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Abstract 

Bariatric surgery is currently the most effective treatment for obesity and associated 

comorbidites, including rapid resolution of type 2 diabetes mellitus (T2DM). Although the 

weight loss itself has substantial impact, bariatric surgery also has weight loss–independent 

effects on T2DM. Several variations of bariatric surgery exist, including the widely studied 

Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG). The success of 

both of these bariatic surgeries was originally attributed to restrictive and malabsoptive 

modes of action; however, mounting evidence from both human and animal studies 
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implicates mechanisms beyond surgery-induced mechanical changes to the gastrointestinal 

system. In fact, with bariatric surgery comes a spectrum of physiological responses, including 

postprandial enhancement of gut peptide and bile acids levels, restructuring of microbial 

composition, and changes in gastrointestinal function and morphology. Although many of 

these processes are also essential for glucoreguation, their independent role in the success of 

surgery is still an open question. In this review, we explore whether these changes are 

necessary for the improvements in body mass and glucose homeostasis or whether they are 

simply a marker of the physiological effect of surgery.   

Keywords: type 2 diabetes; glucose metabolism; bariatric surgery 

 

 

Introduction 

Obesity and type 2 diabetes mellitus (T2DM) are epidemic in Western societies and are 

among the most costly and urgent health crises worldwide.
1
  Despite the fact that these two 

diseases go hand in hand, they are clinically treated as separate diseases. Therapeutic options 

for obesity are limited in both number and efficacy. At best, lifestyle intervention achieves 

only ~ 5% weight loss, and this can increase to 10% if combined with one of the few 

pharmacotherapy options. The opposite is true for treatment of T2DM, where there is an 

ever-expanding repertoire of pharmacotherapies. However, like obesity, T2DM is a 

progressive disease requiring continual adjustment of medications in order to achieve 

adequate glycemic control. Furthermore, most T2DM therapies counterproductively promote 

weight gain. Although large-scale treatment implementation is limited owing to the 

invasiveness and infrastructure needed to perform surgery, bariatric surgery is the most 

effective treatment that targets both obesity and T2DM simultaneously.  In fact, weight loss 

after bariatric surgery is three times greater than that seen with behavioral modification or 
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pharmaceutical therapy, and is sustained over a 10-year period.
2
 Despite the inherent risk of 

surgery itself, bariatric procedures reduce overall mortality
2,3

 through the reduction of obesity 

comorbidities, such as heart disease,
4
 cancer,

5
 and T2DM,

5
 and this has been attributed to the 

ability of surgery to induce long-term metabolic benefits.  Although T2DM is generally 

viewed as a chronic disease, these surgeries improve T2DM through mechanisms that are at 

least partly independent of weight loss, as remission in T2DM is often seen before patients 

are released from the hospital.
6
 The rapid and unprecedented resolution of T2DM has led to 

the increasing use of bariatric surgeries to specifically treat T2DM in less-obese patients.
7
 

One focus of this review is to explore the specific weight loss–independent and –dependent 

changes in glucose homeostasis that drive the T2DM resolution.  

The precise mechanisms by which bariatric surgery causes sustained weight loss and 

resolves T2DM remain elusive. The original hypothesis for the success of bariatric surgeries 

was focused on the anatomical changes induced by the respective surgeries. If a surgery 

reduced stomach size, then the surgery was believed to cause weight loss by restriction of the 

stomach and, thus, meal size, consequently limiting the number of calories that could be 

consumed. If surgery included rearrangement of the intestinal anatomy, then the surgery was 

thought to be malabsorptive due to a loss of calories in the feces. However, it is becoming 

more accepted that these operations have mechanisms that reach beyond the changes in 

anatomy. In fact, the substantial metabolic improvements after bariatric surgery that surpass 

the effects of weight loss alone have led to these operations to often be referred to as 

―metabolic surgeries.‖
8–10

  In addition, there are widespread physiological effects of surgery, 

including the 10-fold increases in postprandial gut peptide levels,
11,12

 increases in circulating 

bile acids,
13,14

 changes in the microbiome composition,
9
 and a change in intestinal 

morphology.
15

  A second major purpose of this review is to address a critical question as to 

whether these responses are simply a marker of the response of the gastrointestinal (GI) tract 
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to the change in anatomy or whether they are necessary underlying mechanisms that drive the 

metabolic success of surgery.  

 

The anatomy of VSG and RYGB 

Several variations of bariatric surgery are currently performed; some alter both stomach and 

intestinal anatomy, while others only alter stomach anatomy. Perhaps the best-studied surgery 

is Roux-en-Y gastric bypass (RYGB). In this surgery, a small stomach pouch is surgically 

created from the proximal stomach and sutured to the mid-jejunum while the remaining 95% 

of the stomach and the proximal intestine remain in the peritoneal cavity but are bypassed 

from nutritional access. In the mini-gastric bypass, instead of a pouch, a long gastric tube is 

formed and sutured to the mid-jejunum so that nutrient flow will bypass most of the stomach 

and the upper intestine. This surgery was designed to be a simpler and safer surgery with 

fewer major complications as compared with RYGB. Despite the greater simplicity, the 

degree of weight loss and improvements in obesity related comorbidities over a 10-year 

period are similar to RYGB.
16,17

 In another surgery, the biliopancreatic diversion with 

duodenal switch, 70% of the stomach is removed along the greater curvature and the intestine 

is re-routed similar to RYGB; however, the intestine is bypassed to a greater extent. This 

surgery results in robust weight loss and a greater remission of T2DM compared with RYGB 

yet causes significantly greater macro- and micronutrient malabsorption such that 

malnutrition is a frequent complication of the surgery.
18

   

Notable bariatric surgeries that do not involve intestinal rearrangement include 

laparoscopic adjustable gastric banding and vertical sleeve gastrectomy (VSG). In gastric 

banding, a saline-filled band is placed around the superior portion of the stomach and is made 

adjustable by varying the amount of saline within the band. In VSG, ~ 80% of the stomach 

along the greater curvature is removed, and intestinal structure is unaltered. While both of 
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these operations alter stomach size, they differ widely in efficacy of weight loss and 

reduction of obesity-associated comorbidities. A benefit of adjustable gastric banding is that 

it is minimally invasive with low rates of mortality and complications. However, a 

comprehensive meta-analysis of the literature concluded that adjustable gastric banding 

results in significantly less weight loss compared with other bariatric surgeries.
19

  In contrast, 

both human and rodent data suggest that VSG is nearly as effective as RYBG for resolving 

T2DM and inducing sustained weight loss.
20,21

  In this review, we primarily focus on the 

effects of RYGB and VSG, as these are two of the most commonly performed and studied 

procedures, and they provide an interesting comparison given their similar efficacy but 

drastically different anatomical rearrangements.  

 

Bariatric surgery, glucose homeostasis, and T2DM resolution 

The degree of T2DM remission reported after bariatric surgery ranges from 38% to 77%
20–23

 

and depends on the type of surgery, the duration of disease, and the criteria used to define 

remission. In general, the reported rate of remission is greatest with biliopancreatic diversion, 

then RYGB, and finally VSG,
20,21

 and is more frequent in patients with greater weight loss 

and a shorter duration of disease.
20

 Furthermore, whether remission is defined by a fall in 

glycosylated hemoglobin to below 6.5% or 6% can differentiate the degree of remission 

reported between studies.
20,21

 A fall in glycosylated hemoglobin to below 6.0% is more 

conservative, and, when this criterion is used, the degree of remission falls to ~40%.
20

  

That bariatric surgery causes significant improvements in glucose homeostasis and 

that the weight loss itself has a profound effect on improving glucose homeostasis is not in 

dispute. However, what is in dispute is the degree of the additional contribution of weight 

loss–independent effects on this improvement in glucose homeostasis. Early proponents of 

the weight loss–independent effects of surgery pointed to the rapid resolution of T2DM, 
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which occurs within days postoperatively and before significant weight loss.
6
 In other words, 

we know that weight loss alone leads to significant improvements in T2DM, but the question 

remains if bariatric surgery adds additional non-weight-loss mechanisms to the resolution of 

T2DM. In the following subsection of this review, we intertwine discussion regarding weight 

loss–independent effects of bariatric surgery with discussion of the exact processes of 

glucoregulation that are altered by surgery.  

Targeted glucoregulatory processes of bariatric surgery 

Regulation of glucose homeostasis is a multiorgan integrative process for which bariatric 

surgery seems to act on several levels (Fig. 1). Clinical and preclinical studies have used 

many different end points to try to understand the impact of surgery on glucoregulation. 

These are summarized and defined in Table 1 and include glycosylated hemoglobin, fasting 

plasma glucose and insulin levels, basal endogenous glucose production (EGP), insulin-

induced suppression of EGP, postprandial glucose and insulin levels, gut-independent 

nutrient-induced insulin secretion, and insulin-independent glucose disposal. Although 

dependent on the postoperative timing, bariatric surgery affects many of these end points and 

thus affects many aspects of glucoregulation. This multisystem effect likely contributes to its 

sustainable impact on T2DM resolution.  

Early after surgery (days to ~ 2 weeks) the most robust change in glucose homeostasis 

in both patients with frank diabetes or with impaired glucose tolerance is the reduction in 

fasting plasma glucose and/or insulin levels and consequently homeostatic model assessment 

for assessing β-cell function and insulin resistance (HOMA-IR),
24–29

 an index of insulin 

sensitivity calculated using fasting glucose and insulin levels. Some of this rapid 

improvement could certainly occur through removal of glucotoxicity, which affects insulin 

secretion and insulin-mediated glucose disposal (i.e., the impact of chronically high glucose 

levels itself impairs insulin secretion and glucose disposal).
30

 Fasting glucose levels are also 
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regulated by basal endogenous (primarily the liver but also the kidney) glucose production. 

However, clinically basal glucose production is a difficult end point to obtain, as it requires 

the use of a hyperinsulinemic euglycemic clamp, and is optimal when this technique is paired 

with glucose tracers to separate out changes in hepatic versus peripheral insulin sensitivity. 

Despite this difficulty, a few studies have been able to complete these experiments within 

days to weeks postoperatively and did, in fact, find that basal EGP was reduced.
31,32

 Whether 

insulin-induced suppression of EGP is enhanced in patients is less clear, as these studies are 

done under conditions where EGP is maximally suppressed. Thus, one study demonstrated 

improvements in insulin-induced suppression of EGP
33

 while another did not.
31

 This is in 

contrast to rodents, where both RYGB and VSG improved hepatic insulin resistance within 2 

weeks postoperatively, and this effect was found to be independent of weight loss, as a 

weight-matched group did not demonstrate the same improvement.
11

 Postprandial 

suppression of EGP has been found to be enhanced once weight loss approached 20% in both 

RYGB and VSG patients, but whether this is an early or weight loss–independent effect is 

unknown.
34

  

The source of glucose driving EGP is via breakdown of hepatic glycogen and 

gluconeogenesis. It has been found that energy restriction reduces EGP owing to decreases in 

glycogenolysis rather than reduction in gluconeogenesis, and this occurs very acutely after 

the onset of caloric restriction.
35

 While it is unknown whether bariatric surgery drives an 

early and specific decrease in gluconeogenesis versus glycogenolysis, in a rat model of 

T2DM induced by a combination of high-fat diet and low-dose streptozotocin, RYGB and 

VSG both decreased hepatic gluconeogenic gene expression 8 weeks postoperatively.
36

 

Plasma glucose levels in response to an oral glucose load are an excellent 

physiological indicator of overall ability to handle nutrients. Gastric emptying is very rapid 

after both RYGB and VSG, and thus peak glucose levels, in both patients and rodents, are not 
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typically reduced after surgery.
37,38

 However, there is a more rapid return to baseline 

compared with obese controls.
37

 Despite the rapid gastric emptying rate, RYGB still 

improved oral glucose tolerance to a greater extent than that observed in patients who had 

achieved a similar amount of weight through dietary intervention.
39

 These authors also 

performed metabolomics profiling and found that branched-chain amino acids, thought to 

have an independent effect impairing glucose tolerance, were decreased more after RYGB 

compared with dietary intervention patients.
40

 Together, these data support a weight loss–

independent effect on the glucose tolerance and metabolomics profile. Importantly, the 

degree of weight loss–independent effects may depend on T2DM status. Plum et al. found 

that patients with T2DM, but not those without T2DM, had greater improvements in insulin 

sensitivity and glucose disposition after RYGB compared with patients who lost an 

equivalent amount of weight with dietary intervention.
41

   

The amount of insulin secreted in response to a nutrient load is essential to suppress 

EGP and stimulate glucose clearance. Postprandial plasma insulin levels are often reported to 

be elevated after both RYGB and VSG.
11,37,39

  To distinguish between the impact of changes 

in insulin sensitivity and insulin secretion on glucose homeostasis, investigators often use a 

frequently sampled intravenous (IV) glucose tolerance test where plasma glucose and insulin 

levels are repeatedly measured after an IV glucose load. When this was done in patients 3 

years postoperatively, RYGB lowered the insulin response to an IV glucose load
42

 but 

increased the response to oral glucose. Together, these results suggested that gut factors, such 

as the surgery-induced increases in GLP-1, are critical for maintaining normal insulin 

secretion and, consequently, postprandial glucose homeostasis. These findings highlight a 

critical difference between the impact on bariatric surgery and weight loss on the insulin 

response to IV versus oral glucose loads.   
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In contrast to early hepatic effects, in both humans and rodents, it is very clear that 

improvements in peripheral insulin sensitivity and glucose disposal as assessed by 

hyperinsulinemic euglycemic clamps
11,27,29,32,43

 do not occur until after significant weight 

loss.  In fact, long-term weight loss–adjusted results suggest that weight loss–independent 

metabolic effects are important early after surgery but that the sustained weight loss is more 

of a factor for the long-term reductions in basal glucose and insulin and consequent 

reductions in HOMA-IR.
44

 Regardless, it is very clear that multiple processes of 

glucoregulation are altered by bariatric surgery. However, because of the potent degree of 

weight loss caused by bariatric surgery, dissociating the weight loss–independent from the –

dependent effects of surgery will be difficult in clinical studies.   

 

T2DM: cure or postponing the disease 

Even while the majority of evidence points to metabolic surgery producing long-term weight 

loss,
22

 ~ 20% of patients either fail to lose weight or regain weight after bariatric surgery.
45

 If 

weight is regained, then it stands to reason that recidivism in T2DM will also occur. In one 

study, while 72% of RYGB patients had T2DM remission the first 2 years postoperatively, 

this was down to 30% of RYGB patients 15 years postoperatively (remission defined by a 

fasting glucose < 110 mg/dL and no T2DM medications).
6
 These data suggest that bariatric 

surgery postpones rather than cures T2DM. Future studies are needed with detailed analysis 

of the factors that define recidivism in both obesity and T2DM after bariatric surgery, as 

identification would help determine if there is a specific population of patients who should 

not have surgery in the first place.  

 

Gut peptides 
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Although there are conflicting data suggesting that the striking metabolic impact of bariatric 

surgery is due to weight loss alone, one factor not in dispute is the weight loss–independent 

effects on postprandial gut peptide secretion. These gut peptides have a variety of functions, 

including playing key roles in regulating glucose and energy homeostasis.  Despite the clear 

changes in gut peptides, none have been shown to be independently necessary for the weight 

loss or improvements in glucose homeostasis in response to bariatric surgery. This section 

will review some of the more widely studied gut peptides and their independent effect, or 

lack thereof, on surgical outcome.   

Ghrelin 

Ghrelin is secreted by enteroendocrine cells within the stomach, duodenum, and pancreas,
46

 

and plasma levels are highest during fasting.
47

 Ghrelin acts on receptors within the central 

nervous system (CNS), such as the hypothalamus and nucleus accumbens, to regulate food 

reward and long-term energy balance
46,48

 and is the only GI peptide that, when given 

exogenously, increases food intake in humans
49

 and rodents.
47

 Exogenous ghrelin 

administration has also been found to inhibit glucose-stimulated insulin release
50–52

 and 

reduce insulin sensitivity in peripheral tissues.
53

   

Bariatric surgeries like RYGB and VSG remove nutrient access to a large portion of 

the stomach and proximal gut in the case of RYGB, and this led to the hypothesis that 

removal of ghrelin is an underlying mechanism driving the success of bariatric surgery. 

Generally, ghrelin levels are reported to be reduced after VSG,
54,55

 but, as reviewed by 

Tymitz et al.,
56

 this is less clear after RYGB, with some reports suggesting that postprandial 

and diurnal fluctuations of ghrelin were absent,
57,58

 increased,
59

 or not changed after RYGB.
54

  

In humans and rodents,  plasma ghrelin levels have been found to be substantially reduced 

after VSG, but not after RYGB.
60,61

  Thus, to determine whether removal of ghrelin played a 

role in the outcome of VSG, we performed VSG in ghrelin-deficient and wild-type mice. We 
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found that VSG was equally effective at reducing body mass and improving glucose 

tolerance in both groups of animals.
60

  Although genetic manipulation of ghrelin could have 

led to developmental compensations that potentially distort the role of ghrelin in surgical 

outcome, these data indicate that reduced ghrelin signaling is not necessary for the weight 

loss and improved glucose regulation that result from VSG.      

GLP-1 

GLP-1 is secreted from enteroendocrine L cells in a nutrient-dependent manner.
62

 GLP-1 has 

been shown to increase insulin and decrease glucagon secretion, a hormonal change that has a 

potent effect on inhibiting EGP and restraining postprandial glucose homeostasis. GLP-1 also 

delays gastric emptying and intestinal transit and reduces meal size through a G protein–

coupled receptor (reviewed in Ref. 62).  Because of these effects, the GLP-1 system remains 

a major target in the pharmaceutical pipeline of drugs to treat T2DM.
63

   

Nutrient-driven increases in plasma GLP-1 are dramatic after both RYGB and VSG, 

increasing 10-fold over controls in a manner that is both conserved across species
11,37,64–67

 

and independent of weight loss.
11,40

 Pharmacologic blockade of the GLP-1 receptor after 

RYGB or VSG inhibits prandial insulin release in humans
64,65,68–70

 and rodents.
11

 GLP-1 has 

therefore been implicated as a mechanism underlying weight loss and improvements in 

glucose homeostasis after bariatric surgery.  

GLP-1 receptors are located on β cells but are also widely expressed in the CNS, and 

both populations of receptors have been found to play roles in glucose homeostasis.
71,72

 

However, CNS administration of a GLP-1 receptor antagonist in rats had no impact on 

changes in body mass or food intake in response to RYGB.
73

  Moreover, whole-body GLP-1 

receptor knockout (KO) mice also respond normally to VSG
74

 and RYGB,
75

 both in terms of 

weight loss and improvements in glucose regulation. Such an outcome indicates that 

increases in GLP-1 are not necessary for the major metabolic effects of either VSG or RYGB.   
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However, there is a small population of patients, primarily after RYGB, that over time have 

increasing incidence of postprandial hypoglycemia or dumping syndrome, with both 

autonomic (sweating and heart palpitations) and neuroglycopenic (confusion) symptoms. 

Data are accumulating that suggest that enhanced GLP-1 receptor signaling causes patients to 

be more susceptible to this condition and that administration of a GLP-1 antagonist prevents 

postprandial hypoglycemia in these patients.
68

 This is an important finding, as dumping 

syndrome is an extremely limiting complication of RYGB that sometimes leads to surgery 

revision.  

Thus, although mouse studies suggest that GLP-1 is not necessary for the success of 

bariatric surgery, acute manipulation of postprandial GLP-1 signaling blunts postprandial 

insulin excursions, suggesting an integrated rather than independent role in surgery success.  

However, the role of GLP-1 receptor signaling in susceptibility to dumping syndrome merits 

future research.  

Other GI peptides 

Other GI peptides that have been found to be altered after bariatric surgery include 

cholecystokinin,
76,77

 glucose inhibitory peptide,
78,79

 GLP-2,
77,78

 and peptide YY.
67,80–82

  Like 

ghrelin, there is some variability in the changes in gut peptides in VSG versus RYGB (Fig. 

2). In general, peptides secreted from the upper GI tract, such as ghrelin (discussed above), 

CCK, and GIP have variable changes after RYGB but are increased by VSG.
76,77

 In contrast, 

peptides secreted from the distal gut, such as GLP-1, GLP-2, and PYY, are generally 

increased by both operations.
76,83

 These data highlight how a change in the anatomy of the GI 

tract results in changes in GI peptide responses to that surgery. Given the similarity of effects 

of these operations and the retained efficacy of surgery in genetic KO mouse models, it is not 

likely that any one of these factors alone contributes to the success of bariatric surgery. If 

these peptides are important, a more likely scenario is that some or all of these gut peptides 
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act in concert to mediate some of the effects of these procedures. This idea has already been 

adopted in the pharmaceutical pipeline for T2DM and obesity in the form of dual and tri-

agonists.
84

  

 

Bile acids 

Bile acids are derivatives of cholesterol synthesized in the liver and secreted into the 

duodenum that function to emulsify lipids enabling digestion and absorption. After lipid 

absorption, bile acids remain in the intestinal lumen until they reach the terminal ileum, 

where they are reabsorbed into the bloodstream and recycled within the liver. Cholesterol-

derived primary bile acids are secreted by the liver, while secondary bile acids are a product 

of bile acid hydroxylation by intestinal microbiota (Fig. 3). All bile acids can be conjugated 

to glycine or taurine within the liver to form bile salts.
85

 Thus, the term ―bile acids‖ 

represents a pool of different molecules with potentially diverse biological activity. Although 

the traditionally known function of bile acids is lipid emulsification, they are also known to 

act as signaling molecules.  

Bile acid signaling influences several physiological processes associated with 

improvements in T2DM, including regulation of glucose and lipid metabolism,
86

 release of 

gut peptides,
87

 insulin sensitivity,
88

 and regulation of energy expenditure.
89

 In fact, the 

positive impact of bile acid sequestrants on T2DM underscores the important role of these 

molecules in regulation of glucose homeostasis.
90

 It has also been reported that obese patients 

have increased bile acid synthesis, preferential 12α-hydroxylation (a bile acid modification 

associated with insulin resistance), and impaired serum bile acid fluctuations.
91

 Therefore, 

when it was reported that bile acids were increased after bariatric surgery,
92

 attention turned 

to their role as a key mechanism leading to the metabolic improvements after bariatric 

surgery. 
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Bariatric surgery has been shown to alter multiple aspects of bile acid flux, including 

the amount, the composition, and the circulation of bile acids. RYGB increased the amount of 

total and specifically conjugated bile acids within the plasma in a weight loss–independent 

manner.
93–95

  In addition, the peaks in plasma bile acids were higher and occurred earlier after 

a meal compared to weight-matched control patients.
96

 Although bile acids are associated 

with improvements in glucose homeostasis,
91

 postprandial bile acids are reduced one month 

but increased 2 years after RYGB in humans.
97

  An interesting possibility is that it is not 

necessarily true that bariatric surgery increases bile acids, but rather that obesity reduces them 

and surgery returns the levels to normal. In support of this, morbidly obese patients have been 

found to have reduced postprandial increases in bile acids, and levels were returned to that of 

lean control levels in patients with RYGB.
76,98

  

The impact of bariatric surgery on bile acids is, at least qualitatively, similar across 

species. A recent study found that total circulating and primary bile acids were increased after 

RYGB in humans, pigs, and rats, but there were some differences in the degree of increases 

in certain species of secondary and conjugated bile acids.
99

 Specifically, while there generally 

were increases in glycine-conjugated bile acids, the degree of the increase and the specific 

bile acid that changed varied between the species, while no species demonstrated changes in 

taurine-conjugated bile acids except very early after surgery.  In humans one month 

postoperatively, there were significant increases in ursodeoxycholic acid and its glycine and 

taurine conjugates, suggesting that early alterations were via bacterial processing.
100

 In 

contrast, later postoperative increases were due to primary unconjugated bile acids as well as 

deoxycholic acid and its glycine conjugate.  Similar to RYGB, ileal interposition in high fat–

fed rodents, a surgery where a distal section of the ileum (where the majority of bile acid 

resorption occurs) is resected and repositioned within the proximal jejunum, resulted in 

increased total plasma bile acids and decreased bile acid excretion compared with sham-
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operated controls.
101–103

 This surgery also resulted in some weight loss (although not to the 

extent seen with RYGB or VSG) and improvements in glucose tolerance, hepatic 

triglycerides, and cholesterol levels, despite the fact that patients were maintained on a high-

fat diet after surgery.
103

 Notably, reorganization of the intestine is not necessary for surgically 

induced changes in bile acids.  VSG also increased circulating primary and taurine-

conjugated bile acids in rodents
13

 and postprandial
104

 but not fasting
105

 total bile acids in 

humans, and, in humans and rodents, simply surgically diverting bile to the distal intestine is 

sufficient to cause an increase in circulating bile acids, weight loss, and improvements in 

glucose and lipid homeostasis.
106,107

 

As signaling molecules, bile acids activate two different types of receptors. One is a 

nuclear transcription factor called farnesoid X receptor (FXR), which is highly expressed in 

the intestine, the liver, adipose tissue, pancreas, and adrenal gland.
90,108

  Once activated by 

bile acids, FXR drives secretion of fibroblast growth factor 19 (FGF19) in humans (or FGF15 

in rodents)
109

 (Fig. 3). FGF19/15, in turn, enters the circulation and provides negative 

feedback to inhibit bile acid synthesis in the liver, but also functions to regulate carbohydrate, 

lipid, and energy metabolism.
110

 For example, exogenous administration of FGF19 to dietary-

induced obese or leptin-deficient mice causes weight loss, at least in part by increasing 

energy expenditure, and also improves glucose homeostasis.
111

  

FGF19 is significantly increased after RYGB and VSG in rodents and human 

patients.
107,112,113

 In addition, FXR signaling is necessary for surgical outcome.  For example, 

while VSG induces an initial reduction in food intake and body weight, Fxr KO mice 

regained all of the lost weight and body fat compared to sham-operated Fxr KO mice.
112

 

Additionally, Fxr KO mice did not exhibit the known VSG-induced metabolic improvements 

in fasting blood glucose levels and glucose tolerance. Further research is required to 
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distinguish among the impacts of the various populations of FXR receptors on surgical 

outcome.  

Bile acids also activate a cell-surface G protein–coupled receptor called TGR5 (also 

GPBAR1 (Fig. 3)). These receptors are mainly expressed in the gall bladder, ileum, colon, 

brown and white adipose tissue, and to a lesser extent in skeletal muscle, liver, and immune 

cells.
114

  Bile acids act on TGR5 receptors to increase plasma GLP-1 and also regulate 

glucose and lipid metabolism.
115

 Activation of TGR5 by the agonist oleanolic acid attenuated 

dietary-induced obesity and improved insulin resistance in mice.
116

 While FXR is necessary 

for both weight loss and improvements in glucose homeostasis after bariatric surgery, TGR5 

plays only a partial role. Tgr5 KO mice lost a similar amount of weight after VSG to their 

wild-type counterparts, indicating that this receptor is not necessary for weight loss after 

VSG.
117

 However, after VSG, the Tgr5 KO mice had slightly reduced improvements in 

glucose tolerance and fasting blood glucose compared with the degree of improvement seen 

in the wild-type mice.    

Bile acids show clear increases after both RYGB and VSG, a similar finding across 

species. While we know that bile acids activate both FXR and TGR5, it seems that activation 

of FXR is a more important overall signaling mechanism underlying the success of bariatric 

surgery. Thus, targeting FXR signaling is an important avenue for drug development to treat 

both obesity and T2DM.  

 

Changes in the microbiome 

Recent work has explored the importance of the intestinal microbiome in metabolism. The 

microbiome houses approximately 3 trillion bacteria and has been shown to regulate host 

metabolism.
118

 The microbiome has been shown both to alter susceptibility to obesity and 
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T2DM,
119–121

 but obesity itself has also been found to alter the microbiome by reducing 

microbial diversity and bacterial gene richness.
118,122

 

Bariatric surgeries manipulate the intestinal environment and also cause weight loss, 

and therefore have the potential to either directly or indirectly (through weight loss) influence 

the balance of bacterial composition and diversity within the gut.
123

 One of the first human 

studies to support this idea demonstrated that fecal microbiota (an index of the intestinal 

population) was distinct among normal-weight and obese patients and after RYGB.
124

  These 

authors identified a phylum-level compositional shift in the microbiome, with a relative 

decrease in the abundance of Firmicutes and an increase in the abundance of 

Gammaproteobacteria in RYGB versus both normal-weight and obese individuals. 

Additionally, obese and normal-weight individuals had distinct microbiomes.  Unfortunately, 

the interpretation of the direct or indirect impact of RYGB on the microbiome may be 

skewed by the cross-sectional nature of the study. Subsequent studies have found a temporal 

shift in the microbiome with an increase in the phylum Proteobacteria by 3 months, and this 

was maintained at 6 months postsurgery compared with pre-RYGB.
125,126

 A similar shift 

happened 3 months after RYGB in patients that had T2DM at the time of surgery.
127

 The 

importance of these microbial shifts is highlighted in a study where a fecal transplant from 

humans after RYGB or vertical-banded gastroplasty to mice was found to restrain 

adiposity.
128

 While all of these data indicate that bariatric surgery is conducive to changes in 

the gut microbiome, they do not clarify whether this is due to a direct effect of the operation 

or whether it is indirect via surgery-induced weight loss, the reduced caloric intake, or even 

changes in macronutrient content of the diet, all factors shown to induce changes in the 

microbiome.
129,130

 

All of these factors are easier to control for in preclinical studies where animals are 

matched for body mass or fat before surgery and experimental groups include a pair-fed or 
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weight-matched sham-surgery control group. Still, these data are consistent with human 

studies in that rodents also demonstrate a shift in the microbiome after RYGB.
131–133

  In 

addition, fecal transplants from RYGB-treated mice to germ-free mice induced weight loss, 

while lean chow-fed mice administered fecal transplants from sham-surgery obese mice 

gained weight.
131

 Another study found that the change in the microbiome was conserved 

across species (humans, rats, mice) with an increase in the gammaproteobacteria and 

verrucomicrobia; an effect that was independent of weight loss.
131

 As these animals were 

matched for body weight before surgery and were all maintained on the same diet, these data 

are an important indication that the impact of surgery on the microbiome is independent of 

weight loss. While most human studies have focused on changes in the microbiome after 

RYGB, we have also observed a shift in the microbiome after VSG.
112

  

One way the microbiome could alter metabolism is through generation of metabolic 

by-products. Short-chain fatty acids, such as butyrate, are fermented by gut bacteria, and 

recent evidence suggests an association between butyrate-producing bacteria and the 

beneficial effects on metabolism in both mice and humans.
134,135

 In mice, oral administration 

of butyrate has been shown to improve insulin sensitivity and increase energy expenditure.
134

 

Furthermore, diabetic mice colonized with feces from RYGB mice demonstrated 

improvements in glucose and lipid metabolism, and this was associated with increases in 

butyrate-producing bacteria.
131

  

Several aspects of bariatric surgery, independent of weight loss, could induce a shift 

in microbial composition.  For example, changes in the pH (as the number of acid-secreting 

cells in the stomach is reduced), changes in bile acid composition, alterations in nutrient 

handling and sensing, and changes in gastrointestinal motility are all factors that could 

influence the microbiome. Because the intestinal microbiota plays an integral role in 

generating secondary bile acids, which are increased with surgery (discussed above), bile acid 
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FXR signaling is an intriguing molecular link between the microbiome and host 

metabolism.
136

 While FXR deficiency blocks the VSG-induced reductions in body weight 

and improvements in glucose tolerance, it also blunts the ability of VSG to reduce 

Bacteroides and increase Roseburia.
112

  Altogether, these data suggest a microbiome–bile 

acid–FXR axis that is essential to the success of bariatric surgery.    

 

Intestinal morphology 

The intestinal mucosa is a highly plastic system where the turnover of human epithelial cells 

occurs every 3–5 days.
137

 The rapid cellular turnover is regulated by signaling pathways that 

dictate the rates of proliferation and atrophy. Changes in the balance of proliferation to 

atrophy leads to changes in overall mucosal mass
138

 and can involve changes in villus height, 

crypt depth, mucosal surface area, and/or intestinal weight.
139

  

In rodents who receive operations where intestinal resection is performed, 

proliferation of the remaining tissue is very evident and likely occurs to create more 

absorptive cells for macro- and micronutrients.
138

 Resection of the majority of the proximal 

bowel in rats increases glucose uptake in the ileum and is associated with an increase in villus 

height and intestinal length rather than increased gene expression of glucose transporters.
140

  

Thus, functional removal of one portion of the GI tract causes a compensatory response in the 

remaining tissue. Intestinal proliferation has been found in multiple studies after RYGB, 

where increases in bowel width, villus height, crypt depth, and overall cell proliferation
141,142

 

in the alimentary and common intestinal limbs and an increase in bowel width within the 

biliopancreatic limb
142

 are observed in rats and mice.  Other bariatric surgeries in rodents 

involving intestinal manipulation, such as duodenal jejunal bypass, placement of an duodenal 

endoluminal sleeve, and ileal interposition, also demonstrate intestinal hyperplasia.
103,143,144
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Of note, the degree of changes in intestinal proliferation in humans after bariatric surgery 

remains unknown.  

Surgically induced cell proliferation requires surgical manipulation of the intestine, as 

VSG does not affect intestinal morphology in rats and mice.
145,146

 Given that RYGB and 

VSG often drive similar metabolic improvements, these data could indicate that changes in 

intestinal morphology are not necessary for surgical outcome. Recent data suggests that, 

although general intestinal cell proliferation does not occur, there are specific increases in 

GLP-1–secreting cells after VSG in mice.
145

  It is also possible that there is an increase in the 

nutrient-sensing machinery that drives GLP-1 secretion.    

Recent data demonstrate that intestinal proliferation with diet-induced obesity is due 

to increased stem cell differentiation in mice.
147

 Thus, if both obesity and bariatric surgery 

drive intestinal proliferation, it is intriguing to consider that each circumstance drives a 

differential stem cell niche, one for which there are negative consequences (obesity-induced 

cancer) and one for which there are positive consequences (weight loss, improved 

metabolism).    

 

Conclusions 

We believe that weight loss–independent and –dependent mechanisms are both crucial to 

cause sustained remission in T2DM after surgery. Understanding the weight loss–

independent mechanisms is important for a basic understanding of the pathology of the 

disease. Ultimately, the goal is to find simpler strategies, either surgical or pharmacological, 

that could be more widely implemented to treat the enormity of the health crisis caused by 

obesity and T2DM.  

While the increase in gut peptides, especially GLP-1, has been implicated as a 

mechanism for the success of surgery, other widespread physiological effects, including 
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changes in bile acids and in the microbiome, seem to be more robust when pooling insights 

obtained from both clinical and preclinical data.  Regardless, a question in need of continual 

pursuit is whether these widespread changes simply represent the physiological adaptation of 

the GI tract in response to anatomical rearrangement or whether these changes act in concert 

or independently to drive the postoperative weight loss and/or improvements in glucose 

homeostasis.  
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Figure 1. Bariatric surgery, including both RYGB and VSG, has widespread effects on 

glucose homeostasis. Early responses to surgery include a reduction in basal glucose and 

insulin levels (and consequently HOMA-IR) and a reduction in basal endogenous glucose 

production, as indicated in both human and rodent studies. Although unexplored in humans, 

rodents also demonstrate an early postoperative improvement in hepatic insulin sensitivity. 

Peak insulin levels in response to a meal are greater after surgery but then rapidly return to 

baseline. Lastly, and only after significant weight loss, peripheral insulin sensitivity and thus 

glucose uptake is increased. Red arrows, end points that are reduced; green arrows, end 

points that are increased.  

 

Figure 2. The variability in the changes in postprandial gut peptide levels after RYGB versus 

VSG. In general, peptides secreted from the upper GI tract, such as ghrelin, CCK, and GIP, 

have variable reported changes after RYGB but are increased by VSG. In contrast, peptides 

secreted from the distal gut, such as GLP-1, GLP-2, oxyntomodulin, and PYY, are increased 

by both operations. 
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Figure 3. Primary bile acids secreted by the liver are hydroxylated by the microbiome in the 

intestinal tract to yield secondary bile acids. In addition to emulsification of lipids, bile acids 

act as hormones by activating two different receptors. One is a nuclear transcription factor 

called FXR. Once activated, FXR produces FGF19/15 (human/rodent analog), which is 

secreted into the circulation. FGF19/15 then acts on downstream metabolic pathways to 

regulate glucose and lipid homeostasis. The other receptor activated by bile acids is TGR5. 

TGR5 is a G protein–coupled receptor that, within the intestine, is known to regulate GLP-1 

secretion.  
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Table 1: The various end points examined when looking for changes in glucose 

homeostasis, what physiology they represent or are regulated by, and the impact of 

surgery.  

 

End point Physiology Impact of surgery 

Glycosylated hemoglobin The amount of glucose-bound 
hemoglobin; represents long-
term glucose control 

Improved 

Fasting glucose and insulin Basal endogenous glucose 
production dictates fasting 
glucose 

Early postoperative 
improvement 

HOMA-IR Equation based on fasting 
glucose and insulin and used as 
an index of insulin sensitivity 

Early postoperative 
improvement 

Basal endogenous glucose 
production 

Dictated by glycogenolysis and 
gluconeogenesis, which is 
controlled by the ratio of insulin 
to glucagon 

Early postoperative 
improvement 

Postprandial endogenous 
glucose production 

Suppressed by insulin  Early postoperative 
improvement in rats 

Peripheral glucose uptake Stimulated by insulin Late postoperative 
improvement 

Postprandial glucose  Regulated by gastric emptying 
rate, intestinal absorption, 
suppression of EGP, and insulin-
mediated glucose disposal 

Increased peak glucose but 
more rapid return to baseline 

Postprandial insulin Increased insulin suppresses 
EGP and stimulates glucose 
disposal; regulated by gut-
dependent and gut-
independent mechanisms 

Increased peak insulin but 
more rapid return to baseline 

Insulin response to an IV 
glucose load 

Marker of nutrient sensing at 
the β cell and is gut 
independent 

Increased 

Incretin effect The glucose-induced increase in 
gut peptides (GLP-1, GIP) 
increases insulin to a greater 
extent after an oral versus an IV 
glucose load  

Increased secretion of GLP-1  


