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Abstract 
 Our growing population and increasingly variable climate conditions challenge our ability 

to meet pressing demands for food, water and energy.  With approximately 70% of U.S. 

freshwater resources applied to agriculture with most withdrawals occurring in water scarce 

regions, critical analysis is required to determine how regional water use and availability impact 

user competition for water resources.  Aiming to provide insight into the cradle-to-farm gate 

impacts of different U.S. consumed crops, this thesis begins with a comprehensive literature 

review to consider the progress and opportunities occurring around water scarcity studies over 

the last 40 years.  Using empirical data and emerging water impact assessment models, a 

methodology is proposed providing characterization of 10 U.S. consumed crops at regional levels 

(county, state, and national), resulting in production-weighted water competition footprints for 

each crop.  This analysis also considers water competition footprints of crop imports and exports, 

which factor into national water footprint values of U.S. consumed crops.  Results contrast water 

use and competition footprint values for select crops at difference spatial scales, indicating the 

significant impact agricultural processes have in water scarce regions.  This research is expected 

to contribute towards diet-level impact studies, filling gaps where additional life cycle water 

assessment methods are needed.  
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1. Introduction 
Our growing population and increasingly variable climate conditions are challenging our 

ability to meet pressing demands for food.  As an elemental need for survival, lack of access to 

clean water can serve as a catalyst for conflict, especially in tense regions already struggling with 

water scarcity in South and Southeast Asia, Northern Africa, and the Middle East (Reisinger, 

2015).  With approximately 70% of U.S. freshwater resources applied to agriculture (Koehler, 

2008), scientists are seeking systematic and integrated techniques to better understand and 

quantify the food-energy-water (FEW) nexus in order to develop sustainable solutions to meet the 

needs of people today and in the future.  Exacerbating the issue is the heterogeneous distribution 

of our freshwater resources, their increasing scarcity and degraded quality, challenging long term 

FEW system sustainability (Helmstedt et al., 2015).   California’s recent droughts and 

corresponding water, food, and energy sector impacts are timely examples that illustrate this 

concern. 

There is an urgent need for methodological approaches to properly account for freshwater-

related environmental impacts from agriculture (Koehler, 2008).  This is especially important for 

evaluating the influence of individual diets on these impacts.  Many current methodologies are 

improvements on the original Falkenmark water stress index which compares per capita 

renewable water resources in a region with regional demand data (Falkenmark, 1989).  Though 

useful as an intuitive metric for water stress, this indicator is limited in its ability to accurately 

capture smaller spatial differences in water scarcity, infrastructure impacts, or variations in 

demand between regions (Rijsberman, 2006).  Another useful, yet limited, methodology involves 

assessing water scarcity solely using climate models (Vörösmarty, Green, Salisbury, & Lammers, 

2000), but this technique again ignores any human impacts, whether through infrastructure, 

agriculture, or other demands, drawing on the available freshwater resources.    

A significant advancement in life cycle assessment (LCA) water use impact assessment 

was the water stress indicator (WSI) developed by Pfister et al. (2009) which accounts for water 

use based on human health, ecosystem function, and damage to local resources (Stephan Pfister, 

Koehler, & Hellweg, 2009).  This method is widely accepted within the LCA community, and is 

available for use in various LCA software packages including SimaPro, Umberto, and others.  This 

method does have shortcomings since it leaves out considerations for green water flows or 

resources lost due to degradative freshwater (Stephan Pfister et al., 2009).  

An apparent limitation of the WSI emerges when agricultural water use impacts are 

assessed at an annual scale, failing to account for the seasonality on water demand associated 

with agricultural processes which is especially prevalent in regions with distinct dry and humid 
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seasons (Payen, Basset-Mens, & Perret, 2015; Tendall, Raptis, & Verones, 2013).  However, 

monthly hydrological and water use data are difficult to attain, requiring use of theoretical models 

and additional assumptions to supplement data gaps (Payen et al., 2015).  There is also lack of 

consensus about freshwater characterization factors, specifically whether water withdrawal or 

water consumption are appropriate metrics for determining environmental impacts, and whether 

groundwater stocks should be considered in freshwater availability calculations (Berger & 

Finkbeiner, 2013; Anne-Marie Boulay, Ecile Bulle, Bayart, Deschenes, & Ciraig, 2011; Stephan 

Pfister et al., 2009; Tendall et al., 2013).  These are the challenges for which LCA practitioners 

and researchers have been pursuing solutions, and this thesis offers some possible opportunities 

to fill these gaps. 

Though water stress methodologies have advanced in recent years, there is limited 

research connecting diet with freshwater use and its regional stresses.  Metrics like Nutritional 

Water Productivity (Renault & Wallender, 2000) provide a general approach and analysis for 

connecting water use and nutrition, but they fail to incorporate water stress indicators or more 

regional impact assessments at smaller spatial scales.  This thesis seeks to address this gap and 

propose a useful methodology for assessing watershed-scale agricultural water use impacts as it 

relates to regional water competition among other users.  More specifically, the proposed method 

will result in water competition footprints for various crops grown and consumed in the U.S., 

allowing future application in U.S. diet-level studies.  These food systems and diet studies can 

inform water resource policy, and may lead to optimization in the geospatial distribution of crops 

to meet growing food demand while minimizing use and impacts of our limited freshwater 

resources. 

Water impact assessment methods in LCA have been developed over the last three 

decades in an attempt to evaluate water resource vulnerability and impacts (Brown & Matlock, 

2011).  The water utilization level is one of the earliest accepted water scarcity assessment 

methods which evaluates available regional runoff for human use (Falkenmark, 1989).  Many 

methods have evolved and expanded on this concept, most using either a withdrawal-to-

availability or consumption-to-availability ratio as the basis for resulting stress calculations (Berger 

& Finkbeiner, 2013).  In the last decade, significant effort has gone towards developing a 

standardized water footprint assessment methodology, allowing practitioners to quantify the 

potential environmental impacts of a product or process as they relate to water (ISO, 2014).  

These water footprint methods (Baitz et al., 2014; Anne-Marie Boulay et al., 2011; Ecoinvent, 

2007; Kounina et al., 2013; Vionnet, Lessard, Offutt, Levova, & Humbert, 2012) classify input and 
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output water flows according to watercourse, quantity, quality, and geographic and temporal 

dimensions (Berger & Finkbeiner, 2013; ISO, 2014).   

As seen in Figure 1, U.S. Geological Survey (USGS) freshwater use data indicates that 

agriculture use of freshwater in the United States dominates total freshwater withdrawals.  

Intensity of freshwater use is particularly prevalent in the western United States, an area prone to 

greater water scarcity compared to other parts of the nation.  Research findings by Averyt et al. 

(2013) validate this finding (Figure 2), indicating intense agricultural water use in Western U.S. 

leading to increased stress of regional water supplies. This highlights the importance of 

developing a water use assessment methodology to evaluate the regional water impacts of U.S. 

grown crops, forging an opportunity to relate crop water footprints to individual U.S. diets. 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 

 

 

 

 

 
 
 

Figure 1: U.S. map depicting intensity of freshwater use for agriculture in U.S. states. 

 

Figure 2: The agricultural contribution to the Water Supply Stress Index (WaSSI) for average 
supplies 1999-2007. (a) Percentage of total withdrawal demands by agriculture for each HUC-8 
watershed; (b) WaSSI based only on agricultural demands (Averyt et al. 2013) 
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2. Literature Review 

 

In order to develop or apply a proper methodology to regionally characterize water use for 

agricultural processes, an in-depth literature review was conducted to identify the prevailing 

methods used in LCA today. This review provided opportunity to determine which methodologies 

best meet the needs of this study, and helped identify shortcomings in each methodology which 

may be improved in future studies.  Also, available primary data sources were investigated to 

determine applicable and useful data for integration into a proposed method, and to support and 

validate any results. 

 The purpose of this thesis is to develop characterization factors for assessing regional 

freshwater consumption from agricultural crop production, with no attempt made to determine 

mid- or endpoint impacts within any of the three areas of protection: human health, ecosystem 

quality, and resources.  However, midpoint categories are discussed to determine possible 

application in future studies.  Application of the proposed characterization factor methodology 

may allow assessment in mid- or endpoint impact categories, but is outside the scope of this 

thesis.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 3: Water impact assessment tools and methods for LCA of agricultural 
processes.  Partially adapted from Kounina et al. (2013) 
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In recent years, multiple studies have provided comprehensive evaluation of different 

water impact methodologies for application in LCA (A.-M. Boulay et al., 2015; A. M. Boulay et al., 

2015; Brown & Matlock, 2011; Jeswani & Azapagic, 2011; Kounina et al., 2013; Sala, Benini, 

Castellani, Vidal-Legaz, & Pant, 2016).  These studies examined all aspects of water inventory 

databases and methods, mid- and endpoint methodologies, and water indices used to 

characterize water use based on specific geographic and temporal dimensions.  For use in 

agricultural process studies, certain methods and sources were considered most relevant and 

useful for future LCA studies (Figure 3). 

2.1 Terminology  

Key terminology used throughout this thesis are defined in Table 1.   

 
Table 1: Water characterization and LCA terminology 

Term Definition Source 

Water Use Any use of water for human activity.  This includes water withdrawals, water 
releases, or any other human activities within a drainage basin. (ISO, 2014) 

Water 
Consumption 

Represents freshwater withdrawals which are evaporated, incorporated in products 
and waste, transferred into different watersheds, or disposed into the sea after usage. 

(Falkenmark & Rockstrom, 
2004) 

Water 
Withdrawal 

Any off-stream anthropogenic use of water.  Includes any temporary or permanent 
water removal from any water body or drainage basin. 

(ISO, 2014; Pfister, 
Koehler, & Hellweg, 2009) 

Freshwater 
Quality 

A set of parameters considered to characterize the chemical, physical, and biological 
properties of freshwater. 

(Berger & Finkbeiner, 
2013) 

Virtual Water Amount of water evaporated in the production of, and incorporation into, 
agricultural products, neglecting runoff. 

(Allan, 1993, 1994; 
Stephan Pfister et al., 
2009)  

Degradative 
Use 

Describes a quality change in water used and released back to the same watershed, 
and requires a description of inputs and outputs in the inventory analysis. (Pfister et al., 2009) 

Blue Water Surface and groundwater sources (lakes, rivers, aquifers). 
(Hoekstra, Chapagain, 
Aldaya, & Mekonnen, 
2009) 

Green Water Water held in the soil in the form of soil moisture. (Hoekstra et al., 2009) 

Gray Water The volume of freshwater that is required to dilute polluted water to existing 
ambient water quality standards. (Hoekstra et al., 2009) 

Water Scarcity Water use approaching or exceeding the natural regeneration of water in a given 
area, e.g., a drainage basin. 

(Berger & Finkbeiner, 
2013) 

Water Stress 
Index (WSI) 

Ratio of total annual freshwater withdrawals to hydrological availability.   WSI 
values enable LCA practitioners to effectively characterize and normalize water 
impacts across in regions spanning possible climatic conditions, providing a useful 
framework for assessing the water impacts of products. 

(Pfister et al., 2009) 

Marginal 
Water Use 

Water consumed in a process or product that accounts for a marginal level of 
consumption when compared to total water consumed in the region.  No standard is 
established to determine marginal vs. non-marginal water use.  This thesis considers 
any process consuming more than 5% of regional water consumption non-marginal. 

(A. Boulay et al., 2016) 

Water 
Competition 
Footprint 

Potential environmental, human health and resource impacts related to water due to 
a process, product or system.  This serves as a midpoint category in LCIA to 
characterize regional water deprivation impacts of a process as it relates to available 
regional water supplies and user requirements (environmental and human).  

(ISO, 2014; Stephan 
Pfister et al., 2009a)  
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2.2 Databases 

 Databases containing water use inventory data are numerous, many receiving widespread 

adoption due to their ease of use and general application within LCA.  The most widely known 

and applied databases for water use impacts are Ecoinvent, GaBi, Quantis, Water Footprint 

Network (WFN), and Pfister et al. (2011) (Kounina et al., 2013). 

Ecoinvent provides both elementary and non-elementary flows, and distinguishes 

between different surface water sources, groundwater, and water applied in industrial processes 

(termed turbined water) (Ecoinvent, 2007; Frischknecht et al., 2004; Kounina et al., 2013).  

Though each database process carries certain location information providing spatial 

differentiation, input water quality and siting of output water are not considered (Kounina et al., 

2013). 

The GaBi database has embedded within its LCA software with data covering surface and 

groundwater flows, ocean/sea salt water and water used for energy generation (hydroelectric).  

GaBi does not consider degradative water use in its blue water calculations (Baitz et al., 2014).  

Water flows considered in GaBi include elementary freshwater (river/lake/groundwater), fossil 

groundwater, surface run-off, tap water, untreated wastewater, water vapor, evapotranspiration, 

technosphere resource flows, and brackish water (Baitz et al., 2014).  Input flows include ground, 

lake, rain, river and sea water (Koehler & Thylmann, 2014).  Output flows include 

evapotranspiration and water vapor, as well as water (both freshwater to lakes and rivers and 

saltwater to oceans/seas) emissions into lakes and rivers including cooling water, rain water, 

turbined water, and wastewater (Koehler & Thylmann, 2014).  Turbined water is water used in 

hydro energy generation (Koehler & Thylmann, 2014). 

The Quantis Water Database, an improvement to Ecoinvent, segregates all flows into 

inputs and outputs and uses a water balance for final assessment 

(Quantis 2012).  Quantis is aimed at providing additional specificity to 

Ecoinvent’s eight generic flows (Table 2) covering various water uses, 

providing LCA practitioners with additional input and output water flows 

for easier application within different water impact methodologies 

(Kounina et al., 2013; Vionnet et al., 2012).  Location information is 

incorporated into each database process to enable spatial 

differentiation.  All input and output flows assessed in the Quantis 

Water Database can be found in Table 3.   

 

 

Flow Types 

Cooling water 

Lake Water 

River Water 

Ocean Salt Water 

Sole Salt Water 

Water, Unspecified Origin 

Ground Water (from well) 

Water for turbine use 

Table 2: Ecoinvent 2.2 
Flows (Ecoinvent, 2007) 
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             Table 3: Quantis Water Database Flows (Vionnet et al., 2012) 
 

  

 

 

 

 

 

 

 

 

 

 

The Water Footprint Network (WFN) developed by Hoekstra et al. (2011) uses the virtual 

water concept to determine inventory flows for a wide array of products and processes including 

crops, fuels, and livestock (Hoekstra, Chapagain, Aldaya, & Mekonnen, 2011).  This database 

considers blue, green, and gray water inventory data for each product and publishes water 

footprint values for products and processes at the national level (Hoekstra et al., 2011).  It is 

important to recognize the use of the term “water footprint” within the WFN does not coincide with 

the term definition outlined in ISO 14046 (B. Ridoutt et al., 2015; ISO, 2014)    

Pfister et al. (2011) developed a database assessing the water consumption for 160 crops 

at the country level (Stephan Pfister, Bayer, Koehler, & Hellweg, 2011).  This database provides 

WSI-weighted water consumption values reported as RED (Relevant for Environmental 

Deficiency) water, which includes consideration for full-irrigation water consumption, deficit water 

consumption and expected water consumption (Kounina et al., 2013; Stephan Pfister et al., 2011). 

Databases continue to improve, but still lack specificity in abstracted water sources (e.g. 

surface, unconfined aquifer, confined aquifer) and characterization (Kounina et al., 2013).  

Specifically, existing databases should be completed with input/output freshwater flow 

differentiated according to water types based on its origin, region of withdrawal, and characterized 

with a set of quality parameters (Berger & Finkbeiner, 2013).  Due to the complexity and 

significance of assessing agricultural processes regionally, as well as properly tuning the temporal 

scale of data used for assessment, databases must move towards incorporating more granular 

input and output information about water use for different processes (e.g. type of water, quantity, 

Input Flows Output Flows 

Ground Water, Depleted, Shallow Water, Turbined Use 

Groundwater, Depleted, Other Water Consumed, from Turbine Use 

Groundwater, Fossil Surface Water 

Groundwater, Non-Depleted, Shallow Groundwater 

Groundwater, Non-Depleted, Other Water Consumed, Evaporated, Fresh 

Surface Water (Lake, River, etc.) Water Consumed, Incorporated, 
Fresh 

Water, for Turbine Use Water Evaporated, from Nature 

Water, Naturally Occurring Water, Return Flow to Nature 

Salt Water Salt Water, Consumed 

 Salt Water 
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location of abstraction, water source, etc.) if hoping to deliver the level of confidence provided by 

more direct inventory methods.   

2.3 Inventory Methods 

 The Water Footprint Network (WFN) (Hoekstra et al., 2009) reports the virtual water 

consumed and polluted during the production of a product, or throughout a process.  It covers all 

three water types including blue, green, and gray water (i.e. degradative water).  Values are 

primarily used as a water inventory, and application towards assessing impacts for LCA, though 

possible, are challenging.  The term “water footprint” has different definitions depending on the 

practitioner and their applied methodology.  “Water footprint” as defined by Hoekstra does not 

consider regional water stresses or whether water consumption of a product or process denies 

other users of water.  This differs with other LCA methodologies, specifically Pfister and Ridoutt 

(B. G. Ridoutt & Pfister, 2010), who indicate these considerations should exist within water 

footprint methodologies. 

 Bayart et al. (2010) proposed a methodology for assessing off-stream water use of a 

product or process for use in LCA.  Off-stream water use is defined as water used which is 

removed from a surface or groundwater source (Bayart et al., 2010).   This methodology provides 

increased specificity in the life cycle inventory (LCI), proposing that inventory flows be identified 

based on their resource type (e.g. groundwater, surface water), each receiving specific 

characterization factors.   

 Boulay et al. (2011) provide an inventory method which builds on Bayart et al. (2010), by 

adding eight water quality levels for each resource and including rain water.  In total, the 

methodology developed 17 water categories based on source, quality and potential users (Anne-

Marie Boulay et al., 2011).  With degradative water use not assessed in this level of detail in 

previous inventory methods, Boulay et. al (2011) filled a gap in life cycle impact assessment 

(LCIA) by providing the elementary flows needed to evaluate how degradative return flows 

translate to lost functionality to human users (Boulay et al., 2011). 

 Mila I Canals et al. (2009) differentiates between types of water use in LCI and provides 

two impact pathways for LCIA: freshwater ecosystem impact (FEI) and freshwater depletion (FD) 

(Milà I Canals et al., 2009).  This method proposes differentiating between inputs of green water 

(soil moisture), blue water (ground and surface water), fossil blue water (non-renewable 

groundwater), and water use due to land use changes.  To accomplish this, water inventory data 

should be categorized into ‘evaporative’ and ‘non-evaporative’ use (read, ‘water use’ and ‘water 

consumption’ (Owens, 2001)).  Other than WFN, this is the only method which considers land use 
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change as it relates to water availability and distinguishes between fossil and renewable 

groundwater (Kounina et al., 2013). 

2.4 Midpoint Assessment Methods 
 The Ecological Scarcity Method (Frischknecht, Steiner, Arthur, Norbert, & Gabi, 2006) 

provides eco-factors for a range of substances expressing their environmental impact.  This 

method simply multiplies elementary flows by their corresponding eco-factors.  Results are 

expressed in eco-points and then aggregated to a single-score indicator expressing the overall 

environmental impact. There is no characterization (conversion of LCI flow to the common unit of 

the impact category) performed (i.e., water is not characterized according to quality or type of 

water source) (Kounina et al., 2013).  Normalization occurs via assigning one (1) eco-point to the 

total annual freshwater withdrawal for human use in a specific region.  The method uses a political 

distance-to-target weighting procedure in which the ratio of a current flow (F) to a critical flow (Fc) 

needs to be determined. Critical flows are derived from legislative targets and political goals, not 

from assessment of ecological necessity for water (Frischknecht et al., 2006).  This method aims 

to identify deviations of water use from political targets and is not intended for use in assessing 

ecological damage from water use. 

 

𝐸𝐸𝐸𝐸𝐸𝐸 − 𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹𝐹 �
eco-points

Unit � = 𝐾𝐾⏟
Characterization

(Optional)

 ×  
1 𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝

𝐹𝐹𝑛𝑛���������
Normalization

 ×  �
𝐹𝐹
𝐹𝐹𝑐𝑐
�
2

���
Weighting

 ×  𝑐𝑐⏟
Constant Factor

 

 

The square of the weighting factor leads to an above average weighting if the critical flow 

is significantly exceeded. Thus, the weighting factor is dependent on the withdrawal-to-availability 

(WTA) ratio and can range from 0.0625 to 56.3 (Table 4). Multiplying the result by the constant c 

(1012/a) leads to a more convenient dimension.  

 

𝑊𝑊𝑊𝑊𝑊𝑊𝑊𝑊ℎ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 =  �Current Flow
Critical Flow

�
2

=  �Total Annual Fresh Water Withdrawal For Human Uses (𝑊𝑊)
Annually Available Renewable Water Supply (𝐴𝐴) × 20%

�
2

= (𝑊𝑊𝑊𝑊𝑊𝑊)2 × � 1
20%

�
2
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Table 4: WTA ranges and weighting factors assuming Fc = 20% of renewable water supply.  Adapted from Frischknecht 
et al. (2006) 

WTA WTA used for Calculation Weighting Factor 
Low < 0.1 0.05 0.0625 
Moderate 0.1 < 0.2 0.15 0.563 
Medium 0.2 < 0.4 0.3 2.25 
High 0.4 < 0.6 0.5 6.25 
Very High 0.6 < 1.0 0.7 16.0 
Extreme > 1.0 1.5 56.3 

 

Pfister et al. (2009) developed a commonly used water stress impact metric in the form of 

a water stress index (WSI). This method only considers blue water (omitting green or gray water) 

and consumptive water use (not withdrawals), and relies on the WaterGAP global model for 

determining water availability in regions undergoing assessment.  The proposed equation for 

determining water stress index (WSI) in a region is: 

 

𝑊𝑊𝑊𝑊𝑊𝑊 =  
1

1 + 𝑒𝑒(−6.4 ×𝑊𝑊𝑊𝑊𝑊𝑊) ×  � 1
0.01 − 1�

 

 

The withdrawal to availability ratio (WTA) aggregates the water consumption for each 

activity and user in a watershed (WUij) over the total water availability (WAi) in the studied 

watershed. 

𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 =
∑ 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑗𝑗

𝑊𝑊𝑊𝑊𝑖𝑖
 

            
 

The WTA was further refined to consider increased effective water stress caused by 

strongly regulated flows (SRF) in a watershed (Nilsson et al.) in the form of dams or other river 

regulating systems.  A variation factor (VF), which is derived from the standard deviation of the 

precipitation distribution, was added to capture these flows.  VF is defined as the aggregated 

measure of dispersion of the multiplicative standard deviation of monthly (s*month) and annual 

precipitation (s*year) (Stephan Pfister et al., 2009).  Pfister’s data relied on geographic information 

system (GIS) software allowing data processing and statistical evaluation at different spatial 

resolutions.  With Pfister’s model utilizing a grid-based GIS system, VFs for each grid within a 
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watershed are calculated and aggregated with precipitation data to determine a watershed’s total 

variation factor (VFWS) before incorporation into the Water Stress Index. 

 

 

𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖 =
∑ 𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑗𝑗

𝑊𝑊𝑊𝑊𝑖𝑖
  

 

𝑉𝑉𝑉𝑉𝑊𝑊𝑊𝑊 =
1
∑𝑃𝑃𝑖𝑖

�𝑉𝑉𝑉𝑉𝑖𝑖 × 𝑃𝑃𝑖𝑖

𝑛𝑛

𝑖𝑖=1

 

 

𝑊𝑊𝑊𝑊𝑊𝑊∗ = � √𝑉𝑉𝑉𝑉 × 𝑊𝑊𝑊𝑊𝑊𝑊 for SRF
𝑉𝑉𝑉𝑉 × 𝑊𝑊𝑊𝑊𝑊𝑊 for non-SRF

 

 

 

 

The WSI curve forms a logistic function (Figure 4) which is tuned to result in a WSI of 0.5 

for a WTA of 0.4, which is the threshold between moderate and severe water stress (when 

applying the median variation factor of all watersheds, VFmedian = 1.8, WTA* = 0.72).  The full 

range of WSI values fall between 0.01 and 1.  This method goes further to assess damages to 

certain areas of protection (AoP) including human health, resources and ecosystem quality, but 

in its purest form serves as a screening indicator or characterization factor in LCIA.  Unlike the 

WFN, Pfister does not identify values as “water footprint” until after the WSI has been applied, 

meaning inventoried water values have been characterized based on regional water availability 

and consumption.  This scarcity weighted water footprint is further developed by Ridoutt and 

Pfister (2010). 

 Hoekstra et al. (2011) (WFN) characterizes each water type (blue, green, gray) with 

separate scarcity indexes which are disaggregated, allowing each water type to be applied 

individually to each area of protection (human health, ecosystem quality, and resources) (Kounina 

et al., 2013).  Ratios of water consumption (termed ‘water footprint’) to availability are used for 

blue and green water indexes, while the gray water pollution index considers the ratio of total gray 

water consumption in the region to runoff. 

 Boulay et al. (2011) proposed a scarcity indicator based on their endpoint model for human 

health (Anne-Marie Boulay et al., 2011; Kounina et al., 2013).  The surface water parameter is 

based on the CU/Q90 ratio proposed by Dӧll (2009).  Total CU (consumed water) in the region is 

calculated using WaterGAP.  Q90 is called the “statistical low flow,” representing the flow that is 

Figure 4: WSI values based on WTA* (Pfister et al. 2009) 
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exceeded nine months out of ten (Anne-Marie Boulay et al., 2011).  The stress index range is 

similar to Pfister et al. (2009a) with values between 0 and 1.   

 Mila i Canals et al (2009) identified that impact pathways resulting from water use include 

water use leading to insufficient freshwater availability impacting human health, and land use 

changes leading to changes in freshwater availability having effects on ecosystem quality (termed 

Freshwater Ecosystem Impacts (FEI)).  Fossil and aquifer groundwater use above renewability 

rates results in reduced availability of freshwater as a resource for future generations (termed 

freshwater depletion (FD)).  This assumes that the only consumption of water from aquifers 

(evaporative use) and fossil water (evaporative and non-evaporative use, (ISO, 2014)) can 

contribute to that impact category.  In order to provide characterization factors (ADPi) (factors 

converting the LCI flow to the common unit of the impact category) the method of Guinée et al., 

(2001) was used to determine the depletion of abiotic resources:  

 

 

𝐴𝐴𝐴𝐴𝐴𝐴𝑖𝑖 =  
𝐸𝐸𝐸𝐸𝑖𝑖 − 𝑅𝑅𝑅𝑅𝑖𝑖

(𝑅𝑅𝑖𝑖)2
 ×  

(𝑅𝑅𝑆𝑆𝑆𝑆)2

𝐷𝐷𝑅𝑅𝑆𝑆𝑆𝑆
 

 

 

Water use leading to insufficient freshwater availability effects ecosystem quality (termed 

freshwater ecosystem impacts (FEI)).  This aspect of the method aims to assess the ecological 

consequences of water use in a certain region.  Consumption of fossil blue water is excluded as 

it fulfills minimal ecological functions. Only the evaporative use of blue water (surface water and 

unconfined aquifers) as well as water use due to land use changes are taken into account.  FEI 

uses a water stress indicator (WSI) developed by Smakhtin et al. ( 2004)  as a characterization 

factor: 

 

𝑊𝑊𝑊𝑊𝐼𝐼𝑖𝑖 =
𝑊𝑊𝑈𝑈𝑖𝑖

𝑊𝑊𝑅𝑅𝑖𝑖 − 𝐸𝐸𝐸𝐸𝑅𝑅𝑖𝑖
 

 

𝑊𝑊𝑊𝑊𝑊𝑊𝑅𝑅𝑖𝑖 =
𝑊𝑊𝑈𝑈𝑖𝑖
𝑊𝑊𝑅𝑅𝑖𝑖

 

 

The basis for this indicator is the water use per resource indicator (WUPR) (Raskin, Gleick, 

Kirshen, Pontius, & Strzepek, 1997), which relates the total water use to the renewable water 

reserves in a region.  The WSI enhances the WUPR or WTA indicator by reserving a certain 
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amount of freshwater necessary to sustain the ecological functions in a particular region. 

Depending on the local water scarcity and the respective ecosystem demand, site specific 

characterization factors are obtained assessing the severity of additional human water use.   

2.4.1 Shortcomings of midpoint impact methods 
 Proper terminology is a challenging aspect of these different methods, each borrowing 

some terms from other methods while also creating new ones.  Some terms add additional layers 

to existing ones, while others are redefinitions with minor changes.  An example is water use and 

water consumption (Owens, 2001).  The publication of ISO 14046 in 2014 helped drive agreement 

between different methods and should significantly improve user application and interpretation 

moving forward.   

 Optimal inventory data should include information regarding water source (surface, 

unconfined groundwater, fossil groundwater), region (sub-basin or basin), water quantity 

abstracted, time (month), type of use (turbined, consumptive, degradative, cooling), amount of 

water discharged back into the basin, and water quality upon return (Tendall et al., 2013).  Ideally, 

each water type would have individual characterization factors based on the climatic, geographic 

and consumption specifics of the region of abstraction.  Due to the effort and likely inability for 

researchers to acquire this level of data for products or processes, especially if trying to assess a 

product produced over geographically-diverse regions and temporally-variant horizons, minimum 

standards for inventory data should include water quantity, water source, region, and water 

discharged.  However, confidentiality of water inventory data remains a challenge (Tendall et al., 

2013). 

These methods, though increasing in complexity and completeness, have not yet been 

measured against empirical evidence linking water scarcity, water deprivation and impact on each 

area of protection (Berger & Finkbeiner, 2013).  Additionally, water scarcity indices should be 

viewed alongside impact assessment indicators to allow more thorough and informed 

interpretation of freshwater use impacts (Berger & Finkbeiner, 2013). Similarly, model uncertainty 

and input data uncertainty still require evaluation and documentation (Berger & Finkbeiner, 2013), 

and the quantification of impact pathways leading to human health and ecosystem damages is 

required to understand the full range of environmental effects (Koehler, 2008).  

 When applying these different methods, practitioners are faced with trade-offs and 

embedded assumptions that are not easily identifiable, possibly leading to the use of midpoint 

impact methods not compatible with collected inventory data (Tendall et al., 2013) or ideally suited 

for the study at hand (Berger & Finkbeiner, 2013).  This highlights the need for inventory data to 
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be developed alongside impact assessment methodologies to ensure consistency (Tendall et al., 

2013).  A simple, but important, distinction is whether a method employs an attributional or 

consequential LCI approach (Berger & Finkbeiner, 2013).   

Freshwater use, being a regional asset with the complex impacts of scarcity and 

deprivation felt primarily within a watershed, basin or sub-basin, must be regionally characterized 

due to the site-specific local impacts of freshwater abstraction (Koehler, 2008; Payen et al., 2015; 

Tendall et al., 2013).  Up-scaling to broader spatial coverage should be avoided (Tendall et al., 

2013), as impact assessment broader than watershed level may lead to inaccurate results.  LCIA 

of water use must be understood in the context of the geographically diverse and time-variant 

character of freshwater resources (Koehler, 2008), and studies should include varying spatial 

resolutions and temporal ranges to provide a comprehensive assessment of water use impacts 

within a region.   

Some WSI values are calculated on an annual scale, which fail to properly assess regions 

with distinct dry and wet seasons, a factor critical for assessment of agricultural water use (Payen 

et al., 2015).  Beyond temporal scale, WSI should incorporate changes in water availability over 

time, especially when considering fossil groundwater reserves not subject to surface recharge or 

other flows. Reliance on groundwater in arid regions gives it a disproportionate weighting when 

calculating regional water stress, so annual changes in fossil groundwater abstraction and 

availability should be incorporated into WSI calculations.  In general, most methods fail to 

incorporate fossil groundwater depletion into their calculations (Kounina et al., 2013), likely due 

to lack of available data (Stephan Pfister et al., 2017).   

2.5 Water Indexes 

 Water indexes act as characterization factors for water use based on regional 

considerations.  Elements included in water index calculations include water availability, water 

use, and water consumption or withdrawal.  The indexes developed by Boulay (Anne-Marie 

Boulay et al., 2011), Pfister (Stephan Pfister et al., 2009) and Hoekstra (WFN) (Hoekstra et al., 

2011) are the same as those explained in the mid-point indicators above, and will not be restated 

in this section. 

 Alcamo et al. (2003) developed the criticality ratio and criticality index, helping form the 

basis for later, more comprehensive, methodologies.  The criticality ratio measures total water 

use to availability, with values ranging from near 0 to greater than 1 (Joseph Alcamo et al., 2003; 

Kounina et al., 2013).  Water uses considered include agriculture, industry and households.  The 

criticality index compares the criticality ratio with a region’s per capita water availability, displayed 
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in Table 5 outlining four criticality indexes: water surplus, marginally vulnerable water resource, 

water scarcity, and severe water scarcity (Joseph Alcamo et al., 2003).  The criticality ratio is a 

basic element included in nearly all water index calculations and methodologies (Berger & 

Finkbeiner, 2010; A. Boulay et al., 2016; Milà I Canals et al., 2009; Stephan Pfister et al., 2009; 

B. G. Ridoutt & Pfister, 2010), the primary exception being Hoekstra et al. (2011).  However, the 

criticality index did not gain much momentum as an indicator in these types of water assessments 

(Näf, 2008). 

 
Table 5: Criticality Index (Alcamo et al. 2003). Adapted from Kulshreshtha (1993) 

 Criticality Ratio (Use / Availability) 

Water Available (per capita) 
[m3/(cap.yr)] 

Water 
Surplus 
< 0.4 

Marginal 
Vulnerability 
0.4 - 0.6 

Water      Scarcity 
0.6 - 0.8 

Severe Water 
Scarcity 
> 0.8 

< 2,000 2 3 4 4 
2,000-10,000 1 2 3 4 
> 10,000 1 1 2 4 

1 = water surplus 
2 = marginally vulnerable 
3 = water scarcity 
4 = severe water scarcity 
 

 Dӧll (2009) uses WaterGAP at a 0.5o x 0.5o
 resolution to calculate groundwater recharge, 

total runoff and river discharge (Döll, 2009). The water scarcity indicator is the ratio of the 

consumptive water use (CU) to the statistical low flow Q90 in each 0.5o grid cell (Döll, 2009).  

Each element is calculated on a monthly basis.  The water scarcity indicator is then combined 

with the Human Development Index (HDI) for each region/country to form a sensitivity indicator.  

By combining the calculated sensitivity indicators with modeled groundwater recharge rate 

decreases, Dӧll (2009) was able to estimate the vulnerability to the impact of decreased 

groundwater recharge in 2050 (Kounina et al., 2013). 

2.5.1 New Standard for LCA Water Use Indexes 
Water characterization has undergone significant research and revision, especially over 

the last decade.  In 2007, the UNEP-SETAC Life Cycle Initiative founded Water Use in LCA 

(WULCA) in an attempt to develop a consensual and operational method for evaluating water use 

in LCA.   This effort, led by Dr. Anne-Marie Boulay and Dr. Stephen Pfister, included a 

comprehensive literature review (Kounina et al., 2013), a proposed framework for evaluating 

water use in LCA (Bayart et al., 2010), and methods for characterizing water use and its resulting 
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environmental impacts.  The outcome of this effort was AWARE (Available WAter REmaining), a 

new water scarcity footprint indicator which describes potential water deprivation in a region 

based on water remaining after human and ecosystem needs are met (A. Boulay et al., 2016).  

This method assumes that less water remaining within an area after human and ecosystem 

requirements are met leads to deprivation among other users within the same area (A. Boulay et 

al., 2016).   

Additionally, this effort contributed to and shaped the draft standard ISO DIS 14046 on 

water footprinting published in 2014, which further standardizes this water impact assessment 

method within the LCA community.   

 The AWARE method begins by determining the remaining available water within a region 

after all human and ecosystem requirements are met (A. Boulay et al., 2016).  First, water 

Available Minus the Demand (AMD) is calculated for both humans and aquatic ecosystems (m3 

m-2 month-1).  Then the value is normalized with the world average AMD (AMDW = 0.0136 m3 m-2 

month-1) which is calculated as a consumption-weighted average.  Then the value is inverted to 

represent the surface-time equivalent to generate unused water within the assessed region, with 

values ranging from 0.01 to 100 (Figure 5) (A. Boulay et al., 2016).  A value of 1 indicates the 

available water within the region is equal to the global average, and larger values indicate greater 

regional water scarcity compared to the global average (A. Boulay et al., 2016). 

 The WaterGAP model is used to determine availability within the assessed region, 

averaging values over a 50-year timeframe (1960-2010) (Joseph Alcamo et al., 2003; Müller 

Schmied et al., 2014).  Human consumption is also modeled in WaterGAP (Flörke et al., 2013) 

and assessed in the year 2010, and ecosystem demand is assessed using the Variable Monthly 

Flow (VMF) method (Pastor, Ludwig, Biemans, Hoff, & Kabat, 2014).  Since agriculture uses water 

in regions and during months differing from industrial and domestic uses, different 

characterization factors are provided for agricultural and non-agricultural use (A. Boulay et al., 

2016).  

𝐴𝐴𝐴𝐴𝐴𝐴 = 𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 − 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑛𝑛𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝑑𝑑𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸  �
𝑚𝑚3

𝑚𝑚2𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚ℎ�
 

Water Scarcity Footprint = Water Consumption (Inventory) ×
1

𝐴𝐴𝐴𝐴𝐷𝐷𝑊𝑊
𝐴𝐴𝐴𝐴𝐴𝐴

 

Characterization Factor (𝐶𝐶𝐶𝐶) =
1

𝐴𝐴𝐴𝐴𝐷𝐷𝑊𝑊
𝐴𝐴𝐴𝐴𝐴𝐴
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AWARE is currently under peer review, and is expected to serve as the standardized 

method for water use assessment in LCA.  Due to this reason, AWARE characterization factors 

were used in the methodology later demonstrated in this thesis.   

 

 
        Figure 5: Water Characterization Factors from Boulay at al. 2016 

 

2.6 Hydrologic Cycle Models 

WaterGAP serves as one of the most widely used hydrologic models in life cycle 

assessment.  WaterGAP has undergone multiple updates and revisions, with WaterGAP 1.0 first 

introduced in Alcamo et al. (1997), WaterGAP 2.1 explained and tested in Döll et al. (2003) and 

Alcamo et al. (2003), and WaterGAP 2.2 described in Müller Schmied et al. (2014).  The most 

recent version (WaterGAP3) operates at a 5 arc-minute resolution and consists of three sub-

models (Figure 6) including: 1) a water balance model simulating terrestrial water flows, 2) a water 

withdrawal model calculating water withdrawals and consumption into agricultural irrigation 

processes, livestock production, domestic use and small businesses, manufacturing, and thermal 

electricity generation (methodologies for each provided in Table 6), and 3) a water quality model 

estimating degradative water flows due to sector activity (Voss, Voss, Bärlund, & Alcamo, 2009).  

This model provides outputs at the 0.5 arc minute resolution, and is the only available hydrological 

model that is calibrated to actual river discharge measurements, better reflecting reality over other 

models (A. M. Boulay et al., 2015).  Included water balance elements are in Figure 7. 
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Figure 6: WaterGAP sub-model interactions.  Adapted from (Voss et al., 2009). 

 
 

 

Figure 7: WaterGAP 3 water balance: Rg (groundwater recharge), Rs (surface runoff), Rl (runoff generated on land), 
Epot (potential Evaporation), Ea (actual evaporation), Ec (canopy evaporation), Qb (Surface Runoff).  Adapted from 
(Joseph Alcamo et al., 2003) 
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 The Soil and Water Assessment Tool (SWAT) provides basin-scale impact predictions of 

management on water, sediment and agricultural chemical yields (P. P. W. Gassman, Reyes, 

Green, & Arnold, 2007).  Model components include “weather (updated daily), hydrology, soil 

temperature and properties, plant growth, nutrients, pesticides, bacteria and pathogens, and land 

management” (P. P. W. Gassman et al., 2007).  This model outperforms the WaterGAP model in 

that its spatial resolution allows division of watersheds into multiple sub-watersheds, and can 

further be divided into hydrologic response units (HRUs).  HRUs are unique in their representation 

of land use, management, and soil practices within their designated watershed (P. P. W. 

Gassman et al., 2007).  When seeking to more accurately account for spatial variability in water 

use at the sub-basin scale, SWAT outperforms other models including WaterGAP (Scherer, 

Venkatesh, Karuppiah, & Pfister, 2015). 

 The Agricultural Policy/Environmental eXtender (APEX) model (P. Gassman & Williams, 

2009; Liu, Liu, & Yang, 2016)  is “capable of simulating management and land use impacts for 

whole farms and small watersheds” (P. Gassman & Williams, 2009).  APEX consists of 12 

components: climate, hydrology, crop growth, pesticide fate, nutrient cycling, erosion-

sedimentation, carbon cycling, management practices, soil temperature, plant environment 

control, economic budgets, and subarea/routing (P. Gassman & Williams, 2009).  This model is 

especially suited for estimating environmental impacts from animal agriculture due to waste 

management methods such as manure stockpiling and waste storage ponds (P. Gassman & 

Williams, 2009).   

 The Aqueduct (GLDAS) framework provides water risk estimates within three categories: 

1) physical risks (quantity), 2) physical risks (quality), and 3) reputational and regulatory risks 

(Reig, Shiao, & Gassert, 2013). The method outputs a composite score for the water risk in a 

specific area, as well as individual scores for each category.  This tool is ideally suited for 

companies seeking to expand or move operations to a different geographical location, helping 

identify potential water-related risks.  However, this tool is limited in its application due to the 

complexity of information encapsulated in the single number score (Reig et al., 2013). 

 The Variable Monthly Flow (VMF) method is a parametric method which assesses 

ecosystem water demand to reach “fair ecological status” (Pastor et al., 2014).  The model adjusts 

the region’s natural environmental freshwater flow requirements (Poff et al., 2010) on a monthly 

basis according to flow season, providing a reserve of 60% of maximum monthly flows (MMF) 

during low-flow seasons, leaving 40% for other users, and 30% of MMF during high-flow seasons 
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(Pastor et al., 2014).  Low-flow and high-flow seasons are determined when the MMF is below or 

above the mean annual flow (MAF), respectively (Pastor et al., 2014). 

2.7 Crop Models 

CROPWAT estimates crop water requirements based on crop data, soil composition, and 

climate.  It can be useful in estimating crop performance under varying conditions, such as 

irrigation or rain-fed conditions.  Calculations are based on two categories: 1) crop 

evapotranspiration and 2) crop yield response to water.  This methodology is used in hydrological 

models like WaterGAP to estimate agricultural water use. 

The Earthstat database provides global distribution information about 175 crops on a 

global scale.  It combines the use of subnational crop statistical surveys with remote sensing 

technologies identifying crop land cover (Monfreda, Ramankutty, & Foley, 2008).  Combining 

these two information sources allows development of agricultural land cover maps (Monfreda et 

al., 2008), helping identify the geographic distribution and intensity of crops grown on a global 

scale.   

 MIRCA2000 is a dataset of irrigated and rain-fed crop areas on a global scale.  Using 

remote sensing at a 5-arc minute resolution, MIRCA2000 provides monthly crop areas of 26 crop 

classes, including all major food crops.  Data is based on the year 2000. 

2.8 Primary Data Sources 

 Various U.S. and international agencies generate and distribute comprehensive data 

which can be used for calibration and validation for water assessment methodologies.  These 

sources, coupled with hydrological and crop models, allow calculation of water balances within 

basins (See Figure 8).  A list of sources providing U.S. water and crop data and their possible 

applications and limitations are presented here.  

The Parameter-elevation Regressions on Independent Slopes Model (PRISM) Climate 

Group located at Oregon State University develops spatial climate datasets to reveal short- and 

long-term climate patterns covering the period 1895 to present.  It includes parameters for 

snowfall, temperature, growing degree-days, and other weather aspects (Daly, Taylor, & Gibson, 

1997) .  It uses point data, a digital elevation model, and event-based climactic parameters to 

conduct its climate analysis (Daly et al., 1997). 

The United States Department of Agriculture (USDA) generates data in multiple 

categories.  The USDA Natural Resources Conservation Service (NRCS) manages the Soil 
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Climate Analysis Network (SCAN) which provides soil climate monitoring from over 200 

automated collection sites throughout the U.S.  Monitors measure a range of elements including 

air and soil temperature, barometric pressure, precipitation, snow depth and water content, solar 

radiation, wind speed and direction, and relative humidity.  NRCS also provides the Snow 

Telemetry (SNOTEL) data source which provides real-time and historical precipitation, snowpack, 

reservoir and forecast data for over 800 site monitors across 12 states.  The USDA Geospatial 

Data Gateway provides a collection of precipitation and stream flow data from small agricultural 

watersheds in the United States, but is limited to 25 states. 

USDA Quickstat provides U.S. agricultural data published by National Agricultural 

Statistics Service (NASS) allowing aggregation and compilation of commodity information 

including production quantities, acres harvested, economic information, yield values, irrigated 

water use, and others.  This comprehensive statistics service provides both census and survey 

data, and serves as a key element in the methodology later discussed in this thesis. 

The Farm and Ranch Irrigation Survey is part of the census of agriculture provided by the 

USDA every five years, which counts U.S. farms and ranches across the U.S.  The survey 

examines land use, ownership, production practices, and financials.  The survey covers a wide 

range of livestock and crop types and their associated water use at both the state and county 

level. 

The Moderate Resolution Imaging Spectroradiometer (MODIS) Toolbox provides world 

climate data at a 1km x 1km resolution with records starting in the year 2000.  Two NASA satellites 

capture daily global data including evapotranspiration, land surface temperature, vegetation and 

land-surface cover, and others.   The MODIS Toolbox, though providing data at a lower spatial 

resolution than other sources, serves as another data source for incorporation into existing 

models, or can serve as a validation tool for assessing model results.  

The Global Data Runoff Center (GRDC) maintains river discharge data with global 

coverage (Fekete, Vörösmarty, & Grabs, 2002).  With river discharge being a key factor for 

modeling terrestrial water cycles (Fekete et al., 2002), data from GRDC serves as an input or 

calibration parameter for more comprehensive hydrologic models such as WaterGAP (Joseph 

Alcamo et al., 2003). 

The United States Geological Survey (USGS) also provides multiple data products relating 

to climate and water.  First, the National Hydrography Dataset (NHD) and Watershed Boundary 

Dataset (WBD) provide surface water and drainage network information.  These datasets are 

primarily used in GIS analysis and modeling.  The USGS Water Data Discovery is a compressive 

resource providing current and historical water data reports on streamflow,  
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flooding, drought, groundwater levels, surface water quality, and water use.  It is part of the 

National Water Information System (NWIS) which serves as the nation’s principal repository of 

water resources data acquired from over 1.5 million sites nationwide.   

The Food and Agriculture Organization (FAO) provides multiple data sets valuable for 

water use assessment in agriculture.  First, AQUASTAT offers data, metadata, reports, country 

profiles, river basin profiles, regional analyses, maps, tables, spatial data, guidelines, and other 

tools on the following topics: 

● Water resources: internal, transboundary, and total 

● Water uses: by sector, by source, and wastewater 

● Irrigation: location, area, typology, technology, and crops 

● Water-related institutions, policies and legislation 

 FAO also provides FAOSTAT, which serves as a premier data hub for global data 

regarding crop and livestock production, inputs, trade, food balances, and more.  FAOSTAT 

sources country-level agriculture data across the globe, providing a central location for global data 

access for food commodities. 

The National Aeronautics and Space Administration (NASA) launched the Gravity 

Recovery and Collection Experiment (GRACE) in 2002, consisting of two satellites which measure 

time variation of earth’s gravity field.  This data, along with advanced astrophysics methods, can 

be used to estimate terrestrial water storage (TWS) (both surface and groundwater) (Houborg, 

Rodell, Li, Reichle, & Zaitchik, 2012; Wahr, Molenaar, & Bryan, 1998).  This is possible due to 

subtle shifts in Earth’s gravity which occur primarily due to water moving from one place to another 

on and under land, in the ocean, and in the atmosphere.  Measurements of location, force, and 

orbital change translate into an observation of gravity.  These measurements can provide a value 

for terrestrial water storage (TWS) at the 1o and 0.5o resolution.  This data can be further refined 

to provide data specifically for surface water, soil moisture, and groundwater quantities, with data 

available at monthly time steps.  More on the potential application of this data will be covered in 

the discussion section of this thesis. 
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3. Methods 

 

This research aims to develop regional water stress values at the watershed level for 

different crop types, allowing aggregation to the state and national level for use in individual diet 

analysis.  Additionally, import and export data for individual crops is captured and assessed to 

improve the water footprint accuracy for food products consumed in the United States.  Based on 

methods and data limitations identified in the literature review, this research seeks to fill data gaps 

and provide a technique for regional water use impact assessment of agricultural crop production.   

The methods applied in this study combine empirical data and theoretical models. As 

noted above, shortcomings in inventory data descriptions (i.e. source of water, quality discharged, 

location of withdrawal, etc.) serve as a primary gap in many water use models which rely on 

theoretical crop growth and yield based on climate conditions, as well as other factors.  Though 

useful for global assessments where gaining data granularity is particularly challenging, regional 

studies in developed countries (such as the United States) benefit from availability of more precise 

and descriptive water use data.  For this reason, this methodology relies on empirical data from 

USDA and FAOSTAT for determining domestic production and trade quantities, respectively, for 

all crops assessed. 

Regionally characterized water consumption at the basin and county level are aggregated 

to determine state and national values.  Crops imported and exported are characterized 

differently, with Imports characterized at the national level of the country of origin, and exports 

characterized as a U.S. production-weighted average.  More detail and explanation regarding the 

characterization of different trade elements occurs in following sections.  Final characterized 

results will represent the water use in competition of various crops consumed in the U.S. 

A case study to demonstrate the proposed methodology includes assessment of 10 crops: 

barley, oats, peanuts, potatoes, rice, rye, soybeans, sugar beets, sweet potatoes, and wheat.  

These crops were chosen based on their diversity of uses, differences in regional production, and 

availability of production data at the county level.  Crops such as barley, oats, soybeans, and 

wheat represent field crops, most with significant inputs into livestock production, while peanuts, 

potatoes, rice, sugar beets and sweet potatoes are primarily used as direct consumption crops 

(some undergoing processing prior to consumption).  Wheat and barley are used for a mixture of 

uses including livestock production and ingredients in consumer products (including alcohol). 
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3.1 Regional Characterization Factors 
AWARE characterization factors (Anne-Marie Boulay et al., 2016) were used to 

characterize regional water competition.  AWARE was chosen for many reasons, one being use 

of WaterGAP, which serves as the most comprehensive global hydrological model available by 

including anthropogenic water withdrawals and water quality assessment.  Additionally, the 

AWARE model incorporates regional ecological water requirements using the VMF method, 

adding to its comprehensive assessment of regional water requirements.  Finally, the AWARE 

methodology has received wide acceptance among LCA practitioners and is anticipated to 

become the standard for assessing water footprints of products, processes and services.  For 

these reasons, AWARE is the most appropriate method for characterizing impacts in this case 

study. 

State and county boundary lines were consolidated using cartographic boundary 

shapefiles from the U.S. Census Bureau (U.S. DoC, 2016), with each county having a unique 

Federal Information Processing Standards (FIPS) code for assigning, summing and averaging 

water stress indicators to each county.  Using GIS software, this data was projected from 

geographic (decimal degrees) to USA Contiguous Albers Equal Area Conic to ensure conformity 

among data sets.  A KML file for the polygons was used to join the county shapefile to a document 

with tabulated AWARE characterization factors at 5 arc minute grid intervals to populate the water 

characterization attributes with the county boundary lines.  Regional attributes from AWARE 

which were incorporated and assigned during this process include water consumption (from all 

sources), the average water characterization factor for each month, and the annual average 

irrigated water characterization factor.  This layer was re-projected to match the counties layer, 

with the final layer being converted to a raster (grid) separately for each attribute using a 1 km x 

1 km grid. Zonal statistics were used to generate a table providing attribute means for each 

county.   Essentially, this process took an area-weighted average of the attribute values in each 

county. Finally, this table was joined to the county layer attribute table by FIPS code, resulting in 

county-level averages for each AWARE attribute. 

3.2 Domestic Production Data 
Crop production data was gathered from USDA NASS, with priority given to census data 

rather than survey data.  USDA conducts a census of agriculture every five years, and data is 

available for the years 1997, 2002, 2007 and 2012.  The census provides “the only source of 

uniform, comprehensive agricultural data for every county in the nation,” covering over 3000 

counties in all 50 states and includes all farms and ranches selling over $1,000 of agricultural 
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products (USDA, 2017).  For incomplete or under-covered crops or areas, NASS supplements 

and adjusts data using reweighting techniques to achieve consistency and completeness.  For 

these reasons, census data served as the primary source for crop production values at the county 

level. 

Surveys could serve as a secondary source of crop production data, especially given the 

limited number of crops covered by each census at the county level (more data is available at the 

state level).  Surveys are collected in smaller sample sizes with the intent to estimate production 

totals, thus are not as comprehensive as census data.  Though less comprehensive, survey data 

is available at the county level and provides insight into growing regions and estimated quantities 

of production in each region, which are necessary components in assessing water competition 

footprints of U.S. consumed crops.  Surveys are conducted quarterly for various crops, providing 

data availability for a multitude of crops not covered by census data. 

All assessed crops in the following case study had readily available county-level census 

data for production totals.  Some crops, such as soybeans, have data for each census between 

1997 to 2012.  Other crops were only assessed during a couple census events in that same 

timeframe.  To account for varying time spans in recorded data, production values for each county 

were averaged for all census data available for each crop.   

Some census data are not disclosed to the public to maintain anonymity for some farmers 

in specific counties.  This missing data leads to incomplete information at the county level, and is 

the reason for reported crop production totals being different between county, state and national 

levels.  With production quantities and regional contributions to total consumed crops integral 

elements to accurately assess water use, USDA data was compared at county, state and national 

level to determine discrepancies.  County data were summed to generate state values and 

compared with USDA reported state totals, and a similar process was conducted for state totals 

and compared with national crop production totals.  These totals and their respective differences 

for each crop are displayed in Table 7.  Though some data is incomplete or withheld, the 

differences in aggregated totals of county production values and national values is less than 11% 

for all crops, with sweet potatoes, potatoes, peanuts and oats showing the greatest differences.  

Differences between aggregated state production values and national production values are 

negligible, with all crops having less than 1% difference.   
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Table 7: Aggregated U.S. Crop Production Totals (Tonnes) from County, State and National Level Statistics (Source: 
USDA NASS) 

Crop Aggregated County 
Production Total

1 Aggregated State 
Production Total

1 National 
Production Total Difference 

 (County to National) Difference 
 (State to National) 

Barley 5,369,773 5,353,087 5,352,502 0.32% 0.01% 
Peanuts 2,042,855 1,924,641 1,920,493 6.37% 0.22% 
Potatoes 21,423,683 23,280,074 23,283,384 7.99% 0.01% 
Rice 9,857,174 10,075,806 10,078,523 2.20% 0.03% 
Soybeans 71,736,791 73,328,420 73,326,914 2.17% 0.00% 
Sweet Potatoes 579,682 648,923 648,933 10.67% 0.00% 
Wheat 54,645,862 54,951,403 55,012,855 0.67% 0.11% 
Oats  1,522,339 1,618,682 1,617,970 5.91% 0.04% 
Rye 176,636 172,856 172,555 2.36% 0.17% 
Sugar beets 28,264,018 28,164,494 28,324,290 0.21% 0.56% 

 
Crop production totals reported in bushels, including wheat, barley, rye and soybeans 

were converted to tonnes using conversion factors provided by the U.S. Grains Council (U.S. 

Grains Council, 2017).  Conversion factors are provided in Table 8. 

3.3 Irrigation Water Requirements 
Multiple sources exist for estimating uncharacterized crop water requirements, each 

functioning under different assumptions and underlying models.  Hoekstra et al. (2010) provides 

state-level estimated water consumption for each crop 

including blue, green and gray water.  Pfister & Bayer 

(Stephan Pfister & Bayer, 2014; Stephan Pfister et al., 2011) 

also provide water requirements, but at the national level.  

The data chosen for this case study is from Pfister & Bayer 

(2017) which provides regional crop irrigation water 

consumption values (i.e. blue water), which were averaged 

at the county level.  In a similar process to developing the county-level AWARE characterization 

factors, GIS shapefiles providing water demand values for 160 crops with global coverage (at 5 

arc minute resolution) were averaged within county boundary lines, resulting in blue water 

demand values for individual crops at the county level.  This data set also included green water 

values which were also averaged at the county level, though these values were not incorporated 

into the proposed methodology.  This data provided by Pfister & Bayer (2017) relies on input from 

EarthStat for determining geospatial distribution of production regions for specific crops, and 

CROPWAT for assessing irrigation water consumption based on climate, soil, and other 

1 Crop totals are aggregated and averaged from census data from 1997, 2002, 2007 and 2012 

 

Table 8: Conversion factors for 
bushels of crops (U.S. Grains Council) 

Crop Conversion Factor 

Barley 45.930 Bushels / Tonne 

Corn 39.368 Bushels / Tonne 

Wheat, Soybeans 36.744 Bushels / Tonne 
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considerations.  Theoretical production values generated by Pfister & Bayer (2017) were also 

converted to county-level production estimates, and were useful for comparison against USDA 

reported production values used in this case study. 

3.4 Domestic Water Competition Footprint 

County-level AWARE characterization factors were combined with blue water irrigation 

requirements, resulting in a county-level characterized water competition footprint (WCF) for each 

crop.  Additionally, using county-level crop production quantities, total blue water withdrawals for 

each crop were calculated.  The WCF value was then combined with the county-to-national 

production ratio, with the sum of all footprints resulting in the crop domestic production-weighted 

water competition footprint (WCFdom,i). These values were also production weighted at the state 

level to provide an additional spatial scale for further analysis of each crop. 

   

𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖,𝑗𝑗 = 𝐶𝐶𝐶𝐶𝑗𝑗 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑗𝑗 
 

𝑊𝑊𝑊𝑊𝑊𝑊𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 = ��
𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑗𝑗

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇
�

�������������
𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐−𝑡𝑡𝑡𝑡−𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 
𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟

×  𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖,𝑗𝑗

𝑛𝑛

1

 

 
WCFi,j = Water competition footprint for crop i in county j (m3 in competition/tonne) 
WCFdom,i = Domestic production-weighted water competition footprint for crop i (m3 

in competition/tonne) 
Irrigationi,j = Irrigation water requirement for crop i in county j (m3/tonne)   
CFj = Characterization Factor for County j (unitless) 
Productioni,j = Production quantity of crop i in county j (tonnes) 
Productioni,Total = Total national production of crop i (tonnes) 
n = number of counties reporting data for crop i 

3.5 Trade Considerations 
Crop import data was accessed through FAOSTAT, which provides monthly import data 

including countries of origin and quantities.  Similarly, export data was accessed through 

FAOSTAT providing export quantities for each crop and destination countries.  Imports and 

exports require special consideration, however, when determining consumed crop water use 

impacts at the national level.  Specifically, crop imports pose certain challenges given 

differentiation between crops imported and consumed and those imported and immediately 

exported (Figure 9), an occurrence which is not well documented in available statistical 

databases.  Without knowing the magnitude of these “pass through” effects, this methodology 
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assumes all imports are combined with domestically produced crops for consumption.  Export 

values are characterized the same as the U.S. domestic production-weighted national average, 

representing that the U.S. only exports crops which it produces domestically (i.e. no “pass 

through” effect).   

 
Figure 9: Characterization of imports and exports to determine production-weighted average characterization for U.S. 

consumed crops. 

 
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 = �𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 − 𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�+ 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑡𝑡𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 

 
 
Where 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the U.S. consumption quantity of crop i,  𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is 

the U.S. production quantity of crop i, 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the total import quantity of crop i, and 

𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇 is the total export quantity of crop i. As described in a later section, domestic water 

irrigation values are characterized at the watershed and county level, while imports are 

characterized at the national level based on the country of origin.  Export values are characterized 

by the U.S. domestic production-weighted average (which only includes domestic production). 

Though domestic crops are characterized at the county level, comprehensive geospatial 

distribution and production data for import crops is not readily available.  For this reason, import 

crops are characterized using national-level AWARE irrigation characterization factors for the 

importing country (Anne-Marie Boulay & Pfister, 2017).  In future studies, use of EarthStat coupled 

with empirical data from FAOSTAT and individual country statistics could provide additional 

accuracy in the characterization of imported crops.  Crop irrigation requirements for import 
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countries were taken from Pfister & Bayer (2014).  National-level irrigation requirements were 

used for the same reasons stated above. 

In a similar process to the domestic water competition footprint calculations, import crop 

water competition footprints were calculated by multiplying national-level characterization factors 

with irrigation requirements.  Using a ratio of individual country import quantities over total imports, 

import-specific water competition footprints were generated for each crop. 

 

𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖,𝑚𝑚 = 𝐶𝐶𝐶𝐶𝑚𝑚 × 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑚𝑚 
 

𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖 = ��
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑚𝑚
𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

�×  𝑊𝑊𝑊𝑊𝑊𝑊𝑖𝑖,𝑚𝑚

𝑛𝑛
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WCFi,m = Water competition footprint for crop i from import country m (m3 in 

competition/tonne) 
WCFimp,i = National import water competition footprint for crop i (m3 in 

competition/tonne) 
Irrigationi,m = Irrigated water requirement for crop i from import country m 

(m3/tonne)   
CFj = Characterization Factor for import country m (unitless) 
Importi,m = Import quantity of crop i from import country m (tonnes) 
Importi,Total = Total import quantity of crop i (tonnes) 

 

Exports require no characterization or water use values.  Quantities of crop exports and 

destination countries were accessed through FAOSTAT in a similar process the import steps 

outlined above.  With the assumption that the U.S. only exports U.S.-produced crops (vice 

permitting “pass through” of imports), these export quantities were subtracted from total domestic 

production during the final characterization of U.S. consumed crops.  In essence, exports reduce 

the characterization weight of U.S. produced crops and, in turn, increase the weight of import crop 

characterization. 

Final calculation of the consumption water competition footprint (WCFcons,i) for each crop 

involves properly weighting previously calculated water competition footprints (domestic and 

imports) with consumption totals using the Consumptioni,Total equation.   

 

𝑊𝑊𝑊𝑊𝑊𝑊𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐,𝑖𝑖 = ��𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑛𝑛𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇−𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝐸𝑡𝑡𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�
𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇

� × 𝑊𝑊𝑊𝑊𝐹𝐹𝑑𝑑𝑑𝑑𝑑𝑑,𝑖𝑖 +  � �𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝑖𝑖,𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇�
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� × 𝑊𝑊𝑊𝑊𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖,𝑖𝑖  

 
WCFcons,i = Consumption water competition footprint for crop i (m3 in competition / tonne) 
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With available data, the above method is reasonably accurate for many crop types 

consumed in the United States.  However, certain inaccuracies arise when calculating WCFcons,i 

values for exotic crops or, more specifically, consumed crops arriving primarily through imports 

with limited domestic production.  The above methodology relies on national-level characterization 

factors and irrigated water requirements when calculating water competition footprints for 

imported crops, which is less thorough than characterizing water use at the watershed- or basin-

level (which is possible for domestic crops).  National-level characterization factors fail to capture 

unique regional water scarcity conditions of certain growing regions, and national-level irrigated 

water requirements are estimated averages considering a wide range of climate and 

environmental conditions throughout a country.  Due to these factors, water competition footprints 

for crops supplied primarily through imports may be less accurate than crops with primarily 

domestic production.  These shortcomings emphasize this methodology as applicable to crops 

primarily produced and consumed in the U.S. 
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4. Results and Case Study 

4.1 Regional Characterization Factors 

AWARE factors generated at the county level (Figure 10) reveal the greatest water 

deprivation occurring primarily in the western and southwestern United States, areas typically 

associated with arid climate conditions.  Over 57% of U.S. counties have characterization factors 

greater than 1, identifying them as having water deprivation greater than the world average.  Also, 

Figure 10 shows the impact anthropogenic water use has on regional water deprivation, most 

notably in southern California near San Diego and Los Angeles, along the east coast, and even 

the island of Oahu in Hawaii.  State-level characterization (Figure 11) shows Arizona has the 

highest average water deprivation (96.73), while the lowest deprivation is in Alaska (0.25).   
 

 

Mapping regional crop production densities for each crop (See Appendix A) reveals 

concentrated pockets of activity, with each crop having unique production regions.   Field crops, 

many of which serve as feed for livestock, have significant production density in the Midwest, 

having modest levels of production in other areas.  Wheat and barley are nearly identical in their 

production regions primarily in the Northern and Western U.S., having minimal production in the 

southeast.  Specialty crops including rice, sugar beets and peanuts, have limited production 

regions.   

Figure 10: AWARE Characterization Factors at county-
level 

Figure 11: AWARE Characterization factors at state-
level 
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4.2 Regional Irrigation Requirements and Competition Footprints 
 Table 9 provides a comparative summary of state-level irrigation water requirements and 

water competition footprints for each crop, which reflect the change associated with characterizing 

water use at regional levels. Competition footprint units are in m3-eq per tonne, which is 

represented more explicitly in units of m3 in competition per tonne.  California, Arizona, New 

Mexico, and Nebraska claim the highest production-weighted water competition footprint (WCFpw) 

for each crop.  Arizona has the highest WCFpw for three crops including potatoes, barley and 

wheat.  Arizona also has the highest overall water scarcity characterization factor, which 

undoubtedly contributes to high WCFpw values.  In contrast, states situated among the Great 

Lakes region and along the eastern seaboard have the lowest WCFpw values.  This is due to more 

abundant freshwater supplies, but is also attributable to the lesser production quantities of certain 

crops originating from these regions, which lessens their impact in comparison to other high-

production states.   

Below is a case study showing specific results for U.S.-grown peanuts.  Results for the 

other nine crops can be found in Appendix A. 

4.3 Case Study: Regional and National Competition Footprints of U.S. Peanuts 
Peanuts are primarily produced in Georgia, Texas, Alabama and Florida, with each state 

contributing 41%, 16%, 12% and 9% to total domestic production, respectively.  Adding irrigation 

requirements reveals less contribution to irrigated water withdrawals from states in the southeast 

(primarily Georgia, Alabama, and Florida) and increased water intensity in Texas and New 

Mexico.  Further, after applying characterization factors based on regional water scarcity, water 

competition is primarily visible in Texas (56% contribution to the national WCFpw) and New Mexico 

(20%), with other states contributing an aggregated total 25% to the national WCFpw.  Though 

New Mexico only produces approximately 1% of U.S. peanuts, it provides 20% of the crop’s total 

water competition footprint.  The irrigated water requirement for domestically grown peanuts is 

273 m3 / tonne, and the consumed WCFpw is 1,264 m3-eq / tonne. 

U.S. peanuts are produced in the South-Eastern U.S. and throughout the Texas and 

Oklahoma region (Figure 12).  Irrigation requirements are highest in the same regions, with lesser 

quantities of irrigation required in Georgia and other east coast states compared to Texas and 

New Mexico (Figure 13).  Once irrigation water is characterized, counties within Texas and New 

Mexico appear as states with domestic water competition footprints far exceeding other regions 

(Figure 14).  As seen in Figure 15, eastern states are situated in almost linear fashion with respect 

to domestic WCFpw, each having varying levels of irrigation requirements but similar water 
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footprints.  However, Texas and New Mexico have substantially higher WCFpw values (2,880 m3-

eq/tonne and 20,812 m3-eq/tonne, respectively), increasing the national average.  Interestingly, 

only 1% of U.S. peanuts are produced in New Mexico, but production within this region contributes 

over 20% towards the crop’s domestic WCFpw (Figure 16).  Similarly, Texas only produces 16% 

of U.S. peanuts but contributes over 55% to the crop’s WCFpw.  Results indicate a benefit of 

sourcing peanuts from the eastern U.S. if seeking to reduce the water footprint of consumed 

peanuts. 

 

Figure 13: Irrigation water 
intensity map for U.S.-grown 
peanuts 

Figure 12: Production density 
map of U.S.-grown peanuts 

Figure 14: Water competition 
footprint intensity map for U.S.-
grown peanuts 
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Figure 15: Bubble chart comparing peanut-producing states.  Bubbles are situated based on irrigate water 
requirements and water competition footprints, and bubble sizes represent production quantities. 

Figure 16: Distribution and Comparison of Domestic Peanut Production, Irrigation Requirements and Competition 
Footprints 
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4.4 National Competition Footprints 

The national-level statistics for each crop can be found in Table 9.  The differences 

between IWRpw and WCFpw for each crop and state shows the impact of water characterization, 

which is small in water abundant states such as Alabama and New York, but is high in arid states 

such as Colorado, Arizona and California.  Production, import and export data provide magnitudes 

necessary for calculating the final consumed WCFpw value (Table 10).  Rice has the highest 

consumed WCFpw among the assessed crops, with a value of 15,623 m3-eq / tonne consumed.  

Sugar beets have the lowest consumed WCFpw value, being 704 m3-eq / tonne consumed.  Tables 

11 and 12 provide additional comparisons between key values in Table 10, showing the 

State Potatoes Barley Peanuts Soybeans Sweet Potatoes Wheat Rice Oats Rye Sugar beets 

 IWRpw WCFpw IWRpw WCFpw IWRpw WCFpw IWRpw WCFpw IWRpw WCFpw IWRpw WCFpw IWRpw WCFpw IWRpw WCFpw IWRpw WCFpw IWRpw WCFpw 
Alabama 11 11 6 5 156 136 164 146 13 12 46 40 0 0 224 191 570 503 0 0 
Alaska 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Arizona 201 20,133 720 70,771 0 0 0 0 0 0 743 72,886 0 0 1,066 101,222 0 0 0 0 
Arkansas 88 218 0 0 317 466 1,059 1,368 29 20 338 549 607 906 421 556 0 0 0 0 
California 105 7,661 418 32,398 0 0 0 0 273 19,856 459 28,142 997 70,543 614 39,874 3,610 245,466 121 5,952 
Colorado 126 11,887 528 47,679 0 0 541 16,362 0 0 484 18,413 0 0 857 76,728 2,186 209,509 70 3,609 
Connecticut 23 15 0 0 0 0 0 0 0 0 20 19 0 0 0 0 0 0 0 0 
Delaware 40 55 80 110 0 0 650 887 0 0 70 95 0 0 122 162 0 0 0 0 
Florida 40 89 0 0 205 231 502 555 88 183 152 148 358 759 324 326 910 1,227 0 0 
Georgia 5 6 14 15 285 344 674 805 2 3 265 308 0 0 383 451 779 957 0 0 
Hawaii 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
Idaho 91 286 256 1,255 0 0 0 0 0 0 222 1,284 0 0 459 2,770 0 0 86 248 
Illinois 24 30 41 36 0 0 115 108 3 3 26 20 0 0 45 53 3 4 0 0 
Indiana 19 19 17 17 0 0 115 114 0 0 15 15 0 0 26 25 2 2 0 0 
Iowa 27 33 86 236 0 0 159 456 0 0 103 186 0 0 72 174 19 55 0 0 
Kansas 89 237 269 524 0 0 617 1,325 0 0 348 720 0 0 261 512 122 298 0 0 
Kentucky 14 11 12 11 0 0 263 116 13 12 31 14 0 0 18 16 0 0 0 0 
Louisiana 51 8 0 0 0 0 897 190 79 13 592 106 356 179 436 65 0 0 0 0 
Maine 13 7 6 3 0 0 214 119 0 0 5 3 0 0 7 4 0 0 0 0 
Maryland 40 39 53 55 0 0 435 500 0 1 52 57 0 0 26 30 0 1 0 0 
Massachusetts 29 18 1 1 0 0 371 229 0 0 0 0 0 0 30 15 0 0 0 0 
Michigan 26 23 25 22 0 0 172 148 0 0 19 17 0 0 37 31 1 1 5 4 
Minnesota 21 36 36 101 0 0 127 267 0 0 48 138 0 0 57 113 4 8 6 15 
Mississippi 6 1 0 0 299 61 903 151 74 15 510 79 542 79 189 76 0 0 0 0 
Missouri 69 12 178 264 0 0 429 308 0 0 192 221 634 250 160 217 80 92 0 0 
Montana 54 271 179 1,438 0 0 249 2,111 0 0 151 1,256 0 0 179 1,173 28 237 46 390 
Nebraska 42 523 324 13,290 0 0 667 30,934 0 0 433 17,280 0 0 319 13,533 165 8,489 61 2,570 
Nevada 0 0 475 23,468 0 0 0 0 0 0 277 12,271 0 0 296 10,857 5 226 0 0 
New Hampshire 9 5 0 0 0 0 118 63 0 0 0 0 0 0 10 7 0 0 0 0 
New Jersey 37 64 51 71 0 0 542 711 128 165 60 94 0 0 31 20 0 0 0 0 
New Mexico 82 1,987 176 14,153 466 20,812 0 0 0 0 768 25,110 0 0 684 58,667 0 0 0 0 
New York 28 42 24 20 0 0 173 145 4 7 20 17 0 0 33 28 0 0 0 0 
North Carolina 9 11 65 66 98 108 268 323 34 39 98 115 0 0 154 180 82 92 0 0 
North Dakota 14 67 70 469 0 0 205 995 0 0 92 643 0 0 116 865 24 199 8 41 
Ohio 18 16 14 13 0 0 137 126 11 11 17 15 0 0 21 20 0 0 5 4 
Oklahoma 83 91 428 237 357 169 1,067 2,421 0 0 476 761 0 0 424 720 238 261 0 0 
Oregon 88 319 240 1,728 0 0 0 0 0 0 209 506 0 0 357 3,061 562 4,951 82 613 
Pennsylvania 16 14 22 19 0 0 218 180 9 8 27 22 0 0 21 18 0 0 0 0 
Rhode Island 5 42 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 
South Carolina 17 17 47 42 104 101 326 313 6 7 138 132 0 0 235 238 280 279 0 0 
South Dakota 37 314 172 1,430 0 0 243 2,002 0 0 148 1,237 0 0 139 1,165 27 219 0 0 
Tennessee 12 11 11 11 115 113 754 118 13 12 75 12 637 64 21 16 0 0 0 0 
Texas 83 2,248 238 810 491 2,880 932 5,376 1 2 643 2,793 219 1,008 586 4,511 1,258 6,388 0 0 
Utah 83 7,549 390 32,020 0 0 0 0 0 0 396 31,963 0 0 887 79,133 0 0 0 0 
Vermont 27 20 23 19 0 0 188 158 0 0 22 19 0 0 35 26 1 0 5 4 
Virginia 25 295 45 121 97 119 373 1,314 42 356 54 196 0 0 78 99 1 1 0 0 
Washington 89 153 254 441 0 0 0 0 0 0 217 376 0 0 452 777 0 0 87 152 
West Virginia 11 11 22 29 0 0 156 190 13 13 23 29 0 0 20 22 1 1 0 0 
Wisconsin 26 28 49 57 0 0 120 135 0 0 32 35 0 0 46 52 3 4 0 0 
Wyoming 51 1,042 234 6,320 0 0 0 0 0 0 595 35,537 0 0 269 10,804 0 0 51 1,095 

Table 9: Production-Weighted Irrigation Water Requirement (IWRpw) and Production-Weighted Water Competition 
Footprint (WCFpw) aggregated at the state level.  All values represent domestic production exclusively. 



39 
 

 
 

 

magnitude of changes between domestic IWRpw and WCFpw values (Table 11), as well as 

domestic WCFpw and consumed WCFpw values (Table 12).  Increases between irrigation water 

requirements and water competition footprints range from 207% (peanuts) to 3905% (sweet 

potatoes).   

Sweet potatoes have the highest overall competition footprint related to its irrigation water 

requirements, with peanuts having the lowest (Figure 17).  This is due to sweet potato production 

occurring in California (18% of national production), which contributes 99% of total water 

competition impacts for the crop.  Peanuts are primarily produced in the South-East U.S. where 

water competition is low, resulting in a low overall WCFpw compared to other crops.  Figure 17 

displays the strong influence crop production in water scarce regions has on overall competition 

footprints.  The five crops (sugar beets, potatoes, sweet potatoes, oats, barley) with the lowest 

irrigation requirements have the highest relative water competition footprints, demonstrating the 

larger influence growing region has on water impacts over quantities of irrigation water. 

Table 12 shows the impact that imports and exports have on final consumed WCFpw 

values, resulting in both increases and decreases among the crops assessed.  Rye and oats had 

the most substantial decreases between domestic and consumed WCFpw (54% and 44%, 

respectively) due to their large import quantities from countries with low competition footprints 

relative to U.S. production regions.  For oats and rye, imports contribute towards 52% and 55% 

of U.S. consumption of each crop, respectively (Figure 18).  Domestic production for both crops 

is primarily in California, Nebraska and Colorado, each with water characterization factors of 56.9, 

57.6 and 37.2, respectively.  Contrasting these water scarce domestic production regions with 

countries providing imports, we see that 85% of imported oats originate in Canada (national CF 

= 10), and imported rye originates in Canada (27% of imports, national CF = 10), Denmark (24% 

of imports, national CF = 3.3), Germany (25% of imports, national CF = 1.6) and Sweden (20% if 

imports, national CF = 4.6).  Peanuts had very low quantities of imports but, due to the significant 

water scarcity in regions providing imported peanuts (Argentina imports 70% of peanuts, CF = 

54), the resulting consumed WCFpw value is 9% larger than domestic WCFpw. 
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Figure 17: Chart shows bands of characterization factors from CF=2 to CF=50.  Each crop marker is located at its 

relative domestic IWRpw and WCFpw, showing relative water competition associated with each crop. 

 
Figure 18: Influence of imports on consumed Water Competition Footprints 
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Certain production regions consistently provided the most contributions to irrigation water 

requirements and water competition footprint, most situated in the Western U.S.  The states 

significantly contributing to high crop domestic WCFpw are California, Colorado and Arizona, with 

those same states and Texas most contributing towards IWRpw (See Table 13).  Of the U.S. states 

most significantly contributing to IWRpw and WCFpw for each crop, California, Colorado, Arizona 

and Texas ranked among the top states.  These results indicate the significant irrigation 

requirements and corresponding water competition occurring within these production regions.  

 
Table 12: Three states most significantly contributing to IWRpw and WCFpw for each crop assessed. 

 Crop Metric States with Largest Contribution 
Towards Overall Impact 

Potatoes 
IWRpw Arizona Colorado California 
WCFpw Arizona Colorado California 

Barley 
IWRpw Arizona Colorado Nevada 
WCFpw Arizona Colorado California 

Peanuts 
IWRpw Texas New 

Mexico Oklahoma 
WCFpw New 

Mexico Texas Arkansas 
Soybeans 

IWRpw Oklahoma Arkansas Texas 
WCFpw Nebraska Colorado Texas 

Sweet Potatoes 
IWRpw California New Jersey Florida 
WCFpw California Virginia Florida 

Wheat 
IWRpw New 

Mexico Arizona Texas 
WCFpw Arizona Wyoming Utah 

Rice 
IWRpw California Tennessee Missouri 
WCFpw California Texas Arkansas 

Oats 
IWRpw Arizona Utah Colorado 
WCFpw Arizona Utah Colorado 

Rye 
IWRpw California Colorado Texas 
WCFpw California Colorado Nebraska 

Sugar beets 
IWRpw California Washington Idaho 
WCFpw California Colorado Nebraska 
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5. Discussion 
 
 A major aim of this study was to determine the relationship between crop irrigation water 

requirements and regional water competition due to water scarcity.  This is especially pertinent 

as irrigation water, either from surface or ground sources, is the crop water resource competing 

most directly with other regional users.  Intuitively, increased requirement for irrigation coincides 

with regional water scarcity, but the strength of this relationship is not yet established.  As seen 

in Figure 17, there is a positive relationship between IWRpw and WCFpw, which supports the notion 

that increased irrigation is, in part, correlated with regional water scarcity.  Additional crop values 

are needed to generate a statistically significant relationship between these two indicators, but 

initial results show a positive trend. 

 Many life cycle assessment studies aimed at estimating environmental impacts of different 

food products are available, with most assessing greenhouse gas emissions (GHGE), land use 

and energy requirements (Aleksandrowicz, Green, Joy, Smith, & Haines, 2016; Clune, Crossin, 

& Verghese, 2017; Tom, Fischbeck, & Hendrickson, 2016).  Water footprint studies for food 

products is a growing research area, and this thesis provides a possible methodology in 

identifying trade-offs between GHGE, land use, energy and water.  Further, the consumption 

water competition footprints for crops would be useful in diet-level studies, helping determine 

relationships between diet healthfulness and environmental impacts.  Some studies provide 

insight into these trade-offs (Aleksandrowicz et al., 2016; Clune et al., 2017; Tom et al., 2016), 

but characterized water impacts are lacking.  This methodology may provide water competition 

footprints for different crops, allowing a more comprehensive and complete assessment of the 

environmental impacts of different food products.  

 Another useful application of this methodology would be the development of a tool to 

support retailers, restaurants, and consumers in determining the water competition footprint 

associated with the food they purchase.  Consumers and businesses are becoming more aware 

of the environmental impacts of their purchasing decisions, and this methodology provides 

important information regarding the water competition associated with crops sourced from 

different regions.  For example, a restaurant providing peanuts to customers may consider 

purchasing from a supplier with Georgia or South Carolina peanuts over others from Texas or 

New Mexico, in order to reduce the water footprint of the foods they are selling. Similar decision 

making is possible with all the crops assessed, and development of additional crop water 

competition footprints would further support informed decision making for individuals and 

businesses seeking to reduce their water footprint.  
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5.1 Method Limitations and Opportunities for Improvement 
 As stated in earlier sections, this methodology is most applicable for crops primarily 

produced domestically.  The lack of regional-specific import crop production values reduces 

overall accuracy of the analysis in estimating national average consumption based water 

competition footprints.  Given import countries likely have a wide spectrum of climatic conditions 

and growing regions, similar to the U.S., achieving increased granularity on regional production 

totals would increase overall robustness of the analysis.  This level of detail is possible using 

theoretical models and mapping products including EarthStat, CROPWAT and IIASA-IFPRI (Fritz 

et al., 2015), and some researchers have already made progress in determining these regional 

values for various crops (Stephen Pfister & Bayer, 2017). 

 Census and survey data is limited, and future application in diet-level studies would require 

use of proxy values, other methods, or alternative data sources for developing a comprehensive 

number of crop water competition footprints.  Incorporating water competition footprints into diet-

level studies will require use of consumption models, many of which are based on the Food 

Intakes Converted to Retail Commodities Databases (FICRCD) and the Food Commodity Intake 

Database (FCID).  FICRCD and FCID provide diet, nutrition and health information based on 354 

and 65 commodities, respectively, posing a challenge when attempting to scale the proposed 

methodology to calculate water competition footprints for each commodity.   

Some data gaps exist in using USDA production totals at the county- and state-level due 

to anonymity requirements of census data.  Select county-level (and some state-level) production 

values are not provided for certain crops for this reason, leading to potential challenges when 

production weighting the impacts of certain crops.  USDA generates production totals at the 

county, state and national level, each of which were used to determine the magnitude and 

potential impact of non-reported data.  To do this, county production totals for each crop were 

summed within each state and compared with respective state production totals.  Considering all 

county- and state-level comparisons for the 10 crops assessed (total of 500 comparisons between 

10 crops), only 2% had differences greater than 1% between county sums and reported state 

totals.  The greatest discrepancy was with sweet potatoes production in Louisiana, where the 

summed county production total was 5% different from the state production total.  Similarly, state 

production totals were summed and compared with national crop production totals.  These 

differences were less than 1% for each crop.  Considering these results, non-reported data was 

not a limiting factor in the analysis of the crops presented in this thesis.  However, in assessing 

the potential to scale this analysis to assess additional consumed crops, census data gaps for 

county-level production totals emerged as a limiting factor.  Using annual survey data, which is 
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less comprehensive than census data but provides an estimate of production totals based on 

representative samples, may resolve this limitation.  Further, incorporating the EarthStat model 

for determining production totals and spatial distribution of production regions may make scaling 

this method more feasible and less cumbersome, allowing USDA data to serve as a validation 

tool rather than a primary data input. 

Assessment of available groundwater, its recharge rates and potential for future use are 

considerations still not well modeled by the LCA community and, further, are not well understood 

by hydrologists.  Specific to groundwater recharge, many methods have been proposed to model 

unconfined aquifer recharge rates (Arnold, Muttiah, Srinivasan, & Allen, 2000; Beigi, Tsai, & 

Frank, 2014; Finch, 1998; Gee & Hillel, 1988; Jie, van Heyden, Bendel, & Barthel, 2011; Kendy 

et al., 2003; Rushton & Ward, 1979; von Freyberg, Moeck, & Schirmer, 2015).  However, all 

methods elicit variability in accuracy and application depending on the spatiotemporal 

considerations and other study-specific factors.  Additionally, determining magnitude of 

groundwater depletion is challenging due to lack of relevant data on subsurface conditions 

(Konikow & Kendy, 2005). 

WaterGAP, which is used for calculation of AWARE characterization factors, provides 

comprehensive assessment of groundwater recharge activity on a global scale.  However, given 

the regional focus of this study, WaterGAP lacks certain components to accurately inform on 

regional groundwater stores and impacts.  Specifically, WaterGAP does not account for 

groundwater flow between grid cells, treating groundwater as storage compartments without 

accounting for flow or recharge of surface water bodies.  Without considering the complexities of 

aquifer topography, variable interactions with surface water bodies, and diffuse groundwater 

recharge (occurring through percolation due to excess soil moisture), WaterGAP does not provide 

the granular detail required to understand and quantify its availability for users. 

Remedying this problem may come in the form of satellite-generated data from the Gravity 

Recovery and Climate Experiment (GRACE) mission, which provides researchers with a new 

source for assessing available water quantities.  GRACE may provide a method for determining 

the magnitude of groundwater resources on a regional scale.  GRACE data permits users to 

determine terrestrial water storage (TWS) (including snow, ice, soil moisture, surface and 

groundwater), and incorporation of other hydrological datasets can provide estimates of changes 

in groundwater storage (Famiglietti et al. 2011, Scanlon et al 2012).   

More comprehensive groundwater deprivation modeling and its proper incorporation into 

water footprint methods is required to accurately understand the magnitude of available water 

within a region.  Scanlon et al. (2012) calculated that between 1860 and 2007 the High Plains and 
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Central Valley Aquifers have decreased in available groundwater storage by 8% and 14%, 

respectively.  Moreover, overexploitation of groundwater aquifers is a global issue, with countries 

including the U.S., Mexico, Iran and China both producing crops irrigated from rapidly depleting 

aquifers, while also importing substantial quantities of food commodities from other countries with 

unsustainable groundwater irrigation practices (Dalin, Wada, Kastner, & Puma, 2017).  For these 

reasons groundwater should be modeled separately from surface-water sources using an 

individual groundwater footprint method.  Gleeson et al. (2012) developed a method for 

determining groundwater footprints using aquifer area, annual abstraction, recharge rate and 

contributions to environmental streamflow.  Regions requiring significant groundwater use for 

irrigation had groundwater footprints 3 to 54 times larger than the aquifer’s actual area, indicating 

the unsustainable abstraction occurring within these agricultural regions (Gleeson et al., 2012).  

This requires either decoupling of groundwater considerations from the WaterGAP model or 

incorporation of a more robust sub-model to comprehensively capture irrigation impacts from 

overexploited groundwater sources.     

The scope of this analysis is limited to irrigation water impacts, and does not include 

water impacts associated with electricity generation, fuel processes and uses, or other life cycle 

inputs.  However, future integration of the AWARE methodology into primary databases and 

LCA software will enable more comprehensive water impact assessments of products, allowing 

practitioners to expand system boundaries to address other water intensive aspects contributing 

to crop production and distribution.  It is likely that irrigation is the most water intensive and 

impactful process within a crop’s life cycle, but even marginal water uses can significantly 

contribute to overall crop water footprints (e.g. peanuts grown in New Mexico).  For this reason, 

future research should seek to include additional input data and characterization to accompany 

irrigation water requirements, allowing determination regarding how various inputs into crop 

systems impact cradle-to-grave water competition footprints. 
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6. Conclusion 
 
 This thesis sought to apply a methodology for assessing regional water impacts for crop 

production, and to demonstrate this approach on 10 domestic crops.  After a detailed literature 

review, different models and primary data sources were integrated into a method for assessing 

crop production at the county scale.  First, the AWARE method was used for determining water 

characterization factors within a region.  These factors are a result of total water available, human 

consumption and ecosystem demand (Anne-Marie Boulay et al., 2016; Anne-Marie Boulay & 

Pfister, 2017). Second, irrigation water requirements were provided by Pfister & Bayer (2017) 

which include blue water irrigation water requirements with global coverage for 160 crops 

(Stephen Pfister & Bayer, 2017).  Census data from USDA provided county-level production data 

for 10 different crops, and import and export quantities were accessed from FAOSTAT.  Using 

these models and data sources, production weighted water competition footprints (WCFpw) were 

calculated for each crop for both domestic production and consumed quantities.   

 Western states, most notably California, Colorado, Arizona and Texas use significant 

quantities of water for irrigation, and regional water scarcity imposes strong water competition 

among other users.  Even small production quantities in the Western U.S. resulted in significant 

water impacts.  Peanuts grown in New Mexico, for example, only account for 1% of total U.S. 

peanut production but contribute over 20% towards the crop’s water competition footprint.  Similar 

is the case of sweet potatoes, of which California produces only 18% of the U.S. total supply but 

contributes 99% towards the crop’s water competition footprint.  These results indicate the large 

water footprint and impact associated with producing crops in these regions of the Western U.S., 

and may be used to inform decision making about production and sourcing of crops from these 

regions. 

High quantities of irrigation water requirements did not necessarily correspond with high 

water competition footprints.  Peanuts, for example, had a very high irrigation water requirement 

(273 m3/tonne) and the lowest overall water competition footprint (838 m3-eq/tonne).  On the other 

hand, sweet potatoes had one of the lowest irrigation water requirements of the crops studied (89 

m3/tonne, Table 11), but had the third highest overall water competition footprint (3,565 m3-

eq/tonne).  These examples, and others, demonstrate the influence of production regions for each 

crop, and that irrigation water quantity is not an adequate indicator of a crop’s water footprint.  

Additionally, these results highlight the importance of assessing water impacts at a small spatial 

scale (counties, in this case), focusing on watersheds rather than state or national boundaries for 

assessing impacts.   
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The proposed methodology is not without limitations, with certain primary data gaps at 

USDA providing challenges to accurately weighting water characterization based on county-level 

production quantities.  Additionally, this methodology is not rapidly scalable due to heavy empirical 

data requirements. Use of GIS-based analysis tools and crop production models, including 

CROPWAT and EarthStat, may provide the opportunity to rapidly assess additional crops with 

more flexibility and completeness.  Regarding groundwater, additional research is needed to 

incorporate a more robust groundwater footprint model into the existing methodology.  

Groundwater depletion impacts are significant and occurring globally, and future methods need 

to assess groundwater impacts separately from surface water sources.  Additionally, identification 

of extraction water sources (surface water or groundwater) needs to be better modeled to allow 

more accurate assessment of ecosystem and competition impacts from water consumption within 

a region.  

Water is a limited resource, and its use for crop irrigation provides a potent and widespread 

impact throughout regions of the U.S.  The method proposed in this thesis has potential to inform 

U.S water policy regarding crop production practices and water allocation, and may be used to 

inform retailers and businesses on where to source food products with varying levels of water 

competition footprints.  The proposed consumption water footprints may enable future life cycle 

assessment (LCA) studies around food products, specifically analyzing the trade-offs between 

GHGE, energy, land use and water.  Further, opportunities exist for use in diet-level studies to 

establish a link between environmental impacts, water footprints and healthfulness of various 

diets.  This work successfully integrated recent water characterization methodologies and 

datasets to assess water competition footprints for food production and consumption in the U.S. 

The approach demonstrated in this thesis serves as a foundation for future research focused on 

regional characterization and assessment of water use and competition impacts.  This 

assessment is necessary to better inform policy and decision making for enhancing the 

sustainability of food systems. 
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Appendix A: Individual Crop Results and Graphics 
Peanuts 

Peanuts are primarily produced in Georgia, Texas, Alabama and Florida, with each state 
contributing 41%, 16%, 12% and 9% to total domestic production, respectively.  Adding irrigation 
requirements reveals less contribution to irrigated water withdrawals from states in the southeast 
(primarily Georgia, Alabama, and Florida) and increased water intensity in Texas and New 
Mexico.  Further, after applying characterization factors based on regional water scarcity, water 
competition is primarily visible in Texas (56% contribution to the national WCFpw) and New Mexico 
(20%), with other states contributing an aggregated total 25% to the national WCFpw.  Though 
New Mexico only produces approximately 1% of U.S. peanuts, it provides 20% of the crop’s total 
water competition footprint.  Domestic peanut irrigated water requirements are 273 m3 / tonne, 
and consumed WCFpw is 1,264 m3-eq / tonne. 
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Soybeans 
Soybeans are produced throughout the Mid-West U.S., with over 50% of production 

occurring in Iowa, Illinois, Minnesota and Indiana.  Water irrigation requirements are most 
significant in the southern Mississippi River Basin and areas around Nebraska, but overall 
irrigated water withdrawals remain dispersed throughout the Mid-West.  After incorporating water 
characterization, water competition is most noticeable in Nebraska (82% contribution to the 
national WCFpw) and South Dakota (4%), with small pockets of water competition in Iowa (3%), 
Arkansas (2%) and Kansas (2%).  Similar to New Mexico in the peanut results provided above, 
Nebraska provides a modest amount of U.S. soybean production (7%), but contributes 82% of 
the crop’s total water competition footprint.  The domestic IWRpw and consumed WCFpw for 
soybeans are 294 m3/tonne and 2,563 m3-eq / tonne, respectively. 
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Potatoes 
Potatoes are produced primarily in the Pacific Northwest, with 58% of production occurring 

in Idaho (31%), Washington (21%) and Oregon (6%).   Water irrigation requirements are heaviest 
in western states, and characterized water competition footprints are primarily in Colorado (59% 
contribution to the national WCFpw) and California (22%).  Though Colorado and California 
produce a combined 11% to U.S. potatoes, they account for 81% of the total water crop water 
competition footprint.  Potatoes have a domestic IWRpw of 74 m3 / tonne, and a consumed WCFpw 
of 1,299 m3-eq / tonne. 
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Sweet Potatoes 
Sweet potatoes are primarily produced in North Carolina (39% of domestic production), 

California (18%) and Louisiana (18%), with less than 25% of remaining production distributed 
among six other states.  Upon applying water irrigation requirements to production totals, irrigated 
water use is centralized in California and North Carolina.  Once water characterization factors are 
applied, California contributes 99% of water competition impacts towards the crop’s domestic 
WCFpw.  The production of sweet potatoes in other regions having abundant freshwater supply 
contributes to this disproportionate share of water competition in California.  Overall, sweet 
potatoes have a domestic IWRpw of 89 m3 / tonne and a consumed WCFpw of 3,296 m3-eq / tonne. 
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Barley 
Barley, similar to wheat, is primarily produced in the western states of North Dakota (29% 

of domestic production), Idaho (20%), Montana (16%) and Washington (8%).  Water irrigation 
requirements remain consistent for these regions.  Calculating water competition using regional 
characterization factors results in four states contributing over 80% to the national WCFpw, most 
notably Colorado (30%), Arizona (28%), California (14%) and Utah (9%).  Barley has a domestic 
IWRpw of 185 m3 / tonne and a consumed WCFpw of 4,679 m3-eq / tonne, the second highest of 
the crops assessed. 
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Wheat 
Wheat is produced in the majority of U.S. states, with production occurring primarily in 

western states like Kansas (17%), North Dakota (14%), Montana (8%) and Washington (7%).  
Irrigation water requirements remain centralized in the same regions providing the majority of 
production, with denser water uses seen in southern California, Washington, and states across 
the Great Plains including Kansas, Colorado, Wyoming and Oklahoma.  Characterizing water 
scarcity results in water competition footprints focused in Colorado (22% contribution to the 
national WCFpw), Nebraska (18%), California (18%) and Arizona (11%).  Wheat has a domestic 
IWRpw of 252 m3 / tonne and a consumed WCFpw of 2,712 m3-eq / tonne. 
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Rice 
Rice is produced in California and the southern U.S., with much of the production occurring 

along the Mississippi River and Gulf of Mexico in Texas and Louisiana.  Over 81% of production 
occurs between Arkansas (46%), California (22%) and Louisiana (13%), with the remaining 19% 
distributed among Mississippi, Texas and Missouri.  Irrigation water requirements occur in the 
same production states, with increased intensity occurring in California.  Once water 
characterization is applied, California becomes the prominent contributor to the rice water 
competition footprint (97%).  Similar to sweet potatoes, regions growing rice outside of California 
have less water scarcity issues, giving California a disproportionate contribution towards the 
crop’s domestic WCFpw.  Rice has the highest irrigated water requirements and water competition 
footprint of the crops assessed, with a domestic production weighted IWRpw of 634 m3 / tonne and 
a consumed WCFpw of 15,623 m3-eq / tonne. 
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Rye 
Production of domestic rye is distributed widely across the U.S., with majority of production 

occurring in South-East and Mid-West states.  Oklahoma is the largest rye producing state (17% 
of national production), with remaining production occurring in Georgia (9%), Wisconsin (6%), 
and remaining amounts distributed between 30 other states.  Irrigation water requirements for rye 
are similarly distributed, with Georgia (34% of national IWRpw for rye), Texas (22%) and Oklahoma 
(20%) using the most irrigated water of all rye producing states.  Once water use is characterized, 
however, Colorado becomes the primary contributor to the rye national water competition footprint 
(33%), though the state only produces approximately 0.3% of the nation’s crop.  Other states with 
high competition footprints include Nebraska (22%of national competition footprint), California 
(21%), and Texas (13%).  The domestic production weighted IWRpw for rye is 212 m3 / tonne, and 
a consumed WCFpw of 844 m3-eq / tonne, which is one of smallest competition footprints of the 
crops studied. 
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Oats 
Oats, similar to rye, has a dispersed production profile throughout the U.S., with primary 

production occurring in Mid-West states like North Dakota (12% of national production), 
Wisconsin (12%), Minnesota (11%), Iowa (8%) and South Dakota (5%).  Water irrigation 
requirements are focused in Texas (17% of national IWRpw), California (10%), North Dakota (9%) 
and South Dakota (7%).  Characterization of water requirements shifts all competition footprints 
to the west, with California (33% of national WCFpw), Colorado (15%), Nebraska (12%) and Utah 
(10%) ranking highest among states with competition footprints for oats.  The domestic production 
weighted IWRpw for rye is 159 m3 / tonne, and a consumed WCFpw of 1,751 m3-eq / tonne. 
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Sugar beets 
Sugar beets have a definitive grouping of production regions throughout the U.S., with 

Minnesota (33% of national production), Idaho (18%), North Dakota (17%) and Michigan (12%) 
producing the highest quantities of sugar beets nationally.  Irrigation requirements, however, are 
highest in Iowa (43% of national IWRpw) and western states with lesser quantities of production, 
most notably California (22%), Colorado (6%) and Nebraska (6%).  Water competition among 
sugar beet producing states are in the same heavy irrigation regions, with California (55% of 
national WCFpw), Colorado (16%), Nebraska (13%) and Idaho (6%) providing the greatest 
competition impact nationally.  Sugar beets have the lowest domestic IWRpw and consumed 
WCFpw of the 10 crops studied, with a domestic production weighted IWRpw of 36 m3 / tonne and 
a consumed WCFpw of 704 m3-eq / tonne. 
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