Bloch equations and executed on a scanner. This is similar to the

simulation capabilities in other works (3, 5) and provides a useful comparison

between simulations and measurements.

Although the high-level sequence definition is vendor-independent, hardware

constraints such as maximum gradient amplitude and slew rate are incorporated

at this level. Violation of these limits are reported to the user during the

sequence design. The constraints are necessary to calculate the precise timing of

gradient events prior to export for scanner execution. Likewise, gradient timing

is rounded to 10µs during the sequence calculation while preserving amplitude

or area requirements. This is the longest ‘raster time’ of the three investigated

hardware platforms.

In this work, slice localization is performed in a separate graphical interface

that integrates with the high-level design tools. A screenshot and description

of this interface is provided as Supporting Figure S1 in the online supporting

material.

Low-level sequence file

The Pulseq sequence file format was designed to represent MR sequences with

the following goals:

1. Low-level: The format should be sufficiently low-level. This allows for

maximum flexibility of the high-level sequence definition and allows for

simple hardware implementation.
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le 2. Compact: The file size should be minimised. This is achieved by pre-

venting redundant definitions of pulses and their parameters.

3. Human-readable: The basic sequence structure should be easily under-

stood without processing to aid debugging. This necessitates a text-file

format.

4. Easily parsed: The format should be easy for a computer to parse with-

out the need for external libraries. This precludes existing formats such

as XML.

5. Vendor independent: The sequence must not contain definitions spe-

cific to a particular hardware manufacturer. For example, units such as

Tesla and Volts may be required to implement low-level commands but

not to define the basic spin operations constituting a sequence. The file

format use units of Hertz, meter and second.

The resulting text file is hierarchical and consists of a timing table, which ref-

erences ‘event’ objects, which in turn can reference compressed ‘shape’ objects.

Fig. 4 illustrates these basic concepts of the file format. The file contains no

loops but a simple list of instructions. This moves much of the logic to the

chosen high-level sequence tool and is made possible by the increased memory

and performance of the microcontroller hardware used in modern scanners.

The definition of shape objects allow for arbitrary RF and gradient pulses

to be executed on scanner hardware. The shapes are stored using a run-length

compression scheme on the signal derivative. This scheme highly compresses

constant and linear segments of arbitrary shapes (e.g. block pulses or piecewise-

linear gradients). Other shapes can also benefit from this compression when

linear segments are used to approximate a continuous waveform. A further

advantage of this compression is that minimal computation is required for en-

coding and decoding, unlike more advanced algorithms, e.g. audio compression

(11).

The file specification also defines a mechanism for user-specific header in-

formation. This allows simple extensions to be implemented with the current

format. In this work, for example, slice localization is performed in a separate

graphical interface (Supporting Figure S1) and the gradient rotation matrix is

passed in the file header. A detailed file specification is available from the Pulseq

website (pulseq.github.io).

Interpreter modules

Implementation of the sequence on a real MR scanner inevitably relies on

vendor-specific hardware instructions. These instructions are initiated by an
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le ‘interpreter module’, which translates the sequence file to appropriate hardware

commands, as illustrated in Fig. 1. The low-level nature of the Pulseq sequence

file makes it relatively simple to implement interpreter modules for different

scanner platforms. Precise timing logic and amplitude information is already

computed by the high-level sequence tool and stored in the file. The remaining

task of the interpreter is to convert each sequence event into an appropriate

hardware instruction. There is no guarantee that a single Pulseq file can run on

all platforms, due to varying hardware and safety constraints. In this work, se- R2.3

quences were created conservatively such that they satisfy the constraints of all

systems. However, if optimization for a specific platform is required, this must

be performed at the design stage prior to generating the Pulseq file. The sim-

plicity of this architecture is demonstrated here by successful implementation

of interpreter modules for three scanner platforms.

The setup makes it relatively simple to deal with different vendor software

versions, since only the interpreter module needs to be modified while the se-

quence files remain unchanged. Another advantage of the interpreter architec-

ture, compared to other solutions, is that vendor-specific code does not need

to be recompiled prior to executing a new sequence. Thus a sequence can be

changed (e.g. by adding gradient pulses) and executed immediately on the

scanner. This enables very rapid development and debugging of sequences.

Experiments

Arbitrary RF and gradient shapes

A gradient echo sequence with matrix size 256×256, field-of-view 220mm, flip

angle 20◦, TE=20ms, TR=100ms was defined with the MATLAB source code

shown in Fig. 2. This sequence was used to image a cylindrical phantom con-

taining thin Plexiglas tubes on a 3T system (Siemens Healthcare, Erlangen,

Germany) with the proposed file format and interpreter module.

In addition to a simple gradient echo, a 2D spatially selective RF pulse was

implemented in order to demonstrate arbitrary gradient and RF pulse shapes.

The RF pulse design closely follows (12), modified to excite the superposition

of the original target pattern with a shifted version. Specifically, the RF pulse

and excitation k-space trajectory have the form,

B1(t) = Be
1(t)(1 + ej2πx

T

0
k(t)) [1]

Be
1(t) = αe−β2(1−t/T )2

√

(2πn(1− t/T ))2 + 1 [2]

k(t) = A(1− t/T )

[

cos(2πnt/T )

sin(2πnt/T )

]

[3]
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le where T = 8ms is the pulse duration, β = 2 corresponding to a Gaussian target

excitation region of approximately 3cm, α was set to achieve a 20◦ flip angle, n =

8 is the number of spiral turns and A = 40m−1 is the k-space maximum. The

sequence timing was TE=20ms and TR=500ms. Modulation by the complex

exponential in Eq. [1] excites a duplicate pattern at x0 = (5 cm, 5 cm), chosen

to demonstrate pulses with arbitrary phase. Fig. 5 illustrates the final gradient

and RF pulses.

The original gradient echo sequence was modified with approximately 20 ad-

ditional lines of MATLAB code to define the excitation parameters, complex RF

pulse and gradient waveforms and include them in the sequence for execution.

This includes conversion of the sequence into a spin echo with a spoiled 180◦

slice-selective refocusing pulse and additional delays to select a slice through the

excited cylinders, as described in (12).

Comparison of simulated and measured data

A spin-echo sequence was created in JEMRIS with the graphical interface and

executed on a Siemens scanner. This demonstrates Pulseq integration with

an existing high-level sequence design tool and allows for the comparison of

simulation data and data acquired on an MRI scanner. The sequence had a

matrix size of 64×64, field-of-view of 210mm, flip angle of 50◦, TE of 15ms and

TR of 100ms.

High-resolution maps of the properties of a phantom (M0, T1, T2, T
∗

2 ) were

acquired in order to simulate the sequence in JEMRIS. Parameter maps of a

single 3mm slice at the isocenter were calculated as follows. A multi-echo Carr-

Purcell-Meiboom-Gill (CPMG) sequence with 16 echoes spaced 13.2ms apart

was used to fit each voxel to a single exponential function, producing maps

of proton density and T2 (13). Likewise, T ∗

2 maps were generated by voxel-

wise fitting of an exponential to 8 echoes acquired 4ms apart with a multi-

echo gradient echo sequence. Mapping of T1 was performed with an inversion

recovery sequence with inversion times (in ms) of 22, 30, 50, 150, 220, 300,

1000, and 2000. Finally, a B0 off-resonance map was calculated from the phase

of two gradient echo images with echo times spaced 1ms appart. All data were

acquired using standard vendor sequences at 256×256 resolution with a field-

of-view of 210mm. The final maps were interpolated to 512×512 to reduce

simulation artifacts caused by approximating a continuous integral (14).

The target sequence was simulated in JEMRIS using the calculated param-

eter maps and an image was generated with a 2D discrete Fourier transform

(DFT). The low resolution of the target sequence allows the simulations to ac-

curately capture intra-voxel dephasing (15, 16).
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A gradient echo sequence was designed in JEMRIS to run on three different

hardware platforms: 3T Siemens Trio equipped with a single-channel wrist

RF coil (Siemens Healthcare, Erlangen, Germany); 3T GE Discovery MR750

with an 8 channel head coil (GE Healthcare, Waukesha, WI, USA); and 9.4T

Bruker BioSpec MRI with a single-channel rat coil (Bruker Biospin, Ettlingen,

Germany). The scanners were located across two institutions. The sequence had

a field-of-view of 80×80mm to ensure reasonable imaging in both the small-bore

9.4T and the human 3T systems. Other parameters were: 256×256 matrix, flip

angle=20◦, TE=7ms and TR=100ms. Data from the GE system were averaged

20 times to account for the loss of SNR due to the increased receive coil size.

All images were reconstructed using a 2D DFT on the raw data and sum-

of-square combination was used in the case of multiple RF channels.

Results

Fig. 6 displays images acquired from sequences defined entirely in MATLAB.

The gradient-echo image in Fig. 6a represents a slice through the phantom, as

expected. Fig. 6b is the result from RF and gradient waveforms designed to

achieve 2D selective excitation of two Gaussian profiles. These images demon-

strate the correct implementation of the sequence design, low-level sequence file,

and interpreter module for arbitrary pulse shapes.

Fig. 7 demonstrates the close match between simulated and measured im-

ages. The direct comparison is possible since the same sequence is simulated

and also converted to hardware instructions for the MR scanner. Minor con-

trast differences are visible, possibly due to B1 inhomogeneity or inaccurate

estimation of the phantom parameters.

Fig. 8 presents images acquired from the same sequence file on three dif-

ferent MR platforms. The first two images of a phantom were acquired at the

University Medical Center Freiburg on a 3T Siemens and 9.4T Bruker scanner,

respectively; the third image of an orange was measured at University of Michi-

gan on a 3T GE scanner. The images in Fig. 8a and 8b differ slightly due to

different RF coil characteristics and the increased B0 and B1 inhomogeneities at

the higher field strength. The variety of platforms demonstrates the flexibility

of the proposed sequence interpreter framework.

The compact hierarchical design of the file format results in relatively small

sequence files. Table 1 lists the file sizes and compression ratios for the sequences

used in the results above. Compression ratios are calculated as a percentage of

the size of the uncompressed waveform data. In all cases, the entire sequences

9

Page 9 of 26

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le file was sufficiently small to fit in the memory of the hardware control units.

Discussion

Flexibility

A selection of examples was chosen for this publication although the flexibility

of the framework is much greater. A range of other sequences can be easily

implemented, depending on the given application. Furthermore, any sequence

defined in MATLAB could have also been designed in JEMRIS, and vice versa.

The choice between MATLAB scripting and JEMRIS is largely left to the de-

veloper. For example, some researchers prefer graphical interfaces while others

may prefer to output a sequence from the same MATLAB script containing a

pulse calculation. The advantage of JEMRIS, however, is the ability to simulate

as well as execute sequences.

In addition to state of the art sequences using standard sequence blocks, the

inclusion of arbitrary RF and gradient pulse shapes allows for a range of ad-

vanced sequences to be implemented as required for cutting-edge MR research.

For example, frequency swept adiabatic pulses (17), oscillating gradients for dif-

fusion measurements (18), continuous wave acquisition (19) and acoustic noise

reduction (20) can all be implemented without modification of the basic frame-

work.

Openness

The pulse sequence programming environment presented here is open-source

to encourage contributions from other researchers. Unlike other open-source

projects, such as (1, 3), the focus here is an open format to represent sequences,

suitable for execution on any MR platform. It is our opinion that existing

projects (both open-source and proprietary) would also benefit from a common

sequence file format. In this case, when a programming interface can export

sequences to this format, they can automatically be run on various hardware

platforms using the interpreter modules provided. This is analogous to other

file types, such as images or documents, that have benefited from a common

format to share data.

Limitations

The framework presented here is primarily targeted to research and education,

where the objective is to rapidly develop and test new sequences. As such, the

low-level sequence format was designed for simplicity and portability. Features
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omitted, although the framework could easily be extended to include these.

Likewise, the addition of multiple RF transmit channels is also possible. A sim-

ilar extension to multiple nonlinear encoding fields was used for data acquisition

in (21).

Advanced features such as real-time feedback (22) would require some im-

plementation effort and may not be feasible. Another limitation is aggressively

time-optimized sequences where, for example, gradient ramps of one block can

overlap into another block. The absence of loop structures in the file format

leads to an increase in the sequence file size, particularly for long sequences such

as 3D or diffusion. In this case, the interpreter modules may need to load the

file in sections, during the sequence execution.

Safety

There are no inherent safety concerns, e.g. peripheral nerve stimulation (PNS)

or specific absorption rate (SAR), using this method of sequence programming.

The platforms for which interpreter modules were implemented so far perform

safety checks at a hardware level further along the chain than the environment of

the interpreter modules. This is similar to how custom sequences, implemented

in vendor-specific programming environments, will not run if they do not pass

the safety tests. Therefore sequences designed with Pulseq are applicable in

vivo under the IRB approval conditions similar to other research sequences.

To provide feedback to the sequence programmer prior to scanner execution,

some basic checks are performed by the high-level design tool, such as maximum

gradient and slew rate. Additional safety constraints such as PNS or SAR are

either performed at run-time or left to the interpreter module, depending on the

platform. When safety violations are reported by the vendor interfaces, the user

must adjust the sequence and export a new Pulseq file. This iterative approach

is suitable for prototyping but suboptimal in a clinical setting. In future, more

complex checks could be implemented in the high-level design tool to consider

the safety constraints with respect to the dependencies between sequence blocks. R2.2

Future directions

It is hoped that this publication will inspire other researchers to create inter-

preter modules for additional hardware platforms. For example, the ability to

design and execute sequences in a simple manner, makes the proposed envi-

ronment ideal for existing MR hardware projects targeted towards education

such as (23–25). The translation of high-level sequence logic to human-readable

hardware events, combined with the corresponding measurements, provides new
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for short Master’s or summer projects, since the favorable learning curve means

novel data can be obtained quickly.

Advantages of the proposed framework are vendor-independence and the

minimal time between design and acquisition. Nonetheless, deeper integration

into the existing vendor interfaces would bring several advantages. For example,

SequenceTree (3) tightly integrates with an existing vendor interface to allow

for interactive slice prescription and parameter adjustment at scan time. It may

be possible to incorporate similar ideas into the Pulseq framework.

In addition to the format extensions discussed above, an extensive library

of different sequences is required to promote adoption of the programming en-

vironment. These sequences should first be created in a high-level design tool

(e.g. JEMRIS or MATLAB), to allow the operator to easily change parameters

prior to export to the low-level Pulseq format. New sequences are continually

being added to the project as the use increases across our various institutions.

Furthermore, the open-source nature of the project is expected to encourage

other users to contribute their own sequences.

Source code and availability

The source code for sequence design and file operations is available from the

project website http://pulseq.github.io or via the ISMRM site MRI Unbound.

The source code is released under the MIT license and the file format is released

under the Creative Commons Attribution 4.0 license. The interpreter modules

cannot be openly published due to the use of proprietary sequence programming

code; however, they are available on request.

Conclusion

The Pulseq project is a flexible framework to create MR sequences and im-

mediately execute them on real hardware, making it ideal for rapid sequence

development. Central to the approach is a novel sequence file format describing

all low-level events of a sequence, including arbitrary gradient and RF pulse

shapes. A standardized file format promotes a variety of high-level design tools

and supports implementation on different scanner platforms. Sequence simula-

tion can also be integrated into the framework, which provides useful insights

into sequence design, MR physics and signal modeling.
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7. Stöcker T, Vahedipour K, Pflugfelder D, and Shah NJ. High-performance

computing MRI simulations. Magnetic Resonance in Medicine 2010;64:186–

193.

8. Hansen MS and Sørensen TS. Gadgetron: an open source framework for

medical image reconstruction. Magnetic Resonance in Medicine 2013;69:1768–

1776.

9. Han F, Zhou Z, Sung K, Finn JP, and Hu P. A low-cost flexible non-

linear parallelized MR image reconstruction system. In Proceedings of the

ISMRM 23rd Scientific Meeting and Exhibition. 2015. p. 2489.

13

Page 13 of 26

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le 10. Uecker M, Ong F, Tamir JI, Bahri D, Virtue P, Cheng JY, Zhang T, and

Lustig M. Berkeley Advanced Reconstruction Toolbox. In Proceedings of

the ISMRM 23rd Scientific Meeting and Exhibition. 2015. p. 2484.

11. Xiph.Org Foundation. 2014. FLAC: Free Lossless Audio Codec. url: xiph.

org/flac/index.html.

12. Pauly J. A k-space analysis of small-tip-angle excitation. Journal of Mag-

netic Resonance 1969 1989;81:43–56.

13. Layton KJ, Morelande M, Wright D, Farrell PM, Moran B, and Johnston

LA. Modelling and Estimation of Multicomponent T2 Distributions. IEEE

Transactions on Medical Imaging 2013;32:1423–1434.

14. Sharp J, Yin D, Tyson R, Lo K, and Tomanek B. An Integrated MR Con-

sole / MR Physics Simulation System. Proceedings 14th Scientific Meeting,

International Society for Magnetic Resonance in Medicine 2006;2402:1351.
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Table 1: The sequence duration, file size and compression ratio of the Pulseq
sequence files used in this work. Compression ratios are calculated as a percent-
age of the size of the uncompressed waveform data. Sequences are designed in
MATLAB or JEMRIS before exporting to the scanner.

Sequence Design Duration Size Compression

GRE MATLAB 25.6 s 80KB 0.017%
SE 2D RF MATLAB 128.0 s 193KB 0.008%
SE JEMRIS 6.4 s 39KB 0.033%
GRE JEMRIS 25.6 s 65KB 0.014%
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Figure 1: Overview of the Pulseq environment. Sequences are described in a
high-level design tool, e.g. a MATLAB script or using a graphical user interface
(left). A hardware-independent sequence format is output (middle) and exe-
cuted using a hardware-dependent interpreter module (right). Simulation data
may also be generated from the Bloch equation solver JEMRIS.

Figure 2: A gradient-echo sequence defined in MATLAB with Pulseq toolbox
functions. The resulting low-level sequence file is suitable to execute on any MR
hardware platform equipped with an interpreter module.

Figure 3: A screenshot of the modified JEMRIS graphical interface for sequence
design. Sequences can be exported to a Pulseq low-level sequence file for exe-
cution on the scanner.

Figure 4: Main elements of the Pulseq hierarchical data format describing a
simple FID. At the top level, the sequence consists of blocks, which contain
integer IDs of sequence events. Sequence events may contain IDs of arbitrary
shape objects to describe, for example, an RF pulse shape.

Figure 5: Gradient and RF pulse shapes to achieve 2D selective excitation. The
(top) RF magnitude and (middle) RF phase combined with (bottom) a spiral
trajectory excites two Gaussian cylinders as described in the text. Arbitrary
pulse shapes are inherently supported in the proposed sequence format and
interpreter modules.

Figure 6: Image acquired directly from MATLAB for (a) the gradient-echo se-
quence shown in Fig. 2 and (b) a spin-echo sequence with 2D selective RF exci-
tation. The Pulseq framework converts the MATLAB source code to hardware-
dependent instructions to control the scanner.

Figure 7: An axial image of a phantom (a) simulated with the Bloch equations
and (b) acquired on a scanner. The same spin echo sequence file was used for
simulation and measurement.

Figure 8: Images from the same sequence file executed on (a) Siemens, (b)
Bruker and (c) GE hardware platforms. The sequence is stored in a novel
platform-independent file and converted to hardware instructions by platform-
specific interpreter modules.
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le Figure S1: A screenshot of the custom slice geometry interface. The interface
obtains localiser images through an in-house reconstruction pipeline. Geometry
information is passed via a MATLAB structure to the high-level design tools of
the Pulseq environment, where appropriate sequence parameters are set (includ-
ing frequency and phase offsets). The gradient rotation matrix is passed to the
vendor-specific interpreter modules through the Pulseq file header. Although
the interface tightly integrates with the Pulseq environment, it is not currently
provided as open-source due to vendor-dependencies.
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Figure 1: Overview of the Pulseq environment. Sequences are described in a high-level design tool, e.g. a 
MATLAB  script or using a graphical user interface (left). A hardware-independent sequence format is output 
(middle) and executed using a hardware-dependent interpreter module (right). Simulation data may also be 

generated from the Bloch equation solver JEMRIS.  
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Figure 2: A gradient-echo sequence defined in MATLAB with Pulseq toolbox functions. The resulting low-level 
sequence file is suitable to execute on any MR hardware platform equipped with an interpreter module.  
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Figure 3: A screenshot of the modified JEMRIS graphical interface for sequence design. Sequences can be 
exported to a Pulseq low-level sequence file for execution on the scanner.  
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Figure 4: Main elements of the Pulseq hierarchical data format describing a simple FID. At the top level, the 
sequence consists of blocks, which contain integer IDs of sequence events. Sequence events may contain 

IDs of arbitrary shape objects to describe, for example, an RF pulse shape.  
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Figure 5: Gradient and RF pulse shapes to achieve 2D selective excitation. The (top) RF magnitude and 
(middle) RF phase combined with (bottom) a spiral trajectory excites two Gaussian cylinders as described in 
the text. Arbitrary pulse shapes are inherently supported in the proposed sequence format and interpreter 

modules.  
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Figure 6: Image acquired directly from MATLAB for (a) the gradient-echo sequence shown in Fig. 2 and (b) a 
spin-echo sequence with 2D selective RF excitation. The Pulseq framework converts the MATLAB source code 

to hardware-dependent instructions to control the scanner.  
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Figure 7: An axial image of a phantom (a) simulated with the Bloch equations and (b) acquired on a 
scanner. The same spin echo sequence file was used for simulation and measurement.  
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Figure 8: Images from the same sequence file executed on (a) Siemens, (b) Bruker and (c) GE hardware 
platforms. The sequence is stored in a novel platform-independent file and converted to hardware 

instructions by platform-specific interpreter modules.  
50x17mm (300 x 300 DPI)  

Page 26 of 26

Magnetic Resonance in Medicine

Magnetic Resonance in Medicine

This article is protected by copyright. All rights reserved.


