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Key points: 

1. A time-dependent MHD model is used to quantify the impact of a strong ICME on Mars.  

2. Plasma environment varied rapidly in response to the solar wind disturbances.  
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3. Ion escape rates were enhanced by more than an order of magnitude during the ICME event. 
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Abstract   

The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft observed a strong 

interplanetary coronal mass ejection (ICME) impacting Mars on 8 March 2015. We use a time-

dependent global MHD model to investigate the response of the Martian ionosphere and induced 

magnetosphere to the large solar wind disturbance associated with the ICME. Taking observed 

upstream solar wind conditions from MAVEN as inputs to the MHD model, the variations of the 

Martian plasma environments are simulated realistically in a time period from 2.5 hours prior to 

the arrival of the ICME shock to about twelve hours after the impact. Detailed comparisons 

between the model results and the relevant MAVEN plasma measurements are presented, which 

clearly show that the time-dependent multi-species single-fluid MHD model is able to reproduce 

the main features observed by the spacecraft during the ICME passage. Model results suggest 

that the induced magnetosphere responds to solar wind variation on a very short time scale (~ 

minutes). The variations of the plasma boundaries’ distances from the planet along the subsolar 

line are examined in detail, which show a clear anti-correlation with the magnetosonic Mach 

number. Plasma properties in the ionosphere (especially the induced magnetic field) varied 

rapidly with solar wind changes. Model results also show that ion escape rates could be enhanced 

by an order of magnitude in response to the high solar wind dynamic pressure during the ICME 

event. 

 

1. Introduction 
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ICMEs, as the interplanetary counterpart of coronal mass ejections (CMEs), often consist of 

several parts: a leading sheath-like pileup of solar-wind plasma and magnetic field sometimes 

preceded by a forward shock and a driver or ejecta portion [Jian et al., 2008]. ICMEs are 

recognized as large-scale magnetic structures with enhanced field strength with respect to the 

ambient solar wind, having plasma and composition signatures distinct from the solar wind in 

which they are embedded [Gopalswamy, 2006]. It is well established that ICMEs are the main 

source of major geomagnetic storms observed at Earth [Gosling et al., 1991; Tsurutani and 

Gonzalez, 1997]. Out of the ICME-perturbed solar wind, the high ram pressure and intense 

southward interplanetary magnetic field (IMF) are the most effective parameters causing large 

disturbances in the Earth’s magnetosphere and ionosphere [Cane et al., 2000; Gonzalez et al., 

2002; Srivastava and Venkatakrishnan, 2004].  

 

Unlike Earth, unmagnetized planets interact with the impinging solar wind plasma much more 

directly. Intense solar wind disturbances like ICMEs are thus expected to play a more important 

role in controlling the nearby plasma environment. The increased atmospheric erosion by the 

ICME-induced solar wind disturbance is considered to be a matter of potential interest for 

historical extrapolation of atmospheric loss for unmagnetized planets [Luhmann et al., 2008]. 

The importance of ICMEs to atmospheric erosion has been suggested based on the analysis of 

the data from both Pioneer Venus Orbiter (PVO) [Luhmann et al., 2007] and Venus Express 

[Edberg et al., 2011] for Venus and from Mars Express [Edberg et al., 2010] for Mars.  Edberg 
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et al. [2011] suggested that the IMF polarity change across ICMEs could trigger dayside 

magnetic reconnections in the induced magnetosphere of Venus, which could add to the erosion 

through associated particle acceleration.  

 

Several large ICME events at Mars (sometimes accompanied with other solar events such as 

solar energetic particle (SEP) and/or solar flares) were investigated from the observational point 

of view prior to the MAVEN era based on MGS or Mars Express data [Crider et al., 2005; 

Haider et al., 2009, Opgenoorth et al., 2013, Morgan et al., 2014]. However, these studies were 

restricted due to limited spacecraft coverage during those events or limited plasma instruments 

on board.   

 

The Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft was inserted into the Mars 

orbit in September 2014, with a comprehensive particle and field instrument package to measure 

the plasma environments around Mars [Jakosky et al., 2015a]. MAVEN observed a strong 

interplanetary coronal mass ejection (ICME) impacting Mars around 8 March 2015. This event 

has been studied in detail by Jakosky et al. (2015b) using both MAVEN observations and three 

steady-state runs of a multi-species single-fluid MHD model. This event was also studied using a 

multi-fluid MHD approach for several stationary state runs [Dong et al., 2015]. In addition, a 

strong magnetic flux rope was observed by MAVEN for a short time period during the event 

[Hara et al., 2016]. Although the time-stationary results of the single-fluid and multi-fluid MHD 

This article is protected by copyright. All rights reserved.



 6 

models agree reasonably with MAVEN observations during most of the event [Jakosky et al., 

2015b, Dong et al., 2015], they are unable to reproduce the observed variation of the magnetic 

field direction with time [Jakosky et al., 2015b]. To quantify the dynamic response of the 

Martian plasma environment, a time-dependent global model is needed.  

 

Time-dependent calculations have so far been limited due to the fact that they are 

computationally expensive. They have only been used to investigate the effect of the rotating 

crustal magnetic field under quiet solar wind conditions field [Ma et al., 2014a, 2015, Fang et al, 

2015] and during the response of the ionosphere to solar wind variations using ideal cases, such 

as pressure enhancement [Ma et al., 2014b] and IMF rotation [Modolo et al., 2012]. These 

studies showed that the outer plasma boundaries (bow shock and induced magnetosphere 

boundary (IMB)) adapt rapidly to the solar wind pressure enhancements and IMF rotation. In 

addition, the time-dependent high pressure enhancement study suggested that the ionospheric 

escape rates do not correlate only with the simultaneous solar wind dynamic pressure, but also 

depend on the earlier solar wind conditions [Ma et al., 2014b].  

 

In this study, for the first time, we use a time-dependent global MHD model to investigate the 

response of the Martian ionosphere/magnetosphere to a real ICME event. The global MHD 

model used for the study and its specific setup are briefly described in the next section. A 

detailed comparison of MHD model results with relevant MAVEN plasma observations along 
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the spacecraft orbit during the ICME event are shown in section 3. A discussion and summary 

are given in section 4.  

 

2. Time-dependent Multi-Species Single-Fluid MHD Model   

2.1 Model description  

The Multi-Species Single-Fluid MHD model for Mars utilizes the BATS-R-US (Block Adaptive-

Tree Solar-wind Roe-type Upwind Scheme) code [Powell et al., 1999; Toth et al., 2012] from 

the University of Michigan. The model self-consistently calculates magnetic field, mass densities 

of protons and three ionospheric ion species (O+, O2
+ and CO2

+), and mass averaged plasma 

velocity and temperature. A 3-D realistic ionosphere is constructed by considering major 

chemical reactions in the Mars ionosphere, including photo-ionization (mostly dayside) and 

electron impact ionization, charge exchange, and recombination reactions. The photoionization 

rates are calculated based on Chapman function [Ma et al., 2015]. The effects of the crustal field 

anomalies are included using a 60-degree spherical harmonics model by Arkani-Hamed et al. 

[2001]. Early model results were mostly based on steady state simulations [Ma et al., 2002, 2004] 

with a certain crustal field configuration facing toward the Sun. The time-dependent MHD model 

has been recently applied to Mars and described in detail by Ma et al. [2014a, 2015]. In the time-

dependent calculation, the rotation of the crustal anomalies is included with a realistic rotation 

period and tilt angle of Martian rotation axis.  
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The Mars-centered Solar Orbital (MSO) coordinate system (the X axis points from Mars to the 

Sun, the Y axis points antiparallel to Mars' orbital velocity, and the Z axis completes the right-

hand system) is used in the calculation. The outer computational domain is given by: -8RT  ≤ X 

≤ 24RM , -16RM ≤ Y, Z ≤ 16RM. Such a large region ensures no artificial numerical effects 

from the outer boundary. A non-uniform spherical grid structure is used in the model, which 

allows a radial resolution that varies from 10 km (0.003RM, where RM= 3396 km) at the lower 

boundary to 480 km near the outer boundary in the distant tail.  The angular resolution is 3 

degrees in both longitudinal and latitudinal directions throughout the computation domain. Such 

a grid is the same as used in Ma et al. [2014b; 2015], so that the time-dependent calculation can 

be performed with reasonable computational resources. The inner boundary of the computational 

region is set to be 100 km above the surface of Mars, which is lower than the orbit periapsis 

altitude (~125-150 km) of MAVEN.  

 

In the calculation, the neutral densities of CO2, O and H are assumed to be spherically symmetric, 

and the altitude profiles and solar EUV strength are the same as used for the solar minimum 

conditions in Ma et al. [2004]. The rotational axis of Mars was set to be (-0.35, 0.24, 0.905), 

corresponding to the value in the middle of 8 March 2015. The simulation started from 12 UT in 

this day, which is roughly three hours before the leading ICME shock arrival at Mars, and the 

corresponding subsolar location is 97.4° E, 20.5° S. The season on Mars during that time was 

Southern Summer. The rotation of the crustal field is included in the model with a rotation period 
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of 24 hours, 39 minutes and 57 seconds. Note that the position of the MAVEN trajectory is 

slightly adjusted by a small factor of 1.003 (=3396.0/3386.0) to get the correct altitude near 

periapsis. The model assumes a spherical body using the equatorial radius of 3396 km, which is 

about 10 km larger than the radius near periapsis.     

 

2.2 Solar Wind Input of the Model during the March 8 ICME event 

Figure 1 shows MAVEN plasma observations (solid lines) from the Solar Wind Ion Analyzer 

(SWIA) [Halekas et al., 2015], the Solar Wind Electron Analyzer (SWEA) [Mitchell et al., 

2016], and the magnetometer (MAG) [Connerney et al., 2015] instruments for the event. Panel (a) 

shows the altitude of the spacecraft varying from 158 km altitude at periapsis to 6233 km altitude 

at apoapsis. During the event, the MAVEN orbit was close to the terminator plane, with the dusk 

side of the orbit tilted slightly towards nightside. For each 4.5-hour orbit, MAVEN spent roughly 

2/3 of the time in the southern hemisphere. The rest of the panels show proton density, ion and 

electron temperature, plasma velocity components and magnetic field components.  

 

Prior to the ICME arrival, the solar wind conditions were relatively quiet, with a proton density 

of 1.8 cm-3, flow speed of 505 km/s, and IMF magnitude of 5 nT at round 11:30 UT, 8 March 

2015. The corresponding solar wind dynamic pressure is 0.9 nPa [Jakosky et al., 2015b]. The 

ICME shock arrived at Mars around 15:23 UT, as indicated by MAG data, with a strong 

enhancement and rotation of the magnetic field when MAVEN was located inside the Martian 

This article is protected by copyright. All rights reserved.



 10 

magnetosheath region, as shown by the vertical orange line. The disturbance lasted about 40 

hours associated with a fast and dense solar wind flow. The bow shock crossings are marked by 

dark blue vertical lines with dash-dotted lines for outbound shock crossings and dotted lines for 

inbound crossings. Between the two lines are the time periods when MAVEN was in the solar 

wind. The average solar wind conditions during the four consecutive orbits were summarized in 

Table 1 of Dong et al. [2015] as the inputs to their steady state cases. In this study, we started the 

simulation from 12 UT and ran it for 15 hours, which covers the period from 2.5 hours before the 

ICME shock to more than a half day after the shock arrival.  

 

To model the response of the Mars plasma environment to the ICME event, a realistic solar wind 

input condition is needed to drive the model. The solar wind input condition for the time-

dependent MHD model is shown by the dashed lines in Figure 1. It was set up based on one-

minute average MAVEN observations using the following approach: For the time periods when 

MAVEN was outside of the bow shock, if SWIA was in the solar wind mode, we used SWIA 

observations for solar wind density, velocity and proton temperature. One of the underlying 

assumptions for the MHD model is charge quasi-neutrality, so that ne= ni (where ne is the 

electron number density and ni is the total ion density). For the single-fluid MHD model, the 

actual input temperature needed is the solar wind plasma temperature (TP = Ti + Te), and it was 

set as the sum of the SWIA proton ion temperature and the SWEA electron temperature, when 

both measurements were available.  One-minute averaged MAG observations were used for the 
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IMF. When MAVEN was inside the shock, no direct solar wind measurement was available, thus 

we simply assume that solar wind conditions changed linearly from inbound to outbound values, 

except at the time of the ICME arrival. An arbitrary jump condition is set to mimic the drastic 

solar wind condition change upon the ICME shock arrival. Prior to 15:22 UT, the solar wind 

input is set to be the same as inbound condition (nsw=1.9 cm-3, Ux= -510 km/s, B =(-2.2, 3.2, -1.3) 

nT), and it changes to the outbound condition (nsw=2.5 cm-3, Ux= -700 km/s, B =(8.6, 0.4, -9.9) 

nT ) in one minute at 15:23 UT, as shown in Figure 1 around the orange vertical line. The ICME 

shock is assumed as a planar structure that propagates into the simulation domain along the X-

axis from the upstream boundary (X=-8 RM). It takes roughly one minute for the structure to 

arrive at the planet, considering the fact that the solar wind flow speed was between 500 and 700 

km/s.  

 

3. MHD Model Results and Comparison with MAVEN Observations 

3.1 Comparison with MAVEN plasma observations 

Figure 2 shows the comparison of the model results with MAVEN observations along the orbit 

of the spacecraft. Plasma and field observations are plotted in solid lines, and the model results 

are plotted in dashed lines. The first panel is the same as in Figure 1, which shows the altitude of 

the spacecraft. Comparison of various plasma densities is shown in the second panel. Langmuir 

Probe and Waves (LPW) observations [Andersson et al., 2015] are plotted in blue, SWEA 

electron density in orange, SWIA H+ density in black, and NGIMS O2
+ density in red. 
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Corresponding MHD model results are plotted in dashed lines. The SupraThermal And Thermal 

Ion Composition (STATIC) [McFadden et al., 2015] ion density data is not shown due to the 

“ion suppression” issue at the time period, which affect STATIC’s ability in obtaining the right 

ion density for low-energy ions (<10 eV) due to exposure to atomic oxygen. It is also worth 

noting that NGIMS only measures ion density every other orbit during the events.  MHD-

modeled total electron density is plotted with a blue dashed line, which matches well the LPW 

observations near periapsis. In locations farther away from the planet, where the plasma 

predominantly consists of protons, model results of electron number density and proton density 

are similar to each other and agree well with SWEA and SWIA observations. The MHD-

modeled O2
+ density agrees well with NGIMS O2

+ density for the second periapsis, as shown in 

the figure (a more detailed comparison of ion densities near this periapsis is shown in section 

3.4).  

 

The third panel of Figure 2 shows a comparison of plasma temperatures. The electron 

temperature from LPW is shown in blue, electron temperature from SWEA in orange, H+ 

temperature from SWIA in black and O2
+ temperature from STATIC in red. The modeled plasma 

temperature is plotted with blue dashed line. Since we are using a single-fluid model, only one 

energy equation is solved for the total plasma temperature. The calculated temperature follows 

closely the proton temperature as measured by SWIA in most of the regions except near 

periapsis where electron temperature is higher than that of ions. This is because the plasma 
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temperature is dominated by the ions in those regions. A more detailed comparison of ion 

temperatures near periapsis is shown in section 3.4.  

 

The last two panels of Figure 2 show the comparison of plasma flow velocity and magnetic field 

vectors. The agreement is fairly good except for some limited regions. The bow shock crossing 

times as predicted by the MHD model are fairly close to the observed crossing times as marked 

by the dark blue vertical dashed lines. Across the shock, both model results and MAVEN 

observations show sharp changes in proton/electron density and temperature, direction and 

magnitude of flow velocity and magnetic field. 

 

3.2 Interaction with the ICME shock 

The March 8 ICME event was led by a strong shock that impacted Mars around 15:23 UT.  

When the shock arrived at Mars, MAVEN was inside the Martian dawn-side magnetosheath 

region, moving down from the equatorial plane. Plasma conditions changed abruptly with the 

ICME shock. The observed plasma after the ICME shock was hotter, denser and faster with 

stronger magnetic field strength and a different magnetic field orientation.  

 

Figure 3 shows the variations of the plasma environments during the ICME shock passage from 

model calculations. The left and right panels correspond to contour plots of magnetic field 

strength and plasma flow speed respectively, at 4 different times from 15:22 UT to 15:25 UT. 
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The white lines in the left panels are the magnetic field traces in the the XY plane, and the white 

arrows in the right panels show the plasma flow direction. The top two panels correspond to 

15:22 UT, right before ICME shock arrival. At this time, both the bow shock and the IMB 

locations are close to the mean boundaries from past observations [Edberg et al., 2008]. The 

solar wind plasma flow slows down and diverts around the planet, while the magnetic field piles 

up and drapes around the obstacle. The ICME shock arrived at Mars around 15:23 UT with a 

much faster flow speed and a stronger IMF as shown in the second row. The two consecutive 

panels in the third row show that another minute later, the ICME shock front already passed 

Mars, reaching around 10 RM downstream, and the plasma environment around the planet was 

significantly altered by the fast solar wind flow. Both the solar wind density and velocity after 

the ICME shock increased significantly, and the dynamic pressure rose from 0.9 nPa to 3.1nPa. 

As the IMF strength increased by more than a factor of 4 across the ICME shock, the magnetic 

field strength in the magnetosheath region was enhanced accordingly across the Martian bow 

shock. The field strength in the induced magnetosphere was also significantly enhanced, since 

most of the solar wind dynamic energy converted into the magnetic energy inside the region. The 

bow shock moved slightly outward due to the decrease of the fast magnetosonic Mach number (a 

detailed discussion of plasma boundaries is presented in next section). Also note that plasma 

boundaries were tilted toward dusk due to the large off-X-axis flow velocity (≈ 100 km/s) in +Y 

direction. At 15:25 UT, as shown in the bottom panels, the ICME shock passed way beyond 

Mars, and the outer interaction region already reached a quasi-steady state. It is also interesting 
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to note that in the flank region just inside the IMB, the plasma flow is somewhat faster than the 

solar wind speed. This is likely due to the JxB force (the magnetic field is mainly in negative Z 

direction in this time), so the draped fields in the XZ plane would accelerate the plasma in the 

flank region. This does not show up in the normal solar wind condition, because the draped field 

is not as strong. These snapshots clearly show that both the magnetosheath region and induced 

magnetosphere adapt rapidly to variations in the solar wind. 

 

3.3 Variation of the plasma boundaries 

The top panel of Figure 4 shows the subsolar bow shock (BS) distance and the induced 

magnetospheric boundary (IMB) location from the MHD model as functions of time. 

Corresponding solar wind parameters were also plotted in the subsequent panels as references. 

During the simulated 15-hour time period, the BS location varied from 1.4 to 1.63 RM, while the 

IMB location varied from 1.1 to 1.36 RM. Here, the subsolar BS location is defined as the 

location where the plasma dynamic pressure is equal to the plasma thermal pressure, while the 

IMB is determined where the magnetic pressure is balanced by the plasma thermal pressure. The 

time periods when BS and IMB were farthest from the planet are shaded in red and blue, 

respectively. The model predicts that the maximum BS location occurred right after shock arrival 

ranging from 15:25 UT to 15:30 UT, and the maximum IMB took place at a similar but shorter 

time period from 15:25 UT to 15:27 UT. Even though, as discussed in the last section, the solar 

wind dynamic pressure (PSW) was significantly enhanced after the ICME shock, the fast 
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magnetosonic Mach number (Mf) actually decreased across the ICME shock, due to high plasma 

temperature and enhanced magnetic field strength. As a result, both the Alfven speed (VA = 𝐵
�𝜇0𝜌

 ) 

and sonic speed (VS = �𝛾𝑃
𝜌

 , where P= nkTP) significantly increased across the ICME shock as 

shown in the second-to-last panel. This is consistent with previous statistical results [Edberg et 

al., 2010] that the Mf is the main factor controlling the bow shock location. As the Mf dropped 

from 6.1 to 3.3 across the shock, both the BS location and IMB location moved farther away. 

The bow shock location then gradually decreased in response to the subsequent increase in Mf. 

However, when the Mf returned to 6.1 around 18:40 UT, the shock location was closer to the 

planet than that of the quiet conditions, because of the much higher solar wind dynamic pressure 

at the time.  The model results clear show that the solar wind dynamic pressure controls the bow 

shock location as well. 

  

The interaction region is significantly compressed later by the sheath plasma of the ICME as the 

Mf value gradually increased. The plasma boundaries came closest to Mars from 20:06 UT to 

20:44 UT for BS and 20:20 UT to 20:42 UT for IMB, as shown by the shaded area (yellow for 

BS and green for IMB), when the Mf was close to its highest value (9.1). Interestingly, the 

highest Mf was associated with extremely high solar wind dynamic pressure (≈ 15 nPa). The 

subsolar BS and IMB locations are closely correlated, as clearly shown in the top panel of the 

figure. The ratio between BS and IMB distance ranges from 1.2 to 1.3 with a mean value of 1.25, 

which is likely modulated by the crustal magnetic field distribution in the subsolar region.  
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Figure 5 shows snapshots of the pressure profiles along the Mars-Sun line for a few 

representative times during the event. The first panel shows the pressure profiles at 12:00 UT, 

which is the start time of the simulation. The bow shock location was at 1.6 RM and the IMB was 

around 1.28RM. From the solar wind to the ionosphere, the dominant pressure changes from the 

solar wind dynamic pressure Pdynamic (in the solar wind) to the plasma thermal pressure Pthermal (in 

the magnetosheath region) to magnetic pressure PB (inside the induced magnetosphere) and to 

crustal magnetic pressure PB0 (in the ionosphere). At this particular time, the low-altitude 

subsolar region is dominated by strong crustal magnetic fields with a peak value around 134 nT, 

thus the magnetic pressure (≈ 7nPa) is much higher than the ionospheric thermal pressure in the 

ionosphere.   

 

Panel (b) shows the pressure profiles at 15:22 UT, right before the ICME shock arrival. The solar 

wind condition at this time is quite close to that of 12:00 UT. The bow shock location was at 

1.57 RM, slightly closer to the planet as compared with panel (a), while the location of IMB was 

almost identical. At this time, the subsolar peak crustal magnetic field was about 37 nT, 

corresponding to a crustal magnetic pressure of 0.54 nPa, similar to the ionospheric thermal 

pressure. Panel (c) shows the pressure profiles at 15:23 UT, when the ICME shock arrived at 

Mars. At this time, the solar wind dynamic pressure was sharply enhanced by a factor of two, 

and as a result, the thermal pressure inside the magnetosheath region increased significantly 
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almost instantly. The magnetic pressure in the magnetosheath region and induced magnetosphere 

was also enhanced in response. As it takes longer for the information of the solar wind to 

propagate into regions closer to the planet due to slowdown of the plasma flow, the induced 

magnetic field in the deep ionosphere was not affected. As a result, there is a local minimum 

forming in the magnetic pressure profile around 1.1 RM. The plasma boundaries were pushed 

inward slightly by the high solar wind dynamic pressure at first, but those boundaries moved 

outward in response to the decrease of the fast magnetosonic number at 15:25 UT, as shown in 

panel (d).  

  

The upstream solar wind dynamic pressure gradually increased at subsequent times, as shown at 

16:00 UT and 18:00 UT, as did the thermal pressure of the shocked solar wind inside the 

magnetosheath region. The upstream solar wind dynamic pressure reached its maximum value 

15 nPa around 20:30 UT, when the interaction region was mostly compressed by the fast flowing 

solar wind. The peak of the induced magnetic field at this time is about 186 nT, corresponding to 

87% of the PSW upstream. Around 23:00 UT, the solar wind dynamic pressure gradually dropped 

to a lower value as did the thermal pressure in the magnetosheath region and the magnetic 

pressure inside the IMB.  

 

Figures 4 and 5 clearly show that the plasma environments around Mars were highly variable 

during the ICME event. It is also worth noting that the ionosphere was magnetized either by the 
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induced magnetic field or crustal magnetic field during the whole event, since the upstream solar 

wind pressure dominates over the ionospheric thermal pressure.  

 

3.4 Variation of the ionosphere 

To illustrate how the ionosphere responded to the large solar wind disturbance associated with 

the ICME, we compare various plasma properties along the subsolar line at different times in 

Figure 6.  Those snapshots correspond to the same times shown in Figure 5. The top three panels 

(a1-a3) show the results at 12:00 UT when the solar wind condition was relatively quiet. Panel 

(a1) shows profiles of number densities of different ion species and electrons from 100 – 1000-

km altitude. The modeled ionosphere was mainly composed of O2
+ in the ionosphere below 400 

km altitude, and H+ became the dominant ion at higher altitudes. Panel (a2) shows altitude 

profiles of the three components of the induced magnetic field (solid lines) and the crustal 

magnetic field (dotted lines). The total magnetic field is the sum of the crustal magnetic field and 

the induced magnetic field; the latter is the perturbation of the magnetic field induced by the 

solar wind interaction. The induced magnetic field components drop to zero at 100 km altitude 

because we force the total magnetic field at the inner boundary to be the same as the local crustal 

field. At high altitudes, the total magnetic field was mainly contributed by the induced magnetic 

field, with its direction controlled by the IMF orientation. Below 300-km altitude, the crustal 

magnetic field became dominant. At this particular time, the crustal field was very strong, 

especially in the +Y direction with a peak value of 110 nT near the inner boundary. Panel (a3) 
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shows profiles of plasma velocity components.  The shocked solar wind flow continued to move 

down toward the planet at around 1000 km altitude at a speed of 30 km/s, as shown by the 

negative UX component. The plasma flow speed gradually dropped with decreasing altitude, and 

became nearly stagnant below 450 km altitude. Previous model results showed that the plasma 

flow along the subsolar line only moved along the X direction when the crustal magnetic field is 

not included in the calculation [Ma et al., 2014]. The significant flow along the Y and Z 

directions in panel (a3) was caused by the strong non-uniform crustal magnetic field in the 

subsolar region.  

 

At 15:22 UT, density profiles were essentially not affected below 200 km altitude, because the 

plasma densities are mainly controlled by photo-chemical reactions in the collision-dominant 

region. All the ion densities increased slightly between 200 km and 800 km altitude in 

comparison with the values at 12:00 UT (the dashed lines), as shown in panel (b1). The solar 

wind condition at this time was quite similar to 12:00 UT, while the subsolar crustal magnetic 

field was much weaker. Stronger induced magnetic fields were formed to help slow down the 

impinging plasma flow as shown in panel (b2). Compared with the prior time, the plasma flow in 

the X-direction was reduced to zero at higher altitude (panel b3) due to the stronger total 

magnetic fields above 450 km altitude, which is the main reason for the expansion of the 

ionosphere.  
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At 15:23 UT, the densities of planetary ions (O+, O2
+ and CO2

+) all decreased between 300 and 

600 km altitudes (panel c1). The induced magnetic fields above 250 km altitude changed 

drastically, compared to just one minute before, forming a sharp discontinuity in the BY profile in 

the ionosphere. This was also associated with plasma flow moving downward at a finite speed of 

a few km/s. As discussed in the previous section, at this time, the solar wind dynamic pressure 

was sharply enhanced by a factor of two, which pushed the plasma boundaries inward and 

compressed the ionosphere.  

 

At 15:25 UT, the variation of different ions became complicated and showed different behavior. 

The densities of O2
+ and CO2

+ in the lower altitude region continued decreasing, but became 

denser at higher altitudes. The density of O+ increased above 250 km altitude. The induced 

magnetic field changed significantly from the prior time. As the upstream IMF direction changed 

from mainly BY to BZ, in association with the ICME leading shock, there is a large induced 

magnetic field in BZ component that formed correspondingly and propagated to low altitudes. 

There was also a large flow in both Y and Z directions, as shown in panel (d3), partly due to the 

large off-X-axis solar wind flow upstream.  

 

After the shock, the solar wind density and dynamic pressure gradually increased, and the total 

magnetic field was dominated by the induced magnetic field. The peak values of the induced 

magnetic field increased from 87 nT at 16:00 UT to 147 nT at 18:00 UT to 186 nT at 20:30 UT 
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in response to the enhancement of the solar wind dynamic pressure. The main induced magnetic 

field component changed from the BY to BZ component in response to the clock angle change of 

the IMF. The plasma flow penetrated to a lower altitude in comparison to before, and the 

ionosphere was significantly compressed. The induced magnetic field in the Y direction changed 

from positive to negative and then positive again during this time period in response to variations 

of the upstream IMF. At 23:00 UT, the solar wind proton density decreased from its peak value, 

and as a result, the induced magnetic field decreased and was dominated by the positive BY 

component again.  

 

Figure 7 shows a comparison of model results and MAVEN observations near periapsis of orbit 

848. This is the first periapsis after the ICME shock arrival. MAVEN was moving from the 

dayside ionosphere to the nightside, and the periapsis corresponded to 80 degrees SZA (Solar 

Zenith Angle) and 16 UT local time. The modeled densities have similar trends as the 

observations but are about 3 times smaller than the observations. The discrepancy is mainly 

because the neutral atmosphere and solar EUV flux used in the model are for solar minimum 

conditions. Such a condition was selected in the simulation because previous model results 

suggested that this condition matched well with NGIMS observations [Jakosky et al., 2015b, 

Dong et al., 2015]. However, the recently available LPW data and the new calibration of NGIMS 

suggested that the plasma density is about a factor 3 larger than previously calibrated NGIMS 

values. The agreement is somewhat better during the outbound part of the trajectory. The plasma 
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temperature calculated by the model is consistent with LPW measurements of the electron 

temperature, which is about 3 times higher than the ion temperature near periapsis.  The crustal 

magnetic field near the closest approach is about 30 nT, slightly smaller than the induced 

magnetic field. The calculated magnetic field profiles are in good agreement with observation 

near periapsis.   

 

3.5 Variation of the ion loss rate 

Figure 8 shows the variation of the integrated ion escape rates during the ICME event. Here the 

escape rates are estimated by integrating over R= 6 RM sphere of the plasma flux in radial 

direction (plasma density times the radial velocity) for each ion species. For the majority of the 

time simulated, O2
+ was the main ion species escaping from the planet. The ion loss rates are 

positively related to the solar wind dynamic pressure. The peak ion loss rate occurred around the 

same time as the peak solar wind dynamic pressure at 20:44 UT, and the corresponding ion loss 

rates were enhanced by nearly an order of magnitude. As a comparison, the solar wind dynamic 

pressure was about 20 times larger than that at quiet conditions. The escaping O+ ions became 

comparable or even dominant during a short period of time when the solar wind density and 

pressure were around the highest during this period. This can be explained by the enhancement 

of the charge exchange reaction between H+ and O associated with the increase in the solar wind 

proton density at the time period, as shown in panel(g1) of Figure 6, thus the O+ density became 

larger than O2
+ at high altitude around this time and contributed the most to the total ion loss.  As 
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both the neutral atmosphere and EUV flux are kept constant in the model, the only change 

around 21:00UT to 22:00 UT is the enhancement of the solar wind proton density. A rough 

estimate shows that the charge exchange reaction rate (~ 3 × 10-7 s-1) between 200-300 km 

altitude is more than twice larger than the un-attenuated photoionization rate (1.2 × 10-7 s-1) of 

oxygen atoms. 

  

Also plotted in Figure 8 are the escape rates based on three steady-state simulations (marked by 

symbols), and the results are quite different from the time-dependent model results. Note that 

these steady-state runs corresponded to the crustal field configuration near periapsis, while the 

solar wind conditions were based on the mean MAVEN solar wind observations before inbound 

shock crossings. The peak ion loss rates for the steady state cases are about 25- 30 percent larger 

than the peak ion loss rates predicted by the time-dependent simulation. As the steady-state runs 

could not take into account the response time of the system or the rotation of the crustal field, the 

escape rates as predicted by the time-dependent MHD model are more credible. The difference 

shows clearly that the system does not reach steady-state conditions right away. As suggested by 

Ma et al. [2014a) and Fang et al. [2015], the heavier ions have larger variation with the crustal 

field rotation than the light ion (O+), and the response time could be 2-3 hours for heavy ions. It 

is suggested that the time-varying solar wind conditions and the continuously rotating crustal 

field work together to control the total ion escape rate, thus a time-dependent simulation is more 

appropriate to quantify the ion loss rates.  
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4. Discussion and Summary 

This is the first time a time-dependent study of a real ICME event was carried out for Mars. In 

the study, the impact of a strong ICME on Mars was modeled using the observed solar wind 

conditions during the event. Through detailed comparison with relevant MAVEN plasma 

observations along the orbit, we find that in general, the time-dependent multi-species single-

fluid MHD model reproduced well the main features that were observed by the spacecraft during 

the ICME passage.  

 

Model results show that plasma boundaries were highly variable during the event and the 

boundary locations were mainly controlled by the fast magnetosonic Mach number (Mf). In 

addition, solar wind dynamic pressure also has some influence on the bow shock locations. We 

find that higher solar wind dynamic pressure results in closer distances of the boundaries for 

similar Mf. Plasma properties in the ionosphere and the induced magnetosphere varied 

significantly in response to the disturbance in the solar wind. Along the subsolar line, the peak 

value of the magnetic pressure in the induced magnetosphere is about the same as the normal of 

the solar wind dynamic pressure most of the time, when the corresponding crustal magnetic field 

is weak. The main component of the magnetic field in the ionosphere is the same as that of the 

IMF.  
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As Mars rotates, the part of the non-uniform crustal field that interacts with the solar wind also 

varies. It is apparent that the crustal field plays some important role in the interaction process. 

Sometimes, it is hard to distinguish whether the upstream solar wind or the rotating crustal field 

is the main driver of the variation seen in the Martian plasma environment. Comparison with the 

steady-state solution of the model clearly demonstrated that the system needs time to respond to 

both external and internal driving forces. Model results show that ion escape rates could be an 

order of magnitude enhanced in response to the high solar wind dynamic pressure during the 

ICME event. The continuously rotating crustal field also contributes to some variations of the 

total ion escape rates. Model results suggest that different ion species respond differently to the 

two drivers. The heavier ions have larger variation with the crustal field rotation than the light 

ion (O+), while O+ has a larger dependence on the solar wind proton density. Simulations results 

show that O+ escape dominates when solar wind proton density is significantly high. 

 

The model predicts that the total ion loss rate would be enhanced by an order of magnitude 

during the event for a short period of time. Even though this enhancement might not seem to be 

large enough for the solar-wind driving ion loss to be the dominate escape channel, we should 

keep in mind that, for early Mars, in addition to the larger solar wind density and velocity [Wood 

et al., 2005], the EUV flux was also expected to be much stronger [Ribas et al., 2005], which is 

not included in this event study. Previous observation and numerical studies showed that EUV 

flux also has significant effect on ion loss rate [Ma et al., 2007, Lundin et al., 2013, Dong et al., 
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2014]. The escape rate calculated for this particular event should only be taken as a lower limit 

of the escape rate for early Mars.  

 

The present model uses a spherical symmetric neutral atmosphere, thus both the noon-midnight 

and dawn-dusk asymmetry were neglected in the calculation. The solar wind interaction can 

therefore be expected to be more asymmetric than what the model predicts. This could partly 

explain the more symmetric model result around periapsis in Figure 7b compared to the 

asymmetric observed densities. The model predicted that O2
+ dominated near periapsis along the 

MAVEN orbit (until H+ is dominates), while NGIMS observations show that during the 

outbound pass, the heavy ion density drops off rapidly above 280 km altitude, and the ionosphere 

is dominated by O+ (Figure 7b) for a short time period around 18:00 UT. The discrepancy is 

likely due to kinetic effects (for example ion heating due to plasma waves, as suggested by 

Andersson et al. [2010]) that were neglected in the single-fluid MHD model. Also, keep in mind 

that the absolute values of different ions and thus exact ratios between O+/O2+ presented in 

Figure 8 could be influenced by the neutral atmosphere input of the model and the EUV 

conditions. To further improve the fit to data and to provide a better estimate of the ion escape 

rates, the model needs to update its neutral profiles based on MAVEN observations, and photo-

ionization rates from the measured solar EUV spectra. In addition, the atmosphere would also 

respond to the ICME-associated energetic pick-up ion precipitation [Fang et al., 2013]. Since the 

solar wind had high density, velocity and temperature, more ions would be picked up by the solar 
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wind with higher energy, thus more energy would be deposited into the neutral. The atmospheric 

response under extreme conditions includes neutral temperature enhancement, significant neutral 

composition and wind changes. Such effects are not considered in the present study, as the 

neutral atmosphere is preset in the MHD model. We do plan in the future to include the 

variations of the neutral atmosphere in the model through a two-way coupled approach. 

 

Solar flare events were also observed before the ICME arrival and were likely related to the 

major interplanetary disturbance of this period. In the present study, we mainly focused on the 

variations of the solar wind plasma and their corresponding ionospheric responses; effects of 

solar flares on ionosphere have also been observed and investigated [Futaana et al., 2008, 

Fallows et al., 2015], and their global consequence is a good subject of future numerical studies.  
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Figures

 

Figure 1: Top panel shows the spacecraft altitude along the trajectory during the ICME event. 

The rest of the panels shows plasma observations (solid lines) from the SWIA, SWEA and MAG 

instruments and solar wind input conditions used for the MHD model (dashed lines). The 

MAVEN bow shock crossings are marked by the dark blue vertical lines: dotted lines for 

inbound crossings and dash-dotted lines for outbound shock crossings. The orange vertical line 

marks the time when the ICME leading shock arrived at Mars.  
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Figure 2: Comparison of the model results with MAVEN plasma observations along the orbit of 

the spacecraft. Top panel shows the spacecraft altitude along the trajectory; the rest of the panels 

shows the comparison of ion density, electron density, plasma temperature, velocity and 

magnetic field between MAVEN observations (solid lines) and MHD model results (dashed 

lines). TP(Obs) and TP(MHD) are the sum of electron temperature and ion temperature based on 

observation and MHD model results respectively; the observations are based on either LPW and 
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STATIC near periapsis or SWEA and SWIA in other regions. The bow shock crossings are 

marked by the dashed dark blue vertical lines. 
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Figure 3. Contour plot of magnetic field strength and field lines (left panels) and plasma flow 
speed (right panels) in the XY (equatorial) plane at 4 consecutive times starting from 15:22 UT 
to 15:25 UT, from top to bottom. The mean bow shock and IMB locations are over-plotted on 
the right panels as references [Edberg et al., 2008]. 
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Figure 4: Top panel shows the subsolar bow shock (BS) distance and the induced magnetosphere 
boundary (IMB) location during the ICME event. The second-to-last panels show the solar wind 
flow speed; IMF strength; solar wind density and pressure; IMF cone angle and clock angle; fast 
magnetosonic speed, Alfven speed and sonic speed; and fast magnetosonic Mach number, 
respectively. The cone angle is defined as the cos-1(BX/B) and the clock angle is tan-1(BY/BZ). 
The time periods when the BS and the IMB were farthest from the planet were between the red 
and blue dashed lines, respectively. The time periods when BS and IMB were closest to the 
planet were between the orange and green dashed lines, respectively. 
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Figure 5. Pressure profiles along the Mars-Sun line. Different curves represent different 
pressures: thermal pressure (PThermal) in black, dynamic pressure (PDynamic in blue), magnetic 
pressure (PB in red), crustal magnetic pressure (PB0 in green) and total pressure (Ptotal in purple) at 
different times. Note the pressure ranges are different for the last three panels.  
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Figure 6. Profiles of various plasma properties along the sub-solar line at different times. The left 
panels show altitude profiles of number densities of different ion species and electrons, and the 
middle and right panels show altitude profiles of induced magnetic field (solid lines), crustal 
magnetic field (dotted lines) and velocity components, respectively. The top panels show the 
results at 12:00 UT. The results in the top panel are over-plotted in dashed lines for the rest of the 
panels as references. Note that the magnetic field and velocity ranges are different in the figure. 
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Figure 6. Continued. 

 

 

Figure 7. Comparison of model results and MAVEN observations near the periapsis of orbit 848. 

The solid lines are observations, while the corresponding model results are shown by dashed 

lines. The top panel shows the latitude and SZA of the spacecraft. The second panel shows 

electron number density from LPW and ion densities from NGIMS. The third panel shows 

temperature comparison, and the last panel shows comparison of the magnetic field.  The blue 
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vertical line is the periapsis or closest approach(CA). The orange vertical line is the time when 

the spacecraft passed the terminator plane (90 degrees SZA).  

 

 

 

Figure 8. Variation of the modeled ion escape rates and corresponding solar wind conditions. 

The top panel shows the integrated ion loss rates for O+ (blue), O2
+ (red) and CO2

+ (green). The 

bottom panel shows solar wind density (blue), velocity (green), and dynamic pressure (red) 

calculated based on the time-varying solar wind input of the model. 
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