
1

2 DR. MARY-CLAIRE ROGHMANN (Orcid ID : 0000-0003-1063-9257)

This article is protected by copyright. All rights reserved

- 26 300 N. Ingalls Rd., Rm. 905
- 27 Ann Arbor, MI 48109
- 28 Tel: 734-764-8942
- 29 Fax: 734-936-2116
- 30 Email: <u>lonamody@umich.edu</u>

- 31
- 32
- 33

34 Over 50% of nursing home residents harbor a multi-drug resistant organism (MDRO) without having any symptoms of infection, with rates exceeding those in acute care hospitals 35 including intensive care units.¹⁻⁸ When a nursing home resident develops a symptomatic 36 infection, it is often caused by an MDRO.⁹ Guidance from the Centers for Disease Control and 37 38 Prevention on the use of isolation practices in nursing homes suggests modified contact precautions based on case-mix.¹⁰ In acute care hospitals, contact precautions as defined by 39 isolation in a single room with use of gowns and gloves by healthcare workers during care is the 40 41 primary approach to preventing transmission of MDROs. However, prior studies have shown 42 that adoption of this strategy in nursing homes results in social stigma including feelings of "isolation" and constrain in a home-like environment.¹¹ Thus most nursing homes do not use 43 44 contact precautions for residents colonized with MDROs such as methicillin-resistant Staphylococcus aureus (MRSA) or vancomycin-resistant enterococcus (VRE).¹² 45

46 Because of growing concerns about MDRO transmission and infection in nursing homes, 47 active diagnosis of "MDRO infection" and the special procedure of "isolation for active 48 infectious disease" variables were added to the Minimum Data Set (MDS) in 2010. Cohen et al 49 in this issue, report on the use of isolation practice in nursing home residents with active MDRO infections using 2010-2013 data from the MDS.¹³ Overall the use of isolation was recorded in a 50 51 minority (13%) of residents with MDRO infections. Of note, needing support with ambulation 52 and eating, evidence of functional disability, having a urinary catheter, and dementia was 53 associated with an increase in isolation use for residents with MDRO infection. Higher levels of 54 staffing for RNs, LPNs and CNAs were all associated with lower isolation use in the nursing 55 home which begs the question -could an optimally functioning nursing home be rarely using 56 isolation precautions because highly trained staff and a favorable RN to resident ratio allows

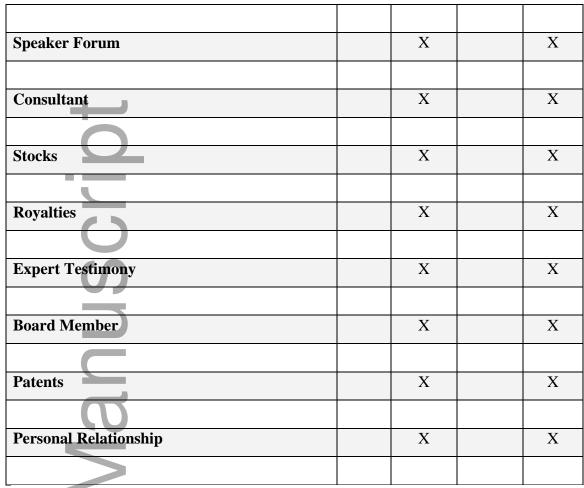
57 staff to carefully weigh the consequences of isolation use, and consider alternative infection control methodologies? This study also found that nursing homes with a recent infection control 58 59 citation were more likely to use isolation for residents with an MDRO infection. Nursing homes 60 are a heavily regulated industry and citations and quality indicators remain the most effective 61 trigger to change practice. A salient example is the use of urinary catheters. Since the inclusion of urinary catheters as a quality indicator, their use has plummeted from 13% to 5%.^{14,15} 62 63 Similarly, resident immunization rates are publicly reported quality measures and approach 90%.¹⁶ As the evidence for how to best prevent the transmission of MDROs in nursing homes 64 65 emerges, quality indicators should be developed.

66 In this study, Cohen et al used secondary datasets which, although efficient, have a few 67 limitations. First, due to a look back period of last 15 days, clinically significant interval 68 changes are often not captured. Furthermore, the association between isolation and MDRO 69 infection is cross-sectional with the assumption that instituting isolation practices occurred after 70 the diagnosis of infection. Additionally, there is always the potential mismatch in timing between 71 the identification of the MDRO, the isolation precautions, and documentation on the MDS. 72 Residents could have been placed in isolation before an MDRO infection. What procedures 73 constituted isolation, the duration of isolation and if there were any adverse consequences of 74 isolation is unknown. That MDS does not record the type of MDRO infection is an additional 75 limitation. Future studies should validate these measures through chart reviews in order to further 76 characterize individual nursing home practices and adequately allocate financial and personnel resources.¹⁷ 77

78 Limitations notwithstanding, this study describes for the first time the prevalence and 79 variations in the use of isolation practices for MDRO infected residents in a national sample of 80 nursing homes. When placed in context with recently published papers, it highlights several key points regarding policies and practices to prevent transmission of MDROs in these settings. As 81 82 shown in this study targeting residents at high risk for new acquisition of an MDRO or 83 transmission of MDRO for others is an important strategy for preventing transmission because it 84 limits the negative consequences of isolation while preventing most transmission. We recently 85 demonstrated that MRSA colonized residents with chronic skin breakdown such as pressure 86 ulcers are more likely to transmit MRSA to healthcare worker gowns and gloves during high contact care than residents without skin breakdown.¹⁸ In a further cost analysis, we showed that 87

88 targeting these residents with chronic skin breakdown for increased gown and glove use was substantially less expensive than increased gown and glove use for all residents.¹⁹ In another 89 90 major cluster-randomized study, a multicomponent bundle targeting high risk residents with 91 indwelling devices and that included enhanced barrier precautions, interactive infection 92 prevention education and active surveillance with data feedback, reduced prevalence and new acquisition of MDROs as well as device-associated infections.^{1,20,21} It is also necessary to use 93 94 other strategies to contain the spread of pathogens among this susceptible and chronically ill 95 population. In addition to using enhanced barrier precautions for higher risk residents, such 96 strategies should include surveillance of significant pathogens and attention to environmental cleaning.²² 97

98 With the burgeoning short stay population, a number of infection prevention practices 99 including isolation precautions need to be revisited. The short stay population in nursing homes 100 closely resembles hospitalized patients. Although isolation for MDRO colonization is not a 101 common practice, more research on frequency, route and mechanism of MDRO transmission is 102 needed as a short stay population mingles with a long-stay population. The accompanying paper 103 is an important first step. Understanding the downstream consequences of MDRO colonization 104 and the adverse events and costs associated with the use of enhanced barrier precautions will be 105 important to drive future policy.


106

107 ACKNOWLEDGMENT

108 Conflict of Interest Checklist:

Elements of Financial/Personal Conflicts	Author 1: LM		Author 2: MCR	
	Yes	No	Yes	No
Employment or Affiliation		Х		Х
Grants/Funds		Х		Х
Honoraria		X		Х

This article is protected by copyright. All rights reserved

109 For "yes", provide a brief explanation:

Author Contributions: Mody, Roghmann: concept and design; acquisition, analysis, and interpretation of data; drafting and revising the article critically for important intellectual content; analysis and interpretation of data; drafting and revising the article critically for important intellectual content. All authors reviewed and approved the submitted version of the article.

- 114
- 115 **Sponsor's Role:** The sponsor was not involved in the study design, methods, subject
- recruitment, data collections, analysis, or preparation of the paper. The content is solely the
- 117 responsibility of the authors and does not necessarily represent the official views of the funders.

118 **References**

119	1.	Mody L, Krein SL, Saint SK et al. A targeted infection prevention intervention in nursing
120		home residents with indwelling devices: A cluster randomized trial. JAMA Intern Med
121		2015;175:714-723.
122	2.	Mody L, Maheshwari S, Galecki A et al. Indwelling device use and antibiotic resistance
123		in nursing homes: Identifying a high-risk group. J Am Geriatr Soc 2007;55:1921-6.
124	3.	Mitchell SL, Shaffer ML, Loeb MB et al. Infection management and multidrug-resistant
125		organisms in nursing home residents with advanced dementia. JAMA Intern Med
126		2014;174:1660-7.
127	4.	O'Fallon E, Pop-Vicas A, D'Agata E. The emerging threat of multidrug-resistant gram-
128		negative organisms in long-term care facilities. J Gerontol A Biol Sci Med Sci
129		2009;64:138-41.
130	5.	O'Fallon E, Kandel R, Schreiber R et al. Acquisition of multidrug-resistant gram-
131		negative bacteria: Incidence and risk factors within a long-term care population. Infect
132		Control Hosp Epidemiol 2010;31:1148-53.
133	6.	Hudson LO, Reynolds C, Spratt BG et al. Diversity of methicillin-resistant
134		Staphylococcus aureus strains isolated from residents of 26 nursing homes in Orange
135		County, California. J Clin Microbiol 2013;51:3788-95.
136	7.	McKinnell JA, Miller LG, Singh R et al. Prevalence of and factors associated with
137		multidrug resistant organism (MDRO) colonization in 3 nursing homes. Infect Control
138		Hosp Epidemiol 2016 Sep 27:1-4. [Epub ahead of print]
139	8.	Munoz-Price LS, Stemer A. Four years of surveillance cultures at a long-term acute care
140		hospital. Infect Control Hosp Epidemiol 2010;31:59-63.
141	9.	Cassone M, Mody L. Colonization with multi-drug resistant organisms in nursing
142		homes: Scope, importance, and management. Curr Geriatr Rep 2015;4:87-95.
143	10	. Gucwa AL, Dolar V, Ye C et al. Correlations between quality ratings of skilled nursing
144		facilities and multidrug-resistant urinary tract infections. Am J Infect Control
145		2016;44:1256-60.
146	11	. Furuno JP, Krein S, Lansing B et al. Health care worker opinions on use of isolation
147		precautions in long-term care facilities. Am J Infect Control 2012;40:263-6.

This article is protected by copyright. All rights reserved

148	12. Ye Z, Mukamel DB, Huang SS et al. Healthcare-associated pathogens and nursing home
149	policies and practices: Results from a national survey. Infect Control Hosp Epidemiol
150	2015;36:759-66.
151	13. Cohen CC, Dick A, Stone P. Isolation precautions use for multidrug resistant organism
152	infection in nursing homes. J Am Geriatr Soc 2016 [under review]
153	14. Rogers MA, Mody L, Kaufman SR, Fries BE, McMahon LF Jr, Saint S. Use of urinary
154	collection devices in skilled nursing facilities in five states. J Am Geriatr Soc
155	2008;56:854-861.
156	15. Mody L, Meddings J, Edson BS et al. Enhancing resident safety by preventing
157	healthcare-associated infection: A national initiative to reduce catheter-associated urinary
158	tract infections in nursing homes. Clin Infect Dis 2015;61:86-94.
159	16. Short-stay nursing home care: Percent of residents who received the seasonal influenza
160	vaccine. Agency for Healthcare Research and Quality (online). Available at:
161	https://www.qualitymeasures.ahrq.gov/summaries/summary/50038/shortstay-nursing-
162	home-care-percent-of-residents-who-received-the-seasonal-influenza-vaccine. Accessed
163	November 11, 2016.
164	17. Cohen CC, Pogorzelska-Maziarz M, Herzig CT et al. Infection prevention and control in
165	nursing homes: A qualitative study of decision-making regarding isolation-based
166	practices. BMJ Qual Saf 2015;24:630-6.
167	18. Roghmann MC, Johnson JK, Sorkin JD et al. Transmission of methicillin-resistant
168	Staphylococcus aureus (MRSA) to healthcare worker gowns and gloves during care of
169	nursing home residents. Infect Control Hosp Epidemiol 2015;36:1050-7.
170	19. Roghmann MC, Lydecker A, Mody L et al. Strategies to prevent MRSA transmission in
171	community-based nursing homes: A cost analysis. Infect Control Hosp Epidemiol
172	2016;37:962-6.
173	20. Mody L, Bradley SF, Galecki A et al. Conceptual model for reducing infections and
174	antimicrobial resistance in skilled nursing facilities: Focusing on residents with
175	indwelling devices. Clin Infect Dis 2011;52:654-61.
176	21. Koo E, McNamara S, Lansing B et al. Making infection prevention education interactive
177	can enhance knowledge and improve outcomes: Results from the Targeted Infection
178	Prevention (TIP) study. Am J Infect Control 2016;44:1241-6.

- 179 22. MDRO Prevention and Control. Centers for Disease Control and Prevention (online).
- 180 Available at: http://www.cdc.gov/hicpac/mdro_4.html. Accessed November 11,
 181 2016.

anus